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SUMMARY 

 

 Robustness of the closed-loop system has repercussions on both stability and 

performance, making the study of robustness very important. Fundamentally, the 

performance and stability of closed-loop systems utilizing state-feedback are tied to that 

of the observers. The primary goal of this thesis is to develop a robust nonlinear observer 

and closely examine the usefulness of the observer in the presence of non-collocation and 

parametric uncertainty and as an integral component in closed-loop control. The 

usefulness of the observer being investigated depends on robustness, accuracy, 

computational burden, ‘tunability,’ ease of design, and ease of implementation on an 

actual flexible motion system.  

 The design and subsequent integration of the Kalman filter, an optimal observer, 

into a closed-loop system is well known and systematic. However, there are shortcomings 

of the Kalman filter in the presence of model uncertainty which are highlighted in this 

work. Simulation studies are conducted using the Simulation Module in National 

Instruments LabVIEW 8.5 and experiments are conducted on a physical system 

consisting of a single flexible link with non-collocation of actuators and sensors using 

LabVIEW Real Time 8.5. Simulations serve as a means to analyze the performance of the 

optimal observer and the robust observer by analyzing their dynamic behavior as well as 

that of the closed-loop system with each observer in place. The focus of experiments is 

on investigating implementation of the robust observer, including initialization and 

tuning of observer design parameters off-line and on-line.   

 Simulations verify the robustness properties of the sliding mode observer while 

experiments show that the robust observer can be implemented at fast control rates and 

that replacing the Kalman filter with a robust observer has direct ramifications on closed-

loop performance.   



 

1 

CHAPTER 1 

INTRODUCTION 

 

1.1 Background and Problem Statement 

 Control of long-reach yet light-weight space and industrial manipulators are two 

immediate benefits of on-going research on the topic of flexible motion systems. A 

potentially farther reaching benefit is the possibility of improving the accuracy and 

precision of any robotic manipulator in which actuators and sensors are non-collocated. 

Such manipulators are not common today in industry precisely because of the challenging 

control problem. Greater design freedom in the design of manipulators will exist if we 

can use advanced control theory combined with modern technology to apply control 

torques at distances through a flexible structure and achieve not just stable but high 

performance control.   

 The basic approach taken in this thesis work falls under improved control 

algorithms for feedback control, which is a proven approach for employing flexible 

motion systems [1]. While a wide range of design objectives for a robotic manipulator 

may exist, measures related to either stability or performance that controls practitioners 

often care about include local or global stability regions, speed of response and 

positioning accuracy and repeatability of the useful endpoint of the link. When stationary, 

we want to ensure the steadiness of the end point of the link by removing residual 

vibrations.  

1.1.1 Motivation 

 Robustness of the closed-loop system has repercussions on both stability and 

performance, making the study of robustness very important. The study of robustness 

may entail studying how sensitive the flexible motion system is to temporary or persistent 
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disturbances and model uncertainty. Model uncertainty can be broken down into 

parametric uncertainty (structured uncertainty) and unstructured uncertainty. Parametric 

uncertainty is often easier to characterize. For example, the inertia of the flexible link 

may be known to lie between a lower and upper amount. An example of unstructured 

uncertainty is unmodeled dynamics (i.e. actuator dynamics or higher flexible modes).   

 There is further motivation for studying robustness. The controls problem is very 

challenging when the system is inherently non-minimum phase. The combination of non-

collocation and the flexible nature of the link is the cause of non-minimum phase 

behavior. The time delay between torque input at one end of the link and tip displacement 

at the other end, caused by a finite wave propagation speed, is the culprit. Model-based 

controllers hold promise for high performance control yet frequently encountered model 

inaccuracy can severely affect the stability and consistent performance of a closed-loop 

control system [2]. The combination of model inaccuracy and the presence of non-

collocation, and hence non-minimum phase behavior under the right circumstances, 

exacerbates the situation. The study of robustness of a non-minimum phase closed-loop 

control system to model inaccuracy is thus of high interest.    

 PID based joint control based on tip position has been shown to fail. State-

feedback control on the other hand has been shown to be effective at driving the link tip 

to a desired position or at a desired velocity while commanding vibrations towards zero 

[2]. However, there are two obstacles to this control approach. First, an observer for 

estimating the complete state based on imperfect real world measurements becomes 

crucial. Second, state-feedback control has been shown to be sensitive to small changes 

in payload and parameters [3]. Hence, the focus of this work on observers in the presence 

of model uncertainty. An overview of the state-feedback controller and observer used in 

this work can be found in section 1.2.2.    
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1.1.2 Problem Statement  

 The primary goal of this thesis then is to develop a robust nonlinear observer and 

closely examine the usefulness of the observer for application to control of a flexible 

robotic link in the presence of non-collocation and parametric uncertainty and as an 

integral component in closed-loop control. The usefulness of the observer being 

investigated depends on robustness, accuracy, computational burden, ‘tunability,’ ease of 

design, and ease of implementation on a physical flexible motion system. Details of the 

experimental test-bed can be found in section 6.1. An important distinction at this point is 

that directly comparing the performance of the sliding mode observer to the Kalman 

filter, an optimal observer common in practice will better place the performance of the 

observer into useful context and allow the reader to judge the sliding mode observer for 

what its worth.  

1.2 Non-collocation and Control Overview 

Non-collocation of actuators and sensors offers at least two benefits. Greater 

precision can result in theory by placing the sensor at the useful end of a robotic link, 

collocated with end-of-arm tooling instead of the actuator. Truly high precision is 

achievable by minimizing error at the tool and not at the joint. Cost is often the 

overruling factor in design, taking precedence over performance. The number and 

placement of actuators and sensors determines the cost of implementing control. 

Naturally, non-collocation may be the direct result of cost considerations. Lastly, non-

collocation may result because of the physical impossibility of collocating actuators. 

1.2.1 Non-collocation and Non-minimum Phase Behavior 

 Improved dynamic modeling plays a critical role in non-collocated systems. It is 

important for the model to properly represent the non-minimum phase behavior if it is 

present. One way in which the presence of non-minimum behavior is detected is by 
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looking at system zeros. Positive zeros are a direct indication. It is readily seen that since 

the zeros of a system depend on the A, B and C matrices in the state-space realization of 

the system, the system zeros depend on the placement of actuators and sensors.  

 Another way in which the presence of non-minimum behavior is detected is by 

studying the time response plot. If there are an odd number of positive system zeros, 

there will be initial undershoot. Initial undershoot is another direct indication of non-

minimum phase behavior. That is, the flexible link tip initially moves in the reverse 

direction. Multiple positive system zeros mean multiple direction reversals in a step 

response [4].  

 
 
 

 
Figure 1.1: Motion of a flexible robotic link. 

 
 
  
 Non-minimum phase zeros limit closed-loop performance. This is because the 

closed-loop poles are made up of open-loop poles and zeros. As loop gain increases, 

poles move towards unstable zeros and destabilization occurs when the loop transfer 

function has non-minimum phase zeros. Such systems have limited gain margins which 

implies a limit on the robustness of the closed-loop system.   

 Non-collocation on its own presents a challenging control problem. There is a 

direct correlation between parameter uncertainty and instability of a non-collocated 

closed-loop system. In certain non-collocated systems, system poles and zeros alternate 

as one moves up the imaginary axis in the s-plane. In such systems, zero flipping occurs 

 

 

 
  

Initial  
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as parameters vary according to Canon [5]. Zero flipping refers to a zero moving in 

between system poles. This occurs because system zeros are actually more sensitive than 

system poles to parameter variation. Even more so in the presence of low damped modes, 

in which case the zero does not need to be shifted far before zero flipping directly leads 

to system instability.   

 
 
 

 
Figure 1.2: Zero flipping due to parameter variation in non-collocated system. 

 
 
 

1.2.2 Observer and Controller 

 A typical approach is to separate the problem of estimation and control. This is a 

simpler two-step approach which works well for linear systems. The block diagram 

depicted in Figure 1.3 is based on the experimental test-bed to be discussed in section 6.1. 

Also note that the simulations to be discussed in Chapter 5 are also based on the same 

control system structure. The observer plays a critical role in the closed-loop system at 

hand. Based on imperfect measurements from the real world, the observer estimates the 

complete state to be used for state-feedback. The two observers tested are the Kalman 

filter and the sliding mode observer. Their performance is judged based on the quality of 

their estimates and the performance of the closed-loop control system in the presence of 

parameter uncertainty. 
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Figure 1.3: Block diagram of control system. 

 
 
 
 In this thesis work, locating the closed-loop poles is based on the method of 

symmetric root locus, a version of the optimal linear quadratic regulator problem. In this 

method, the closed-loop poles are restricted to the locus. This convenient approach allows 

the designer to achieve a balance between tracking error and control effort by tuning a 

single parameter, τ. Appendix A provides the procedure for design of the symmetric root 

locus. In addition, a feed-forward term is used for properly introducing a non-zero 

reference input to the controller. Appendix B provides the procedure for design of the 

feed-forward gain.  

1.3 Literature Review for Robust Observer 

 Slotine et al [6] suggest a general design procedure based on the variable structure 

systems theory for a sliding mode observer for nonlinear systems with bounded 

nonlinearities and uncertainties. The design problem is essentially an arbitrary pole 

placement problem for selecting the observer gains. In a direct comparison with the 

Kalman filter, the authors show that in a simple linear system in the presence of bounded 

parametric uncertainty, the sliding mode observer produces stable estimates with reduced 

error.    
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 Chalhoub and Kfoury [7] design a fourth order sliding mode observer with a 

single collocated measurement for a single flexible link manipulator under closed-loop 

control. A nonlinear model of the flexible link based on the Lagrangian approach is used 

in simulations. They adapt Slotine’s variable structure systems theory based observer 

design with modifications to the observer structure. They present a unique method for 

selecting time-varying switching gains, in which each element of the observer gain 

matrix is selected one at a time based on designated constraints. Based on simulations, 

they show that in the presence of parametric uncertainty, closed-loop control based on 

estimates is stable. They attempted but failed to show robustness of the observer in open-

loop form to unmodeled dynamics. With a similar observer design approach as their 

previous work, Chalhoub and Kfoury [8] design a sixth order sliding mode observer with 

three measurements for estimating the rigid and flexible motion present in an internal 

combustion engine, presenting only simulations.  

 Diverting from the variable structure system theory approach proposed by Slotine, 

Kim and Inman [9] design a sliding mode observer for an active cantilevered beam based 

on a Lyapunov-based approach. Based on simulations, they report unstable estimates 

under impulse response by the Kalman filter in the presence of uncontrolled modes while 

the sliding mode observer estimates remain stable. Based on experimental results, they go 

on to show that their closed-loop system with the sliding mode observer with both 

parametric uncertainty and residual modes under impulse response remains stable and in 

fact reduces vibrations while the system with the Kalman filter goes unstable. The 

distinction should be made that their system is not a motion system.  

 Elbeheiry and Elmaraghy [10] design an eight order sliding mode observer with 

two measurements based on the Lyapunov-based approach for a two link flexible joint 

manipulator under PI joint control. Simulations and experimental results are presented, 

however like Zaki [11], the observer is not part of the closed-loop. More significantly, 

they do not directly showcase the robustness properties of the sliding mode observer. 
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Instead they discuss the performance of a Luenberger/sliding mode switching observer 

which resembles gain scheduling. However, they do offer a methodology, a set of 

conditions rather than a systematic procedure, for proper sliding mode observer design.           

 Zaki et al [11] design a fourteenth order sliding mode observer based on the 

Lyapunov-based approach for a two flexible link manipulator under PD joint control. 

Simulations are conducted with a linearized system model along with the sliding mode 

observer and a boundary layer placed on the switching surface. His results verify that the 

sliding mode observer produces stable estimates in the presence of parametric uncertainty 

in open-loop form. Experimental results are presented, showing accurate tip velocity 

estimates with the observer in open-loop form, with no parametric uncertainties. A set of 

conditions for proper sliding mode observer design is presented, similar to the one 

published by Elbeheiry and Elmaraghy [10], both of who are co-authors of this work by 

Zaki.    
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CHAPTER 2 

SYSTEM MODEL 

 

 The control algorithm for feedback control in this research involves model based 

observers and controllers. The flexible motion system is decomposed into flexible and 

rigid subsystems. The models for the flexible subsystem are used in design of the 

controller and observer used in both simulations and for experiments. The model for the 

rigid subsystem on the other hand was a means to identify critical parameters needed for 

control of the hardware. The rigid subsystem model is not directly used in any simulation.    

2.1 Flexible Sub-System 

 A model for a flexible subsystem considers the energy stored in the form of 

kinetic and potential energy when the link is twisted, compressed or bent. A more 

accurate model will consider energy storage from all three of these deformations. 

However, for real time control purposes, models may be simplified at the cost of 

accuracy to reduce the computational burden. If kinetic and potential energy storage is 

separated in lumped components, the model will lead directly to ordinary differential 

equations. This approach leads to what is referred to as a lumped parameter model. A 

model of this form is detailed in section 2.1.       

 Distributed parameter models on the other hand consider the spatially distributed 

nature of mass and compliance [2]. Such models consider the simultaneous storage of 

kinetic and potential energy in a continuous element such as a bar [12]. In such a model, 

location of a point on the link can be described by rigid body motion of the link and 

elastic deflection. A model of this form is detailed in section 2.2.  
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2.1.1 Simple Model 

 In a lumped parameter model for the flexible subsystem, the flexible link is made 

up of discrete inertias and springs. Dissipation effects may be modeled by including 

discrete dampers. Knowledge of rigid body inertias, spring constants and damper 

coefficients allows specification of the equations of motion. The flexible subsystem is 

described by one second-order ordinary differential equation per degree/order of the 

flexible subsystem. Thus the model has finite degrees of freedom meaning a finite 

number of modes.   

 Figure 2.1 depicts a lumped parameter model that illustrates the principles of non-

minimum phase in a flexible link. Here m1 represents the lumped (particle) tip mass and 

m2 represents the base mass as a rigid body at the sliding end. The arrangement of the 

discrete spring k and damper c leads to non-minimum phase behavior which is 

observable in the response of the tip mass. A concentrated external force is applied to the 

rigid body at the link base. 

 
 
 

 
Figure 2.1: Lumped parameter model for flexible link. 

m1 

m2

c 

k 

J2 
F 

y1 y2
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Figure 2.2: Free body diagram of the rigid body in the lumped parameter model. 

 
 
 
 Force and moment balance of each lumped mass separately leads to the equations 

of motion. For the base mass, the mass moment of inertia of m2 is found as  

2
2

2
(2 )
12

m rJ = .       (2.1) 

Summing the moments about the pivot point O gives 

   0 2 2 1 1 2( ) ( )M J Fr kr y y r cr y yα= = − − − +∑   (2.2) 

where angular acceleration using small angle approximation is 

2y
r

α =  .        (2.3) 

Solving for acceleration of m2 leads to the first equation of motion 

2 2 1 1 2
2 2 2 2 2

3 3 3 3 3F k k c cy y y y y
m m m m m

= − + − −    (2.4) 

Rx 

α 

k(y2 - y1) 

r 
O 

Ry 

F 

c(ydot1 + ydot2) 
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Figure 2.3: Free body diagram of tip mass in lumped parameter model. 

  
 
 

Summing the external forces in the x direction leads to the second equation of 

motion  

1 1 2 2 1
1 1 1 1

c c k ky y y y y
m m m m

= − − + − .   (2.5) 

 Using the state assignments 

1 1x y=        (2.6) 

2 1x y=        (2.7) 

3 2x y=       (2.8) 

4 2x y=       (2.9) 

the two second-order differential equations for the two degree of freedom system may 

now be rewritten as four first order differential equations 

1 1 1 1

2
2 2 2 2

0 1 0 0
0
0
0

0 0 0 1
3

3 3 3 3

k c k c
m m m m

x x F

k c k c
m

m m m m

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥− − − ⎢ ⎥⎢ ⎥

= + ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥− − −⎢ ⎥ ⎣ ⎦

⎣ ⎦

. (2.10) 

c(ydot1 + ydot2)

k(y2 - y1)

mg N
x 
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  Parameters of the model used in simulations and experiments are provided in 

Table 2.1. The necessary parameters were determined in the following straightforward 

manner. Tip mass m1 is a measured quantity from the experimental test-bed. The 

damping ratio of the first mode was approximated using logarithmic decrement. With 

empirical knowledge of the location of the first mode and its damping ratio, the stiffness 

k was approximated. With knowledge of the stiffness k and the damping ratio, the 

damping coefficient c was approximated. The non-minimum phase property of the model 

is indicated by the positive zero at 3.06e3.  

 It must be noted that the actual measured base mass m2 is 9.6kg, yet a final value 

of 20kg was used for both simulations and experiments, for the reason that the tuned 

value of 20kg resulted in better estimates and superior performance of the closed-loop 

system on the experimental test-bed.  To be consistent, the same value was used in 

simulations.    

 
 
  

Table 2.1: Lumped parameter model parameters and modal characteristics. 

 Model Data 

Tip Mass (kg) 0.110 

Base Mass (kg) 20 

Stiffness (N/m) 131.4 

Damping (N-s/m) 0.04 

Resulting First Mode 

(Hz) 
5.5 

Resulting Positive Zero 

(Hz) 
3.06e3 
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2.1.2 Detailed Model 

 Any free vibration consists of superposition of individual mode shapes. In a real 

system, there are an infinite number of natural frequencies and corresponding mode 

shapes.  However, the method of assumed modes, a distributed parameter approach to 

modeling, employed in this work neglects high frequency modes and represents the 

solution in terms of a finite number of modes. Note however that the non-minimum phase 

characteristics of the system are retained.  

 The essence of the procedure is to describe the continuously variable spatial 

shapes of the flexible link by basis or shape functions. The time variable amplitudes of 

the basis functions become the state variables. The basis functions are used to construct 

the energy expressions which lead to inertia, stiffness and damping matrices, as well as 

the generalized forces from the power input.  

 Figure 2.4 depicts the model of the flexible link. The guided end of the link is a 

sliding joint allowing translation only. At this end of the link, a concentrated transverse 

force is applied to the link and a damper is used to represent viscous (dynamic) friction at 

the joint. At the free end, a lumped (particle) mass represents the payload of the flexible 

link. As in any modeling task, several assumptions are made to simply the analysis. The 

link has a uniform cross-section, consists of linear elastic material, undergoes flexure 

only (no axial or torsional displacement), and moves in the horizontal plane.    
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Figure 2.4: Assumed modes method model for flexible link. 

 
 
 

 To keep the order of the model manageable, only the first three flexible modes 

and the rigid body mode will be modeled. The four independent and continuously 

differentiable basis functions suggested by Ginsberg [12] are 

1( ) 1xψ =      (2.11) 

2 ( ) cos
2

xx
L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

    (2.12) 

3( ) cos xx
L
πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

    (2.13) 

4
3( ) cos
2

xx
L
πψ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
    (2.14) 

where x is the location along the link and L is the link length.  

