
An Object Oriented Environment for
Artificial Evolution of Protein Sequences:
The Example of Rational Design of
Transmembrane Sequences

Mariusz Milik and Jeffrey Skolnick

Abstract

A system is presented for generating peptide sequences with desirable prop
erties, using combination of neural network and artificial evolution. The
process is illusu·ated by an example of a practical problem of generating
at1ificial transbilayer pep tides. The peptides generated in the process of
artificial evolution have the physico-chemical properties of transmembrane
peptides, and forols stable u·ansmembrane structures in testing Monte Carlo
simulations. The ru1ificial evolution system is designed to emulate natural
evolution; therefore it is of both practical and theoretical interest, both in
temlS of rational design of protein sequences and nlodeling of natural evo
lution of proteins.

1 INTRODUCTION

Most of versions of genetic algorithnls (GA) are used as efficient
methods for optimizing conlplex functions, but in the case of the subclass
of GA called artificial evolution (AE), emphasis is placed on the biological
realism of the model, with clear separation between genotype and the infor
mation encoded in the genotype. The system presented in this paper is an
example of implementation AE into the area of rational design of protein
sequences. In order to obtain the "natural" probability of amino acid muta
tions, the protein sequences are encoded in this model as a sequence of
nucleic acids. The isolation by distance effect is simulated by placing ele
ments of the population onto one-dimensional grid of circular shape, with
one genotype per location. Each individual can compete and mate only
with its neighbors; parents of each offspring are chosen by random walk.
The procedure starts from the first parent location; the new organism sur
vives if it wins in a tournament with its neighbors also chosen by randonl
walk.

As a test, this algorithm was used for rational design of transmem
brane peptide sequences. In this test, thc output from a pattern-recognition
neural network was used as a fitness function. The network was previously
trained on a set of known transmembrane protein fragments. This hybrid
neural network + GA system was able to generate new families of trans
membrane pep tides. The best-fitted sequences were tested by Monte Carlo
simulation and proved to have the structural and dynamical properties typi
cal of transbilayer peptides.

The hybrid system is designed to be universal and may be used to
design other important peptide sequences, e.g., enzyme inhibitors or antibi
otics. Because of its biological realism, the system may also be used for
study of the natural evolution process and artificial life problems. Itis writ
ten in C++ and is thought to be a seed of an Object Oriented library for
modeling of biological systems.

2 DESCRIPTION OF THE OBJECTS

The Neural Network library contains actually two main classes: Bp
(back-propagation) and BpTcst.

The Bp class is defined as two n1ultilayer back-propagation net
works that share weight mau'ices. The first network is used in the training
process, while the second onc is used in an "on linc" testing process. At the
present level of development, only a three-layer (inputlhiddenloutput) ar
chitecturc is implemented, and weights are initialized randomly. Listing 1
(below) presents the essential members and methods of the Bp class.

class Bp (
int inp;
int hid;
lnt out;
lnt pat;
int test_pat;
double eta;
double alpha;
~atrix I;
~atrix It;
~atrix WI;
}tatrix H;
~atrix Ht;
Matrix W2;
Matrix 0;
Matrix ot;
~tatrix T;
Matrix Tt;
Vector bl;
Vector b2i

II number of input nodes
II number of hidden nodes
II number of output nodes
II number of training patterns
II number of testing patterns
II learning parameter
II momentum parameter
II Training pattern matrix - size pat x inp
II Testing pattern matrix - size test_pat x inp
II Weights input->hidden size: inp x hid
II training signals on hidden layer
II testing Signals on hidden layer
II output weights matrix - size: hid x out
II training output matrix - size: pat x out
I I testing output matrix - size: test_pat x out
II training target matrix (size: pat x out)
II testing target vector (size: pat x out)
II biases for hidden layer
II biases for output layer

public:
Bp() [}; II default constructor
Bp(char* file_name); II construction from file
-Bp(); II destructor
void Save(char* file_name); II save network on file
void InitRandomly(double limits); II random start for weights
void Forward(); II calculation of out matrix
void BackGradient(void);11 gradient back-propagation learning cycle

};

The BpTest class is a simplified version of the Bp class, without
learning methods. Objects from this class are used in the GA library as
fitness functions.

