
SIMULATION OF FLUIDS WITH REDUCED DIFFUSION,
THIN LIQUID FILMS, VOLUME CONTROL, AND

A MESH FILTER IN RATIONAL FORM

A Thesis
Presented to

The Academic Faculty

by

Byungmoon Kim

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
Computer Science

Georgia Institute of Technology
December 2006



SIMULATION OF FLUIDS WITH REDUCED DIFFUSION,
THIN LIQUID FILMS, VOLUME CONTROL, AND

A MESH FILTER IN RATIONAL FORM

Approved by:

Professor Jarek Rossignac,
Committee Chair
Computer Science
Georgia Institute of Technology

Professor Greg Turk
Computer Science
Georgia Institute of Technology

Professor Jarek Rossignac, Advisor
Computer Science
Georgia Institute of Technology

Professor Irfan Essa
Computer Science
Georgia Institute of Technology

Professor Yingjie Liu
School of Mathematics
Georgia Institute of Technology

Professor Xiangmin Jiao
Computer Science
Georgia Institute of Technology

Date Approved: 10 November 2006



ACKNOWLEDGEMENTS

This thesis could not have been completed without the support, guidance, and care of my

advisor, Jarek Rossignac. I thank him for his patience when I was struggling with various

topics during my research.

I would also like to express my gratitude for the rest of my committee members, Profes-

sor Yingjie Liu, Professor Irfan Essa, Professor Greg Turk, and Professor Xiangmin Jiao.

Yingjie provided me with not only research directions but also warm encouragements and

cares for my future career. Irfan and Greg assisted me with friendly advices and showed

me how I can grow as a researcher in graphics area. While I was invited to their groups,

I could observe how a leading research topics are found, studied, and evaluated by the

graphics community. Xiangmin provided me with an important insight that can further

strengthen a research topic examined in this thesis.

Thanks are also due to my masters’ degree advisor Panagiotis Tsiotras who taught me

the importance, value, and joy of theory and mathematics. I wish to thank Georgia Tech

Professors who provided valuable classes. From the classes I took, I discovered a mountain

of knowledge and the joy of learning, and strengthened my desire to learn, which will last

for the rest of my life.

I would like to mention that, through out my study at Georgia Tech, I enjoyed studying

and collaborating with my lab mates, Lorenzo, Ignacio, Justin, Jason, Brian, Jerry, James,

Brooks, and other students in GVU lab.

Finally and most importantly, I thank my wife, Jin Young, for her love and effort in

raising our two sons Justin Donghwan and Michael Jihwan. I am grateful to my parents,

parent-in-laws, sisters and brothers for their lifelong supports during my study. To them, I

dedicate this thesis.

iii



This research was supported by the NSF under the ITR Digital clay grant 0121663 and

the NSF DMS 0511815. I would like to express my appreciation for the sponsors.

iv



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Advections with Significantly Reduced Dissipation and Diffusion . . . . 3

1.3 Simulation of Thin Liquid Films . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Controlling Fluid Volume . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Mesh Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

II FLUID SIMULATION: REDUCED DISSIPATION . . . . . . . . . . . . . . 12

2.1 Fluid Simulation Overview . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 A CIR Advection Method and The BFECC Method . . . . . . . . . . . . 16

2.3.1 The CIR Advection Method . . . . . . . . . . . . . . . . . . . . 17

2.3.2 The BFECC Method . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Implementation of BFECC . . . . . . . . . . . . . . . . . . . . 19

2.4 Applications of BFECC for Various Advections . . . . . . . . . . . . . . 20

2.4.1 BFECC for Velocity Advection . . . . . . . . . . . . . . . . . . 20

2.4.2 BFECC for Smoke Density and Image Advection . . . . . . . . 21

2.4.3 Dye Advection for Vector Field Visualization . . . . . . . . . . . 25

2.4.4 BFECC for Level Set Advection . . . . . . . . . . . . . . . . . 27

2.4.5 Level Set Advection on Triangulated Surfaces . . . . . . . . . . 29

2.4.6 BFECC for Adaptive Mesh . . . . . . . . . . . . . . . . . . . . 32

2.5 Additional Discussions on Fluid Simulation . . . . . . . . . . . . . . . . 34

III SIMULATION OF THIN LIQUID FILMS ON A CELL-CENTERED OC-
TREE GRID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

v



3.1 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Fluid Simulation on an Octree Grid . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Nonstaggered Octree Grid . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Multigrid Solver . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.3 Level Set Advection . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Making Thin Film Last Longer . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Surface Tension . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 The Disjoining Force . . . . . . . . . . . . . . . . . . . . . . . 45

IV FLUID VOLUME CONSERVATION AND CONTROL USING NONLINEAR
FEEDBACKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Introduction and Previous Works . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Segmentation and Tracking . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Projection to a Controlled Divergence Field . . . . . . . . . . . . . . . . 57

4.4 The Volume Change Equation . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.1 Experiments on Volume Loss . . . . . . . . . . . . . . . . . . . 59

4.5 A Proportional Feedback Controller . . . . . . . . . . . . . . . . . . . . 59

4.5.1 Computing Proportional GainkP . . . . . . . . . . . . . . . . . 61

4.6 A Proportional-Integral Feedback Controller . . . . . . . . . . . . . . . 62

4.6.1 Computing Integral GainkI . . . . . . . . . . . . . . . . . . . . 67

4.7 Controller Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.8 Computation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.9 Discussions on the Order of Accuracy . . . . . . . . . . . . . . . . . . . 69

4.10 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

V A MESH FILTER IN RATIONAL FORM . . . . . . . . . . . . . . . . . . . . 77

5.1 Surface Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1.1 Choice of Discrete Laplacian Operator . . . . . . . . . . . . . . 77

5.1.2 Decomposition of the Operator . . . . . . . . . . . . . . . . . . 78

5.1.3 Construction of Filter . . . . . . . . . . . . . . . . . . . . . . . 79

5.1.4 Converting to Symmetric Matrix Equation . . . . . . . . . . . . 81

vi



5.2 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1 Exaggeration Filter Design . . . . . . . . . . . . . . . . . . . . 83

5.3.2 Filters Decomposable to First Order Ones . . . . . . . . . . . . . 87

5.4 Tests of Filtering Framework . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 Selecting Feature and Computing Filter Frequency . . . . . . . . . . . . 90

VI CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1 Fluid Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1.1 Reduced Diffusion/Dissipation . . . . . . . . . . . . . . . . . . 94

6.1.2 Simulation of Thin Liquid Films . . . . . . . . . . . . . . . . . 95

6.1.3 Volume Control Using Divergence . . . . . . . . . . . . . . . . 97

6.2 Mesh Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

vii



LIST OF FIGURES

1 The user first selects a feature (first). The dimensions of the feature, shown
by an approximating ellipsoid (second), are computed, whose frequencies
are used to set the filter gains. In the next two images, band exaggeration
filters are applied to grow the ear, while the higher frequency bumps may
be smoothened out (third) or preserved (forth) by varying other filter pa-
rameters. The filter parameters are:s1 = 20,s2 = 25,G0 = 1,G1 = 2 and
G∞ = 0 (third), 0.9 (forth) . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 An illustration of the CIR advection method. . . . . . . . . . . . . . . . . . 18

3 Sketch of BFECC method implemented using CIR advections. The error
is revealed by using forward/backward advected values and then the error
is compensated before the final advection. Notice that this is only a sketch
and should not be interpreted geometrically. For example,e is not a vector. . 19

4 In the bottom row, a highly dynamic behavior of water interaction with
air, air bubbles, and a solid is made possible by the two-phase formulation
and the BFECC-based reduction of the dissipation in the velocity advection
step. In the top row, the BFECC is turned off and the splash is reduced. . . 21

5 On the top, we used first-order velocity advection that shows damped fluid
motion. On the bottom, we have added the simple BFECC method. Notice
the small scale details as well as large scale fluctuations. The grid size is
80×200. We used BFECC for the smoke advection all simulations in the
figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 In a low resolution grid (40×100), the first-order velocity advection pro-
duces severely damped fluid motion (Top). On the bottom, we have added
the simple BFECC method and the small scale details as well as large scale
fluctuations appear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Simulation of a sinking cup. The left column is simulated without the
BFECC in both level set and velocity advection steps, where the motion
of the cup is damped (the cup does not dive deep into the water) and the
detail of the surface is poor. In the center column, this poor surface detail
is enriched by turning BFECC on for the level set step, but the cup motion
is still damped (the cup goes deeper but it does not tumble). Finally, in
the right column, the dampening in motion of the cup is remedied by using
BFECC for the velocity advection step as well, making the cup sink deeper
and tumble as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

viii



8 Advection of an image along with the up-going flow field on 100×250
grid. The left image shows the initial location of the image. The top im-
ages is computed without the BFECC, where the dissipation/diffusion are
significant. The bottom images are computed with the BFECC, where the
dissipation is greatly reduced and the features of the image can be identified. 26

9 Simulation of smoke in a bubble rising and bursting on a 41× 101 grid
(∆x = 0.0025m,∆t = 0.01sec). The far left image shows the initial bubble.
The next five images are without BFECC, where the dissipation/diffusion
in the semi-Lagrangian step deteriorate the density of smoke. The last
five images simulated with BFECC show significantly reduced dissipa-
tion/diffusion, and the smoke is in full density throughout the simulation.
All simulation parameters between the two runs are identical, except for
the usage of BFECC in smoke advection. Therefore, the only difference
is the density of smoke. Also, notice that the simulation time differs by
less than 1% since the bulk of the computation time is dominated by the
pressure projection step. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

10 Test of dissipation and diffusion on an image advection problem along a
circular vector field (800×800 grid, CFL = 6.29). (b) is the top center
portion of the original image (a). (c) is obtained by rotating it 360 degrees
using the first-order semi-Lagrangian scheme, where one can see a large
amount of dissipation, diffusion, shrinkage of image, and position error.
These errors are significantly reduced in (d), where BFECC is used. The
blue background region is, in fact, in black, but it is rendered as blue to
illustrate the region in which the color is not diffused. (e)-(g) are the same
test with another image. Notice the position error in (f) due to the lack of
accuracy in time. This is fixed in (g), where BFECC is applied. . . . . . . 28

11 Visualization of the Van der Pol oscillator. The left image shows dye ad-
vection with first-order advection. The right image shows dye advection
with BFECC, which produces reasonable visualization of the vector field. . 29

12 The far left image shows an air bubble placed in olive oil at time zero.
The next three images are first-order semi-Lagrangian implementation of
level set advection. The last three images are produced using BFECC and
simple redistancing and show significantly reduced volume loss. The grid
resolution is 60×100×60 (∆x = 0.0008333m,∆t = 0.001sec). . . . . . . 30

13 Advections of the Zalesak’s disk on a sphere. The left column show initial
disks. The next two columns show the disk after one and two rotations
about the vertical axis with first-order advection (top) and BFECC advec-
tion (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

ix



14 Simulation of smoke on an adaptive quadtree mesh of maximum resolution
5122 (∆t = 0.0001,∆x = 0.1m/512 at maximum resolution). The top row
is without BFECC, where the smoke diffusion and dissipation are large.
When a lesser diffusive and dissipative smoke is needed, one can trivially
implement BFECC and generate a smoke with significantly reduced dissi-
pation and diffusion, as shown in the bottom row, which is simulated with
BFECC. The amount of diffusion and dissipation is controlled by adjusting
the diffusion and dissipation coefficients in the diffusion and dissipation
steps, respectively. Thus, BFECC decouples advection from dissipation
and diffusion steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

15 The adaptive quad tree grids without BFECC (left) and with BFECC (right). 34

16 Dropping a cup into water on a 51×101 grid (∆x = 0.01m,∆t = 0.005sec).
The far left image shows the initial configuration. The next three images
in the middle are with two projections and show a significant amount of
air lost. The three images on the right are with nine projections. They
show that enough air is trapped inside the cup, causing the heavy cup (ρ =
1300kg/m3) to rise again. Also, notice the patterns of the smoke that are
diffused or dissipated little, thanks to the smoke advection, using BFECC
in both cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

17 Thin liquid film occurs during a liquid splash simulation. . . . . . . . . . . 38

18 The computation time for the pressure projection step is reduced by nested
iteration. The benefit increases as the grid resolution and number of leaves
increases. Average pressure projection times are (a) nested:21.1sec, sin-
gle:45.3 sec, (b) nested:141.2sec, single:718.6sec, (c) nested:47.5sec, sin-
gle:494.4sec. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

19 Contour of the level set functionφ . Thin films contain series of local min-
ima, and therefore, the gradient∇φ is not always perpendicular to the film
surface. Therefore, the curvature vector computed from∇φ can be inaccurate. 43

20 Computing a normal vector on a point where the liquid surface andABare
intersecting. In the right, we illustrate the case when the iso-surface has low
curvature but the angle∠Q2PQ3 is small. Notice that the normal vectorn
is computed properly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

21 Disjoining force that prevents a thin film from bursting. . . . . . . . . . . . 46

22 Disjoining forces acting on film cells (low-resolution grids). . . . . . . . . 47

23 A dry-foam-like structure obtained by using the surface tension based on
the ghost fluid method with the curvature computed from the local inter-
face. We inflated the 2D bubbles using the volume control method dis-
cussed in chapter 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

x



24 Simulation of one bubble forming a bubble ring and then splitting into
many small bubbles. Surface tension proposed in section 3.3.1 is used. . . . 49

25 Simulation of one bubble forming a bubble ring and then splitting into
many small bubbles (continued). Surface tension proposed in section 3.3.1
is used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

26 Simulation of the rise of two bubbles, one of which is bursting. Surface
tension using the ghost fluid method [31] is used. . . . . . . . . . . . . . . 51

27 Simulation of the rise of two bubbles, one of which is bursting (continued).
Surface tension using the ghost fluid method [31] is used. . . . . . . . . . . 52

28 Tracking Region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

29 The volume loss rateb of a rising bubble strongly depends on the surface
tension (ci = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

30 The volume loss rateb of a rising bubble depends on the mesh resolution
(ci = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

31 The volume loss rateb of a rising bubble depends on the time step (ci = 0). 60

32 The volume loss ratebof a rising bubble depends on the redistancing. (ci = 0). 60

33 Step responses of volume show that the rise time is indeednp. . . . . . . . 63

34 Comparison of controllers in a 1283 grid. The proportional controller pro-
duces a very small error, and the PI controller does not improve much. The
fluctuation may come from the error in the volume computed by counting
grid cells. Notice that the controller is robust against this error. . . . . . . . 64

35 Comparison of controllers in a low-resolution 643 grid with high surface
tensionγ = 1.0. The proportional controller produces somewhat large error
and the PI controller improves it. . . . . . . . . . . . . . . . . . . . . . . . 65

36 Computation times for pressure projection and segmentation with and with-
out volume control. Computation time is normalized by the number of grid
cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

37 Total computation times with and without the volume control. Computa-
tion time is normalized by the number of grid cells. . . . . . . . . . . . . . 71

38 Simulation of a bubble without controllers on a 2563-equivalent octree grid.
The volume is almost lost after a while. . . . . . . . . . . . . . . . . . . . 73

39 Simulation of a bubble with proportional controller on a 2563-equivalent
octree grid. The volume of bubble is preserved. . . . . . . . . . . . . . . . 74

40 Simulation of inflated bubbles. . . . . . . . . . . . . . . . . . . . . . . . . 75

41 Simulation of inflated bubbles (continued). . . . . . . . . . . . . . . . . . . 76

xi



42 Lowpass filter and its variations constructed from (67) with 0< s1 < s2,G∞ <
1 < G1,G0 < G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

43 Highpass filter and its variations constructed from (67) with 0< s2 < s1,G0 <
1 < G1,G∞ < G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

44 Notch filters with different stop-band widths. . . . . . . . . . . . . . . . . 85

45 High frequency amplification filter applied to a rabbit model(33,519 ver-
tices), which took 26 seconds in 2.4GHz Pentium4. . . . . . . . . . . . . . 86

46 Exaggeration filter(s1 = 10, s2 = 25, G0 = 1.0, G1 = 30, G∞ = 0) applied
to sphere meshes of various radii and connectivities. The solid blue line
is G(s) computed from (59), while red dots are samples of experimental
gainsrO/rI , whererI , rO are the average radii of input and output spheres,
respectively. Notice thaty-axes are in log scale. . . . . . . . . . . . . . . . 86

47 Comparison of exaggeration filter(blue) to a filter designed by asymptotic
lines(green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

48 Designing a band stop filter by choosing four frequencies.G(s) tends to
turn 20db(-20db) at eachzi(pi). . . . . . . . . . . . . . . . . . . . . . . . . 88

49 Various filtering results for a dinosaur model. The top image is the initial
model with 28,098 vertices and 56,192 triangles. The bottom two are pro-
duced by a band exaggeration and a band stop filter fors1 = 630 (frequency
of back-bone marked in red circle),s2 = 1260,G0 = 1 andG1 = 3,G∞ = 0.9
(bottom left), andG1 = 0.01,G∞ = 1.1(bottomright). The computation
times are 17 and 14 seconds, respectively. . . . . . . . . . . . . . . . . . . 89

50 A band exaggeration filter applied to the dinosaur model(far left in Fig.
49) with and without high frequency attenuation.s1 = 25 is chosen as the
frequency of the leg:s2 = 60,G0 = 1,G1 = 3 G∞ = 0.0 (left), andG∞ =
0.9(right). The computation times are 142 and 337 seconds, respectively . 91

51 Exaggeration of the legs of a horse model with 48,485 vertices. Far left im-
age is original model. The next two are exaggeration results (G0 = 1,G1 =
2,s1 = 60,s2 = 120). The seconds and third are respectively with(G∞ = 0,
89 sec.) and without(G∞ = 0.9,182sec.) eliminating high frequency. . . . . 91

52 Various filtering results for a human model (75,948 vertices, 151,474 tri-
angles). Top left is the original model. The top right image shows a low-
pass filtered model (s1 = 25,s2 = 50,G0 = 1,G1 = 1.1,G∞ = 0, 366 sec.).
The bottom two are exaggerated models that look older (s1 = 200,s2 =
1000,G0 = 0.5,G1 = 1.1,G∞ = 0,70 sec.) or like a cartoon character (s1 =
25,s2 = 400,G0 = 0.5,G1 = 1.8,G∞ = 0, 481 sec.). Since the bottom two
models haveG0 = 0.5, the filtered models are about half the size of the
initial model. In this figure, we zoomed them in. . . . . . . . . . . . . . . . 92

xii



SUMMARY

This thesis is concerned with the evolution of implicit or explicit surfaces.

The first part of this thesis addresses three problems in fluid simulation: advection, thin

film, and the volume error. First, we show that the back and forth error compensation and

correction (BFECC) method can significantly reduce the dissipation and diffusion. Second,

thin film is hard to simulate since it has highly complex liquid/gas interface that requires

high memory and computational costs. We address this difficulties by using cell centered

octree grid to reduce memory cost and a multigrid method to reduce computational cost.

Third, the volume loss is an undesired side effect of the level set method. The known

solution to this problem is the particle level set method, which is expensive and has small

but accumulating volume error. We provide a solution that is computationally effective and

can prevent volume loss without accumulation.

The second part of this thesis is focused on filtering a triangle mesh to produce a mesh

whose details are selectively reduced or amplified. We develop a mesh filter with a rational

transfer function, which is a generalization from previously developed mesh filters. In

addition, we show that the mesh filter parameters can be computed from the physical size

of mesh feature.

xiii



CHAPTER I

INTRODUCTION

1.1 Overview

In most applications of computer graphics, objects and their evolution are modeled in terms

of their bounding surfaces. Such surfaces may be represented in various ways. Many rep-

resentation schemes approximate the surface with piecewise simple patches. The simplest

form of such a patch is a triangle. Hence, the most popular representation in computer

graphics is a triangle mesh, which represents the surface by a finite set of sample points,

called vertices, and by a connectivity graph, often stored as some form of a triange/vertex

incidence list. We view such models as explicit representations of the surface.

In contrast, one may chose to use an implicit representation, where the surface is defined

as the zero-crossing of some implicit function. A popular implicit representation is used in

the level set method, where the implicit function is an approximation of the signed distance

to the desired surface and is defined by an interpolation of distance values sampled along a

regular or irregular lattice.

This thesis is concerned with techniques that evolve these surfaces to alter their shape

or to produce physically realistic animations. These two (explicit and implicit) surface

representations offer different advantages and drawbacks for computing such evolutions.

Explicit representations can be easily evolved by updating the vertex locations. Such

an evolution may be guided by measures of local curvature or other differential properties

and may be applied precisely to the vertices. However, the proper evolution of an explicit

surface model requires complex and costly processing to detect and prevent or to resolve

self-intersections or to adjust the sampling frequency in stretched areas.

In contrast, the level set method represents the surface as zero contour, or zero level set,

1



of the scalar field. Therefore, the surface may be moved implicitly by simply adjusting the

scalar field. Resampling and topological changes are implicit and need not be computed.

