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INTRODUCTION

The drying operation represents a necessary and costly stage in the

production of paper. A proper understanding of this operation is there-

fore important to the paper industry. Although an abundant supply of

empirical information is available, fundamental comprehension of the drying

mechanism has achieved neither depth nor clarity. This doctoral thesis

aims at improving fundamental understanding.

Drying is the process whereby liquid is removed from a system by

evaporation. This thesis is concerned with the evaporation of water from

a porous system. The drying of paper is merely a particular category in

this broader classification.

For purposes of analysis, the total drying operation can be broken

down into three phenomenological considerations: The introduction or

transfer of heat into the porous system, the transfer or movement of heaz

and mass (liquid and gaseous water) within the porous system, and the

removal or mass transfer of water vapor from the system. Obviously, all

three phenomena are coincidentally associated with any drying operation.

The first and last are primarily dependent on the mode of drying employed,

i.e., air drying, hot surface drying, etc. They are referred to throughou-

this thesis as the boundary conditions of drying. The second or middle

factor, although affected by the boundary conditions, is characteristic

of the porous system being dried.

Drying studies are commonly characterized by considering the'rate of

drying as a function of the moisture content of the material being dried.

The general form of this curve (see Fig. 1) has been found to apply,
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Figure 1. Characteristic Drying Curve

presumably without exception, to all types of porous materials without

regard for the particular drying conditions employed. This typical or

characteristic drying curve has resulted in the nomenclature which refers

to a short heating up period leading to a constant rate drying period

which continues to a critical moisture content at which point a falling

rate drying period is inaugurated.

The bulk of the literature on drying deals with the effect of

boundary conditions on drying rate. A review of this literature is

presented by Higgins (1) and later supplemented by Dreshfield (2). These

early investigations largely fail to yield more than narrow empirical

knowledge because consideration has been given only to the boundary condi-

tions of drying and not to the important transfer processes which occur

within the system being dried.

The shape of the characteristic drying curve discussed previously

has been shown to apply to such varied systems as the air drying of pulp

beds (3), clay beds (4), sand beds (5), and textiles (6); the hot surface
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drying of pulp mats (7) and beds of glass beads (8); the radiant heat dry-

ing of textiles, glass fibers, and asbestos fibers (9); and the machine

drying of paper (10). The characteristic shape of this drying curve is,

therefore, not determined by the boundary conditions of drying. Since it

is typical of all porous materials, it must be determined by the inter-

actions occurring within and peculiar to the porous system being dried.

The importance of investigating the heat and mass transfer within the

porous system is thus evident.

Sherwood (11) advances the most widely accepted qualitative explana-

tion accounting for the characteristic drying curve. He suggests that in

the constant rate period of drying the evaporation of water occurs at the

surface of the material in a manner similar to evaporation from a free waser

surface- The resistance to internal movement of water is small compared

with the resistance to removal of vapor from the surface, and so the sur-

face is easily replenished. This results in what Sherwood calls "saturated

surface drying." The falling rate period begins when, because of deplezior

of water in the interior, the resistance to internal liquid movement becomes

significant. The early stage of this period is characterized by "unsaturated

surface drying." Later in the falling rate period the plane of evaporation

retreats into the interior of the material. Here the resistance to internal

liquid movement becomes large compared to the total resistance to the re-

moval of vapor.

Sherwood's hypothesis clearly involves movement of liquid water from

the interior of the porous system to a plane of evaporation at or toward

a surface. This movement has been clearly demonstrated by dye migration



studies (2, 17). The mechanism governing 'such migration has received con-

siderable attention.

During the drying process the liquid water within the porous medium

is distributed in such a way that a moisture gradient exists from some point

or points within the material toward the plane or planes of evaporation.

This has been qualitatively shown by Higgins (1) in the air drying of paper

and by McCready (7) for the hot surface drying of pulp mats. Recent inves-

tigations by Dreshfield (2) and by Ulmanen (12) clearly demonstrate these

gradients for hot surface drying of pulp beds.

Early investigators considered that liquid movement occurred as a

result of diffusion under the influence of the liquid concentration or

moisture gradient. Fick's diffusion law was variously manipulated to

describe liquid movement during the constant rate period of drying.

The investigations of Ceaglske and Hougen (5) and Barkas and Hallan

(13) demolished this diffusion concept of liquid movement. 'Their experi-

ments strongly supported the contention that capillary forces are the

primary driving force for liquid flow during drying. The validity of this

concept is now generally acknowledged.

Basic capillary theory indicates that a pressure difference exists

across a curved interface between two fluid phases. The magnitude of

this pressure difference is a function of the interfacial tension and the

principal radii of curvature in accordance with

AP = y[l/r 1 + l/r2] (1)
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where :P is the pressure difference across the curved interface, y is the

interfacial tension, and rl and r are the principal radii of curvature.

For a fluid contained in a uniform capillary of radius r, Equation (1)

becomes

AP = 27cos 0 /r (2)

where 0 is the contact angle between fluid and capillary wall. From this

relationship it is apparent that, in an interconnected capillary system,

water will exist ir smaller pores at- th-e ese. if neces3axy,. of larger

pores. Immediately prior to a projected drying operation the liquid water

is evenly distributed throughout the porous material. All air-water inrer-

faces will then have the same curvature and the system is said to be at

capillary equilibrium. Subsequent to the start of the drying operation,

water at the plane of evaporation will be depleted; and air-water interfaces

at -he plane of evaporation will tend to a smaller radius of curvature.

Thus, a capillary pressure difference will be established between interior

water and water at the plane of evaporation. This acts as a driving force

to replenish the water at the plane of evaporation. The tendency of the

system to establish capillary equilibrium is, thus, responsible for the

liquid movement during the drying operation.

'U to this point the drying phenomenon has been examined quite gener-

ally. The boundary conditions of drying influence, but do not determine,

the interactions involved within the porous material being dried. Thus,

an investigation of these interactions under certain boundary conditions

should yield understanding which is limited in scope only by the nature of

the porous material and not by the particular set of boundary conditions
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utilized. For reasons which will be presented later, hot surface drying

was selected as the mode of drying for the investigation to be described.

This defines a drying system in which heat is introduced into a material

from one side via a hot impermeable surface while the water vapor produced

can escape only from the opposite open face. The discussion will now be

directed toward this particular mode of drying.

The most extensive investigations of the hot surface drying operation

are embodied in the work of Dreshfield (2) and Ulmanen (12). Using a beta-

ray transmission.technique developed by Dreshfield, they were able to

obtain moisture distribution and other data for the drying of pulp mats.

These will now be discussed in relation to the heat and mass transfer within

the pulp mats during the drying operation.

The over-all drying rate curve for these studies reflect in essence

the characteristic drying curve representative of porous materials. However,

Ulmanen's work suggests (see Fig. 2) that the constant rate period actually

involves not a constant but a slowly changing rate. From the point of view

of drying mechanism this is an important observation and will be fully

discussed at a later stage.

DRYING TIME
Figure 2. Drying Rate Curve from Ulmanen's Study
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Dreshfield, by comparing moisture distribution with dye migration

measurements, was able to give a qualitative picture of the mass transfer

occurring within thin pulp mats during a hot surface drying operation.

These data are presented in Fig. 3 and represent general conditions exist-

ing within the sheet during the constant rate period and first part of the

falling rate period. RIGINAL WATER

- WATER l CONCENTRATION

I -

-O-J_ __(Y~ _ CONCENTRATIONORIGINAL WATER

i ' CONCENTRATION

0 

RELATIVE DISTANCE
FROM OPEN SURFACE

Figure 3. Drying Data from Dreshfield's Study

These results led to the following observations by Dreshfield:

... the maximum moisture content was found in a zone 20-30%
of the distance from the cold to the hot surface. In this
same region, a zone of minimum dye content existed. There
appeared to be no movement of dye and therefore no movement
of liquid water across this zone. _iquid water,_which was
initially between this zone and the hot surface moved toward
the hot surface; liquid water which was between this zone and
the cold surface moved toward the cold surface. Liquid water
movement was in the direction of decreasing moisture content
and was predominantly toward the hot surface of the sheet.

Water vapor could leave the sheet only at the air intr--
face. Therefore, the liquid water moving to the hot surface
must have been vaporized there, and this vapor must have moved
back through the sheet in order to escape from the open surface.
The sharp concentration of dye right at the hot-surface inter-
face indicates that most of the vaporization occurred right
at the interface.
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A sharp concentration of dye was also found at the
air interface of the sheet. This indicates that a signifi-
cant amount of vaporization occurred there ... The heat re-
quired for vaporization at the air interface as well as the
sensible heat transferred to the air must have been propa-
gated through the sheet from the hot surface.

To explain his findings, Dreshfield presented a description of the

mechanism and phenomena involved in hot surface drying:

At the start of the drying run, there is a short
period during which the sheet is coming to the constant-
rate drying rate and temperature distribution. During the
constant-rate period heat is being added to the sheet at
the hot surface and vaporization of water occurs there.
This vapor has a partial pressure greater than the equil-
ibrium vapor pressure of the rest of the sheet, and there
is a net internal condensation as the vapor passes through
the sheet and enters the air stream over the open surface.
The heat transferred to the sheet by the condensing vapor
is moved in the direction of decreasing temperature by
conduction. At the open surface, a small fraction of the
heat is transferred to the air by convection; the remainder
causes net evaporation.

The vaporization at the two surfaces depletes the liquid
water content of the sheet at these places. The process

occurs too rapidly for capillary suction equilibrium to be

maintained, so moisture gradients toward the surfaces are
established. These cause movement of liquid water to the
surfaces. The rate of drying is determined by a complex
balance of heat and mass transfer, the terms of which cannot
be determined.

Dreshfield goes on to suggest that the constant rate period ends

when the zone at the hot surface becomes too dry to maintain the initial

evaporation rate. This results in a decrease in the heat transfer rate

and, hence, in the over-all drying rate. Liquid water continues to flow

from the central region to the surfaces until the moisture content is

reduced to the point where the contained water exists in a multitude of

discrete pockets. Continued drying occurs by a process of evaporation at

these pockets and the diffusion of vapor to the open face.
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Ulmanen's work represents an extension of Dreshfield's investigation

to include thicker pulp mats. His findings support Dreshfield's conclusions.

However, additional information in the form of temperature distribution and

thickness measurements of pulp mats as a function of drying time were

obtained. This allowed his data to be analyzed from the viewpoint of heat

transfer to the mat. This analysis by Han and Ulmanen (14) assumed that

heat transferred across the hot surface is dissipated as latent heat of

vaporization and as sensible heat absorbed by the fiber and the water.

They neglected radiative or convective heat loss to the air. This analysis

together with U'Lmanen's data allowed the calculation of apparent thermal

conductivity as a function of the moisture content of the pul mat. This

relation is shown in Fig. 4.

Quoting from Han and Ulmanen:

In the high moisture region ... the apparent conductivity
is of the order of magnitude as, but somewhat larger than,
that of water ... A possible reason for this difference is
that the transfer of heat across the hot surface may not be
entirely by conduction. Some convection may also be present.

In the intermediate range of moisture, k drops sharply.
This may be attributed to the entrance of air into the sheet
... Finally in the very low moisture range, the conductivity
approaches a fixed value'[which is shown to be of the order

of magnitude of the thermal conductivity of dry pulp mats].

This introductory discussion has aimed at presenting a unified deve- l-

ment of concepts which are important to an understanding of the significance

of the research work shortly to be described. It has stressed the impor-ance

of the heat and mass transfer within the porous material as defining the

drying mechanism. The hot surface drying operation has been examined from

this viewpoint in the light of available information. The next section



-10-

LOCAL MOISTURE CONTENT
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outlines in an orderly fashion the approach that has been taken to develop

a research program capable of elucidating the interactions within a porous

material during a drying operation.
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DEVELOPMENT OF EXPERIMENTAL APPROACH

The internal pore network of a porous material is obviously an

important factor in characterizing heat and mass transfer within the

material during drying. The elucidation of the relation between this

internal structure and its manifestation in terms of heat and mass transfer

within a porous media during a drying operation will greatly enhance our

comprehension of the over-all drying process. Such is the basic premise

upon which this thesis program builds.

Since the internal structure of porous media is to be an important

aspect of this thesis, a certain background should be established. Porous

media are characterized by a more or less even distribution of void spaces

or cores which contribute manifestly to the total geometric volume of the

material. The percentage of this total geometric volume which is consti-

tuted by void space is termed the porosity. Pores in a porous system can

be interconnected or nonconnected. The porous media of interest to this

discussion contain totally interconnected pore structures. The size or

effective diameter of a pore can vary over wide limits. In fact, these

limits can be only intuitively defined. In terms of macroscopic transfer

phenomena, very large voids which are graphically described as "caverns"

are too large to be considered pores; voids of molecular dimensions are

too small. The porous materials which have been studied in relation to

drying characteristics embrace a range of pore sizes from a few millimicrons

up to several hundred microns.

The characterization of the internal pore structure is necessary if

its relation to drying characteristics is to be studied. However, the



-13-

internal void network cf a porous material is extremely complex. To

completely characterize it would require a geometric description of all

parts of the network. Such an approach has not as yet been found possible.

