
c12) United States Patent

(54)

Kanemasa et al.

INFORMATION PROCESSING APPARATUS,
COMPUTER PROGRAM, AND METHOD FOR
CONTROLLING EXECUTION OF JOBS

(75) Inventors: Yasuhiko Kanemasa, Kawasaki (JP);
Motoyuki Kawaba, Kawasaki (JP);
Calton Pu, Atlanta, GA (US); Qingyang
Wang, Atlanta, GA (US)

(73) Assignees: FUJITSU LIMITED, Kawasaki (JP);
THE GEORGIA TECH RESEARCH
CORPORATION, Atlanta, GA (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 277 days.

(21) Appl. No.: 13/597,507

(22) Filed: Aug. 29, 2012

(65)

(51)

(52)

(58)

(56)

Prior Publication Data

US 2014/0068623 Al Mar. 6, 2014

Int. Cl.
G06F 9148
U.S. Cl.

(2006.01)

CPC G06F 914881 (2013.01); G06F 22091485
(2013.01); G06F 22091486 (2013.01)

Field of Classification Search
None
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

6,341,240 Bl* 1/2002 Bermon et al. 700/97
6,754,658 Bl 6/2004 Matsuno

I lllll llllllll Ill lllll lllll lllll lllll lllll 111111111111111111111111111111111
US009189272B2

(IO) Patent No.:
(45) Date of Patent:

US 9,189,272 B2
Nov. 17, 2015

200210178232 Al *
2005/0081211 Al*
200910165007 Al *
2013/0226639 Al*

1112002 Ferguson 709/217
412005 Koga et al. 718/105
612009 Aghajanyan 718/103
8/2013 Yokoyamaetal. 705/7.14

FOREIGN PATENT DOCUMENTS

JP 2001-229058 8/2001

OTHER PUBLICATIONS

Briquet et al. Scheduling Data-Intensive Bags of Tasks in P2P Grids
with BitTorrent-enabled Data Distribution. [online] (Jun. 26, 2007).
ACM., pp. 39-48. Retrieved From the Internet <http://dl.acm.org/
citation.cfm?id~ 1272990>. *
Patent Abstracts of Japan, Publication No. 2001-229058, Published
Aug. 24, 2001.

* cited by examiner

Primary Examiner - Emerson Puente
Assistant Examiner - Jonathan R Labud
(74) Attorney, Agent, or Firm - Staas & Halsey LLP

(57) ABSTRACT

An information processing apparatus submits jobs for execu
tion on a server. Jobs are classified into a plurality of groups,
and these groups are ranked in ascending order of workload
that the groups of jobs impose on the server. A processor in the
information processing apparatus counts ongoing jobs that
are currently executed on the server and belong to a specified
number of top-ranked groups. The processor designates
pending jobs that belong to other groups than the specified
number of top-ranked groups and suspends submission of
processing requests of the designated pending jobs to the
server, when the number of ongoing jobs is greater than or
equal to a threshold and when there are one or more pending
jobs that belong to the specified number of top-ranked groups.

10 Claims, 29 Drawing Sheets

U.S. Patent

FIG. 1

1

~
INFORMATION
PROCESSING
APPARATUS

'

Nov. 17, 2015 Sheet 1of29 US 9,189,272 B2

2
SERVER (UPPER TIER) ~

J CONNECTIONS

-- ---~

,,.....-la-1 -1 ,,.....-la-2 ------,., ~ ,,.....-la-3 ,. ,,.....-la-4

EXECUTION EXECUTION EXECUTION EXECUTION
UNIT UNIT UNIT UNIT

Job
execution
request

Job
execution
request

Job
execution
request

Job
execution
request lb

~~-.--~~ ,,.--/

'-----'l'---'.__ ___ _...._ __ ---'1'---'---i DETERMINA-
TION UNIT

---- w
ld LIGHTJOB ,,,--- le 0c HEAVY JOB --

QUEUE ~ QUEUE
CALCULATION -

UNIT - Presence of -
- pending light jobs -
-- --

Threshold (T) Number of
,,.....- lg ,,. ongoing light ,,.....- 1f

.--__.._---1-~--. jobs
(Na)

4 G~~ENDING
1

T>Na? .. co~~ifNG
')(

Suspend

SERVER (LOWER-TIER)

Send jobs

r

J CONNECTIONS

4
~

FIG. 2

PROCESSING
REQUEST

910
__J

WEB SERVER
~1
~

~·

~' i i

Ui
i::~

Im: ... ,

JOB
914

RESPONSE
f---

JOB
913

iii

920
__J

APPLICATION SERVER

~
921

~ ~I
D

. .
~ i

I: I
~1m11

JOB

930
,_.)

DATABASE SERVER
~1

932 ~
I T~EAD I I !

i

JOB
924 923 l""""":mr ____ _

!]:1
1l;;iw1

~~!~1'1 936
JOB

(LIGHT)

JOBS
(HEAVY)

~
00
•
~
~
~
~ = ~

z
0
~

'"-....J
N
0
Ul

1J1

=('D
('D
N
0
N

"°

d
rJl

'"'..c

"""" 00
'..c
'N
-....l
N

= N

U.S. Patent Nov. 17, 2015

e
.µ
c
0 u

~
0
·;::
a.
..0
0,
.µ
::i
0
.r:.,
·~
Vl

..0
0

M
......,

< . "-

l9 0
Q) E

LL F
Q)
Vl c
0
0..
VJ

&

QI
Ill
c,......
0 Ill c..-
111

~

Sheet 3of29

0
.-i
.-i

0
0
.-i

0

°'
0
00

0

"'

0

"°

0
Lfl

0
<:I'"

0
[Y")

0
N

0
.-i

US 9,189,272 B2

,......
Ill -QI
E
j::

U.S. Patent Nov. 17, 2015 Sheet 4of29 US 9,189,272 B2

FIG. 4 910

~
WEB SERVER

i I I
I I I
I I I

920 I I I
I I I
I I I r1 I I I
I I I

APPLICATION SERVER

,,.--927b

QUEUE

925a 925b 925c 925d
r1 r1 r1 r1

APPLICATION APPLICATION APPLICATION APPLICATION

,,.--926a ,,.--926b ,,.--926c ,,.--926d

CONNECTION CONNECTION CONNECTION CONNECTION
POOL POOL POOL POOL

DATABASE SERVER

~
930

U.S. Patent Nov. 17, 2015 Sheet 5of29 US 9,189,272 B2

FIG. 5 910
,;

WEB SERVER

.
I I I
I I I
I I I

920 I I • I I I ,; I I I
I • ' I ' I

APPLICATION SERVER

,,.---927b

r927a

,......-927d

QUEUE
QUEUE

,......-927c

QUEUE

925a 925b QUEUE 925c 925d
,; ,; r ,;

APPLICATION APPLICATION APPLICATION APPLICATION

,......-926a ,......-926b ,......-926c ,,.---926d

CONNECTION CONNECTION CONNECTION CONNECTION
POOL POOL POOL POOL

.,. t A +
I I

I I
I I

I I

I
I I I I I \ I I /

I / / "" "" _.,,..
/ "" ""

AGENT -- .,.,
DATABASE SERVER ---- -------------

"-
\ ~ 937

930

U.S. Patent Nov. 17, 2015 Sheet 6of29 US 9,189,272 B2

FIG. 6
910

~
WEB SERVER

i i I
I I I
I I I 920 I I I
I I I

~
I I I
I I I
I I I

,,.-928 APPLICATION SERVER
PRIORITY

~ CONTROL :::
UNIT 927b

~927a 927d
I

QUEUE
927c

QUEUE QUEUE

925a 925b QUEUE 925c 925d
~ ~ ~

APPLICATION APPLICATION APPLICATION APPLICATION

,,.-926a ,,.-926b ,,.-926c ,,.-926d

~
CONNECTION _. CONNECTION ~ CONNECTION

~
CONNECTION

POOL POOL POOL POOL

DATABASE SERVER

"' 930

U.S. Patent Nov. 17, 2015 Sheet 7of29

TERMINAL DEVICES

29b

FIG. 7
NETWORK

33 NETWORK TAP

200 WEB SERVER

31 SWITCH

,- 100 APPLICATION SERVER

32 SWITCH

300 DATABASE SERVER

US 9,189,272 B2

SWITCH
34

400
ANALYSIS
SERVER

U.S. Patent

102

103

108a

Nov. 17, 2015 Sheet 8of29

FIG. 8

APPLICATION SERVER

100
104

PROCESSOR

RAM

HDD

109

NETWORK
INTERFACE

GRAPHICS
PROCESSOR

INPUT DEVICE
INTERFACE

PERIPHERAL
DEVICE

INTERFACE

NETWORK
INTERFACE

SWITCH
32

US 9,189,272 B2

11 MONITOR

13 MOUSE

U.S. Patent Nov. 17, 2015 Sheet 9of29 US 9,189,272 B2

100
FIG. 9

APPLICATION -120
SERVER

MODE SElTING
UNIT

,--110
PARAMETER

STORAGE UNIT

I ,--130
THRESHOLD

CALCULATION
UNIT

141 142 I 143 144

~
\)

~ \ (

APPLICATION APPLICATION APPLICATION APPLICATION

,,--141b ,,--142b ,-143b ,-144b
I MEASURING I

UNIT
I MEASURING

UNIT
I MEASURING I

UNIT
I MEASURING

UNIT
.

I THREAD w I THREAD w I THREAD w I THREAD w
\. \. _ \

\ \ \ \
141a 142a 143a 144a

JOB DISTRI-
- BUTION UNIT

'-..... 170
,-150 ,-160

HEAVY JOB CONTROL UNIT LIGHT JOB CONTROL UNIT

- I CONNECTION I CONNECTION ,...
POOL POOL

I I

'\ \
151 161

U.S. Patent Nov. 17, 2015 Sheet 10 of 29

FIG. 10

110

PARAMETER
STORAGE UNIT 111

PRIORITY CONTROL
FLAG

MAXIMUM CONCURRENT
JOB COUNT (N)

THRESHOLD (a)

CONCURRENT JOB
COUNTER

ONGOING HEAVY JOB
COUNTER

ONGOING LIGHT JOB
COUNTER

PENDING HEAVY JOB
COUNTER

PENDING LIGHT JOB
COUNTER

US 9,189,272 B2

U.S. Patent Nov. 17, 2015 Sheet 11 of 29 US 9,189,272 B2

FIG. 11 200

~
WEB SERVER

I I I

41 : : : ..-- -- -- - --- t- - -- - ":::> 100 "---.... ·- _. - -r - - """ -I I I --..._,_ -J I
i-- -- 'r' I 1--r- t- - -- -- - -- -- -- - --I I I

APPLICATION SERVER

,,.--142c

,,..-141c

r-143c
r-144c

QUEUE

QUEUE

QUEUE QUEUE
141 142 143 144
~ ~ ~ ~

APPLICATION APPLICATION APPLICATION APPLICATION

150--...._ I ,,-160

HEAVY JOB CONTROL UNIT LIGHT JOB CONTROL UNIT

I I i I I I
I I I I I I
I I I I I I . ..
I I I I I I

42~_:_:_ - - - ---------:-:-1-:- -.._I I I I I I -
-t._ - I I I ~- - --! I - - - - - - - - - - -!-!-.-.

DATABASE SERVER

"' 300

U.S. Patent Nov. 17, 2015 Sheet 12 of 29 US 9,189,272 B2

~ 400

FIG. 12 ANALYSIS SERVER

100 On-off command signals

~
Maximum concurrent job count

APPLICATION SERVER Ir

120 MODE SITTING
'------ UNIT

Set job priority control flag
110 Set maximum concurrent job count

\,____ ..
Update counters , Update counters

r PARAMETER ~

Read parameters STORAGE UNIT Read parameters

Read maximuml
concurrent job count l Set threshold

130 THRESHOLD
\...__, CALCULATION UNIT

' Collect averaffie processing
times and cal s counts

141 142 143 144

~ ~ ~ ~
APPLICATION APPLICATION APPLICATION APPLICATION

,-141b ,-142b ,-143b ,,.-144b
I MEASURING I

UNIT
I MEASURING I

UNIT
MEASURING I

UNIT
I MEASURING

UNIT

,-150 ,,- 160

....... HEAVY JOB CONTROL UNIT LIGHT JOB CONTROL UNIT +-
- -

FIG. 13
200
~

WEB SERVER
201

ITH;Aol

202 i

I T~~AD I !
! i

PROCESSING
REQUEST

212

i .. !

211

... ...
1:::'

APPLICATION SERVER

100

HEAVY JOB
CONTROL UNIT 141al THR~D I

~ i I UGHTJOB
~ j CONTROL UNIT

150

160
!

511 512

300
~

DATABASE SERVER
301

I T;;EAD I
302 i

IT~~AD I !
i i
' I
I

!
I

I
Allocation of I JOB

'~~!!1
513

514
connection is I (LIGHT)

1 ... 1 I I ... suspended ! 314
LJ I),,1r 182

::r:~I

516 519 i 517

l.1 11 wir ~ Inf · 1 Vir- 1 518 · . I)
311

RESPONSE

1:::
':::

;m~

181 rT ::~:: . I)
"'· I .

313

,:m::
1:;:;::

521
i 520 i 522 !

JOBS
(HEAVY)

~
00
•
~
~
~
~ = ~

z
0
~

"'......:i
N
0
Ul

1J1

=('D

a
(.H

0
N

"°

d
rJl
\C
"'
"'""' 00
\C
'N
-....l
N

= N

FIG. 14

A: 20 ms

- 20 ms ~
- 22 ms

RESPONSE TIMES

0

B: 2 ms A: 20 ms

_2 ms,
~ -- 22 ms
-

RESPONSE TIMES

TIME

-
B:2 ms

> AVERAGE RESPONSE TIME= 21 ms/job

'

-
TIME

-
-

;:. AVERAGE RESPONSE TIME= 12 ms/job

-
~

~
00
•
~
~
~
~ = ~

z
0
~

'"-....J
N
0
Ul

1J1

=('D
('D
.i;...