If an explicit representation of a particular state of the surface (frame) is needed, it may be

extracted by an iso-surface extraction process. However, it may prove difficult to evolve an

implicit surface precisely, due to the limited sampling resolution of the lattice.

Those different properties of the two surface representations make them suitable for

different applications.

To advantages of explicit meshes have made them popular in the graphic and animation

community. Firstly, the frames of an explicit mesh representations may be quickly ren-

dered, while the implicit representation are typically first converted into their explicit form

through a slow iso-surface extraction process, and hence cannot be rendered in realtime.

Secondly, an explicit mesh has low memory cost and provides a high accuracy for modeling

the desired surface, while the implicit representation requires a significantly higher storage

and offers less precision.

Among the numerous techniques for mesh processing tasks, an important one, studied

in this thesis, is the filtering of the mesh, either to remove noise produced by an imperfect

acquisition process or to smooth small details which may impede fast transfer or analysis.

In contrast, implicit level set representations are popular when one wants to track sur-

faces that undergoes topological changes or to simplify the topology of a surface. For ex-

ample, a level set approach was proposed for surface editing [47]. Level set representations

have also been used for shape segmentation and for fitting a surface to an unstructured point

cloud [52, 60]. Since the topology of the final surface is initially not known, an evolution

without topological constraints is needed. The level set method fits well to this requirement.

Finally, the level set representation is used heavily to track the boundary between fluid

and air or between two different fluids in fluid simulations. Since these boundaries typically

undergo significant topological changes during the simulation, the level sets representations

are preferred by most researchers.

2



In this thesis, we use both of these implicit and explicit surface models. First, for the

implicit model, we use the level set model to represent liquid/gas interface and even to

represent the thin water film that separates two air bubbles in foam. Second, for the explicit

model, we choose the triangle mesh model, and study the generalization of the linear mesh

filter and the computation of filter coefficients.

The thesis is organized as follows. In the reminder of the introduction, we provide a

brief overview of the problems that we have addressed and of our main contributions.

Then, in Chapter 2, we explore the advection problems in the fluid simulation. The first

order semi-Lagrangian method has severe diffusion and dissipation. This leads to damped

fluid motion, loss of smoke density, loss of texture detail, and volume loss. We show that

BFECC method can reduce these phenomena significantly. This chapter is based on our

previous publications [37, 38]

In Chapter 3, we investigate the simulation of thin liquid films, which is need to simulate

bubbles. We propose to use cell centered octree grid and multi grid method to reduce

memory and computation costs.

In Chapter 4, we study the volume loss problem, that comes with the level set advection

method. We show that the volume error can be corrected by applying carefully computed

divergence.

In Chapter 5, we explore the mesh filter that has a transfer function in rational form.

In addition, we show that the coefficients of the filter can be computed from mesh feature

size. This chapter is based on out previous works [39].

1.2 Advections with Significantly Reduced Dissipation and Diffusion

In computer graphics applications, such as fluid simulation and vector field visualization,

various properties, including velocity vector components, smoke density, level set values,

and texture or dye colors, must often be transported along some vector field. Those trans-

portation problems, referred to asadvectionproblems, can be performed on various grids

3



such as uniform and adaptive grids or triangulated surfaces. Here are five common uses of

advection in computer graphics:

• Velocity advectiontransports the velocity field along the velocity itself. This step is

required in all non-steady flow simulation based on the Navier-Stokes equation.

• Smoke density advectiontransports smoke along the velocity field.

• Sometimes, we may want to advect a colored image, which may be thought of as

texture or colored smoke. We call this processimage advection.

• When a level set method [51] is used to simulate a free surface or a two-phase flow

such as a water surface simulation, the level set values must be transported as well.

We refer to this process aslevel set advection.

• A vector field may be visualized by advecting dye on the vector field. We call this

processdye advection.

Advection steps can be implemented by an upwind [53, 60] or a semi-Lagrangian [65]

method. Due to its stability for large time steps, the latter is often preferred. These two

methods can be implemented with various order of accuracies, for example, first, second,

and higher-order accuracies. Despite their low accuracy, first-order methods are popular

in computer graphics because of their simplicity. However, lack of accuracy in first-order

methods results in a significant amount of numerical diffusion and dissipation. For exam-

ple, in velocity advection, fluid motion is dampened significantly, which may remove small

scale and even large scale motions. In smoke density advection, a premature dilution of

smoke occurs, preventing simulation of weakly dissipative and diffusive smoke. In level

set advection, significant volume loss takes place. In dye advection, diffusion causes blur

and the dissipation produces dark patterns or even an early termination of the trajectory.

Researchers have proposed solution to each of these problems. For dye and texture

advection, combining first-order advection and particles increased the accuracy [33]. For

4



level set advection, the particle level set method [17] produces little volume loss. For smoke

advection, cubic interpolation reduces diffusion and dissipation [21]. For velocity advec-

tion, small scale motions can be maintained by adding vorticity [21, 59], by using particles

[59, 54]. All of these solutions can be considered as problem-specific enhancements of the

first-order advection. We notice that the FLIP method, introduced recently in [80], advects

properties with particle, and therefore, may be applied to any advection achieving zero dis-

sipation. However, in advecting dye or smoke from a source, new particles may have to

be created as smoke or dye volume grows. In contrast, a purely Eulerian-based high-order

advection method can reduce dissipation and diffusion significantly while taking advantage

of the simplicity of the Eulerian grid.

There are many such high order methods for improving the accuracy in the advection

steps, such as the WENO scheme [43, 32] and the CIP method [70, 64]. Generally speak-

ing, higher order methods are more difficult to implement, in particular for non-uniform

and adaptive meshes. Also because the solutions may contain singularities, special treat-

ments are usually necessary. In [17], Enright et. al. made the particle level set method

[18] more efficient and easier to implement by using a first order semi-Lagrangian method

to compute the level set equation while propagating the particles with higher order meth-

ods, which produces high resolution near interface corners. Local mesh refinement near

non-smooth regions of the solutions is an effective technique for improving the accuracy.

However, it increases the implementation complexity, particularly when a sophisticated un-

derlying numerical scheme is used. There is also a trade-off between the levels of adaptive

mesh refinement and the formal order of accuracy of the underlying scheme. We propose

to improve on all the issues addressed above and demonstrate the accuracy of our methods

for a number of problems. The underlying scheme we use for computing the advections is

the “back and forth error compensation and correction” algorithm (BFECC) [13] and [15].

When applied to the first order semi-Lagrangian Courant-Isaacson-Rees (CIR) scheme, this

BFECC method has second order formal accuracy in both time and space. It essentially

5



calls the CIR scheme 3 times during each time step, and thus maintains the benefits of the

CIR scheme such as the stability with large time steps, convenience for use in non-uniform

meshes, and low cost in computation.

In [13, 15], the authors proposed BFECC as an alternative scheme for interface compu-

tations using the level set method and have tested it on the Zalesak’s disk problem and sim-

ple interface movements with static or constant normal velocity fields on uniform meshes.

We have found it beneficial to adapt the method to level set advection in fluid simulations

that contain complicated dynamically varying velocity fields. It is also useful to further

apply the method to other types of advections.

We apply BFECC to the various advection problems mentioned earlier and show that

BFECC provides significant reduction of dissipation and diffusion for all these applications.

The ideas presented here were introduced in a workshop paper [37]. Here, we provide a

more detailed treatment of the proposed solution, and new examples of applications to dye

advection, advections on a triangle mesh, and on an adaptive quad-tree mesh.

1.3 Simulation of Thin Liquid Films

In real fluids, we often observe a bubble rising to surfaces, floating around for a while, and

then bursting or merging. In soap water, the bubble will last much longer than in pure water.

When multiple bubbles are rising, the bubbles will interact with other bubbles and liquids.

If a large number of bubbles are rising, and if they do not burst, they will stack, forming

the wet foam. The water between those stacked bubbles will drain, leaving micrometer-

thin films of liquid between bubbles. This is called thedry foam. The micrometer-thin film

maintains its thickness due to the disjoining pressure, which is a result of various molecular

interactions. The simulation of liquids with thin film is still a challenging open problem.

Bubbles with thin films have a very complex interface, which can lead to high memory

and computation costs. We propose methods that can reduce those costs. First, to reduce

memory cost, we collocate velocity, pressure, and level set variables at the octree center.

6



Second, to reduce the computational cost, we apply a multigrid method, which greatly

reduces the computation time when the interface is extremely complex. In addition, thanks

to the volume control discussed in section 4, volume of fluid is well preserved or controlled.

Therefore, we do not use more expensive volume preserving method such as particle level

set method.

In addition, we provide future directions to address two additional problems in the

simulation of thin liquid films.

Thin liquid films occur in bubbles, or in liquid splash. Films thinner than grid resolution

quickly ruptures, making bubbles burst earlier than desired, or thin films in splash simula-

tion rupture earlier than desired. This premature rupture hampers simulations of bubbles

or splash with thin liquid films. Therefore, preventing thin films from rupture and making

them last longer is essential in the simulation of bubble and thin film. We propose an idea

that can be used to increase the life span of thin liquid films.

Another difficulty in the simulation of a thin film is the computation of the surface

tension. When the level set method is used to represent liquid and gas domains, surface

tension is computed by differentiating the level set function, which is differentiable near

the interface. However, in the thin film, the level set is locally singular and hence not

differentiable. Curvature computed by differentiating the level set function near the thin

film is noisy. When this noisy curvature is used to compute the surface tension, the thin

film breaks quickly. In this thesis, we discuss a method to compute surface tension without

using the level set gradient.

1.4 Controlling Fluid Volume

The fluid simulations using level set method are subject to volume error, which typically

occurs as volume loss of bubbles or liquid drops. In particular, our bubble simulation

suffered from volume loss. The known solution is using the particle level set method,

which can reduce volume loss down to negligible amount in staggered grid. However, in a

7



very long simulation, the volume error may be visible. In non-staggered grids, the pressure

projection step produces a vector field whose divergence isO(∆x2). This truncation error

can cause additional volume error that does not exist in the staggered grid. In addition, at

the wall boundary, velocity across the wall cannot be exactly enforced to be zero, making

very slow flow across wall boundary. If one runs simulation for a long time, this error can

be accumulated to a visible amount of volume gain or loss. Therefore, correction of these

volume error is necessary.

Our solution is computing the volume error of each fluid region and then modifying

the pressure projection step so that the projected velocity field has nonzero divergence. To

the region that lost volume, we apply positive divergence to inflate that region. To the

region that gained volume, we apply negative divergence to deflate that region. Thus, the

volume error can be corrected by the divergence. However, a care must be taken when one

compute the desired divergence. If the divergence is too small, the volume error will not

be corrected. If the divergence is too large, the simulation may suffer artifacts and even

become unstable. Therefore, the divergence must be computed carefully.

In computing the divergence, we first start from modeling the volume change equation

using the divergence theorem. Although the resulting volume equation is nonlinear, we

can design a nonlinear feedbacks that yield linear equation that is easy to analyze. From

the time response of the linear equation, we design the gains that corrects the volume error

quickly and stably. Finally, we validate this by several experiments.

1.5 Mesh Filter

Triangle meshes obtained using sensors such as stereo cameras, 3D laser scan, etc. are

subject to high frequency noise. To reduce such noise, researchers have developed various

mesh filter algorithms. Mesh filters in [72, 11, 78, 50] reduce eigen modes associated with

high frequency spectrum of the Laplacian operator by using a transfer function [72]. One

can design the transfer function to decay as a function of frequency to obtain a linear filter.

8



Figure 1: The user first selects a feature (first). The dimensions of the feature, shown by
an approximating ellipsoid (second), are computed, whose frequencies are used to set the
filter gains. In the next two images, band exaggeration filters are applied to grow the ear,
while the higher frequency bumps may be smoothened out (third) or preserved (forth) by
varying other filter parameters. The filter parameters are:s1 = 20,s2 = 25,G0 = 1,G1 = 2
andG∞ = 0 (third), 0.9 (forth)

The first mesh filter using this idea had a polynomial transfer function [72] that does

not require a matrix solver. Since the filtered vertex location can be written in an explicit

form, this filter is called an explicit filter. The explicit mesh filter introduced by Taubin [72]

has been subsequently generalized to a bandpass filter [71]. Implicit forms of mesh filters

followed [11] and [78]. We propose a generalization of these frameworks that combine both

explicit and implicit formulations into a more flexible second order filter. More importantly,

we propose a filter, whose frequencies can be extracted automatically from the physical

dimensions of a user-selected mesh feature. As illustrated in Fig. 1, the user selects a

feature of the mesh (such as a nose, ear, or noise bump) by spraying and diffusing paint

on it. The GeoFilter system that we have developed computes automatically an ellipsoid

approximating selected feature. The dimensions of this ellipsoid guide the user in adjusting

the filter parameters so as to achieve the desired result.

Filters are used profusely for audio or image signals that are regularly sampled over

time or space. Since these domains are already Euclidean, regular samplings can be eas-

ily expressed in mathematical form. When constructing filters for such signals, one can

directly use the property of the analog signal. For example, when the frequency greater

than 10KHz needs to be attenuated, one can use the lowpass filter that has 10KHz as cutoff

frequency.

9



In contrast, the quantitative relation between filter frequency and size of mesh feature

has been overlooked in mesh filtering. Therefore, when one wants to attenuate a noisy

pattern of size 0.1, one cannot directly use this number to compute the frequency of a mesh

filter. In previous mesh filtering frameworks, such as [72, 78], the user must try different

cutoff frequencies until the desired result is obtained.

Through out this thesis, we assume that the vertices of themeshare discrete samples

on an unknownsmooth surface. To clarify the discussion, we distinguish betweendiscrete

operatorsdefined on the triangle mesh andcontinuous operatorsdefined on the associated

smooth surface.

To understand the frequencies in a mesh filter, one may consider cutting the mesh into

local patches and resampling the surface along a regular grid, so as to obtain a piecewise

regular domain. One may apply the sampling theorem to this regular domain together with

local coordinate chart, a homeomorphism between the patch and regular domain. This way,

one may analyze mesh filters mathematically. However, this approach involves several del-

icate processes. Therefore, we propose to follow an alternative approach. First, we assume

that the discrete triangle mesh is a close approximation of the smooth surface it samples.

We further assume that the spectral properties of the smooth surface are preserved in the

mesh. With this assumption, we can ignore the discretization effects. We have validated

this idea with several examples in section 5.4 and Fig. 46. We show that amplification fac-

tors of our filter are very close to the ones predicted theoretically in various frequencies. We

also note that the choice of discrete Laplacian operator is crucial for this assumption. We

chose the formulation initially proposed in [55] with proper weights [50, 58] for computing

the mean curvature normal vectors.

Previously proposed transfer functions [72, 78, 11, 50, 58] are limited to lowpass filter-

ing. We propose to broaden their applications to other filtering effects such as exaggeration,

which was explored in a multi-resolution framework in [28]. To achieve this extension, we

propose to combine explicit [72, 50] and implicit [78, 11, 58] forms to obtain a rational

10



form. In our construction of a second order filter, we show that the resulting framework al-

lows band pass, notch, band exaggeration with optional high frequency reduction and high

pass filters as well as lowpass filters.

11



CHAPTER II

FLUID SIMULATION: REDUCED DISSIPATION

2.1 Fluid Simulation Overview

For practical purposes, water and many other fluids may be considered as incompressible.

For example, water or an air flow that has the Mach number less than 0.3 have negligible

compressibility effect [34]. Such incompressible fluids are governed by the incompressible

Navier-Stokes equation

∂u
∂ t

=−u ·∇u+ν∇ · (∇u)− 1
ρ

∇P+
f
ρ

, (1)

and the continuity equation that represents incompressibility condition

∇ ·u = 0, (2)

whereu = [u v w]T is the velocity of fluid,P is the pressure,f is the external forces such as

surface tension force and gravity, andρ is the density. The terms with∇ and∇· operators

are defined as

u ·∇u =


u∂u

∂x +v∂u
∂y +w∂u

∂z

u∂v
∂x +v∂v

∂y +w∂v
∂z

u∂w
∂x +v∂w

∂y +w∂w
∂z

 , ∇ ·(∇u) =


∂ 2u
∂x2 + ∂ 2u

∂y2 + ∂ 2u
∂z2

∂ 2v
∂x2 + ∂ 2v

∂y2 + ∂ 2v
∂z2

∂ 2w
∂x2 + ∂ 2w

∂y2 + ∂ 2w
∂z2

 , ∇P=


∂P
∂x

∂P
∂y

∂P
∂z

 . (3)

Since the fluid is incompressible, (2) represents volume and mass conservation laws. By

solving (1) and (2), we can produce fluid simulations. To solve these two equations, we

sample velocity and pressure on Eulerian grids. With this discretization, solving (1) and

(2) reduces down to updating velocity and pressure values at each time step using various

numerical methods that approximate (1) and (2). We describe those numerical methods as

follows.

12



The first method that we chose is the operator splitting [65] that solves terms in the

right hand side of (1) one by one, i.e., we solve for one term to produce an intermediate

velocity and then solve for another term using this intermediate velocity to produce another

intermediate velocity. After all four terms are solved, we obtain the velocity field in the

next time step. Four terms in the right hand side of (1) are solved by different methods. We

explain them in more detail.

We first apply external force termf
ρ

using an explicit time integration method. Letû be

the velocity obtained after this step. Then,û is computed as

û = un +
f
ρ

. (4)

The external forces used in this thesis is the gravity force and the surface tension force.

The next step is applying the diffusion termν∇ · (∇u). We use the implicit time in-

tegration method. Let̄u be the velocity obtained after this diffusion step. The implicit

integration yields the following linear equation.

(I +ν∆t∇2)ū = û. (5)

The velocityū can be computed by solving this linear equation.

The next term is the velocity advection−u ·∇u. To solve this advection step, the

upwind method or the CIR (Courant-Isaacson-Rees) method can be used. The upwind

method discretizes the advection term by using derivatives in∇u computed fromu values

at the grid points in the−u direction. The upwind method is stable only if the time step is

small enough [65]. In contrast, the CIR method does not discretize the advection equation.

Instead, the CIR method first computes the current locationx′ that is transported to a grid

point xbb in the next time step. The locationx′ is computed byx′ = x−∆tū. Sincex′ is

not a grid point, an interpolation is necessary to compute theu(xbb′), which will be the

velocityu(x) in the next time step, sincex′ will be transported tox. Unlikely to the upwind

method, the CIR method is stable regardless of the time step [65]. Therefore, we choose

the CIR method.

13



Since this CIR method can be applied not only to the advection of velocity but also to

advections of any other properties, and since our contribution in this chapter is improving

CIR advection method for such generalized advections, we explain CIR advection method

in the section 2.3.1 in more detail. As described in the section 2.3.1, the velocity advection

is achieved by back tracing velocity field and interpolating velocity, i.e.,

ũ(x) = ū(x−∆tū), (6)

wherex is the location of a grid point,x−∆tū is the back traced point, andu(x−∆tū)

is computed by trilinear interpolation using velocity values at the grid point near the back

traced pointx−∆tū.

The final step is applying the pressure projection term− 1
ρ

∇P and the incompressibility

condition∇ ·u = 0. Since this is the last step, the velocity obtained after this step is the ve-

locity in the next time stepun+1. For this final step, we use the Chorin’s pressure projection

method [8, 9]. We first take an explicit integration of the pressure term− 1
ρ

∇P as

un+1 = ũ− 1
ρ

∇P, (7)

whereP andun+1 are unknown. Fortunately, the unknonun+1 can be removed by using

the continuity equation∇ ·un+1 = 0. By taking divergence of (7), and then by applying the

continuity equation, we obtain the following equation with the only unknown variableP.

∇ ·
(

∆t
ρ

∇P

)
= ∇ · ũ (8)

The first order discretization of (8) is

∆t
∆x2

(
Pi−1, j,k −Pi, j,k

ρi− 1
2 , j,k

+
Pi+1, j,k −Pi, j,k

ρi+ 1
2 , j,k

+
Pi, j−1,k −Pi, j,k

ρi, j− 1
2 ,k

+
Pi, j+1,k −Pi, j,k

ρi, j+ 1
2 ,k

+
Pi, j,k−1−Pi, j,k

ρi, j,k− 1
2

+
Pi, j,k+1−Pi, j,k

ρi, j,k+ 1
2

)

=
1

∆x

(
ũi+ 1

2 , j,k− ũi− 1
2 , j,k + ṽi, j+ 1

2 ,k− ṽi, j− 1
2 ,k + w̃i, j,k+ 1

2
− w̃i, j,k− 1

2

)
.

(9)

We assume∆x = ∆y = ∆z here and through the rest of the discussion. This first order

approximation is identical to [64]. Higher-order formulations can be found in [1, 68]. Ifρ

is constant, we obtain the pressure projection∆t
ρ

∇2P = ∇ · ũ in [65].