A more feasible approach involves an empirical investigation via capillary

pressure measurements. This technique yields a pore-size distribution

which in essence divides the pore volume into fractions which act like uni-

form capillaries of particular diameters. Although the analysis derived

from capillary pressure measurement is strictly empirica, for a particular

range cf pore sizes, it does effectively distinguish between differen-

porous media. This is show in Fig. 5 based on data compiled by Parker

(15).

A detailed descr-,ioon of the capillary pressure technique is included

elsewhere in this thesis and is not essential to the discussion at this

point. It is only necessary to indicate that such a techniique gives ar

empirical definition of pore structure which has proved useful in permea-

bility studies (5). Thus, it is accepted as the most promising methcd

of evaluating the internal structure in relation to the goals of this

thesis.

The boundary conditions of drying are presumably unimportant to a

study of the internal heat and mass transfer processes within a porous

mat during drying. However, certain drying conditions must obviously be

established. Since the moisture and temperature gradients within the

porous mat during the drying operation are the observable criteria for

heat and mass transfer, these are the items which must be measured.

Therefore, drying conditions must be selected which will produce precisely

measurable gradients.
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Hot surface drying as conducted by Dreshfield (2) produces gradients

which can be satisfactorily measured. The most comprehensive information

available on internal transfer processes are represented by Dreshfield (2)

and Ulmanen (12), who both studied hot surface drying of pulp mats. The

equipment and techniques developed by Dreshfield were available to this

study. For these reasons, hot surface drying was established as the mode

of drying for this thesis work. The actual details of apparatus are dis-

cussed in a later section.

A research project which is aimed at developing knowledge concerning

the drying of paper should carefully consider whether or not it should

restrict itself to a study of pulp mats. This may seem paradoxical. How-

ever, the problems being investigated in this work are not amenable to

solution by a direct study of a pulp system.

This thesis includes internal structure in a study of the internal

heat and mass transfer during a hot surface drying operation. During dry-

ing, pulp fibers tend to shrink, twst, and collapse. This produces marked

changes in the internal structure of a bed composed of such fibers. Tc

characterize such a continually charging structure is difficult; to relate

such a characterization to transfer processes within the bed during the

drying operation is truly formidable. Water contained in a pulp bed may

exist in ite-fber voids, inside the fiber lumen, or in a physically

.adsorbed condition. The different response to drying conditions of these

three forms of water complicates the analysis of liquid movement within a

pulp bed.



There is little doubt that at this time these complications preclude

a satisfactory analysis of the desired nature by studying pulp beds. A

simpler system is necessary.

Glass fibers are geometrically uniform and well defined. They are

noncompressible, nonporous, nonhygroscopic, and chemically inactive. They

have a zero contact angle with water. Glass fibers form porous beds, and

all water contained within the bed is interfiber, capillary-held water.

The pore size distribution of these beds falls within narrow limits. A

light copressive load on the bed ensures dimensional stability during

drying. All these factors contribute to an idealized fibrous bed and

promote the use of glass fibers for the proposed study.

Our present knowledge of the paper drying process suggests that

attention be directed to the internal heat and mass transfer which occurs

in the wet paper web during drying. However, the complex nature of the

paper network dictates that initial study of these phenomena utilize simpler

systems. This thesis employs a porous bed of glass fibers. The internal

pore structure is characterized by capillary pressure measurements.

Moisture and temperature gradients are measured within this glass fiber

system during a hot surface drying operation using techniques developed by

Dreshfield (2). These data allow an analysis of the relation between pore

structure and heat and mass transfer within the pore system during hot

surface drying. From this more cor-prehensive understanding of a simple

system, future work can build toward a knowledge of the similar but more

complex system, paper.
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DISCUSSION OF EXPERIMENTAL TECHNIQUES

PREPARATION OF GLASS FIBERS

To obtain the most satisfactory test beds from the standpoint of

characterizable internal geometry, the glass fibers employed should be

as'uniform as possible in diameter and as free as possible from fine

debris. The weight of glass fibers present in each of the two laminates

of the laminated test beds used for the hot surface drying experiments

must be accurately known. The process of delamination and weighing after

the bed has been completely dried is unsatisfactory because a clean-cut

delamination is not possible. Thus, an accurate prediction of laminate

weight from a knowledge of the amount of original fiber utilized is

necessary. The fiber preparation procedure was developed to satisfact-

orily approach the above conditions.

The glass fibers being used in this study were obtained through the

services of Mr. Labino of Johns-Manville Fiber Glass, Inc. These fibers

were received in the form of glass wool; that is, fibers of extreme length.

Proper fiber dispersion in a water slurry prior to bed formation is made

possible only by reducing the fiber length to about 1/8-1/4 inch. Starch

or some other type of organic material is used as a binder in the fiber

manufacturing process and remains present as a surface coating on the

fibers. The fiber preparation thus involves decontamination and fiber-

length reduction of the glass wool.

The glass wool as received is cut in a random fashion using a

guillotine paper cutter. This initial or primary cut product is stuffed
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into beakers and heated in a muffle furnace at 950'F. for about eight

hours. The effectiveness of this decontaminating treatment was evaluated

by testing starch-contaminated fibers with an iodine solution before and

after heating. The deep blue coloration produced by the starch-iodine

complex, present prior to heating, was entirely absent after the heating

period.

Approximately four-gram lots of this primary-cut, decontaminated

fiber are disintegrated in tap water for 100C counts in a British Disinte-

grator and then formed into sheets on a British Sheet Mold. These sheets

are cut into approximately 1/8-inch strips using a guillotine cutter, and

these strips are in turn cut to produce approximately 1/8-inch squares.

Such a procedure guarantees an acceptable maximum fiber length.

However, this multiple cutting and disintegration procedure produces

a certain amount of debris. In order to reduce the amount of this debris

~c a minimum, four-gram samples of the 1/8-inch squares of fiber agglomer-

ates are disintegrated for 200 counts in a British Disintegrator and then

placed in one compartment of a Bauer-McNett Classifier. A 150-mesh screen

is located at the overflow from the compartment. Water is flowed through

the compartment for five minutes after which the slurry remaining in the

compartment is collected in a bucket. Most of the original debris is

presumed to be washed through the 150-mesh screen. The slurry in the

bucket is transferred to the British Sheet Mold and formed into sheets.

These glass fiber sheets are oven dried and stored in air-tight polyethyl-

ene bags. This represents the stock supply of fiber suitable for use in

glass fiber bed formation.
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The diameter of the fibers used in this study was given by the manu-

facturer as 5.8 -. Microscopic examination of the prepared fiber indicated

a weighted average fiber diameter of 5.29 p. The measurements were made by

Jack Hankey of the Fiber Microscopy Group at The Institute of Paper Chemistry

at a magnification of 970X under oil immersion. The range of fiber diameters

contributing to this average is quite narrow as can be judged from Table I.

TABLE I

FIBER DIAMETER DISTRIBUTION

Fiber Diameter, Number of Fibers

4.5 
5.0 50
5.5 38

6.5 5

Arithmetic average 5.26 i
Surface weighted average 5.29 i

T.e value of 5.3 (5.29) , is considered the most reliable estimate of the

average fiber diameter since the manufacturer's measurements have at least

-he disadvantage of applying to a starch coated fiber.

The density of the glass fibers was measured pycnometrically, and an

average of three separate determinations gave a result of 2.59 g./cm. with

a precision of better than one per cent. Certain problems are encountered

in this type of density determination which are peculiar to small parti-:e

systems. Appendix III gives the details of the method developed tc over-

come these difficulties.
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FORMATION OF GLASS FIBER BEDS

The ideal fiber bed for this study can be described as one which is

composed of multiple layers of uniform diameter fibers, each layer contain-

ing fibers randomly oriented in the two-dimensional plane of the layer.

Such a bed should result from the filtration of a perfectly dispersed fiber

slurry. Hence, the initial concern is to obtain such a slurry.

Glass fibers from the prepared stock supply are weighed and then added

in approximately 3-gram lots to about 3 1/2 liters of purified ;waer in '-

liter suction flasks. The consistency is thus about G.1%.

Tap water is passed through a fine grade Palflo filter and then a

co.nercial water softening, ion-exchange unit to obtain the purified water.

The fiber in each suction flask is dispersed by vigorous stirring with

a stirring rod. The flasks are then hooked up to a laboratory aspirator

and the slurries deaerated for a suitable period (at least three to four

hours).

The filtration system utilized for bed formation is depicted in Fig.

6. The filtration septum or screen (A) consists of a perforated frame

supporting a 150-mesh screen clamped tightly over a 35-mesh backing screen.

Prior to assembly, this septum must be thoroughly cleaned in order for

t to deliver a uniform flow across the full cross section. It is scrubbed

with detergent, rinsed thoroughly with water, immersed for a short interval

in acetone, and finally dried by subjecting it to a 105°C. oven atmosphere

for a brief period.
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GLASS FIBER SLURRY
INTROOUCED HERE

APPROXIMATE WATER LEVEL
DURING FILTRATION-.

/ /_/OOOOOOCiOp\ X \
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DETAIL OF SEPTUM

A SEPTUM
8 LOWER FILTRATION TUBE
C SHEET OF TEA BAG STOCK
D FORMATION RING
E UPPER FILTRATION TUBE
F OVERFLOW CAN
G WATER RESERVOIR
H STOPCOCK
J OVERHEAD SUPPLY TANK
K CLAMP
L 150 MESH SCREEN
M 35 MESH SCREEN

Figure 6. Filtration Apparatus
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The septum (A) is positioned over an 0-ring supported on the lower

filtration tube (B). A dental dam'gasket is placed on the upper face

of the septum in readiness for the formation ring. A sheet of tea bag

stock (C) is then laid over the septum and gasket and trapped in position

by the formation ring (D). The presence of this sheet reduces fiber loss

through the screen and allows the final glass fiber bed to be readily

dissociated from the septum.

The upper filtration tube (E) is placed in position on the formation

ring which is separated from it by a rubber O-ring. The upper and lower

filtration tubes are bolted together, thereby clamping the whole assembly

and producing a water-tight filtration column.

The flow-controlling overflow can (F) is adjusted to a level approx-

imating the top of the upper filtration tube. Purified water is then

introduced into the system from the reservoir ( h). The water level is

slowly raised until the septum and the sheet of tea bag stock have been

uniformly wet and all air has been purged from the assembly. When the

water level is a few inches above the septum, the filtration unit is

isolated from the reservoir by closing stopcock (H).

Rubber hose connections are made to link the filtration tube with an

overhead supply tank (J). This tank is filled with purified water. Screw-

type clamp (K) acts as a needle valve controlling flow out of the tar,.

By adjusting this clamp and the level of the overflow can a steady flow of

water through the filtration tube is maintained.

The drying study requires that a radioactive source and a fine-wire

thermocouple be located at any desired level within the fiber bed. This
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was initially accomplished by separately preparing two laminates and sand-

wiching the source and thermocouple between them. However, accumulated

data demonstrated that this preparation introduced a discontinuity at the

plane of lamination which resulted in significant error.

A satisfactory alternative method involves forming one laminate,

placing the source and thermocouple in position, and then depositing the

top laminate by means of a second filtration. This procedure is described

below.

The deaerated, dispersed glass fiber slurry is poured slowly and care-

fully from the suction flask into The top bowl of the filtration tube. The

fiber suspension is diluted and carried down to the septum by the flcw of

pure water. Good dispersion is maintained by gentle agitation with a long-

handled perforated piston.

Prior to the introduction of this procedure, the fiber slurry was

poured into the overhead supply tank where"an agitator secured continual

mixing. However, excessive flocculation occurred while the fiber slurry

was travelling in the hose connecting the supply tark with the filtration

tube. Thus, the new procedure described was introduced as a means of

eliminating this defect.

The slurry in the filtration tube during the filtration operation

was observed to be well dispersed with only a few small fiber bundles

present. These apparently do not affect the desired random orientation

in the fiber bed.
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When all the glass fibers of the bottom laminate have been accepted

into the bed, the control clamp (K) is closed, halting the flow of water.

The overflow can is lowered so that the water level in the filtration tube

reaches the upper face of the fiber bed. The bolts are released and the

upper filtration tube is removed. This leaves the water-saturated fiber

laminate contained in the formation ring (D) sitting on the septum (A)

which is supported on the lower filtration tube (B).

A fine-wire thermocouple is carefully laid on the exposed fiber

surface of the lower laminate forming a loop, with the thermocouple jnr.c-

tion near the center of the bed. The leads are brought out close together

over the formation ring.

Next, the three or four radioactive glass fibers are carefully placed

side by side near the center of the bed.

A perforated piston is placed in position over the lower laminate

and the upper filtration tube is replaced and rebolted, thus restoring

the filtration column of Fig. 6. 'The presence of the fine thermocouple

wires between the formation ring and the upper filtration tube does not

hinder the rubber "0" ring in producing an effective seal. The overflow

can (7) is slowly raised causing the water level to rise above the fiber

laminate. The presence of the perforated piston discourages any tendency

for fibers to be back washed out of the fiber bed. In addition, the ther..o-

couple and radioactive source are maintained in position. The hose

1 A discussion of the preparation of these thermocouples is given in
Appendix I.

For a discussion of the preparation of the radioactive source refer to
Appendix II.
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connection with the overhead supply tank is re-established, and water is

slowly added until the filtration tube is filled and flow through the bed

has been initiated. The perforated piston is carefully removed by lifting

it out of the column. The flow of water minimizes any disturbance result-

ing from the removal of the piston.