0
N

"°

d
rJl

'"'..c

"'"" 00
'..c
'N
-....l
N

= N

U.S. Patent Nov. 17, 2015

MODE SElTING

START

NO

NO

NO

END

Sheet 15 of 29 US 9,189,272 B2

FIG. 15

YES

ENABLE PRIORITY
CONTROL

DISABLE PRIORITY
CONTROL

U.S. Patent Nov. 17, 2015 Sheet 16 of 29 US 9,189,272 B2

HEAVY JOB COUNT
CONTROL

START

INCREMENT
CONCURRENT JOB
COUNTER BY ONE

INCREMENT ONGOING
HEAVY JOB COUNTER

BYONE

OBTAIN CONNECTION
FROM CONNECTION

POOL FOR HEAVY JOBS

FIG. 16

5119

5120

INCREMENT PENDING
HEAVY JOB COUNTER

BYONE

WAIT FOR RETURN OF
CONNECTION

DECREMENT PENDING
HEAVY JOB COUNTER

BYONE

U.S. Patent Nov. 17, 2015 Sheet 17 of 29 US 9,189,272 B2

FIG. 17

A

NO

5132
SUBMIT JOB BY USING

ALLOCATED CONNECTION

5133
RECEIVE JOB COMPLETION

NOTICE

5134
RETURN CONNECTION TO

CONNECTION POOL

DECREMENT ONGOING HEAVY 5135
JOB COUNTER

BYONE
5136

DECREMENT CONCURRENT
JOB COUNTER BY ONE

5137
RELEASE WAITING THREAD

END

U.S. Patent

NO

Nov. 17, 2015

LIGHT JOB COUNT
CONTROL

START

YES

INCREMENT
CONCURRENT JOB
COUNTER BY ONE

INCREMENT
ONGOING LIGHT JOB

COUNTER BY ONE

OBTAIN CONNECTION
FROM CONNECTION

POOL FOR LIGHT JOBS

Sheet 18 of 29 US 9,189,272 B2

FIG. 18

NO

5146 5143
INCREMENT

PENDING LIGHT JOB
COUNTER BY ONE

5144

WAIT FOR RETURN OF
CONNECTION

5145
DECREMENT

PENDING LIGHT JOB
COUNTER BY ONE

U.S. Patent Nov. 17, 2015 Sheet 19 of 29 US 9,189,272 B2

FIG. 19

B

SUBMIT JOB BY USING
ALLOCATED CONNECTION

RECEIVE JOB COMPLETION
NOTICE

NO

5152

5153

RETURN CONNECTION TO
CONNECTION POOL

DECREMENT ONGOING LIGHT
JOB COUNTER BY ONE

DECREMENT CONCURRENT
JOB COUNTER BY ONE

RELEASE WAITTNG THREAD

END

5154

5155

5156

5157

U.S. Patent Nov. 17, 2015 Sheet 20 of 29 US 9,189,272 B2

0
,-t
,-t

0
0
,-t

"O 0
Q) °' .0
ro
c::
w
0 0 00 .µ
c
0 u
~ 0 ·c
0 r--.
·c -a.. Ill
.0 -0 aJ ,..., 0 E 0 ..c:: l.O
:i::! j::

N 3:
Vl . .0

l9 0 0 ,..., Ln

....... <(u..
0
Q) 0
E "¢

F
CJ)
Vl c
0 0
c. M
U'l

~

0
N

0

N CC! l.O -t: N 0

.-I 0 0 0 0

CIJ
In
c,....
0 Ill a.-
"' ~

U.S. Patent Nov. 17, 2015 Sheet 21 of 29 US 9,189,272 B2

FIG. 21

TERMINAL DEVICES

29b

NElWORK

600 WEB SERVER

,- 500 APPLICATION SERVER

700 DATABASE SERVER

U.S. Patent Nov. 17, 2015 Sheet 22 of 29 US 9,189,272 B2

FIG. 22
500

APPLICATION 510 SERVER ,r

PARAMETER
STORAGE UNIT

I ,r 530
THRESHOLD

CALCULATION
UNIT

I
541 542 543 544

\ \ ! !
APPLICATION APPLICATION APPLICATION APPLICATION

,,.-550 ,r 560
HEAW JOB CONTROL UNIT LIGHT JOB CONTROL UNIT

--- I CONNECTION - I CONNECTION -
POOL POOL

\ \

\ \
551 561

U.S. Patent Nov. 17, 2015 Sheet 23 of 29

FIG. 23

510

PARAMETER
STORAGE UNIT

PRIORITY CONTROL
FLAG

MAXIMUM CONCURRENT
JOB COUNT (N)

THRESHOLD (a)

CONCURRENT JOB
COUNTER

ONGOING HEAW JOB
COUNTER

ONGOING LIGHT JOB
COUNTER

PENDING HEAW JOB
COUNTER

PENDING LIGHT JOB
COUNTER

FIRST EXECUTION TIME
THRESHOLD UH)

SECOND EXECUTION
TIME THRESHOLD (~2)

US 9,189,272 B2

519a

519b

U.S. Patent Nov. 17, 2015

A

SUBMIT JOB BY USING
ALLOCATED CONNECTION

RECEIVE JOB COMPLETION
NOTICE

Sheet 24 of 29 US 9,189,272 B2

FIG. 24

NO

5132

5133

RETURN CONNECTION TO
CONNECTION POOL

DECREMENT ONGOING HEAVY
JOB COUNTER BY ONE

DECREMENT CONCURRENT
JOB COUNTER BY ONE

RELEASE WAITING THREAD

PRIORITY CONTROL
SWITCHING

END

5134

5136

5210

U.S. Patent Nov. 17, 2015

PRIORITY CONTROL
SWITCHING

START

YES

YES

DISABLE PRIORITY
CONTROL

END

Sheet 25 of 29 US 9,189,272 B2

5213

FIG. 25

NO

YES

ENABLE PRIORITY
. CONTROL

5214
NO

5215

FIG. 26

MODE SETTING
UNIT
.

PARAMETER
STORAGE UNIT

I
THRESHOLD

CALCULATION

841-1 841-2
UNIT

842-1 842-2
I ; ,.J) __)

I ((I (

. .
APPLICATION . · APPLICATION

..
,_ -

,,,,---851 ,,,,---852

JOB CONTROL UNIT JOB CONTROL UNIT
(k=l) (k=2)

- /"851a /"852a -I CONNECTION I CONNECTION • • •
POOL POOL

- O.lU

830

84n-1 84n-2
) I~ I . .

. .
APPLICATION

.
-

/"" 85n
JOB CONTROL UNIT

(k=n)
,r85na -

J CONNECTION
POOL

N 800

~
00
•
~
~
~
~ = ~

z
0
~

"'-....J
N
0
Ul

1J1

=('D

a
N
O'I
0
N

"°

d
rJl
\C
"'
""'"' 00
\C
'N
-....l
N

= N

U.S. Patent Nov. 17, 2015 Sheet 27 of 29

FIG. 27
810

PARAMETER
STORAGE UNIT

PRIORITY CONTROL T
FLAG

MAXIMUM CONCURRENT
JOB COUNT (N)

813a 813b

THRESHOLD (a1)

CONCURRENT JOB
COUNTER

ONGOING JOB COUNTER
(k=l)

816a 816b

PENDING JOB COUNTER
(k=l)

811

812

...

US 9,189,272 B2

U.S. Patent Nov. 17, 2015

JOB COUNT CONTROL
(k=i)

START

END OF LOOP

INCREMENT
CONCURRENT JOB
COUNTER BY ONE

INCREMENT ONGOING
JOB COUNTER (k=i)

BYONE

OBTAIN CONNECTION
FROM CONNECTION

POOL OF (k=i)

Sheet 28 of 29 US 9,189,272 B2

5320

5321

5323

FIG. 28

YES

5317

INCREMENT PENDING
JOB COUNTER {k=i)

BYONE

WAIT FOR RETURN OF
CONNECTION

DECREMENT PENDING
JOB COUNTER (k=i)

BYONE

U.S. Patent Nov. 17, 2015 Sheet 29 of 29 US 9,189,272 B2

FIG. 29
c

SUBMIT JOB BY USING
ALLOCATED CONNECTION

RECEIVE JOB COMPLETION
NOTICE

NO

5332

5333

RETURN CONNECTION TO
CONNECTION POOL

DECREMENT ONGOING HEAVY
JOB COUNTER
(k=i) BY ONE

DECREMENT CONCURRENT
JOB COUNTER BY ONE

RELEASE WAillNG THREAD

END

5334

5335

5336

5337

US 9,189,272 B2
1

INFORMATION PROCESSING APPARATUS,
COMPUTER PROGRAM, AND METHOD FOR

CONTROLLING EXECUTION OF JOBS

FIELD

The embodiments discussed herein relate to an information
processing apparatus, computer program, and method for
controlling execution of server jobs.

BACKGROUND

Some of the computer systems used today include a plu
rality of computers that are hierarchically organized to share
the processing workload. Computer systems of this type are
called "multi-tier systems." A known example of such multi
tier systems is a three-tier system that is formed from a web
server to provide user interfaces, an application server to
execute transactions, and a database server to manage
datasets. Those servers work together to execute processing
requests received from users and return the results back to the
requesting users. In this way, a multi-tier system allots a given
work to a plurality of servers, thus providing an improved
reliability and responsiveness.

10

2
coupled to a server. This information processing apparatus
includes a processor configured to perform a procedure
including the following acts: classifying jobs to be executed
by a server into a plurality of groups, the groups being ranked
in ascending order of workload that the groups of jobs impose
on the server; counting the number of ongoing jobs that are
currently executed on the server and belong to a specified
number of top-ranked groups; and designating pending jobs
that belong to other groups than the specified number of
top-ranked groups and suspending submission of processing
requests of the designated pending jobs to the server, when
the number of ongoing jobs is greater than or equal to a
threshold and when there are one or more pending jobs that

15
belong to the specified number of top-ranked groups.

The object and advantages of the invention will be realized
and attained by means of the elements and combinations
particularly pointed out in the claims.

It is to be understood that both the foregoing general
20 description and the following detailed description are exem

plary and explanatory and are not restrictive of the invention.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 illustrates an exemplary structure of an information
processing apparatus according to a first embodiment;

FIG. 2 is a sequence diagram that explains what brings
about wild fluctuations of response time;

Improvement of responsiveness may also be achieved by
enhancing the operating efficiency of individual servers con- 25

stituting the multi-tier system. For example, a proposed
design of a database server system is directed to efficient
usage of limited database resources to provide service to a
larger number of users. See, for example, Japanese Laid-open
Patent Publication No. 2001-229058.

FIG. 3 is an exemplary graph illustrating temporal changes
30 of average response time in the case where no job priority

When a multi-tier system has a massive workload, a server control is applied;
FIG. 4 illustrates a first technique for reference;
FIG. 5 illustrates a second technique for reference;
FIG. 6 illustrates a third technique for reference;
FIG. 7 illustrates an overall structure of a system according

to a second embodiment;
FIG. 8 illustrates an exemplary hardware configuration of

an application server used in the second embodiment;

in a particular tier of the system may approach its perfor
mance limit. In other words, the increased workload drives
the server toward performance saturation. Such condition of a
server is detected by observing the response time of jobs 35

executed on the server. For example, an average response
time of a server is monitored at unit time intervals. If an
extreme increase is observed during a certain period, it means
that the server is saturated in that period. The length of time
intervals at which average response time is analyzed is
referred to herein as "time granularity." A fine time granular

FIG. 9 is a block diagram illustrating an example offunc-
40 tions provided in an application server;

FIG. 10 illustrates an exemplary data structure of a param
eter storage unit; ity means a minute interval of analysis.

The above-noted response time analysis may sometimes
suggest different results, depending on the time granularity
used. Even when no saturation is found by an analysis with a
coarse time granularity, another analysis performed with a
fine time granularity may suggest partial saturation. Suppose,
for example, that the average usage ratio of central processing
unit (CPU) is observed to be 80% when the calculation is
performed at intervals of 1 second. However, by changing the
interval to 0.1 seconds, the analysis may find that the CPU
usage ratio actually hits 100% at some particular moments.

As described above, instantaneous performance saturation
is only observable with fine time granularities. When this type
of saturation occurs to a low-tier server in a multi-tier system,
its effect spreads over the other tiers and thus results in a wild
fluctuation of average response time of the system as a whole.
Under such situations, some end users would experience a
perceived delay of response from the system if their job
processing requests happened to meet performance saturation
of servers. This kind of user experience is not desirable even
though it occurs only to a limited number of users.

SUMMARY

According to an aspect of the embodiments to be discussed
herein, there is provided an information processing apparatus

FIG. 11 illustrates an example of allocated connections;
FIG. 12 gives an overview of processing operation in the

45 application server according to the second embodiment;
FIG. 13 illustrates an example of job priority control;
FIG. 14 illustrates an example of how the average response

time changes depending on the execution order of jobs;
FIG. 15 is a flowchart illustrating an example of a mode

50 setting procedure;
FIGS. 16 and 17 are first and second halves of a flowchart

illustrating an exemplary procedure of heavy job count con
trol;

FIGS. 18 and 19 are first and second halves of a flowchart
55 illustrating an exemplary procedure oflight job count control;

FIG. 20 is an exemplary graph illustrating temporal
changes ofaverage response time when job priority control is
enabled;

FIG. 21 illustrates an exemplary overall structure of a
60 system according to a third embodiment;

65

FIG. 22 illustrates an example of functions provided in an
application server according to the third embodiment;

FIG. 23 illustrates an exemplary data structure of a param
eter storage unit according to the third embodiment;

FIG. 24 is the second half of a flowchart illustrating an
exemplary procedure of heavy job number control according
to the third embodiment;

US 9,189,272 B2
3

FIG. 25 is a flowchart illustrating an exemplary procedure
of priority control switching;

FIG. 26 illustrates an example of functions provided in an
application server according to a fourth embodiment;

FIG. 27 illustrates an exemplary data structure of a param
eter storage unit according to the fourth embodiment; and

FIGS. 28 and 29 are first and second halves of a flowchart
illustrating an exemplary procedure of job count control
according to the fourth embodiment.

DESCRIPTION OF EMBODIMENTS

Several embodiments will be described below with refer-

4
and la-4, on the other hand, enqueue their job processing
requests to a light job queue ld.

The determination unit lb classifies jobs into a plurality of
groups according to their categories. For example, the execu
tion units la-1, la-2, la-3, and la-4 may produce different
categories of jobs. The determination unit lb identifies the
category of each produced job and determines to which group
that job is supposed to belong. More specifically, the deter
mination unit lb calculates average processing time of each

10 specific category of jobs that the lower-tier server 4 spent to
execute jobs in that category. The determination unit lb then
determines job groups in such a way that a job category
having a shorter average processing time belongs to a higher-

ence to the accompanying drawings. Each of those embodi-
15

ments may be combined with other embodiments as long as
there are no contradictions between them.

ranked group of jobs.
In classifying jobs into groups, the determination unit lb

may also rely on the occurrence rates of jobs in different
categories, in addition to the average processing time noted
above. The occurrence rate of a particular category of jobs
refers to its ratio to the entire set of jobs in all categories. For (a) First Embodiment

The description begins with a first embodiment designed to
prevent the average response time per unit time of a computer
system from fluctuating wildly even if some server in the
system goes into instantaneous saturation that is only observ
able with a fine time granularity.

FIG. 1 illustrates an exemplary structure of an information
processing apparatus according to the first embodiment. In
the example of FIG. 1, the illustrated information processing
apparatus 1 works as part of a multi-tier system, being placed
below one server 2 and above another server 4. The informa
tion processing apparatus 1 executes jobs upon receipt of job
processing requests from the upper-tier server 2 through a set
of connections 3. During this course, the information process
ing apparatus 1 sends its own job processing requests to the
lower-tier server 4 through another set of connections 5.

The illustrated information processing apparatus 1
includes a plurality of execution units la-1, la-2, la-3, and
la-4, a determination unit lb, aheavy job queue le, a light job
queue ld, a calculation unit le, a counting unit lf, and a
suspending unit lg. The execution units la-1, la-2, la-3, and
la-4 execute requested jobs according to job processing
requests received from the upper-tier server 2. During the
course of this job execution, the execution units la-1, la-2,
la-3, and la-4 may produce new jobs forthe lower-tier server
4 and thus output processing requests for the produced jobs.

The jobs that the execution units la-1, la-2, la-3, and la-4
may produce are divided into two or more groups. In the
example of FIG. 1, one group is formed from jobs produced
by two execution units la-1 and la-2, and another group is
formed from jobs produced by another two execution units
la-3 and la-4. These groups are ranked in ascending order of
workload that their constituent jobs impose on the lower-tier
server 4. That is, a job group with a lighter workload is ranked
at a higher position than that with a heavier workload. The
workload of jobs may be determined, for example, as the
processing time that the lower-tier server 4 takes to execute
the jobs. It is assumed here in FIG. 1 that the group of jobs
produced by two execution units la-3 and la-4 on the right
has a higher rank than the group of jobs produced by another
two execution units la-1 and la-2 on the left.

When there arise some jobs for execution by the lower-tier
server 4, the execution units la-1, la-2, la-3, and la-4
enqueue the jobs into different queues, depending on to which
group the individual jobs belong. Each queue is dedicated for
a particular group of jobs. For example, the first two execution
units la-1 and la-2 enqueue their job processing requests into
a heavy job queue le. The second two execution units la-3

20 example, the determination unit lb calculates average pro
cessing time and occurrence rate of each job category and
then produces various grouping patterns of job categories.
Then, for each grouping pattern, the determination unit lb
calculates a reduction ratio of job processing time which is to

25 be obtained by suspending job processing requests for other
than a specified number of top-ranked groups. The determi
nation unit lb then selects one of the grouping patterns that
exhibits the largest reduction ratio. The grouping pattern
selected in this way is used to determine which category of

30 jobs belongs to which group. The determination unit lb
informs the execution units la-1, la-2, la-3, and la-4 of this
determination result about job groups. This information per
mits the execution units la-1, la-2, la-3, and la-4 to recog-

35

nize appropriate queues for their job processing requests.
The information processing apparatus 1 has a plurality of

queues for temporarily storing jobs that are supposed to be
executed by the lower-tier server 4. Provided in the example
of FIG. 1 are a heavy job queue le and a light job queue ld.
The heavy job queue le is a queue for buffering processing

40 requests of jobs that belong to aheavy job group. The light job
queue ld is a queue for buffering processing requests of jobs
that belong to a light job group.