The base of the Genetic Algoritlun Library is the En t class; objects
from this class represent individuals of the model population. These ob
jects contains a byte string with the individual genetic information, fitness
of the Ent and its age. The Ents are the elements of the Population class,
where environment and mating rules are defined. Listing 2 (below) pre
sents the most important members and methods of the Ent class definition:

class Ent [
friend Ent* Cross(Ent* first, Ent* second);
friend Ent* DCross(Ent* first, Ent* second);

II crossover
II double crossover

private:
Byte* genome;
int ssn;
int size;
int Nres;
double fitness;
int age;

II a string with genetic information
II ft Mpersonal number" of the Ent
II size of the genome (bytes)
II number of residues in a coded peptide
II actual fitness of the Ent
II age of the Ent (in epochs)

pUblic: II some more important methods
II CONSTRUCTORS:

Ent(void);
Ent(ints);

Ent(int s, Byte* gen);

II default (empty) constructor
II random initiation of an Ent with a
II genome length equal MS'

II initiation of an Ent with a genome
II copied from the string Mgen'

Ent(FILE* fill; II from text file stored on the disk
Ent(char cp, FILE* fill; II from binary file stored on the disk

II DESTRUCTOR
-Ent(void);

II NON MODIFYING FUNCTIONS:
void Fitness(void); II this function is defined separately

II for every model
char* OutNA(char* na_sq) const;
char* OutAA(char* aa_sq) const;
void Save(FILE* fill;

II write the genome as a NA sequence
Ilwrite the genome as an AA sequence
II save the Ent as a text file

} ;

void Save(char cp, FILE* fill; II save the Ent as a binary file
II MODIFYING FUNCTIONS:

void
void

Nutate(void); II the point mutation of the Ent
Older(void); Ilwhat happen when the Ent advances in years ;-)

A set of generated Ents with some additional methods, creates the
class Population. Fragments of the definition of this class are presented in
the Listing 3 (below):

class population
private:

int name; II name of the population (important in the case
II of multi-population environments)

int size; II size of the popUlation
Ent-* habitat; II storage for Ents
int ChooseFromNeighbors(int nr, int step, int nsteps);

II definition of the tournament method
pUblic:

};

II CONSTRUCTORS
Population(); II default constructor
Population(int pop_size, int gen_size);

II construction of a popUlation of random Ents
Population(char* file_name); II constr. from a text file
Population(char cp, char* fil_name); II constr from a binary file

II DESTRUCTORS
-Popllla tion (void);

II NON :-lODIFYING FUNCTIONS
void Save(char* file_name); II save the population as a text file
void Save(char cp, char* file_name); II save the population as

II a binary file
void Print.!\/\(char* message); II print the genes from the popUlation

II as peptide sequences
void ~a ting_Schcmc_'\(int step, int nsteps);

II one of definitions of the mating
II scheme (random walk)

3 GENETIC ALGORITHl\l PROCEDURE

The nlethod of coding of protein sequences min-lics the natural
nucleic acid (NA) coding scheme. Every amino acid (AA) is coded by the
corresponding set of NA triplets from the genetic code, and every NA is
represented by two bits. The resulting scheme is presented in Table 1.

Every six bits in the model genome represent a signal in the natural
genetic code. Because the model point mutation works on the lowest level
(bit flips), the presented representation gives a nature-like probability of the
amino acid mutation. Some transitions are more probable, some less, de
pending on the genetic code.

Every sU'ing is evaluated after translation into the equivalent pro
tein sequence. The evaluation/unction (fitness function) is defined outside
of the main body of the library and should be defined separately for every
application of the method. In the presented work, the trained neural net
work was used as a fitness function. The system, however is open and every
function with a protein sequence as an input and real number as an output
may be used here as an evaluation (fitness) function.