 The distributed parameter model considers the state of displacements, forces, 

moments and stresses at the ends of the link, known as boundary conditions. Zero slope 

at the guided end is represented by the boundary condition, for i = 1 to 4, 

' (0) 0iψ = .     (2.15) 

 Note that the last three basis functions satisfy the boundary condition above. They 

vanish at the location on the link where it does not deflect. Since rigid body motion is 

m
w(x,t) 

x 

E, I, ρ, A, L 

F 

c 
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possible for this motion system, the first basis function satisfying free-free boundary 

conditions for the link must be included.  

 The kinetic energy of the link and the lumped tip mass is 

2 2

0

1 1 ( , )
2 2

L

mT Aw dx mw x tρ= + ∑∫    (2.16) 

where L is the length of the link, ρ is the density, A is the cross sectional area, m is the 

lumped tip mass and w is displacement. The tip mass moves in unison with the link.    

The potential energy of the link, also known as strain energy, is found by integrating over 

the link length as 

2

0

1
2

L

V EIw dx= ∫      (2.17) 

where E is Young’s modulus and I is the cross-sectional area moment of inertia. The 

power dissipated due to the viscoelastic effect and the external discrete damper is 

22
2

2
0

( ( , ))
L

dis c
wP EI dx c w x t

x
γ

⎛ ⎞∂
= +⎜ ⎟∂⎝ ⎠

∑∫   (2.18) 

where γ is the loss factor and c is the damping coefficient of the discrete damper located 

at xc. The viscoelastic effect refers to energy dissipated under deformation of a purely 

elastic material. Hence it is the consideration of structural damping in the model. The 

power input to the link by the concentrated transverse force F is 

( ),in FP Fw x t=∑      (2.19) 

where F is applied at location xF.  

 By substituting the basis functions into the expressions for T, V, Pdis ,  and Pin , 

and evaluating the definite integrals, we eventually obtain the inertia, stiffness, damping 

matrices and the generalized forces. The integrals were evaluated analytically and 

verified by the math software Maple. Appendix X provides the procedure in further 

detail. The reader is referred to Ginsberg [12] for a complete overview of the procedure.  
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⎡ ⎤
⎢ ⎥
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⎢ ⎥
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      (2.22) 

 The 4x4 matrix of ones in equation 2.22 results from evaluating the trigonometric 

basis functions at the location of the dashpot along the beam, at x=0. The viscoelastic 

effect for most materials is negligible in the presence of external dashpots.  The 

generalized forces are 

1
1
1
1

Q F

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

.        (2.23) 

 The equations of motion are 

Mq Cq Kq Q+ + =        (2.24) 

where q are generalized coordinates, M is the inertia matrix, C is the damping matrix, K 

is the stiffness matrix and Q are the generalized forces. Proceeding to modal analysis, the 

general eigenvalue problem leads to the eigenvalues (vibration modes) and eigenvectors 
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(mode shapes). For obtaining free vibration modes, we only need the inertia and stiffness 

matrices.  

 Solving the general eigenvalue problem    

( ) 0K Mλ φ− =      (2.25) 

leads to the eigenvalues 

4

EI
AL

ω λ
ρ

= .     (2.26) 

 In this work, Matlab was used to solve the general eigenvalue problem. The 

normalized eigenvectors 

( )
1
2T M

φ

φ φ
Φ =      (2.27) 

are used to convert the equations of motion from generalized coordinates q to modal 

coordinates η by decoupling the modes as 

q η= Φ .      (2.28) 

 The decoupled equations of motion 

2[ ( )]T TQ C diagη η ω η= Φ −Φ Φ −    (2.29) 

may now be written in state space form.  
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⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
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      (2.30) 

x Ax Bu= +       (2.31) 
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 The modal coordinates in conjunction with the basis functions are used to 

evaluate displacement at the base of the link and the acceleration at the link tip, at 

instants of interest.   

( )
( 0, )
( , )

w x t
y x Cx Du

w x L t
ψ η

=⎡ ⎤
= = Φ = +⎢ ⎥=⎣ ⎦

   (2.32) 

 To validate the model, the predicted undamped modes were compared to those 

predicted by a frequency domain solution or the transfer matrix method. The procedure 

and comparison is discussed in Appendix C. As expected, the accuracy of the highest 

mode predicted by the assumed modes method model is poor [12].    

 A special note must be made regarding the damping matrix C. The decoupled 

equations of motion derived using modal analysis are only valid under the assumption of 

light damping (mode damping ratios << 1). In that case the off-diagonal terms of  

TCΦ Φ      (2.33) 

may be dropped. Otherwise, damped modal analysis is recommended by Ginsberg [12].  

For the case at hand, the model with viscous damping at the guided end is inertially and 

elastically decoupled but indeed still coupled due to damping. The author found that 

retaining all the elements of the damping matrix C and using the proper approximation of 

damping coefficient c detailed in section 2.2, and using a combination of Matlab 

optimization of model parameters as well as trial and error manual parameter tuning 

resulted in a good match between experimental and modeled damped modes, as shown in 

Table 2.2.  

The discrepancy between the actual and the modeled tip mass may be due to the 

rigid body tip mass (see Figure 6.1) being modeled as a point mass. The heavier model 

tip mass represents the increase in kinetic energy due to the rotational energy storage of 

the actual rigid body mass. 
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Table 2.2: Experimental and AMM model parameters and resulting modal 
characteristics. 

 Experimental Data AMM Model Data 

Tip Mass (kg) 0.110 0.25 

Length (m) 0.32 0.48 

Width (m) 0.035 (1 3/8”) 0.04 

Thickness (m) .003175 (1/8”) 0.0024 

Material AISI 1018 Steel Not Applicable 

Density (kg/m3) 7870 9838 

Young’s Modulus (GPa) 205 205 

First Mode (Hz) 5.5 5.7 

Second Mode (Hz) 49.5 49.0 

Third Mode (Hz) 130.5 219.3 

 

  

 The model parameters were tuned with a goal of minimizing the error in the 

predicted modes. The two step procedure is as follows. Model parameter were first 

optimized using the ‘fmincon’ function in Matlab with uncertainty bounds of +/- 50% on 

tip mass and link length and +/- 25% on the rest. The goal of the optimization routine was 

to minimize squared error with error being the difference between experimental modes 

and modeled modes. Error in the first and second modes was weighted 100 times more 

than the third mode during optimization, because the highest mode predicted by an 

assumed modes method model is generally unreliable.  
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 Up to this point in the model tuning procedure, damped modes (experimental) 

have been compared to undamped modes (model), which are the solution to the general 

eigenvalue problem which neglects the damping matrix. The second step is to use the 

atip(s)/F(s) bode plot of the state space model with damping appropriately modeled and 

manually tune the tip mass and link length until the predicted and experimental first two 

modes match up well. This step is straightforward because the modeled modes are 

relatively close to the experimental modes already. The modes are most sensitive to 

changes in the tip mass and link length which makes them convenient tuning parameters 

for this step. The optimized model is compared to experimental data in Figure 2.5 and the 

root locus is plotted in Figure 2.6. Note the anomaly in the experimental data in Figure 

2.5 around 17hz is the aluminum base frame in the test-bed passing through resonance. 

Also note the presence of three positive system zeros in the root locus. 
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Figure 2.5: Y2(s)/U(s) magnitude vs. frequency plot of damped model as compared to 
experimental data. 

 
 
 

 
Figure 2.6: Root locus for atip(s)/F(s). 
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 A note must be made in regards to the overdamped modes of the optimized model 

apparent in Figure 2.5. The optimized model which considers the viscous damping at the 

sliding end of the link proved far easier to implement on the experimental test-bed. 

Optimized versions of the model which neglect viscous damping predict highly 

oscillatory motion of the sliding end of the link. Figure 2.7 depicts the modal properties 

of such a model. Observers implemented on the test-bed utilizing this model provided 

very poor estimates of the sliding end’s motion. With Figures 2.5 and 2.7 in mind, the 

author believes further tuning of the model parameters will result in a happy medium 

between the modal properties predicted by the two versions.          

 
 
 

 
Figure 2.7: Y2(s)/U(s) magnitude vs. frequency plot of model without viscous damping 
as compared to experimental data. 
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2.2 Rigid Sub-System 

 The rigid subsystem in the experimental test-bed was modeled for the purpose of 

identifying motor gain and damping. Estimates for both parameters are needed for control 

purposes. Assuming a type-1 motion system, the transfer function for the rigid subsystem 

is 

     2

( )
( )

b mY s K
V s Ms bs

=
+

    (2.34) 

where Km is the motor gain (N/V), M is motor mass (kg), and b is viscous damping 

between the motor and the track (N*s/m). The Matlab function ‘fmincon’ was used with 

bounds of +/-25%, +/-10%, (0,inf) on Km, M, and b, respectively. The goal of the 

optimization was to minimize the sum of the squared error between experimental 

response and model response.   

 The initial guess on the motor gain is based on the average of several spring-scale 

measurements while a voltage from 3-6V is applied to the linear motor. The initial guess 

on the mass is based on direct mass measurements and the initial guess on damping is 

completely arbitrary. The result of the optimization based on step and ramp inputs are 

summarized in Table 2.3.  
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Figure 2.8: Rigid subsystem step response (3V applied from t=5 to t=7.5 sec). 

 
 
 

 
Figure 2.9: Rigid subsystem ramp response (0-5V from t=5 to t=7 sec). 
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Table 2.3: Rigid subsystem parameter identification using Matlab. 

 Initial Guess Based on Step Input Based on Ramp Input 

Km (N/V) 8.17 6.9 6.13 

M (kg) 9.6 10.52 10.56 

b (N*s/m) 50 38.97 35.16 



 27

CHAPTER 3 

OPTIMAL OBSERVER 

 

For stochastic linear systems with fully known parameters, the Kalman filter is 

commonly employed and yields reliable estimates. Section 3.1 highlights some notable 

aspects of the Kalman filter and describes the manner in which the Kalman filter provides 

optimal estimates. The purpose of section 3.1 is to illustrate the intuitive concepts behind 

optimal estimation, rather than derive the filter equations. The design and subsequent 

integration of the Kalman filter into a closed-loop system is well known and systematic 

and is discussed in section 3.2. Lastly, the shortcomings of the Kalman filter in the 

presence of model uncertainty are highlighted in section 3.3.   

3.1 Overview of Kalman Filter 

Like the Luenberger observer, the Kalman filter is used when internal states are 

not fully measurable directly or are very costly to measure. The filter can be defined as an 

optimal recursive data processing algorithm [13]. The descriptor “recursive” means that 

the filter does not require all previous data to be kept in storage. The descriptor “optimal” 

will be discussed in an intuitive fashion in detail below. The filter assumes the dynamic 

system can be described by linear differential equations. The Kalman filter is designed to 

deal with the fact that sensors do not provide perfect and complete data. There is always 

measurement uncertainty in sensor signals due to electrical noise, distortion from sensor’s 

internal dynamics, etc. The Kalman filter is also designed with the notion of imperfect 

system models in mind. However the consideration of model imperfections is limited, as 

will become apparent.  
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Figure 3.1: Illustrating operation of the Kalman filter. 

 
 
 

The continuous time Kalman filter equations are as follows. Given the system 

model with known input u,  

x Ax Bu Gw= + +      (3.1)  

where w is white Gaussian process noise with covariance Q, the measurement model 

given by 

y C x v= +       (3.2) 

where v is white Gaussian measurement noise with covariance R, and initial conditions 

[ ] ˆ(0) (0)E x x=      (3.3) 

and 

ˆ ˆ( (0) (0))( (0) (0))T
oE x x x x P⎡ ⎤− − =⎣ ⎦ ,   (3.4) 

then the state estimate is given by 

ˆ ˆ ˆ( )Lx Ax Bu K y C x= + + − ,    (3.5) 

where ˆ( )y C x−  is known as the measurement innovation, the error covariance 

propagation is given by 

T T T
L LP AP PA GQG K RK= + + −    (3.6) 

where P(0)=Po and the Kalman gain KL is given by 

1T
LK PC R−=       (3.7) 

Kalman 
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Plant Dynamics 

Measurement & State Relationships 
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Square of Error  
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when process and measurement noise are uncorrelated. The process noise covariance 

matrix Q provides a measure of uncertainty in the process and is directly tunable during 

design. Essentially it treats the value of a state variable as a normal distribution with 

some known mean and variation. Similarly the measurement noise covariance matrix R 

provides a measure of uncertainty in the measurements but is fixed based on sensor signal 

uncertainty statistics. The error covariance matrix P provides a measure of uncertainty in 

state estimates and depends directly on Q.  

The first notable aspect of the Kalman filter is that it provides optimal estimates, 

which means state estimates are based on the minimization of error in some respect. This 

is accomplished by choosing the optimum value for Kalman gain KL which minimizes 

the weighted scalar sum of the diagonal elements of the error covariance matrix P defined 

as 

T
k k kP E e e⎡ ⎤= ⎣ ⎦      (3.8) 

where E is the expectation or mean value and ek is the estimate error at step k.  In this 

way, selection of the Kalman gain KL minimizes the mean squared estimate error. It has 

been proven elsewhere that for a Gaussian time-varying signal, the optimal predictor is a 

linear predictor [14]. Another aspect of the filter’s optimality is that the filter incorporates 

all available measurements, regardless of their uncertainty, to estimate quantities of 

interest. It combines data from all sensors with knowledge about system dynamics to 

generate the “best” estimate. 

The second notable aspect of the Kalman filter is the predictor-corrector nature of 

the filter, incorporating knowledge of measurement and model uncertainties. Each 

estimate is a prediction followed by a correction. The Kalman gain KL determines how 

much to weight model predictions, which are the terms  

ˆAx Bu+      (3.9) 

in equation 3.5 and corrections, which are the terms 
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ˆ( )LK y C x−      (3.10) 

in equation 3.5 based on fresh measurements. Intuitively, it can be seen from the Kalman 

gain update equation 3.7 that as uncertainty in measurements increases, the Kalman gain 

KL decreases which results in weighting predictions based on the model more heavily. It 

can also be seen in the error covariance update equation 3.6 that in the absence of 

measurements, and thus in the absence of the – KLRKL
T term, the error covariance matrix 

P grows with the constant addition of uncertainty due to an imperfect model which 

indicates increasing uncertainty in estimates.    

The third notable aspect of the Kalman filter is the stability of its estimates in the 

unforced case 

ˆ ˆ( )Lx A K C x= − .    (3.11)  

While optimality does not guarantee stability, in practice the estimates are globally 

asymptotically stable even when measurements are suppressed [14]. That is, ˆ( ) 0x t → as 

t →∞ for any initial condition ˆ(0)x . The formal proof for stability is documented, 

however it can be very restrictive and in many practical cases, the conditions are not 

satisfied. Some of the more difficult to meet conditions cited include complete 

observability and controllability. Even in such cases where the strict definition of 

asymptotically stability is not satisfied, the observer is in fact stable over a finite time 

interval of interest. The reader is referred to Gelb [14] for further discussion on stability.           

The fourth notable aspect of the Kalman filter is the ability for off-line 

development. At steady state the error covariance matrix P becomes constant, and if the 

noise covariance matrices Q and R, and if A, B and C system matrices are already 

constant, the Kalman gain KL becomes constant. The two main advantages of this steady-

state Kalman filter over the recursive filter are the simplification in design and 

implementation and reduced computational burden. The disadvantage of such an observer 

is that it provides sub-optimal estimates at best, which means a loss in estimate accuracy 
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must be accepted. The loss of accuracy however occurs during the transient portion of 

estimation. In theory, at steady state, the optimal and sub-optimal predictions are 

identical.     

3.2 Design of Kalman Filter 

The state-space realization of the Kalman filter in closed-loop in the presence of 

process and noise uncertainties as well as parameter variation is illustrated in Figure 3.2. 

 
 
 

 
Figure 3.2: State space realization of Kalman Filter in closed-loop. 
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Given the system model of equation 3.1 with a measurement model  

y C x Du v= + +         (3.12) 

 and the steady-state Kalman filter  

ˆ ˆˆˆ ˆ ˆ( )Lx Ax Bu K y C x= + + −        (3.13) 

with observer output equation 

ˆ ˆˆ ˆy C x Du v= + +         (3.14) 

where estimate error 

ˆe y y= −          (3.15) 

ˆ ˆˆ ( )C x C x D D u v= − + − + (3.16) 

and given the control law 

ˆcu Fr K x= − (3.17) 

where F is the feed-forward gain and Kc is the feed-back gain, the plant dynamics 

become 

ˆcx Ax BK x BFr Gw= − + + ,       (3.18) 

the measurement model becomes 

ˆcy Cx DK x DFr v= − + + ,       (3.19) 

the observer dynamics become 

ˆ ˆˆ ˆ ˆ ˆˆ ˆ( ) ( )c L L c L c L L L Lx A BK K C K DK K DK x K Cx BF K DF K DF r K v= − − − + + + + − +
 (3.20) 

and the observer output equation becomes 

ˆ ˆ ˆˆ ˆ( )cy C DK x DFr= − + .       (3.21) 

Combining the plant and the observer dynamics leads to 
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0
ˆ ˆ ˆ ˆˆ ˆ ˆˆ 0

c

L L LL c L L c L c

rA BKx BF Gx
w

xx BF K DF K DF KK C A BK K C K DK K DK v

⎡ ⎤−⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥= +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ −− − − + ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦
. 

(3.22) 

Combining the measurement model and the observer output equation leads to 

0
ˆ ˆ ˆˆ 0 0 0

ˆ
0 0 0

c

c

c

C DK DF Iy r
x

y C DK DF w
x

K F vu

−⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤⎢ ⎥ ⎢ ⎥= − +⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

.     (3.23)  

 With the closed-loop system formulation complete, the remaining step is to find the 

Kalman gain KL. Table 3.1 provides the procedure for obtaining the steady-state Kalman 

gain. 

  
 
  

Table 3.1: Determination of steady-state Kalman gain KL.  

1. 
Find R and Q 
   1a) For each measurement, find μ and σ2 to get R.  
   1b) Set Q small, non-zero. 

2. Find P using Matlab CARE function. 

3. 
Find 1T

LK PC R−=  
   3a) Observer poles given by eigenvalues of (A-LC)   
         where A and C are from the observer model.  