The calculation unit le calculates a threshold for use by the
suspending unit lg in determining whether to send execution

45 requests of heavy jobs to the lower-tier server 4. This calcu
lation may be based on the statistic of jobs executed in the
past. For example, the calculation unit le calculates average
processing time that the lower-tier server 4 spent to execute
jobs that belong to each particular group. The calculation unit

50 le also calculates an occurrence rate of those jobs to the entire
set of jobs executed by the lower-tier server 4. Based on the
average processing time and occurrence rate of each group,
the calculation unit le calculates a threshold T, where T is a
real number greater than zero. For example, the calculation

55 unit le multiplies the average processing time of a group by
its corresponding occurrence rate. The calculation unit le
repeats this for every different group. The calculation unit le
then adds up the resulting products for a specified number of
top-ranked groups (i.e., the topmost group, second-to-the-top

60 group, third-to-the-top group and so on, as many as speci
fied), adds up the products for the entire set of groups, and
divides the former sum by the latter sum. The calculation unit
le further multiplies the quotient of that division by the maxi
mum number of jobs that the lower-tier server 4 is allowed to

65 execute concurrently and assigns the resulting product as a
threshold T. The calculation unit le then informs the suspend
ing unit lg of the calculated threshold T.

US 9,189,272 B2
5

The counting unit 1/ counts the number (Na) of ongoing
jobs that are being executed on the lower-tier server 4 and
belong to the specified number of top-ranked groups noted
above, where Na is an integer greater than zero. For example,
this number Na of ongoing jobs may be obtained as the
number of connections 5 used to deliver processing requests
of light jobs to the lower-tier server 4.

The suspending unit lg determines whether the following
two conditions are satisfied: (i) the number Na of ongoing
jobs is greater than or equal to the threshold T, and (ii) there is 10

at least one pending job that belongs to the specified number
of top-ranked groups. When these two conditions are both
satisfied, the suspending unit lg suspends submission of pro
cessing requests to the lower-tier server 4 forthe pendingjobs
that belong to the remaining groups (i.e., those other than the 15

specified number of top-ranked groups). The second condi
tion (ii) noted above may be tested by, for example, checking
whether the light job queue ld contains at least one job
processing request. The suspending unit lg may execute the
act of suspending submission of processing requests for the 20

remaining groups of jobs by stopping allocation of connec
tions for the requesting execution units, so that their job
processing request do not reach the lower-tier server 4 for at
least the time being.

In operation of the above-described information process- 25

ing apparatus 1, the execution units la-1, la-2, la-3, and la-4
execute jobs when they are requested from the upper-tier
server 2. During this execution, the execution units la-1,
la-2, la-3, and la-4 may spawn new jobs for the lower-tier
server 4. Here the execution units la-1, la-2, la-3, and la-4 30

have previously been informed by the determination unit lb

6
of the lower-tier server 4, processing requests of new heavy
jobs are suspended before it is too late (i.e., before the number
of pending jobs ina light job queue ld exceeds a threshold T).
The existing pending light jobs, now having priority over
heavy jobs, are allowed to proceed to the lower-tier server 4
and executed without being influenced by the progress of
heavy jobs. Since those light jobs do not take long to finish,
their connections can be released soon. Average response
time of the system does not increase because many jobs are
processed in a short time. In this way, the first embodiment
prevents influence of near-saturation of the lower-tier server 4
from multiplying in the information processing apparatus 1 or
upper-tier server 2, thus enabling the multi-tier system to
operate without wild fluctuations of response time.

The execution units la-1, la-2, la-3, and la-4, determi
nation unit lb, calculation unit le, counting unit lf, and
suspending unit lg discussed above in FIG. 1 may be imple
mented as procedures performed by a processor in the infor
mation processing apparatus 1. Further, the above-described
heavy job queue le and light job queue ld may be imple
mented on a random access memory (RAM) in the informa
tion processing apparatus 1. It is also noted that the lines
interconnecting the functional blocks in FIG. 1 are only an
example. The person skilled in the art would appreciate that
there may be other communication paths in actual implemen
tations.

(b) Second Embodiment

This section describes a second embodiment in which the
proposed job priority control is applied to a web three-tier
system, so that the response time of servers on each tier will
not fluctuate too much. In the following explanation, the

of how such jobs for the lower-tier server 4 are classified into
groups. The execution units la-1, la-2, la-3, and la-4 thus
send the processing requests for new jobs to their relevant
queues, depending on to which group each job belongs.

Job processing requests enqueued to the light job queue ld
are sent one by one to the lower-tier server 4 via their respec
tive connections 5. The lower-tier server 4 thus executes
received light jobs. The counting unit 1/ counts those light
jobs running on the lower-tier server 4.

35 terms "submit" and "submission" will be used to refer to the
act of sending a job processing request to servers. In this web
three-tier system, a lower tier may fall into saturation of
processing performance when it is monitored with a fine time
granularity. Such saturation state would bring a wild fluctua-

40 tion to the system's response. The detailed mechanism of
producing response time fluctuations may be explained as a
succession of six stages described below.

The suspending unit lg, on the other hand, has previously
been informed of a threshold T calculated by the calculation
unit le. When some job processing requests are enqueued
into the heavy job queue le, the suspending unit lg deter
mines whether the number Na of ongoing light jobs currently 45

running on the lower-tier server 4 is smaller than the given
threshold T. When Na is smaller than T, a job processing
request is read out of the heavy job queue le and sent to the
lower-tier server 4 via one of the connections 5. When Na is
greater than or equal to T, the job processing requests in the 50

heavy job queue le are suspended. That is, no transmission to
the lower-tier server 4 occurs at the moment for those pending
heavy jobs.

Stage 1: Each tier of the system receives a varying number
of input jobs. That is, the number of input jobs varies with
time when it is measured with a fine time granularity. This is
a natural fluctuation inherent to the system.

Stage 2: As the system's workload increases, the stream of
input jobs begins to saturate the processing performance of
one or more tiers of the system. In this stage, however, per
formance saturation of tiers appears to be intermittent events
which can only be observed by monitoring average response
time with a fine time granularity.

Step 3: At the moment when a tier of the system reaches its
performance limit, all the jobs that use that saturated tier are

55 forced to wait until the tier recovers its performance capacity.
The above-described control minimizes the chance for

heavy-workload jobs to influence the execution oflow-work
load jobs in the lower-tier server 4, thus preventing the multi
tier system from having a wild fluctuation of average
response time. More specifically, the first embodiment is
designed to perform priority control when executing
requested jobs, on the basis of the number of ongoing jobs in
the lower-tier server 4 which belong to top-ranked groups. In
other words, this priority control observes variations of the
number of concurrent jobs to determine whether the
resources in the lower-tier server 4 are becoming saturated or
not. It is therefore possible to detect near-saturation of the 65

lower-tier server 4 at an appropriate time point just before it
reaches full saturation. Upon detection of this particular state

Step 4: The multi-tier system is dealing with a mixture of
light jobs (i.e., jobs with shorter processing times) and heavy
jobs (i.e., jobs with longer processing times). During the
waiting period caused in the preceding stage, a light job has to

60 wait for completion of a heavy job. Accordingly the response
time oflightjobs increases in this situation similarly to heavy
jobs. As a result, the saturated tier exhibits an upsurge of
average response time of jobs on that tier, regardless of
whether they are heavy jobs or light jobs.

Stage 5: The upsurge of average response time leads to an
increased number of jobs that are processed concurrently, and
a consequent exhaustion oflimited software resources (e.g.,

US 9,189,272 B2
7

processes, threads, connections) in its upper tier. After all, the
above stages 3 to 5 are repeated recursively.

Stage 6: The amount ofinput jobs may hit the peak and then
begin to decrease. The saturated tier thus regains its perfor
mance margin, becomes more responsive to requests, and
finally comes back to the original level ofresponse times.

The above mechanism may produce an abrupt increase or
wild fluctuation of response time even when every tier in the
system seems to be operating with a good amount of perfor
mance margin in terms of the average values. Here the system 10

provides service to end users under a specific service-level
agreement (SLA). An abrupt increase of response time could
hamper the system from achieving the level of service defined
in the SLA. Also, such behavior of the system could be
misinterpreted as an unknown degradation of performance 15

that needs investigation and troubleshooting, which may
result in an increased cost of operations and maintenance.

8
As described above, the two threads 921 and 922 on the

application server 920 submit job processing requests to the
database server 930 when they need interactions with the
database server 930 during the course of their own jobs 923
and 924. One thread 931 on the database server 930 executes
jobs 933 to 935 submitted from the thread 921. Similarly,
another thread 932 on the database server 930 executes a job
936 submitted from the thread 922. In the example of FIG. 2,
the database server 930 is saturated, making it difficult to
quickly process the light job 936, which could otherwise be
executed in a short time. The resulting long response time of
the database server 930 is an example of the first factor of
fluctuations mentioned above. That is, the light job 936 suf-
fers interference from heavy jobs 933 to 935 running on the
database server 930 and thus has to wait some extra time.

The two threads 931 and 932 on the database server 930
send a completion notice back to the requesting application
server 920 when their respective jobs are finished. One thread

20 921 on the application server 920 receives a completion
notice of a job 933, which permits submission of a new job
934 to the database server 930. The thread 921 further
receives completion notices of jobs 934 and 935 and finishes

A deeper analysis reveals the following two factors in the
mechanism of fluctuations. The first factor comes from the
fact that a multi-tier computer system deals with a variety of
jobs which consume different amounts of resources in the
system. From a viewpoint of a particular resource, its usage
depends on the type of jobs. One group of jobs occupies a
resource for only a short time, whereas another group of jobs
occupies the same resource for a long time. The former group 25

is referred to as light jobs, and the latter group is referred to as
heavy jobs. Saturation of that particular resource causes a
quick and significant increase of response time of light jobs
because their execution is influenced by the progress of heavy
jobs. This is what the first factor means.

its own job 923, thus sending a completion notice back to the
web server 910. Similarly, the other thread 922 on the appli
cation server 920 receives a completion notice of a job 936
from the database server 930 and finishes its own job 924,
thus sending a completion notice back to the web server 910.

On the web server 910, two threads 911 and 912 have been
30 waiting for completion notices from their corresponding

threads 921 and 922 on the application server 920. Upon
receipt of such notices, the threads 911 and 912 finish their
own jobs 913 and 914 and thus send a response back to the

The second factor is that the increase of response time
accelerates itself. That is, an increase of response time result
ing from the first factor leads to a larger number of concurrent
jobs, and consequent exhaustion of limited software
resources in upper tiers accelerates the increase of response 35

time.
The above two factors will now be explained by way of

example, with reference to FIG. 2. FIG. 2 is a sequence
diagram that explains what brings about wild fluctuations of
response time. Illustrated in FIG. 2 are interactions among a 40

web server 910, an application server 920, and a database
server 930. Two threads 911 and 912 have been produced on
the web server 910 in response to two processing requests
received from user terminal devices. These threads 911 and
912 execute their respective jobs 913 and 914 according to 45

what is specified in the received processing requests. During
the execution of jobs 913 and 914, the threads 911 and 912
may need some interactions with the application server 920.
When this is the case, the threads 911 and 912 produce new
jobs for the application server 920 and submit them to the 50

application server 920.
In response to the job submission from the web server 910,

the application server 920 spawns two threads 921 and 922.
Specifically, one thread 921 is to execute a job 923 submitted
from its source thread 911. The other thread 922 is to execute 55

a job 924 submitted from its source thread 912. As seen in
FIG. 2, thefirstthread921 submits three jobs 933 to 935to the
database server 930 during the execution of its own job 923.
While the database server 930 can execute each job 933 to 935

requesting user terminal devices to indicate completion of
their processing requests.

As can be seen from the above example, the second thread
922 on the application server 920 delays its response because
the submitted light job 936 is forced to spend more time in the
database server 930 under the influence of heavy jobs 933 to
935. This slowdown of the thread 922 further delays response
of the second thread 912 on the web server 910 because it is
the thread 912 that has loaded the thread 922 with a job 924.
The example of FIG. 2 demonstrates how the delay of one job
936 on the lowest tier propagates to upper tiers. Long
response times of servers mean a long occupancy of connec
tions, which could lead to exhaustion of resources in the
connection pool. The lack of connection resources further
causes threads to waste time in waiting for allocation of
connections, thus worsening the response of servers. The
result is a wild fluctuation of average response time of the
multi-tier computer system, when viewed from terminal
devices.

FIG. 3 is an exemplary graph illustrating temporal changes
of average response time in the case where no job priority
control is applied. This graph of FIG. 3 plots response time in
the vertical axis, against the passage of time in the horizontal
axis. Here each plotted value of response time is an average in
a fine time granularity (e.g., time step size of 0.1 second). If
the same measurements of response time are averaged with a

60 coarse time granularity (e.g., one second), the resulting plot
would be a moderate curve with no indication of server satu
ration. The use of a fine granularity reveals the presence of
wild fluctuations ofresponse time as seen in the graph ofFIG.
3.

in a relatively short time, this series of jobs 933 to 935 is
treated as a heavy job because of its long total duration from
the beginning of the first job 933 to the end of the third job
935. On the other hand, the second thread 922 on the appli
cation server 920 submits only one job 936 to the database
server 930. It is assumed here that this job 936 is usually a 65

light job that can be executed in a short time unless the
performance of the database server 930 is saturated.

There are several techniques for alleviating fluctuations of
response time. For example, the following section will dis
cuss three techniques for reference. These techniques may

US 9,189,272 B2
9

solve the problem to some extent, but they have their own
drawbacks as will be clarified below.

FIG. 4 illustrates a first technique for reference. This first
technique uses static parameters to optimize the ratio of jobs
submitted from one server to another server, for each category
of jobs. In the example of FIG. 4, an application server 920
submits jobs to a lower-tier server that is approaching its
performance limit. Specifically, applications 925a, 925b,
925c, and 925d on the application server 920 have different
categories of jobs to submit to a database server 930. These
applications 925a, 925b, 925c, and 925d are associated with
different connection pools 926a, 926b, 926c, and 926d,
respectively. When submitting a new job, the application
925a, 925b, 925c, and 925d receive allocation of a connection
from those corresponding connection pools so that the job
request can be delivered over the allocated connection.
According to the first technique, each of the applications
925a, 925b, 925c, and 925dhas a static parameter that speci
fies an optimal ratio of how many of their jobs are to be sent

10
resolving the foregoing first and second factors of fluctuations
because the job submission ratio can be optimized dynami
cally.

It is noted, however, that the second technique uses a com
puter-to-computer communication link to deliver the satura
tion status information from one tier to another tier in the
multi-tier system, so that the latter tier can control its job
requests when the former tier is on the verge of saturation.
Because of a time lag of this communication link, the satura-

lO tion status information does not reach in a timely manner,
making it difficult for the dynamic job submission control in
the latter tier to deal effectively with instantaneous saturation
in the former tier. Referring to the example of FIG. 5, the

15
applications 925a, 925b, 925c, and 925d rumiing on the appli
cation server 920 have many pending jobs for submission to
the database server 930. Instantaneous saturation of the data
base server 930, however, induces the growth of job queues
927a, 927b, 927c, and 927d in the application server 920.

to the database server 930. The connection pools 926a, 926b, 20

926c, and 926d thus provide as many connections as deter
mined according to the ratio of jobs that will be sent from each
corresponding application.

FIG. 6 illustrates a third technique for reference. This third
technique controls priority of job submission according to the
lengths of job queues. According to the third technique, the
application server 920 has a priority control unit 928 to esti
mate the performance saturation status of a database server
930. The priority control unit 928 performs this estimation
based on the length of each job queue 927a, 927b, 927c, and

The above-noted first technique has two drawbacks
described below. The first drawback is that the static (or fixed) 25

submission ratio of jobs does not work as intended unless a
special control mechanism is employed to regulate the ratio of
different categories of jobs. With no particular control, the
ratio of different job categories may actually vary at minute
intervals in a dynamic fashion. The first technique is, how- 30

ever, unable to feed a sufficient quantity of jobs to lower tiers
even when a certain amount of headroom is available in their
processing performance. Referring to the case of FIG. 4, the
applications 925a, 925b, 925c, and 925d may be configured

927d, when the application server 920 sends jobs to the data
base server 930. Depending on the estimated saturation status
of the database server 930, the priority control unit 928
dynamically changes the quantity and ratio of jobs that are
submitted from applications 925a, 925b, 925c, and 925d.