The fiber slurry representing the top laminate is added in a manner

identical to that already described for t'e lower laminate. In this way

a complete bed is formed with the radioactive source and the fine wire

.hermocouple located at any desired level.

PREPARATION OF FIBER BED FOR TESTING

The drying study requires that the glass fiber bed be transferred

from the formation ring and septum to a test ring. It was found possible

to utilize the same test beds for both the drying and capillary suction

studies. Consequently, all fiber beds used in the over-all study were

prepared in the following manner, with reference to Fig. 7.

Perforated piston (C), (Fig. 7:I) is slid into the formation ring (D)

until it nestles on the fiber bed. The piston flange (E) rests on top of

the formation ring. By tightening set screw (F), the piston and flange

are locked in position. The septum and supporting assembly can then be

lifted free of the lower filtration tube and inverted. (See Fig. 7:1.)

From this position the septum can be lifted off and the tea bag stock

peeled from the fiber bed while the bed remains supported by the perforated

piston.
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I I

I

m

A SEPTUM
B LOWER FILTRATION TUBE
C PERFORATED PISTON
0 FORMATION RING

E PISTON FLANGE
F SET SCREW
G MAIN STAND
H ALUMINUM FOIL
J BASE PLATE

K RING HOUSING
L TEST RING
M SLOT IN RING HOUSING
N DRILL HOLES IN HOUSING

Transfer ApparatusFigure 7.
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An assembly consisting of base plate (J) to which is screwed ring

housing (K) securing in position perforated aluminum foil (H) is bolted

to the main stand (G) of the transfer apparatus. The Plexiglas test

ring (L) is slid into the ring housing and followed by the piston and bed

assembly represented by (C), (E), and (D). This is accomplished in such

a manner that the groove in the test ring and the thermocouple leads from

-he bed line up with the slot (M) in the ring housing. The piston flange

(E) bolts to the ring housing and thus locks the test ring and formation

ring in position. 'The set screw is released and the piston is advanced

until the fiber bed has been displaced from the formation ring to the

test ring. The multiple assembly is then unbolted, removed from the main

stand, and inverted. Figure 7:IV describes the situation which occurs

when the piston assembly and for.ation ring are removed.

This assembly is placed in an oven at 105°C. in order to dry -;he

fiber bed. The dry bed is then compressed into the test ring. The ri-g

housing is removed from the assembly. The aluminum foil sheet is -rrirmed,

scotch taped to the sides of the plexiglas ring, and additionally secured

by an elastic band. The thermocouple leads are taped into the groove in

the test ring, care being taken that no contact between leads occurs. The

bed is then ready to undergo the necessary testing involved in the drying

experiments and later in the capillary pressure measurements.

DRYING STUDY

The apparatus involved in producing and controlling the hot surface

drying environment is shown in Fig. 8 and is essentially that of Dreshfie1d

(2) as improved by Ulmanen (12).
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The hot surface (P) against which the glass fiber bed is clamped is

located towards the end inside of a 9 by 9 inch cross section drying tunnel.

Fan (B) driven by motor (C) draws air through intake manifold (D) and

delivers it through the drying tunnel. The temperature of the air is

controlled by cone heaters (G) and (F) located in the intake manifold.

One of these heaters is connected through a rheostat in order to provide

control adjustment. The moisture content of the air is controlled by in-

jecting steam into the air flow by means of a perforated steam line (-).

The air flow rate is estimated by a calibrated inclined water manometer 

(K) which records the pressure drop across the flow nozzle (J). The

purpose of this measurement is primarily to assure constancy of the flow

rate over an extended experimental period; and, thus, the ca:ibration is

reliable to only about 5%. A 14-mesh screen (L) helps to even the air

flow from the nozzle. Wet and dry bulb thermometers (M) and (N) give

the required measure of air moisture content and temperature.

The hot plate (P) consists of a 1/8-inch aluminum top plate covering

a hollow chamber through which hot water is circulated at the rate of

about 15 g.p.m. The hot water system consists of an insulated tank (R)

of about 9-cu. ft. capacity in which water temperature is controlled by

the combination of heater (T) thermostat (W) and mixer (V). Steam line

(X) discharging through trap (Y) is used for the initial heating-up period.

Pump (S) delivers the hot water from the tank and circulates it through

the hot plate and back to the tank.

Figure 9 gives a more detailed picture of the hot plate and clamping

assembly as well as illustrating the technique for measuring the tempera-

ture within the bed during the drying operation.
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Radioactive source (b) and fine-wire thermocouple (d) are shown

located in position in the fiber bed contained within the plexiglas

ring (a) and supported by the aluminum foil (e). The plexiglas ring is

attached to a screen assembly by three screws. This assembly consists

of an aluminum frame (f) over which is stretched and clamped a 50-mesh

aluminum wire screen (g). The scintillation head (Q) is clamped to a

devic.e (h) which when lowered contacts both the frame and screen of the

screen assembly. Two T-bar wedge clamps establish favorable contact

between the fiber bed and hot plate as well as lightly conmressing the

fiber bed into the test ring.

One fine-wire thermocouple leads are clamped to junrctions from which

larger diameter leads (n) of the same materials chromel and alu el)

continue the circuit. This circuit includes a Minr.eapolis-Horneel re-

cording potentiometer (t) and a cold junction consisting of a Dewar flask

containing crushed ice and purified water in which the chromel-alumel

cold junction is created by the mercury containing U-tube (r).

The method employed in this study for measuring the moisture content

of the fiber as a function of drying time was developed by Dreshfield.

Detailed background information concerning this technique is presented

in his thesis (2). However, some of these aspects should be included here

for the convenience of this development.

Certain radioactive isotopes including Sr9 and T04 suffer spontan-

eous beta disintegration of the nucleus. This signifies that emission is

restricted to beta radiation, no alpha or gamma radiation being present.

The disintegration rate is predictable according to the mathematical concept



of radioactive decay. The half-lives of the two isotopes Sr90 and Tl2

are sufficiently long that over the period of the experimental program

their emission rate can be assumed constant.

A distinguishing characteristic of beta radiation is the continuous

distribution in energy of the emitted electrons. This makes mathematical

quantification of the absorption of the beta radiation by matter largely

empirical. The range or ability of the beta radiation to penetrate is

dependent upon the maximum energy of the beta emission. It is possible to

generalize that for low molecular weight materials (which include glass,

water, and aluminum), the amount of absorption is dependent upon the mass

per unit area and that secondary emission and backscattering are relatively

inconsequential.

In a drying operation, the total mass per unit area (basis weight)

of the porous material decreases as.water is evaporated and departs frco

the system. This decrease can be detected by placing the porous mater-al

between a source of beta radiation and a suitable detector. By empirical

calibration, the change in the beta radiation received at the detector

(counting rate) due to changes in the basis weight of water during drying

can be accurately related to the moisture content of the porous material.

By locating the radioactive source at different positions within -he

porous material being dried, the moisture. distribution within the material

during drying can be calculated. This is the basic concept behind the

technique so successfully developed by Dreshfield.

Beta radiation is detectable by a number of methods. The scintillation

detector is utilized in this study and so will be briefly considered.
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Certain crystals have the property of emitting a photon of light when

struck by a beta particle of sufficient energy. The stilbene crystal

used in this work detects incident beta radiation with an energy of 200

kev. or more. When this crystal is linked with a photomultiplier tube

and an electronic counting circuit, the number of beta particles received

at the crystal can be counted.

A particular source emits beta radiation equally in all directions.

That portion of the radiation which strikes the scintillation crystal is

thus very dependent upon the geometrical relationship between source and

detector. This dictates the need for maintaining constancy of this rela-

tionship.

The mathematical certitude of the rate of emission of a radioactive

isotope is in reality dependent upon the number of emissions considered.

Since nuclear disintegrations have a perfectly random distribution in- ie,

it follows that the uncertainty in predicting the ermssion rate can be

determined from the Poisson distribution. For such a distribution the

standard deviation is related to the number of events considered by:

St= (5)

where s. is the standard deviation, and N is the number of events considered.

'.he .nd-ation is, thusthat v10,C counts recorded at the electronic

counter predict a counting rate with a reliability of 1%.

With this background established, the actual apparatus and general

considerations involved in measuring moisture content can be described.

The apparatus is shown in Fig. 10.
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detector counting rate is a function of the voltage applied to the tube

which is controlled at the autoscaler. It is desirable to set this "high

voltage" control at a position which corresponds to the middle of the

plateau of the characteristic counting rate-voltage curve. This setting

was experimentally selected as 1450 volts.

The autoscaler is controlled through a voltage regulator (3). The

time required for 10,00C counts to be collected at the autcscaler has boen

shown to be a statistically accurate measure of the counting rate. An

electric clock (4) with a full sweep second hand is connected so that it

starts automatically when the autcscaler counting mechanism is activated.

The autoscaler operating in the automatic position stops the clock when

10,COC counts have been collected. Thus, the clock reading in hunr.redths

of a second gives the desired measure of the counting rate.

The following steps represent the procedure adopted for obtaining

the hot surface drying data needed.

Each'bed tested was separately calibrated prior to drying. The

empirical nature of the absorption vs. the basis weight relationship for

beta radiation, depending as it does on source strength and source-

detector geometry, makes construction of a master calibration curve

applicable to all beds difficult. In effect, it is easier simply Jo

calibrate each bed separately.

The calibration procedure consists of measuring the beta-ray trans-

mission as a function of the moisture content of the fiber bed. For

purposes of this study, the beta-ray transmission is defined as the
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beta-ray counting rate at a particular moisture content divided by the

counting rate for the dry bed. Thus, the transmission of the dry test

bed is 100.0%.

An aluminum screen assembly (F of Fig. 9) is screwed to the plexiglas

ring containing the test bed. This unit represents the test assembly.

This assembly is mounted as shown in Fig. 9 for the drying experiments.

Similarly for calibration work the same mounting is used except that the

hot plate is of course unheated. In this manner, calibration conditions

are geometrically identical to drying conditions.

An aluminum cover plate was machined to snugly cover the exposed

area of aluminum wire screen (g of Fig. 9). -'With this in place, a moist

fiber bed is effectively sealed against evaporation losses. By weighing

the test assembly (with cover plate) for dry bed conditions, a weigh-

measurement of the, test assembly with a moist bed makes calculable the

weight of water in the bed. In resume, the test assembly with cover plate

in position is weighed as a measure of the amount of water in the bed.

The test assembly, without cover plate, is mounted in the test position

in the drying apparatus, and the beta-ray counting rate is recorded. The

ratio of this value to the counting rate for the dry bed assembly is the

transmission value. A calibration curve plotting beta-ray transmission

against weight of water above the source can thus be constructed. Details

of this calculation are presented later.

A fiber bed as prepared for this study contains approximately 60C%

by weight of water when completely saturated. The drying experiments call

for an initial bed moisture content of around 250%. This value represents
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about the upper limit for effective measurement using the strontium source.

However, 250% by weight of water simply cannot be added to the dry bed and

expected to distribute itself uniformly. The degree of nonuniformity of

distribution is related to the pore distribution of the bed. A narrow pore

distribution gives greater nonuniformity, while a broad range of pore sizes

allows a more even moisture distribution to occur. The narrow pore distri-

bution of the test beds thus aggravates the problem.

Therefore, the bed must be completely saturated, and then the moisture

content reduced in such a marnner as to maintain uniform distribution at

decreasing levels of moisture content.

The initial problem is, therefore, to effect complete water saturation

of the bed. Capillary considerations show that it is impossible to cc'mltel:

replace one fluid phase by a second fluid phase using flow displacement

only. When water is caused to flow through an initially dry fiber bed,

discrete air pockets will remain trapped in the bed as a consequence of -he

capillary nature of the bed and the existence of interfacial tension forces.

The amount of air so trapped is some function of the nature of the pore

structure as well as the flow conditions established. An effective way to

remove this residual air is to cause it to be dissolved in the saturating

water.

The following procedure based on the above reasoning was used to satur-

ate the glass fiber beds. Boiling water is poured through the test assembly

(minus cover plate) supported on a wire screen and perforated brass plate.

A regular pattern of 1/64-inch diameter holes were drilled, prior to assembly,

in the sheet of aluminum foil which represents the bottom of the test bed.



-38-

Thus, an open channel is available for pouring water through the bed while

the presence of the top screen of the test assembly prevents disruption of

the fiber bed. The hot water is allowed time to cool and dissolve the

residual air. The system is then flushed out with normal temperature water.