4. Tune Q as needed if estimates are poor. 
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3.3 Known Limitations 

The main limitation of the Kalman filter, despite the fact that it is indeed based on 

the notion of incomplete models of real-world systems, is the sensitivity to model 

uncertainty. This stems from the fact that the filter formulation contains an exact system 

model. Variations in the observed system that occur after deployment of the Kalman 

filter severely degrade the performance and stability of the filter. This is because 

modeling errors are not explicitly accounted for during filter formulation but only an 

additive noise for the measurement and input is provided.  For instance, in the 

observation of a second order dynamic system with a single measurement,  

1 2

2

x x
x f
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

     (3.24) 

where 1y x= , the Kalman filter in the presence of model uncertainty is given by 

2 1 11

2 12

ˆˆ
ˆˆ

x K xx
f K xx

⎡ ⎤ −⎡ ⎤
=⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎣ ⎦⎣ ⎦
    (3.25) 

where f̂  indicates model uncertainty and K1 and K2 are observer gains. The observer 

error dynamics are then given by  

2 1 11

2 12

x K xx
f K xx
−⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥Δ −⎣ ⎦⎣ ⎦
    (3.26) 

where ˆf f fΔ = − . It is obvious that the term fΔ  due to model uncertainty has the 

potential to destabilize the observer error dynamics. However, the process noise 

covariance matrix Q does offer an opportunity to tune the filter in the presence of model 

uncertainty. This “tunability” feature of the Kalman filter will be investigated in this 

work.     
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CHAPTER 4 

ROBUST OBSERVER 

 

The robustness of the sliding mode observer stems from the fact that the design of 

the sliding mode observer is based on prior knowledge of the upper bounds on system 

uncertainties. System uncertainties as discussed earlier may include parametric 

uncertainties, unstructured uncertainties or external disturbances. The focus of this thesis 

work is on parametric uncertainty and thus that will be assumed to be the primary source 

of model uncertainty considered during observer formulation. Two distinct design 

approaches have been identified over the course of literature review and will be discussed 

separately. The outcome from either approach is an observer in which high-speed 

switching state functions force the observer estimate error dynamics to remain stable in 

the presence of perturbations due to parametric uncertainty. The nonlinear nature of the 

discontinuous state functions result in a nonlinear observer.   

4.1 Overview of Sliding Mode Behavior 

In order to develop an intuitive feel for what actually occurs in the observer 

dynamics during sliding mode motion, it is first necessary to have a firm grasp of 

commonly used terminology from Variable Structure Systems theory. The term sliding 

mode describes a unique behavior of a dynamic system which may be identified by a 

visualization of system dynamics in state space. When a dynamic system is in sliding 

mode, its state trajectories are confined to a sliding surface in state space. Before sliding 

mode motion begins, the initial behavior of the state vector as it is driven towards the 

sliding surface is called the reaching phase. The sliding surface is a line (in two 

dimensions) or a hyper plane (in higher dimensions) in state space which is designed to 

accommodate a sliding motion.  
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During sliding motion, the equations of motion of the system become the equation 

of the sliding surface. In the case of sliding mode observers, during sliding mode motion, 

the order of the observer dynamics is reduced by the number of measurements. For 

instance, given the sliding surface 0x cx+ =  for a second order system, note that its 

solution ( )( ) ( ) oc t t
ox t x t e− −= does not depend on either plant parameters or perturbations. 

This so called invariance property is one promising aspect of the technique [Utkin]. The 

term manifold is defined as the intersection of the multiple sliding surfaces. For sliding 

surfaces that are planes, the manifold is a line passing through the state space origin.    

Sliding mode behavior arises in systems with control as a discontinuous state 

function. During ideal sliding mode motion, the discontinuous state function switches 

infinitely fast and the state vector slides along the sliding surface rather than chatter. The 

signum function  

1
( )

1
Sgn s ⎧ ⎫

= ⎨ ⎬−⎩ ⎭
 if 

0
0

s
s
>⎧ ⎫

⎨ ⎬<⎩ ⎭
     (4.1)  

is typically employed for the switching control action.    

4.2 General Observer Form 

Given a dynamic system, with known input u, 

x Ax Bu Ax= + + Δ ,      (4.2) 

where AxΔ  represents perturbations due to parametric uncertainty, the sliding mode 

observer has the structure 

ˆ ˆ ˆ ˆ( ) (sgn( ))L sx Ax Bu K y y K y y= + + − + −    (4.3) 

where KL is the Kalman gain and Ks is the sliding mode gain. It is interesting to note that 

in the presence of Gaussian white measurement or process noise, the sliding mode 

observer consists of the Kalman filter (or Luenberger observer in the case of a 
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deterministic linear system) plus the additional discontinuous state functions. Slotine [6] 

describes the Kalman filter terms in the observer equation as the source of damping in 

state estimate trajectories while the discontinuous terms handle any perturbations due to 

parametric uncertainties. A notable aspect of this particular observer design is that the 

two parts of the observer are designed separately.   

As an illustration of the interplay between the two gain matrices and parametric 

uncertainty, in the observation of an unforced second order dynamic system with a single 

measurement,  

1 2

2

x x
x f
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

     (4.4) 

where 1y x= , the error dynamics of the sliding mode observer in the presence of 

parametric uncertainty are given by 

2 1 1 1 11

2 1 2 12

sgn( )
sgn( )

x L x k xx
f L x k xx
− −⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥Δ − −⎣ ⎦⎣ ⎦
  (4.5) 

where fΔ indicates parametric uncertainty, L1 and L2 are Kalman filter gains assuring 

asymptotic stability of estimate error, and k1 and k2 are the sliding mode gains which are 

designed to deal with the uncertainty. It should be noted that given exact knowledge of 

plant parameters in an idealized world, addition of the sliding mode terms to the observer 

provide no direct benefit.  

It is already clear how Kalman filter gains are selected. The question now is how 

to select the sliding mode gains. The Kalman filter gains are selected independent of the 

sliding mode observer gains but the later gains are based on the Kalman filter gains. Thus 

the sliding mode gains are influenced by the dynamics of the Kalman filter. The design 

repercussions of this will become apparent. Two design approaches have been identified. 

Section 4.2 discusses the variable structure systems theory approach applied by Slotine 
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[6] and Chalhoub [7]. Section 4.3 discusses the Lyapunov approach applied by Wallcott 

and Zak [15], Elbeheiry et al [10], Zaki et al [11] and Kim and Inman [9].         

4.3 Variable Structure Systems Theory Approach 

In the variable structure systems theory approach, the design of the sliding surface 

and the sliding condition are explicitly addressed. The general approach is to first design 

one sliding surface per measurement. Second, design a sliding condition to reach the 

sliding surface in finite time. Third, design the observer gains to satisfy the sliding 

condition. The meaning of sliding condition will become clearer in section 4.3.1.   

4.3.1 Observer Design 

For a sliding mode observer, we are concerned with the sliding mode behavior 

that occurs not in state space but in error space, where error is the difference between 

actual and estimated states, as depicted in Figure 4.1. Thus the problem of estimation has 

been reduced to that of remaining on the surface for all t > 0. The observer is said to be in 

sliding mode once the discontinuous state function becomes infinitely fast which means 

estimate errors have reached zero. In practice, if estimate error reaches zero, the condition 

is flagged and the discontinuous terms are set to zero.     
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Figure 4.1: Sliding mode behavior in error space for a sliding mode observer. 

 
 
 

The number of sliding surfaces corresponds to the number of measurements. All 

the sliding surfaces pass through the origin of the state space. Essentially, states slide 

along one sliding surface until the state vector meets another surface. It then begins 

sliding along the intersection of the two surfaces, always tending towards the state space 

origin.   

Slotine [6] proposes the design of an observer for general nonlinear systems. His 

approach has been adapted here for linear systems. Given the observer structure  

ˆˆ ˆ ˆ ˆ( ) (sgn( ))L sx Ax K y y K y y= − − − −     (4.6) 

where ˆ nx R∈  , Â  is our model of A  , KL and Ks are n x p Kalman and sliding mode gain 

matrices, respectively, where p is the number of measurements, and  

ˆ ˆi iy y c x y− = −       (4.7) 

where ic is the ith row of the p x n C matrix, then the sliding surfaces are defined as 

ˆ ˆ: ( )s y y C x x= − = − .       (4.8)  

(0,0) 

Error 
Vector 
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Sliding 
Surface 

x
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A sliding surface thus corresponds to an estimate error. The p dimensional surface 

s = 0 is attractive and sliding will occur in the vicinity of the sliding surface if  

21
2 i i

d s s
dt

η≤ −     (4.9) 

or written alternatively, 

i i is s sη≤ −  , 1...i p=     (4.10) 

where η  is a design parameter. The condition implies the squared distance to the surface 

as measured by si
2 decreases along all system trajectories. In other words, at all times 

when the estimate error is not zero, satisfying the condition above means the error vector 

trajectory is pointed towards the sliding surface in error space and thus towards the origin 

of the error space. This is referred to as the sliding condition.       

During sliding mode motion, the order of the system dynamics are effectively 

reduced by n – p. According to Slotine, the approximate dynamics of this reduced order 

system can be formally derived using the equivalent control method posed by Utkin [6]. 

For the state estimation problem, Slotine gives the equivalent dynamics of the reduced 

order error dynamics of the observer when in sliding mode motion as 

1( ( ) )s sx I K CK C f−= − Δ    (4.11) 

where ˆf A AΔ = − . Given knowledge of the upper bound on uncertainty, the sliding mode 

gain Ks can thus be designed to ensure stable observer error dynamics with perturbation 

explicitly accounted for. Essentially the problem of non-linear observer design has 

become a linear pole placement problem. The n – p poles of the homogeneous part of 

equation 4.11 can be placed arbitrarily to be critically damped (negative real parts only) 

by selection of the elements of K.     

To find Ks for a given problem at hand, Chalhoub et al [7] generate constraint 

equations by evaluating the sliding condition in equation 4.10 and the reduced order 

observer error dynamics in equation 4.11. The number of constraint equations generated 
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by the sliding condition depends on the number of sliding surfaces, or number of 

measurements. The number of constraint equations generated by equation 4.11 is largely 

influenced by the measurement matrix C. The difficulty encountered in generating the 

constraint equations for the later step is discussed next in section 4.3.2.    

4.3.2 Limitations of Design Approach 

The first drawback of this approach is that once the constraint equations for the 

sliding mode gain Ks have been generated, bounds on a number of unknown quantities 

have to arbitrarily selected. To illustrate the ad-hoc nature of the arbitrary pole placement 

problem, an example is useful. Given the lumped parameter model by equation 2.10,  

2

2 1 2 3 4

4

4 1 2 3 4

( , , , )

( , , , , )

x
f x x x x

x
x

f x x x x u

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

    (4.12) 

with a single measurement, the flexible link tip position, given by 

[ ]1 0 0 0y x= ,     (4.13)  

then the sliding surface is given by 

1 1ˆs x x= − .      (4.14)  

The goal is to find the sliding mode gain 

11

21

31

41

s

k
k

K
k
k

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

.      4.15)  

The rate of change of estimate error is given by 

1 2 11 1 11 1sgn( )s x K x k x= − − ,    (4.16)  

where K11 is a Kalman gain and k11 is a sliding mode gain. The complete steps are 

detailed in Appendix E. Evaluating the sliding condition in equation 4.10 for the single 

sliding surface results in a single constraint equation on k11 given by 
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2
11 11 1

1sgn( )
xk K x

x
η≥ + − ,    (4.17) 

where η is a user defined parameter and K11 is a Kalman gain. To generate more 

constraint equations on K, the reduced order observer error dynamics in equation 4.11 are 

evaluated and give 

21
1

11
2 2

31
3 4

11
4

41

11

0 0 0 0

0 0 0 0 0
1 0

0 0 1 0 0
0 1

0 0 0

k x
k

x f
x k

x f
k

x
k
k

⎡ ⎤
⎢ ⎥
⎢ ⎥− ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ Δ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + ⎢ ⎥⎢ ⎥− ⎢ ⎥ ⎢ ⎥ Δ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦
⎢ ⎥−
⎢ ⎥⎣ ⎦

,  (4.18)  

where 2fΔ  and 4fΔ  are perturbations due to parameter uncertainty. Again, the complete 

steps are detailed in Appendix E. Given the upper bounds on the perturbations, the 

objective is to select k21, k31 and k41 to ensure asymptotically stable dynamics of the 

homogeneous part of equation 4.18 while explicitly accounting for the two perturbation 

terms. When each row of the observer error dynamics in equation 4.18 is expanded, the 

following three constraint equations result: 

2
21 11

2

fk k
x
Δ

=       (4.19) 

     4
31 11

2

xk k
x

=       (4.20) 

4
41 11

2

fk k
x
Δ

= .      (4.21) 

The first limitation of the approach now becomes clear. Upper bounds must be 

selected not only on the perturbation terms 2fΔ  and 4fΔ but also 2x  and 4x . As the order 

of system model increases, so does the amount of “guesstimation” on estimate errors. The 
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author has yet to find published work proposing a systematic approach for determining 

these upper bounds, to in some sense ensure an optimal solution for Ks.   

Second, as the number of measurements increases and the more populated or 

“dense” the C matrix becomes, the more “guesstimation” on estimate error bounds 

becomes necessary. To elaborate on this point, it can be shown that for the lumped 

parameter model of equation 4.12 with two measurements leads to an 8x2 sliding mode 

gain Ks. There are eight unknowns to determine yet it can be shown that only four 

constraint equations can be generated in total; two from the two sliding surfaces via 

equation 4.10 and two from evaluation of the reduced order observer error dynamics via 

equation 4.11. One technique employed by Chalhoub et al [7] is to set off-diagonal terms 

in the homogenous part to zero, in the resulting differential equation from equation 4.11. 

This is since only the diagonal terms of the homogenous part are necessary to ensure an 

asymptotically stable response. For example, in equation 4.18, only k11 and k21 really 

matter. The author found that for simple cases such as the lumped parameter model, the 

pole placement problem is manageable as long as the measurements are direct state 

outputs resulting in a simple C matrix.  

Applying the variable structure systems theory design approach to the assumed 

mode methods model of equations 2.30, 2.31 and 2.32 becomes vary tedious and the 

technique employed by Chalhoub of setting off-diagonal terms to zero does not suffice. 

Given the measurement model of equation 2.32 with the two measurements being 

flexible link sliding end position and free end acceleration, the C matrix takes the form 

11 12 13 14

21 22 23 24 25 26 27 28

0 0 0 0C C C C
C

C C C C C C C C
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

.   (4.22)  

The “dense” nature of the C matrix is because the states in the assumed modes 

method model are generalized coordinates which must be transformed into meaningful 

quantities of interest by the C matrix. Evaluation of equation 4.11 this time results in a 
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“dense” homogenous part and the resulting pole placement problem becomes very 

tedious by hand.  

The third limitation worthy of mentioning is that the gains depend on the time 

varying measurement 1x and 1sgn( )x . A time varying Ks will lead to a higher 

computational burden for real-time control application.       

4.4 Lyapunov Approach 

The alternative to the design approach just discussed is the Lyapunov approach. 

The attractive aspect of this approach is that the sliding mode gain Ks is determined as a 

whole, not one element individually at a time. Nor does not this approach require the 

designer to select bounds on state estimate errors. Perhaps for these reasons, the 

Lyapunov approach was found to be more common in published work reviewed by the 

author.   

4.4.1 Observer Design 

Walcott and Zak [15] propose an observer design which solves the Lyapunov 

matrix equation to find the sliding mode gain Ks. Consider the dynamic system defined in 

section 4.1 with known input u and parametric uncertainties represented by AxΔ ,  

x Ax Bu Ax= + + Δ ,      (4.2)  

and the observer structure as defined earlier in section 4.1, 

ˆ ˆ ˆ ˆ( ) (sgn( ))L sx Ax Bu K y y K y y= + + − + − .   (4.3)  

First consider the unforced case  

x Ax Ax= + Δ .       (4.23) 

Taking the estimate error as x̂ x−  results in the observer error dynamics 

ˆ( ) (sgn( ))L sx A K C x K y y Ax= − + − −Δ ,   (4.24)  
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where KL is the Kalman gain, Ks is the sliding mode gain and AxΔ represents parametric 

uncertainties. The goal is now to design Ks such that the discontinuous state function 

ˆ(sgn( ))K y y−  overpowers the parametric uncertainties AxΔ  assuring stable observer 

error dynamics.  

Walcott and Zak show that the following implementation of Ks meets the observer 

design objectives: 

1 T
sK P Cρ −= ,      (4.25) 

where ρ  is a user selected positive scalar, P is the unique, positive definite solution to 

the Lyapunov matrix equation  

( ) ( )T
L L pA K C P P A K C Q− + − = −     (4.26) 

and C is the output matrix.  

First it needs to be shown how exactly the perturbations due to parametric 

uncertainties are handled in the observer error dynamics in equation 4.24. The observer 

error dynamics are rewritten as 

    1 1ˆ( ) (sgn( ))T T
Lx A K C x P C y y P Cρ ξ− −= − + − − ,  (4.27) 

where  

1 1( ) ( )TP C Axξ − −= Δ .      (4.28)  

Since the term 1 TP C−  appears in both the discontinuous state function term and 

the parametric uncertainty term, it can effectively be canceled out. Two observations can 

now be made. First, as long as 

ρ ξ≥ ,       (4.29) 

which says the Euclidean norm of the vector representing perturbations is bounded by the 

(user selected) scalar ρ  , then the perturbations due to parametric uncertainties are 

overpowered by ρ . Second, the term ˆsgn( )y y−  provides the correct direction of action 
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by the discontinuous state function. The result is lim 0
t

x
→∞

= or in other words, 

asymptotically stable observer error dynamics. 

4.4.2 Observer Stability 

The proof of asymptotic stability is provided by Walcott and Zak [15] and is 

reproduced here for reference. Consider the following positive definite Lyapunov 

function candidate 

( ) TV e e Pe=         (4.30) 

where ˆe x x= −  and P is the unique, positive definite solution to the Lyapunov matrix 

equation. Then the time derivative of this Lyapunov function candidate is given by 

1
1( )( ) ( ) 2 2

T T
T T T T

o o
e P P C CeV e e A P PA e e PP C

Ce
ρ ξ

−
−= + − −   (4.31)  

where oA A LC= −  and ξ represents model uncertainties and disturbances. Also note that 

Ce
Ce

is interchangeable with ˆsgn( )y y− . Equation 4.31 can be simplified to 

   ( ) 2 2T T T
pV e e Q e Ce e Cρ ξ= − − − .     (4.32)  

Taking the Euclidean norm of the last term of 4.32 and noting ρ ξ≥  yields 

( ) 2 2T
pV e e Q e Ce Ceρ ξ≤ − − + .     (4.33)  

Thus ( ) 0V e <  and it has been shown that lim 0
t

x
→∞

= .  