NAcode AA binary code NA code AA binary code
UUU F 000000 AUU I 100000
UUC F 000001 AUC I 100001
UUA L 000010 AUA I 100010
UUG L 000011 AUG M 100011
UCU S 000100 ACU T 100100
UCC S 000101 ACC T 100101
UCA S 000110 ACA T 100110
UCG S 000111 ACG T 100111
UAU Y 001000 AAU N 101000
UAC Y 001001 AAC N 101001
UAA X 001010 AAA K 101010
UAG X 001011 AAG K 101011
UGU C 001100 AGU S 101100
UGC C 001101 AGC S 101101
UGA X 001110 AGA R 101110
UGG W 001111 AGG R 101111
CUU L 010000 GUU V 110000
CUC L 010001 GUC V 110001
CUA L 010010 GUA V 110010
CUG L 010011 GUG V 110011
CCU p 010100 GCU A 110100
CCC p 010101 GCC A 110101
CCA p 010110 GCA A 110110
CCG p 010111 GCG A 110111
CAU H 011000 GAU D 111000
CAC H 011001 GAC D 111001
CAA Q 011010 GAA E 111010
CAG Q 011011 GAG E 111011
CGU R 011100 GGU G 111100
CGC R 011101 GGC G 111101
CGA R 011110 GGA G 111110
CGG R 011111 GGG G 111111

Tablc1. The amino acid representation used in the artificial evolution algorithm. Amino ac-
ids and nucldc acids are represented by their one-letter symbols. ''X .. denotes the "stop"

triplets of the genetic code, which are not interpreted in the current version of the program.

One of the more annoying problems in genetic algoritlun applica-
tions is premature convergence, in which population stagnates at a subopti-
mal solution. In the model presented, this problem is addressed by using
the isolation by distance process and an age parameter. The isolation by
distance is implemented in one-dimensional foml. Every Ent in the model
population inhabits one site in the circle-shaped habitat (an example may
be the shore of a lake), and a probability of mating between pairs of Ents is
a fast-declining function of their distance (calculated along the shore). Ad-
ditionally, in order to find its own site (and survive), each newly created Ent

must win at least once in a set of duels with neighbors. ·A duel, in the pre
sented implementation, consists of the comparison of the fitnesses of the
Ents (with some random element). Depending on the implementation, the
age parameter may be used here as an additional factor. The age parameter
may decrease or increase fitness, changing the probability of survival for
newly created individuals.
Thls method, used for large popUlations, creates a set of spatially isolated
subpopulations of Ents with different genotypes. The interfaces between
the subpopulations are the sources of variability in the population, as an
effect of the recombination process.

The recombination and mutation processes operate on the lowest
(bit) level of the model and are absolutely independent of the particular
interpretation of the genetic code. In the model, the one- and two-point re
combination types are implemented. In the both types of recombination,
equal length substrings are exchanged (reciprocal recombination); this way
recombination does not change the length of the chromosomes (sequences).

Mutation is nlodeled by a random process of bit-flipping on the
chromosome, with an user-defined probability, independently on each posi
tion along the chromosome string. In this model, mutation occurs in parallel
with recombination.

4 EXAI\:IPLE OF APPLICATION OF THE HYBRID SYSTEM

The idea of creating protein sequences by artificial evolution process, may
be best explained by using a simple, practical exanlple. This method was
used for evolving transmembrane peptides, starting from randonl sequences.
The process consists of four main stages:

1. Preparation of the data-base of known transmembrane sequences,
2. Preparation of the fitness function by training the pattetn

recognition neural network on the set of known transmembrane
sequences,

3. Artificial evolution of initial random sequences with the neural
network as a fimess function, and

4. Testing obtained transmembrane peptides using Monte Carlo
simulation.

Stage 1: Preparation of the data-base.
The set of known, 2 I-residue long, transmembrane sequences was

extracted from the protein sequence data-base. We used 2100 eucaryotic
transmembrane sequences, each 21 residues long. Arginincs were added on
the both ends of the transbilayer sequences in order to simulate the hydro
philic effect of end groups. Twenty randomly chosen sequences obtained in
this procedure were tested by the Monte Carlo - membrane peptide simula-

0.2S--~---.---"T--r--..,..----r---.,--.,-----,.----,

0.20 "
\

.....
'. '. '.

training set

testing set
. _ _.-

~ 0.15
".

.........
"0,; g

Q.)
0.10

......................... _ __ _ --_.

o.os

0.00 L-__ ~ __ -L __ ~ ___ L-__ ~ __ ~I_~----~_~-~

o ~ ~ ~ ~ l~

time (epochs)
Figure 2. Learning curves for one of typical runs of the pattern recognition neural network.
The error is dcfmcd according to standard definitions: mean square difference between
output and target vectors. (for details see for example: Masters 1993). Difference in
behaviour of these curves is probably due to memoriztion effect.

tion program (Milik and Skolnick 1993), and all of the pcptides fornled
stable, u'ansmembrane structures. These sequences represented the positive
cxamples in thc training procedure. An equal number of sequences of ran
dom arruno acids were mixed with them as negative examples. The set of
peptide sequences obtained in this way was then divided into five, cqual
size subsets. One of the subsets was held out as a control set. The remaining
sets were used for the training and testing sets.