The next problem is to lower the moisture content from saturation

(600%) to about 250% for drying studies and various lower levels for cali-

bration purposes. -This only becomes a problem when the stipulation is made

that at any particular level of moisture content the water be uniformly

distributed throughout the bed. The chief reason for requiring a uniform

moisture distribution is a result of the calibration method as it applies

to the case where the beta source is located at some point within the fiber

bed. The moisture content above the beta source is determined on the basis

of the total weight of water in the bed. In other words, if the distribu-

tion is not uniform, the moisture content above the beta source is not

necessarily ecual to the over-all moisture content. This gives a calibra-

tion error which will reflect seriously on the accuracy of the drying

measurements. A method of desaturation which first comes to mind is to

dry the bed to the desired moisture level. Of course, it is recognized

that any drying procedure will establish a moisture gradient within the bed.

However,-if the drying is conducted at a sufficiently slow rate, this

gradient presumably should become negligible.

Such an assumption is based on ordinary rate concepts. It neglects

structural effects of the fiber bed. Experimental data soon suggested

that this assumption is not valid. The moisture gradient established by

slow air drying definitely yielded a significant departure from the desired

uniformity of moisture distribution. Another method of desaturation had to

be found.



-39-

When water is drawn from a saturated bed through the application of

a negative pressure, the quantity of water remaining in the bed is that

which is at capillary equilibrium with the applied pressure. It is a basic

concept that water at capillary equilibrium within a uniform porous network

must be uniformly distributed. This concept offers an escape from the

horns of the aforementioned dilemma.

The saturated fiber bed is placed in the capillary suction apparatus

in a manner similar to the description given shortly on pages 44 and 45.

However, it is only necessary to place the bed in position and use the

weighted perforated brass plate to maintain adequate contact. No clampir.g

is required. The mercury reservoir is lowered slowly until the moisture

content of the bed has been reduced to a desired level. A short period

is allowed for equilibrium to be closely approached. By using a flat

spatula, the bed can be removed from the porous plate without significant

fiber loss.

During the calibration procedure this bed is tested, returned to

the apparatus, and a further increment of water removed. In this manner,

various levels of uniform moisture content down to about 25% by weight can

be calibrated.

For the drying study the procedure is to achieve a moisture content

slightly above the desired initial moisture content. Two or three adjus--

ments interspersed with check weighings readily achieve this goal. 'The

bed is then slowly air dried to the desired initial moisture content of

250%. This final air drying introduces no measurable gradation error.
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The hct surface drying experiments have as their goal the description

of moisture and temperature conditions within a glass fiber bed of constant

porosity, pore distribution, and basis weight at any time during a drying

operation using fixed drying conditions.

The internal geometry of the fiber bed can be fixed by utilizing a

constant weight of fiber which when compressed into the test ring will

yield a structure that is not affected by the surface tension forces active

during drying. This condition is suitably achieved by forming test beds

containing approximately 12 grams of dry fiber.

The initial weight of water in the bed (immediately prior to a drying

operation) was controlled at 30.00 - 0.2 g.

Drying conditions are established by controlling the hot water circu-

lating temperature (i.e., the hot surface temperature) and the temperat-re,

huridity, and flow rate of the circulating air. The absolute values chosen

for these drying conditions are the same as those selected by Ulmanen.

This was done in order that the data of this study would be more reaiis-

tically compared with Ulnanen's data. These conditions are:

Hot water circulating temperature = 90.00C. + 0.1°C.

Air flow rate = 155 + 5 c.f.m.

Air temperature = 10O.0CF. + 0.5°F. dry bulb

78.00 F. + 0.5°F. wet bulb

The drying run was conducted as follows: The drying environment was

established at the desired control conditions. The fiber bed was desaturated,

as previously described, to the desired initial moisture content of 250%
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(30 g.). The fine wire thermocouple leads from the bed were secured at the

temperature measuring junction (see Fig. 9), and the recording potentiometer

was turned on. The bed assembly was then quickly placed in position on the

hot plate,. a stop watch started, the top cover plate removed, and the clamp-

ing device lowered and clamped into position. This operation took about

ten seconds to accomplish.

ne time for 10 counts to be received at the beta-ray detector was

recorded as a function of drying time as ascertained by the stopwach,

reading. Readings at apprcximavely three-minute intervals produced ar

adequate description of the drying process.

The temperature at the thermocouple junction within the ted was auto-

ma'ically recorded on a strip chart at the recording pctenticmeter.

The treatment of raw data is discussed in a later section.

CAPILLARY PRESSURE STUDY

The capillary pressure apparatus designed and built for this study

is essentially the same as the smaller apparatus employed by Parker (15).

The following description of assembly and operation makes reference to

Fig. _1.

The apparatus consists of a lower plexiglas housing (A) atSachei ~o

a precision bore glass tube (B) filled with mercury and connected to a

mercury reservoir (C). This reservoir rests on a traveller (D) which runs

The terms capillary pressure and capillary suction are used inter-
changeably throughout this thesis.



A LOWER HOUSING
B PRECISION BORE TUBE
C MERCURY RESERVOIR
D TRAVELLER
E SCREW
F HANDLE
G DRYING TUBE
H WATER RESERVOIR
J SINTERED GLASS POROUS PLATE
K GLASS FIBER BED
L PLEXIGLASS RING
M PERFORATED BRASS PLATE
N SPRING
P UPPER HOUSING
R ACCESS PLUG WITH DRYING TUBE
S THERMOMETER
T HOSE CLAMP

Capillary Pressure Apparatus
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Figure. 11.
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on screw (E) and can thus be adjusted vertically by turning handle (F).

Drying tube (G) loosely filled with cotton batting connects the mercury

reservoir with the atmosphere.

Lower housing (A) is filled with deaerated, filtered water from water

reservoir (H). Water-saturated sintered glass porous plate ()' is placed

in position over the lower housing. This is effected in such a manner

that all air is purged from beneath the porous plate.

.The porous glass plate was obtained from Corning Glass Co. It is

7 1/2 inches inside diameter with approximately one inch of edge fusing

and 5 1/2 inches of porous area. The surfaces are machined fla- and

parallel ,o a tolerance of 0.002 inch. The thick. ess is approximately 3/3

inch. The plate was originally cleaned by allowing ccnactz with freshly

prepared hot cleaning solution (sulfuric acid-dichromate solution) and

:hen boiled in successive lots of purified water -lntil the last traces

of discoloration due to the cleaning solution had disappeared. The -lat-

is water saturated by submerging it in hot purified water in a vacuum.

desiccator under reduced pressure.

Water-saturatedl fiber bed (K) is placed on the porous plate with

the free fiber face in contact and the alum-in'm foil-covered opposite

face upward. Spring loaded, heavy perforated brass plate (M) and plexi-

glas ring (L) constrain the fiber bed in the required geometry. The wa-er

in the glass fiber bed is now connected by an unbroken water leg with the

mercury in the precision bore tube.

Saturating procedure is discussed on page 57.
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Upper plexiglas housing (P) is then bolted to the lower housing,

thus clamping the porous plate and glass fiber bed in position. A large

rubber stopper (R) fitted with a drying tube containing water-saturated

cotton batting seals an access hole in the top of the upper housing. This

prevents evaporation of water from the fiber bed but allows the pressure

to remain atmospheric. Thermometer (S) records the temperature in the

sealed bed compartment.

The apparatus assembled, the bulk of superfluous water is pipetted

from around the fiber bed via the access hole. The water reservoir is then

lowered in order to drain the residual free water from the fiber bed and

porous plate. Thus, a slight negative pressure actually exists for -he

zero reading. The hose clamp (T) is closed, and the apparatus is isolated

from the water reservoir.

By lowering reservoir (C) a negative pressure is transmitted to the

water in the fiber bed. This negative pressure will draw water out of the

bed in accordance with the laws of capillarity. The volume of water removed

can be evaluated by measuring the displacement of the mercury-water inter-

face in the precision bore tube. The pressure established is evaluated by

measuring the elevation of the mercury interfaces (tube and reservoir) with

reference to the center of the glass fiber bed taken as a datum. These

measurements are obtained through the use of a cathetometer.

In order that a particular capillary pressure be maintained despite

movement of the mercury-water interface in the tube the cross-sectional

area of the reservoir was made 13.6 (ratio density mercury to water) times

the cross-sectional area of the precision bore tube. In this way a fine-wire
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indicator attached to the reservoir can be set at a predetermined position;

the reservoir is lowered until this wire indicates the level of the mercury-

water interface. As long as this match is maintained, the increasing head

of water in the tube is exactly compensated by the decreasing head of

mercury in the reservoir. Thus, the net capillary pressure remains unchanged.

By calibrating the porous plate prior to testing the glass fiber beds,

the water removed from the fiber bed at any particular capillary pressure

can be differentiated from the water removed from the porous plate.

Two variables which have a marked effect on capillary pressure measure-

ments are temperature and interfacial tension. The capillary pressure

apparatus was located in an isclar-ium with temperature controlled at 25

+ 1/2°C. All water associated wit: this experimental work was of kr cwn and

satisfactory purity with a surface tension closely approaching that listed

for pure water. Surface tension measurements of the water in the apparatus

before and after each run assured that this value remained unchanged. Sur-

face tension measurements were made with a De Nouy surface tensiometer.

After completion of a capillary suction run, the residual saturation

of the bed, that is, water contained in discrete noncontinuous pockets in

the fiber bed, is determined by removing the fiber bed, weighing it, oven

drying, and reweighing it. This information completes the required data

and allows the degree of saturation of the glass fiber bed to be related

to the applied capillary suction. This is the experimental basis from which,

as will be discussed later, a pore size distribution function can be deter-

mined.
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DEVELOPMENT AND CRITICAL ANALYSIS OF DATA

The last section discussed the procedures and techniques that have

been developed in order to obtain the desired data. The next section

discusses the results as defined by these data. A transition is needed

to allow discussion of the accuracy and precision of the data and to

clarify its general development. The following section supplies this need.

DRYING STUDY

The calibration procedure relates the water content of the fiber bed

with a beta-ray transmission figure. A particular water content is estab-

lished, as previously described, by the use of a capillary suction technique.

Prelim..nary data were collected to assess the reproducibility of -he cali-

bration curve using this technique. Part of this data, presented in Table

I:, clarifies the required calculations.

TABLE II

CALIBRATION DATA, D-lll

(a) (b) (c) (d)
Beta-Ray Weight of Water Beta-Ray

Assembly Weight, Counting Rate, in Bed, Transmission,

g. sec./10 counts g. 

1028.80 (dry bed) 1.46 0.00 1C0.O

l0i.8.25 2.21 19.45 66.1

C160.41 3.31 31.51 44.2

The total weight of the test bed assembly is recorded in column (a).

The corresponding beta-ray counting rate is given in column (b). By sub-

tracting the dry bed assembly weight (1028.80) from the weight of the wet
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bed assembly, column (c) is obtained. Dividing the dry bed counting rate

(1.46) by the counting rate when water is present in the bed gives, by

definition, the beta-ray transmission recorded in column (d).

Figure 12 shows the reproducibility of the calibration data. All

points are for the same bed. The bed was saturated and calibrated, then

resaturated and checked several times. Different symbols indicate zest

values obtained after resaturaticn. All subsequent calibration data demon-

strated precision comparable to Fig. 12. This is suggested as satisfactory

evidence for the reliability of calibration data.

The capillary suction technique is a valuable additional tool for

drying studies. It is a theoretically sound marker in which to produce

a uniform moisture content of any specified value. Also, it offers a rapid

means of obtaining such moisture contents. With this technique, for instance,

a complete calibration curve can be established in about two hours. In

addition, a bed can be rapidly desaturated to the desired level for a dry-

ing experiment. This obviates the need for extended periods of slow air

drying even where such a technique is valid.

Some typical drying data are given in Table III to illustrate the

necessary calculations.

The original measurements are recorded in columns (a) and (b). The

beta-ray transmission calculated from the counting rate data, as previously

described, is shown in column (c). The calibration chart is consulted for

the values of water content corresponding to the particular transmission

figures. These are tabulated in column (d).



-48-

N

N

C,~~~~~~~~~~~~NU

0

CD

Z ~
M-

.I-

LAJ

0 ~0 0 0 0
cof 10 

NOISSINSN"IJ 'AV~ V.L39



-49-

(a)

Drying Time,
nin.:sec.

1:00

7:00

21:00

Final

TABL3 III

DRYING DATA, D-132

(b) (c)
Beta-Ray

Counting Rate, Transmission
sec./10o counts %_

1.60 61.9

1.51 65.6

1.19 83.1

0.99 100.0

(d)
Water Above

Source,

g.

11.2

10.1

4.9

0

The temperature is calculated from a continuous potentiometric record

of a thermocouple junction located at the desired point in the bed. This

record, in millivolts, is converted to temperature by use of a calibration

curve.

The calibration curve was constructed by measuring the millivoltage

output from the thermocuple junction located in a termerature-concrolled

hot water bath. A Bureau of Standards thermometer was used for recording

the actual temperature. The calibration curve was found to closely coin-

cide with standard chromel-alumel junction potential-temperature correlations.

The basic drying and temperature data obtained in this manner are presented

in Fig. 13-16.