14



After solving (9), we can use the pressure to computeun+1 using (7).

2.2 Previous Works

In fluid simulation, earlier work such as [24] required small time step in order to prevent

simulation variables from diverging. This problem was successfully remedied in [65] by

introducing semi-Lagrangian advection and implicit solve for the viscosity term. The pres-

sure projection is used to enforce incompressibility of the fluid. This solution is popular

for the simulation of incompressible smoke [21] and for the more challenging free surface

flows [23, 18].

Semi-Lagrangian velocity advection [65] produces a fair amount of dissipation,i.e., the

velocity dissipates quickly since the linear interpolation in the first-order semi-Lagrangian

produces a large error. In [21], vorticity was added to generate a small scale fluid rolling

motion. Recently in [59] and [54], vortex particles were used to transport vortices without

loss. In [64], the authors addressed this built-in dissipation problem by increasing the

advection accuracy. They adopted the constrained interpolation profile (CIP) [70] method,

which increases the order of accuracy in space by introducing the derivatives of velocity to

build a sub-cell velocity profile. A nice feature of this CIP method is that it islocal in the

sense that only the grid point values of one cell are used in order to update a point value.

However, in this CIP method, all components of velocity and their partial derivatives should

be advected, increasing the implementation complexity and computation time, especially

in 3D. In addition, it is also worth noting that CIP has higher order accuracy in space

only. Therefore, high order integration of characteristics is also necessary. In contrast,

the BFECC method used here can be implemented more easily and exhibits second-order

accuracy in both space and time and islocal during each of its operational steps. Bylocal,

we mean that the interpolation is performed in one grid cell.

Song et al. [64] focused on applying CIP to generate more dynamic water surface

behavior. We demonstrate that having less dissipative and diffusive advection provides

15



significant benefits in smoke simulations. This is illustrated in the middle five images of

Fig. 9, where a large amount of dissipation makes the smoke look dark. In contrast, when

BFECC is used, the smoke keeps its full brightness throughout the simulation, as shown in

the last five images.

Fluid simulation on a curved surface domain has been the subject of several studies.

Recently, [20] introduced the unstructured lattice Boltzmann model for fluid simulation on

triangulated surfaces. For the advection of smoke, the first-order semi-Lagrangian advec-

tion is used on a flattened neighborhood. Stam [66] mapped the surface on a flat domain

and then solved the Navier-Stokes equation. The advections still remain first-order ac-

curate. Shi et al [61] proposed to perform a semi-Lagrangian advection directly on the

triangular mesh without mapping it onto a flat domain. The accuracy is still first order and

dissipation and diffusion cannot be smaller than the amount that already exists in the advec-

tion step. We show that BFECC can be easily applied to the advections on a triangulated

domain.

For most simulations of liquid surfaces, we use the two-phase fluid model and variable

density projection, both of which have been broadly studied in mathematics and fluid me-

chanics [69, 49, 29], and have been used in graphics applications [30, 31], where the authors

simulated air bubbles rising and merging and in [70, 64], where splash style interactions

between water surface and air are studied.

2.3 A CIR Advection Method and The BFECC Method

In this section, we first review the first order advection method known as CIR, and then

review the BFECC method introduced in [13]. We demonstrate that the first order advection

method such as CIR can be modified to the second order accurate BFECC method, with

trivial amount of effort.

Since we want to apply it to various advections, we useϕ to denote an advected quantity

and reserve the symbolφ for the level set function. Thisϕ can be the velocity components

16



u,v,w, smoke density, the RGB color of an image or a dye, or level set functionφ . For a

given velocity fieldu, ϕ satisfies the advection equation

ϕt +u ·∇ϕ = 0. (10)

2.3.1 The CIR Advection Method

The advection is transporting a property along a vector field. Therefore, the property is

constant when it is measured at a location that moves by the velocity field. One can see this

from the advection equation. First, notice that when a pointx moves by the velocity field

u, dx
dt = u, and therefore,

0 =ϕt +u ·∇ϕ

=
∂ϕ

∂ t
+

dx
dt
·∇ϕ

=
dt
dt

∂ϕ

∂ t
+

dx
dt

∂ϕ

∂x
+

dy
dt

∂ϕ

∂y
+

dz
dt

∂ϕ

∂z

=
1
dt

(
∂ϕ

∂ t
dt+

∂ϕ

∂x
dx+

∂ϕ

∂y
dy+

∂ϕ

∂z
dz

)
=

dϕ

dt
.

(11)

This implies thatϕ(x,y,z, t) is constant, along the characteristic line, i.e., when ˙x= u, ẏ= v,

andż= w.

Now, suppose thatx is a grid location and we want to compute the value ofϕ at x in

the next time step. Since the value ofϕ is constant along the characteristic line, if we back

trace the velocity field for the time∆t and let that location bex′ the value ofϕ(x′) should

be the same asϕ(x) in the next time step. The semi-Lagrangian advection method uses this

fact. Therefore, semi-Lagrangian advection includes back tracing the characteristic and

then interpolating value at the back-traced location.

The CIR method uses linear characteristic and linear interpolation. Therefore, as illus-

trated in Fig. 2,x′ is approximated byx−∆tu, and the valueϕ(x−∆tu) is computed by

linearly interpolatingϕ at neighboring grid locations.

17



Figure 2: An illustration of the CIR advection method.

2.3.2 The BFECC Method

Once any first order advection such as CIR is implemented, one can easily extend it to the

BFECC method. LetL be the first-order upwinding or CIR steps to integrate (10),i.e.,

ϕ
n+1 = L(u,ϕn). (12)

The implementation ofL(·, ·) can be found in [60, 53]. With this notation, the BFECC can

be written as follows:

ϕ
n+1 = L

u, ϕ
n +

1
2

ϕ
n− ϕ̄




where ϕ̄ = L(−u, L(u,ϕn)) .

(13)

As illustrated in Fig. 3, one may understand this method intuitively as follows. If the

advection stepL(·, ·) is exact, the first two forward and backward steps return the original

value, i.e., ϕn = ϕ̄. However, this is not the case due to the error in advection operation

L. SupposeL contains an errore. Then the first two forward and backward steps will

produce the error 2e, i.e., ϕ̄ = φn + 2e. Therefore, the error can be computed ase =

−1
2 (ϕn− ϕ̄). We subtract this errore before performing the final forward advection step.

18



Figure 3: Sketch of BFECC method implemented using CIR advections. The error is
revealed by using forward/backward advected values and then the error is compensated
before the final advection. Notice that this is only a sketch and should not be interpreted
geometrically. For example,e is not a vector.

Then the equation (13) becomesϕn+1 = L(u,ϕn−e). This step will add an additionale,

which will be canceled by the subtracted amount−e. This method is proven to be second-

order accurate in both space and time [13, 14].

2.3.3 Implementation of BFECC

In this section, we provide the pseudo-code for the BFECC method to demonstrate the sim-

plicity of the BFECC implementation. Let the function First-Order-Step(u,v,w,ϕn,ϕn+1)

implementL(·, ·), i.e., an upwind or a semi-Lagrangian integration of the scalar fieldϕ.

u,v, andw are velocity components,ϕn andϕn+1 are values atnth andn+1th time steps,

respectively. Then BFECC is implemented as follows:

19



First-Order-Step(u,v,w,ϕn,ϕ∗)

First-Order-Step(−u,−v,−w,ϕ∗, ϕ̄)

ϕ∗ := ϕn +(ϕn− ϕ̄)/2

First-Order-Step(u,v,w,ϕ∗,ϕn+1)

The variavlesϕ∗ andϕ̄ are intermediate variables.

2.4 Applications of BFECC for Various Advections

2.4.1 BFECC for Velocity Advection

We can use (13) to implement the velocity advection step in solving the Navier-Stokes

Equation. In this case,ϕ becomesu,v, andw. We show that BFECC can reduce the

damping in the first-order semi-Lagrangian implementation of velocity advection, which is

a well-known drawback of semi-Lagrangian advection [65].

For a multi-phase flow, this BFECC needs to be turned off near the interface to prevent

velocities of different fluids with different densities from mixing. We turn BFECC off,i.e.,

use the first-order semi-Lagrangian, for the grid points where|φ |< 5∆x. We also turn it off

near the boundary. Notice that reducing velocity dissipation is important not only near the

interface, but also in the entire fluid domain. In other words, turning BFECC off near the

interface has little effect since it is still turned on in most of the fluid domain.

As shown in Fig. 5, applying BFECC adds details as well as large scale fluctuations in

the smoke motion. Notice that these details and large-scale fluctuations cannot be obtained

from the vorticity confinement and vortex particle methods [21, 59], which add only small

scale rolling motions. We also performed the same simulation in a coarser grid of 100×40

in Fig. 6. In this case, the flow did not fluctuate at all around obstacles with first-order

semi-Lagrangian advection. However, when BFECC was added, the flow fluctuated as it

did in the refined grid. We conclude that BFECC can create physically realistic fluctuations

20



Figure 4: In the bottom row, a highly dynamic behavior of water interaction with air, air
bubbles, and a solid is made possible by the two-phase formulation and the BFECC-based
reduction of the dissipation in the velocity advection step. In the top row, the BFECC is
turned off and the splash is reduced.

even in a coarse grid.

In the simulation of splashing liquid surfaces, BFECC creates higher splashes as shown

in Fig. 4, thanks to the reduced velocity damping effect.

Velocity advection can be important also when rigid bodies are involved as well. In

Fig. 7, the cup does not tumble due to the velocity dissipation in the first-order semi-

Lagrangian method, while the cup does correctly tumble when BFECC is applied to the

velocity advection step.

2.4.2 BFECC for Smoke Density and Image Advection

We also apply BFECC to the advection of smoke density for smoke simulation. In Figs. 8

and 9, we show that BFECC can reduce dissipation and diffusion significantly. As shown

in [13], BFECC is linearly stable in thel2 sense,i.e., ||a||l2 = ∑ |ai j |2 is bounded, when

the velocity field is constant, wherea is the smoke density. However, density valuesai j

can become negative or greater than 1.0 for some grid points. In our simulation, the excess

21



Figure 5: On the top, we used first-order velocity advection that shows damped fluid mo-
tion. On the bottom, we have added the simple BFECC method. Notice the small scale
details as well as large scale fluctuations. The grid size is 80×200. We used BFECC for
the smoke advection all simulations in the figure.

22



Figure 6: In a low resolution grid (40×100), the first-order velocity advection produces
severely damped fluid motion (Top). On the bottom, we have added the simple BFECC
method and the small scale details as well as large scale fluctuations appear.

23



Figure 7: Simulation of a sinking cup. The left column is simulated without the BFECC
in both level set and velocity advection steps, where the motion of the cup is damped (the
cup does not dive deep into the water) and the detail of the surface is poor. In the center
column, this poor surface detail is enriched by turning BFECC on for the level set step,
but the cup motion is still damped (the cup goes deeper but it does not tumble). Finally, in
the right column, the dampening in motion of the cup is remedied by using BFECC for the
velocity advection step as well, making the cup sink deeper and tumble as well.

24



amount was negligible, so we clamped those values to stay in[0,1].

To measure the diffusion/dissipation amount, we design a test problem similar to the

Zalesak’s problem. Instead of the notched disk in the Zalesak’s problem, we use a color

image and rotate it 360 degrees (in 400 time steps and by using bilinear interpolations

only) and then compare it with the original image as shown in Fig. 10. As shown in (d),

the dissipation of the color is significantly reduced with BFECC. During advection, the

image is also diffused to the neighboring region. To visualize the diffusion amount, we plot

background pixels as blue to show the region where the image has been diffused. As shown

in (d), the color of the object has almost no diffusion into neighboring region when BFECC

is used. Also notice that the position of the image is different from the original location

in (f) due to the error accumulated during time integration. This error is also fixed in (g),

where BFECC is used, showing that due to the second-order time accuracy of BFECC, the

image follows the vector field more precisely. The computation time was 0.156 seconds

(without BFECC) and 0.36 seconds (with BFECC) per frame on a 3GHz Pentuim4.

2.4.3 Dye Advection for Vector Field Visualization

One way to visualize a vector field is to advect a dye on it. A natural approach would be

to use the first-order semi-Lagrangian advection method. However, it introduces severe

diffusion and dissipation. As shown in the left image of Fig. 11, the result contains a

large amount of diffusion and dissipation. This problem has been addressed by several

researchers. Weiskopf [75] applied the level set method to advect the dye without diffusion.

This approach requires the implementation of the level set method together with a careful

treatment to redistancing to prevent volume loss. It also allows only one dye color. In [33],

Jobard et al combined semi-Lagrangian and Lagrangian particle advection of dye, which

requires a significant amount of additional software. In contrast, BFECC requires only a

trivial amount of code, and allows a convincing visualization of the vector field, as shown

in the right image in Fig. 11.

25



Figure 8: Advection of an image along with the up-going flow field on 100×250 grid. The
left image shows the initial location of the image. The top images is computed without the
BFECC, where the dissipation/diffusion are significant. The bottom images are computed
with the BFECC, where the dissipation is greatly reduced and the features of the image can
be identified.

26



Figure 9: Simulation of smoke in a bubble rising and bursting on a 41× 101 grid
(∆x = 0.0025m,∆t = 0.01sec). The far left image shows the initial bubble. The next
five images are without BFECC, where the dissipation/diffusion in the semi-Lagrangian
step deteriorate the density of smoke. The last five images simulated with BFECC show
significantly reduced dissipation/diffusion, and the smoke is in full density throughout the
simulation. All simulation parameters between the two runs are identical, except for the
usage of BFECC in smoke advection. Therefore, the only difference is the density of
smoke. Also, notice that the simulation time differs by less than 1% since the bulk of the
computation time is dominated by the pressure projection step.

2.4.4 BFECC for Level Set Advection

Even though BFECC does not completely prevent volume loss in fluid simulation, partic-

ularly for small droplets or thin filaments, the benefit of BFECC in the fluid simulation is

valuable since it is easy to implement and fast. Notice that, for more demanding simulation,

the slight volume loss in free surface flow may be reduced by combining BFECC with the

particle level set method [17].

When we use the BFECC for level set advection,i.e., ϕ = φ , redistancing is needed

to keep the level set function close to a signed distance function. We use the following

redistancing equation [69]

φτ +w ·∇φ = sgn(φ) where w = sgn(φ)
∇φ

|∇φ |
, (14)

wherew is the velocity vector for redistancing. This equation can be solved by applying the

first-order upwinding in discretizing the termw ·∇φ . An alternative is the semi-Lagrangian

style integration,i.e., φn+1 = φn(x−w∆τ)+ sgn(φn)∆τ, wherex is the location of each

grid point. Hence,φn(x−w∆τ) is theφ value of the previous location.

When these integration formulae for (14) are combined with BFECC, redistancing tends

27



Figure 10: Test of dissipation and diffusion on an image advection problem along a circular
vector field (800×800 grid, CFL = 6.29). (b) is the top center portion of the original
image (a). (c) is obtained by rotating it 360 degrees using the first-order semi-Lagrangian
scheme, where one can see a large amount of dissipation, diffusion, shrinkage of image,
and position error. These errors are significantly reduced in (d), where BFECC is used. The
blue background region is, in fact, in black, but it is rendered as blue to illustrate the region
in which the color is not diffused. (e)-(g) are the same test with another image. Notice the
position error in (f) due to the lack of accuracy in time. This is fixed in (g), where BFECC
is applied.

to corrupt goodφ values computed from the second-order accurate BFECC. Thus, if redis-

tancing is turned off near the interface, goodφ values are not corrupted. The conditions in

which redistancing is turned off are provided in [13], where significant improvement was

shown in the Zalesak’s problem. This simple redistancing is crucial for preserving volume

[13], but easy to implement since it simply requires redistancing at points where at least

one of the following two conditions is met.

• When the grid point is not close to the interface,i.e.,

whenφi, j has the same sign as its eight neighbors.

• When the slope is sufficiently high,i.e.,

when|φi, j −φi±1, j | ≥ 1.1∆x or |φi, j −φi, j±1| ≥ 1.1∆y.

(15)

28



Figure 11: Visualization of the Van der Pol oscillator. The left image shows dye advec-
tion with first-order advection. The right image shows dye advection with BFECC, which
produces reasonable visualization of the vector field.

2.4.5 Level Set Advection on Triangulated Surfaces

We have applied the BFECC to the advection of a scalar field on a triangulated surface.

On this surface domain, we explore the advections of a level set. For the first-order semi-

Lagrangian advection of this level set, one needs to trace the characteristic line of a vector

field defined on a curved surface. The tracing on this curved surface is more complicated

than that on a planar domain since the velocity vector should be steered to remain tangent

to the surface. On a triangulated piecewise flat domain, this steering occurs when the

trajectory moves to a different triangle by crossing an edge or a vertex. The solution to

this steering problem is similar to [61], but we explain it in the following way. We perform

this edge or vertex crossing steps in a refraction-free manner, i.e., we always proceed in

a direction in which the angles of the two sides of the resulting trajectory are identical.

Using this approach, we can follow the velocity field on the surface, and therefore, we can

implement the first-order semi-Lagrangian advection step.

Once this first-order advection is implemented, BFECC can be trivially added by calling

it three times, as explained in section 2.3.3. We have implemented the simple redistancing

29



Figure 12: The far left image shows an air bubble placed in olive oil at time zero. The
next three images are first-order semi-Lagrangian implementation of level set advection.
The last three images are produced using BFECC and simple redistancing and show signif-
icantly reduced volume loss. The grid resolution is 60×100×60 (∆x = 0.0008333m,∆t =
0.001sec).

Figure 13: Advections of the Zalesak’s disk on a sphere. The left column show initial
disks. The next two columns show the disk after one and two rotations about the vertical
axis with first-order advection (top) and BFECC advection (bottom).

30



strategy similar to (15). Letφi be the level set value at the ith vertex, andNi be the set of

indices of the vertices neighboring to the ith vertex and letxi be the location of ith vertex.

The simple redistancing conditions on a triangle mesh are

• φi has the same sign as its neighbors.

• |φi −φ j | ≥ 1.1||xi −x j ||, for somej ∈Ni .

These two simple conditions reduce smoothing and volume and shape changes of the Za-

lesak’s disk significantly, as shown in Fig. 13, where we rotated the Zalesak disk on the

surface about the vertical axis passing the center of the sphere. Notice that we rotate Zale-

sak disk not by moving the sphere mesh but by updating the level set value sampled at each

vertex. The sphere mesh does not move.

For fluid simulation on a triangulated surface, one needs to transport a velocity field

as well. The velocity vector should always remain on the surface. Shi et al [61] also

provide a solution to this problem by steering the coordinate frame where the vector is

represented. Steering was performed in a way that minimized the twist. Notice that this

approach is a discretized version of the parallel transport, which is known as a method for

transporting a coordinate frame on manifolds [12]. Using this vector field transport idea,

one may implement fluids with free surfaces on a triangulated surface. Since BFECC can

significantly improve level set advection as illustrated in Fig. 13, it could be combined with

[61] to create a fluid simulator on a triangulated surface.

2.4.5.1 Computation of Gradient

The redistancing velocityw defined in (14) contains a gradient term∇φ . In this section, we

show the computation of the gradient using the following precomputed gradient operator.

Let ∆φi j = φ j −φi and let∆xi j = x j − xi , wherexi is the x-coordinate ofxi . Similarly,

define∆yi j and∆zi j . Then, we can express the variation ofφ in discrete form.

∆φi j ≈ φx∆xi j +φy∆yi j +φz∆yi j , ∀ j ∈Ni (16)

31



This system of equation can be written in a matrix form.

d = A∇φ (17)

where d =



∆φi j1

∆φi j2

...

∆φi jn


, A =



∆xi j1 ∆yi j1 ∆yi j1

∆xi j2 ∆yi j2 ∆yi j2

... ... ...

∆xi jni
∆yi jni

∆yi jni


(18)

andni is the number of neighbors of ith vertex. The least square solution of (18) is

∇φ = A†d (19)

whereA† is the Moore-Penrose pseudo inverse ofA. Now, suppose that we represented

∇φ in local coordinate of any two orthonormal tangent vectorss1,s2 and the normal vector

n. Let S= [s1 s2] ∈ R3×2. Then, each row-vector ofA can be represented by thes1,s2 and

n, i.e.,

A =
[

AS An

] ST

nT

 , AS∈ Rni×2 , An ∈ Rni×1 (20)

Suppose the surface is locally smooth, thenAn is small and can be neglected.

A† ≈
(
AS ST)† = S(AS)† (21)

Finally, ∇φ is computed as

∇φ ≈ S (AS)†d

= S
(
AT

SAS
)−1

AT
S d , AS = AS

(22)

Notice that when the mesh is not deforming,S
(
AT

SAS
)−1

AT
S ∈ R3×ni is constant and can

be precomputed as a gradient operator.