4.4.3 Boundary Layer Observer 

The shortcoming of the discontinuous state function is that the term leads to the 

undesirable phenomena of chattering. To assure the estimates converge to some 

arbitrarily small neighborhood of the true states, Walcott and Zak [15] suggest use of a 

boundary layer. Use of a boundary layer produces a continuous and smooth switching 



 47

control action. A simplified version of the boundary layer proposed by Walcott and Zak 

employed in this work takes the form 

1

1

ˆsgn( )
ˆ

T

T

P C y y
S y y

P C

ρ

ρ
λ

−

−

⎧ −
⎪= ⎨ −
⎪
⎩

if 
ˆ

ˆ

y y

y y

λ

λ

⎫− > ⎪
⎬

− ≤ ⎪⎭
   (4.34) 

where S is the discontinuous state function in the sliding mode observer equation 4.3. 

Here λ  is the width of the boundary layer. Outside of the boundary layer, the usual 

discontinuous state function is used. Within the boundary layer, the formerly-

discontinuous station function is now proportional to the estimate error. Note that when 

the width of the boundary layer is zero, then the boundary layer observer becomes the 

original sliding mode observer. Also note that as estimate error tends to zero, the 

formerly-discontinuous state function tends to zero which is not true of the non-boundary 

layer sliding mode observer.   

The proof of boundary layer observer error dynamic stability using Lyapunov 

functions as in the earlier case is provided by Walcott and Zak, in a similar fashion as 

earlier. The interested reader is referred to the direct source.  

4.4.4 Limitations of Design Approach 

At least one author has cited the difficulty under certain circumstances in solving 

the matrix Lyapunov equation [10]. Sliding mode observers based on high gain 

Luenberger observers and for high-order systems is one combination which has been 

shown to pose a challenge. Typically the Lyapunov equation is satisfied by selecting a 

positive-definite symmetric Qp which leads to a unique positive-definite symmetric P. 

While it is not advised, the Lyapunov equation can be solved in reverse by selecting a P 

first and finding a Qp which satisfies the equation. The solution in this reverse approach is 

not always conclusive. Having said that, it should be noted that the author of this work 
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was able to use the Lyapunov matrix equation solvers provided in the software Matlab 

and LabVIEW and obtained solutions for both the fourth order and eight order models.        

 Another difficulty is in placing the upper bounds on time varying uncertainty. 

Observer design calls for selecting a ρ ξ≥ , however ξ  depends on a time varying 

AxΔ . It is not clear how bounds on the state vector are placed. The approach to be tried, 

at least in a simulation, is to monitor the state vector and record the largest value over the 

simulation period. The success of this highly iterative approach depends entirely on the 

assumption that not only is the state vector bounded, but that these bounds are tight. It is 

apparent from equation 4.25 that an excessively large ρ will amplify Ks which in turn 

which will make observation very unstable. The alternative may be to pick ρ by a trial-

and-error approach without directly determining ξ .        
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CHAPTER 5 

SIMULATIONS 

 

Simulations are a means to analyze the performance of the optimal observer and 

the robust observer by analyzing their dynamic behavior as well as that of the closed-loop 

system with each observer in place. Simulations are also a means to provide insight on 

the effect of each observer parameter. Simulation studies are conducted using the 

Simulation Module in National Instruments LabVIEW 8.5.   

5.1 Study Overview 

As noted earlier, a notable aspect of the sliding mode observer under 

consideration is that it consists of a Kalman filter part and an additional discontinuous 

state function part. The two parts of the observer are designed separately. A block 

diagram for the complete system to be simulated is provided in Figure 5.1.   

The sliding mode observer simulated consists of two design parameters. Observer 

design parameters Qp (which determines K) and ρ are defined in Chapter 4. Both 

boundary layer and non-boundary layer versions of the sliding mode observer are 

simulated. For the non-boundary layer version, ε is simply ˆsgn( )y y−  .  

For the boundary layer version of the observer, ε is  
 

1

1

ˆsgn( )
ˆ

T

T

P C y y

y y
P C

ρ

ρ
λ

−

−

⎧ −
⎪
⎨ −
⎪
⎩

if 
ˆ

ˆ

y y

y y

λ

λ

⎫− > ⎪
⎬

− ≤ ⎪⎭
   (5.1) 

where λ is an additional observer design parameter, the boundary layer thickness. 

 
 



 50

 
Figure 5.1: State space realization of system for simulation studies. 

 
 
 

In simulations, the Kalman gain KL is determined based on the noise covariance 

matrices  

11

22

0
0

R
R

R
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    (5.2) 
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Unless otherwise noted, the values of the elements of the covariance matrices 

reflect those in Table 5.1. 
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Table 5.1: Noise covariance data for Kalman filter simulations. 
R11 3.87e-10 
R22 2.59e-4 
Qt 3e-4 

 
All three values are inherited from the experimental test-bed to be discussed in 

Chapter 6. Covariance of R11 reflects a standard deviation of 1.97e-5 meters in the 

position measurement. Covariance of R22 corresponds to a standard deviation of 0.0161 

m/s2 in the acceleration measurement. Covariance of Qt is based on manual fine tuning of 

the Kalman filter to provide the best possible estimates on the experimental test-bed. 

The feedback gain Kcl, based on the method of symmetric root locus, reflects a 

value of 1.25e6 for τ for all simulations, unless otherwise noted. Appendix A provides the 

procedure for design of the symmetric root locus. A control input of less than 60N was 

achieved for all simulations. 61.7N is an approximation for the saturation of the actuator 

on the experimental test-bed, given a motor gain of 6.17 N/V and maximum control 

voltage of 10V.    

5.2 Performance Study 

There are two lumped parameter models simulated in this portion of the study. 

The only difference between the two models is the output matrix C. The first model 

assumes that the outputs are states, with measurements of base position (x3) and tip 

position (x1). Henceforth, this model will be referred to as the TP model. The second 

model assumes a measurement of base position and tip acceleration. Henceforth, this 

model will be referred to as the TA model. The purpose of simulating both models is to 

compare the effects of the different C matrix structures on observer performance.    

What variables are changed in the study? In the performance study, the tip mass is 

the independent variable changed and the first mode is a dependent variable of interest. 

The other independent variables varied are sliding mode observer parameters ρ, Qp , and 

λ. With parameter variation of 1%, 10%, 30%, and 60%, the observer and controller 
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underestimate the flexibility of the link and overestimate the speed of response. At -1%, -

-10%, -30% and -60%, the opposite is true.  

Note that the sliding mode observer parameter Qp is an arbitrary positive-definite 

symmetric matrix. For convenience, Qp is assumed to have repeated roots. The parameter 

will be referred to simply as a scalar Qp. 

 
 
 

Table 5.2: Parameter variation in lumped parameter models during simulation. 
Parameter Variation 

(P.V.) in Tip Mass m1 (%) 
Resulting First 

Mode (Hz) 
0 5.5 
60 4.35 
30 4.82 
10 5.24 
-10 5.8 
-30 6.57 
-60 8.7 

 
 
 

How is performance judged in the study? The performance criteria for the 

observers is mean squared estimate error of position estimates and velocity estimates, 

reported separately. For lumped parameter models, position mean square estimate error is 

defined as the norm of the vector 

1

3

( )
( )

MSE x
MSE x
⎡ ⎤
⎢ ⎥
⎣ ⎦

    (5.4) 

where MSE(x1) and MSE(x3) are the mean square estimate errors of each state estimate 

taken over the length of the simulation. Recall x1 is the tip position and x3 is the base 

position in the simple model.  

Similarly, the velocity mean square estimate error for the simple model is defined 

as the norm of the vector  
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2

4

( )
( )

MSE x
MSE x
⎡ ⎤
⎢ ⎥
⎣ ⎦

.    (5.5)  

Recall x2 is the tip velocity and x4 is the base velocity in the simple model. 

5.2.1 Without Measurement Noise 

For the Kalman filter, fictitious process noise is useful for improving filter 

estimates when we can’t update the filter dynamic model directly. Although a value for 

process noise covariance Qt is inherited from the experimental setup, a robustness study 

of the Kalman filter with Qt as the varied parameter was undertaken. As Figure 5.2 

depicts, the process noise variance Qt directly determines the robustness of the Kalman 

filter. The study shows that weighing the measurements much more than the model 

predictions serves us well in case of limited parameter variation. However, with 

increasing parameter variation, weighing the measurements too heavily actually produces 

more estimate error. This is since larger Qt leads to larger Kalman gain KL. In presence of 

high uncertainty, the larger gain amplifies estimate errors. The lesson is to increase Qt in 

moderation. Qt = 3e-4 is the most robust out of the choices and is used for the rest of the 

simulations.  
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Figure 5.2: Robustness of Kalman filter alone, based on position state estimates of TA 
model. The figure showcases the “tunability” of the Kalman filter, with regards to 
robustness, by varying the process noise covariance matrix during filter formulation. 
 
 

The next series of figures compares the state estimates provided by the boundary 

layer sliding mode observer (BLSMO) and the Kalman filter (KF) in the presence of 30% 

parameter variation. In most cases, BLSMO estimates are superior.  

 
 

 
Figure 5.3: X1 estimate comparison between boundary layer sliding mode observer (Qp = 
2.2e3, ρ = 2.5, λ = 150) and the Kalman filter (Qt = 3e-4), based on TA model with 30% 
P.V. The figure highlights the reduced error estimates produced by the BLSMO under 
parameter uncertainty. 
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Figure 5.4: X2 estimate comparison between boundary layer sliding mode observer (Qp = 
2.2e3, ρ = 2.5, λ = 150) and the Kalman filter (Qt = 3e-4), based on TA model with 30% 
P.V. The figure highlights the reduced error estimates produced by the BLSMO under 
parameter uncertainty. 
 
 
 

 
Figure 5.5: X3 estimate comparison between boundary layer sliding mode observer (Qp = 
2.2e3, ρ = 2.5, λ = 150) and the Kalman filter (Qt = 3e-4), based on TA model with 30% 
P.V. The figure highlights the reduced error estimates produced by the BLSMO under 
parameter uncertainty. 
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Figure 5.6: X4 estimate comparison between boundary layer sliding mode observer (Qp = 
2.2e3, ρ = 2.5, λ = 150) and the Kalman filter (Qt = 3e-4), based on TA model with 30% 
P.V. The figure highlights the fact that certain state estimate errors may not be reduced 
by use of the BLSMO.  
 
 
 

Figure 5.7 provides an illustration of the error state trajectory chattering about the 

sliding surface and approaching the origin of error space. Recall that chatter is not an 

indication of sliding mode behavior. True sliding mode behavior is an idealization, 

representing an infinitely fast discontinuous state function which means estimate errors 

have reached zero. Figure 5.8 depicts the same error state trajectory but now under the 

influence of a boundary layer of thickness 0.005. 
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Figure 5.7: Sliding mode behavior in error space for a sliding mode observer (Qp = 4, ρ = 
1), based on TP model with 45% P.V. The figure illustrates the use of a phase-plane plot 
to detect sliding mode behavior.   
 
 
 

 
Figure 5.8: Error vector trajectory in error space of a boundary layer sliding mode 
observer (Qp = 4, ρ = 1, λ = 0.005), based on TP model with 45% P.V. The figure 
illustrates how traditional sliding mode behavior in error space is overridden by use of a 
BLSMO.  
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The Kalman gain KL and the sliding mode gain Ks used in the simulation of the 

TP model with 45% parameter variation are provided in Table 5.3. Note that ρ is a 

multiplier on Ks, and thus the total affect of the discontinuous state function on the 

observer dynamics should not be judged solely on Ks.   

 
 
 

Table 5.3: Kalman gain (KL) and Sliding mode gain (Ks) for TP model with 45% P.V. 
KL Ks 

15.95 3.2e-5 -6.3e-2 1.8e-2 
136.9 1.9e-4 -2.0e-3 5.6e-5 
16.15 2.4e-5 8.198 -6.3e-2 
130.4 1.8e4 -6.7e-3 2.6e-3 

 
 
 

The next series of figures compare the performance of the Kalman filter, various 

sliding mode observers (SMO) and various boundary layer counterparts (BLSMO). A log 

scale is used for the y-axis in the plots because of the high variability in performance. 

Both the tip acceleration output model and the tip position output models are used to 

illustrate the fact that results are similar for both models. The various SMO/BLSMO 

designs were determined at different parameter variation levels. The best SMO/BLSMO 

designs at +/- 10% P.V., +/-30% P.V., and +/-60% P.V. are compared in these studies.    
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Figure 5.9: Comparison of the robustness to P.V. of various sliding mode observers with 
the Kalman filter, based on velocity state estimates of TA model. The figure highlights 
the reduced estimate errors produced by the SMO under parameter uncertainty, in most 
cases. 
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Figure 5.10: Comparison of the robustness to P.V. of various sliding mode observers 
with the Kalman filter, based on velocity state estimates of TP model. The figure 
highlights the reduced estimate errors produced by the SMO under parameter uncertainty, 
in most cases. 
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Figure 5.11: Comparison of the robustness to P.V. of various sliding mode observers 
with their boundary layer counterparts, based on position state estimates of TA model. 
The figure highlights the superiority of the BLSMO to the SMO under parameter 
uncertainty, via further reduction of estimate errors produced. 
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Figure 5.12: Comparison of the robustness to P.V. of various boundary layer sliding 
mode observers with the Kalman filter, based on position state estimates of TP model. 
The figure highlights the reduced estimate errors produced by the BLSMO under 
parameter uncertainty, in most cases. 
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One observation from the simulations thus far is that while the estimate errors 

produced by various SMO designs can vary significantly at a given uncertainty level, in 

general the estimate errors are lower than those produced by the Kalman filter alone. 

Another observation is that the variation in estimate errors in the case of various BLSMO 

designs is quite low. In general, the performance of various BLSMO designs converge 

which should make it far easier to determine optimum BLSMO parameters. It is apparent 

that the boundary layer has a large effect on the observer. Figures 5.13 and 5.14 depict 

the effect of the boundary layer on the discontinuous state function.    

 
 
 

 
Figure 5.13: Discontinuous state function produced by a sliding mode observer (Qp = 4, 
ρ = 1) based on TP model. The figure illustrates the discontinuous control action injected 
into the observer dynamics by the sliding mode observer.    
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Figure 5.14: Continuous state function produced by a boundary layer sliding mode 
observer (Qp = 4, ρ = 1, λ = 0.005) based on TP model. The figure illustrates the 
smoothed control action injected into the observer dynamics by the boundary layer 
sliding mode observer.   
 
 
 

As boundary layer thickness approaches zero, a BLSMO becomes a SMO. As the 

thickness is increased, BLSMO estimate errors increase as the state function S(t) 

becomes smoother. Thus a boundary layer can be detrimental to the performance of the 

observer. An optimal thickness does exist and is an instance when BLSMO estimates are 

more accurate than their SMO counterparts. 
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Figure 5.15: Effects of various boundary layer thicknesses on observer robustness to 
P.V., based on TP model. The figure emphasizes the necessity of using an optimal value 
of boundary layer thickness in the boundary layer sliding mode observer. 
 
 
 

5.2.2 With Measurement Noise 

In this portion of the study, in addition to the existing independent variables tip 

mass m1, boundary layer sliding mode observer parameters Qp , ρ,  and λ, the Gaussian 

white noise measurement noise levels are varied. The two additional independent 

variables are R11 and R22, measurement noise covariances. 

 
 
 
Table 5.4: Standard deviation of measurements in lumped parameter TA and TP models 
for simulations with noise. 

 Position 
Measurement 

σ (m) 

Acceleration 
Measurement 

σ (m/s2) 
Low Noise 1.97e-5 0.0161 

Medium Noise 1.97e-4 0.161 
High Noise 1.97e-3 1.61 
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Figure 5.16: Effects of various measurement noise levels on observer (Qp = 2.2e3, ρ = 
0.01, λ = 5) robustness to P.V., based on TA model. The figure illustrates the degrading 
performance of the BLSMO in presence of Gaussian white measurement noise.  
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Figure 5.17: Comparison of boundary layer sliding mode observer (Qp = 2.2e3, ρ = 0.01, 
λ = 5) to Kalman filter in presence of Gaussian white measurement noise, based on TA 
model. The figure illustrates the degraded performance of the BLSMO in presence of 
Gaussian white measurement noise is still higher than that of the Kalman filter.  
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5.3 Stability Study 

A lumped parameter model with different parameters had to be employed for 

stability studies because the existing models are inherently very stable. Setting tip mass 

m1 to ten times larger than base mass m2 led to a model more suitable for stability studies. 

The asymptotic and marginal stability of the tip acceleration output of such a model was 

much more easily manipulated. As a further change, now k and m1 are varied, allowing 

for more drastic parameter variation. The outputs of this modified inertia lumped 

parameter model are base position and tip acceleration.    

 
 
 

 
Figure 5.18: Estimate errors with Kalman filter in presence of 25% parameter variation, 
based on the modified inertia TA model. The figure depicts the unstable error dynamics 
of the Kalman filter in presence of large parameter variation.  
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Figure 5.19: Estimate errors with boundary layer sliding mode observer (Qp = 3.65e6, ρ 
= 60, λ = 1) in presence of 25% parameter variation, based on the modified inertia TA 
model. The figure depicts stable error dynamics of the BLSMO under the same 
conditions in which the Kalman filter error dynamics are unstable.    
 
 
 

 
Figure 5.20: Continuous state function produced by boundary layer sliding mode 
observer (Qp = 3.65e6, ρ = 60, λ = 1) in presence of 25% parameter variation, based on 
the modified inertia TA model. The figure shows how the continuous state function 
approaches zero as estimate errors approach zero, due to the use of a boundary layer.  
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Table 5.5: Kalman gain (KL) and Sliding mode gain (Ks) for the modified inertia TA 
model with 25% P.V. 

KL Ks 
8.711 -8.5e3 -2e-5 -5.1e3 
103.1 1e-3 -1.4e-7 3e-5 
204.6 4.7e-2 1e-4 2e-2 
2.2e3 4.613 -3.4e-8 1.8e-5 

 
 
 
The stability study simulations indicate that the formerly-discontinuous state 

functions produced by the boundary layer sliding mode observer have an effect large 

enough in the presence of large parameter variation to stabilize the observer error 

dynamics, as intended by design. For the modified lumped parameter model in this study, 

it was found that the Kalman filter produces unstable estimates at parameter variation of 

21% and higher. By comparison, the boundary layer sliding mode observer continues to 

produce stable estimates up to a parameter variation of 32%. 

5.4 Detailed Model and Robust Observer 

In the assumed modes method model, the independent variable changed during 

the study is tip mass. As earlier, the performance criteria is mean squared estimate error 

of position estimates and velocity estimates, reported separately. In a similar fashion to 

the lumped parameter model, the position mean square estimate error is composed of 

position states (modal coordinate positions) and the velocity mean square estimate error 

is composed of velocity states (modal coordinate velocities) as defined by equation 2.30.  