The only criterion of accuracy in determining the moisture and tempera-

ture distributions within the glass fiber bed during drying is the precision

of measurement and the internal consistency of the data. In the drying

experiments, sources of error can be classified into two general categories--

those which contribute to variation in test results for one particular bed

and those which contribute to a between-bed variation.
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A particular bed, after calibration, can be saturated to the desired

level, dried, and then resaturated and redried. Without exception, results

from such duplicate or even triplicate tests on one particular bed demon-

strated excellent reproducibility. Figure 17 shows the water content above

a beta source, located at a position approximately 5/8 of the distance from

the hot surface to the open face, as a function of drying time. These data

represent two drying runs on the same bed made on different days. Figure

18 represents similar temperature data.

Since this precision was invariably maintained, it suggests that the

drying environment (hot surface temperature and air conditions) was ade-

quately controlled; that the initial moisture content was satisfactorily

reproduced; and that no important changes occurred in the bed as a result

of its past history.

The moisture and temperature distributions are reconstructed from

data obtained from different test beds, each bed yielding one point in t'e

desired distribution curves. The accuracy of this reconstruction is

naturally dependent upon the assumption that the different beds dry in

precisely the same manner. One necessary but not sufficient criterion of

precision is that different beds require the same time to dry.

Experience has indicated that the point (C) marked on the temperature

curve of Fig. 18 represents the time when liquid water completely disappears

from the bed. The total drying time evaluated in this manner can be seen

from Fig. 16 to vary for different beds by as much as six minutes in

extreme directions. An attempt was made to determine the cause of this

variation. The drying variables have already been eliminated as possible
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offenders. Therefore, the variation must be attributed to physical

differences between different beds. One such possibility is porosity

differences. The small size of the fibers made it impossible, in spite

of all precautions, to eliminate fiber loss through the septum. The

extent of fiber loss varied somewhat, thus yielding variations in the

total weight of dry fiber in different beds. Table IV lists the porosities

of a number of beds together with the total time required to dry them.

This table includes the maximum porosity variation encountered. It can

be seen, first, that while the porosity variation is not insignifi car,

it is not great. Second, no correlation can be observed between the

porosity and the total drying time. For glass fiber beds, pore size dis-

tributio is sensitive to porosity variations (15). Thus, it is impossible e

to attribute the encountered differences in drying time to variations in

the average internal geometry of different beds.

TABLE IV

POROSITY VARIATION AND TOTAL DRYING TME

Total Drying
Porosity Time, min.

0.944 47

0.947 50

0.945 L6

o.943 47

o.943 49

Further consideration of the between-bed reproducibility and non-

reproducibility is necessary before returning to the question of its cause.

The basic drying and temperature data for independent measurements on
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different beds with the thermocouple and radioactive source located at

essentially the same position in the bed (near the midpoint) are shown

in Fig. 19. It can be seen that the drying data are reproducible for about

15 to 20 minutes of drying after which a diversion results in the termina-

tion of the curves at the different total drying times. Similarly, the

temperature data is reproducible for about 20 minutes of drying after which

wide divergencies are apparent.

Experience suggests that point (A) shown in Fig. 83 represents the

time when liquid water disappears from the hot surface. The subsequent

fall in temperature is rapidly transmitted throughout the bed. In other

words, the location of the pOint (A) should be reproducible. Although the

variation in the location of this point does occur, this variation can be

seen to be considerably less than that experienced in the value of the

total drying time. In addition, no consistent relation between the locate:

of points (A) and (C) for a given bed could be deduced.

The above evidence suggests that a small variation o-erative over the

latter part of the drying period produces the measurable variation in the

total time required to dry the beds. This could be caused by small differ-

ences in the constitution of the surface of the bed that is in contact with

the hot surface during drying. For instance, it was not found possible to

totally eliminate fine material from the fiber sample. Variations in the

amount or distribution of fines present at the surface could conceivably

result in small changes in thermal conductivity at the interface as well as

producing small changes in the capillary structure at the interface. At

any rate, the possible ways that small structural differences could occur
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at the surface must be considered as uncontrollable properties of the

glass fiber bed formation.

It is therefore judged that the determination of moisture and tempera-

ture distributions from the basic data will be quite precise during the

first 15 to 20 minutes of drying. Hence, The primary analysis will be based

upon this data for the early drying period.

In order to produce a consistent qualitative picture it was necessary

t: make a linear adjustment to the data for the later drying period so tha-

all drying curves terminated at the same drying time. These adjustments

have been incorporated to produce the family of curves shown in Fig. 20.

A comparison of this data wit- that presented in Fig. 1"-'5 indicates the

extent of the adjustment. It can be seen that the adjustment has been

applied only, where necessary, to data obtained for the later drying ;eried.

At any drying time the cumulative water content of the bed can be

readily deduced from the data shown in Fig. 20. It is convenient to ex-

press the cumulative water content of the bed in terms of cumulative

saturation. By definition, the saturation, s, of a porous bed is the

fraction of the void space or porosity, e, that is occupied by liquid water.

The weight of water in a fully saturated bed can be calculated from the

known geometric dimensions of the bed and the known volume of fiber in the

bed. Dividing the cumulative water content by this figure converts the

system to cumulative saturation. The results of such calculations are

presented as a family of curves in Fig. 21.

The derivative or slope of the cumulative saturation function repre-

sents the actual saturation at any point in the bed for the drying interval



0

U)
LI-

I-

o 

Z

0

IL) ~ a0

SIANVdO '3:)dfOS 3AOSV 3.LVM



-62-

I I

N AN

I., _~~~~~~~~

AN
6

0q

ix

0

I-

* L&J

0 

I~l

1-;
(n

6

N e6

U-
0

z
0

v

U-

0l-

S 'N0IJ.vnliVS 3AI.Lv-flnvqnl

.0

VZ

Z

Z)

m9
d

I 9 ( 0

z :i Z
i I

01-0 M It

Ik-

i

I

I



which the function represents. Thus, by measuring the slopes at several

positions along the curves of Fig. 21, the final moisture distribution

as a function of drying time and of position in the bed can be constructed.

These curves are presented in a later section.

in summary, the basic technique developed by Dreshfield for studying

the drying phenomenon has been significantly improved in the direction of

obtaining more. pecise data. The primary difficulty that now faces investi-

gation in this area is to prepare fiber beds which are identical to each

other in all characteristics which affect the precise manner in which they

dry. This thesis is not able to offer a complete solution to this latter

problem. As a result, portions of the data cannot be considered suffic-

iently precise to allow extensive quantitative analysis. However, in the

early stages the description of drying is believed to be quite precise

and the over-all description presents a good qualitative picture.

CAPILLARY PRESSURE STUDY

The application of a negative pressure to the water in a saturated

pore system will cause the water to be drawn from the system. This will

continue until the capillary pressure as defined by Equation (2) (see page

5) exactly opposes the applied negative pressure. At this time all effec-

tive pores of radius r or smaller will remain filled with water while

pores larger than r will be empty.

The capillary pressure technique described in an earlier section

utilizes this concept to evaluate the capillary pressure exerted by the

water in the bed at any particular degree of saturation and to convert this

to an effective pore distribution.
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Figure 22 is used to illustrate the method of calculation involved

in developing the data from capillary pressure measurements. The original

data for all pertinent capillary pressure work are referred to in Appendix

IV.

FIBER BED -- DATUM 90.84 CM.

POROUS PLATE-' 
A

LEVEL (I) i_ LEVEL_ 2

Figure 22. Capiilary Pressure Measurements

The basic data, recorded in columns (a) and (b) of Table V, give

the elevation by cathetometer reading of the mercury-water interface in

the precision bore tube [level (1)] and the mercury level in the reser-

voir [level (2)].

The negative pressure exerted on the water in the bed is dependent

upon the exact elevation of this water. The selection of the datum plane

to intersect the center of the bed results in the calculation of an average

pressure. For negative pressures of more than 1 cm. of Hg the deviation

within the bed from the average value is completely negligible. The

elevation of the datum plane (90.84 cm.) is obtained by adding half the

known thickness of the bed to the elevation of the top of the porous plate.

The negative pressure exerted on the water in the bed consists of A

cm. of water plus B cm. of Hg. These values are recorded in columns (c)

and (d). Converting the A value to cm. Hg and adding to B gives the capil-

lary pressure exerted on the water in the bed. This is given in column (e).
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The precision bore tube was calibrated and found to have a volume of

. 551 cm. 3 per.cm. of length. This compares well with the value of 1.550

calculated from the manufacturer's specification. The successive elevations

of the mercury-water interface [column (a)], therefore, give a means of

calculating the cumulative amount of water withdrawn from both the fiber

bed and the porous plate. These values are tabulated in column (f).

The water that is drawn from the plate as a function of capillary

pressure is determined by a separate experiment in which only the plate is

included in the apparatus. The results of such a calibration are shown

graphically in Fig. 23. At the particular capillary pressures recorded in

column (e) the cumulative water removed from the plate can be determined

from the calibration curve. These values are presented in column (g.

The difference between columns (f) and (g) represents the water wihdrawn

from the fiber bed.

It is not possible to remove all the water from the fiber bed -y %he

application of a negative pressure. Discrete, isolated pockets of water

eventually form in the fiber bed as the continuous water network breaks

dowi. This residual water was found by weight measurement to be O.92 gram.

From a knowledge: of the geometric volume of the glass fiber -est bed

together with the dry fiber weight and density, the weight of water contained

in the completely saturated bed can be calculated. This value is 75.4 grams.

The total cumulative water plus the residual saturation gives a figure

of 74.9 grams. However, it can be seen that the zero point for these calcu-

lations occurs at a capillary pressure of 1.06 cm. Fg. The difference of
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C.5 gram between the calculated and theoretical water content at corplete

saturation is partially due to this initial pressure. The error, in any

event, is still less than one per cent.

By adding this error to the cumulative water content of the bed and

subtracting this value from 75.L, the water retained in the bed is estimated

at various negative pressures. This value divided by 75.4 is, by definition,

the degree of saturation of the bed. These values are given in the final

column.

The degree of saturation as a function of capillary pressure can be

established by plotting the figures of columns (e) and (h). r.is pict is

introduced in a later section. The reprcducibility of this capil.lar

pressure curve from separate tests on different beds was excellent.

The application of Equai-on (2) assumes the presence of circular

capillaries. A more realistic view introu.ces the hydraulic radius,

m = p.(4)

For porous media it is common to consider the hydraulic radius as

expressing a ratio of porosity to specific surface per unit volume of

media. Carman (16) gives evidence to show that Eqat-ion (4), while not

rigorous, can be successfully applied to capillary rise studies with granu-

lar media. Equation (4), therefore, appears to be the most reanir.ngful

relation between capillary pressure and effective pore size.

The surface tension of the water used in capillary pressure studies

varied only slightly. The average value obtained with a Cenco-De Nouy
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interfacial tensiometer (serial no. 240) for water at 25°C. was 75.8 dynes/

cm. Applying the ring correction factor of 0.94 gives the actual surface

tension of the water as 71.2 dynes/cm.

Using Equation (4) together with the measured value of the surface

tension, y, the saturation-capillary pressure relationship can be trans-

formed into a saturation-effective pore size relationship. This is a

representation of the cumulative pore-size distribution of the glass fiber

bed and is presented in a later section.
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RESULTS AND DISCUSSION

INTRODUCTION

The hot surface drying rate as a function of drying time for the glass

fiber bed of this study is presented in Fig. 24. The general confority -t

the characteristic drying rate curve, discussed in the introduction to this

thesis, is apparent. In addition, the observation of Ulmanen for pulp beds

that the so-called constant rate period is in fact a slowly changing rate

apparently applies - -oh ore emphasis to glass fiber beds. This question

of the so-called constant rate period will be clarified later.

Moisture distributions in the glass fiber bed at various dryingr times

are sh-ow in Fig. 25. These distributions are essentially similar -c -hose

determined by Ulmanen (see Fig. 26) for thick pulp beds. Notable differ-

ences in detail are -hat (1) the gradient toward the hot surface of the

glass fiber bed is substantially greater and toward the open face substan-

tially less than that of the pulp bed; (2) a slight moisture gradient is

detectable in the plateau region of moisture content in the central portico

of the glass fiber bed whereas no apparent gradient exists in this region

of the pulp bed; and (3) after a certain period of drying, liquid water

completely disappears from the hot surface-glass fiber bed interface whereas

for the pulp bed liquid water persists at the hot surface interface for

aLm.ost the entire drying period.

The temperatures at various levels in the glass fiber bed as a function

of drying time are shown in Fig. 27. It can be 'seen that no adjustment has

been made to the data up to 15-20 minutes of drying. The degree of subse-

quent adjustment can be judged by comparing Fig. 27 with the basic data
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RELATIVE BASIS WEIGHT, m

Figure 26. Local Moisture Distribution in a Thick Sheet
(Study of Han and Ulmanen)
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given in Fig. 16. It can be seen that after an initial rapid rise, the

temperature at any position in the bed remains relatively constant for

about 22 1/2 minutes of drying. However, it is not absolutely constant.

A tendency can be noted for the temperature to decrease slightly over this

period at positions nearer the hot surface, and to increase slightly at

positions nearer the open face.