2.4.6 BFECC for Adaptive Mesh

In an adaptive mesh such as an octree [44], the interpolation required for semi-Lagrangian

advection is more complicated to implement. This complexity is often already high in the

32



Figure 14: Simulation of smoke on an adaptive quadtree mesh of maximum resolution
5122 (∆t = 0.0001,∆x = 0.1m/512 at maximum resolution). The top row is without
BFECC, where the smoke diffusion and dissipation are large. When a lesser diffusive and
dissipative smoke is needed, one can trivially implement BFECC and generate a smoke
with significantly reduced dissipation and diffusion, as shown in the bottom row, which is
simulated with BFECC. The amount of diffusion and dissipation is controlled by adjusting
the diffusion and dissipation coefficients in the diffusion and dissipation steps, respectively.
Thus, BFECC decouples advection from dissipation and diffusion steps.

simplest linear interpolation. Therefore, higher order nonlinear interpolation tends to be

much more complex. This complexity of high-order interpolation can be easily avoided

when one uses BFECC. To verify the applicability of BFECC on an adaptive mesh, we

here implemented a smoke simulator on a quad tree mesh similar to [44] and show that it

can reduce the diffusion of smoke. Due to small amount of diffusion obtained by BFECC,

we can simulate a thin filament of smoke. Since the smoke remains in a thin region, the

mesh is refined only in the thin region. Notice that when one uses first-order advection,

smoke will diffuse into the neighborhood quickly, hence a mesh needs to be refined in a

larger region. The benefits of BFECC on this quadtree mesh are illustrated in Fig. 14.

33



Figure 15: The adaptive quad tree grids without BFECC (left) and with BFECC (right).

2.5 Additional Discussions on Fluid Simulation

We here tested BFECC in different fluid simulations. We simulate air-water and olive oil-

air interactions. Water is rendered in a bluish color and olive oil is rendered in a yellowish

color. We use the PovRay (http://povray.org) to render the images.

In Fig. 7, we simulated interactions between a cup, air, and water. The cup is released

upside down near the water surface. Due to its weight, the cup sinks into water, but it soon

rises again because of the air in it. However, in the top row, where we turned BFECC off for

velocity advection, the water is dissipative, and does not have enough velocity to tumble

the cup. In the bottom row, we use BFECC for velocity advection where the velocity

dissipation is small, and hence, the cup tumbles. This example indicates that reducing

velocity dissipation could be important in simulating fluid and rigid body interactions.

We here implemented therigid fluid method [7] to simulate rigid body and fluid interac-

tion in Figs. 4 and 7, where buoyancy is automatically obtained by applying variable den-

sity projection similar to [27]. We use multiple pressure projections to address the seeping

problem mentioned in [7]. We found that the angular momentum of the rigid body tends to

34



Figure 16: Dropping a cup into water on a 51×101 grid (∆x= 0.01m,∆t = 0.005sec). The
far left image shows the initial configuration. The next three images in the middle are with
two projections and show a significant amount of air lost. The three images on the right
are with nine projections. They show that enough air is trapped inside the cup, causing the
heavy cup (ρ = 1300kg/m3) to rise again. Also, notice the patterns of the smoke that are
diffused or dissipated little, thanks to the smoke advection, using BFECC in both cases.

be reduced per projection. Therefore, per each projection step, we added rotational veloc-

ity to the rigid body so that the angular momentum loss is corrected. This multi-projection

treatment is slow but easy to implement. The effect is illustrated in Fig. 16.

The computation time varies with the complexity of the fluid motions. In a simple

bubble rising situation without a rigid body, it took a few seconds per time step using a 503

mesh. The cup example in Fig. 7 has multiple pressure projections, taking about 30 to 130

seconds per time step on a 703 grid.

35



CHAPTER III

SIMULATION OF THIN LIQUID FILMS ON A

CELL-CENTERED OCTREE GRID

3.1 Previous Works

In contrast to the simulation of gaseous phenomena such as smoke, the simulation of liquids

produces complex changes in the liquid surface. Therefore, a method suitable to represent

the liquid volume and surface and capable of handling changes of the liquid surface is

needed. One such method that has been widely used recently is the level set method [51,

53, 60]. In [23], the level set method was used in fluid simulation to create a realistic liquid

simulation.

Even though the level set method allows simulation of a liquid’s surface, the complexity

of the surface that can be simulated is limited by the grid resolution. A significant improve-

ment can be obtained by using an adaptive grid such as an octree [44, 62]. In particular,

Losasso et al [44] showed that detailed liquid surfaces can be simulated by using an octree

grid.

Prior research in liquid simulation [18, 44, 7, 25, 59, 17] simulated liquids only, ig-

noring air. Therefore, liquid and air interactions, such as bubbles, requires an extension.

In [31], the air bubbles were successfully simulated. More general liquid/air phenomena

can be simulated by the variable density pressure projection method that has been broadly

studied in mathematics and fluid mechanics [69, 49, 35, 29]. This variable density pres-

sure projection has been used by [64, 37], in which splash and bubbles are simulated. We

also notice the bubble simulation using Lattice-Boltzmann-Method (LBM) was studied in

[73, 56].

Although the variable density projection method can simulate bubbles, the practical

36



simulation of foam, in particular, dry foam, is more challenging since the micrometer-thin

liquid film cannot be represented by an Eulerian grid. Consequently, most foam simulations

have been performed by Lagrangian methods. For example, Kuck et al [41] approximated

foam bubbles as spheres and then studied interactions between them. The interaction be-

tween bubbles and liquid is not studied. In contrast, Takahashi et al [70] used particle to

represent foams and simulated interactions with liquids. However, the formation, bursting,

or merging of foam bubbles have not been addressed.

Thin liquid films are governed by molecular interactions rather than by the Navier-

Stokes equations. An interesting outcome of such molecular interactions is the disjoining

pressure, which acts along the direction normal to the film surface. This disjoining pressure

causes a capillary suction, slowing down the drainage of liquid in the film. Thus, the thin

film is maintained. This disjoining pressure, caused by molecular interactions such as

electrostatic, van der Waals, steric, and adsorptional interactions, is the subject of several

engineering and scientific studies [57, 19, 74, 67]. Besides those efforts to understand thin

film, its simulation is rather rare. Weaire and Hutzler [74] constructed piecewise curves

and patches to simulate a dry foam. Durian [16] simulated 2D dry foam using circular

bubbles. Because circular bubbles avoid the difficulties related to the thin films, it greatly

simplifies the simulation of foam. The drawback of these methods would be the lack of

bursting, merging, and interactions with liquid. Bazhlekov et al [3] simulated the behavior

of a foam drop that is made of a few bubbles. They used a Lagrangian mesh to represent

the liquid/gas interface. Simulations of various phenomena such as wet foam, formation of

dry foam, bubble merging, and bursting were not previously attempted.

Recently, Zheng et al [79] proposed two promissing methods for the bubble and thin

liquid film simulation. First, they proposed the region based level set method in fluid

simulation. Each bubble has different region code. Therefore, two adjacent bubbles does

not have to be separated by a thin liquid region. Therefore the simulation of thin films

between different regions is simplified.

37



Figure 17: Thin liquid film occurs during a liquid splash simulation.

In contrast, our disjoining force idea be used for thin film that has boundary. An ex-

ample of such film can be found during liquid splash simulations as shown in Fig. 17.

The second contribution of [79] is the semi-implicit implementation of surface tension,

which allows larger time step. Application of these approaches will be an interesting future

direction.

3.2 Fluid Simulation on an Octree Grid

3.2.1 Nonstaggered Octree Grid

Simulation of bubbles with thin films requires a high resolution mesh to represent thin films.

In addition, liquid with multiple bubbles has a complex interface. Since a high-resolution

octree grid containing a complex interface has a high memory cost, a memory-efficient

implementation of an adaptive grid is desirable. Towards this goal, we simplify the octree

grid representation used in [44], by storing pressure and velocity at the center of the octree

cell. Since all values are stored at the center of the octree cell, we do not need a parallel

data structure for the cell corner, where velocities and level set values were stored in [44].

In addition, velocity transfer [27] to the cell face is not needed. Therefore, implementation

is simpler and memory-efficient. In our experiment, the 5123 grid with a flat water surface

and 63 bubbles underneath (see Fig. 1) has 14 million octree leaves. In this case, 2.5G bytes

of memory was used. The 10243 grid with five bubbles under a water surface requires 2.2G

38



bytes of memory. About 65% of this memory cost is used for the octree. The remaining

35% is used for the symmetric pressure projection matrix and for temporary vectors needed

for conjugate gradient iteration. This 35% cost can be saved when the pressure projection

is implemented directly on the octree. In our experiments, this implementation was about

twice slower during the first few steps and then quickly become more than five times slower,

because of the cache misses resulting from the address fragmentation produced during the

dynamic allocation of memory for the octree nodes.

One drawback of our collocation is the complexity of the interpolation in semi-Lagrangian

advection. However, we found that a continuous interpolation is not necessary, but a simple

interpolation with neighboring cells suffices. We interpolate values with neighboring cells

assuming that the cells are in the same tree depth, even when they are not. Since we do

not allow more than a two-to-one depth ratio between adjacent cells, the largest tree depth

difference ignored would be one. Suppose that we are performing an interpolation ofφ

at a point(x,y,z), which is contained in a leaf cellA. Assume that cellA has tree depth

d. Interpolation involves theφ values of the neighboring nodes ofA. First assume that a

particular nodeB incident upon a face ofA has depthd. If B is a leaf, we use itsφ . If not,

we use the average of its children. Now assume that the depth ofB is less thand. It can

only bed−1, since we ensure a 2-to-1 ratio between neighboring cells. We will use itsφ .

Following [44], we perturb the sampling points to obtain a symmetric pressure projec-

tion matrix. The two phase flow formulation is similar to [64], except for the differentiation

operator across different grid resolution. Notice that all our variables are defined at the cell

center. Therefore, the differentiations of these variables are the same as the differentiation

of pressure in [44].

3.2.2 Multigrid Solver

A high resolution mesh with a complex interface makes the pressure projection step very

slow even in an adaptive grid. In addition, large surface tensions require small time steps.

39



Therefore, simulation may be very slow. To reduce this computational cost, we use a

multigrid solver. We applied the simple nested iteration discussed in [5].

1. We first build a pressure projection operator and compute the divergence of the ve-

locity at a coarse level.

2. We then solve the pressure projection equation using the conjugate gradient (CG)

method with the Jacobi preconditioner. This will produce the pressure solution in a

coarse grid.

3. We use the computed pressure as a starting estimate for the child-nodes at the next

finer resolution.

4. We repeat steps 1, 2, and 3 until the maximum depth is reached.

We tested the effect of this approach in several experiments. As shown in Fig. 18,

CG iteration tends to vary greatly when we do not use the nested iteration. This often

occurs when the time step is small and the CG error bound is large. However, as shown in

Fig. 18, when we used the nested iteration, the computation time become uniform. When

the complexity of surface is high the benefit is significant. We conclude that the nested

iteration is beneficial, especially when the interface is complex or is in high-resolution.

When nested iteration is used, the pressure projection takes about 40∼ 50% of the total

computation time.

3.2.3 Level Set Advection

The BFECC method applied to level set advection tends to induce high-frequency noise

on the interface wherever the velocity field is not smooth. Therefore, Dupont and Liu [14]

proposed a remedy using the following semi-Lagrangian advection

φ
n+1 =

1
2

[ φ
n(−u∆t + εe)+φ

n(−u∆t− εe) ] , (23)

wheree= (1,1,1). We foundε = 0.3∆x works well. BFECC is implemented by perform-

ing this step three times in each time step. This oversampling and averaging adds a small

40



3.5 3.55 3.6

x 10
6

10
0

10
1

10
2

10
3
(a) 2563 grid, 63 bubbles

number of leaves

tim
e 

[s
ec

]

nested iteration
single iteration

1.42 1.44 1.46

x 10
7

10
1

10
2

10
3

10
4
(b) 5123 grid, 63 bubbles

number of leaves
tim

e 
[s

ec
]

average time for nested iteration
average time for single iteration

1 1.2 1.4 1.6

x 10
7

10
1

10
2

10
3

10
4
(c) 10243 grid, 5 bubbles

number of leaves

tim
e 

[s
ec

]

Figure 18: The computation time for the pressure projection step is reduced by nested
iteration. The benefit increases as the grid resolution and number of leaves increases. Av-
erage pressure projection times are (a) nested:21.1sec, single:45.3 sec, (b) nested:141.2sec,
single:718.6sec, (c) nested:47.5sec, single:494.4sec.

amount of diffusion, making the surface smooth. Since this oversampling point is always

displaced along±e, it may cause some artifacts along±e. A possible solution would be

oversampling in more directions, but it would be computationally expensive. Our solution

is to randomly chooseefrom the four directions{(1,1,1),(1,−1,1),(−1,1,1),(−1,−1,1)}

in each time step.

3.3 Making Thin Film Last Longer

In our experiments, ifε in (23) is as large as 0.2 ∼ 0.3∆x, thin liquid films were well

preserved. However, the liquid has the thickness of about 5∆x. Films with this thickness

can be observed unrealistic as shown in Fig. 26, where 2563 equivalent grid was used.

When we use smallerε is chosen, this thickness can be reduced, but then, the film tends to

rupture easily.

In this section, we identify that the curvature computed from level set gradient inside

thin film causes the early rupture of thin film, and then we discuss a possible solution. In

addition, inspired from the disjoining pressure, we propose to use the disjoining force to

41



strengthen the film further. Using these approaches, as shown in Fig. 22, we obtain liquid

films that are about 3∆x thick.

3.3.1 Surface Tension

Real world bubbles have round and smooth shapes because the surface tension flattens

the liquid/gas interface. In thin liquid films, surface tension can be the dominating force.

Therefore, implementing surface tension is important in the simulation of thin films. Since

the surface tension is proportional to the curvature normal vector of the interface, computa-

tion of the curvature normal vector is necessary. In the level set framework, this curvature

normal is computed as∇ ∇φ

|∇φ | . However, along the center of the thin film, the level set func-

tion has a singularity, as shown in Fig. 19, and hence the gradient computed would not be

accurate. Therefore, the curvature computed from the gradient ofφ is noisy. In particular,

this noise is severe along the thin film’s centroid, which is only about two grid cells away

from the interface. Therefore, we want to use the ghost fluid method [35, 31] that use cur-

vature values of the cell that is neighboring the interface. Since the curvature computation

on these cells requires access to one neighbors, ghost fluid requires to useφ values about

two grid cells away from the interface.

In contrast, surface tension methods such as the smeared delta method [4] applies a

surface tension force up to 2∼ 3-neighboring cells away from the interface. To compute

curvature on these cells, we useφ values about 3∼ 4 grid cells away from the interface.

Therefore, the surface tension force computed from the gradient ofφ is noisy in thin films.

In our experiments, when one uses the smeared delta method, the surface tension computed

from the derivatives ofφ produced artifacts on surface and an early breaking of thin films,

even with a large disjoining force (described later) was active. In contrast, the ghost fluid

method showed an improvement. Since it usesφ values at most two-neighbors, the thin

film is better preserved than in the smeared delta method. However, in 2D, the ghost fluid

method fails to preserve the thin film, but in 3D, the ghost fluid method showed that the

42



Figure 19: Contour of the level set functionφ . Thin films contain series of local minima,
and therefore, the gradient∇φ is not always perpendicular to the film surface. Therefore,
the curvature vector computed from∇φ can be inaccurate.

thin film can be preserved well. However, in small bubbles bursted as shown in Fig. 26. In

this section, we develop a method that can further improve this by computing the surface

tension from theφ values of 1-neighbors.

First, notice that even though the gradient ofφ is inaccurate inside a thin film, the

liquid surface of the film is smooth as shown in Fig. 19. This observation led us to the

idea of computing the surface tension from the liquid/gas interface. Assume that we have

a sufficient octree refinement near the interface so that all the interfaces are contained in

cells of maximum depth. Consider two octree cells whose centers areA andB, as shown in

Fig. 20. Suppose thatφ has different signs atA andB and that the lineAB is parallel tox-

axis. The interface pointP can be computed by linear interpolation ofφ . The neighboring

interface pointsQ0,Q1,Q2,Q3 can be easily computed. The local surface neighborhood

aroundP contains more neighbors, but computing those additional neighbors and their

connectivity would require extraction of iso-surface . Since extracting the iso-surface at

every time step is expensive, we developed a method to compute the curvature normal

vector onP using the four neighborhood points{Q0,Q1,Q2,Q3}.

In estimating the curvature normal, the discrete Laplace-Beltrami operator [11] would

be a good candidate. However, the vertexP has only four neighbors{Q0,Q1,Q2,Q3}, and

moreover, those neighboring vertices are not always evenly distributed, as shown in the

right image of Fig. 20. By the Taylor series expansion [76] of the surface aroundP, it can

be shown that the accuracy of the discrete Laplace-Beltrami operator is low. Therefore, we

43



develop a method that first computes a valid normal direction and then a mean curvature

value, using only{P,Q0,Q1,Q2,Q3}.

As shown in the left illustration of Fig. 20, consider the two difference vectors of the

two tangent vectorstz1 − tz0 and ty1 − ty0. The normal vector is computed as a normal to

these two vectors, i.e.,n := (tz1 − tz0)× (ty1 − ty0), n := n/|n|. In the right illustration

of Fig. 20, the surface has small curvature but the angle between the two tangentsty0,1 is

small. Notice that a valid normal vector is produced in this case as well. Once the normal

Figure 20: Computing a normal vector on a point where the liquid surface andAB are
intersecting. In the right, we illustrate the case when the iso-surface has low curvature but
the angle∠Q2PQ3 is small. Notice that the normal vectorn is computed properly.

vector is computed, we estimate the mean curvature from the angles betweenn and each of

the tangent vectortz0, tz1, ty0, andty1. We first compute the radius of a circle that encloses

∆xn and∆xtz0 by r0 = ∆xtz0 · n. Similarly, we computer1 = ∆xtz1 · n, r2 = ∆xty0 · n and

r3 = ∆xty1 ·n. We then average those radii, computingr = (r0+ r1+ r2+ r3)/4. The mean

curvature is estimated asκ = 2/r, which allows us to compute the surface tension asγκn,

whereγ is the surface tension coefficient.

After γκn is computed, we apply it toA andB as the surface tension force. We also

tested it with the ghost fluid method by usingγκ as the pressure jump required for the ghost

fluid method proposed in [35, 31]. However, it caused square-like bubbles, in particular

44



when a large surface tension is used. Therefore, we do not use the ghost fluid method

together with theκn computed by the above method.

Examples of bubbles simulated by this surface tension approach can be found from Fig.

24 and from Fig. 23.

3.3.2 The Disjoining Force

In real fluid, thinning of a film slows down due to the disjoining pressure. This disjoining

pressure is active typically when the thickness is smaller than a micrometer, which is too

thin to be captured by an Eulerian grid. Therefore, in this section, we explore an idea to

simulate a film that is about 3∼ 4∆x thick.

To maintain this thickness this thickness, we apply a disjoining force in a film that

is thinner than 4∆x. This disjoining force is normal to the film and is applied in both

directions to make the film thicker. As a result, a part of a film that became thinner than

the threshold recovers its thickness. To this goal, we first detect cells inside the thin film,

compute the normal vector and film thickness, compute the disjoining force, and finally,

apply a symmetric set of forces that repulse the two film surfaces, making the film thicker.

To determine whether a cell is a thin film cell or not, we check the sign changes ofφ

in each of thex,y, andz directions. We only explore two grid cells in each direction, since

our threshold thickness is 4∆x. If sign changes in both±x directions are detected, the cell

is marked as a thin film cell. Similarly, we apply this to±y and±z directions.

Figure 21 shows a fluid cellA that is inside a thin film and is surrounded by four air

cellsA,B,C, andD. We calculate forces that push the two surrounding interface away from

A. In each of such thin film cell, we compute the normal direction to the thin film. The

normaln at A is computed as the orthogonal vector of the average of the two tangents atP

andQ. Thus, we avoid using the level set gradient that is not differentiable in the thin film,

similarly to the surface tension case. The thickness of the film is computed as a projected

length. For example, in Fig. 21, the thickness is computed byl = dn · i. When sign changes

45



Figure 21: Disjoining force that prevents a thin film from bursting.

are detected in more than one direction, we perform this operation on each direction and

average them. Thus, we computed the normal directionn, and the thickness of the thin film

l at each film cells.

We then design the magnitude of force as a smoothly increasing function that is zero

when the thickness is larger than the 4∆x. As the thickness become smaller than 4∆x, the

function smoothly increase from zero and then saturate toη as the thickness approaches to

zero. To meat this goal we compute the forcef by

f =

 0, if l ≥ 4∆x

η

(
2
(

l
4∆x

)3−3
(

l
4∆x

)2
+1
)α

n , if l < 4∆x
, (24)

whereη is the coefficient that determines the magnitude of force. In our experiments, when

η = 5,000, thin films rupture rarely. The powerα determines the thickness of the film. In

most case, we useα = 1, which produces film slightly thinner than 4∆x.