This third technique is an attempt to solve the drawback of
the second technique, i.e., the lack of timeliness of its
dynamic job submission control due to a time lag of saturation
status information transferred from tier to tier. The third tech
nique offers different job submission ratios depending on the

to submit their jobs at the ratio of 4:3: 1 :2, for example. When 35

the second application 925b submits more jobs than expected,
a long queue 927 b of jobs builds up at that application 925b as
seen in FIG. 4, despite the presence of performance headroom
in the database server 930.

level of performance saturation of a tier and may thus be
capable of optimizing the submission of jobs. The third tech
nique, however, still has a shortcoming described below.

The second drawback is that neither the first factor nor the 40 When an unusual buildup of queues is observed, the tier in
second factor of response-time fluctuations discussed above
can be overcome by the proposed use of static job submission
ratios. Because the job submission ratio of applications is
given by a fixed parameter, and because the receiving tier is
nearing its performance limitation, pending jobs will queue
up in the sending tier as soon as the receiving tier is saturated.
Even ifone pending heavy job is finished, it would not help at
all because the sender may produce another heavy job before
long. The execution of such heavy jobs affects other jobs, thus
resulting in a delayed response oflight jobs.

FIG. 5 illustrates a second technique for reference. This
second technique introduces dynamic control of job volumes
from an upper tier according to the saturation level of com
puting resources. Specifically, the second technique enables
the sending tier (i.e., upper tier that sends jobs) to change the
quantity or ratio of jobs, depending on the actual saturation
level of the receiving tier that is nearing its performance
limitation. To this end, an agent 937 is placed in the database
server 930 to send information about its performance satura
tion to the application server 920, as depicted by the broken
arrows in FIG. 5. The application server 920 changes the ratio
of jobs submitted from applications 925a, 925b, 925c, and
925d, according to the received information on the actual
saturation level of the database server 930. This change in the
job submission ratio results in a variation in the number of
connections allocated from connection pools 926a, 926b,
926c, and 926d. The second technique has the potential of

question may have already been saturated. Starting dynamic
job control at that moment would be of no help to the present
saturation. Pending jobs have to wait for a while until the
present saturation is resolved. In the case where the tier in

45 question is occupied with heavy jobs at the moment, light jobs
are just kept waiting in the sending tier until the heavy jobs are
finished. This situation invites the foregoing first factor of
response time fluctuations.

As will be described in detail below, the second embodi-
50 ment offers more effective priority control by quickly detect

ing a sign of instantaneous saturation of a lower-tier server.
This detection is performed by an upper-tier server that sub
mits jobs to the lower-tier server. The second embodiment
prevents light jobs from being influenced by the progress of

55 heavy jobs, and thus avoids increase of average response
time. The second embodiment also prevents upper-tier serv
ers from wasting their computing resources. More specifi
cally, dynamic priority control of light and heavy jobs is
started in the sending tier by detecting a near-saturated state

60 of the receiving tier, before long job queues build up as a
result of full saturation. By doing so, the sending tier avoids
unacceptable increase of system response time due to the first
factor of fluctuations, i.e., the influence of progress of heavy
jobs. Avoiding the first factor nullifies the second factor as

65 well, because the latter is a consequence of the former. The
following sections will provide more details of the second
embodiment.

US 9,189,272 B2
11

FIG. 7 illustrates an overall structure of a system according
to the second embodiment. The illustrated system is formed
from an analysis server 400, a web server 200, an application
server 100, and a database server 300. The web server 200 and
application server 100 are linked to each other via a switch 31.
Similarly the application server 100 and database server 300
are linked to each other via another switch 32.

Two switches 31 and 32 (referred to as first and second
switches) seen on the left half of FIG. 7 have a port mirroring
function, and their respective mirroring ports are linked to 10

another switch 34 (third switch). More specifically, the mir
roring port on the first switch 31 is used to send the third
switch 34 a copy of packets transmitted between the web
server 200 and application server 100. Similarly the mirroring

15
port on the second switch 32 sends the third switch 34 a copy
of packets transmitted between the application server 100 and
database server 300.

12
The web server 200 then sends the produced response mes
sage to the requesting terminal device 29a, 29b, ... over the
network 10.

In the course of parsing the received message from the web
server 200, the application server 100 may find something
that needs help from a database server 300. When this is the
case, the application server 100 produces a query that
describes a specific processing operation or job. The pro-
duced query is transmitted to the database server 300. More
specifically, this query is expressed in the form of Structured
Query Language (SQL) statements. The application server
100 sends such statements to the database server 3 00 by using
a proprietary protocol of the database server 300. The data
base server 300 returns a response to the application server
100 when the query is processed. Based on this response, the
application server 100 continues its own work and sends a
response message back to the web server 200.

The database server 300 executes SQL statements con
tained in the query received from the application server 100,
making access to a database for data retrieval and update
operations. Based on the result of this database access, the
database server 300 creates a response and sends it back to the
application server 100.

In the rest of this description, the term "servers" may be

A network tap 33 is inserted between the web server 200
and network 10, and its monitor port is connected to the third 20

switch 34. The third switch 34 thus receives a copy of packets
transmitted between the web server 200 and network 10. Also
connected to the third switch 34 is an analysis server 400. The
third switch 34 forwards packets from the first and second
switches 31and32, as well as from the network tap 33, to this
analysis server 400.

25 used (where appropriate) to collectively refer to the above
web server 200, application server 100, and database server
300. In the multi-tier hierarchy, the web server 200 resides in
the topmost tier, and the application server 100 and database
server 300 in the second and third tiers.

Terminal devices 29a, 29b, ... are attached to network 10
to make access the web server 200. The users of those termi-
nal devices 29a, 29b, ... interact with the multi-tier system
via a graphical user interface (GUI) provided by the web 30

server 200.
The analysis server 400 manages operations of the web

server 200, application server 100, and database server 300.

FIG. 8 illustrates an exemplary hardware configuration of
an application server used in the second embodiment. The
illustrated application server 100 has a processor 101 to con
trol its entire operation. This processor 101 may be, for
example, a central processing unit (CPU), microprocessor To this end, the analysis server 400 collects information about

these servers via the third switch 34. That is, the analysis
server 400 performs packet capturing by receiving network
packets from the switch 34 and storing their data in its local
storage. The captured packet data is then subjected to a satu
ration analysis to check whether any server is experiencing
performance saturation. This analysis is directed to the tiers

35 (MPU), digital signal processor (DSP), application-specific
integrated circuit (ASIC), programmable logic device (PLD),
or other processing device, or their combinations. The person
skilled in the art would appreciate that the term "processor"
may refer not only to a single processing device, but also to a

40 multiprocessor system including two or more processing
devices noted above. of servers other than the topmost tier of the system (i.e., other

than the web server 200 in the illustrated web three-tier sys
tem). When a saturated server is detected in a specific tier, the
analysis server 400 issues a command to a server immediately
above the saturated server to enable (activate) the job priority 45

control in that upper-tier server.
The web server 200 accepts processing request messages

addressed from web browsers running on the terminal devices
29a, 29b, ... to the three-tier system. It is assumed here that
the web server 200 and terminal devices 29a, 29b, ... com- 50

municate their messages by using the HyperText Transfer
Protocol (HTTP).

The received processing requests may be directed to either
static content or dynamic content. In the case of static content,
the web server 200 directly responds to each such request by 55

producing an HTTP response and sending it back to the
requesting terminal device. In the case of dynamic content,
the web server 200 generates a request message that specifies
a particular processing operation Gob) and transmits the pro
duced message to the application server 100. It is assumed 60

that the web server 200 and application server 100 exchange
such messages by using, for example, the Internet Inter-ORB
Protocol (HOP), where ORB stands for "Object Request Bro
ker." The application server 100 executes the requested job
and returns a response to the web server 200. Upon receipt of 65

this response, the web server 200 produces a response mes
sage according to what is contained in the received response.

The processor 101 is connected to a random access
memory (RAM) 102 and other various devices and interface
circuits on a bus 109. The RAM 102 serves as primary storage
of the application server 100. Specifically, the RAM 102 is
used to temporarily store at least some of the operating system
(OS) programs and application programs that the processor
101 executes, in addition to various data objects that it
manipulates at runtime.

Other devices on the bus 109 include a hard disk drive
(HDD) 103, a graphics processor 104, an input device inter
face 105, an optical disc drive 106, and a peripheral device
interface 107, and network interfaces 108a and 108b. The
HDD 103 serves as secondary storage of the application
server 100, which allows data to be written and read magneti
cally on its internal platters. The HDD 103 stores program and
data files of the operating system and applications. Flash
memory and other semiconductor memory devices may also
be used as secondary storage, similarly to the HDD 103.

The graphics processor 104, coupled to a monitor 11, pro
duces video images in accordance with drawing commands
from the processor 101 and displays them on a screen of the
monitor 11. The monitor 11 may be, for example, a cathode
ray tube (CRT) display or a liquid crystal display.

The input device interface 105 is used to connect input
devices such as a keyboard 12 and a mouse 13. The input
device interface 105 supplies signals from those devices to

US 9,189,272 B2
13

the processor 101. The mouse 13 is a pointing device, which
may be replaced with other kind of pointing devices such as
touchscreen, tablet, touchpad, and trackball.

The optical disc drive 106 reads out data encoded on an
optical disc 14, by using laser light. The optical disc 14 is a
portable data storage medium, the data recorded on which can

14
the mode setting unit 120 receives a command specifying a
change of on-off mode of job priority control from the analy
sis server 400. According to this command, the mode setting
unit 120 changes the job priority control flag in the parameter
storage unit 110. The mode setting unit 120 also manages a
parameter Nin the parameter storage unit 110, which repre
sents the maximum number of jobs that the database server
300 is allowed to execute concurrently. This parameter N is an
integer greater than zero. For example, the mode setting unit

be read as a reflection of light or the lack of the same. The
optical disc 14 may be a digital versatile disc (DVD), DVD
RAM, compact disc read-only memory (CD-ROM), CD-Re
cordable (CD-R), or CD-Rewritable (CD-RW), for example. 10 120 receives the maximum number of concurrent jobs from

the analysis server 400 and stores the received number as a
parameter in the parameter storage unit 110.

The peripheral device interface 107 is a communication
interface used to connect peripheral devices to the application
server 100. For example, the peripheral device interface 107
may be used to connect a memory device 15 and a memory
reader/writer 16. The memory device is a data storage 15

medium with a capability of communication with the periph
eral device interface 107. The memory reader/writer 16 is an
adapter used to write data to or read data from a memory card
17, which is adata storage medium in the formofa small card.

The application server 100 has two network interfaces 20

l08a and 108b. One network interface 108a is linked to a

The threshold calculation unit 130 calculates a threshold a
for use in determining whether to allocate a connection to a
thread that submits heavy jobs, where a is a real number in the
range ofO<a<N. For example, the threshold calculation unit
130 permits the heavy-job thread to receive an allocation of
connections if it is found that the database server 300 is
executing light jobs that are fewer in number than the thresh
old a.

The threshold calculation unit 130 calculates the above
threshold a automatically from statistics collected from the
past jobs. For example, the statistics used in this calculation
may include the average processing time and occurrence rate

switch 31. Via this switch 31, the network interface 108a
sends data to and receives data from the web server 200 and
other computers (not illustrated). The other network interface
l08b is linked to another switch 32. Via this switch 32, the
network interface 108b sends data to and receives data from
the database server 300 and other computers (not illustrated).

The above-described hardware platform of the application
server 100 may be used to realize various processing func
tions of the second embodiment. While FIG. 8 provides hard
ware components of the application server 100, the same
hardware configuration may also be applied to other servers,
i.e., web server 200, database server 300, and analysis server
400. Further, the information processing apparatus 1 dis
cussed in the first embodiment can be implemented similarly
on the hardware platform illustrated in FIG. 8.

25 of each job category in low workload conditions. Low-work
load conditions of the database server 300 may be identified
by, for example, detecting that the number of concurrently
running jobs is smaller than a specific threshold. The second
embodiment uses the term "processing time" to refer to the

30 time that it takes for one thread to execute its jobs, from the
beginning of its first job to the end of its last job. As the
submission of a job in the second embodiment begins with
allocation of a connection, the exact start point of job pro
cessing time is when the thread receives an allocation of a

35 connection from the connection pool, and the exact end point
is when the connection is deallocated, i.e., returned to the
connection pool. The average processing time of a job cat
egory denotes themean value of such processing times of jobs

The application server 100 implements various processing
functions of the second embodiment by executing programs
stored in a computer-readable storage medium. Those pro
grams describe what the application server 100 is supposed to 40

do, and may be provided in various forms of storage media.
For example, the programs may be stored in an HDD 103 of
the application server 100. The processor 101 loads all or
some of those programs into its local RAM 102 and executes
them. The programs may also be provided in a portable star- 45

age medium such as an optical disc 14, memory device 15,
and memory card 17. For example, the programs in a portable
storage medium are installed in the HDD 103 under the con
trol of the processor 101 before they can be executed. Where
appropriate, the processor 101 may also execute programs 50

read out of a portable storage medium, without installing
them in its local storage.

that belong to a particular category.
As an alternative to the above-described definition of pro-

cessing time, the term "processing time" may only refer to the
period during which the application server 100 waits for a
response from the database server 3 00 to its job request, rather
than the entire duration in which the connection is alive. In the
case where a plurality of job requests are issued, the process
ing time means the sum of waiting times of all such requests.
This alternative definition of processing time may represent
the actual workload of the database server 300 more accu
rately. It is not intended, however, to suggest that the first
mentioned definition of processing time (i.e., the time from
allocation to deallocation of a connection) is inaccurate.
Rather, this processing time sufficiently reflects the degree of
workload of the database server 300.

In association with the average processing time of a job
category, the occurrence rate is calculated as the ratio of jobs
in that particular category to the entire population of jobs (i.e.,
in all categories). These statistic values serve as the source
data for calculation of the number of light jobs that are
expected to be running concurrently on the database server

The application server 100 includes several components to
implement the functions of job priority control. FIG. 9 is a
block diagram illustrating an example of functions provided 55

in the application server 100. The illustrated application
server 100 includes a parameter storage unit 110, a mode
setting unit 120, a threshold calculation unit 130, a plurality of
applications 141, 142, 143, and 144, a plurality of job control
units 150 and 160, and a job distribution unit 170. 60 300 when the total number of concurrent jobs on the database

server 300 reaches the foregoing maximum concurrent job
count N. The threshold calculation unit 130 may use that
expected number of light jobs as threshold a. More specifi-

The parameter storage unit 110 is where various param
eters are stored for use in allocating connections to jobs. For
example, the parameter storage unit 110 may be implemented
as part of storage space of the RAM 102 or HDD 103.

The mode setting unit 120 manages a job priority control 65

flag in the parameter storage unit 110, which indicates
whether to execute job priority control or not. For example,

cally, the threshold calculation unit 130 multiplies the aver
age processing time by the occurrence rate, for each different
job category. Then the threshold calculation unit 130 adds up
the products of all light job categories, as well as the products

US 9,189,272 B2
15

of all job categories, and divides the former sum by the latter
sum. The threshold calculation unit 130 further multiplies the
quotient of that division by the maximum concurrent job
count N, thus obtaining threshold a.

Suppose, for example, that the collected statistics include 5

the following values for four different job categories A to D:
Job A (Light), Average Processing Time=5 ms, Occurrence

Rate=0.30

16
one thread. The call count denotes the number of jobs sub
mitted from each thread to the database server 300. The
measuring unit 141b measures those values and summarizes
them for each different job category. For example, the mea
suring unit 141b provides the foregoing threshold calculation
unit 130 with average processing time of each different job
category based on the measurements.