In order to be used as an input for the neural network system, the
peptide sequences were translated into vectors of real numbers. In this u'ans
lation scheme, every amino acid was represented by six of its basic physico
chemical properties: hydrophobicity, bulkiness, refractivity, polarity, tum
propensity and beta strand propensity (Argos 1987).

Stage 2: Training procedure.
The tlu'ee-Iayer neural network was trained using the sets of pep

tide sequences depicted above. The goal of the training procedure was to
obtain a neural network system that could distinguish between the natural
(from data-base) and random sequences. The number of hidden-layer units
and the learning procedure parameters (learning constant, momentum) were
chosen in test runs. Once the architecture of the neural network system was

AAELXHASXESDTSHTSRRYKSH
AFNGAlUOCVLRFL YLVHALRI,WX
ABRLRECALRLBLDYYBSITISR
AILWEP IVTENLXF I QSCLFAGV
AKRELVRLSKXSAFDVNRSPXAL
AMACPERRVCFRLNYLEESAVXT
ARITSRPCFTSHPAXLXLQVGFM
ARQDRLLIPPTFSXPVSGBSRDN
ARSLFTERSTSRQRTTQAXLPPG
AXQPCNRGSVCGIQGGPSTLSTL
AYCSEEGSXRGDWPILGGHSPAA
CD CFVKVDLKVDKRCASLLGXAV
CRAQNDTGXSLCLENHNLGDVSW
CSBSTSSSQBRBQSXYEWSSSSA
DCLVSKNIGGRYGRPSKGLSIPX
DRKHPLQRLLTVFCWYYXTDWKI
DTNEPADLPVXCGDLDMIIAIAG
DYLNXFGVEKKVGIFXAVAGGGT
EHDGVTTHP~ICKAR~~GHSMRA
EPLLIQRQXHTPPTYKVTRPKFL
ESCRTFXIKSHAPLYFPSIDEGR
EVPRPTDPPAGCASXIPARESQF
FDSTDGNFCYWMYLIFHSKHPMR
FKXKXVRFREACVFDYXVNHHSS
FMPAHYSCDXARSSRTSQSDLXQ
FNAASHLRRDRAPLELlEAYLIH
FQGTFPLCSRQWYGVILSRCVSP
FSRQREELLCVTRLLBLTAVAMV
GEEFQLITLQVSAITHRCTMVQP
GEFYPPEPLTFINLLPSYSIYVT

Figure 2. A small fragml!l1t of the initial random population of amino acid sequences.
Sequences arc obtained by interpretation of random sequences of ''0'' and "III using the
code from Table 1. The initial population was sortcd alphabetically bcfore printing. Amino
acids are represented by their one-letter codes. "X" denotes "stopll signals and were not
interpreted in the present simulation. Sequences obtain large penalties for the ''X" code,
therefore these mutation are '1ethal".

set, the main training process was started. The process consisted of four
independent runs, starting from different, random initial weights. The learn
ing curves from one of the typical runs are shown in Figure 1. The figure
shows the error of the neural network for training and testing sets during the
learning procedure. The error on the training set decreases monotonically
during the training procedure. The error calculated on the testing set de
creases in the initial stage of the process, but later it stabilizes and even
increases. This is probably an effect of memorization of the training set by
neural network. The neural network with minimal error value for the con
trol set was used as a fitness function in the artificial evolution procedure.