The next step is to apply this force±f to the neighboring cellsB,C,D, andE so that

the interfaces are pushed apart. Since the forces applied to neighbors should not introduce

motions other than thickening, we apply±f to B,C,D, andE so that the force and torque

46



Figure 22: Disjoining forces acting on film cells (low-resolution grids).

resultants are zero, i.e.,

f0 + f1 + f3 + f3 = 0

(−i)× f0 + i× f1 + (−j)× f2 + j × f3 = 0 .

(25)

Let n = (nx,ny). The forcesf0, f1, f2, andf3 that satisfy (25) are computed as

f0 =−f1 =−nxf

f2 =−f3 =−nyf .

(26)

Finally, f0, f1, f2 andf3 are added toB,C,D andE, respectively.

The extension to 3D is straightforward. Letn = (nx,ny,nz), and letf4 and f5 be the

forces on the two neighboring nodes in back and front ofA, respectively. Then, the forces

f4 andf5 are computed byf4 =−f5 =−nzf, while f0, f1, f2, andf3 are computed by (26).

47



Figure 23: A dry-foam-like structure obtained by using the surface tension based on the
ghost fluid method with the curvature computed from the local interface. We inflated the
2D bubbles using the volume control method discussed in chapter 4.

48



Figure 24: Simulation of one bubble forming a bubble ring and then splitting into many
small bubbles. Surface tension proposed in section 3.3.1 is used.

49



Figure 25: Simulation of one bubble forming a bubble ring and then splitting into many
small bubbles (continued). Surface tension proposed in section 3.3.1 is used.

50



Figure 26: Simulation of the rise of two bubbles, one of which is bursting. Surface tension
using the ghost fluid method [31] is used.

51



Figure 27: Simulation of the rise of two bubbles, one of which is bursting (continued).
Surface tension using the ghost fluid method [31] is used.

52



CHAPTER IV

FLUID VOLUME CONSERVATION AND CONTROL USING

NONLINEAR FEEDBACKS

4.1 Introduction and Previous Works

Fluid simulation using level set suffers from an undesired volume loss (See Fig. 38). In a

two phase flow, one fluid can lose volume while the other fluid gain volume. Those volume

gain or loss is the volume error. Our goal is to remove the volume error and to ensure

that the volume of liquid preserved regardless of the simulation time (See Fig. 39). We

also want to be able to control the volume of fluid directly to simulate bubbles that change

volumes. An example of such bubbles will be bubbles inflated in boiling water.

We achieve these goals by a volume control method that is applying divergence values

for fluid regions to compensate their volume error. For each of these regions, the divergence

is computed carefully by first modeling the volume change equation in terms of the volume

error and then constructing a nonlinear feedback controller similar to the proportional and

integral feedback controller. We also validate the volume change equation and controller

by several experiments.

We begin with the brief overview of volume control. First, we segment the fluid do-

main into several liquid or gas regions. We then compute the volume error as a difference

between the desired and current volume per each region. Using this volume error as a

feedback input, we compute the divergence using a nonlinear feedback control strategy.

The computed divergence is the control input used to inflate/deflate each region to correct

volume error. Finally, we project the velocity field to the vector field so that it has the

computed divergence. This step is performed in the pressure projection step. Notice that

we apply divergence to all cells in each region.

53



We use BFECC for the level set advection. Since BFECC produces relatively a small

amount of volume loss, only a small divergence is required to correct this volume loss.

Therefore, the overall fluid motion is affected minimally by the volume control. One also

can use better volume preserving method such as particle level set method, with which one

will need much smaller divergence.

The time for segmenting fluid into regions (connected components) is linear in the total

number of octree cells. In additon, the computation of the divergence is performed in each

region. Since the number of regions is much smaller than the number of cells, the cost of

the computation of divergence can be ignored. Thus, volume control does not increase the

runtime complexity.

Now, we review the related work. The level set method introduced by Foster et al

[23] has volume loss, which is resolved by the particle level set methods [18, 17]. This

particle level set method is now a widely used scheme [7, 25, 59, 17, 31] due to its volume

conservation property and some other benefits such as increased surface detail and visual

effects obtained by rendering escaped particles [27]. This particle level set method has a

very small but continuous volume loss [46] that may eventually accumulate to a visible

level [25] especially in a long simulation. In addition, particle level set methods require

large amount of memory and high computational cost, in particular, when an octree grid

is used [44]. In contrast, the BFECC method has a low memory and computation costs.

However, even though the volume loss of BFECC is much slower than the first-order level

set advection, BFECC still suffer from an observable amount of volume loss in most of

the fluid animations. Therefore, the benefit of volume control is maximized in the BFECC

method. To this reason, we only test our volume control approach on the fluid simulation,

where the level set is advected by the BFECC method.

We apply divergence to inflate or deflate a region so that the region maintain the desired

volume. A similar idea had been explored in fluid animation. The scheme called divergence

sourcing was used in [45, 22]. In [22], particle explosion is achieved by treating particles as

54



divergence sources. In [45], divergence is applied to model the expansion from solid fuel

to gas fuel. Our contribution is to apply this idea to the volume conservation, model the

volume change equation, construct controllers, and provide gain synthesis methods from

simulation parameters so that one can easily compute gains that provides fast and stable

volume correction.

4.2 Segmentation and Tracking

A step needed for the volume control is segmenting gas and liquid regions, computing their

volumes, and then tracking the movement, merge, and split of regions in the following

time steps. The segmentation is rather trivial in the Eulerian grid using level set. We

first consider the leaf cells as a graph, where two leaf cells are connected if they share a

face. On this graph, we start a region from a leaf cell and grow that region by visiting a

neighborhood in a breadth first manner. When no connected cell has the same sign of the

level set variableφ , we start a new region. Since this requires only a normal queue rather

than a priority queue, this is a linear time algorithm. The volume of the region is computed

as the sum of the volumes of cubical leaf cells that belong to the region. We ignore the

liquid-gas interface cutting the cells. Although this is an approximation, it only adds small

amount of error.

The next problem is tracking regions in two consecutive time steps. LetRn be the set of

regions at thenth time step, and letRn+1 be the set of regions at the(n+1) th time step. Let

Rn
i ∈Rn be thei th region at thenth time step. Similarly, letRn+1

j ∈Rn+1 be the j th region

at the(n+1) th time step. We definewi, j as the volume fraction transferred fromRn
i to Rn+1

j .

wi, j =
|Rn+1

j
⋂

Rn
i |

Ṽin
, (27)

where|Rn+1
j
⋂

Rn
i | is the volume of region that was thei th region at thenth time step and

becomej th region at the(n+1) th time step. Notice that|Rn+1
j
⋂

Rn
i | can be easily computed

by counting cells that belonged toRn
i at thenth time step and belongs toRn+1

i at the(n+

1) th time step.

55



Suppose that there are two adjacent regionsRn
i1

andRn
i2

at nth time step, e.g., air and

water. Suppose thatRn
i1

is moved and segmented asRn+1
j1

in the next time step. However,

we only have segmentations ofnth and(n+1) th time steps, and we do not know thatRn
i1

is

moved toRn+1
j1

yet.

Boundary between regions Rn
i1

and Rn
i2

at n th time step.

Boundary between regions Rn+1
j1

and Rn+1
j2

at (n+ 1) th time step.

Rn
i1

Rn
i2

Rn+1
j1

Rn+1
j2

Rn
i1

⋂
Rn+1

j2

Rn
i2

⋂
Rn+1

j1Rn
i1

⋂
Rn+1

j1

Direction of motion

(leading region)

(trailing region)

Figure 28: Tracking Region.

As illustrated in Fig 28, suppose thatRn
i1

is a moving region. In next time step, cells

that belonged toRn
i1

belong to the two regionsRn+1
j1

andRn+1
j2

. We may callRn
i2

⋂
Rn+1

j1
as

the leading region, andRn
i1

⋂
Rn+1

j2
as the trailing region.

Since surface tension requires small time step, the level set CFL (Courant-Friedrichs-

Lewy) number is less than one in most cases, and therefore,Rn
i typically moves less than

a grid cell per time step. This implies thatRn
i2

⋂
Rn+1

j1
andRn

i1

⋂
Rn+1

j2
has small volume

fraction, while the regionRn
i1

⋂
Rn+1

j1
has volume fraction close to one. Therefore, we can

consider regions of volume fractions smaller than the threshold (we chose 0.1) as leading

and trailing regions due to the movement of regions. We can conclude thatRn+1
j1

should

56



have the volume ofRn
i1

.

After zeroing volume fractions that are below the threshold, we normalize the remaining

fractions so that their sum is one. Therefore, we setwi1, j1 = 1 andwi1, j2 = wi2, j1 = 0. Notice

that when multiple regions, sayRn
i1
,Rn

i2
, ....Rn

im, are merged and split to multiple regions

Rn+1
j1

,Rn+1
j2

, ...,Rn+1
j ′m

, the above strategy is sill valid for most of cases. In this way, we do

not have to track the motion of each cells. However, when the volume splits to many small

volumes, the above tracking method may not work. This approach worked correctly in our

experiments. One can improve this by advecting the region as in [79], but this solution

requires an extended advection algorithm.

4.3 Projection to a Controlled Divergence Field

Let u∗ be the velocity computed before the pressure projection is applied, and letcn be the

desired divergence in a region. The modified pressure projection projectsu∗ to a velocity

un+1 that has divergencecn, i.e.,

∇ ·un+1 = cn ⇒ ∇ · ∇P
ρ

=
1
∆t

(∇ ·u∗−cn), (28)

Sincecn is simply subtracted from the divergence, the complexity of the pressure projection

step is not increased. The divergence valuecn is constant at all cells that belong to a given

region. In general, different regions have different values ofcn.

4.4 The Volume Change Equation

A fluid region, such as a gas bubble, gains or loses little volume per time step. It typically

takes almost 1,000 time steps until a bubble loses half of its volume even in a relatively

coarse 1283 grid. In other words, the volume change is not a high frequency behavior when

BFECC is used for level set advection. This observation indicates that volume control

should be relatively easy. In addition, this slow dynamic nature implies that a derivative

feedback is not necessary and proportional feedback would suffice. However, when we

applied this proportional feedback to a rising bubble simulation, we observed that a rising

57



bubble tends to saturate to a slightly smaller volume. Although this shrinkage is often

negligible, the amount of shrinkage is not known. Therefore, we perform further analysis

and design an additional control strategy to remove this shrinkage.

In designing a control system, the first step is to define the state variablex. We use the

normalized volume error

xn
i =

Vn
i −Ṽi

Ṽi
, (29)

whereVi is the current volume of thei th region, andṼi is its desired volume. The next

step is obtaining the system equation that describes the changes of this state variablexn
i .

However, modeling how thexn
i changes at each discrete time step is difficult as the volume

changes by complex simulation procedure. Therefore, we use a continuous time model,

i.e., we usexi(t) andci(t) instead ofxn
i andcn

i . The volume rate is computed using the

divergence theorem as

V̇i =
∫

Si

u ·ndS =
∫

Vi

∇ ·udV = ciVi , (30)

whereSi is the boundary of the fluid volumeVi . Therefore, ideally, whenci = 0, the volume

should not change, but simulation experiments show a volume loss due to the inaccuracies

in the level set advection and the pressure projection step. After several simulation experi-

ments, we conclude that this volume loss can be modeled by the following equation using

an unknown factor̃b.

V̇i = ciVi + b̃ (31)

Whenci = 0, simulation experiments show volume plot as a function of time has large lin-

ear segments connected by curved transitions. In each linear segment, the slope is constant,

indicating piecewise constantb̃. Rewriting (31) in terms ofxi , we obtain

ẋi =
V̇i

Ṽi
=

ciVi + b̃

Ṽi
= ci(xi +1)+b, (32)

whereb = b̃/Ṽ.

58



4.4.1 Experiments on Volume Loss

The unknown factorb primarily depends on the level set advection method, but it also de-

pends on simulation parameters such as time step∆t, ∆x, redistancing parameters, the size

of bubble or liquid drop, the surface tension, and others. In addition,b changes during the

simulation. For example,b is large when a liquid film is formed. However, we can observe

thatb changes slowly. In this section, we perform various experiments to understand the

volume loss rateb. As shown in Fig. 29, 30, 31, and 32

0 0.05 0.1 0.15 0.2 0.25 0.3
−1

−0.8

−0.6

−0.4

−0.2

0

time

er
ro

r 
st

at
e:

 x

0

0.5

1

1.5

2

vo
lu

m
e 

(c
m

3 )

Initial Volume
γ=0.07
γ=0.14

Figure 29: The volume loss rateb of a rising bubble strongly depends on the surface
tension (ci = 0).

0 0.05 0.1 0.15 0.2 0.25 0.3
−1

−0.8

−0.6

−0.4

−0.2

0

time

er
ro

r 
st

at
e:

 x

0

0.5

1

1.5

2

vo
lu

m
e 

(c
m

3 )

1283

2563

5123

Figure 30: The volume loss rateb of a rising bubble depends on the mesh resolution
(ci = 0).

4.5 A Proportional Feedback Controller

The volume loss observed in the previous section can be compensated by adding a diver-

genceci . This divergenceci is applied uniformly inside each region, but different regions

59



0 0.05 0.1 0.15 0.2 0.25 0.3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

time

er
ro

r 
st

at
e:

 x

0

0.5

1

1.5

2

2.5

3

vo
lu

m
e 

(c
m

3 )

Initial Volume
∆t=0.00005
∆t=0.000025

Figure 31: The volume loss rateb of a rising bubble depends on the time step (ci = 0).

0 0.05 0.1 0.15 0.2 0.25 0.3
−1

−0.8

−0.6

−0.4

−0.2

0

time (sec)

er
ro

r 
st

at
e:

 x

0

0.5

1

1.5

2

vo
lu

m
e 

(c
m

3 )

Initial Volume
∆ τ=0.1∆ x
∆ τ=0.3∆ x
∆ τ=0.4∆ x

Figure 32: The volume loss rateb of a rising bubble depends on the redistancing. (ci = 0).

have different values ofci . We first consider the feedback

ci =−kP
xi

xi +1
. (33)

This is a nonlinear feedback, but since|xi | � 1, ci ≈ −kPxi . Due to the similarity with

the proportional feedback−kPxi , (33) will be called the pseudo proportional feedback or

proportional feedback for simplicity.

Plugging (33) into (32), we obtain a linear equation

ẋi +kpxi = b, (34)

which has the following explicit solution

xi(t) = xi(ti)e−kp(t−ti) +
b
kP

(
1−e−kp(t−ti)

)
, (35)

whereti is the time when thei th region is created. IfkP > 0, this explicit solution shows

that the errorxi(t) does not converge to zero, but

xi(t)→
b
kP

as t → ∞. (36)

60



This steady state errorbkP
is the drift error we observed with the proportional feedback in

the rising bubble experiment in Fig. 34 and 35. This is due to the fact that a rising bubble

loses volume until the lossVi−Ṽi is large enough for the proportional controller to produce

large enough divergenceci . As a result, the volume of a rising bubble tends to saturate to a

slightly smaller volume. This volume loss may not be visible (See Fig. 34), and therefore,

the volume drift error may be often negligible, if a sufficiently largekP is used. However,

the amount of error is unknown since it is a function of many different simulation methods

and parameters. Moreover, the volume error could be visible when the bubble is large.

In particular, when multiple bubbles are stacked, the small volume losses of individual

bubbles are added together produces a lowering of the surface of the foam that is clearly

visible.

4.5.1 Computing Proportional GainkP

The equation (36) shows that the volume error can be reduced down tob/kP, which may be

very small ifkP is sufficiently large. With this observation, a natural approach to compute

kP is first defining a error toleranceεv, and then computing the gain askP = |b|/εv so that the

steady state error is smaller than the tolerance. Sinceb is unknown, one may estimateb by a

number of experiments. However, as shown in the previous section,b is a function of many

factors and it is hard to estimate. More importantly, if the error toleranceεv is arbitrarily

small, the gainkP = |b|/εv will be arbitrarily large . This will produce an arbitrarily large

divergence inputci =−kPxi , which can halt the simulation if the time step is not sufficiently

small. Therefore, we do not computekP from the steady state error tolerance.

Instead, we use therising timecriterion to design the gainkP. We first assume that a

fluid region has volume errorx. The user specifies the number of time stepsnP, during

which the volume errorx is reduced down tox/10. The timenP∆t is called therising time.

The use of rising time criterion provides an important advantage. Since we specify the

number of time stepsnP, the resulting divergence input will try to fix the volume error innP

61



time steps. For example, if we setnP = 25, the volume error will be reduced down to 10%

in 25∆t seconds. If we decrease the time step∆t into half, the gain will be automatically

adjusted and the volume error will be reduced twice faster as 25∆t is decreased down to

half, but still in np = 25 time steps. Conversely, if we increase the time step, the volume

error will be fixed slowly, but still innp = 25 time steps.

Notice that instability would occur ifnP is too small. For example, ifnP < 1, the

divergence input will be large and the volume of the region may grow or shrink more than

necessary in a single time step, making the simulation unstable.

Now, we derivekP. First, using the proportional feedbackci =−kPxi , the system equa-

tion (41) is written as

ẋi =−kPxi +b. (37)

As will be shown in the following experiments, the steady state volume error is small. Thus,

b can be ignored for the controller construction. Ignoringb, the volume error evolves in the

following discrete form

xn
i =

(
e−kP∆t

)n
x0

i , (38)

wherexn
i is the volume error of ith region in nth time step. SincenP is the number of

time steps required to reduce the initial errorx0
i down to 10%, the proportional gainkP is

computed from the condition
(
e−kP∆t

)nP = 0.1 as

kP =
− ln0.1

nP∆t
=

2.3
nP∆t

. (39)

To validate the volume change equation, and the proposed controller, we set the volume

error xi = −0.1 and then apply the volume control. As shown in Fig. 33, the errorxi

decreases towards zero in approximatelynP time steps in various grid resolutions.

4.6 A Proportional-Integral Feedback Controller

BFECC applied to level set advection makes volume loss or gain occur slowly. Therefore,

the proportional control may keep the volume loss unnoticeable. Indeed, in most cases,

62



0 5 10 15 20 25 30 35 40 45 50

2.15

2.2

2.25

2.3

2.35

2.4

n
p
 = 25

v
0
 = initial volume

v
0
 + 0.9(v

c
−v

0
)

v
c
 = commanded volume

time steps

vo
lu

m
e 

(c
m

3 )

v
0

v
c

v
0
 + 0.9(v

c
−v

0
)

1283 grid
2563 grid
5123 grid

Figure 33: Step responses of volume show that the rise time is indeednp.

63



0 0.05 0.1 0.15 0.2 0.25 0.3
−1

−0.8

−0.6

−0.4

−0.2

0

er
ro

r 
st

at
e:

 x

0

0.5

1

1.5

2

vo
lu

m
e 

(c
m

3 )

Comparison of no control, P, and PI controllers

No Control
Proportional
PI

0 0.05 0.1 0.15 0.2 0.25 0.3
−0.02

−0.01

0

0.01

0.02

time(sec)

er
ro

r 
st

at
e:

 x

Detailed comparison of P and PI controllers (zoomed from above)

Proportional
PI

Figure 34: Comparison of controllers in a 1283 grid. The proportional controller produces
a very small error, and the PI controller does not improve much. The fluctuation may come
from the error in the volume computed by counting grid cells. Notice that the controller is
robust against this error.

the proportional control seems sufficient. For example, Fig. 34 shows that the volume

error in 1283 grid is less than 1%, when the proportional feedback withnP = 25 is applied.

However, in some cases, when a low resolution grid is used with large surface tension, the

volume error tends to increase in proportional controller as shown in Fig. 35.

In the classical control strategy [63], a natural choice for removing drift error is using

integral feedback, by which the small drift error will be integrated over time and then used

as an additional control input. This is an efficient strategy since the small drift error can

be accumulated to produce large control input. Consider the following nonlinear feedback

64



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

time

er
ro

r 
st

at
e:

 x

0

0.05

0.1

0.15

0.2

0.25

vo
lu

m
e 

(c
m

3 )

Initial Volume
No Control
Proportional
PI (ζ=2)

Figure 35: Comparison of controllers in a low-resolution 643 grid with high surface tension
γ = 1.0. The proportional controller produces somewhat large error and the PI controller
improves it.

65



with integral term

ci =
−kPxi −kI

∫ t
−∞ xidt

xi +1

=
−kPxi −kI

∫ t
ti xidt−kI

∫ ti
−∞ xidt

xi +1
,

(40)

whereti is the time when thei th region, for example a bubble, is created. This is a nonlinear

feedback, but since|xi | � 1, the feedback is similar to the proportional integral feedback

ci =−kPxi−kI
∫ t
−∞ xidt. Therefore, we call (40) as the proportional-integral (PI) feedback.