Similarly to the above-described application 141, other
applications 142, 143, and 144 also execute requested jobs Job B (Light),Average Processing Time=2 ms, Occurrence

Rate=0.35
Job C (Heavy), Average Processing Time=20 ms, Occur

rence Rate=0.20
Job D (Heavy), Average Processing Time=30 ms, Occur

rence Rate=0.15

10 with their respective threads 142a, 143a, and 144a. The job
distribution unit 170 specifies which job control unit the
applications 142, 143, and 144 are supposed to use when they
submit jobs to the database server 300. Each thread 142a,
143a, and 144a submits jobs to the database server 300 via the

In the case where the maximum concurrent job count N is
6, threshold a is then calculated to be: ((5x0.30+2x0.35)/(5x
0.30+2x0.35+20x0.20+30x0.15))x6= 1.23.

This threshold a= 1.23 is used to determine whether to give
priority to light jobs over heavy jobs. That is, light jobs are
executed with higher priority when the number of ongoing
light jobs has exceeded 1.23 (actually, when the integer num
ber of light jobs has exceeded one or reached two), and this
priority is maintained until the number of light jobs falls
below the threshold.

15 specified job control unit. The applications 142, 143, and 144
also include measuring units 142b, 143b, and 144b, respec
tively. Those measuring units 142b, 143b, and 144b measure
the processing time, call count, and other statistics about each
series of jobs submitted by the threads of the applications 142,

20 143, and 144. The measuring units 142b, 143b, and 144b
provide such statistical data, including average processing
time, of each job category to the threshold calculation unit
130, similarly to the measuring unit 141b described above.

The application server 100 of FIG. 9 has two job control
The threshold calculation unit 130 may be configured to

alter the threshold a dynamically. For example, the threshold
calculation unit 130 may calculate a new threshold a at regu-

25 units 150 and 160 to control the number of jobs to be sent to
the database server 300 for concurrent execution. According
to the second embodiment, the heavy job control unit 150
controls the number of heavy jobs, while the light job control lar intervals by using the latest statistics of executed jobs, if

available, and replace the current threshold with the new one.
Such job statistics may be collected from applications 141 to 30

144 through their measurement functions (described later). It
is also possible to configure the heavy and light job control
units 150 and 160 to collect statistics ofrecent jobs.

unit 160 controls the number of light jobs.
The heavy job control unit 150 includes a connection pool

151 to manage a set of connections previously established for
the purpose of communication with the database server 300.
The heavy job control unit 150 allocates connections from its
local connection pool 151 to threads that submit heavy jobs to

35 the database server 300. Here, the heavy job control unit 150
controls the total number of active connections so as not to

Applications 141 to 144 are processing functions that are
realized by application software. For example, each applica
tion 141, 142, 143 and 144 may be realized by executing a
program called "servlet" on the processor 101. Take the left
most application 141 seen in FIG. 9, for example. This appli
cation 141 executes jobs as requested from the web server
200. During the execution of a job, the application 141 may 40

submit a new job to the database server 300 at its own discre
tion. When the result of that job is returned from the database
server 300, the application 141 continues and finishes its own
job assigned from the web server 200. Upon completion, the
application 141 transmits the job result to the requesting web 45

server 200. For example, the application 141 executes such
jobs by launching a new thread 141a each time a new job
processing request arrives from the web server 200 and
assigning the requested job to that thread 141a.

The application server 100 has two job control units, and 50

the application 141 is supposed to use one of them when
submitting a new job to the database server 300. The choice of
which one to use is made by the job distribution unit 170.
When a need for database access arises, the thread 141a
produces a job request forthe database server 300, which may 55

be a piece of information that specifies what database opera
tions are requested. Then, to reach the database server 300,
the thread 141a requests the chosen job control unit to allo
cate a connection. The application 141 thus obtains a connec
tion for use in submitting the produced job to the database 60

server 300.

exceed maximum concurrent job count N specified previ
ously. When the job priority control is enabled, the heavy job
control unit 150 controls submission of heavy jobs. More
specifically, the heavy job control unit 150 suspends submis
sion ofheavy jobs to the database server 300 when the number
of ongoing light jobs exceeds threshold a, and there are
pending light jobs to be submitted.

Similarly to the heavy job control unit 150 described
above, the light job control unit 160 includes its own connec
tion pool 161 to manage another set of connections previously
established for communication with the database server 300.
The light job control unit 160 allocates connections from its
local connection pool 161 to threads that submit light jobs to
the database server 300. Here, the light job control unit 160
controls the total number of active connections so as not to
exceed the maximum concurrent job count N.

The job distribution unit 170 specifies which job control
unit, 150or160, the applications 141to144 are supposed to
use when they submit jobs to the database server 300. For
example, this choice may be determined according to user
input, for each individual application 141 to 144. Alterna
tively, the job distribution unit 170 may be designed to auto
mate the choice of job control units for each application 141
to 144 in the way described below. Based on the statistics
collected from executed jobs, the job distribution unit 170
estimates how much reduction in processing time is expected
when different categories of jobs are distributed to the two job
control units 150and160 ina particular combination. The job

The application 141 also includes a measuring unit 141b to
measure the processing time, call count, and other statistics
about each series of jobs submitted by threads of the applica
tion 141. Here the processing time ofa series of jobs denotes,
for example, the time from submission of the topmost job to
completion of the last job in a series of jobs submitted from

65 distribution unit 170 performs this estimation with various
possible combinations and thus determines which combina
tion provides the greatest reduction of processing time. The

US 9,189,272 B2
17

statistics used in this calculation include, for example, data of
average processing time of each job category in low workload
conditions. Also included are records indicating the number
of jobs produced during a period of performance saturation.
Here the second embodiment assumes that each application is
dedicated for a particular category of jobs. In other words, all
jobs submitted from one application fall in the same category.

18
implementation of the calculation unit le discussed previ
ously in FIG. 1 as part of the first embodiment. The applica
tions 141to144 in FIG. 9 are an exemplary implementation of
the execution units la-1, la-2, la-3, and la-4 discussed in the
first embodiment. The heavy and light job control units 150
and 160 in FIG. 9 include functions of both the counting unit
lf and suspending unit lg of the first embodiment. Further,
the job distribution unit 170 in FIG. 9 is an exemplary imple
mentation of the determination unit lb of the first embodi-

10 ment.

For example, the job distribution unit 170 sorts the job
categories in the order of their "heaviness" i.e., the length of
average processing time with no waiting times involved. The
job distribution unit 170 then divides the classified list of job
categories into two groups at a certain point. One is a group of
heavy job categories, and the other is a group of light job
categories. By changing the dividing point, the job distribu-

15
ti on unit 170 produces various grouping patterns of heavy job
categories and light job categories.

Then for each produced grouping pattern, the job distribu
tion unit 170 estimates an expected reduction of processing
time. In this estimation, the reduction ratio may be repre-

20
sented as a ratio of m: 1 (m is a real number greater than or
equal to one) between the average processing time of heavy
jobs and that of light jobs under low workload conditions of
the database server 300. Now let nl represent the number of
heavy jobs, and n2 the number oflight jobs, produced during 25
a time period in which the database server 300 experiences
performance saturation. The ratio of total processing time in
worst scheduling versus total processing time in best sched
uling is then calculated by using the following formula:

30

Total Processing Time in Worst Scheduling (1)

versus Total Processing Time in Best Scheduling=

The details of parameters stored in the parameter storage
unit 110 will now be described below. FIG. 10 illustrates an
exemplary data structure of the parameter storage unit 110.
The illustrated parameter storage unit 110 stores the follow
ing data objects: priority control flag 111, maximum concur
rent job count 112, threshold 113, concurrent job counter 114,
ongoing heavy job counter 115, ongoing light job counter
116, pending heavy job counter 117, and pending light job
counter 118.

The priority control flag 111 represents the current on-off
mode of job priority control. When, for example, job priority
control is enabled (ON), the priority control flag 111 is set to
one. When job priority control is disabled (OFF), the priority
control flag 111 is cleared to zero.

The maximum concurrent job count 112 is a parameter that
indicates the maximum number of jobs that the database
server 300 is allowed to execute concurrently. The symbol
"N" is used to refer to the value of this maximum concurrent
job count 112.

The threshold 113 serves as a criterion for determining
whether to allocate connections to heavy-job threads (i.e.,
threads that have at least one heavy job to submit to the
database server 300) when the job priority control is enabled.
The symbol "a" is used to refer to the value of this threshold

35 113.
The concurrent job counter 114 is a counter that indicates

the number of jobs being executed concurrently on the data
base server 300. This concurrent job counter 114 is initialized
to zero, and incremented by one each time a new job is

The job distribution unit 170 calculates the ratio of formula 40 submitted to the database server 300. The concurrent job
counter 114 is decremented by one when a job is completed in
the database server 300.

(1) for each produced grouping pattern and selects one of
those grouping patterns that offers an "optimal" ratio of for
mula (1). A ratio of formula (1) is considered to be optimal
when, for example, its reciprocal number (i.e., total process
ing time in best scheduling divided by that in worst schedul- 45

ing) becomes minimum. According to the selected grouping
pattern, the job distribution unit 170 then determines to which
job control unit the applications are to send their connection
allocation requests.

The above-noted reciprocal number may be interpreted as 50

a reduction ratio of average processing time that is expected
when the execution order of jobs is changed from that of the
worst scheduling to that of the best scheduling. If this
expected reduction ratio of average processing time is worse
than a specified threshold (e.g., 0.7, or 70%), it suggests that 55

job priority control would not be so effective. Accordingly,
the job priority control mode may be turned off, even if the
ratio of formula (1) is optimal, in the case where the expected
reduction ratio of average processing time is greater than or
equal to the specified threshold. Disablingjob priority control 60

when it is not effective alleviates workload of the application
server 100.

The ongoing heavy job counter 115 is a counter that indi
cates the number of heavy jobs being executed on the data
base server 300. This ongoing heavy job counter 115 is ini
tialized to zero, and incremented by one each time a new
heavy job is submitted to the database server 300. The ongo
ing heavy job counter 115 is decremented by one when a
heavy job is completed in the database server 300.

The ongoing light job counter 116 is a counter that indi
cates the number oflight jobs being executed on the database
server 300. This ongoing light job counter 116 is initialized to
zero, and incremented by one each time a new light job is
submitted to the database server 300. The ongoing light job
counter 116 is decremented by one when a light job is com
pleted in the database server 300.

The pending heavy job counter 117 is a counter that indi-
cates the number of heavy jobs waiting for submission to the
database server 300. This pending heavy job counter 117 is
initialized to zero, and incremented by one each time a thread
having a heavy job for the database server 300 encounters
suspension of connection allocation. The pending heavy job
counter 117 is decremented by one each time a determination
is made again about whether to allocate a connection for such

It is noted that the lines interconnecting the functional
blocks in FIG. 9 are only an example. The person skilled in the
art would appreciate that there may be other communication
paths in actual implementations. It is also noted that the
threshold calculation unit 130 in FIG. 9 is an exemplary

65 a heavy-job thread requesting a connection.
The pending light job counter 118 is a counter that indi

cates the number of light jobs waiting for submission to the

US 9,189,272 B2
19

database server 300. This pending light job counter 118 is
initialized to zero, and incremented by each time a thread
having a light job for the database server 300 encounters
suspension of connection allocation. The pending light job
counter 118 is decremented by one each time a determination
is made again about whether to allocate a connection for such
a light-job thread requesting a connection.

Allocation of connections is controlled by using the above
described parameters in the parameter storage unit 110 of
FIG. 10, so as to minimize the response time fluctuation of the 10

database server 300. FIG. 11 illustrates an example of allo
cated connections. It is assumed in the example of FIG. 11
that two applications 141 and 142 submit heavy jobs to the
database server 300, while another two applications 143 and

15
144 submit light jobs to the same. The former two applica
tions 141and142 have been configured to send their connec
tion allocation requests to the heavy job control unit 150,
which is responsible for control of heavy jobs on the database
server 300. The latter two applications 143 and 144, on the 20

other hand, have been configured to send their connection
allocation requests to the light job control unit 160, which is
responsible for control of light jobs on the database server
300.

A plurality of connections 41 have been established 25

between the web server 200 and application server 100. Simi
larly a plurality of connections 42 have been established
between the application server 100 and database server 300.
The heavy and light job control units 150and160 manage the
latter set of connections in their respective connection pools 30

151and161 (not illustrated). FIG. 11 uses bold solid lines to
indicate occupied connections, or active connections, and
bold broken lines to represent unused connections.

The web server 200 submits a job to the application server
100 by using one of those connections 41, specifying which 35

application is to execute it. In response, the application server
100 causes the specified application to execute the job.

When a job is given, the specified application 141 to 144
spawns a thread and causes that thread to execute the
requested job. During execution of the job, the thread may 40

need to interact with the database server 300. In that case, the
thread produces a job for the database server 300 and sends a
connection allocation request to the previously specified job
control unit. For example, threads in the applications 141 and
142 send their connection allocation requests to the heavy job 45

control unit 150 because they submit heavy jobs. Threads in
the other applications 143 and 144, on the other hand, send
their connection allocation requests to the light job control
unit 160 because they submit light jobs.

In response to a connection allocation request from a 50

thread, the receiving job control unit 150 or 160 allocates a
connection to the requesting thread. The thread then uses the
allocated connection to submit its job to the database server
300. The heavy and light job control units 150 and 160 may,
however, suspend allocation of connections. In that case, the 55

job of the thread is placed at the end of one of four queues
14lc, 142c, 143c, and 144c corresponding to the applications
141, 142, 143, and 144. The first two queues 14lc and 142c
are managed by theheavy job control unit 150, and the second
two queues 143c and 144c are managed by the light job 60

control unit 160.

20
FIG. 12 gives an overview of processing operation in the

application server 100 according to the second embodiment.
The job priority control is enabled or disabled by an on/off
signal sent from the analysis server 400. For example, the
analysis server 400 monitors the activity of each server by
collecting a copy of packets exchanged among the servers.
This monitoring is performed at short time intervals (e.g., 0.1
s). When one server is observed to be experiencing perfor-
mance saturation in a certain monitoring period, the analysis
server 400 sends a command signal to an upper-tier server
associated with the saturated server to enable its job priority
control. For example, when it is detected that the database
server 300 is experiencing intermittent performance satura
tion, the analysis server 400 commands the application server
100 to enable its job priority control. The analysis server 400
also watches the saturated lower-tier server as to whether its
saturation continues for a long time (i.e., the server falls into
fully-saturated state), or whether the saturation has ceased
(i.e., the server has returned to non-saturated state). Upon
detection of a fully-saturated state or non-saturated state of
the server in question, the analysis server 400 sends a com
mand signal to the upper-tier server to disable its job priority
control.

Each server accepts and executes a plurality of jobs con
currently. The number of such concurrent jobs is referred to
herein as the "load" of a server. The analysis server 400
determines saturation of this "load" in the database server
300, based on the relationship between the load and response
time per job, and sends a command signal to turn on or off the
job priority control accordingly. For example, the analysis
server 400 subdivides an observation period into a plurality of
time windows and calculates an average load of jobs executed
in each time window (unit time period), as well as a total
progress quantity in that time window. The analysis server
400 then analyzes the relationship between load values and
total progress quantities, thereby finding a particular load
value above which the total progress quantity does not
increase in spite of an increase of the load. The found load
value is referred to as a "saturation point." This saturation
point is where the server in question reaches its performance
limit.

The analysis server 400 has a first threshold to compare
with the ratio of time windows whose load values equal or
exceed the saturation point. If the ratio of such time windows
is greater than the first threshold, the analysis server 400
determines that the server is in a partially-saturated state.
When this is the case, the analysis server 400 then turns to an
upper-tier server located above the partially saturated server
and issues a command signal to request that upper-tier server
to enable its job priority control.

The analysis server 400 also has a second threshold to
compare with the ratio of time windows whose load values
equal or exceed the saturation point. This second threshold is
higher than the first threshold, and if the ratio of such time
windows is greater than the second threshold, the analysis
server 400 determines that the server in question is in a
fully-saturated state. When this is the case, the analysis server
400 issues a command signal to request that upper-tier server
to disable its job priority control.

The analysis server 400 further has a third threshold to
compare with the ratio of time windows whose load values
equal or exceed the saturation point. This third threshold is
lower than the first threshold, and if the ratio of such time

The web three-tier system described above provides ser
vices to the users. When the database server 300 is heavily
loaded, its performance saturation could cause a wild fluc
tuation of response time of the system as a whole. The second
embodiment activates job priority control to prevent such
fluctuations from happening as will be described below.