 
 
 

Table 5.6: Parameter variation in AMM model during simulation.  
Parameter 

Variation in Tip 
Mass (%) 

Resulting 
First Mode 

(Hz) 

Resulting 
Second Mode 

(Hz) 

Resulting 
Third Mode 

(Hz) 

0 5.7 49 219.3 
45 5.12 47.4 214.3 
35 5.24 47.8 214.3 
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Table 5.6 (continued). 
25 5.36 47.9 216.7 
20 5.42 47.9 216.7 
15 5.49 48.45 216.7 
10 5.55 48.45 216.7 
5 5.62 49 219.3 
-5 5.75 49.1 219.3 
-10 5.88 49.58 221.8 
-15 5.95 49.6 221.8 

 
 
 
The following figures provide a comparison of the Kalman filter (Qt = 1e-6) and 

the boundary layer sliding mode observer (Qp = 2.5e11, ρ = 5, λ = 37) in presence of 

parameter variation. The studies do not include the effect of measurement noise. Unlike 

the lumped parameter model simulations, the assumed mode method model simulations 

do not indicate a significant performance advantage for the sliding mode observer in 

presence of uncertainty. 
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Figure 5.21: Comparison of Kalman filter and boundary layer sliding mode observer (Qp 
= 2.5e11, ρ = 5, λ = 37), based on position estimates and the AMM model. The figure 
shows that according to the AMM model, the boundary layer sliding mode observer 
performance is no worse or better than the Kalman filter in the presence of uncertainty.  
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Figure 5.22: Comparison of Kalman filter and boundary layer sliding mode observer (Qp 
= 2.5e11, ρ = 5, λ = 37), based on velocity estimates and the AMM model. The figure 
shows that according to the AMM model, the boundary layer sliding mode observer 
performance is no worse or better than the Kalman filter in the presence of uncertainty. 
 
 
 

Like the lumped parameter model case, stability studies were also undertaken for 

the assumed modes method model. It was found that around 50% parameter variation, the 

Kalman filter began producing unstable estimates. Despite repeated attempts, no sliding 

mode observer or boundary layer sliding mode observer design could be found to 

stabilize the observer error dynamics in this range of parameter uncertainty.  

5.5 Repercussions on Closed-loop Control 

Observer dynamics have a clear role to play in closed-loop system response. 

Fundamentally, the closed-loop system performance and stability is tied to that of the 

observer. Figure 5.23 shows two closed-loop tip responses, based on the lumped 

parameter model. Although the initial undershoot expected of non-minimum phase 

system is not visible in the responses of the lumped parameter models in this section, the 

existence of non-minimum phase characteristics of these models are indeed verified by a 

positive zero. 
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In the presence of 30% parameter variation, the tip is commanded to a set point of 

50cm. The simulation demonstrates how improved estimation can lead to better reference 

tracking of the closed-loop system.   

 
 
 

 
Figure 5.23: In presence of parameter variation of 30%, comparison of closed-loop link 
tip response with Kalman filter (Qt = 3e-4) and BLSMO (Qp = 2e3, ρ = 2.5, λ = 150), 
based on lumped parameter TA model. The figure shows the commanded tip excitation is 
noticeably decreased with use of the BLSMO due to improved estimation. 
 
 
 

In addition to closed-loop tracking performance, closed-loop stability is obviously 

impacted by observer performance. The alternative lumped parameter model discussed in 

section 5.3 is employed again for the stability study here. Figure 5.24 depicts the unstable 

closed-loop link tip response, when commanded to a set point of 50cm, with use of 

Kalman filter alone and in the presence of 25% parameter variation. Figure 5.25 shows 

how under the same uncertainty conditions, a boundary layer sliding mode observer is 

able to stabilize the closed-loop tip response. It was found that closed-loop stability with 

use of Kalman filter alone restricted parameter variation to about 21%. With use of the 

sliding mode observer, this restriction was lifted to 32%.  
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Figure 5.24: Unstable closed-loop link tip response with use of Kalman filter in presence 
of 25% P.V., based on modified inertia lumped parameter TA model. The figure shows 
the effect of unstable estimates provided by the Kalman filter on closed-loop stability. 
 
 
 

 
Figure 5.25: Stable closed-loop link tip response with use of boundary layer sliding 
mode observer (Qp = 3.65e6, ρ = 60, λ = 1) in presence of 25% P.V., based on modified 
inertia lumped parameter TA model. The figure showcases the ability of the BLSMO to 
ensure stable closed-loop control under the same conditions in which the KF is unable to. 
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Figure 5.26: Control input for closed-loop system with boundary layer sliding mode 
observer (Qp = 3.65e6, ρ = 60, λ = 1) in presence of 25% P.V., based on modified inertia 
lumped parameter TA model. The figure shows that the control input is kept below pre-
assigned hardware saturation levels.  
 
 
 

Similarly, for the assumed modes method model, the performance and stability of 

the closed-loop system was investigated. Due to the disappointing estimation 

performance of the boundary layer sliding mode observer, as discussed in section 5.4, the 

closed-loop link tip response cannot be improved with replacement of the Kalman filter 

with the BLSMO. In addition, the stability of the closed-loop link tip response under 

significant parameter uncertainties cannot be assured.    
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Figure 5.27: In presence of parameter variation of 10%, closed-loop link tip response 
with BLSMO (Qp = 2.5e11, ρ = 5, λ = 37), based on assumed modes method model. The 
figure shows that according to the AMM model, there is no improvement in commanded 
link tip response with use of BLSMO in presence of uncertainty.  
 
 
 

 
Figure 5.28: In presence of parameter variation of about 50%, unstable closed-loop link 
tip response with BLSMO (Qp = 2.5e11, ρ = 5, λ = 37), based on assumed modes method 
model. The figure shows that according to the AMM model, there is no improvement in 
commanded link tip response with use of BLSMO in presence of uncertainty.  
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5.6 An Approach for Tuning the Robust Observer 

In the course of conducting the numerous simulation studies, an approach for 

tuning the parameters of the sliding mode observer and the boundary layer sliding mode 

observer took shape. The approach here was used for developing numerous observer 

designs based on four different models. The approach is summarized in eight steps 

provided in Table 5.7. 

 
 
 

Table 5.7: An approach for tuning the robust observer (based on the Kalman filter) in 
simulation. 

 Step Observe 

1. Configure observer initial 
conditions. 

 

2. Find Kalman gain KL. 
Run simulation and record mean square estimate 
errors (MSE) for later comparison. 
 

3. Set ρ = 1, Select Qp > 0. 
Start small and increase. 

Increase in increments of 1, 10, 100, 1000, so on.  In 
general, the larger the elements of C, the larger the 
step size of increment is needed. 
 

4. 
Run simulation to observe 
MSE and repeat step #3 as 
needed. 

The goal is to find a minimum for MSE by tuning 
only Qp, by arriving at MSE that is lower than that of 
Kalman filter alone. 
 

5. Select ρ > 0. May increase 
or decrease. 

ρ has same affect on MSE as tuning Qp but with more 
precision. A very large discontinuous state function 
leads to estimate unstability, thus ρ is upper bounded.   
 

6. 
Run simulation to observer 
MSE and repeat step #5 as 
needed. 

The goal is to further minimize MSE by tuning only 
ρ. The smaller the step size used for Qp in step #3, the 
less the adjustment to ρ is needed. At this point, MSE 
should be reduced and switching about a sliding 
surface in error space should be apparent. 
 

7. Select λ > 0. Start small and 
increase. 

Only once the pair Qp and ρ are finalized, should λ be 
considered. Small value for λ gives more 
discontinuous control, more estimation chatter. 
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Table 5.7 (continued). 

8. 
Run simulation to observer 
MSE and repeat step #7 as 
needed. 

The goal is to further minimize MSE by tuning only 
λ. Directly minimizing MSE results in indirectly 
smoothing out estimates. 
 

 
 
 

5.7 Considerations for Future Studies 

In the simulations studies conducted, the Kalman filter is designed based on a 

process noise covariance matrix which penalizes all states equally. There are at least two 

concerns with this simplified approach which should be corrected in future studies. First, 

using the lumped parameter model for illustration, there is no process uncertainty in 

states x2 and x4 given the state assignments 2 1x x=  and 4 3x x=  in equations 2.7 and 2.9. 

Second, again using the lumped parameter model for illustration, placing equal penalties 

on position and velocity states and neglecting the difference in units results in a Kalman 

filter with inferior performance. For these two reasons, each element of the diagonal 

process noise covariance matrix should reflect both the sources of uncertainty and the 

units of the states themselves for proper formulation of the Kalman filter.  

As an illustration, the process noise covariance matrix 

0 0 0 0
0 3 4 0 0
0 0 0 0
0 0 0 3 4

t

e
Q

e

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

    (5.6) 

was used in a simulation with process noise and low measurement noise given in Table 

5.4. The updated Qt resulted in a 92.4% decrease in velocity mean square estimate error 

(from 4.53e-7 to 3.44e-8 m/s) and a 81.2% decrease in position mean square estimate 

error (from 2.42e-10 to 4.54e-11 m). On a related note, the robust observer design 

parameter Qp, an arbitrary positive-definite symmetric matrix, should be designed with 

the same consideration for unit consistency in mind.       
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A note must be made in regards to the boundary layer versions of the robust 

observer. According to equation 4.34, the transition between a discontinuous and a 

continuous state function depends upon the term ˆy y− . For models with tip acceleration 

as output rather than tip position, there is a lack of unit consistency in the term ˆy y−  

since it now consists of a position measurement (m) and an acceleration measurement 

(m/s2), which is based on units of time. The author suggests use of proper scaling factors 

to correct this unit inconsistency in future studies.  The units of the measurement have a 

bearing on when the transition between a discontinuous and a continuous state function 

occurs as illustrated in Figure 5.29 and 5.30. In the first figure, the BLSMO is operating 

with a continuous state function. Compare this to the straight line motions in the second 

figure which are indicative of operation outside the boundary layer.   

 
 
 

 
Figure 5.29: Elements of ˆy y−  in presence of parameter variation of 5%, with BLSMO 
(Qp = 1e5, ρ = 0.5, λ = 10) and no scaling factor for acceleration measurement, based on 
TA model. This figure shows the BLSMO is operating with a continuous state function 
for all time. 
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Figure 5.30: Elements of ˆy y−  in presence of parameter variation of 5%, with BLSMO 
(Qp = 1e5, ρ = 0.5, λ = 10) and a scaling factor of 50 for acceleration measurement, based 
on TA model. This figure shows transitions occurring between a discontinuous and 
continuous state function due to a hypothetical scaling factor applied to correct unit 
inconsistency in ˆy y− . 
 
 
 

5.8 Summary 

Simulations based on two closely-related lumped parameter models have shown 

that most state estimate errors produced by the sliding mode observer (SMO) and 

boundary layer sliding mode observer (BLSMO) in the presence of parameter uncertainty 

are in fact reduced when compared to estimates from a Kalman filter. The simulation 

studies have further shown that BLSMO estimates are superior to SMO and that the 

performance of different BLSMO designs converges. In presence of Gaussian white 

measurement noise, BLSMO estimates are in fact better than with the Kalman filter 

alone. Another notable result from simulation is that the structure of the output matrix C 

in the tip acceleration output model did not harm performance of the BLSMO. This is 

saying that even though there is now uncertainty in C, which the formulation of the 
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sliding mode observer in Chapter 4 does not consider, the advantages of the BLSMO 

over the Kalman filter still stand. Finally, simulations showed how improved estimation 

can lead to better reference tracking of the closed-loop system.   

Simulations based on the modified inertia lumped parameter model showed that 

in situations of high parameter uncertainty where the Kalman filter produces unstable 

estimates, the BLSMO observer estimates are in fact stable. The parameter variation limit 

for the Kalman filter is 21%, while the BLSMO continues to produce stable estimates up 

to parameter variation of 32%. As a result, the BLSMO is able to stabilize the closed-

loop tip response. 

Simulations based on the assumed modes method proved less fruitful. Simulations 

reported Kalman filter estimates very close to those of BLSMO. No benefits in terms of 

closed-loop control with the BLSMO were found. In the lumped parameter models, at 

least one state is directly output as a measurement and at most three states are observed. 

In the assumed modes method model, no state is directly output and all eight are 

observed. Another difference worthy of pointing out is that parameter variation in the 

assumed modes method model changes the eigenvectors which changes the A, B, C and 

D system matrices. This is in contrast to the lumped parameter model in which, for 

example, variation in tip mass affects only A. A third possible factor is observability. 

Observability of the lumped parameter models is easily confirmed. Software such as 

Matlab used to check observability for the assumed modes method model showed a 

dependence on link parameters. Perhaps the disappointing performance of the BLSMO is 

explained by one or the combination of these factors.       

A few concerns have arisen following the simulations. First, the Kalman filter 

does not discriminate against use of either the simple or the detailed model. It works with 

either unlike the sliding mode observer at hand. Second, the anomaly at 60% parameter 

variation in several of the figures is of concern. The author is not able to explain why it is 

that the SMO estimates are so often worse than KF at this specific parameter variation. 



 79

Two concerns regarding evaluation of uncertainty bounds have also arisen. It was 

also discovered in the process of obtaining the bounds on uncertainty 

1 1( ) ( )TP C Axξ − −= Δ , that  1 1( )TP C− −  cannot be evaluated if 1 TP C− is non-square. This 

poses a challenge for the assumed modes method case. Besides that hurdle, the 

uncertainty upper bound is time varying since it depends upon the state vector. The 

criteria provided for the lower bound on ρ, given by equation 4.29, proved impossible to 

satisfy, given the large bounds on the state vector during simulation. It was not used and 

instead ρ was selected in a trial by error manner.   
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CHAPTER 6 

EXPERIMENTS 

 

Several questions surrounding implementation have arisen. Exactly how are 

robust observer design parameters initialized? How much of the parameter tuning is trial 

and error and in what way is optimality of the tuned parameters assured? The sensitivity 

of the hardware in the physical system to observer design parameters needs investigation. 

The computational burden imposed by the algorithm must be looked into. Finally, the 

estimation performance shown by simulations needs verification.  

6.1 Experimental Setup 

The experimental setup consists of a flexible link with a tip mass of 0.11kg 

attached to an Anorad D.C. linear motor with a moving mass of 9.6kg on a track with a 

full range of 1.55m, as depicted in Figure 6.1. The physical properties of the flexible link, 

including the natural frequencies, can be found in Table 2.1. The motor gain (N/V) is 

approximated as 6.13 by experimental means as discussed in section 2.2. Based on the 

range of control signal supplied to the motor servo-amplifier, this indicates motor 

saturation will occur above a continuous force of about 61.3N. In addition, the motor 

bandwidth was found experimentally to be 2.2hz.  

An accelerometer and a linear encoder provide measurements of tip acceleration 

and base position, respectively. The PCB piezoelectric accelerometer has a bandwidth of 

3hz at a measurement accuracy of +/-10%. The accelerometer signal is low-pass filtered 

using an RC circuit with a cut-off frequency of 480hz to remove electrical noise. The 

Anorad encoder provides motor displacement with a resolution of 1μm.   

A target PC running National Instruments LabVIEW Real-Time 8.5 operating 

system is used for acquiring and conditioning sensor signals, state estimation and 
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computation of control signal, and output of control signal to the linear motor. The 

control loop operates at a minimum of 1khz, and under certain instances can operate 

reliably at 2khz. The developed LabVIEW control application also allows the transfer of 

control and the relaying of status information to a host PC. Figure 6.2 provides a 

schematic of the hardware involved in the system.      

  

 

Figure 6.1: Single flexible link propelled by a linear D.C. motor. 

 

 

Figure 6.2: Schematic of system hardware. 

On the software side of the test-bed, National Instruments LabVIEW 8.5 based 

application consists of a total of four LabVIEW VIs, two residing on the host PC and two 

on the target PC.  
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Figure 6.3: LabVIEW Real Time 8.5 application for experimental test-bed. 

 
The “host_create_model” VI on the host PC creates a LabVIEW measurement file 

which contains the model data in state-space form, state-feedback gain, feed-forward 

gain, Kalman gain, and sliding mode gain.  All of this data is generated off-line in 

advance and is needed by the observer and controller for online state estimation and 

control. The measurement file is downloaded to the target PC where it resides and is 

called at runtime by a VI running on the target PC. The “host_create_model” VI needs to 

be run only when the developer makes changes to the model, a controller parameter, or 

an observer parameter. The most common parameters tuned by the developer are 

available on the Front Panel of the VI for direct input and are summarized in Table 6.1. 

 
 
 

Table 6.1: Front Panel inputs for “host_create_model” VI. 
Parameter Input 
on Front Panel 

Function of Parameter 

Qt 
(process noise 

covariance matrix) 

Determines Kalman filter poles. 

Qp  
(From equation 

4.26) 

Determines sliding mode gain K. 
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Table 6.1 (continued). 
τ  

(From equation 
A.1) 

Determines feedback controller poles. 

 
 
 

The “host_control” VI on the host PC communicates directly with the 

“target_control” VI on the target PC at runtime using network-publised shared variables. 

The developer uses the Front Panel of this VI to send commands directly at run-time. The 

inputs supplied by the developer are summarized in Table 6.2. In addition to allowing 

direct control over hardware at runtime, status information is relayed back to the 

developer. This information includes the execution time (in seconds), plot of the 

reference signal being tracked (in cm) and the measured base displacement (in cm). The 

VI updates at 10hz to minimize overhead and avoid causing jitter in the deterministic 

portion of the application (the target VIs).     

 
 

Table 6.2: Front Panel inputs for “host_control” VI. 
Parameter Input 
on Front Panel 

Function of Parameter 

Closed-Loop 
Control On/Off 

Toggles between closed-loop control 
and an output of 0V to the motor. 

Stop Execution Stops the target VI 
“target_LP_closedloop” and saves 

recorded signal data to a local file on 
target. 

Sliding On/Off Disconnects the discontinuous state 
function in the observer. (Essentially 
switches between a SMO and a 
Kalman Filter)   

Boundary Layer 
On/Off 

Switches between a SMO and 
BLSMO. 

ρ On-line tuning of sliding mode 
observer parameter. 

 λ On-line tuning of sliding mode 
observer parameter. 
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The “target_control” VI performs the most essential functions needed for real-

time control. The five core components of this VI include: 1) a “read from measurement 

file” subVI for initializing model, observer and controller parameters, 2) a critical-

priority simulation loop containing the model-based observer and controller for real-time 

control, 3) a normal-priority timed loop for retrieving signal data using FIFO, 4) “a write 

to measurement file” subVI for logging data to a local file on the target and 5) network-

published shared-variables for transferring control and relaying status information to the 

host VI “host_control.”  

The “target_display_data” VI displays recorded signal data including the 

reference signal, measured and estimated signals and control input (Volts).   