The term
∫ ti
−∞ xidt is computed by combining the error integrals of previous components

that participated to the thei th component. Using this feedback, we obtain a linear equation

ẋi +kpxi +kI

∫ t

−∞
xidt = b, (41)

which has the following solution

xi(t)=
1

λ1−λ2

[
xi(ti)

(
λ1eλ1(t−ti)−λ2eλ2(t−ti)

)
+
(

b−kI

∫ ti

−∞
xidt

)(
eλ1(t−ti)−eλ2(t−ti)

)]
,

(42)

whereλ1, andλ2 are the solutions of the characteristic equation (λ 2+kPλ +kI = 0), com-

puted asλ1 = −kP
2 +

√
k2

P−4kI
2 andλ2 = −kP

2 −
√

k2
P−4kI
2 . If we choose positive gains, i.e.,

kP > 0 andkI > 0, the exponentsλ1,2 are always negative or have negative real parts, im-

plying eλ1,2t → 0 ast → ∞. Therefore, the volume error tends to disappear, i.e.,

xi(t)→ 0 as t → ∞. (43)

In addition, by taking time derivative of (42), we can show that

ẋi(t)→ 0 as t → ∞. (44)

Therefore, from (41), we obtain

kI

∫ t

−∞
xidt = b− ẋi −kpxi → b as t → ∞, (45)

which shows thatkI
∫ t
−∞ xidt is an estimate of the unknown factorb, and that the PI-

controller uses this estimate to cancel theb factor.

66



The next question is the computation of
∫ ti
−∞ xidt When the bubbles merge or split to

create new bubbles, the terms
∫ ti
−∞ xidt in (42) of the new bubbles can be computed in the

following way. Suppose that bubbles identified asj1 th , j2 th , ..., jn th regions at thenth time

step are merged to from a bigger bubble that is identified as thei th region at the(n+

1) th time step. To further generalize this, suppose that the volume fractions ofw1,w2, ...wn

of each bubble went to thei th bubble. Therefore the desired volume ofi th bubble isṼi =

∑n
k=1w jkṼjk, and the current volume isVi = ∑n

k=1w jkVjk. The error integral of the new

bubble
∫ ti
−∞ xidt is computed from the error integrals of old bubbles

∫ t jk
−∞ x jkdt,k = 1,2..n as∫ ti

−∞
xidt =

∫ ti

−∞

Vi −Ṽi

Ṽi
dt

=
1

Ṽi

∫ ti

−∞

(
n

∑
k=1

w jkVjk−Ṽi

)
dt

=
1

Ṽi

∫ ti

−∞

(
n

∑
k=1

w jk

(
Ṽjkx jk +Ṽjk

)
−Ṽi

)
dt

=
1

Ṽi

∫ ti

−∞

(
n

∑
k=1

w jkṼjkx jk +
n

∑
k=1

w jkṼjk−Ṽi

)
dt

=
1

Ṽi

∫ ti

−∞

(
n

∑
k=1

w jkṼjkx jk +Ṽi −Ṽi

)
dt

=
1

Ṽi

n

∑
k=1

(
w jkṼjk

∫ ti

−∞
x jkdt

)
.

(46)

This way, one can apply the integral feedback to a new bubble. In contrast, if one start a

new error integral, treating
∫ ti
−∞ xidt = 0 for newly created bubble, the bubble may shrink

by a small amount for a short period of time. This shrinkage is often small and recovered

quickly, and hence not visible in most cases, but we occasionally observed the volume of

bubble shrank for a short period of time. Therefore, computing the error integral of a new

bubble by (46) is often necessary.

4.6.1 Computing Integral GainkI

The drift error of proportional control can be removed by adding integral feedback. How-

ever, improperly chosen integral gainkI can cause undesired oscillations in volume, which

67



indeed occurred in our simulation of stacked bubbles. This oscillation was removed when

we increased the damping. Therefore, we propose a method to compute a gainkI that

provides a good damping.

Let y =
∫ t

0 xidt. Then, from (41), we obtain a second order system

ÿ + kPẏ + kIy = 0, (47)

whose natural frequency isωn =
√

kI and the damping coefficient isζ = kP
2
√

kI
= kP

2
√

kI
. Our

goal is now choosing good values ofζ that provides enough damping. By the classical

control theory, a system that has a good balance between fast error correction and damping

would haveζ = 0.7, which contains a small amount of oscillation that settles down quickly.

Whenζ ≥ 1, the system is critically damped or over-damped, and therefore, oscillation inxi

does not exist. Therefore, it would be safe to chooseζ larger than 0.7. In our experiments,

ζ = 2 worked well. Afterζ is chosen, the integral gainkI is computed as

kI =
(

kP

2ζ

)2

=
k2

P

16
, (48)

where the proportional gainkP is computed from (39).

4.7 Controller Implementation

The proportional controller is implemented as

cn
i = −kPxn

i . (49)

The proportional-integral (PI) controller is defined by

cn
i = −kPxn

i − kI

n

∑
m=0

xm
i ∆t. (50)

Therefore, it is implemented as

yn
i = yn−1

i +xn
i ∆t

cn
i = −kPxn

i − kIy
n
i .

(51)

68



The volume loss factorb can be used to measure the volume loss property of the level

set advection scheme. When PI controller is used, this factorb can be estimated as

bn
i = kIy

n
i (52)

As mentioned earlier, the computed divergencebi is applied to all cells that belong to

i th region.

4.8 Computation Time

The pressure projection is solving a matrix equation in the formQx= y, and the volume

control adds divergence to right hand sidey. Although the matrix remains the same, added

divergence may cost more iterations in the pressure projection. In experiments, the slow

down in pressure projection is negligible as shown in Fig. 36. In this figure, segmentation

is more expensive. However, the time for segmentation and pressure projection increases

total computation time only by about 3∼ 4% as shown in Fig. 37.

4.9 Discussions on the Order of Accuracy

An interesting question left is whether the volume control affects the overall order of ac-

curacy or not. To answer this question, first observe that the volume control adds the

divergence termc to the pressure projection step, and that ifc is zero, the simulation is

not changed by the volume control. Therefore, ifc has the order of accuracy higher than

or equal to the accuracies of other simulation steps, the overall order of accuracy may not

changed. On the other hand, ifc has the order of accuracy lower than that of the other

simulation steps, the accuracy of the entire simulation step can be lowered.

Notice that the overall simulation is first order accurate due to the use of the operator

splitting. In addition, the velocity diffusion, and the pressure projection steps are also first

order accurate in space and time. In particular, the accuracy of the pressure projection step

implies that the divergence equation has the residual error∇ ·u = O(∆x2,∆t2) per each time

step. Therefore, although the level set advection is second order accurate thanks to BFECC

69



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

1

2

3

4

5

6

7

8
x 10

−6

Simulation Time (sec)

C
P

U
 T

im
e 

/ N
um

be
r 

of
 C

el
ls

No Controller (P. Proj.)
P. Controller (P. Proj.)
P. Controller (Segmentation)
Avg. for No Controller (P. Proj.)
Avg. for P. Controller(P. Proj.)
Avg. for P. Controller (P. Proj. + Segmentation)

Figure 36: Computation times for pressure projection and segmentation with and without
volume control. Computation time is normalized by the number of grid cells.

70



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45
x 10

−5

Simulation Time (sec)

C
P

U
 T

im
e 

/ N
um

be
r 

of
 C

el
ls

No Controller
P. Controller 
Avg. for No Controller
Avg. for P. Controller

Figure 37: Total computation times with and without the volume control. Computation
time is normalized by the number of grid cells.

71



(the residual error isO(∆x3,∆t3) per each time step), the volume error accumulated over

time remains first order. Roughly speaking, sincec is proportional to the volume error,

the order of accuracy may remain the same. A further analysis is required to verify this

statement.

In addition, we introduced an additional error in the volume computation. Since we

counted number of cells, the volume computation has an error whose magnitude isO(∆xS),

whereSis the area of a region’s boundary. Since the divergencec is proportional to the nor-

malized volume errorx whose magnitude is computed asx = V−Ṽ
Ṽ

= O(∆xS/V) = O(∆x),

the divergencec is alsoO(∆x). Although this is larger than the residual error, the volume

computation error is not accumulated over time. Therefore, the error in the volume com-

putation may not decrease the overall accuracy. We plan to perform further analysis in

future.

4.10 Results

Using the volume control method, we can simulate fluid without volume loss. The severe

volume loss observed in Fig. 38 can be corrected by using the volume control method as

shown in Fig. 39. For the simulations in Fig. 38 and 39, we used 2563 equivalent grid, with

the surface tensionγ = 0.07 N/m. The size of the computational domain is 5cm3.

As discussed earlier, the volume control method is not only used to correct the volume

error, but it can also be used to change the volume of fluid. In Fig. 40, we demonstrate this

by inflating bubbles. We let the desired volume linearly increase over time. As shown in

Fig. 40, the volume control produces divergence that inflate bubbles to follow the desired

volume. We use a 5123 equivalent grid, and the surface tension coefficientγ = 0.07 N/m.

The size of the computational domain is 10cm3.

72



Figure 38: Simulation of a bubble without controllers on a 2563-equivalent octree grid.
The volume is almost lost after a while.

73



Figure 39: Simulation of a bubble with proportional controller on a 2563-equivalent octree
grid. The volume of bubble is preserved.

74



Figure 40: Simulation of inflated bubbles.

75



Figure 41: Simulation of inflated bubbles (continued).

76



CHAPTER V

A MESH FILTER IN RATIONAL FORM

5.1 Surface Smoothing

5.1.1 Choice of Discrete Laplacian Operator

The algorithms for smoothing triangle meshes have been studied extensively. In Taubin’s

work [72], the low frequency modes in a mesh are preserved, while high frequency modes

are attenuated. The underlying theory is that the eigenvector of the negative Laplacian

operator of a surface represents different frequency modes of the surface,i.e., the larger

the associated eigenvalue is, the higher the frequency mode it represents. However, the

quantitative relation between the eigenvalues of the discrete Laplacian matrix and the fre-

quency of the noise on the surface is not known. Furthermore, the discrete Laplacian oper-

ator does not approximate the continuous Laplacian and hence one cannot expect that the

eigenvalue/eigenvector pair approximates the eigenvalue/eigenfunction pair of the smooth

surface. Indeed, all the eigenvalues of the discrete Laplacian operator fall into the interval

[0,2], whereas the eigenvalue of the smooth surface can be infinitely large. In the discrete

mesh, the finer the mesh, the larger the frequency the mesh can represent and therefore

eigenvalue associated with such a high frequency mode can be very large. In [78], the

discrete operator used for filtering is the affinity matrix, which does not have a known

corresponding continuous operator for a smooth surface.

Hence, we have decided to use a discrete Laplacian operator that is convergent to the

continuous one, as the mesh is refined. A popular formulation of the discrete Laplacian

operator is based on the cotangent weights [55] that is used for mesh filtering in [11]. It

can be shown by Taylor series expansion [76] that when the cotangent weights are divided

by one third of the area of neighboring triangle (Ã in (53)) this formulation approximates

77



the continuous Laplace-Beltrami operator if the mesh is regular, i.e., the edge length and

triangle angles are uniform. We show that, when this operator is used, the cutoff frequency

can be selected using a more intuitive measure such as the geometric dimension of a feature.

Let L ∈ Rnv×nv be the discrete Laplacian operator defined as

(−L)i j =


1

Ãi/3 ∑
k∈Ni

(cotαik +cotβik) , i = j

− 1

Ãi/3

(
cotαi j +cotβi j

)
, i 6= j

(53)

where(L)i j is thei, j-component ofL , nv is the number of vertices,̃Ai is the sum of area

of triangles aroundi th vertex,Ni is the set of indices of vertices around thei th vertex and

αik,βik are angles of the corners facing the edge connectingi th andk th vertices.

5.1.2 Decomposition of the Operator

The matrixL is not symmetric, but it can be decomposed into a multiplication of a diagonal

matrixM with a symmetric matrixK defined as

−L = M−1K , where

(M)ii = Ãi/3

(K)i j =

 ∑k∈Ni
(cotαik +cotβik) , i = j

−
(
cotαi j +cotβi j

)
, i 6= j

(54)

Note that the matricesM andK appear when one constructs a linear finite element formu-

lation of the PDEφ̇ −∆φ = 0 of a scalar filedφ over the triangle mesh. The finite element

formulation yieldsM{φ̇}+ K{φ} = 0, where{φ} is the long vector ofφ sampled at the

vertices, whereK is the stiffness matrix corresponding to the negative Laplacian term, and

M is the lumped mass matrix.

Notice that if all triangles are properly oriented and there is no triangle with negative

or zero area, the element stiffness matrixKe ∈ R3×3 is positive semi-definite with a one

dimensional null space. SincexTKx = ∑∀exT
e Kexe, wherexe ∈ R3 is the collection of

entries inx that belong to theeth triangle,xTKx ≥ 0 (xTKx = 0 if and only if all entries

78



of x are the same when the mesh has one connected component). Consequently,K is

(symmetric) positive semi-definite with one zero eigenvalue andM is a diagonal matrix

with positive elements. Consider the eigen decomposition of the positive semi-definite

matrixM−1/2KM −1/2 = ṼΛṼT , whereṼ is orthogonal andΛ is diagonal. By multiplying

it by M−1/2 to the left andM1/2 to the right, we obtain an eigen decomposition of−L

−L = M−1/2
(

M−1/2KM −1/2
)

M1/2

= M−1/2Ṽ Λ
(

M−1/2Ṽ
)−1

= M−1/2Ṽ Λ ṼTM1/2
(55)

If we defineV ≡M−1/2Ṽ, thenV−1 = ṼTM1/2 = VTM and we have

−L = M−1K = VΛV−1 = VΛVTM (56)

V is an eigenvector matrix of−L .

5.1.3 Construction of Filter

Let p∈Rnv×3 be the matrix whose columns are thex,y andzcoordinates of vertices. Then,

−Lp is the normal vector whose magnitude is twice the mean curvature at each vertex, and

hence−L is the discrete Laplace-Beltrami operator [6].

If we can computeV exactly, we can drop high frequencyvi , yielding an ideal filtering.

However, in a large mesh, it is not practical to compute more than the first few eigenvectors.

Moreover, even if possible, ideal filtering often creates ripples and hence not always ideal

in practice. Thus, the approach in [72] is very efficient, since a carefully designed filter

can keep the low frequency while reducing high frequency without having to compute the

eigenvectorV.

We propose the following filtering formula inspired by the linear discrete system used

in DSP and control fields.

(
a0I −a1L +a2L2− ...

)
p′ =

(
b0I −b1L +b2L2− ...

)
p

Applying the eigen decomposition of−L in (55) yields

(a0I +a1Λ+ ...)V
−1

p′ = (b0I +b1Λ+ ...)V
−1

p (57)

79



Let si be thei th diagonal element ofΛ. Then, thei th row of (57) is

V−1p′ = diag[G(si)] V−1p (58)

where diag[G(si)] is a diagonal matrix withG(si) in its diagonal. The functionG(s) is

called the transfer function and is the amplification factor for the eigenmode associated

with the eigenvalues. One can see thatG(s) is in the following form

G(s) =
b0 +b1s+b2s2 + ...

a0 +a1s+a2s2 +a3s3 + ...
(59)

Finally, we have

p′ = V diag[G(si)] V−1p (60)

which shows thatp′ = p if G(s) = 1 for all s. If G(s) is small (large) for somes, thenp′

will have small (large) contribution from the mode associated with it. Thus, if−L is the

discrete Laplacian operator that approximates the continuous one, one can assume that the

eigenvectors inV and the associated eigenvalues approximate the physical frequencies in

the surface. Hence, one can designG(s) to exaggerate/attenuate certain frequency pattern

in the surface.

By choosing different coefficients, we can design a variety of filters, such as lowpass,

high pass, bandpass, or notch filters. Other filters or transfer functions design methods

such as the classical pole-zero placements, butterworth, Chebyshev and other filters in

analog/digital controls and DSP literatures could also be used with slight modifications as

needed.

10
−2

10
0

10
2

0

0.5

1

1.5

s
1
s

2

G
0

G
1

G
∞

low−pass

10
−2

10
0

10
2

0

0.5

1

1.5

2

s
1
s

2

G
0

G
1

G
∞

low−pass, band−exaggeration

10
−2

10
0

10
2

0

0.5

1

1.5

2

2.5

band−exaggeration filters

Figure 42: Lowpass filter and its variations constructed from (67) with 0< s1 < s2,G∞ <
1 < G1,G0 < G1

80



10
−2

10
0

10
2

0

0.5

1

1.5

s
1

s
2

G
0

G
1

G
∞

high−pass

10
−2

10
0

10
2

0

0.5

1

1.5

2

s
1

s
2

G
0

G
1

G
∞

high−pass, band−exaggeration

10
−2

10
0

10
2

0

0.5

1

1.5

2

2.5

band−exaggeration filters

Figure 43: Highpass filter and its variations constructed from (67) with 0< s2 < s1,G0 <
1 < G1,G∞ < G1

5.1.4 Converting to Symmetric Matrix Equation

SinceL = −M−1K is not symmetric, a bi-conjugate gradient method has been used [11].

Instead, we propose to left-multiply the equation by the diagonalM , yielding

(
a0M +a1K +a2KM −1K + ...

)
p′ = (b0M +b1K + ...)p (61)

Now, we have a symmetric matrix and the equation can be solved by the simpler conjugate

gradient methods. We use a simple Jacobi preconditioner. Notice that the sparse matrix

M +a1K +a2KM −1K + ... does not have to be computed. The CG iteration only requires

matrix vector multiplications. Thus,
(
M +a1K +a2KM −1K + ...

)
p can be conveniently

computed as the sum of a cascaded series of simpler operations, such asMp , Kp . The

efficient computation of the Jacobi preconditioner is not trivial but it can be performed

in linear time by taking advantage of the sparsity information that is available from the

connectivity of the mesh.

5.2 Previous Works

Theλ/µ filter [72] is in the following form.

p′ =
(
I +b1(−L)+b2(−L)2)np (62)

Thus, the transfer function is

G(s) =
(
1+b1s+b2s2)n (63)

81



Since the operator−L chosen in [72] has eigenvalue less than two, a proper choice ofb1,b2

will keepG(s) small on the interval [0,2]. However, when one uses the Laplacian operator

in (53), its eigenvalues are large, yielding largeG(s) for large eigenvalues. Thus, the

explicit filter formulation will not suffice for any operator that approximates the continuous

Laplace-Beltrami operator. Hence, Desbrun et al used an implicit formula [11] using an

operator nearly similar to (53).

(I +a1(−L))np′ = p (64)

The transfer function is

G(s) =
1

(1+a1s)n (65)

They used a uniform scaling factor to preserve the volume. In implicit form,G(s) is safe

for very largessince it will result in a very small value ofG, attenuating the high frequency

mode associated with it. The drawback is the lack of a flat lowpass band, which may yield

an annoying shrinkage of features that one may want to preserve. Even though the operator

chosen was close to (53), the quantitative meaning of the filter frequencies was not studied.

Another implicit filter is the butterworth filter found in [78]. In this work, the transfer

function is in the form

G(s) =
1

1+a2s2 (66)

Again, the gain is a monotonically decreasing function ofs and hence the attenuation of

the low frequency is inevitable. A typical example is the shrinkage of the bunny ear. A

higher order butterworth filter will produce more flatness at low frequencies [10], since the

filter is designed to have maximal flatness at zero frequency. However, to maintain a flat

lowpass band, the order of the filter needs to be high and hence the cutoff rate will be very

steep, approaching the ideal filtering, which can cause ripples, an effect known as ringing.

This phenomenon can happen even in the second order filter, whose maximum cutoff rate

is -40db. However, in our filter construction, it can be easily reduced by choosing a larger

s2, which is defined in section 5.3.1.

82



It should be mentioned that the Laplacian operators found in [72, 40, 36] regularize

the mesh while performing the filtering operation. The reason is complex. An intuitive

understanding may be gained by deriving the Laplacian operator in [40] from the finite

element framework, where edges correspond to string elements with nominal length zero,

and their stiffness are proportional to lengths. This yields long edges pull harder and shrink,

while stretching short edges, which yields mesh regularization. Unfortunately, (53) does

not have a similar effect. A remedy was proposed by [50], where they constructed a hybrid

operator that uses (53) for normal displacement of the vertex and the umbrella operator in

[40] for tangential motion with some adaptation. In contrast, our approach applies the mesh

filter only once and hence the mesh regularity deteriorates little. Therefore, we do not need

to embed mesh regularization.