65 windows is smaller than the third threshold, the analysis
server 400 determines that the server in question is in a
non-saturated state. When this is the case, the analysis server

US 9,189,272 B2
21

400 issues a command signal to request the upper-tier server
to disable its job priority control.

The analysis server 400 also informs the application server
100 of maximum concurrent job count N, which specifies
how many jobs can be executed concurrently on the database
server 300. For example, this maximum concurrent job count
N have been determined in such a way that N is large enough
to drive the server of a near-saturated tier into a fully saturated
state, but not too large to cause unnecessary overhead.

More specifically, the analysis server 400 determines 10

maximum concurrent job count N on the basis of, for
example, the relationship between load of jobs executed on
the database server 300 and the response time per job. For
example, the analysis server 400 subdivides an observation
period into a plurality of time windows and calculates an 15

average load in each time window. The analysis server 400
extracts transactions whose response time in each time win
dow falls within an acceptable time range. The analysis server
400 calculates a total progress quantity of the jobs that were
executed by the database server 300 in the extracted transac- 20

tions. The analysis server 400 seeks a boundary point ofload
at which the total progress quantity begins decreasing in spite
of an increase in the load, and chooses that point as the
maximum concurrent job count N. The threshold determined
in this way serves as an upper bound ofload limit parameters 25

for ensuring that the response times of transactions fall within
an acceptable range.

The load-based determination described above is only an
example of how the job priority control is enabled and dis
abled. Other methods may be used to achieve the same pur- 30

pose. This also holds true for the above-described determina
tion of maximum concurrent job count N.

22
As described above, the threshold a is calculated as the

expected number oflight jobs included in maximum concur
rent job count N. The reason for this calculation may be
explained as follows. It is known that maximum concurrent
job count N is large enough to drive a near-saturated tier into
a fully saturated state. There is also an estimate of the ratio of
concurrently executed jobs between heavy job group and
light job group assigned to the heavy job control unit 150 and
light job control unit 160, respectively. Accordingly, it would
be safe to say that a tier is approaching its performance
saturation when the number of light jobs exceeds the above
noted threshold a, even if the number of concurrently
executed jobs including both heavy and light jobs has not
reached N. The second embodiment is therefore designed to
calculate threshold a as the expected number of light jobs
included in maximum concurrent job count N and determine
that a tier is approaching its performance saturation when the
number of light jobs exceeds the threshold a.

The two job control units 150 and 160 control the priority
of jobs for the database server 300 in a dynamic fashion by
using various parameters discussed above. The next section
will describe how the job priority control handles heavy jobs
and light jobs, with reference to FIG. 13.

FIG. 13 illustrates an example of job priority control. As
seen, two threads 201 and 202 have been produced on the web
server 200 in response to two processing requests received
from user terminal devices. These threads 201 and 202
execute their respective jobs 211and212 according to what is
specified in the received processing requests. During the
course of execution of jobs 211 and 212, the threads 201 and
202 may need some interactions with the application server
100. When this is the case, the threads 201and202 produce
new jobs and submit them to the application server 100.

In response to the job submission from the web server 200,
the application server 100 spawns two threads 14 la and 143a.
One thread 141a executes a job 181 submitted from thethread
201, while the other thread 143a executes a job 182 submitted
from the thread 202. The former thread 141a submits three

With the above-described command signals from the
analysis server 400, the mode setting unit 120 in the receiving
application server 100 changes the priority control flag 111 35

stored in the parameter storage unit 110, thus enabling or
disabling job priority control. The mode setting unit 120 also
receives a parameter of maximum concurrent job count N
from the analysis server 400 and stores it in the parameter
storage unit 110.

In the applications 141 to 144 running on the application
server 100, their respective measuring units 141b, 142b,
143b, and 144b collect statistics of each series of jobs sub
mitted to database server 300, including their average pro
cessing times and call counts (the number of submitted jobs). 45

One thread may submit two or more jobs in series. The pro
cessing time in this case is measured as the time from the
beginning of its first job to the end of its last job. Each
measuring unit 141b, 142b, 143b, and 144b supplies such
statistical records to the threshold calculation unit 130.

40 jobs to the database server 300 in the course of execution of
the job 181. While individual jobs 311 to 313 do not neces
sarily need much time to finish, it takes a long time for the
database server 300 to complete the whole series of those
jobs, from the beginning of the first job 313 to the end of the
third job 313. In the second embodiment, a plurality of jobs
submitted in succession over the same connection are treated
as if they were a single job, for the purpose of calculation of
processing time. For this reason, the illustrated series of jobs
311 to 313 in FIG. 13 is taken as a single heavy job. Another

50 thread 143a on the application server 100 submits only one
job 314 to the database server 300. This job 314 is usually a
light job that can be executed in a short time unless the
performance of the database server 300 is saturated.

The threshold calculation unit 130 accumulates received
statistics in the RAM 102 or HDD 103. The threshold calcu
lation unit 130 calculates a threshold a automatically from
the accumulated statistics, for use in dynamically changing
job priorities. For example, the threshold calculation unit 130
performs this calculation on the basis of the average process
ing time and occurrence rate of each job category in low
workload conditions. The heavy and light job control units
150 and 160 identify low-workload conditions by detecting
that the number of concurrently running jobs is smaller than 60

a specific threshold. The threshold calculation unit 130 now
reads maximum concurrent job count N out of the parameter
storage unit 110. The threshold calculation unit 130 estimates
how many light jobs are included in this maximum concurrent
job count N, based on the average processing time and occur- 65

rence rate of each job category. The calculated estimate is
stored into the parameter storage unit 110 as the threshold a.

Suppose now that the priority control flag 111 is set to one
55 (ON), meaning that the application server 100 is performing

job priority control. It is also assumed that the application
server 100 has some light jobs pending in the queue 143c (not
illustrated in FIG. 13), and that the numberof concurrent light
jobs exceeds threshold a in the database server 300.

In the above-described situation of the three-tier system,
one thread 141a executing its job 181 on the application
server 100 needs to interact with database server 300. The
thread 141a thus sends a connection allocation request to the
heavy job control unit 150 (step Sll). The heavy job control
unit 150, however, suspends this connection allocation
request because the job priority control is enabled, and there
are pending light jobs in the queue 143c (step S12).

US 9,189,272 B2
23 24

at the same time. For simplicity purposes, the degree of par
allelism is set to one in FIG. 14, meaning that the server is
allowed to execute only one submitted job at a time.

The upper half of FIG. 4 illustrates the case in which heavy

Another thread 143a on the application server 100 is
executing a job 182, during which a need arises for interaction
with the database server 300. The thread 143a thus sends a
connection allocation request to the light job control unit 160
(step S13). In response, the light job control unitl 60 allocates
a connection to the requesting thread 143a since the total
number of submitted jobs on the database server 300 is
smaller than the maximum number of concurrent jobs N (step
S14). The light job control unit 160 then sends a connection
allocation completion notice to the requesting thread 143a
(step S15). The thread 143a then submits a job 314 to the
database server 300 by using the allocated connection. In
response to this job submission, the database server 300
spawns a thread 302 to execute the submitted job 314. When
this job 314 is finished, the thread 302 on the database server
300 sends a job completion notice back to the application
server 100.

5 job A is submitted first. The response time of heavy job A in
this case is 20 ms, while that of light job B is 22 ms. Their
average response time is calculated to be 21 ms. In contrast,
the lower half of FIG. 14 illustrates the case in which the light
job B is submitted first. The response time of heavy job A in

10 this case is 22 ms, while that of light job B is 2 ms. Their
average response time is calculated to be 12 ms.

As can be seen from the above example, the prioritized
execution of light jobs minimizes the increase of average

Upon receipt of the job completion notice from the data
base server 300, the thread 143a on the application server 100
sends a connection return notice to the light job control unit
160 (step S16). In response, the light job control unit 160
deallocates the connection from the thread 143a (step Sl 7)
and returns a connection deallocation notice to the thread
143a (step S18). This connection deallocation notice permits
the thread 143a to continue the rest of its job 182. The thread
143a finally informs the web server200thatthe submitted job
182 is completed.

15
response time even if the database server 300 falls into a
partially saturated state. A reduced increase of response time
means a reduced increase of concurrent jobs staying in the
system. This also means that the system is saved from the risk
of resource exhaustion in upper tiers and a consequent

20 increase of response time. In other words, the foregoing sec
ond cause of fluctuations is eliminated.

It is noted that the second embodiment may permit sub
mission of new heavy jobs even in a time period in which the
number oflight jobs concurrently executed under the control

25 of the light job control unit 160 is greater than threshold a.
This is, however, limited to the case in which the following
two conditions are both true: (1) the total numberofheavy and
light jobs concurrently executed on the database server 300 is
smaller than maximum concurrent job count N, and (2) no

Afterwards, the heavy job control unit 150 allocates a
connection to the thread 141a when the job priority control is
disabled or when the queues 143c and 144c become empty of
light jobs. The heavy job control unit 150 then sends a con
nection allocation completion notice to the requesting thread
141a. Thethread 141athensubmits three new jobs one by one

30 pending light jobs are present in the queues 143c and 144c.
When the number of light jobs concurrently executed under
the control of the light job control unit 160 falls below the
threshold a, the system handles heavy jobs as in the initial to the database server 300 by using the allocated connection.

In response to this job submission, the database server 300
spawns a thread 301 to execute the submitted jobs 311to313.
Whenall the three jobs 311to313 are finished, thethread301

35
state.

on the database server 300 sends a job completion notice back
to the application server 100.

Upon receipt of the job completion notice from the data- 40

base server 300, the thread 141a on the application server 100
sends a connection return notice to the heavy job control unit
150 (step S20). In response to this connection return notice,
the heavy job control unit 150 deallocates the connection
from the thread 141a (step S21) and returns a connection 45

deallocation notice to the thread 141a (step S22). This con
nection deallocation notice permits the thread 141a to con
tinue the rest of its job 181. The thread 141a finally informs
the web server 200 that the submitted job 181 is completed.

As can be seen from the above sequence, the second 50

embodiment permits a thread to submit light jobs to the data
base server 300 in preference to heavy jobs during a time
period in which the number of jobs submitted through the
light job control unit 160 and running concurrently on the
database server 300 exceeds threshold a. During that time 55

period, the heavy job control unit 150 suspends submission of
new heavy jobs, while allowing ongoing heavy jobs to con
tinue and finish their execution. The proposed job scheduling
of the second embodiment places light jobs before heavy jobs
to prevent the light jobs from being forced to spend extra time 60

under the influence of heavy jobs. This feature makes it pos
sible to minimize the increase ofresponse time of the three
tier system as a whole.

FIG. 14 illustrates an example of how the average response
time changes depending on the execution order of jobs. This 65

example assumes that a heavy job A with an execution time of
20 ms and a light job B with an execution time of 2 ms arrive

More detailed procedures of job priority control will now
be described with reference to a few flowcharts. The descrip
tion begins with a mode setting procedure executed by the
mode setting unit 120.

FIG. 15 is a flowchart illustrating an example of a mode
setting procedure. Each step of FIG. 15 is described below in
the order of step numbers.

(Step SlOl) The mode setting unit 120 determines whether
a command signal is received from the analysis server 400
which commands the application server 100 to enable its job
priority control. When such a command signal is received, the
mode setting unit 120 proceeds to step S102. Otherwise, the
mode setting unit 120 advances to step S103.

(Step S102) In response to the command signal, the mode
setting unit 120 enables priority control mode. For example,
the mode setting unit 120 gives a value of one to the priority
control flag 111 in the parameter storage unit 110. The mode
setting unit 120 then proceeds to step S103.

(Step S103) The mode setting unit 120 determines whether
a command signal is received from the analysis server 400
which commands the application server 100 to disable its job
priority control. When such a command signal is received, the
mode setting unit 120 proceeds to step S104. Otherwise, the
mode setting unit 120 advances to step S105.

(Step S104) In response to the command signal, the mode
setting unit 120 disables priority control mode. For example,
the mode setting unit 120 gives a value of zero to the priority
control flag 111 in the parameter storage unit 110. The mode
setting unit 120 then proceeds to step S105.

(Step S105) The mode setting unit 120 determines whether
a stop command is received. When there is a stop command
requesting to stop the mode setting procedure, the mode

US 9,189,272 B2
25

setting unit 120 terminates the mode setting process. Other
wise, the mode setting unit 120 goes back to step SlOl and
repeats the above steps.

As can be seen from the above steps, the second embodi
ment switches job priority control according to commands 5

from the analysis server 400. The next section will describe
how the heavy job control unit 150 controls job counts.

FIG.16 is the first halfofa flowchart illustrating an exem
plary procedure of heavy job count control. Each step of FIG.
16 is described below in the orderof step numbers. This heavy 10

job count control procedure is invoked when a connection
allocation request from a thread in applications 141and142
arrives at the heavy job control unit 150. The following expla
nation assumes that one thread 141a has issued a connection

15
allocation request.

(Step Slll) The heavy job control unit 150 determines
whether the job priority control is enabled. For example, the
heavy job control unit 150 tests the priority control flag 111 in
the parameter storage unit 110. Ifit is set to one, theheavy job 20

control unit 150 determines that job priority control is
enabled, and thus advances to step S112. If job priority con
trol is disabled, the heavy job control unit 150 skips to step
S118.

26
(Step S119) The heavy job control unit 150 increments by

one the ongoing heavy job counter 115 in the parameter
storage unit 110.

(Step S120) The heavy job control unit 150 takes out one
connection from its connection pool 151 and allocates the
connection to the requesting thread 141a. The heavy job
control unit 150 now moves to step S131 (FIG. 17).

FIG. 17 is the second half of the flowchart illustrating an
exemplary procedure of heavy job count control. Each step of
FIG. 17 is described below in the order of step numbers.

(Step S131) Since a connection is received from the heavy
job control unit 150, the thread 141a determines whether it
has any (more) job to submit. If it has, the thread 141a
advances to step S132. If not, the thread 141a branches to
S134.

(Step S132) The thread 141a submits a job to the database
server 300 by using the allocated connection.

(Step S133) The thread 141a receives a completion notice
from the database server 300 as a response to the job submit
ted at step S132. Thethread 141a then goes back to step S131.

(Step S134) The thread 141a returns its connection to the
connection pool 151. For example, the thread 141a sends a
connection return notice to the heavy job control unit 150. In
response to this notice, the heavy job control unit 150 deal-

(Step S112) Since job priority control is enabled, the heavy
job control unit 150 now determines whether the number of
concurrent jobs (i.e., the total number of jobs being executed

25 locates the connection from the thread 141a.
(Step S135) The heavy job control unit 150 decrements by

one the ongoing heavy job counter 115 in the parameter
storage unit 110. on the database server 300) is smaller than the maximum

concurrent job count N in the parameter storage unit 110.
Here the number of concurrent jobs is obtained by reading the
concurrent job counter 114 in the parameter storage unit 110.
If that number is smaller than N, the heavy job control unit
150 advances to step S113. Otherwise, the heavy job control
unit 150 branches to step S115.

(Step S136) The heavy job control unit 150 decrements by
30 one the concurrent job counter 114 in the parameter storage

unit 110.

(Step S113) The heavy job control unit 150 determines 35

whether the number of ongoing light jobs (i.e., the number of
light jobs being executed on the database server 300) is
smaller than threshold a stored in the parameter storage unit
110. The current number ofongoing light jobs is obtained by
reading the ongoing light job counter 116 in the parameter 40

storage unit 110. If this number is smaller than a, the heavy
job control unit 150 advances to step S118. If current number
of ongoing light jobs is greater than or equal to a, the heavy
job control unit 150 proceeds to step S114.

(Step S114) The heavy job control unit 150 determines 45

whether any light jobs are pending in queues 143c and 144c
under the control of the light job control unit 160. For
example, the heavy job control unit 150 identifies the pres
ence of pending light jobs when the pending light job counter
118 in the parameter storage unit 110 indicates one or more 50

such jobs. If there are pending light jobs, theheavy job control
unit 150 proceeds to S115. Ifno pending jobs are found, the
heavy job control unit 150 proceeds to S118.

(Step S115) The heavy job control unit 150 increments by
one the pending heavy job counter 117 in the parameter 55

storage unit 110.
(Step S116) The heavy job control unit 150 makes the

thread 141a wait until a connection is returned to either of the
connection pools 151 and 161.