6.2 Study Overview 

The focus of the study is to investigate questions surrounding observer 

implementation. Specifically, the study will look at how the sliding mode observer is 

tuned for a physical system. A few points must be made about the study. The first thing 

to note is that all of the observers are based on the lumped parameter model in the 

experiments. Observers based on the assumed modes method model, a better 

representation of flexible link dynamics, were tuned to provide excellent estimates of tip 

acceleration. Estimates of base position however predicted an underdamped base 

response. Under closed-loop control, these underdamped base position estimates led to a 

persistent phase discrepancy between actual and estimated base position which made 

tuning of the controller a challenge. The observer based on the lumped parameter model 

proved far easier to tune and provided stable closed-loop control. With time a precious 

commodity, the lumped parameter model was selected for all of the following 

experiments.  
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The model with tip acceleration as an output is employed. This allowed for the 

use of the acceleration signal directly without having to integrate to reach tip position. 

The benefit of this approach is not having to deal with the issue of accelerometer drift.   

 Since design of the sliding mode observer is split into design of the Kalman filter 

part and then the discontinuous state function term, the logical approach is to first achieve 

the best possible base position and tip acceleration estimates with the Kalman filter alone. 

The rationale is that given reliable estimates of these measurable quantities, we can 

assume the estimates of unmeasurable states are reliable themselves. The Kalman filter 

parameters are provided in Table 6.3 and are the same as those used in the simulations.  

 
 
 

Table 6.3: Noise covariance data for Kalman filter simulations and experiments. 
R11 3.87e-10 
R22 2.59e-4 
Qt 3e-4 

 
 
 

Covariance of R11 reflects a standard deviation of 1.97e-5 meters in the position 

measurement. Covariance of R22 corresponds to a standard deviation of 0.0161 m/s2 in 

the acceleration measurement. Covariance of Qt is based on manual fine tuning of the 

Kalman filter. The resulting Kalman gain is  

528 0.863
713 0.184

1.08 3 0.983
1.06 3 0.965

LK
e
e

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

.    (6.1) 

The feedback gain Kc, is again based on the method of symmetric root locus, and 

reflects a value of 0.5e9 for τ for all experiments. The tuned gains 

[ ]1.01 4 0.056 4 3.25 6 0.066 4cK e e e e= −  (6.2)  

and 
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F = 2.24e4       (6.3) 

 

provide the best tracking of the reference signal. In all experiments, the tip position is 

commanded to follow the reference signal. This is done by penalizing state x1 in the 

method of symmetric root locus and in design of the feed-forward gain F. 

 As a finale note, the observer did not receive a truncated input when the actual 

control signal was saturated. This can easily be fixed by placing a saturation function on 

the input (N) signal in the LabVIEW simulation loop in “target_control.vi.”  

6.3 Optimal Observer 

A regulator is designed with the Kalman filter providing state estimates and the 

result is shown in Figure 6.3. Two impulse responses can be seen, with the first showing 

free vibration and the second showing suppression of the first vibration mode by the 

regulator in about 1.5 seconds. The next series of figures compare the measured and 

estimated signals, and it can be seen that very good estimates are being provided by the 

Kalman filter.   

 
 
 

 

Impulse response, 
no control. 

Impulse response,  
with control. 
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Figure 6.4: Vibration suppression with regulator (τ = 0.5e9) and Kalman filter, at 
execution rate of 1khz. This figure demonstrates suppression of the first mode with state-
feedback control.    
 

 

 
Figure 6.5: Measured and estimated tip acceleration by Kalman filter. This figure shows 
the estimation accuracy of the Kalman filter alone, with a delay of less than 2ms between 
measured and estimated signal. 
 
 
  

 
Figure 6.6: Measured and estimated base position by Kalman filter. This figure shows 
the estimation accuracy of the Kalman filter alone. 
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Figure 6.7: Control input (V) during vibration suppression with regulator (τ = 0.5e9) and 
Kalman filter. This figure shows saturation of the control signal as the controller dampens 
the first mode, indicating too much feedback gain. 
 
 
 

The tuned regulator with Kalman filter combination is also used to track a time 

varying reference signal. The reference signal is a square wave with peak to peak 

amplitude of 25cm filtered to remove discontinuities which cause excessive tip excitation 

and thus motor saturation. Figure 6.7 depicts the base position and Figure 6.8 depicts the 

tip acceleration during tracking.     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 89

 
Figure 6.8: Measured and estimated base position during tracking of a reduced-rate 
square wave with regulator (τ = 0.5e9) and Kalman filter, at execution rate of 1.33khz. 
This figure shows the tracking capability of the tuned closed-loop system. (Measured and 
estimated signals almost entirely overlaid) 
 
 
 

 
Figure 6.9: Measured and estimated tip acceleration during tracking of a reduced-rate 
square wave with regulator (τ = 0.5e9) and Kalman filter, at execution rate of 1.33khz. 
This figure shows maximum tip excitation occurs during rapid motions of the base, all 
the while the Kalman filter estimates are very accurate.  
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The next series of figures illustrate the effects of parameter variation on closed-

loop control. In the first scenario, illustrated by Figures 6.10 to 6.15, the observer and 

controller are based on fixed model parameters while the physical tip mass is varied. 

With an increase in tip mass, the amplitude of tip vibration is noticeably decreased, it 

takes longer to suppress tip vibration during rapid movement and residual vibrations 

persist when stationary. With a decrease in tip mass, the magnitude of tip acceleration is 

noticeably increased, it takes about the same time as with nominal tip mass to suppress 

tip vibration during rapid movement, and residual vibrations persist when stationary. 

With up to a 426% increase in tip mass and a 70% decrease in tip mass, the commanded 

tip position remains asymptotically stable.   

In contrast, the parameter variation in the second scenario, illustrated by Figures 

6.16-18, does lead to a loss of asymptotic stability. With an increase in link length of 

91%, effectively relocating the tip mass from 0.32m to 0.61m along the length of the link, 

the commanded tip position is at best marginally stable. It should be mentioned that link 

length is not an actual parameter in the lumped-parameter model. Parameter variation in 

link length corresponds to parameter variation in link damping and stiffness which are 

actual model parameters. 
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Figure 6.10: With tip mass increased by 426% (from 0.11kg to 0.579kg), measured and 
estimated base position during tracking of a reduced-rate square wave with regulator (τ = 
0.5e9) and Kalman filter, at an execution rate of 1khz. This figure shows reduced 
tracking capability of the closed-loop system with modeling error in tip mass, however 
without loss of asymptotic stability. (Measured and estimated signals almost entirely 
overlaid) 
 
 
 

 

Figure 6.11: With tip mass increased by 426% (from 0.11kg to 0.579kg), measured and 
estimated tip acceleration during tracking of a reduced-rate square wave with regulator (τ 
= 0.5e9) and Kalman filter, at an execution rate of 1khz. This figure shows that it now 
takes longer to suppress tip vibration during rapid movement due to modeling error in tip 
mass (compare to Figure 6.9). 
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Figure 6.12: With tip mass increased by 426% (from 0.11kg to 0.579kg), corresponding 
control input during tracking of a reduced-rate square wave with regulator (τ = 0.5e9) and 
Kalman filter, at an execution rate of 1khz. This figure shows motor saturation occurs 
during closed-loop control with modeling error in tip mass.  
 
 
 

 
Figure 6.13: With tip mass decreased by 70% (from 0.11kg to 0.033kg), measured and 
estimated base position during tracking of a reduced-rate square wave with regulator (τ = 
0.5e9) and Kalman filter, at an execution rate of 1khz. This figure shows reduced 
tracking capability of the closed-loop system with significant modeling error in tip mass, 
however without loss of asymptotic stability. (Measured and estimated signals almost 
entirely overlaid) 
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Figure 6.14: With tip mass decreased by 70% (from 0.11kg to 0.033kg), measured and 
estimated tip acceleration during tracking of a reduced-rate square wave with regulator (τ 
= 0.5e9) and Kalman filter, at an execution rate of 1khz. This figure shows that in this 
instance of modeling error in tip mass, it still takes about the same time to suppress tip 
vibration during rapid movement as with nominal tip mass (compare to Figure 6.9). 
 
 
 

 
Figure 6.15: With tip mass decreased by 70% (from 0.11kg to 0.033kg), corresponding 
control input during tracking of a reduced-rate square wave with regulator (τ = 0.5e9) and 
Kalman filter, at an execution rate of 1khz. This figure shows motor saturation occurs 
during closed-loop control with decreased parametric variation. 
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Figure 6.16: With link length increased by 91% (from 0.32m to 0.61m), measured and 
estimated base position during tracking of a reduced-rate square wave with regulator (τ = 
0.5e9) and Kalman filter, at an execution rate of 1khz. This figure shows tracking 
capability of the closed-loop system is more severely affected with modeling error in link 
length than in tip mass.  (Measured and estimated signals almost entirely overlaid)  
 
 
 

 
Figure 6.17: With link length increased by 91% (from 0.32m to 0.61m), measured and 
estimated tip acceleration during tracking of a reduced-rate square wave with regulator (τ 
= 0.5e9) and Kalman filter, at an execution rate of 1khz. This figure shows the 
commanded tip position is only marginally stable under closed-loop control with 
significant modeling error in link length. 
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Figure 6.18: With link length increased by 91% (from 0.32m to 0.61m), corresponding 
control input during tracking of a reduced-rate square wave with regulator (τ = 0.5e9) and 
Kalman filter, at an execution rate of 1khz. This figure shows severe motor saturation 
results as closed-loop control unsuccessfully tries to stabilize the commanded tip position 
with significant modeling error in link length. 
 
 
 

6.4 Robust Observer 

Given the marginally stable closed-loop system with modeling error in link length 

as depicted in Figures 6.16 through 18, the goal of robust observer design is to directly 

improve state estimates and thus indirectly improve tip tracking performance and 

stability. In an approach similar to simulations, the first sliding mode observer parameter 

to select is Qp. Various values for Qp were investigated. For instance, Qp of 1.6e3, 8e3, 

50e3, and 1.5e7 lead to Ks with a largest element of 4.5e3, 893, 143, and 0.48, 

respectively. The choice for Qp is indeed arbitrary because the parameter ρ is a multiplier 

on Ks as given by equation 4.25. Since Qp requires more computation, it is preferable to 

fix the parameter off-line and vary ρ on-line. The parameter Qp with value of 1.5e7 is 

selected and leads to a sliding mode gain 
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 The next series of figures show that with Qp fixed as discussed above, values of ρ 

> 5 produce estimate chatter, showing the influence of the discontinuous state term on the 

observer dynamics. The addition of the boundary layer filters out the estimate chatter as 

expected.  

 
 
 

 
Figure 6.19: With link length increased by 91% (from 0.32m to 0.61m), measured and 
estimated base position during tracking of a reduced-rate square wave with regulator (τ = 
0.5e9) and Kalman filter alone, at an execution rate of 1khz. This figure shows significant 
excitation in base motion and poor reference tracking due to modeling error in link length 
but it should be noted that estimates provided by Kalman filter remain accurate.  
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Figure 6.20: With link length increased by 91% (from 0.32m to 0.61m), measured and 
estimated base position during tracking of a reduced-rate square wave with regulator (τ = 
0.5e9) and SMO (Qp=1.5e7, ρ=10), at an execution rate of 1khz. This figure shows the 
appearance of estimate chatter as expected, along with a damping effect on the motor.  
 
 
 

 
Figure 6.21: With link length increased by 91% (from 0.32m to 0.61m), measured and 
estimated base position during tracking of a reduced-rate square wave with regulator (τ = 
0.5e9) and BLSMO (Qp=1.5e7, ρ=10, λ=5), at an execution rate of 1khz. This figure 
shows absence of estimate chatter due to a boundary layer, now along with an even larger 
damping effect on the motor.  
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Figure 6.22: With link length increased by 91% (from 0.32m to 0.61m), measured and 
estimated base position during tracking of a reduced-rate square wave with regulator (τ = 
0.5e9) and Kalman filter, at an execution rate of 1khz. This figure shows sustained, high 
frequency tip oscillations due to modeling error in link length but it should be noted that 
estimates provided by Kalman filter remain accurate. 
 
 
 

 
Figure 6.23: With link length increased by 91% (from 0.32m to 0.61m), measured and 
estimated base position during tracking of a reduced-rate square wave with regulator (τ = 
0.5e9) and SMO (Qp=1.5e7, ρ=10), at an execution rate of 1khz. This figure shows how 
damping of the base motor due to estimate chatter results in a noticeable decrease in 
magnitude of tip oscillations. (compare to Figure 6.22)  
 



 99

 
Figure 6.24: With link length increased by 91% (from 0.32m to 0.61m), measured and 
estimated base position during tracking of a reduced-rate square wave with regulator (τ = 
0.5e9) and BLSMO (Qp=1.5e7, ρ=10, λ=5), at an execution rate of 1khz. This figure 
shows how damping of the base motor resulting from use of a BLSMO results in a 
noticeable decrease in tip oscillations. (compare to Figure 6.22)    
 
 
 

 

Figure 6.25: With link length increased by 91% (from 0.32m to 0.61m), measured and 
estimated base position during tracking of a reduced-rate square wave with regulator (τ = 
0.5e9) and Kalman filter, at an execution rate of 1khz. This figure shows severe control 
input saturation in the presence of modeling error in link length and is one indication that 
loss of asymptotic stability may be due largely to a poor controller rather than poor 
estimates. 
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Figure 6.26: With link length increased by 91% (from 0.32m to 0.61m), measured and 
estimated base position during tracking of a reduced-rate square wave with regulator (τ = 
0.5e9) and SMO (Qp=1.5e7, ρ=10), at an execution rate of 1khz. This figure highlights 
the increased control activity due to estimate chatter. 
 
 
 

 
Figure 6.27: With link length increased by 91% (from 0.32m to 0.61m), measured and 
estimated base position during tracking of a reduced-rate square wave with regulator (τ = 
0.5e9) and BLSMO (Qp=1.5e7, ρ=10, λ=5), at an execution rate of 1khz. This figure 
highlights a dramatic decrease in control activity from removal of estimate chatter.  
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Figure 6.28: With link length increased by 91% (from 0.32m to 0.61m), measured and 
estimated base position during tracking of a reduced-rate square wave with regulator (τ = 
0.5e9) and various observers at an execution rate of 1khz. This figure shows how use of 
SMO and BLSMO affects closed-loop performance.  
 
 
 

 
Figure 6.29: With link length increased by 91% (from 0.32m to 0.61m), measured and 
estimated tip acceleration during tracking of a reduced-rate square wave with regulator (τ 
= 0.5e9) and various observers at an execution rate of 1khz. This figure shows how use of 
SMO and BLSMO affects closed-loop performance. 
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Figures 6.19 through 6.24 have shown that replacing the Kalman filter with a 

SMO or BLSMO has damping effects on closed-loop performance. For the SMO, it 

appears that this damping of link base and tip motions is due to estimate chatter as seen in 

Figure 6.20. For the BLSMO, the damping appears to be due to damping in state 

estimates themselves which leads to damping of the control signal as seen in Figure 6.27 

(recall the control action ˆcu Fr K x= −  where Kc as given by equation 6.2 is fairly large). 

Experiments show as boundary layer thickness decreases, the damping effect increases 

and tip vibrations are further suppressed while reference tracking degrades.  

A notable observation from the study is that estimates provided by the Kalman 

filter in the presence of the rather significant parameter variation at hand remain accurate. 

This leads to the conclusion that marginal stability of the closed-loop system at the case 

in hand may be attributed largely to the degraded performance of the controller due to 

modeling error rather than degraded performance of the observer. 

6.5 Implementation Challenges and Recommendations 

It was discovered that the large gains (1,2) and (3,2) in the sliding mode gain Ks 

given in equation 6.4 in combination with ρ > 50 cause excessively large estimate 

corrections which in certain circumstances can lead to spikes in the control signal and 

thus erratic closed-loop control. The sequence of events can be seen in Figure 6.30. Close 

investigation reveals the problem begins with an excessively large correction on 1̂x  and 

3x̂  by the discontinuous state function ˆ(sgn( ))sK y y−  in the observer dynamic equation. 

In the same time-step, this abrupt change leads to an abrupt change in 2ŷ , the tip 

estimate, because of the relatively large elements (2,1) and (2,3) of  

0 0 1 0
1.195 3 0.391 1.195 3 0.391

C
e e

⎡ ⎤
= ⎢ ⎥− − −⎣ ⎦

.  (6.5) 
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Figure 6.30: Example #1 of discontinuity in estimates. This figure depicts the sequence 
of events that leads to estimate spikes which lead to erratic closed-loop control. 
 
 
 

The meaning of all of this is that this phenomena places an upper bound on the 

parameter ρ which may be hindering observer tuning. Simulations showed that due to the 

discontinuous nature of the sliding mode terms in the observer dynamics, unlike the 

Kalman gain, increasing the sliding mode gain eventually destabilizes error dynamics. 

However, the upper bound placed on ρ by this phenomena is a premature upper bound 

which may be hindering the sliding mode behavior.   

A similar phenomena occurs in the implementation of boundary layer versions of 

the sliding mode observer. It was discovered that small boundary layer widths, λ < 1, 

leads to a spike in the control signal as shown in Figure 6.31. In a similar fashion as 

earlier, the sequence of events is traced to excessive corrections to state estimates by the 

discontinuous state function. Discontinuity in estimates in conjunction with the large 

gains 1.01e4 and 3.25e6 in Kc, given by equation 6.2, lead to control signal spikes. 
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Figure 6.31: Example #2 of discontinuity in estimates. This figure depicts the sequence 
of events that leads to estimate spikes which lead to erratic closed-loop control. 
 
 
 

 
Figure 6.32: With link length increased by 91% (from 0.32m to 0.61m), measured and 
estimated base position during tracking of a reduced-rate square wave with regulator (τ = 
0.5e9) and BLSMO (Qp=1.5e7, ρ=10, λ=1), at an execution rate of 1khz. This figure 
shows a discontinuity in state estimates. 
 
 
 

A third implementation challenge is estimate chatter leading to control signal 

chatter as is apparent in Figure 6.26. During experiments, the high control activity caused 

the motor to overheat causing insulation around the motor coil to expand. Precautions 

must be taken when tuning a robust observer on a real system.   
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With consideration of these limitations, the general approach used in tuning the 

three observer parameters is outlined in Table 6.4. The six steps outlines a basic sequence 

and show that there exists a structure to the process of tuning the robust observer. There 

are obvious dependencies between the parameters of the sliding mode observer, and these 

have become clearer to the author only after simulations and physical experiments. For 

instance, it is most convenient to fix the parameter Qp off-line since it requires significant 

computation and then tune the parameter ρ on-line. The application of the observer to a 

physical system has provided further insight into how the dynamics of the observer are 

governed by each parameter as well as how the model structure can influence the 

behavior of the robust observer. For instance, when implementing the observer on a 

physical system, it becomes especially important to consider the size of estimate 

corrections, since excessively large estimate corrections can lead to an erratic control 

signal. The structure of the output matrix C can amplify any drastic corrections in state 

estimates and create a domino effect which eventually affects the performance of the 

closed-loop system.  