An alternative filtering approach is to build a multi-resolution hierarchy that contains

different level of detail and then selectively reduce or amplify various detail levels. In [28],

the progressive mesh is used to build the multi-resolution and then different refinement

steps are zeroed, kept or amplified. Again, the mesh refinement stepnand size of feature are

not explicitly related and hence the user need to choosen by trial and error. Exaggeration

of mesh feature can also be found in [77], where Zelinka et al picked a feature using a

geodesic fan and then searching the mesh for similar features to exaggerate.

5.3 Filter Design

5.3.1 Exaggeration Filter Design

In this section, we explain how we designed a filter that exaggerates certain frequencies.

We may also remove high frequencies and keep low frequencies, or vice versa. We use a

second order polynomial for both the numerator and denominator, which gives us choices

for six coefficients:a0,a1,a2,b0,b1,b2. A higher order polynomial would afford more

flexibility and sharper cutoffs, but would considerably slow down computation. Therefore,

in order to support interactive design, we have opted for second order polynomials.

83



As is shown in the far left image of Fig. 42, we allow the user to specify the DC gain

G(0) = G0 and the high frequency gainG(∞) = G∞, which should be zero if one wants to

attenuate the high frequencies. The user can also select the location of the maximum gain

such thatG(s1) = G1 to design the frequency and amplification factor. We also allow the

user to specify another frequencys2, such thatG(s2) = 1, to specify when the gain falls off

to one. Then, given the five parameters1,s2,G0,G1,G∞, the filter coefficients are computed

as

a0 = 1 , b0 = G0 , a2 =−G0−G1

G1−G∞

1

s2
1

, b2 = a2G∞

a1 =−G0−G1

1−G1

2
s1
− 1−G0

1−G1

1
s2
−a2

1−G∞

1−G1
s2

b1 =
G0−G1

1−G1

s2−2s1

s2
1

− 1−G0

1−G1

G1

s2
−a2G∞ s2

(67)

whereG1 6= 1.

If s2 > s1 > 0,G1 > G0 andG1 > G∞, one obtains a set of filters shown in Fig. 42 that

includes lowpass, band exaggeration filters with the option of high frequency reduction.

In lowpass filter design, when stronger attenuation in high frequency is needed, one may

chooseG∞ = 0. In this case,b2 = 0 and the high frequency cutoff of 20db is achieved. This

can be increased to 40db ifG0 = 1 ands2 = 2s1 sinceb1 = b2 = 0. The example of this

steep cutoff can be found in the second image in Fig. 52, where the high frequency noise in

the chin, shoulder and ear have disappeared. When we chooseG0 = G∞ = 0, we obtain a

bandpass filter as is shown in red in the last image of Fig. 42. Ifs1 > s2 > 0,G1 > G∞ and

G1 > G0, one obtains the highpass filter with options of various exaggerations and bandpass

filter as illustrated in Fig. 43. Notice that those highpass filters will collapse the mesh since

they remove low frequencies and hence are less useful than lowpass filters. However, they

may still be used in some application that needs to compute the strength of high frequency

signal or transfers high frequency details of a mesh to other mesh after constructing a

mapping between two surfaces. One can also obtain a notch filter byG0 > 1,G∞ > 1 and

assigning small value toG1, as is shown in Fig. 44. An example of this notch filter can be

found in the third image of Fig. 49. Also, when one increasesG∞ > 1 andG1 close to one,

84



10
−2

10
0

10
2

0

0.5

1

1.5

s
1
=1 s

2
=100

G
0
=1.01

G
1
=0.05 s

2
=10s

2
=2

G
∞
=1.01

Figure 44: Notch filters with different stop-band widths.

a high frequency exaggeration filter is obtained, as is shown in Fig. 45.

In conclusion, our filter formulation in (61) and (67) can be used for a variety of mesh

processing applications.

5.3.1.1 Note on Computation Time and Higher Order Filters

Our filter (67) is second order. The higher order filter can provide more freedom in design-

ing G(s). For example, Chebyshev filter can reduce ripples in the pass band. However, as

the order of the filter grows, the condition number of the matrix in the left hand side of (61)

will grow exponentially and hence applying it will be very slow. Alternatively Zhang et al

[78] suggest an idea that can possibly remedy this by factoring high order polynomials into

a product of quadratic or linear polynomials. Zhang et al. even factored the denominator

of (66) into
(
1+

√
a2s
)(

1+ j
√

a2s
)
, j =

√
−1 and then solved the two first order complex

matrix equations.

Our filter process takes a few seconds for a model with 3,291 vertices. For the dinosaur

model with 28,098 vertices, it requires 14∼17 seconds for high frequency filters in Fig.

49 and a few minutes for low-frequency filtering as is shown in Fig. 50. Note that low

frequency filtering is much slower than high frequency one. We provide timing results for

85



10
0

10
2

10
4

0

0.5

1

1.5

2

s
2
=100

G
0
=1.01

G
1
=0.9

G
∞
=2

s
1
=50

Figure 45: High frequency amplification filter applied to a rabbit model(33,519 vertices),
which took 26 seconds in 2.4GHz Pentium4.

10
−1

10
0

10
2

10
4

10
−4

10
0

12 vertices
20 triangles
5 <= valence <= 5

lcosahedron

10
−1

10
0

10
2

10
4

10
−4

10
0

42 vertices
80 triangles
5 <= valence <= 6

10
−1

10
0

10
2

10
4

10
−4

10
0

92 vertices
180 triangles
5 <= valence <= 6

10
−1

10
0

10
2

10
4

10
−4

10
0

1002 vertices
2000 triangles
5 <= valence <= 6

10
−1

10
0

10
2

10
4

10
−4

10
0

4 vertices
4 triangles
3 <= valence <= 3

tetrahedron

10
−1

10
0

10
2

10
4

10
−4

10
0

10 vertices
16 triangles
3 <= valence <= 6

10
−1

10
0

10
2

10
4

10
−4

10
0

20 vertices
36 triangles
3 <= valence <= 6

10
−1

10
0

10
2

10
4

10
−4

10
0

802 vertices
1600 triangles
3 <= valence <= 6

10
−1

10
0

10
2

10
4

10
−4

10
0

6 vertices
8 triangles
4 <= valence <= 4

longitude−latitude

10
−1

10
0

10
2

10
4

10
−4

10
0

7 vertices
10 triangles
4 <= valence <= 5

10
−1

10
0

10
2

10
4

10
−4

10
0

14 vertices
24 triangles
5 <= valence <= 6

10
−1

10
0

10
2

10
4

10
−4

10
0

422 vertices
840 triangles
5 <= valence <= 30

Figure 46: Exaggeration filter(s1 = 10, s2 = 25, G0 = 1.0, G1 = 30, G∞ = 0) applied to
sphere meshes of various radii and connectivities. The solid blue line isG(s) computed
from (59), while red dots are samples of experimental gainsrO/rI , whererI , rO are the
average radii of input and output spheres, respectively. Notice thaty-axes are in log scale.

86



all models measured in 2.4GHz Pentium4 PC with 512MB of main memory. This com-

putation time could be significantly improved by using complex valued conjugate gradient

solver [78] or the multigrid solver [48].

5.3.2 Filters Decomposable to First Order Ones

We explore the idea of constructing a filter that can be factored into real polynomials of

degree one, since such an approach allows the left hand side of (61) to be factored into

products ofM−1(K + piM), which can be solved much faster.

G(s) =
(

G0
p1p2p3...

z1z2z3...

)
(s+z1)(s+z2)(s+z3)...
(s+ p1)(s+ p2)(s+ p3)...

(68)

wherepi andzi are real numbers. A classical control theory [63], pages 213–226, provides

an easy guideline in choosingzi andpi using the asymptotic lines that turns 20db atzi and

-20db atpi as is illustrated in Fig. 48. As is shown in Fig. 47, it can be set to approximate

the exaggeration filter too. However, it is difficult to make the exaggeration band narrow.

In low pass filtering, it is hard to obtain a sharp cutoff rate while maintaining flat pass band.

Thus, filters decomposable to first order ones can be intuitively designed by asymptotic

lines and faster than the second order filters but their filtering capability is not sufficiently

powerful.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.5

1

1.5

2

2.5

3

s

G
(s

)

s
1 s

2

G
0

G
1

G∞
s

1
=10, s2=25, G0=1, G1=3, G∞=0

                s2 + 0.05 s  
−−−−−−−−−−−−−−−−−−−−−−−−
   s2 − 0.11667 s + 0.0066667

    37840708.65(s+5.1)4

−−−−−−−−−−−−−−−−−−−−
             (s+20)8  

Figure 47: Comparison of exaggeration filter(blue) to a filter designed by asymptotic
lines(green).

87



10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−1

10
0

G
(s

)

s

  (s+1)(s+10) 
−−−−−−−−−−−−−−
(s+0.1)(s+100)

z
1
 z

2
 

p
1

p
2
 

Figure 48: Designing a band stop filter by choosing four frequencies.G(s) tends to turn
20db(-20db) at eachzi(pi).

5.4 Tests of Filtering Framework

We now validate the assumption made in section 1.5 under the proposed filtering frame-

work. Since the curvature of a sphere is unique, we can predict the shrinkage ratio the-

oretically. We apply the filter to sphere models of various radii and then measure their

shrinkage/expansion ratios and compare them to the theoretically predicted ones.

Consider a sphere equationp · p = r2. Since−L computes the normal vector whose

length is twice the mean curvature,−L computes

−Lp =
2
r

p
|p|

=
2
r2p (69)

Thus, the eigenfunction is the sphere itself and the eigenvalue is 2/r2, which implies that if

we apply the filter to spheres of radiusr, it should shrink or expand by the ratio ofG
(
2/r2

)
.

We apply the filters for a sphere mesh obtained from three different tessellation meth-

ods: longitude-latitude model and subdividing tetrahedron and icosahedron. As is shown

in Fig. 46, the filter output and the theoretical gain matches well in the mesh obtained from

icosahedron since the triangulation is near regular. In other models, the mesh includes

vertices whose valence is significantly different from six. This leads to some imprecise

results for certain frequencies. However, in most frequency, the expected frequency and

filter throughput match well.

88



Figure 49: Various filtering results for a dinosaur model. The top image is the initial model
with 28,098 vertices and 56,192 triangles. The bottom two are produced by a band exagger-
ation and a band stop filter fors1 = 630 (frequency of back-bone marked in red circle),s2 =
1260,G0 = 1 andG1 = 3,G∞ = 0.9 (bottom left), andG1 = 0.01,G∞ = 1.1(bottomright).
The computation times are 17 and 14 seconds, respectively.

89



5.5 Selecting Feature and Computing Filter Frequency

In the proposed GeoFilter framework, the filter frequencies are chosen from the physical

size of a user selected mesh feature. For example, a sphere like feature can be considered

to have frequency of approximately 2/r2 and a cylinder like feature has 1/r2. Thus, if the

user knows the size of the feature, the filter frequency can be easily computed.

To facilitate this process, we first allow the user to select a portion of mesh by picking

a triangle graphically and then by automatically expanding the selection to neighboring tri-

angles as long as the user keep pressing the mouse button. The operation may be repeated

to extend the selection areas in a less regular fashion. The feature size is computed auto-

matically by fitting a bounding box around optimally aligned principal axes computed as

the eigenvectors of the covariance matrix [26]. The bounding box is shown as a transparent

ellipsoid in Fig. 1. The dimensions of the bounding box are used to derive the desired filter

frequencies.

In Fig. 49, the bump of the back bone has the radius of 0.0563, which corresponds to

the frequency of 2/0.05632 ≈ 630. This frequency is exaggerated in the center image and

reduced in the right image. We apply similar a strategy in various examples. In Fig 51, we

pick the horse shoe that gives a frequency of approximately 60. In Fig. 52, we pick the

nose that has frequency of approximately 25.

In conclusion, we have proposed a new approach to mesh filtering. The examples

demonstrate that the filter frequency can be computed from the sizes of graphical features

rather than via a time consuming trial-and-error process.

90



Figure 50: A band exaggeration filter applied to the dinosaur model(far left in Fig. 49)
with and without high frequency attenuation.s1 = 25 is chosen as the frequency of the leg:
s2 = 60,G0 = 1,G1 = 3 G∞ = 0.0 (left), andG∞ = 0.9(right). The computation times are
142 and 337 seconds, respectively

Figure 51: Exaggeration of the legs of a horse model with 48,485 vertices. Far left image
is original model. The next two are exaggeration results (G0 = 1,G1 = 2,s1 = 60,s2 =
120). The seconds and third are respectively with(G∞ = 0, 89 sec.) and without(G∞ =
0.9,182sec.) eliminating high frequency.

91



Figure 52: Various filtering results for a human model (75,948 vertices, 151,474 triangles).
Top left is the original model. The top right image shows a lowpass filtered model (s1 =
25,s2 = 50,G0 = 1,G1 = 1.1,G∞ = 0, 366 sec.). The bottom two are exaggerated models
that look older (s1 = 200,s2 = 1000,G0 = 0.5,G1 = 1.1,G∞ = 0,70 sec.) or like a cartoon
character (s1 = 25,s2 = 400,G0 = 0.5,G1 = 1.8,G∞ = 0, 481 sec.). Since the bottom two
models haveG0 = 0.5, the filtered models are about half the size of the initial model. In
this figure, we zoomed them in.

92



CHAPTER VI

CONCLUSION

Most applications of computer graphics deal with static or animated surfaces that approx-

imate the boundaries of real or simulated objects and their behavior with time. A surface

may be represented explicitly, for example by an approximating triangle mesh, or implic-

itly, for example as the iso-surface of a scalar field sampled along a regular lattice. We have

used two representations of such surfaces: (1) a triangle mesh, (2) an iso-surface implicitly

defined by the level set.

6.1 Fluid Simulation

Recently, with the growth of the entertainment industries such as movie and games, com-

puter graphics applications have been expanding. Those industries demand accurate simu-

lation methods for the synthesis of realistic behaviors in virtual scenes. These simulations

typically involve objects moving according to Newtonian physics. Therefore, accurate

simulation of Newton physics is an important tool to create a world that contains objects

moving realistically. Rigid body motion, and even articulated structure kinematics and

dynamics, have been addressed extensively in the field.

A challenging problem is fluid animation, especially for a fluid with a high degree of

freedom. Because it would be tedious, or even impossible, to design fluid animation by

hand from ground up, there is a strong demand for accurate simulation tools for synthesiz-

ing animations of fluids interacting with solids.

Unfortunately, fluid simulation is a complex process involving many steps and subprob-

lems. Naive simulations suffer from shortcomings that make the results clearly unrealistic

and hence unacceptable for commercial entertainment or scientific use. This thesis ad-

dresses three problems in fluid simulation: (1) Diffusion and dissipation in advection step,

93



(2) Breaking of thin films, and (3) Volume loss.

6.1.1 Reduced Diffusion/Dissipation

A fundamental step in fluid simulation is the advection step. A stable implementation of

that step was proposed in [65] using the CIR (Courant-Isaacson-Rees) method. Unfor-

tunately, the CIR advection methods produces significant amount of diffusion and dissi-

pation. This diffusion makes the transported quantity spread to neighbors (resulting in

blurred images or in the loss of shape details) and the dissipation makes the transported

quantity disappear. This dissipation/diffusion in the advection step is a problem when sim-

ulating non-diffusive/non-dissipative fluids. We have addressed this dissipation problem

by harnessing the BFECC method and have shown that the BFECC method can reduce

dissipation and diffusion. Although other approaches exist for reducing diffusion and dis-

sipation, the BFECC method has a strong advantage: it only requires the implementation

of a simple linear CIR. Therefore, it is very easy to implement and has low computation

cost. We applied BFECC to a number of problems. We have demonstrated its effectiveness

on several simulation problems. First, we applied it to the velocity advection step, and have

shown that the resulting velocity has richer flow details.

With this solution, at the boundary of the fluid in a two phase flow simulation (for

example, the interaction of water and air), we observed that the velocity at the interface

keeps increasing. We avoided this problem by disabling BFECC in a thin band near the

interface. This way, flow details are preserved except at the interface. A future direction

would be applying BFECC or its modification on this thin band, which can keep the flow

detail at the interface, and therefore, can increase the surface details.

We also applied BFECC to the image advection problem, which will provide a useful

tool in the movie industry when a detailed moving texture on a fluid surface is necessary

[2, 42]. When BFECC is applied, the texture detail is preserved more accurately than when

linear CIR was used.

94



The next application of BFECC that we have explored was the smoke density advection

problem. When BFECC was applied, the smoke advected with only a small amount of

diffusion and dissipation, allowing the simulation of non-diffusive smoke such as cigarette

smoke.

The next application was the level set advection. The linear CIR level set advection

yields fast volume loss. When the BFECC method was used, the volume loss was signifi-

cantly reduced.

However, this solution still suffered from a blatant volume loss. For example, bubbles

of air in water would shrink and eventually disappear. We solved this problem by using the

volume control method discussed in Chapter 4.

We have also tested BFECC on irregular grids. In particular, we tested in on triangle

meshes. To do so, we defined the level set value on each vertex of the mesh. We have

developed a gradient operator. Then, we have used it to implement level set advection on

triangle meshes.

To test this advection on a triangle mesh, we have designed a challenge similar to the

Zalesak’s problem, and have compared BFECC with the CIR advection on meshes. We

have shown that BFECC advects the Zalesak disk with small deteriorations.

Finally, we here applied BFECC to a smoke advection problem on a quadtree mesh and

showed that BFECC can be applied to an adaptive grid. Using BFECC, we observed that

smoke was advected without diffused to neighbors, creating an animation of thin smoke.

6.1.2 Simulation of Thin Liquid Films

Fluid animations often contain splashing water or bubbles. In such animations, a thin liquid

film is formed during splash or between bubbles. The thin film is difficult to simulate using

fixed Eulerian grid level set methods, since inadequate sampling will result in a rupture of

the film.

The solution proposed in [79] is robust and and can accurately simulate thin film that

95



separates two different fluid region. Independently, we have developed a method that can

be used for any thin liquid film. Unfortunately, our approach cannot simulate arbitrarily

thin films. Hence, we have decided to follow the approach proposed in [79] and improved

upon it.

Our efforts to prevent the rupture of thin films were inspired by the disjoining pressure,

which is a resultant of various molecular interactions. This disjoining pressure prevents

two very close liquid and gas interfaces from approaching further. We have adopted this

idea and implemented a step that simulates the disjoining pressure. We identified the thin

film cells, and then, we applied the disjoining force that is designed to make the thin film

interfaces (membranes separating the water film from two adjacent air bubbles) repulse

each other. The force is a function of the film thickness. We compute this force for each

thin film cell and then apply it force to neighboring cells so that the force and moment

resultants are zero. We plan to verify this idea with more experiments in future.

However, we observed that an additional problem occurred in the simulation of the

thin film. Since the film is thin, the level set is singular near the interface. Therefore, the

level set gradient is noisy and unreliable. Because the surface tension uses this level set

gradient, the surface tension force cannot be computed reliably from the level set values.

This unreliability was causing a premature rupture of thin films.

To address the problem, we proposed to compute curvature from the local iso-surface

shape rather than directly from the level set gradient. When the curvature is computed

using this method, we obtain resilient bubbles even when multiple bubbles are stacked in

2D. We will continue the similar idea on 3D cases.

We anticipate that much of future work in this area will focus on improving the methods

to simulate the thin film in bubbles, bubble junctions, and splash.

To decrease computation time and memory usage, we used an octree grid where all the

simulation variables are collocated. This way, the implementation complexity and memory

cost were lowered. We have applied a multi-grid method and have shown that it make the

96



pressure projection step 2∼10 times faster.

6.1.3 Volume Control Using Divergence

Our third problem was the volume loss problem in the level set method. As shown in

Chapter 2, the volume loss in the CIR level set advection can be reduced significantly

by using the BFECC method. However, a small but still visible amount of the volume

loss occurred. Therefore, we have developed a volume control method that compensates

volume loss using the divergence. First, the volume change equation was derived, and then,

a nonlinear feedback controller was designed. Finally, the gain was computed so that the

volume error is corrected in a predefined time. The developed volume change equation and

controller was verified by several experiments.

The drift error in the proportional controller encouraged us to use an additional integral

feedback. Since this additional feedback makes the resulting equation second order, the

integral gain was chosen so that the oscillation does not occur. Using this integral feedback,

the drift error was corrected and it was shown that the volume loss factor can be estimated

by the integral of the volume error.

The volume control technique presented in Chapter 4 leaves many opportunities for

future research. First, we believe that our volume control technique may be applied to

different level set advection schemes in different simulation settings. We believe that the

staggered grid approach will require a smaller divergence and that a level set method that

incorporates particles [17] will require even smaller divergence to correct the volume error

by our control method. We can also test the volume control for the liquid drops. Because

the bubble’s volume loss was maximized when the thin film was formed and because liquid

drops do not have thin films, we believe that the liquid drop will also need smaller diver-

gence to correct its volume error. Therefore, we believe that the volume control method

will work as well with a staggered grid, particle level set, and for liquid drops.