RACLSCYGPIGVNLRIVSCLVGR
HAl I I RYFGLV I ILLTPRLSGAK
MIQEBAI'lVLAAliRIGSILGMK
HAIQEHVIYVCAAQRIVSILGMK
HAIQEBV!YVLAALRIGCILGVK
HAIQEHVIYVLAALRIVSrLGMK
BAIQEHVIYVLAALRIVSILGMR
RAIQEHVIYVLLDLGIVSILGMK
RAIVICFIGOVSGLGRYEVVLIR
HAIVQIDASBDGTTLIVSILGMK
KAIVQMDIYVLAFLRIVSI1VMN
HAI~~HVIYVLAPLSCLSILGMK

aAlh~RVIYVLARLRIVSILGMK
HAI~~HVIYVtT.RLRIVSTLEtK
a~I~~aVIYVLVRLRIVSIL~1K
a~LASNVIYDLAALRIVSILGMK
flAU.Sl'-I'V I YDLAAI,RIVS I LGfolK
HALAS~'VIYNLAALRIVSILGLK
HAP~YLLRARLRIVSIL~~
HA!NEHVI~VLLNLRIVSILEMK
a~ TWEhllIYVLAALRIVS ILAHK
HATw~HVIYVLAALRIVSlLE~m
EATWEHVIYVLAPLRIVSILGIR
EAT~'EHVIYVLARL.1:{IVSILGMK

HATWQflVI~/LARLRI!SILr~H
HA'I~jQBVIYVLLDLRIVSILEMl<
5ATW~9VIYVL~QRLVSILEMK
3AVHEH~~VlAALRIVSSGICQ

HA9~~HVIYVLA~~IrSILGMK

a3CPSFAIYV13.~VSTLVGR

Figure 3. A small fragment of the fmal population of transmembrane amino acid se·
qucnces. 1l1esc peptide sequences were obtained in the process of artificial evolution with
the pattern recognition neural network as a fitness function.

Stage 3: Artificial Evolution.
The process of the artificial evolution stalled from a population of 1500
random peptide sequences. Figure 2 shows a fragment of this population.
A set of 20 sequences was randonlly chosen from the starting population
and was tested by our Monte Carlo membrane peptide simulation proce
dure (Milik and Skolnick 1993). No sequences from this set could fonn a
stable transmembrane structure in the simulation process. Figure 3 shows a
fragment of population after 100 epochs of the process of artificial evolu
tion, using the trained pauern-recQgnition neural network as a fitness func
tion. The process generated a di versified population of peptide sequences
with high fitness values. Most of the sequences are different from the se-

Figure 4. EX3mpl" of a typical transm~mbranc structure fonned by the peptide:
R.~IVICH[GRLCAVTEYTVFIVH (fitness: O.99K) obtained in the process of artilicial
~\'olution. Th~ s-=q\l~ncc or the peptide is not identical \\ith any natural peptide from
tr<lining or t.:sting d.:lla-basc. The figure shows the helical structure of the peptide in
schemali~ C (J. represenlation. sp3nning the model. h~ drophobic membrane. The borders of
th\! modI.!! membrane are represented by paralldograllls. f\lorc about i\lol11e Carlo method
us.:-d in this pa~r can be find in \\ork: ~1ilik and Skolnick 1993.

quences used in the process of training of the neural network system. Twenty,
randomly chosen sequences from the final population were tested in the
\lonte Carlo procedure, and all of them fonn transtnembrane stnlctures.
Figure 4 shows an example of the typical transmembrane stnlcture fonned
by a peptid~ g.enerated in the Artificial Eyolution process.

5. CO:\CLliSIO~S

This paper presents a proposition of a method of implementation
of the artificial evolution methods into the area of modeling of membrane
peptide and protein-peptide systems. This implementation. in cooperation
with ~·Ionte Carlo simulation. may open up the possibility for development
of new methods for the rational design of amino-acid sequences with desir
able properties.

Additionally, the paper presents a set of object-oriented structures,
which could be used in another artificial evolution and artificial life simula
tions. This set of programing tools is a basis for proposed object oriented
environment for implementation of the aJ1ificiaI evolution methods into the
area of protein and nucleic acid analysis.

Acknowledgments

The authors would like to thank Dr. David B. Fogel for his criti
cism and valuable comments.

References

Argos P. (1987). A Sensitive Procedure to Compare Amino Acid Sequences,
J.Alol.Biol. 193: 385.

~fasters T. (1993). Practical Neural Ne/work Recipes in C~·-: Academic
Press.

~filik ~t. and Skolnick J. (1993). Insertion of Peptide Chains into Lipid
~1embranes: An Off-Lattice i'.tonte Carlo O)llamics ~,tode1. PrOle ins, 15: 10.