(Step Sll 7) When a connection is returned, the thread 60

141a is allowed to exit from the waiting state. The heavy job
control unit 150 then decrements by one the pending heavy
job counter 117 in the parameter storage unit 110 and then
returns to Slll.

(Step S118) The heavy job control unit 150 increments by 65

one the concurrent job counter 114 in the parameter storage
unit 110.

(Step S137) The heavy job control unit 150 releases the
waiting state of a thread. For example, there may be some
threads having heavy jobs to submit. Then the heavy job
control unit 150 selects one of those threads that has the oldest
connection allocation request and releases its waiting state.
The heavy job control unit 150 also informs the light job
control unit 160 that a connection has been returned. When
there are some threads having light jobs to submit, the light
job control unit 160 selects one of those threads that has the
oldest connection allocation request and releases its waiting
state. A connection is thus allocated to the earliest thread in
preference to later threads, since the releasing of waiting
threads is applied in the order of arrival of connection alloca
tion requests.

The next flowchart explains how the light job control unit
160 controls job counts. FIG.18 is the first halfofa flowchart
illustrating an exemplary procedure oflight job count control.
Each step of FIG. 18 is described below in the order of step
numbers. This light job count control procedure is invoked
when a connection allocation request from a thread in appli
cations 143 and 144 arrives at the light job control unit 160.
The following explanation assumes that one thread 143a has
issued a connection allocation request.

(Step S141) The light job control unit 160 determines
whether the job priority control is enabled. For example, the
light job control unit 160 tests the priority control flag 111 in
the parameter storage unit 110. If it is set to one, the light job
control unit 160 determines that job priority control is
enabled, and thus advances to step S142. If job priority con
trol is disabled, the light job control unit 160 skips to step
S146.

(Step S142) Since job priority control is enabled, the light
job control unit 160 then determines whether the number of
concurrent jobs (i.e., the total number of jobs being executed
on the database server 300) is smaller than the maximum
concurrent job count N in the parameter storage unit 110.

US 9,189,272 B2
27

Here the number of concurrent jobs is obtained by reading the
concurrent job counter 114 in the parameter storage unit 110.
If that number is smaller than N, the light job control unit 160
advances to step S146. Otherwise, the light job control unit
160 branches to step S143.

(Step S143) The light job control unit 160 increments by
one the pending light job counter 118 in the parameter storage
unit 110.

(Step Sl 44) The light job control unit 160 makes the thread
143a wait until a connection is returned to either of the con
nection pools 151 and 161.

10

28
raising the priority oflight jobs just before the database server
300 falls into a fully saturated state. This feature helps light
jobs escape from influence of heavy jobs before the response
time oflightjobs becomes long.

The average response time of jobs is reduced by raising the
execution priority of light jobs. It is thus possible to prevent
upper-tier servers from being affected by exhaustion of
resources in lower-tier servers. As a result, the system can
serve the user terminals without wild fluctuations of response
time.

(Step S145) When a connection is returned, the thread
143a is allowed to exit from the waiting state. The light job
control unit 160 then decrements by one the pending light job
counter 118 in the parameter storage unit 110 and then goes 15

back to S141.

FIG. 20 is an exemplary graph illustrating temporal
changes ofaverage response time when job priority control is
enabled. This graph of FIG. 20 plots response time in the
vertical axis, against the passage of time in the horizontal
axis. Here each plotted value of response time is an average in
afinetime granularity (e.g., time step sizeof0.1 second). This (Step S146) The light job control unit 160 increments by

one the concurrent job counter 114 in the parameter storage
unit 110.

(Step S147) The light job control unit 160 increments by 20

one the ongoing light job counter 116 in the parameter storage
unit 110.

graph in FIG. 20 demonstrates effective suppression of peak
response time of the system, in contrast to the graph in FIG. 3
previously discussed for the case without job priority control.
In other words, the fluctuation of response time is alleviated.

According to the second embodiment, the raised priority of
light jobs over heavy jobs is maintained as long as the number
of concurrently executed light jobs exceeds threshold a. The

(Step S148) The light job control unit 160 takes out one
connection from its connection pool 161 and allocates the
connection to the requesting thread 143a. The light job con
trol unit 160 now moves to step S151 (FIG. 19).

FIG. 19 is the second half of the flowchart illustrating an
exemplary procedure oflight job count control. Each step of
FIG. 19 is described below in the order of step numbers.

(Step S151) Since a connection is received from the light
job control unit 160, the thread 143a determines whether it
has any (more) job to submit. If it has, the thread 143a
advances to step S152. If not, the thread 143a branches to
S154.

(Step S152) The thread 143a submits a job to the database
server 300 by using the allocated connection.

(Step S153) The thread 143a receives a completion notice
from the database server 300 as a response to the job submit
ted at step S152. The thread 143a then goes back to step S151.

(Step S154) The thread 143a returns its connection to the
connection pool 161. For example, the thread 143a sends a
connection return notice to the light job control unit 160. In
response to this notice, the light job control unit 160 deallo
cates the connection from the thread 143a.

25 resulting temporary concentration oflightjob submission to
the database server 300 would raise the number of ongoing
light jobs above the threshold a, during which heavy jobs are
kept in a waiting state. The system, however, will soon leave
this state because light jobs do not take much time to com-

30 plete. For this reason, keeping the heavy jobs waiting does
little harm to the system's response time.

According to the second embodiment, the above-described
job count control functions of the application server 100 are

35
also implemented in the servers in every relevant tier that
submits jobs to lower tiers. Job priority control in such servers
is disabled usually. When a server is observed to be partially
saturated in its tier, the analysis server 400 sends a priority
control enable command to an upper-tier server associated

40 with the partially-saturated server, so that the receiving
upper-tier server activates its job priority control. The pro
posed job priority control also works properly in other servers
than the database server 300.

(Step S155) The light job control unit 160 decrements by 45

one the ongoing light job counter 116 in the parameter storage
unit 110.

When it is detected that a server has become fully saturated
in a certain tier, the analysis server 400 sends a priority control
disable command to an upper-tier server associated with that
saturated server, so that the receiving upper-tier server disable
the job priority control. That is, the job priority control is
disabled upon detection of full saturation of performance.

(Step S156) The light job control unit 160 decrements by
one the concurrent job counter 114 in the parameter storage
unit 110.

(Step S157) The light job control unit 160 releases the
waiting state of a thread. For example, when there are some
threads having light jobs to submit, the light job control unit
160 selects one of those threads that has the oldest connection
allocation request and releases its waiting state. The light job
control unit 160 also informs the heavy job control unit 150
that a connection has been returned. There may be some
threads having heavy jobs to submit. Then the heavy job
control unit 150 selects one of those threads that has the oldest
connection allocation request and releases its waiting state.

As can be seen from the above flowchart, the second
embodiment performs dynamic priority control based on the
number of jobs submitted to the database server 300. In other
words, one tier observes resources becoming saturated in
another tier, based not on the lengths of queues, but on varia
tions of the number of concurrent jobs. It is therefore possible
for the application server 100 to find an appropriate point for

50 This is for the following reasons.
Once a lower tier is completely saturated, the job priority

control in its upper can do little against wild fluctuations of
response time. Also, if the upper tier continues submitting
light jobs in preference to others, heavy jobs would have no

55 opportunity for execution. The resulting execution order of
jobs is unfair and unacceptable. In view of this, the second
embodiment is configured to stop job priority control when
the performance is fully saturated (and the job priority control
is thus ineffective), so that the jobs will be executed equally

60 and fairly in the order of their arrival.
Applications may occasionally produce a burst of heavy

jobs. Although such a burst does not last long, it could drive
the database server 300 into partial saturation even if the
numberof concurrent light jobs is smaller than threshold a. In

65 this case, the priority oflightjobs is not raised because of the
number of ongoing light jobs does not increase. The database
server 300, on the other hand, will reach full saturation as a

US 9,189,272 B2
29

result of submission of many heavy jobs. Accordingly, there
is no point in giving priority to light jobs when a burst of
heavy jobs is visiting.

(c) Third Embodiment

This section describes a third embodiment. As will be
described in detail below, the third embodiment permits the
individual servers in a multi-tier system to determine, at their
own discretion, whether to enable their job priority control.

FIG. 21 illustrates an exemplary overall structure of a
system according to the third embodiment. The illustrated
web three-tier system is formed from a web server 600, an
application server 500, and a database server 700. A plurality
of terminal devices 29a, 29b, are attached to the web server
600 via a network 10. The web three-tier system provides
services to users sitting at those terminal devices.

30
following description of the third embodiment focuses on
how its heavy job control unit 550 is different from its coun
terpart in the second embodiment.

FIG. 22 illustrates an example of functions provided in an
application server according to the third embodiment. The
illustrated application server 500 includes, among others, a
parameter storage unit 510, a threshold calculation unit 530,
and a plurality of applications 541 to 544. Also included are
two job control units 550 and 560 for heavy jobs and light

10 jobs, respectively. The heavy job control unit 550 has a con
nection pool 551 from which connections are allocated to
threads that execute heavy jobs. Similarly the light job control
unit 560 has its own connection pool 561 from which con-

15 nections are allocated to threads that execute light jobs. All
the illustrated elements in FIG. 22, except for the parameter
storage unit 510 and heavy job control unit 550, provide the
same functions as their counterparts in the second embodi
ment discussed in FIG. 9.

As can be seen from FIG. 21, the web three-tier system of
the third embodiment has no servers directly equivalent to the
analysis server 400 in the second embodiment, which is 20

deployed to detect partial saturation of a server and regulate
job submission to that server by enabling job priority control

According to the third embodiment, the parameter storage
unit 510 stores two more parameters than the parameter stor
age unit 110 in the second embodiment to provide two thresh
old values related to the waiting time of heavy jobs. FIG. 23
illustrates an exemplary data structure of this parameter stor
age unit 510. Specifically, the parameter storage unit 510
contains the following parameters: priority control flag 511,

in its upper-tier server. The third embodiment needs no dedi
cated analysis servers because the server of each tier is
designed to switch its job priority control autonomously. This 25

elimination of analysis servers simplifies integration of the
system. maximum concurrent job count 512, threshold 513, concur

rent job counter514, ongoing heavy job counter 515, ongoing
light job counter 516, pending heavy job counter 517, pend
ing light job counter 518, first execution time threshold 519a,
and second execution time threshold 519b. The parameters
other than the last two are equivalent to those discussed in
FIG. 10 for the second embodiment.

First execution time threshold 519a is used to evaluate
waiting time of heavy jobs in determining whether to activate
job priority control. Specifically, job priority control is acti
vated when the waiting time ofheavy jobs falls below this first
execution time threshold 519a with a value of ~1. Second
execution time threshold 519b is also used to evaluate waiting

The foregoing second embodiment uses external com
mands for enabling or disabling job priority control. One
simple solution for eliminating such external commands is to 30

activate the job priority control permanently. This method
would, however, allow a low-tier server in a fully saturated
state to only execute light jobs without taking care of long
delayed heavy jobs. The third embodiment is thus designed to
disable the job priority control in two job control units 150 35

and 160 when the waiting time of heavy jobs in the heavy job
control unit 150 reaches a certain limit. The job priority
control is otherwise enabled by default. This method permits
the heavy job control unit 150 to restart execution of heavy
jobs when a low-tier server reaches a fully-saturated state. 40 time of heavy jobs, but in determining whether to deactivate

job priority control. Specifically, job priority control is deac
tivated when the waiting time of heavy jobs exceeds this
second execution time threshold 519b with a value of ~2 .

The third embodiment differs from the second embodi
ment in at least two points described below. The first differ
ence is that each tier operates autonomously without the help
of an external detector of partial saturation, and job priority
control is enabled by default even if the tier in question is not
saturated al all. The second difference is that fully-saturated
state of a low-tier server is determined from the waiting time
of jobs in the heavy job control unit 150.

Because of the above two differences, and particularly of
the first difference, the job priority control is responsive to
even a short burst of light jobs in low-workload conditions.
This could results in degradation of overall system perfor
mance, i.e., both throughput (processing capacity per unit
time) and response time of the system. It is noted, however,
that servers usually execute both light jobs and heavy jobs
until the number of concurrent light jobs exceeds threshold a.
For this reason, servers in low-workload conditions would
rarely exert suspension of heavy jobs, which means that the
expected performance degradation of the system is negligibly
small. In other words, there is no significant problem in acti
vating job priority control by default, even when the servers
are not saturated at all.

In the foregoing second embodiment, the application
server 100 receives maximum concurrent job count N from
the analysis server 400. Unlike the second embodiment, the
third embodiment assumes that the administrator previously
enters maximum concurrent job count N to each server. The

The heavy job control unit 550 functions similarly to the
45 foregoing heavy job control unit 150 in FIG. 9 according to

the second embodiment. In addition, the heavy job control
unit 550 has the function of switching (activating and deac
tivating) job priority control.

In operation of the third embodiment, the system adminis-
50 trator allows the servers to use their job priority control func

tions when the tiers are in low workload conditions. For
example, the system administrator sets a default state of serv
ers in such a way that the job priority control will be activated
upon startup of each server. The servers switch the on-off

55 mode of their priority control individually, depending on the
workload condition of their respective lower-tier servers.

More specifically, the job priority control is disabled when
the waiting time of jobs in the heavy job control unit 550
exceeds a previously given second execution time threshold

60 ~2 , so that the low-tier server starts execution of heavy jobs.
The job priority control is enabled again when the waiting
time of jobs in the heavy job control unit 550 falls below a
previously given first execution time threshold ~ 1 , where
~ 1 s~2 .As will be described later, the job priority control may

65 also be switched on the basis of job execution time including
waiting time of connection resources, rather than the waiting
time per se.

US 9,189,272 B2
31

According to the third embodiment, the timing for switch
ing of job priority control is when the execution of a heavy job
is finished. Details of this switching procedure will now be
described below. As the third embodiment uses the first half of
heavy job count control illustrated in FIG. 16, the following
section only describes the second half of the procedure with
reference to FIG. 24.

32
determined to fall short of the threshold y as many times in a
row as specified, or keeps below y for a specified length of
time.

As can be seen from the above, the third embodiment uses
waiting time of heavy jobs or execution time including the
same to determine the workload condition of a low-tier server.

(d) Fourth Embodiment FIG. 24 is the second half of a flowchart illustrating an
exemplary procedure of heavy job number control according
to the third embodiment. The second and third embodiments 10 This section describes a fourth embodiment which expands

the number of job control units to three or more. While the
foregoing second embodiment has two job control units per
server, it is possible to implement n job control units in a
server, where n is an integer greater than two. In place of

share several steps in this procedure, which are thus labeled
with the same step numbers used in FIGS. 17 and 24. See the
previous description for those shared steps. Referring to FIG.
24, step S210 is the only step that is different from the second
embodiment. This step S210 operates as follows.

15 threshold a in the second embodiment, the fourth embodi
ment uses n-1 thresholds a 1 , a 2 , ... , an_1 , where O<a1<
a 2< ... <an_ 1<N, to provide jobs with npriority levels. This
increased number of threshold values enables more fine-

(Step S210) After releasing the waiting state of a thread at
step S134, the heavy job control unit 550 calls a priority
control switching procedure. Upon completion, the heavy job
control unit 550 terminates the heavy job count control of 20

FIG. 24.

grained control of job priorities even in the case where dif
ferent job categories have too different execution times to sort
them into two groups. The following detailed description is

FIG. 25 is a flowchart illustrating an exemplary procedure
of priority control switching. Each step of FIG. 25 is
described below in the order of step numbers.

directed to an application server according to the fourth
embodiment, assuming the same system configuration of
FIG. 7 discussed in the second embodiment.

(Step S211) The heavy job control unit 550 determines 25

whether the job priority control is enabled. For example, the
heavy job control unit 550 tests the priority control flag 511 in
the parameter storage unit 510. Ifit is set to one, the heavy job
control unit 550 determines that the job priority control is
enabled, and thus advances to step S212. If job priority con- 30

trol is disabled, the heavy job control unit 550 proceeds to step
S214.