If the region has only a few grid cells, our volume computation will be very noisy since

97



we only count the number of cells. To this reason, we only applied the volume control to

the regions that have more than 50 grid cells. Therefore, computing volume more precisely

and then tracking it more precisely will be necessary in order to apply volume control to

small regions with small number of grid cells.

The proposed volume control can be applied to most fluid simulations that are based

on an Eulerian grid. Since the volume error is no longer accumulated, fluid simulations

can now run for a long time without the bubbles losing volume or having the water level

decreasing.

In summary, we have developed a suite of tools for evolving surfaces in animations. We

believe that these tools will help advance the field of animation towards simpler and more

accurate solutions.

6.2 Mesh Filter

Triangle mesh representations are popular due to their simplicity and to the availability of

hardware graphic accelerators for rendering them. They may be produced with Computer-

Aided Design or Animation systems or through simulation. They may also be extracted

from volumetric models through iso-surface extraction. These meshes may include a sig-

nificant amount of geometric details, which may have to be eliminated to simplify analysis

and shape matching or to accelerate transmission or further processing. They may also

have to be exaggerated to attract the viewers attention or for artistic effects.

We have designed a new mesh filter that may be used to simplify or exaggerate features

of a user-selected magnitude. Our filter improves upon prior art, which used either an ex-

plicit or an implicit formulation, by unifying them into a rational form that offers increased

selectivity and flexibility. Our rational mesh filters may be viewed as a generalization of ra-

tional linear filters (such as butterworth, elliptic, or Chebychev filters) and their adaptation

to triangle meshes.

Compared to the implicit or explicit form, this generalized filter form supports broader

98



set of filters. For example, explicit filters tends to have diverging amplification factor in

high frequencies. In contrast, implicit filters have amplification factor decaying at high fre-

quencies, but they suffer from the lack of flat pass band. Our rational form takes advantage

of both, not only allowing decaying or diverging transfer function, but also allowing wider

variety of filter shapes (such as a band-pass filter).

To perform the filtering on the whole mesh, we need to choose a Laplace-Beltrami oper-

ator so that we can reshape its spectrum by applying our filter. Among the various discrete

formulations that approximate the Laplacian operators, the most popular one is the operator

that uses cotangent weights. This operator approximates the Laplace-Beltrami operator of

the continuous surface when the mesh is close to regular. The cotangent operator does not

converge to the continuous operator as the mesh is refined. We verified that the cotangent

operator is suitable to our needs by experimenting on a sphere, for which the eigen values

of the continuous Laplace-Beltrami operator are known and for which we can compute the

exact shrinkage or expansion amount.

A filter is only useful if the parameters (the filter coefficients) are set properly. It is

impractical to expect the user of a CAD or animation system to tinker directly with such

parameters, especially given the fact that for most filters, several such parameters must

be adjusted. To address this problem, we have proposed to assist the user with a graphic

interface for selecting a feature and an automatic measurement system, which computes

feature size measures and helps the designer to translate them into filter parameter values.

The selected feature will not have one frequency but a set of frequencies, called the

spectrum. We have decided not to analyze and filter this spectrum for two reason: (1)

The computation of the spectrum would be time consuming and (2) the spectrum typically

contains frequencies that should not be eliminated. In addition, mesh filter transfer function

proposed here cannot have sharp cut-offs if one wants to avoid ringing problem. Therefore,

we have focused on automating the choice of one dominant frequency for the selected

feature. In finding one dominant frequency, we proposed to measure the size of the feature

99



and then use the frequencies of ellipsoid, sphere, or cylinder fit to the selected feature

(depending the feature shape).

The graphic interface lets the user select a particular feature by painting directly on

the mesh. Our approach is focused on the the filter: i.e., the users intention. Typically, a

user may want to eliminate or enhance (exaggerate) features of a specific size, while not

affecting larger or smaller features. For example, the user may want to remove the noise

smaller than some size, or to exaggerate certain feature of mesh such as the ears of a bunny

model without affecting the bumpy nature of the bunny’s furry surface. Hence, we decided

to compute the mesh filter parameters from the physical size of a user-selected feature (such

as the ear).

We have validated the proposed approach on a small collection of shapes and features

and concluded that it considerably simplifies the task of selecting and enhancing features

of a given size in models of animals or human faces.

The limitations of the proposed approach stems from the use of a linear approximation

of the local shape properties. The approximation is valid when one wants to filter signals

defined on a mesh that is not moving. However, since the mesh is deforming in mesh

filtering applications, the discrete operator is changing. Thus, mesh filtering is inherently

a nonlinear problem. By ignoring this nonlinearity, our mesh filter is limited to relatively

small deformations.

One may consider extending our work to higher order approximations. Unfortunately,

there are little theoretical guidelines in nonlinear filter and the study of nonlinear filters is

arduous. Nevertheless, we see important opportunities for future works.

First, there is a need for a more precise discrete operator since for irregular meshed, the

cotangent operator will produce incorrect curvature. One may develop such an operator by

taking the Taylor series approximation and then computing weights that zeros low-order

terms.

100



REFERENCES

[1] A LMGREN, A. S., BELL , J. B., and SZYMCZAK , W. G., “A numerical method
for the incompressible navier-stokes equations based on an approximate projection,”
SIAM Journal of Scientific Computing, vol. 17, March 1996.

[2] BARGTEIL, A. W., SIN , F., MICHAELS, J. E., GOKTEKIN , T. G., and O’BRIEN,
J. F., “A texture synthesis method for liquid animations,” inProceedings of ACM
SIGGRAPH 2006 Symposium on Computer Animation, pp. 345–351, 2006.

[3] BAZHLEKOV, I. B., VAN DE VOSSE, F. N., and MEIJER, H. E., “Boundary integral
method for 3d simulation of foam dynamics,” inLecture Notes in Computer Science,
pp. 401–408, 2001.

[4] BRACKBILL, J. U., KOTHE, D. B., and ZEMACH, C., “A continuum method
for modeling surface tension,”Journal of Computational Physics, vol. 100, no. 2,
pp. 335–354, 1992.

[5] BRIGGS, W. L., HENSON, V. E., and MCCORMICK, S. F.,A Multigrid Tutorial.
Siam, 2000.

[6] BUSHER, P., Geometry and Spectra of Compact Riemann Surfaces. Birkhauser
Boston, 1992.

[7] CARLSON, M., MUCHA, P. J., and TURK, G., “Rigid fluid: Animating the interplay
between rigid bodies and fluid,” inSIGGRAPH, ACM, 2004.

[8] CHORIN, A. J., “Numerical solution of the navier-stokes equations,”Mathematics of
Computation, vol. 22, no. 104, pp. 745–762, 1968.

[9] CHORIN, A. J., “On the convergence of discrete approximations to the navier-stokes
equations,”Mathematics of Computation, vol. 23, no. 106, pp. 341–353, 1969.

[10] CUNNINGHAM , E. P.,Digital Filtering: An Introduction. Houghton Mifflin, 1992.

[11] DESBRUN, M., MEYER, M., SCHRÖDER, P., and BARR, A. H., “Implicit fairing
of irregular meshes using diffusion and curvature flow,” inProceedings of ACM SIG-
GRAPH, pp. 317–324, 1999.

[12] DO CARMO, M. P.,Riemannian Geometry. Birkhauser, 1994.

[13] DUPONT, T. F. and LIU , Y., “Back and forth error compensation and correction meth-
ods for removing errors induced by uneven gradients of the level set function,”Jour-
nal of Computational Physics, vol. 190, no. 1, pp. 311–324, 2003.

101



[14] DUPONT, T. F. and LIU , Y., “Back and forth error compensation and correction meth-
ods for semi-lagrangian schemes with application to interface computation using level
set method,”CDSNS2004-399, School of Mathematics, Georgia Institute of Technol-
ogy, 2004.

[15] DUPONT, T. F. and LIU , Y., “Back and forth error compensation and correction meth-
ods for semi-lagrangian schemes with application to level set interface computations,”
Math. Comp., To appear, 2006.

[16] DURIAN , D., “Bubble-scale model of foam mechanics: Melting, nonlinear behavior,
and avalanches,”Physical Review, vol. 55, no. 2, pp. 1739–1751, 1997.

[17] ENRIGHT, D., LOSASSO, F., and FEDKIW, R., “A fast and accurate semi-lagrangian
particle level set method,”Computers and Structures, vol. 83, pp. 479–490, 2005.

[18] ENRIGHT, D., MARSCHNER, S., and FEDKIW, R., “Animation and rendering of
complex water surfaces,” inSIGGRAPH, ACM, 2002.

[19] EXEROWA, D. and KRUGLYAKOV, P. M.,Foams and Foam Films. Elsevier, 1998.

[20] FAN , Z., ZHAO, Y., KAUFMAN , A., and HE, Y., “Adapted unstructured lbm for flow
simulation on curved surfaces,” inProceedings of ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 2005.

[21] FEDKIW, R., STAM , J., and JENSEN, H., “Visual simulation of smoke,” inSIG-
GRAPH, pp. 23–30, ACM, 2001.

[22] FELDMAN , B. E., O’BRIEN, J. F., and ARIKAN , O., “Animating suspended particle
explosions,” inACM SIGGRAPH, pp. 708–?715, 2003.

[23] FOSTER, N. and FEDKIW, R., “Practical animation of liquids,” inSIGGRAPH,
pp. 15–22, ACM, 2001.

[24] FOSTER, N. and METAXAS, D., “Realistic animation of liquids,”Graphical Models
and Image Processing, vol. 58, no. 5, pp. 471–483, 1996.

[25] GOKTEKIN , T. G., BARGTEIL, A. W., and O’BRIEN, J. F., “A method for animating
viscoelastic fluids,” inSIGGRAPH, pp. 463–468, ACM, 2004.

[26] GOTTSCHALK, S., LIN , M. C., and MANOCHA, D., “Obb-tree: A hierarchical struc-
ture for rapid interference detection,” inProceedings of ACM Siggraph, 1996.

[27] GUENDELMAN , E., SELLE, A., LOSASSO, F., and FEDKIW, R., “Coupling water
and smoke to thin deformable and rigid shells,” inSIGGRAPH, ACM, 2005.

[28] GUSKOV, I., SWELDENS, W., and SCHRÖDER, P., “Multiresolution signal process-
ing for meshes,” inSIGGRAPH, 1999.

102



[29] HAARIO , H., KOROTKAYA , Z., LUUKKA , P., and SMOLIANSKI , A., “Computa-
tional modelling of complex phenomena in bubble dynamics: Vortex shedding and
bubble swarms,” inProceedings of ECCOMAS 2004, 2004.

[30] HONG, J.-M. and KIM , C.-H., “Animation of bubbles in liquid,” inEUROGRAPH-
ICS, vol. 22, 2003.

[31] HONG, J.-M. and KIM , C.-H., “Discontinuous fluids,” inSIGGRAPH, ACM, 2005.

[32] JIANG , G. and SHU, C.-W., “Efficient implementation of weighted ENO schemes,”
Journal of Computational Physics, vol. 126, pp. 202–228, 1996.

[33] JOBARD, B., ERLEBACHER, G., and HUSSAINI, M. Y., “Lagrangian-eulerian ad-
vection of noise and dye textures for unsteady flow visualization,”IEEE Transactions
on Visualization and Computer Graphics, vol. 8, no. 3, 2002.

[34] JR., J. D. A., Modern Compressible Flow With Historical Perspective. Mc Graw
Hill, 1990.

[35] KANG, M., FEDKIW, R. P., and LIU , X.-D., “A boundary condition capturing
method for multiphase incompressible flow,”Journal of Scientific Computing, vol. 15,
Sep 2000.

[36] KARNI , Z. and GOTSMAN, C., “Spectral compression of mesh geometry,” inPro-
ceedings of ACM SIGGRAPH, pp. 279–286, 2000.

[37] K IM , B., LIU , Y., LLAMAS , I., and ROSSIGNAC, J., “Flowfixer: Using bfecc for
fluid simulation,” inEurographics Workshop on Natural Phenomena, 2005.

[38] K IM , B., LIU , Y., LLAMAS , I., and ROSSIGNAC, J., “Advections with significantly
reduced dissipation and diffusion,”IEEE Transactions on Visualization and Computer
Graphics, 2007.

[39] K IM , B. and ROSSIGNAC, J., “Geofilter: Geometric selection of mesh filter parame-
ters,” inEUROGRAPHICS, 2005.

[40] KOBBELT, L., CAMPAGNA , S., VORSATZ, J., and SEIDEL, H.-P., “Interactive
multi-resolution modeling on arbitrary meshes,” inProceedings of ACM SIGGRAPH,
pp. 105–114, 1998.

[41] K ÜCK, H. VOGELGSANG, C., and GREINER, G., “Simulation and rendering of liq-
uid foams,” inProceedings of Graphics Interface, pp. 81–88, 2002.

[42] KWATRA , V., ADALSTEINSSON, D., KWATRA , N., CARLSON, M., and LIN , M.,
“Texturing fluids,” inTechnical Sketches Program, ACM SIGGRAPH, 2006.

[43] L IU , X. D., OSHER, S., and CHAN , T., “Weighted essentially non-oscillatory
schemes,”Journal of Computational Physics, vol. 115, no. 1, pp. 200–212, 1994.

103



[44] LOSASSO, F., GIBOU, F., and FEDKIW, R., “Simulating water and smoke with an
octree data structure,” inSIGGRAPH, pp. 457–462, ACM, 2004.

[45] LOSASSO, F., IRVING, G., GUENDELMAN , E., and FEDKIW, R., “Melting and burn-
ing solids into liquids and gases,”IEEE Transactions on Visualization and Computer
Graphics, vol. 12, pp. 343–353, 2006.

[46] LOSASSO, F., SHINAR , T., SELLE, A., and FEDKIW, R., “Multiple interacting liq-
uids,” in ACM SIGGRAPH, pp. 812–819, 2006.

[47] MUSETH, K., BREEN, D., WHITAKER , R., and BARR, A., “Level set surface editing
operators,” inACM SIGGRAPH, pp. 330–338, 2002.

[48] NI , X., GARLAND , M., and HART, J. C., “Fair morse functions for extracting
the topological structure of a surface mesh,” inProceedings of ACM SIGGRAPH,
pp. 613–622, 2004.

[49] OEVERMANN, M., KLEIN , R., BERGER, M., and GOODMAN, J., “A projection
method for two-phase incompressible flow with surface tension and sharp interface
resolution,” Tech. Rep. ZIB-Report 00-17, Konrad-Zuse-Zentrum für Information-
stechnik Berlin, 2000.

[50] OHTAKE , Y., BELYAEV, A. G., and BOGAEVSKI, I. A., “Polyhedral surface smooth-
ing with simultaneous mesh regularization,” inProceedings of the Geometric Model-
ing and Processing, pp. 229–237, 2000.

[51] OSHER, S. and SETHIAN , J. A., “Fronts propagating with curvature-dependent
speed: Algorithms based on hamilton-jacobi formulations,”Journal of Computational
Physics, vol. 79, pp. 12–49, 1988.

[52] OSHER, S. and FEDKIW, R., Level Set Methods and Dynamic Implicit Surfaces.
Springer, 2003.

[53] OSHER, S. J. and FEDKIW, R. P.,Level Set Methods and Dynamic Implicit Surfaces.
Springer-Verlag, 2002.

[54] PARK , S. I. and KIM , M. J., “Vortex fluid for gaseous phenomena,” inProceedings
of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2005.

[55] PINKALL , U. and POLTHIER, K., “Computing discrete minimal surfaces and their
conjugates,”Experimental Mathematics, vol. 2, no. 1, pp. 15–36, 1993.

[56] POHL, T., DESERNO, F., THUREY, N., RUDE, U., LAMMERS, P., WELLEIN , G.,
and ZEISER, T., “Performance evaluation of parallel large-scale lattice boltzmann
applications on three supercomputing architectures,” inSupercomputing, 2004. Pro-
ceedings of the ACM/IEEE SC2004 Conference, 2004.

[57] PRUD’ HOME, R. K. and KHAN , S. A.,Foams: Theory, Measurements, and Applica-
tions. Marcel Dekker, Inc, 1996.

104



[58] SCHNEIDER, R. and KOBBELT, L., “Geometric fairing of irregular meshes for free-
form surface design,”Computer Aided Geometric Design, vol. 18, no. 4, pp. 359–379,
2001.

[59] SELLE, A., RASMUSSEN, N., and FEDKIW, R., “A vortex particle method for smoke,
water and explosions,” inSIGGRAPH, ACM, 2005.

[60] SETHIAN , J. A.,Level Set Methods and Fast Marching Methods. Cambridge Univer-
sity Press, 1999.

[61] SHI , L. and YU, Y., “Inviscid and incompressible fluid simulation on triangle
meshes,”Computer Animation and Virtual Worlds, vol. 15, no. 3-4, pp. 173–181,
2004.

[62] SHI , L. and YU, Y., “Visual smoke simulation with adaptive octree refinement,” in
Computer Graphics and Imaging, 2004.

[63] SHINNERS, S. M.,Modern Control System Theory and Application. Addison Wesley,
1978.

[64] SONG, O., SHIN , H., and KO, H., “Stable but nondissipative water,”ACM Transac-
tions on Graphics, vol. 24, no. 1, pp. 81–97, 2005.

[65] STAM , J., “Stable fluids,” inSIGGRAPH, pp. 121–128, ACM, 1999.

[66] STAM , J., “Flows on surfaces of arbitrary topology,” inSIGGRAPH, pp. 724–731,
ACM, 2003.

[67] STUBENRAUCH, C. andVON KLITZING , R., “Disjoining pressure in thin liquid foam
and emulsion films - new concepts and perspective,”Journal of Physics Condensed
Matter, vol. 15, no. 3-4, pp. 173–181, 2004.

[68] SUSSMAN, M., ALMGREN, A., BELL , J., COLELLA , P., HOWELL, L., and WEL-
COME, M., “An adaptive level set approach for incompressible two-phase flow,”Jour-
nal of Computational Physics, vol. 148, pp. 81–124, 1999.

[69] SUSSMAN, M., SMEREKA, P., and OSHER, S., “A levelset approach for comput-
ing solutions to incompressible two-phase flow,”Journal of Computational Physics,
vol. 114, no. 1, pp. 146–159, 1994.

[70] TAKAHASHI , T., FUJII, H., KUNIMATSU , A., HIWADA , K., SAITO , T., TANAKA ,
K., and UEKI , H., “Realistic animation of fluid with splash and foam,” inEURO-
GRAPHICS, vol. 22, 2003.

[71] TAUBIN , G., ZHANG, T., and GOLUB, G., “Optimal surface smoothing as filter de-
sign,” in Fourth European Conference on Computer Vision (ECCV’96) and IBM Re-
search Technical Report RC-20404, March 1996.

[72] TAUBIN , G., “Signal processing approach to fair surface design,” inProceedings of
ACM SIGGRAPH, pp. 351–358, 1995.

105



[73] THUREY, N. and RUDE, U., “Free surface lattice-boltzmann fluid simulations with
and without level sets,” inWorkshop on Vision, Modeling, and Visualization, 2004.

[74] WEAIRE, D. and HUTZLER, S.,The physics of foams. Oxford, 1999.

[75] WEISKOPF, D., “Dye advection without the blur: A level-set approach for texture-
based visualization of unsteady flow,” inEUROGRAPHICS, vol. 23, 2004.

[76] XU, G., “The convergent discrete laplace-beltrami operator over triangular surfaces,”
in Proceedings of Geometric Modelling and Processing (GMP2004), pp. 195–204,
2004.

[77] ZELINKA , S. and GARLAND , M., “Similarity-based surface modelling using
geodesic fans,” inProceedings of the 2nd Eurographics Symposium on Geometry Pro-
cessing, 2004.

[78] ZHANG, H. and FIUME , E., “Butterworth filtering and implicit fairing of irregular
meshes,” inProceedings of Pacific Graphics, pp. 502–506, 2003.

[79] ZHENG, W., YONG, Y.-H., and PAUL , J.-C., “Simulation of bubbles,” inACM Sig-
graph/Eurographics Symposium in Computer Animation, 2006.

[80] ZHU, Y. and BRIDSON, R., “Animating sand as a fluid,” inSIGGRAPH, ACM, 2005.

106



VITA

ByungMoon Kim received a bachelors degree in aerospace engineering in Inha University,

Inchon, Korea in 1994. After graduation, he worked as a software programmer until 1998.

At the same year, he joined the Georgia Institute of Technology, where he earned masters

degrees in aerospace engineering in 1999, in computer science in 2004, and in mathematics

in 2005, and is currently a doctoral candidate in computer science. His research interests

are in computer graphics, focusing on fluid and solid simulation, geometry processing such

as mesh filtering and editing, and haptic devices. He is an author of papers on various

topics: mobile robot control, a spacecraft simulator, collision prediction, mesh editing,

nonphotorealistic video processing, a mesh filter, and fluid simulation.

107