After 22 1/2 minutes, the temperatures at all levels in the bed decrease

rapidly from the relatively constant values prevalent during the earlier

period of drying. From Fig. 24 it can be seen that this temperature trans-

ition point corresponds to the point where the approximately constant-rate

period is superceded by the so-called falling-rate period. Ir addition,

from Fig. 25 it is apparent that this transition point coincides with the

point where liquid water completely disappears from the hot surface-glass

fiber bed interface.

At a given level in the bed, the temperature continues to fall until

after a certain period of drying when the temperature rises sharply and

continues to increase. This point corresponds (see Fig. 25) with the point

where liquid water recedes from the hot surface past the particular level

under consideration.

The temperature then continues to increase but at a continually de-

creasing rate until a second sharp rise is experienced after which the

temperature reaches a constant value. This second rapid increase in tempera-

ture has been found to correspond to the end of the drying period, i.e.,

the time when all liquid water has been evaporated from the bed. A short

period follows during which equilibrium conditions of heat transfer through

the fiber bed are established.
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This picture of the temperature conditions in a glass fiber bed

during a hot surface drying operation is in many ways similar to that

presented by Uimanen (see Fig. 28). Notable differences are that (1)

the clear association of temperature transition points with the reduction

of local saturation (water content) to zero, apparent for the glass fiber

system, is not in fact true for the pulp system where local saturation

presumably never falls to zero; and (2) the decrease in the temperature

within the glass fiber bed after the initial drying period is much greater

than the similar decrease shoTw for a pulp bed, e.g., the temperature near

the surface of the glass fiber bed falls below the temperature of the air

stream while for 'he pulp bed the temperature near the surface remains

substantially above this value.

The significance of these observations and particularly of the

similarities and discrepancies between data for the glass fiber system

of this study and the pulp system of ULTanen's investigation will become

apparent as this analysis continues.

On the basis of the above observations, two distinct periods of

drying can be distinguished for the glass fiber system. During the first

period, liquid -water is present at the hot surface interface. This period

appears to correspond to the classic "constant rate" period. The second

period is characterized by the complete absence of liquid water from the

hot surface interface and apparently corresponds to the so-called "falling

rate" period. Although the implied distinction between the terms constant-

and falling-rate periods of drying is somewhat misleading when applied to

the glass fiber system of this study, these terms will be used in subsequent

discussion to distinguish the two periods of drying defined above.
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MATHEMATICAL MODEL

The interpretation of experimental data is greatly aided if the data

can be handled through analogy with a realistic mathematical model. This

is particularly true where a complex interaction of factors makes accurate

qualitative interpretation extremely difficult. It is the purpose of the

following section to introduce a mathematical model which can be realistic-

ally used to define the mass and energy interchanges that can occur during

the hot surface drying of a glass fiber bed.

iw FIBER BED

ul~'~ ~~ ~RELATIVE DISTANCE, 5X
\E L

1xo x=L i
=O X=l

FIBER BED-HOT
FIBER BED-AIR STREAM SURFACE INTERFACE

INTERFACE

The above sketch describes the system which is to be considered.

From this sketch it is apparent that the over-all system can be though.

^f as a combination of three separate and essentially homogeneous systems

and two boundary layers; viz. homogeneous metal, a boundary layer which is

described as the fiber bed-hot surface interface or simply the hot surface

interface, the fiber bed itself which can be thought of as a homogeneous

system even though point to point variation will occur in moisture content,
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a boundary layer which is described as the fiber bed-air stream interface

or simply the air interface, and finally the air stream itself.

For the metal system we are only concerned with energy flow or more

specifically heat flux. This heat flux will be equal to the product of the

thermal conductivity of the metal and the temperature gradient in the metal

at any point. The heat flow to the hot surface interface can be defined as

the heat flux in the metal at a point infinitely close to the interface and

is hence the product of the thermal conductivity of the metal and the ter-

perature gradient in the metal immediately adjacent to the hot surface

nterface.

As discussed earlier in this thesis it is a well-docu.ented fact tha-

liquid water flows to the hot surface interface and that evaporation of

water occurs at this interface. Therefore, it is proper to consider not

only energy cut also mass interchanges at the hot surface interface. A

material and energy balance for the hot surface interface will yield boludar

equations which define heat and mass transfer at the hot surface interface.

A consideration of what occurs at any point within the fiber bed during

hot surface drying must account for both liquid and vapor flow, a local

interchange between the liquid and gaseous state, and a heat flow. A mater-

ial and energy balance at any internal point in the fiber bed which acccun-s

in a generalized way for the above items can be used to define heat and

mass transfer at any point within the fiber bed. It is important to

recognize that such an equation will apply to a point within the fiber bed

infinitely close to either the hot surface or air interface but it cannot

be applied to describe heat and mass transfer at these interfaces.
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A material and energy balance for the air interface will produce

additional boundary equations which define heat and mass transfer at

this interface.

Therefore, it can be seen that the proper mathematical definition

of heat and mass transfer for a fiber bed during hot surface drying re-

quires the derivation of boundary equations to account for interchanges

at the two interfaces, and a generalized equation to apply to all points

between but not including the interfaces.

GEERALIZED EQUATION

(Z M2) . IN OUT

0 -- x L

The above diagram illustrates the sign convention which has beer

adopted, i.e.., distance, x, increases in the positive direction.

At any particular time the element, ax, will contain the solid sub-

stance of the porous media (fiber), liquid water, and a gaseous mixture

of air and water vapor. In terms of the previously defined concepts of

porosity, e, and saturation, s, we can write:

aF = (!-e) (5)

aL = se (6)

aG = (1-S)e (7)

where aF, aL' and a are the respective fractions of the total geometric

cross-sectional area occupied by fiber, liquid water, and the gaseous

mixture of water vapor and air.



Material Balance

The basis for the material balance is unit time and unit area. Un-

less liquid water is entirely absent from the element dx, the contribution

of water vapor and air to a material balance are negligible. Assuming no

shrinkage of the fiber bed, the solid fraction in the element, dx, remains

constant. Thus, the material balance can be qualitatively described by:

accumulation = water into element - water out of element -
water evaporated from element.

Liquid flow in a porous media during drying is in response tc a

capillary pressure gradient. Experience indicates that the flow in the

system will be laminar. Therefore, the d'Arcy equation can be realistic-

ally applied to define the flow rate into and from the element dx.

Flow rate in:

dI 1/ dS - 8)

where dM /de is the mass flow rate of liquid water into the element dx

per unit geometric area; K is the permeability; 4 is the viscosity of

water; P_ /&x is the capillary pressure gradient.

Flow rate cut:

dM2 (PP io
_ = L L(K + v a) ( x + (v x

where the porosity is defined as a constant, and the viscosity and density

are assumed to remain essentially constant across the element dx.

The accumulation of water in the element dx is given by Equation,(lO):
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dM ~ G
d= e L dx (l°)

where dM/de is the rate of accumulation, and 3s/ae is the rate of change

of saturation in element dx.

By defining as/e as the rate of change of saturation in the element,

dx, produced bv evaporation:

dW w 
d6 = eL ax (11)

where dW/d3 is the rate of evaporation from the element, dx.

In -erms of the material balance:

dM /dM d-M 1
d6 eG d6 d e d

Applying Equations (8) to ()11 to the above expressicn, neglec-ing

,erms in which the derivative appears ~o a higher power, and simpifyirg,

gives: 2

the closed face,

i.e., = x/L (1,)

where x is the fraction represented by distance x from the open face d"ivied

by total thickness L.

It follows that:

dx = Ldx (14)



and d x = L d2

Substituting

as
e^ =

(14) and (15) into Equation (12) gives:

-2 c K w 2p e

,L 2 ax 2K c o 2 (16)

Energy Balance

For the purposes of this analysis the energy or heat content (enthalpy)

of the system is defined as zero at 0°C. The energy balance across the

element, dx, can be qualitatively depicted as:

Heat in:

1) Heat

radiation.

2) Heat

5) Heat

Heat out:

1) Heat

radiation.

2) Heat

3) Heat

transferred inro the element via 2onduction, convectior,

content of water which flows into the element.

content of air/water vapor which flows into the element

transferred out of the element via conduction, convection,

content of water which flows out of the element.

content of air/water vapor which flows out of the element.

Accumulation of heat:

1) Heat absorbed by solid fiber in the element.

2) Heat absorbed by liquid water in the element.

3) Heat absorbed by air/water vapor in the element.

Heat in - Heat out = Accumulation

(15)



The basis for the energy balance is unit time and unit area.

The rate of heat transfer by conduction, convection and radiation

into the element,

d 1 (17)

where dql/de is the rate of heat transfer into the element; k is the-- L -<L

apparent thermal conductivity; and a_/Cx is the temperature gradient.

Heat transfer from the element,

_Lf +\ I Ca

de =x S -5T-

The heat content of an incremental mass of liquid water is by

definition:

dh = dMCLt (19)L L

where dh L is the heat content of an incremental mass of liquid water,

dM; CL is the specific heat of water; and t is the temperature of the

water above 0°C. (i.e., numerically equivalent to the actual temperature).

Combining (19) with Equation (8) gives the heat content of the water

flowing into the element.

dhLI KCpLCL 6P
de : - - cLLdG = A t ~ (20)

The heat content of the water flowing out of the element is

= _ L( + d t +' d ( +( [vP ]dh pC L oK 6f 6 /, sde - - ^ T dx (sri^ d (-2 1
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where the specific heat, and the density, cL, are assumed to remain

constant across the element, dx.

The water vapor which diffuses out of the element, dx, is approximately

equal to the water vapor which diffuses into the element plus the water

vapor produced by evaporation from the element. This assumes that the

accumulation or depletion of water vapor in the element is not great.

Since the specific heat of water vapor is small (compared to water)

it is a reasonable approximation to assume that the difference between the

heat content of the water vapor which diffuses into the element and tha-

which diffuses out is she heat content of the water vapor which is produced

by evaporation from the element dx. This can be written:

dh asv W
de= L- ( +CLt) dx (22)

where dh is the heat content associated with the water vapor produced -y
--v

evaporation from the element, dx; as Je is the rate of change of satura-

tion in element, dx, which can be attributed to evaporation from the

element; and X is the latent heat of vaporization at the temperature, t,

existing in the element, dx.

The initial heat content of the element, dx,

h. = l-e)FCF esOLC] t dx (23)
1 ,.,,,,, F t e OLC) S£ LI

where the heat content of the air and water vapor has been neglected.

The final heat content,

h = l-e)PFCF + e(s + | de)pLCL] [t + d] dx (24)
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Hence, the rate of charge of sensible heat,

de de LCL dx + [1-ePFC + es dx (25

Ln terms of the energy balance:

de dql dq2) dh d i2 dh
d6 d9 da6 d6 de

Substituting into the above expression from Equations (17), (13), (20),

(21), (22), and (23), discarding terSs in which the derivative appears -^

a higher power, and simplifying:

)2 ok 0P CK 2p
r 3 t a at L c c ' a32 r g2j+ %C LxL .x Kco ac

K PLCL at 6Pc 3w 
+ p -t - e PL - L+ CLt)

= etoLCL + ) e (26)

Substituting from Equation (12) for the terms in the underscored

bracket of Equation (26) and simplifying:

k 2t , ka a+ Kc PkL tt 3PC
a a c

Ls -e)PFC + espLCL (27)

Substituting from Equazions (l4) and (15) gives the final form.:

1 rIk a2It KcCpLCCL t KPc
L2 a 2 + L2

- eP.Lk = e 1-e)PFCF + eSPLC (28)
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This mathematical relation has been derived to apply to a glass fiber

bed. It is of interest to consider the possible application of this

relation to the paper system.

The first difficulty encountered is that paper shrinks during drying.

This means that the porosity is no longer a constant. However, this objec-

tion can be overcome by introducing the porosity as a variable into the

derivation. of the above equation.

The second and more formidable difficulty is that the liquid satura-

zion at any point is defined not only by the water present in interfiber

spaces, but also by water present in the fiber lumen and by water physically

bound to the fiber. These different components will respond in a different

.anrer to capillary forces and so the definition of liquid flo utilized

in the above derivation cannot be directly applied to the paper system.

A better understanding of capillary flow in a paper network appears

necessary before a reasonable modification can be made to allow the above

equation to be applied to the drying of paper.

HOT SURFACE INTERFACE BOUNDARY EQUATIONS

Conditions at the hot surface interface can be described according to

the accompanying sketch:

VAPOR --

HEAT, : HEAT,, -- p HEAT, A

LIQUID

gal
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Since we are interested in the interchanges that occur at an interface

which can be regarded as infinitely thin, the volume and heat capacities at

the interface must be negligible. It is therefore correct to state that

the difference between the heat supplied to the interface from the hot sur-

face and the heat transferred into the fiber bed from the interface is used

to cause evaporation at the interface. Further, the rate of flow of liquid

water to the interface must equal the evaporation.

In terms of the nomenclature previously adopted, these statements

can be expressed as:

Li \/fnat\ = + XeQLL 
xL x,x=i. L o L o/x=1.