FIG. 26 illustrates an example of functions provided in an
application server according to the fourth embodiment. The
illustrated application server 800 includes a parameter stor
age unit 810, a mode setting unit 820, a threshold calculation
unit 830, a plurality (2n) of applications 841-1, 841-2, ... ,
842-1, 842-2, ... , 84n-l, 84n-2, ... , and a plurality (n) of job
control units 851, 852, ... , 85n. The job control units 851,
852, ... , 85n manage their respective connection pools 851a,
852a, ... , 85na.

(Step S212) The heavy job control unit 550 determines
whether the execution time of a heavy job exceeds the second
execution time threshold ~2 . The execution time includes
waiting time that the job spent to obtain a connection. If the
execution time exceeds ~2 , the heavy job control unit 550
advances to step S213. Otherwise, the heavy job control unit
550 terminates the priority control switching procedure.

(Step S213) The heavy job control unit 550 disables the job
priority control. For example, the heavy job control unit 550
clears the priority control flag 511 to zero in the parameter
storage unit 510, and terminates the priority control switching
procedure.

(Step S214) Since the job priority control is disabled, the
heavy job control unit 550 determines whether the execution
time of a heavy job, including waiting time spent to obtain a
connection, is below the first execution time threshold ~ 1 . If
the execution time is below~ u then the heavy job control unit
550 advances to step S215. Otherwise, the heavy job control
unit 550 terminates the priority control switching procedure.

(Step S215) The heavy job control unit 550 enables the job
priority control again. For example, the heavy job control unit
550 sets the priority control flag 511 to one in the parameter
storage unit 510, and terminates the priority control switching
procedure.

Each server executes the above processing, thereby switch
ing the job priority control autonomously. The third embodi
ment is, however, not limited to the switching method
described above. For example, the job priority control may be
disabled by the heavy job control unit 550 when the waiting
time of heavy job is determined to exceed a predetermined
threshold y as many times in a row as specified, or keeps
exceeding y for a specified length of time. Also, the job
priority control may be activated again by the heavy job
control unit 550 when the waiting time of heavy jobs is

The job control units 851, 852, ... , 85n are assigned
35 identifiers k, where k is an integer in the range from 1 to n.

These job control units 851, 852, ... , 85n are each designated
as the destination of connection allocation requests from a
particular application group constituted by one or more appli
cations. Here the identifiers of job control units are arranged

40 in the order oflightness of jobs that their associated applica
tion groups produce. Specifically, an application group pro
ducing lighter jobs is associated with a job control unit with a
smaller identifier. Referring to FIG. 26, the leftmost job con
trol unit 851 has an identifier k=l, meaning that the job

45 control unit 851 receives connection allocation requests from
an application group that produces the lightest category of
jobs. The rightmost job control unit 85n, on the other hand,
has an ID number k=n, meaning that job control unit 85n
receives connection allocation requests from an application

50 group that produces the heaviest category of jobs The job
control unit with an identifier k=i may be referred to herein as
the "i-th job control unit." Further, a collection of jobs sub
mitted from applications associated with the i-thjob control
unit to the database server 300 are referred to herein as the

55 "i-th category of jobs."
Referring to FIG. 26, applications 841-1, 841-2, ... in the

leftmost group send connection allocation requests to their
designated job control unit 851. Threads of these applications
841-1, 841-2, ... receive an allocation of connections from

60 the first job control unit 851 and submit jobs to the database
server 300 by using the allocated connections.

Applications 842-1, 842-2, ... in the next group send
connection allocation requests to their designated job control
unit 852. Threads of these applications 842-1, 842-2, ...

65 receive an allocation of connections from the second job
control unit 852 and submit jobs to the database server 300 by
using the allocated connections.

US 9,189,272 B2
33

Applications 84n-1, 84n-2, ... in the rightmost group send
connection allocation requests to their designated job control
unit 85n. Threads of these applications 84n-1, 84n-2, ...
receive an allocation of connections from the n-thjob control
unit 85n and submit jobs to the database server 300 by using 5

the allocated connections.
According to the fourth embodiment, the parameter stor

age unit 810 stores data objects described below. FIG. 27
illustrates an exemplary data structure of the parameter stor
age unit 810. The illustrated parameter storage unit 810 con- 10

tains the following data objects: priority control flag 811,
maximum concurrent job count 812, a plurality of thresholds
813a, 813b, ... , concurrent job counter 814, a plurality of

34
(Step S315) The i-thjob control unit determines whether

there is any pending job in the first job control unit (k=l) to
j-th job control unit (k=j). For example, if a value of one or
more is found in any one of the first to j-th ongoing job
counters in the parameter storage unit 810, it means the pres
ence of a pending job(s). When this is the case, the i-thjob
control unit exits from the loop of steps S313 to S316 and
proceeds to step S317. Otherwise, the i-th job control unit
proceeds to step S316.

(Step S316) When steps S314 and S315 have been
executed for each of j= 1 to j=i-1 without encountering YES at
step S315, the i-th job control unit exits from the loop and
proceeds to step S320.

(Step S317) This step S317 is reached either when the
ongoing job counters 815a, 815b, ... , and a plurality of
pending job counters 816a, 8l6b, The priority control
flag 811, maximum concurrent job count 812, and concurrent
job counter 814 are similar to their counterparts in FIG. 10
according to the second embodiment.

15 number of concurrent jobs is greater than or equal to maxi
mum concurrent job count N, or when the test at step S315
returns YES. The i-thjob control unit increments by one the
i-th pending job counter (k=i) in the parameter storage unit

The thresholds 813a, 813b, ... serve as the plurality (n-1) 20

of threshold values av a 2 , ... , an-I mentioned above. Ongo-
ing job counters 815a, 815b, ... are associated directly with
the job control units 851, 852, ... and 85n, respectively. Each
ongoing job counter 815a, 815b, ... indicates the number of
jobs that have been submitted from the associated job control 25

unit and are currently executed on the database server 300.
The pending job counters 816a, 8l6b, ... are associated

directly with the job control units 851, 852, ... and 85n,
respectively. Each pending job counter 816a, 8l6b, ... indi
cates the number of jobs that are awaiting execution in a 30

queue of the associated job control unit.

810.
(Step S318) The i-thjob control unit causes the requesting

thread in the application 84i- l to wait until a connection is
returned to any connection pools.

(Step S319) When a connection is returned, the requesting
thread is allowed to exit from the waiting state. The i-thjob
control unit then decrements by one the i-th pending job
counter (k=i) in the parameter storage unit 810 and goes back
to step S311.

(Step S320) This step S320 is reached either when the job
priority control is disabled, or when the i-thjob control unit
has finished the loop without ever encountering YES at step
S315. The i-th job control unit then increments by one the

Detailed operation of the i-thjob control unit (k=i) of the
fourth embodiment will now be described below. FIG. 28 is
the first half of a flowchart illustrating an exemplary proce
dure of job count control according to the fourth embodiment.
This procedure is executed by the i-thjob control unit when a
connection allocation request is received from a thread of its
associated applications. Each step of FIG. 28 is described
below in the order of step numbers.

concurrent job counter 814 in the parameter storage unit 810.
(Step S321) The i-thjob control unit increments by one the

i-th ongoing job counter (k=i) in the parameter storage unit
35 810

(Step S311) The i-thjob control unit determines whether 40

the job priority control is enabled. If job priority control is
enabled, the i-thjob control unit proceeds to step S312. If job
priority control is disabled, the i-thjob control unit skips to
step S320.

(Step S312) Since job priority control is enabled, the i-th 45

job control unit determines whether the number of concurrent
jobs (i.e., the total number of jobs being executed on the
database server 300) is smaller than the maximum concurrent
job count N in the parameter storage unit 810. Here the
number of concurrent jobs is obtained by reading the concur- 50

rent job counter 814 in the parameter storage unit 810. If that
number is smaller than N, the i-th job control unit advances to
step S313. If that number is greater than or equal to N, the i-th
job control unit branches to step S317.

(Step S313) The i-thjob control unit repetitively executes 55

the following steps S314 and S315 while incrementing vari
able j by one, from j=l to j=i-1, each time a repetition is
made.

(Step S314) The i-thjob control unit determines whether
the total numberofongoingjobs fork= 1 to k=j is smaller than 60

the j-th threshold a 3 . For example, the i-th job control unit
adds up the current values of ongoing job counters for k=l,
2, ... ,j in the parameter storage unit 810. If the resulting sum
is smaller than the j-th threshold a1, then the i-thjob control
unit advances to step S316. If the resulting sum is greaterthan 65

or equal to the j-th threshold a1, then the i-thjob control unit
advances to step S315.

(Step S322) The i-thjob control unit takes out one connec
tion from its own connection pool and allocates it to the
requesting thread. The i-thjob control unit then proceeds to
step S331 (FIG. 29).

FIG. 29 is the second half of the flowchart illustrating an
exemplary procedure of job count control according to the
fourth embodiment. Each step of FIG. 29 is described below
in the order of step numbers.

(Step S331) Since a connection is received from thei-thjob
control unit, the requesting thread then determines whether it
has any (more) job to submit. If it has, the thread advances to
step S332. If has no jobs to submit, the thread branches to
S334.

(Step S332) The thread submits its i-th category of job to
the database server 300 by using the allocated connections.

(Step S333) The thread receives a completion notice from
the database server 300 as a response to the job submitted at
step S332. The thread then goes back to step S331.

(Step S334) The thread returns its allocated connection to
the original connection pool. For example, the thread sends a
connection return notice to the i-th job control unit. In
response to this notice, the i-th job control unit deallocates the
connection from the thread.

(Step S335) The i-th job control unit decrements by one the
i-th ongoing job counter (k=i) in the parameter storage unit
810.

(Step S336) The i-th job control unit decrements by one the
concurrent job counter 814 in the parameter storage unit 810.

(Step S337) The i-thjob control unit releases the waiting
state of a thread.

As can be seen from the above flowchart, the i-th job
control unit determines whether to submit the i-th category of

US 9,189,272 B2
35

jobs to the database server 300, when the job priority control
is enabled. For this determination, the fourth embodiment
tests the following three conditions:

(i) First condition: The number of concurrent jobs includ
ing all job categories is smaller than maximum concurrent job
count N (see step S312).

(ii) Second condition: The total numberofongoingjobs for
every j-thjob category in the range of 1 to j is smaller than the
j-th threshold aJ" (see step S314).

(iii) Third condition: There are no pending jobs of the first 10

to (i-l)thjob categories (see step S315).

36
there are one or more pending jobs that belong to the
specified number of top-ranked groups.

2. The information processing apparatus according to
claim 1, wherein the procedure further includes:

calculating average processing time of each specific group
of jobs which the server spent to execute jobs belonging
to that specific group;

calculating an occurrence rate of each specific group of
jobs which represents a ratio of jobs belonging to that
specific group to an entire set of jobs executed by the
server; and

calculating the threshold based on the average processing
time and occurrence rate of each of the groups of jobs.

When the first condition and second condition are both
satisfied, or when the first condition and third condition are
both satisfied, a connection is allocated to a thread having the
i-th category of jobs and used to submit those jobs to the
database server 300. On the other hand, jobs are suspended
when the first condition is not satisfied, or when the first
condition is satisfied, but neither of the second and third
conditions is satisfied. The fourth embodiment uses three or

3. The information processing apparatus according to
15 claim 2, wherein the calculating of the threshold includes:

calculating, for each of the groups of jobs, a product of the
average processing time and occurrence rate;

more job control units in this way, thus making it possible to 20

manage the priority of jobs according to multiple levels of
workload.

(e) Other Embodiments and Variations

The second to fourth embodiments have been described
above assuming their implementation in a web three-tier sys
tem. These embodiments are, however, not limited to that
particular type of multi-tier systems. The person skilled in the

25

art would appreciate that the proposed techniques can also be 30

applied to other kinds of multi-tier computer systems with,
for example, different tier hierarchies, different number of
servers, or their combinations.

(f) Conclusion

Various embodiments and their variations have been
described above. According to one aspect of those embodi
ments, the proposed techniques alleviate fluctuations of
response time of a multi-tier computer system.

35

40
All examples and conditional language provided herein are

intended for the pedagogical purposes of aiding the reader in
understanding the invention and the concepts contributed by
the inventor to further the art, and are not to be construed as
limitations to such specifically recited examples and condi- 45
tions, nor does the organization of such examples in the
specification relate to a showing of the superiority and infe
riority of the invention. Although one or more embodiments
of the present invention have been described in detail, it
should be understood that various changes, substitutions, and 50
alterations could be made hereto without departing from the
spirit and scope of the invention.

What is claimed is:

obtaining a first sum by adding up the products for all the
specified number of top-ranked groups of jobs;

obtaining a second sum by adding up the products for all
the groups of jobs;

dividing the first sum by the second sum to obtain a quo
tient; and

obtaining the threshold by multiplying the quotient by a
maximum number of jobs that the server is allowed to
execute concurrently.

4. The information processing apparatus according to
claim 1, wherein the procedure further includes:

calculating average processing time of each specific cat
egory of jobs that the server spent to execute jobs in that
category; and

determining the groups of jobs in such a way that a cat
egory of jobs having a shorter average processing time
belongs to a higher-ranked group of jobs.

5. The information processing apparatus according to
claim 4, wherein the determining of the groups of jobs
includes:

calculating average processing time of each specific group
of jobs which the server spent to execute jobs belonging
to that specific group;

calculating an occurrence rate of each specific group of
jobs which represents a ratio of jobs belonging to that
specific group to an entire set of jobs executed by the
server; and

producing a plurality of grouping patterns of the categories
of jobs to be classified into groups;

calculating, for each of the produced grouping patterns, a
reduction ratio of processing time which is to be
obtained by suspending the processing requests for jobs
belonging to the other groups than the specified number
of top-ranked groups; and

determining the groups of jobs according to one of the
grouping patterns that exhibits a largest reduction ratio.

1. An information processing apparatus coupled to a server,
the apparatus comprising a processor configured to perform a
procedure including:

6. The information processing apparatus according to
55 claim 1, wherein the procedure further includes:

classifyingjobs to be executed by the server into a plurality
of groups, the groups being ranked in ascending order of
workload that the groups of jobs impose on the server;

counting a number of ongoing jobs that are currently 60

executed on the server and belong to a specified number
of top-ranked groups; and

designating pending jobs that belong to other groups than
the specified number of top-ranked groups and suspend
ing submission of processing requests of the designated 65

pending jobs to the server, when the number of ongoing
jobs is greater than or equal to a threshold and when

stopping the suspending of submission of the processing
requests when waiting time of the processing requests
forthe jobs belonging to the other groups than the speci
fied number of top-ranked groups of jobs exceeds a
specified upper limit.

7. The information processing apparatus according to
claim 6, wherein the procedure further includes:

restarting the suspending of submission of the processing
requests when waiting time of the processing requests
forthe jobs belonging to the other groups than the speci
fied number of top-ranked groups of jobs falls below a
specified lower limit.

US 9,189,272 B2
37

8. The information processing apparatus according to
claim 1, wherein the suspending suspends submission of the
processing requests of the designated pending jobs by pre
venting allocation of connections for sending the processing
requests to the server.

9. A non-transitory computer-readable storage medium
storing a program for controlling execution of jobs, the pro
gram causing a computer to perform a procedure comprising:

classifying jobs to be executed by a server into a plurality
of groups, the groups being ranked in ascending order of 10

workload that the groups of jobs impose on the server;
counting a number of ongoing jobs that are currently

executed on the server and belong to a specified number
of top-ranked groups; and

designating pending jobs that belong to other groups than
the specified number of top-ranked groups and suspend
ing submission of processing requests of the designated
pending jobs to the server, when the number of ongoing
jobs is greater than or equal to a threshold and when

15

38
there are one or more pending jobs that belong to the
specified number of top-ranked groups.

10. A method for controlling execution of jobs, compris
ing:

classifying, by a processor, jobs to be executed by a server
into a plurality of groups, the groups being ranked in
ascending order of workload that the groups of jobs
impose on the server;

counting, by the processor, a number of ongoing jobs that
are currently executed on the server and belong to a
specified number of top-ranked groups; and

designating, by the processor, pending jobs that belong to
other groups than the specified number of top-ranked
groups and suspending submission of processing
requests of the designated pending jobs to the server,
when the numberof ongoingjobs is greaterthan or equal
to a threshold and when there are one or more pending
jobs that belong to the specified number of top-ranked
groups.

* * * * *