 
 
 
Table 6.4: An approach for tuning the robust observer (based on a Kalman filter) on the 
experimental setup. 

 Step Observations 
1. Find the Kalman gain KL.  

2. 
Select the arbitrary 
positive-definite symmetric 
Qp. 

Assume Qp has repeated roots for convenience. The 
limitation of this approach is that selection of Qp will 
then only affect sK . That is, the designer will only 
have control over Ks as a whole, not the individual 
gains. 

3. 

Find A-KLC and solve the 
Lyapunov matrix equation 
for a unique positive-
definite symmetric P. 

Use computer solvers to solve the Lyapunov matrix 
equation. 

4. Find 1 T
sK P C−=  Ks is fixed off-line. 
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  Table 6.4 (continued). 

5. 
Select ρ. Start small and 

increase. 

Take into consideration the gains in Ks and the units of 
states to be estimated. In this way, you can avoid large 
values for ρ which gives unreasonably large 
corrections to state estimates. Smaller ρ reduces 
amount of estimate correction, however keep in mind 
that for sliding to occur, ρ ξ≥  (refer to chapter 4). 
This parameter is most conveniently tuned online. 

6. 
Select λ. Start large and 

decrease. 

Estimate chatter is removed. Decreasing λ has an 
increasing damping effect on closed-loop system 
performance. This parameter is most conveniently 
tuned online. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 Conclusions 

This work presents the development and design of a robust nonlinear observer for 

general linear systems with model uncertainty in the form of parametric uncertainty. Two 

observer design approaches are reviewed, the variable structure systems theory approach 

and the Lyapunov approach. The challenges and limitations of each approach are 

discussed. The variable structure systems theory approach poses more significant 

challenges, such as the difficulty in determining sliding mode gains when model 

measurement outputs are a combination of multiple states. The Lyapunov approach is 

adopted for observer design and robustness studies based on simulations of a non-

minimum phase closed-loop control system with model inaccuracy are undertaken. 

 For the most part, simulations verify the robustness properties of the sliding mode 

observer touted by other works. Most state estimates produced by the robust observer in 

the presence of parameter uncertainty are in fact reduced when compared to estimates 

from a Kalman filter, both with and without measurement noise. Estimates provided by 

boundary layer versions of the robust observer are found to be superior to observers 

lacking the boundary layer. In addition, performance of various boundary layer robust 

observer designs is found to converge, indicating an ease of finding the optimal observer 

parameters. Simulations show how improved estimation can lead to better reference 

tracking in the closed-loop system, with reduced tip excitation during motion, under 

conditions of “mild” uncertainty.  In conditions of “severe” uncertainty, the loss of 

asymptotic and marginal stability with use of the Kalman filter occurs at a parameter 
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variation of 21%. With use of the robust observer, it is found that the closed-loop system 

remains asymptotically stable with a parameter variation up to 32%.  

Some concerns about the design of the robust observer have surfaced during 

simulation. Simulations show that with use of the detailed system model, based on the 

assumed modes method, no benefits in terms of improved performance or improved 

stability of closed-loop control with the robust observer are found. A few possible factors 

for this result are discussed in Chapter 5. Another notable concern is the difficulty in 

selecting the robust observer design parameter ρ based on the upper bound on time 

varying uncertainty. The author is unable to calculate the lower bound on ρ based on 

uncertainty and instead uses a trial-and-error approach which seems effective although 

inefficient. 

 Experiments are conducted on a physical system consisting of a single flexible 

link with non-collocation of actuators and sensors. The robust observer is successfully 

implemented in the National Instruments LabVIEW programming environment at control 

loop rates exceeding 1khz. The focus of experiments is on investigating questions 

regarding robust observer implementation. Specifically, the approach used for initializing 

certain observer design parameters off-line and tuning others on-line at run-time and the 

effects of the design parameters on the observer dynamics as well as on the physical 

system are discussed.  

On the physical system, it is found that one of the three parameters can be fixed 

off-line and is indeed arbitrary. The other two parameters are tuned on-line in a trial and 

error manner. The physical system was found to be very sensitive to changes in observer 

parameters, indicating that care should be taken when tuning on-line when actual 

hardware is involved. Robust estimation performance shown by simulations could not be 

verified with experiments due to the limitations imposed on observer parameters. 

Specifically, the structure of the output matrix C in combination with large sliding mode 

gain Ks and large feedback gain Kc leads to discontinuities in the estimates themselves 
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which in turn affect the control signal. Operating within the restricted bounds on observer 

parameters, experiments do show that replacing the Kalman filter with a SMO or 

BLSMO has clear damping effects on closed-loop performance.        

 So what is the final word on the robust observer? Optimality may imply “best” 

estimates but that does not translate into a “best” observer. If we consider useful criteria 

for judging the worth of an observer to be accuracy, robustness, ease of design and ease 

of implementation, then the sliding mode observer scores high based on simulations. 

Choosing an appropriate suboptimal design for the observer is one approach for reducing 

the sensitivity to model uncertainty. Simulations of the sliding mode observer show an 

alternative, in that optimality is not sacrificed for robustness. Optimality of the estimates 

provided by the robust observer does not suffer in conditions of low uncertainty with 

proper design. In the worse case scenario, since the observer design can be based on the 

Kalman filter, the observer can easily revert to one that functions as a Kalman filter alone 

by switching off the discontinuous control function, including in real-time. The observer 

also scores high due to robustness to parameter uncertainty and relative ease of tuning the 

three key observer design parameters, that is, once the designer understands the effects of 

each parameter on observer dynamics.  

 Having said that, the sliding mode observer does not score as high based on 

experimental results. The sliding mode observer proved more difficult to implement on 

the physical system than the Kalman filter. First, tuning of two of the three parameters on 

a physical system is done by trial and error and seems too much of an art than a science. 

Second, estimate chatter can negatively affect the control signal and cause harm to 

hardware. Notable qualities of the sliding mode observer are that it can be implemented 

at fast control rates, can be tuned on-line, and the sliding mode part of the observer can 

be easily switched off resulting in just a steady-state Kalman filter.                
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7.2 Contributions 

 The main contribution of this thesis work is a comprehensive study of robustness 

of closed-loop control with a robust nonlinear observer and an optimal observer to 

parametric uncertainty. The simulation study includes various levels of parameter 

variation, multiple linear system models, multiple robust observer designs, and the effect 

of measurement noise. The study of closed-loop control of a non-collocated system with 

non-minimum phase behavior is a significant aspect of this contribution.  

 This work outlines the approaches used in tuning the observer designs in both 

simulations and on a physical system. The outline summarizes the basic sequence of steps 

involved and emphasizes that there is a structure to the process which can be repeated by 

others to replicate and improve on this work. A National Instruments LabVIEW 

application has been created that gives the designer the ability to tune robust observer 

parameters at run-time, including the capability of switching between an optimal observer 

and the robust observer on the fly. The intuitive nature of the LabVIEW programming 

environment coupled with a well documented VI makes it arguably easier for others to 

continue this work.   

7.3 Recommendations for Future Work 

 The first obvious recommendation is to modify the measurement model by 

changing the structure of the output matrix C. Tip position should replace the tip 

acceleration output from the model. Measured tip acceleration will then have to be 

integrated to reach tip position or the position measured directly. If acceleration is to be 

integrated, the issue that must be resolved is accelerometer drift.    

The second recommendation is to design the Kalman filter by not penalizing all 

states equally in the process noise covariance matrix. Each element of the diagonal matrix 

should reflect both the sources of uncertainty and the units of the states themselves. This 

suggestion also applies to the design of the observer design parameter Qp in the 
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Lyapunov based observer design approach applied in this work. The recommendation is 

to weight elements of Qp , the input into the matrix Lyapunov equation, individually 

instead of assuming Qp has repeated roots. This will also give the designer the ability to 

change the mix of gains in the sliding mode gain Ks. The advantages of this alternative 

approach needs to be studied.   

The third recommendation is to revisit the variable structure systems theory 

approach. The pole placement approach to sliding mode gain selection has now become 

an attractive aspect of that approach. It gives more control over individual gains which 

may prove very useful, although still cumbersome. This work showed that the approach 

identified by Chalhoub is manageable for lumped parameter models in which states are 

direct outputs of the system. The author recommends against adapting this approach for 

the assumed modes method model for the reasons discussed in Chapter 4.   

How can direct tip position measurements help in improving control? Position 

measurements obtained using a vision system can supplement the tip acceleration and 

base position measurements already considered by the observer. This does pose a design 

challenge since the Lyapunov approach to robust observer design is based on the output 

matrix C. In the case of multi-rate sensors, the structure of C may be time-varying and the 

implications of this need to be studied. 
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APPENDIX A 

METHOD OF SYMMETRIC ROOT LOCUS 

 

The method of symmetric root locus allows the designer to tune a single 

parameter, τ in the performance index 

     2 2

0

[ ( ) ( )]J y t u t dtτ
∞

= +∫    (A.1) 

where y2(t) and u2(t) are tracking error and control effort, respectively. Note that it is up 

to the designer to define the output matrix C of the state-space system which will 

determine the states to be penalized for the purpose of minimizing error. Then, the stable 

roots of the root locus equation (those in the left half plane)  

( ) ( )1 0
( ) ( )

N s N s
D s D s

τ −
+ =

−
    (A.2) 

are to be the closed-loop poles placed by the control gain K in the control law 

u K x= −      (A.3) 

A complete overview of the procedure is provide by Kailath [16].  
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APPENDIX B 

INTRODUCING THE NON-ZERO REFERENCE 

 

The feed-forward gain used in this work is determined by computing the steady 

state values of the state and control input that will result in zero output error. This is 

accomplished by finding the matrices Nx and Nu in  

ss x ssx N r=      (B.1) 

and 

ss u ssu N r=      (B.2) 

such that  

ss ssy r= .     (B.3) 

Franklin provides the matrix equation  

1 0
1

x

u

N A B
N C D

−
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

   (B.4) 

for determining Nx and Nu [17].  

The feedforward gain N can then be determined from 

u xN N K N= +     (B.5) 

where K is the feedback gain.  
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APPENDIX C 

VERIFICATION BY TRANSFER MATRIX METHOD 

 

 The transfer matrix relates the variables 

_

W displacement
angle

M moment
V shear force

ψ
− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

   (C.1) 

at the guided end to the free end of the link. For a single link with these boundary 

conditions and in flexure only with a point mass at the free end, the relationship between 

the two ends is given as 

0 1

0
0

0 0

W W

BR
M

ψ
− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

    (C.2) 

where B is the beam transfer matrix and R is the rigid mass transfer matrix. B and R 

matrices are based on parameters of the flexible link and are provided by Book [2]. This 

yields 

21 22

41 42

0
0

TM TM W
TM TM ψ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
   (C.3) 

where TMij are elements of BR. The eigenvalues (modes) are the values of the frequency 

variable ω obtained from 

21 22

41 42

det 0
TM TM
TM TM
⎡ ⎤

=⎢ ⎥
⎣ ⎦

.   (C.4) 
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Table C.1: Comparison of undamped modes predicted by assumed modes method and 
transfer matrix method.  

 Assumed Modes 

Method 

Transfer Matrix 

Method 

% Difference 

Flexible Mode #1 

(rad/s) 

57 49 16.3 

Flexible Mode #2 

(rad/s) 

342 326 4.9 

Flexible Mode #3 

(rad/s) 

1387 869 59.6 

 
 
 

The following Matlab code plots the frequency variable ω. The intersections with 

the x-axis are the flexible undamped modes predicted by the transfer matrix method: 

clear all ; close all ; clc ; 
% Transfer matrix coefficients 
w=sym('w'); 
E=2.0500e+011; 
I=(1/12)*0.0399*0.0024^3; 
L=0.4800; 
mu=9.8375e+003*0.0399*0.0024; 
m=0.5; 
h=0.4800; 
Lm=0.4800; 
beta=( ((w^2)*(L^4)*mu)/(E*I)  )^(1/4); 
c0=(cosh(beta)+cos(beta))/2; 
c1=(sinh(beta)+sin(beta))/(2*beta); 
c2=(cosh(beta)-cos(beta))/(2*(beta^2)); 
c3=(sinh(beta)-sin(beta))/(2*(beta^3)); 
a=(L^2)/(E*I); 
  
%Transfer matrix 
B=[c0 -L*c1 a*c2 -a*L*c3;-((beta)^4)*(c3/L) c0 (a*c1)/L a*c2;((beta)^4)*(c2/a) -
((beta)^4)*((L*c3)/a) c0 -L*c1;-((beta)^4)*(c1/(a*L)) ((beta)^4)*(c2/a) -
((beta)^4)*(c3/L) c0]; 
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R=[1 -Lm 0 0;0 1 0 0;m*(w^2)*(Lm-h) (-h*Lm+h^2)*(w^2)*m+I*(w^2) 1 -Lm;-
m*(w^2) h*m*(w^2) 0 1]; 
TM=B*R; 
TMBC=[TM(2,1) TM(2,2);TM(4,1) TM(4,2)]; 
  
 
%Plot determinant 
dt=det(TMBC); 
tf=400; 
t=[0;.01;tf]; 
ezplot(dt,t); 
hold; 
plot(t,t*0); 
axis([0,tf,-10,10]); 
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APPENDIX D 

VSS THEORY APPROACH EXAMPLE 

 

To illustrate the ad-hoc nature of the variable structure systems theory approach 

for design of sliding mode gain K, the following example is provided. Given the lumped 

parameter model 

2

2 1 2 3 4

4

4 1 2 3 4

( , , , )

( , , , , )

x
f x x x x

x
x

f x x x x u

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

    (D.1) 

with a single measurement, the flexible link tip position, given by 

[ ]1 0 0 0y x= ,     (D.2) 

then the observer state equations are given by 

1 2 1 1 1 1ˆ ˆ sgn( )x x L x k x= − −     (D.3) 

2 2 2 1 2 1
ˆˆ sgn( )x f L x k x= − −     (D.4) 

3 4 3 1 3 1ˆ ˆ sgn( )x x L x k x= − −     (D.5) 

4 2 4 1 4 1
ˆˆ sgn( )x f L x k x= − −     (D.6) 

with the unknown gain matrices 

1

2

3

4

L
L

L
L
L

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

      (D.7) 

and 
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1

2

3

4

k
k

K
k
k

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

.      (D.8) 

Design of the Kalman gain L is carried out first in the usual manner. The 

following procedure is used to determine the sliding mode gain K. 

The sliding surface is given by 

1 1ˆs x x= − .      (D.9) 

The rate of change of estimate error is given by 

1 1 1ˆs x x= −       (D.10) 

2 1 1 1 1 2ˆ sgn( )x L x k x x= − − −     (D.11) 

2 1 1 1 1sgn( )x L x k x= − − .    (D.12) 

Evaluating the sliding condition to generate a constraint equation on K, 

i i is s sη≤ −       (D.13) 

gives 

1 2 1 1 1 1 1( sgn( ))x x L x k x xη− − ≤ −    (D.14) 

which is reduced to 

1
1 1 2 1 1

1

sgn( )
x

k x x L x
x

η
≥ + − .    (D.15) 

Since  

1
1

1

sgn( )
x

x
x

=       (D.16) 

and  

1
1

1sgn( )
x x

x
= ,      (D.17) 
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2
1 1 1

1sgn( )
xk L x

x
η≥ + − .    (D.18) 

Note that η is a user defined parameter. To generate more constraint equations on 

K, the reduced order observer error dynamics 

1( ( ) )x I K CK C f−= − Δ     (D.19) 

are evaluated and give  

2
2

1
2

3
4

1
4

4

1

0 0 0 0

1 0 0

0 1 0

0 0 1

k x
k

f
x k

x
k

f
k
k

⎡ ⎤
⎢ ⎥
⎢ ⎥− ⎡ ⎤
⎢ ⎥ ⎢ ⎥Δ⎢ ⎥ ⎢ ⎥= ⎢ ⎥− ⎢ ⎥
⎢ ⎥ ⎢ ⎥Δ⎢ ⎥ ⎣ ⎦
⎢ ⎥−
⎢ ⎥⎣ ⎦

    (D.20) 

which can be rewritten into a homogenous part and a perturbation part as 

2
1

1
2 2

3
3 4

1
4

4

1

0 0 0 0

0 0 0 0 0
1 0

0 0 1 0 0
0 1

0 0 0

k x
k

x f
x k

x f
k

x
k
k

⎡ ⎤
⎢ ⎥
⎢ ⎥− ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ Δ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + ⎢ ⎥⎢ ⎥− ⎢ ⎥ ⎢ ⎥ Δ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦
⎢ ⎥−
⎢ ⎥⎣ ⎦

,   (D.21) 

where 2fΔ  and 4fΔ  are perturbations due to parameter uncertainty given by 

2 2 2
ˆf f fΔ = −       (D.22) 

and 

4 4 4
ˆf f fΔ = − .(D.23) 

Since k1 must be positive, the constraint is modified to 

1 2 1 1k x L xη≥ + + .     (D.24) 
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With k1 assured positive, k2 must be positive to ensure asymptotically stable 

dynamics of the homogeneous part. When each row of the reduced order observer error 

dynamics is expanded, the following three constraint equations result: 

2
2 1

2

fk k
x
Δ

=       (D.25) 

     4
3 1

2

xk k
x

=       (D.26) 

4
4 1

2

fk k
x
Δ

= .      (D.27) 

With four constraint equations available and four unknown gains to determine. K 

can now be fully determined. That is, after upper bounds not only on the perturbation 

terms 2fΔ  and 4fΔ but also on 2x  and 4x are selected by the designer. Note that k3 and k4 

may be set to zero and stable observer dynamics are still assured.  
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APPENDIX E 

DERIVATION OF A.M.M. MODEL 

 

The first three flexible modes and the rigid body mode will be modeled. The four 

independent and continuously differentiable basis functions suggested by Ginsberg [12] 

are 

1( ) 1xψ =      (E.1) 

2 ( ) cos
2

xx
L

πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

    (E.2) 

3 ( ) cos xx
L
πψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

    (E.3) 

4
3( ) cos
2

xx
L
πψ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
    (E.4) 

where x is the location along the link and L is the link length.  

 The distributed parameter model considers the state of displacements, forces, 

moments and stresses at the ends of the link, known as boundary conditions. Zero slope 

at the guided end is represented by the boundary condition, for i = 1 to 4, 

' (0) 0iψ = .     (E.5) 

 Note that the last three basis functions satisfy the boundary condition above. They 

vanish at the location on the link where it does not deflect. Since rigid body motion is 

possible for this motion system, the first basis function satisfying free-free boundary 

conditions for the link must be included. The Ritz series representation of displacement 

w, velocity w  and acceleration w  is given by 

1
( , ) ( ) ( )

N

i i
i

w x t q t xψ
=

=∑    (E.6) 
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1
( , ) ( ) ( )

N

i i
i

w x t q t xψ
=

=∑     (E.7) 

1
( , ) ( ) ( )

N

i i
i

w x t q t xψ
=

=∑     (E.8) 

where q are generalized coordinates. 