I-- = eL a )0
L~ Vox /x=!. 0 \oe x

where Q is the total heat flow delivered to the hot surface interface; <

is the conductivity of the metal; (at/ )m xl 0 is the temperature gradie.;-

in the metal at the interface; (asOe)-x 1.0 is the rate of change cf total

saturation due to evaporation at the hot surface interface; and all o:her

terms are as defined earlier.

AIR INTERFACE BOUNDARY EQUATIONS

Conditions at the air interface can be described according to -he

accompanying sketch:

~, a -HEAT

' AO < LIQUID
VAPOR V--

VA R VAPOR
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Since we are again concerned with an interface it is proper to

neglect volume and heat capacities. If the heat losses to the air

stream other than by vapor transport are neglected, then the heat

transferred to the air interface is used to cause evaporation at the

interface and the rate of liquid flow to the interface equals the rate

of evaporation. Mathematically this can be expressed as:

/k -=\ /s e
'a dt\ , 

OL k ac Xec L (-- x0(31)
^L, 2, x=C L -e /x=0

i-; =· eL Wx= (32)L7 \ X=O \e /x=o

where (oS / 6)- C is the rate of change of total saturation due to evapor-

ation at the air interface; and other terms are as previously defined.

QUALITATIVE TREATMENT

It is one goal of this thesis to demonstrate a quantitative approach

to the elucidation of heat and mass transfer during hot surface drying.

However, it is felt that a qualitative picture should be developed first

since such a picture will be independent of any assumptions which it may

be necessary to incorporate into a quantitative treatment. Hence, it is

the purpose of this section to elucidate on the basis of the experimental

iata and the mathematical model an advanced qualitative picture of the hc;

surface drying mechanism.

Early work on hot surface drying of porous media has confirmed the

intuitive concept that the open surface is a site for evaporation of water.
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This has led to the descriptive concepts of Sherwood which have been dis-

cussed earlier of saturated and unsaturated surface drying supplied by a

liquid flow from the interior. Then Dreshfield's study of the hot surface

drying operation clearly indicated that evaporation occurs both at the

open surface and at the hot surface and that the flow of liquid water in

the region of each surface is toward that surface. This evidence is con-

firmed by several other studies and the moisture distribution data for the

glass fiber system is entirely in accord with this concept. It is ntere-

fore from -his point That the qualitative analysis will roceen.

The manner in which heat and mass transfer interactions occur within

the glass fiber bed can be visualized by considering a rearrange-d fr. ;f

Equation (28).

as -r ^, k C- ^ dP ^ w 1 e a2t at c' L L at at -
(eo -) 1 _ s + _+ r- I )^ ' C

: L L2 a C aL CD C .

Here we can see that the evaporation or condensation at any point in

the bed (represented by ds_/e) is related to a sumnnat-on of three terns.

The first is a heat transfer term, the second a liquid flow term, and the

third a heat capacity term. The significance of this equation will be

considered for two positions in the bed during the constant rate period;

viz. (1) where the liquid flow is toward the air interface, and (2) where

the liquid flow is toward the hot surface interface.

In Fig. 29 the temperature distribution and temperature gradient curve

for the glass fiber bed at 10 minutes of drying are presented. It is

apparent that for any position in the bed both the temperature and the
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temperature gradient increase as x increases. Thus, the derivatives

_a/_, and w 2/ vwll everywhere have a positive value.

It is generally believed that the apparent thermal conductivity of

a porous bed increases as the moisture content increases. Although this

has not been rigorously demonstrated experimentally, all available evidence

suggests that this is the case and certairdy no known evidence contradicts

such a view. From Fig. 25 the moisture content can be seen to increase as

x increases in the region of the open surface and to decrease as x increases

in the region of the hot surface. Therefore, according to the above reason-

ing k /ax will be positive near the open surface and negative near the

hot surface.

The temperature at any point in the bed remains relatively constant

over the constant rate period. Therefore 3t/16 will have a value very

close to zero.

Thus, it can be seen from the experimental evidence for the constant

rate period that in the region near the open surface all the terms on -he

right hand side of Equation (28a) with the exception of the negligible

heat capacity term will be positive. Hence, as_/9 will be positive which

means that evaporation must be occurring internally in the region near the

open surface.

In the region near the hot surface both the liquid flow term and the

second part of the heat transfer term become negative. It is a reasonable

possibility, therefore, that in this region of the bed, s/_e will become

negative indicating that internal condensation is occurring.
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Dreshfield on the basis of dye dilution measurements concluded that

net condensation occurred at ail internal positions during the constant-

rate period of the hot surface drying of thin pulp mats. However, his

experimental evidence refers only to the two central laminates of a four

laminate system, and therefore does not preclude the possibility that

internal evaporation was occurring in the air interface laminate. There-

fore, although the data clearly support the existence of internal condensa-

tion in the central regions and hence by implication the region next -o

the hot surface, they do not deny the existence of internal evacoration

at points near the open surface.

The concept supported by the experimental evidence for a glass fiber

bed that internal evaporation occurs near the open surface is thus ouite

compatible with the evidence supplied by Dreshfield. However, the possi-

bility that no internal condensation occurs at any point in the fiber bed

would require the introduction of some fundamental distinction between nhe

two systems which cannot be acknowledged on the basis of the similarity

between systems of the moisture distribution and drying rate data. H.erncs

although the experimental data for the glass fiber bed cannot rigorously

demonstrate the existence of internal condensation near the hot surface a

consideration of this data relative to that of Dreshfield can be seen tc

supply a very strong case for the existence of such a phenomenon.

The above analysis indicates that for the constant rate period water

which is evaporated at the hot surface interface tends to condense in

regions of the glass fiber bed adjacent to the hot surface. In this

region, which will be referred to as the zone of condensation, the partial
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pressure of the water vapor in the available air spaces must be equal to

the saturation partial pressure. However, at some level in the fiber

bed the partial pressure of the water vapor must fall below saturation

and net evaporation occurs at all subsequent positions to the open face.

This region of the bed will be called the zone of evaporation.

Because of the moisture gradient, liquid water tends to flow toward

the region adjacent to the hot surface. Since internal condensation occurs

in this region during the constant rate period, the decrease in the moisture

content of this region must occur by virtue of evaporation at the hot sur-

face interface and transport of the water vapor back through and out cf

this region.

aTe transport r.echanism suggested by Dreshfield involves the water

vapor produced at the hot surface interface in a series of condensation-

evaporation cycles. Although the validity of this concept can be nei-her

established nor disputed on the basis of existing data, it appears more

reasonable to consider that water vapor produced at the hot surface

diffuses away from this surface by virtue of the partial pressure gradient

impressed by the temperature gradient, and that a portion of this water

vapor condenses in all regions where saturation conditions are exceeded.

At the outset of the falling rate period it has been shown that liquid

water disappears from the hot surface interface. Since water vapor can

then be no longer supplied by evaporation at the hot surface, internal

condensation must cease and the zone of evaporation will expand to include

the former zone of condensation.
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From this general picture it is clear that for the drying of a glass

fiber bed during the constant rate period water vapor produced by evapora-

tion at the hot surface interface diffuses through the zone of condensation

to the accompaniment of condensation until it reaches the zone of evapora-

tion. Thereafter, this vapor is supplemented continually by internal

evaporation. The vapor which diffuses to the air interface is thus a

combination of vapor produced at the hot surface interface and vapor

produced by internal evaporation. Evaporation from the air interface then

adds a further increment of vapor which together with the vapor from the

two other sources diffuses into the air stream. It is the sum of these

three effects which result in the over-all drying rate.

In the falling rate period evaporation at the hot surface ceases anr

so the over-all drying rate is a summation from only two sources; vlz.

internal evaporation which occurs at all points within the bed, and evapor-

ation from the air interface.

In the quantitative treatment which is to follow, an attempt is rade

to secure some indication of the relative importance of the three contri-

butions to over-all drying rate. In addition, the importance of various

factors on liquid, vapor, and heat flow is estimated. However, before

proceeding to this treatment it is of interest in the light of the above

qualitative analysis to discuss the mechanism of hot surface drying and

the effect of internal structure upon hot surface drying phenomena as

implied by a comparison of the data of this study with that of Ulmanen for

a pulp bed.
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THE MIECHANISM OF HOT SURFACE DRYING

The distinctive feature of hot surface drying as a drying operation

is that while heat is supplied to one surface of the material water vapor

can leave only from the opposite face. This provides a fascinating problem

in counter- and concurrent heat, liquid water, and water vapor transfer,

the net result of which is a characteristic drying rate curve which for

many systems has implied veritable ? s-implicity. The number of studies and

body of opinion which support the concept of a truly constant initial hot

surface drying rate have already been mentioned. It would appear that this

facade masks a considerably more complex process than has hitherto been

generally realized.

The over-all drying rates for a pulp bed (Ulmanen's study) and for

a glass fiber bed (this study) are compared in Fig. 30. Both curves show

tha- a slowly decreasing drying rate exists during the constant rate peri:.

This has also been noted by King and Newitt (8) for the hot surface drying

of glass beads. Since the moisture content at all positions (including

both faces) of the fiber beds changes markedly during the constant rate

period, and even the temperature changes slightly, it is not surprising

that the drying rate also changes. What is of interest is that the changes

in rate are sufficiently small to have established the myth of the constant

rate period. On the basis of the triple contribution to over-all drying

rate a logical explanation can be given for this apparent constancy of

drying rate.

Evaporation from the open surface during the constant rate period,

assuming relatively constant surface temperature and temperature.gradient
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(which appears to be generally tue for all systems) must logically decrease

as the moisture content decreases; i.e., the heat supply to the surface

should decrease and the area available for evaporation should decrease.

During this period of drying the moisture content at the open surface falls

substantially. This suggests that the open surface evaporation rate must

also decrease. This natural decrease must therefore be compensated for

by an increase in the rate at which water vapor diffuses from the interior.

The rate of diffusion of water vapor from the interior zf the bed

will be some function of the partial pressure gradient, the area available

for diffusion and the diffusion coefficient. Since the actual termerature

at any point in the bed changes only slightly during the constant rate

period, the diffusion coefficient at any point in the bed would not be

expected to change significantly. The partial pressure gradient will

depend upon partial pressure conditions (1) at the hot surface, and (2)

at the open face. Saturation partial pressure exists near .-e hot surface

and will not change much since the temperature changes only slightly. The

partial pressure at the boundary layer between fiber system and air stre-.

will depend upon air stream conditions (which are constant) and presumably

the rate at which vapor is introduced to the boundary layer by surface

evaporation. As surface evaporation decreases the conditions of partial

pressure in this boundary layer would, by this argument, favor increasing

diffusion from the interior. Finally, the decreasing moisture content

increases the area available for diffusion and hence increases the potential

for water vapor diffusion.

In short, as drying proceeds the expectation is that diffusion of

water vapor from the interior will increase. This supplies the compensating
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factor which offsets a decrease in surface evaporation rate and maintains

the relatively constant rate observed for the constant rate period.

Attempts have been made to summon evidence by which the so-called

rate-controlling mechanism of the hot surface drying operation could be

elucidated. This has led to a belief that such a mechanism exists, whether

it be heat transfer to or through the fiber bed, or resistance to water

vapor diffusion through or from the bed. Ln fact, the existence of such

a mechanism is doubtful.

Evaporation from any system requires heat. Therefore, the heat trans-

fer rate is important. However, it is impossible to isolate the ra:e of

heat transfer to the bed as an independent variable. It is governed by

apparent conductivity and temperature gradient which themselves depend on

a combination of almost every conceivable factor which can logically be

associated with a drying operation.

The apparent conductivity at the hot surface interface is a strong

function of the local moisture content. The local moisture content depends

upon the degree of balance which exists between liquid water flow to the

ia-
hot surface and evaporation from the hot surface. Liquid flow to the

hot surface is a function of the basic pore structure of the porous material

and the moisture gradient. The temperature gradient existing at the hot

surface is dependent upon the temperature of the bed adjacent to the hot

surface. If heat transferred to the bed increases the temperature of

the bed in distinction to causing evaporation, the temperature gradient

will become smaller. Hence, the rate of evaporation from the bed is a

deciding factor. This is dependent upon heat transfer through the bed to
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promote surface evaporation and internal diffusion of water vapor to

prevent total condensation of water vapor produced by hot surface evapora-

tion as well as to allow internal evaporation. The rate of internal dif-

fusion is, among other things, a function of the pore structure and moisture

content. Final diffusion of water vapor from the bed across the boundary

layer is affected by air stream conditions.

The interdependence of heat and mass transfer, boundary conditions of

drying, internal pore structure, and drying rate apparently has not been

adequately realized. There is little doubt, however, that a proper under-

standing of these interrelationships is the key to a more complete IciWle-

of the drying operation. The outward effect of some of these in-erreZlatin-

ships can be observed by a comparison of the hot surface frying of a g'ass

fiber bed and a pulp bed.

The boundary conditions established for the hot surface drying of the

glass fiber beds of this study were almost identical to those imposed by

UL'anen in his similar study of pulp beds. The differences observed be-

tween these two studies cannot, therefore, be attributed to boundary condi-

tions. Hence, the comparison represents a valid means of high-lighting the

effect of the physical and chemical characteristics which differentiate

pulp and glass fiber systems on the interrelationships mentioned above.