 The kinetic energy of the link and the lumped tip mass is 

2 2

0

1 1 ( , )
2 2

L

mT Aw dx mw x tρ= + ∑∫    (E.9) 

4 4

1 1

1
2 i j ij

i j

q q m
= =

= ∑∑      (E.10) 

where L is the length of the link, ρ is the density, A is the cross sectional area, m is the 

lumped tip mass and w is displacement. mx is the location of the tip mass. Note the tip 

mass moves in unison with the link. ijm is given by 

0

( ) ( ) ( ) ( )
L

i j i m j mA x x dx m x xρ ψ ψ ψ ψ+∫ .   (E.11) 

The potential energy of the link, also known as strain energy, is found by 

integrating over the link length as 

2

0

1
2

L

V EIw dx= ∫      (E.12) 

4 4

1 1

1
2 i j ij

i j

q q k
= =

= ∑∑      (E.13) 

where E is Young’s modulus and I is the cross-sectional area moment of inertia. ijk is 

given by 

0

( ) ( )
L

i jEI x x dxψ ψ∫ .     (E.14) 
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The power dissipated due to the viscoelastic effect and the external discrete 

damper is 

22
2

2
0

( ( , ))
L

dis c
wP EI dx c w x t

x
γ

⎛ ⎞∂
= +⎜ ⎟∂⎝ ⎠

∑∫   (E.15) 

4 4

1 1
ij i j

i j
C q q

= =

= ∑∑      (E.16) 

where γ is the loss factor and c is the damping coefficient of the discrete damper located 

at xc. The viscoelastic effect refers to energy dissipated under deformation of a purely 

elastic material. Hence it is the consideration of structural damping in the model. ijC is 

given by 

0

( ) ( ) ( ) ( )
L

i j i c j cEI x x dx c x xγ ψ ψ ψ ψ+∫ .   (E.17) 

The power input to the link by the concentrated transverse force F is 

( ),in FP Fw x t=∑      (E.18) 

4

1
i i

i
Q q

=

= ∑       (E.19) 

where F is applied at location xF. iQ is given by 

( )i FF xψ .      (E.20) 

 By substituting the basis functions into the expressions for T, V, Pdis ,  and Pin , we 

obtain  

0

( 1) ( 1) ( 1) ( 1)cos cos cos cos
2 2 2 2

L

ij
i x j x i jm A dx m

L L
π π π πρ − − − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠∫  (E.21) 

0

( 1) ( 1)cos cos
2 2

L

ij
i x j xk EI dx

L L
π π′′ ′′⎡ − ⎤ ⎡ − ⎤⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∫      (E.22) 

0

( 1) ( 1)cos cos
2 2

L

ij
i x j xc EI dx c

L L
π πγ

′′ ′′⎡ − ⎤ ⎡ − ⎤⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
∫     (E.23) 
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and 

( 1)cos
2

F
i

i xQ F
L
π−⎛ ⎞= ⎜ ⎟

⎝ ⎠
.      (E.24) 

The integrals were evaluated analytically and verified by the math software 

Maple.  
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⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎣ ⎦

      (E.27) 

 The 4x4 matrix of ones in equation 2.22 results from evaluating the trigonometric 

basis functions at the location of the dashpot along the beam, at x=0. The viscoelastic 

effect for most materials is negligible in the presence of external dashpots.  The 

generalized forces are 

1
1
1
1

Q F

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

.        (E.28) 
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 The equations of motion are 

Mq Cq Kq Q+ + =      (E.29) 

where q are generalized coordinates, M is the inertia matrix, C is the damping matrix, K 

is the stiffness matrix and Q are the generalized forces. Proceeding to modal analysis, the 

general eigenvalue problem leads to the eigenvalues (vibration modes) and eigenvectors 

(mode shapes). For obtaining free vibration modes, we only need the inertia and stiffness 

matrices.  

 Solving the general eigenvalue problem    

( ) 0K Mλ φ− =      (E.30) 

leads to the eigenvalues 

4

EI
AL

ω λ
ρ

= .     (E.31) 

 In this work, Matlab was used to solve the general eigenvalue problem. The 

normalized eigenvectors 

( )
1
2T M

φ

φ φ
Φ =      (E.32) 

are used to convert the equations of motion from generalized coordinates q to modal 

coordinates η by decoupling the modes as 

q η= Φ .      (E.33) 

 The decoupled equations of motion 

2[ ( )]T TQ C diagη η ω η= Φ −Φ Φ −    (E.34) 

may now be written in state space form.  
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x Ax Bu= +      (E.36) 

 The modal coordinates in conjunction with the basis functions are used to 

evaluate displacement at the base of the link and the acceleration at the link tip, at 

instants of interest.   

( )
( 0, )
( , )

w x t
y x Cx Du

w x L t
ψ η

=⎡ ⎤
= = Φ = +⎢ ⎥=⎣ ⎦

   (E.37) 
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APPENDIX F 

LABVIEW CODE FOR SIMULATIONS 

 

 
Figure F.1: Complete block diagram for simulation. 
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Figure F.2: Top-left of block diagram for simulation. 
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Figure F.3: Top-right of block diagram for simulation. 
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Figure F.4: Bottom-left of block diagram for simulation. 
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Figure F.5: Bottom-right of block diagram for simulation. 

 
Contents of Matlab Script Node for lumped parameter model: 

 
% Create model 
k=131.4; %N/m 
cd=.043; %N-s/m 
m1=.11;m2=20; %kg 
m1e=m1+m1*(pe/100); %tip mass for dynamic plant 
I=eye(4); 
A=[0 1 0 0;-k/m1 -cd/m1 k/m1 -cd/m1;0 0 0 1; 3*k/m2 -3*cd/m2 -3*k/m2 -3*cd/m2]; 
A2=[0 1 0 0;-k/m1e -cd/m1e k/m1e -cd/m1e;0 0 0 1; 3*k/m2 -3*cd/m2 -3*k/m2 -
3*cd/m2]; 
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deltaA=A-A2; %given: deltaA+observerA=plantA 
B=[0; 0; 0; 3/m2]; 
%C=[0 0 1 0;1 0 0 0]; %output base position and tip position 
%C=[0 0 1 0;0 1 0 0]; %output base position and tip velocity 
C=[0 0 1 0;-k/m1 -cd/m1 k/m1 -cd/m1]; %output base position and tip accel 
C2=[0 0 1 0;-k/m1e -cd/m1e k/m1e -cd/m1e]; %output base position and tip accel 
D=[0;0]; 
plant=ss(A,B,C,D); 
plantd=ss(A2,B,C2,D); 
ts=.001; 
t=[0:ts:tfinal]'; 
 
% Generate measurement noise 
R1=3.87e-10; %st.dev squared 
R2=2.59e-4; %st.dev squared 
R=[R1 0;0 R2]; 
Q=3e-4; %inherited from regulator tuning on test-bed 
[junk2,KFL,junk1,junk] = kalman(plantd,Q,R); %Kalman filter based on A2 
v1=sqrt(R1)*randn(length(t),1); 
v2=sqrt(R2)*randn(length(t),1); 
v=0*[v1 v2]; 
w1=sqrt(Q)*randn(length(t),1); 
w2=sqrt(Q)*randn(length(t),1); 
w3=sqrt(Q)*randn(length(t),1); 
w4=sqrt(Q)*randn(length(t),1); 
w=0*[w1 w2 w3 w4]; 
 
% Solve matrix lyapunov equation 
Q11=i1; %weight y1 and y2 
Q33=Q11; 
Q22=i1; %weight ydot1 and ydot2 
Q44=Q22; 
Q2=diag([Q11 Q22 Q33 Q44],0); %Q2 is pos def sym matrix 
P=lyap(A2-KFL*C2,Q2); 
P_eig=eig(P); 
K=inv(P)*C2'; %sliding mode gain based on A2  
 
% Closed loop gain 
Csrl=[1 0 0 0]; %penalize only the tip position 
Dsrl=0; 
[num,den]=ss2tf(A2,B,Csrl,Dsrl); %open-loop TF               
systf=tf(num,den);   
[nrows,ncols]=size(den); 
flipsign=ones(nrows,ncols); 
for i=0:ncols-1 
    flipsign(ncols-i)=(-1)^(ncols-i); 
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end 
num2=flipsign.*num;  
den2=flipsign.*den; 
srl=systf*tf(num2,den2); %new open-loop TF for SRL 
[clp,junk]=rlocus(srl,rho); %find closed loop poles for SRL 
stable_clp=clp(find((clp)<0)); %isolate stable closed loop poles 
KCL=acker(A2,B,[stable_clp]); %shortcut for pole placement 
 
% Feedforward gain 
H=[A2 B; 1 0 0 0 0];    
J=[zeros(1,4) 1]; %set reference point for tip pos 
N1=inv(H)*J'; 
Nx=[N1(1,1);N1(2,1);N1(3,1);N1(4,1)]; 
Nu=[N1(5,1)]; 
Nbar=[Nu+KCL*Nx]; 
F=Nbar;  
 

Contents of Matlab Script Node for assumed modes method model: 
 
% Create model 
m=0.25; %kg 
p=9.8375e+003; %kg/m^3 
h=0.0024; 
b=0.0399; 
A=b*h; %xsection height*base in m 
E=2.0500e+011; %Pa or N/m^2 
I=(1/12)*b*h^3; %m^4 
L=0.4800; %m 
c=35; %motor damping (N-s/m) found by matlab optimization 
LF=1e-6; %arbitrary loss factor 
mhat=p*A*L*[1+m 2/pi -m -2/(3*pi); 2/pi .5 2/(3*pi) 0; -m 2/(3*pi) .5+m 6/(5*pi); -
2/(3*pi) 0 6/(5*pi) .5]; 
khat=((E*I)/(L^3))*[0 0 0 0; 0 (pi^4)/32 (pi^3)/6 0;0 (pi^3)/6 (pi^4)/2 (27*pi^3)/10;0 0 
(27*pi^3)/10 (81*pi^4)/32]; 
chat=LF*khat+c*ones(4,4); %damping due to viscoelastic effect + motor damping 
[phi,W2]=eig(khat,mhat); 
[wn,isort]=sort(sqrt(diag(W2))); 
phi=phi(:,isort); 
scale=phi.'*mhat*phi; %check: scale is always I!! 
PHI=phi*inv(sqrt(scale)); %normalize evectors 
PHI=real(PHI); 
 
m2=m+(pe/100)*m; 
p=9.8375e+003; %kg/m^3 
h=0.0024; 
b=0.0399; 
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A=b*h; %xsection height*base in m 
E=2.0500e+011; %Pa or N/m^2 
I=(1/12)*b*h^3; %m^4 
L2=L-(pe/100)*L; %m 
c=35; %motor damping (N-s/m) found by matlab optimization 
LF=1e-6; %arbitrary loss factor 
mhat2=p*A*L2*[1+m2 2/pi -m2 -2/(3*pi); 2/pi .5 2/(3*pi) 0; -m2 2/(3*pi) .5+m2 
6/(5*pi); -2/(3*pi) 0 6/(5*pi) .5]; 
khat2=((E*I)/(L2^3))*[0 0 0 0; 0 (pi^4)/32 (pi^3)/6 0;0 (pi^3)/6 (pi^4)/2 (27*pi^3)/10;0 0 
(27*pi^3)/10 (81*pi^4)/32]; 
chat2=LF*khat2+c*ones(4,4); %damping due to viscoelastic effect + motor damping 
[phi2,W22]=eig(khat2,mhat2); 
[wn2,isort2]=sort(sqrt(diag(W22))); 
phi2=phi2(:,isort2); 
scale2=phi2.'*mhat2*phi2; %check: scale is always I!! 
PHI2=phi2*inv(sqrt(scale2)); %normalize evectors 
PHI2=real(PHI2);%normalized evectors for dyn. Plant 
%transform to modal coordinates: 
Q=[1 1 1 1]'; 
cnew=PHI'*chat*PHI; 
cnew2=PHI2'*chat2*PHI2; 
 
A=[zeros(4) eye(4);-diag(wn)^2 -cnew]; 
A2=[zeros(4) eye(4);-diag(wn2)^2 -cnew2]; 
deltaA=A-A2; 
B=[0; 0; 0; 0; PHI'*Q]; 
B2=[0; 0; 0; 0; PHI2'*Q]; 
C=[[1 1 1 1]*PHI 0 0 0 0;[1 0 -1 0]*PHI*-diag(wn)^2 [1 0 -1 0]*PHI*-cnew]; %output 
base position and tip accel 
C2=[[1 1 1 1]*PHI2 0 0 0 0;[1 0 -1 0]*PHI2*-diag(wn2)^2 [1 0 -1 0]*PHI2*-cnew2]; 
%output base position and tip accel 
D=[0;[1 0 -1 0]*PHI*PHI'*Q]; 
D2=[0;[1 0 -1 0]*PHI2*PHI2'*Q]; 
plant=ss(A,B,C,D); 
plantd=ss(A2,B2,C2,D2); 
ts=.0005; 
t=[0:ts:tfinal]'; 
 
% Generate measurement noise 
R1=3.87e-10; 
R2=2.59e-4; 
R=[R1 0;0 R2]; 
Q=1e-6; 
[junk2,KFL,junk1,junk] = kalman(plantd,Q,R); %based on A2, B2, C2, D2 
v1 = sqrt(R1)*randn(length(t),1); 
v2=sqrt(R2)*randn(length(t),1); 
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v=0*[v1 v2]; 
w1=sqrt(Q)*randn(length(t),1); 
w2=sqrt(Q)*randn(length(t),1); 
w3=sqrt(Q)*randn(length(t),1); 
w4=sqrt(Q)*randn(length(t),1); 
w5=sqrt(Q)*randn(length(t),1); 
w6=sqrt(Q)*randn(length(t),1); 
w7=sqrt(Q)*randn(length(t),1); 
w8=sqrt(Q)*randn(length(t),1); 
w=0*[w1 w2 w3 w4 w5 w6 w7 w8]; 
 
% Solve matrix lyapunov equation 
Q11=i1; %weight y1 and y2 
Q22=i1; 
Q33=i1; 
Q44=i1; 
Q55=i1b; 
Q66=i1b; 
Q77=i1b; 
Q88=i1b; 
Q2=diag([Q11 Q22 Q33 Q44 Q55 Q66 Q77 Q88],0); %Q2 is pos def sym matix 
P=lyap(A2-KFL*C2,Q2); 
P_eig=eig(P); 
K=inv(P)*C2';  
 
% Close loop gain: 
Csrl=[[1 0 -1 0]*PHI2 0 0 0 0]; %penalize only the tip position 
Dsrl=0; 
[num,den]=ss2tf(A2,B2,Csrl,Dsrl); %open-loop TF               
systf=tf(num,den);   
[nrows,ncols]=size(den); 
flipsign=ones(nrows,ncols); 
for i=0:ncols-1 
    flipsign(ncols-i)=(-1)^(ncols-i); 
end 
num2=flipsign.*num;  
den2=flipsign.*den; 
srl=systf*tf(num2,den2); %new open-loop TF for SRL 
[clp,junk]=rlocus(srl,rho); %find closed loop poles for SRL 
stable_clp=clp(find((clp)<0)); %isolate stable closed loop poles 
KCL=acker(A2,B2,[stable_clp]); %shortcut for pole-placement 
 
% Feedforward gain 
H=[A2 B2;[1 0 -1 0]*PHI2 0 0 0 0 0];    
J=[zeros(1,8) 1]; %set reference point for tip pos 
N1=inv(H)*J'; 
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Nx=[N1(1,1);N1(2,1);N1(3,1);N1(4,1);N1(5,1);N1(6,1);N1(7,1);N1(8,1)]; 
Nu=[N1(9,1)]; 
Nbar=[Nu+KCL*Nx]; 
F=Nbar; 
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APPENDIX G 

MATLAB CODE FOR SYSTEM IDENTIFICATION 

 

clear all ; close all ; clc ; 
global t y u N  
data = xlsread('OL_data3'); %read time, pos, u 
%This is the main function for estimating model parameters using 
%numerical optimization. 
  
% Time vector 
Tf=9.04; 
Ts=0.001; 
t=[5:Ts:Tf]'; 
N=length(t); 
% Estimated system parameters (note that very poor initial guesses result 
% in drastically different final values). 
Km=8.17; % overall motor gain [N/V] 
M=9.6; % base mass [kg] 
b=50; % track-base damping [N*s/m] 
Kmup=Km+Km*.25; 
Kmdn=Km-Km*.25; 
Mup=M+M*.10; 
Mdn=M-M*.10; 
  
% Use estimated parameters for initial guesses and set limits. 
X0=[Km M b]; 
LB=[Kmdn Mdn 0]; 
UB=[Kmup Mup Inf]; 
%Experimental data 
u=data(1:N,3); 
y=data(1:N,2)/100; %recorded position converted to meters 
  
% Optimization parameters. 
options.MaxIter=500; 
options.MaxFunEvals=1000; 
options.Display='iter'; 
options.TolFun=1e-8; 
options.TolX=1e-8; 
pause 
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% Estimate model parameters based using numerical optimization. 
X=fmincon('pos_error',X0,[],[],[],[],LB,UB,[],options); %note that pos_error is being 
called without specfying intial X 
pause 
  
% Return system parameters from optimization results. 
Km=X(1) 
M=X(2) 
b=X(3) 
  
%  Set up system 
Gs=linear_track(X); 
out=lsim(Gs,u,t); 
ybase=out(:,1); 
% Plot results and compare with experimental data. 
figure 
plot(t,u,'r','linewidth',2) 
xlabel('time [s]') 
ylabel('input voltage [V]') 
grid on 
title('Motor Input') 
figure 
plot(t,y,'r','linewidth',2) 
hold on 
plot(t,ybase,'m--','linewidth',2) 
legend('base (data)','base (model)',4) 
grid on 
xlabel('time [s]') 
ylabel('position [m]') 
title('Linear Track Ramp Response') 
save Trackmodel Gs X 
 
 
 
function Gs=linear_track(X) 
% This function returns LTI model of the linear track 
% based on input parameters. 
Km=X(1); 
M=X(2); 
b=X(3); 
% Set up system 
Gs=tf([Km],[M b 0]) 
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function F=pos_error(X) 
% This function computes the error between the data and the theoretical model 
% over the course of the simulation. 
global t y u N 
% Compute system model for these parameters. 
Gs=linear_track(X); 
% Simulate system using input data. 
out=lsim(Gs,u,t); 
yth=out(:,1); 
% Sum the total error between data and simulation output vectors. 
% This is the quantity to minimize in the optimization. 
F=0; 
for i=1:N 
F=F+(y(i)-yth(i))^2; 
end 
F 
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