Figure 31 represents a summary of a number of important drying

characteristics comparing the pulp and glass fiber systems.

The initial drying rate for the pulp bed is greater than for the glass

fiber bed. At the same time, the pulp bed has a higher moisture content

I_~_ 
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at the hot surface and hence presumably a higher apparent conductivity.

The higher moisture content at the hot surface is in part due to the

slightly higher initial moisture content of the pulp bed but more signifi-

cantly to the fact that the moisture content falls more rapidly at t+be

hot surface for the glass fiber bed. This is a direct result of the

capillary nature of the glass fiber bed. It has a considerably more uni-

form pore structure than does a pulp bed and so the capillary driving force

for a particular moisture gradient will be much less. This is illustrated

in Fig. 32 where the capillary pressure-saturation relationship for the

glass fiber bed of this study is compared with a typical result for a

pulp bed. The permeability to flow, although presumably greater for the

glass fiber bed, is not sufficiently SQ tc offset the particularly large

difference in capillary driving force. Under these circumstances it is

inevitable that liquid-flow to. the surface.will compete less favorably

wi-th hot surface evaporation resulting in a lower moisture content at the

hot surface for the glass fiber bed. Thus, one can expect the heat flow

to the glass fiber bed to be less than for the pulp bed. The consequence

of this lower heat flow is a lower drying rate.

The constant rate period ends at an earlier drying time for the pulp

bed-than for the glass fiber bed. In addition, a substantial moisture

content still exists at the hot surface. This is in distinction to the

glass fiber system where the end of the constant rate period is character-

ized by the disappearance of liquid water from the hot surface. For the

explanation of these events it is necessary to turn once more to the concept

of the three contributions to over-all drying rate.
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It can be noted from Fig. 31 that the temperature gradient at and

near the open surface is substantially higher for the pulp bed than for

the glass fiber bed. A good explanation for this difference is the possi-

bility that for a pulp bed heat must be transferred nearer to the open

face while for a glass fiber bed the heat is to a considerable extent

absorbed as latent heat of vaporization at positions closer to the hot

surface. In other words, this is an indication that the zone of condensa-

tion may be more extensive in the pulp bed and that therefore evaporation

from -he air interface contributes a larger proportion toward the over-all

Trying rate than is the case for the glass fiber bed.

In addition, the pulp bed is less porous than is the glass fiber

bed and so less space is available. fr vapor diffusion. This higher

resistance will tend to reduce the contribution to over-all drying rate

from interior diffusion of water vapor and donate the heat supply to

surface evaporation. This postulated higher surface evaporation rate

could also account for the steeper moisture gradient at the open face

which has been mentioned for the pulp system.

The constant rate period must end when the diffusion of water vapor

from the interior can no longer compensate for the decreasing surface

evaporation rate. Since the initial surface evaporation rate is probably

substantially greater for a pulp bed than a glass fiber bed the same

percentage decrease in surface evaporation rate wll represent a substan-

tially greater loss in drying effect. In addition, the moisture content

at the open face falls at a greater rate for the pulp bed so that the

actual percentage decrease in surface evaporation rate should be greater
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for the pulp bed. This argument suggests that a greater rate of increase

of diffusion of water vapor from the interior of a pulp bed is necessary

to compensate for the decreasing surface evaporation rate than is the case

for a glass fiber system. The rate of increase of water vapor diffusion

from the pulp bed is restricted by the fact that as water evaporates from

the bed part of the space which should become available to diffusion is

lost as a result of shrinkage of the pulp bed. A logical consequence of

these effects is that diffusion of water vapor from the interior fails to

compensate for loss of surface evaporation at an earlier period of drying

for a pulp bed than is the case for the glass fiber system. Hence, the

constant rate period terminates earlier.

It appears, therefore, that, for a puip bed, resistance to internal

water vapor diffusion is the prime-mover which calls to an end the constant

rate period; for a glass fiber bed it is resistance to heat transfer.

In the later stages of the falling rate period the pulp bed drying

rate is greater than the glass fiber bed drying rate. The continual

presence of water at the hot surface presumably maintains a greater heat

flow to the pulp bed than is the case for the glass fiber bed where a

continually thickening layer of dry fiber separates the hot surface from

the wet bed. This is evidenced by the large temperature decrease in the

glass fiber bed which does not occur in the pulp bed. The presence of

liquid water at the hot surface of a pulp bed can be explained by resorting

to the physical and/or the chemical nature of this fiber system. The fine

pore structure of the pulp bed which pre-exists. and/or is produced by

shrinkage may maintain liquid water at the interface by virtue of the large



capillary driving forces which potentially exist. Water trapped within the

lumen of fibers near the interface would act as a natural reservoir for

this flow.

The chemical nature of the cellulosic pulp fiber allows substantial

amounts of water to be adsorbed on its surfaces. Water at the interface

must, therefore, be at least partially chemically bound and may be totally

so.

The mechanism of hot surface drying can thus be seen as a complex of

interrelationships. The drying rate is governed by the interdependent

internal heat and mass transfer processes. These internal processes are

n turn governed by the internal structure of the porous material and the

boundary conditions of drying. Although the effect of the latter factor

has been well documented, it does not appear that the importance cf inter-

nal structure (as evidenced by the contrasting results for pulp and glass

fiber beds) has been properly recognized.

QUANTITATIVE TREATMENT

A natural phenomenon can never be reasonably understood until physical

observation can be fitted to an embracing mathematical model and thus

related to underlying fundamental concepts. The history of the study of

hot surface drying clearly illustrates the difficulty introduced by the

lack of any such quantitative treatment. The conclusions that have been

drawn from experimental observation have in many cases been reasonable, in

some cases shrewd, but in all cases incomplete. This will necessarily con-

tinue until a consistent mathematical description of the drying operation

can be successfully evolved.
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The qualitative treatment of the experimental data obtained for

glass fibers emphasizes that hot surface drying and internal heat and

mass transfer are essentially synonymous terms. Therefore, the under-

standing of the former can only come about through a diligent study of

the latter. It is the purpose of this section to introduce a quantitative

treatment of the mass and energy interchanges that occur during the drying

of a glass fiber bed. The development which evolves is in many ways crude.

Some of the assumptions upon which it builds must be recognized as question-

able. Many of the calculations involved require the extraction of first

and second derivatives from experimental data, a task which can be described

as laboriously imprecise. However, it is hoped that this development will

highlight profitable areas for new research and suggest a route toward a

far more advanced mathematical concept of the drying process.

HEAT TRANSFER

Heat transfer through the glass fiber system during hot surface drying

can be qualitatively discussed in terms of the equations derived in an

earlier section. From the hot surface interface boundary equation (29)

the total heat flow to the hot surface interface and hence to the fiber

system is given by (k /L)(at_/J)m 10 ' the product of the thermal conduc-

tivity of the metal and the temperature gradient in the metal adjacent to

the interface. From Equation (29) it can be seen that only a portion of

the total heat supplied to the interface is transferred from the interface.

The remainder is absorbed as latent heat by evaporation at the hot surface

interface.
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Heat transfer from the hot surface interface internally toward the air

interface occurs, empirically at least, in response to the product of the

internal temperature gradient and the local apparent thermal conductivity.

Finally, according to the air interface boundary equation (31), heat

is transferred to the air interface and, neglecting heat loss to the air

stream, is consumed by evaporation at the open surface.

The investigation and evaluation of the apparent thermal conductivity

within the fiber bed during hot surface drying is the primary goal cf -his

section of the thesis. The analysis of Han and Ulmanen ( 4) to describe

the apparent thermal conductivity of a pulp bed as a function of the

moisture content of the bed has been mentioned earlier. This appears to

be a good starting pcint for a similar analysis of the glass fiber system.

Ir essence, Han and Ulmanen made a material and energy balance fcr

their system as a whole. They assumed that heat losses by c.nduczin or

radiation to the air stream were negligible and were therefore able to

equate the total heat flow to the bed to the changes in sensible heat of

the components of the system plus the heat absorbed in causing evaporation

from the bed. By making the same derivation in terms of the nomenclature

introduced in the last section, it can be shown that:

1.0 1.0

=s e at /e
XQ= ePLL - (l-e)FCF dx + sLLCL d (33)

x=O x=O

where aS/e is the rate of change of total saturation for the bed as a

whole (the drying rate); and other terms are as defined earlier.
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Combining Equations (29) and (33) it is apparent that:

1.0 1.0

k ~t + XePLL1.w ~S dt -
(+ Xe= Xe LL -a + L(1-e)p C t - dx + S esIL C d-

L1 L S^ Pe L as F a LCL aL~1 ; l e ~ae6 e
0=o = (31)(34)

Since there is no method of evaluating the evaporation rate at the hot sur-

face, (S /8)- 1 Equation (34) cannot be used to determine k as defined

by the original mathematical model as long as the hot surface evaporation

term is significant. Har and Ulmanen by their treatment ignore the hot sur-

face evaporation term and thus essentially define a somewhat artificial

apparent thermal conductivity which in terms of this analysis can be formu-

lated as:

(ki (k as
L 1.0 L x=1.0 L d /=1.0('La -- Iajx-;ox= + ( LL )

Their analysis evaluates this artificial apparent thermal conductivity, k'

as a function of moisture content. This value will approach the apparent

thermal conductivity concept of this study as the hot surface evaporation

rate becomes small.

Earlier discussion indicated that for the glass fiber system liquid

water completely disappeared from the hot surface interface after about

22-1/2 minutes of drying. Under these circumstances no hot surface evapcra-

tion can occur and so Equation (3L) can be used to evaluate the apparent

thermal conductivity of the dry fiber bed.
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In addition Equation (34) can be integrated by introducing de to

each term and integrating from ae to e2.1 2

e2 e2 1.0 1.0

6 . (&x ade = Xo L a F +CF(l-e)L(t62-ti )di es LCC (te, -t )d&
/ L 2K=I.0 L F6 tF 2tl ) L

1i ~ ~~1 x=0 (=0
(35)

and this integral form evaluated over the period when no liquid water exists

at the hot surface interface. This gives a further determination of the

apparent conductivity of the dry bed. The integral form can be expected to

give a value for k which is less susceptible to error due to errors in the

measurement cf temperature gradient, etc. This is significant since these

calculations rely on data obtained during the falling rate period of drying

where measurements were recognized to be less precise than for the constant

rate period.

The apparent thermal conductivity values calculated at different times

for dry bed conditions at the interface together with an evaluation using

the integral form of the equation over the drying period from 50 to 45

minutes, are presented in Table VI.

These apparent thermal conductivity values indicate a satisfactory

degree of internal consistency. The actual average value of 1.00 x 10

compares favorably with the value specified by the glass fiber manufacturer

for their micrcfiber felt (porosity approximately 0.975) of 0.952 x iO

2
cal./cm. sec. (°C./cm.).

It is of interest to consider the significance of this value in terms

of the actual conductivity of the components of the system. In the most
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TABLE VI

DRY BED APPARENT THERMAL CONDUCTIVITIES

Drying lTime, Saturation
min. At Hot Surface

25 0

350 0

35 0

40 0

45 C

aEvaluation using integral form

Apparent
Thermal Conductivity,
cal./cm. sec. ("C./cm.)

x 104

0.98

0.95

l.07

1.01

0.97

1.04

general case, for instance, three paths can be considered to exist for

conduction of heat in the fiber bed; viz. solid fiber, liquid water, and

a gaseous mixture of air and water vapor. Assuming (1) that conduction

of heat occurs along three parallel paths in a direction perpendicular to

the plane of the hot surface, (2) that all points in a given plane in the

fiber bed are at the same temperature, and (3) that the volume concepts of

porosity and saturation'can be applied to any cross-sectional area, we can

write:

k = (l,e)kF + eskL + e(l-s)k, (36)

where k is the actual pure conductivity of the fiber system; !k is the

conductivity of the glass fibers; kL is the conductivity of liquid water;

k is the conductivity of the gaseous mixture of air and water vapor; and
-v

(l-e), e2, and e(l-s) are the respective fractions of these components

present in the cross section.
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For the dry fiber bed the saturation is zero and Equation (36)

reduces to:

k = (l-e)kF + ekv (7)

Handbook data indicates that the thermal conductivity of both air

and water vapor is in the neighborhood of 0.6 x 10 4 cal./cm. sec. (°C./cm.).

Using this value for k and assuming that the calculated value for k of-v -v
- r B

1.00 x 10 ' is a valid measure of the actual conductivity, k; the conduc-

4 2
tivity of the glass fibers is found to be 7.5 x 10 cal./cm. sec. ('./c.).

Various sources quote the thermal conductivity of solid glass at about

50 x 1C" cal./cm. sec. (°C./cm.). One would expect the thermal csrnuc ivi y

of glass fibers to be substantially less than the conductivity of solid glass

by virtue of the fact that the fibers are not fused together. The values

quoted indicate an apparent 'contact coefficient" of 0.25. Although a

number of possible mechanisms such as tortuosity of conducting path, contac-

resistance, etc., can be cited as contributing to this contact coefficient,

a value of 0.25 seems entirely possible.

By this analysis the apparent thermal conductivity as measured for

the dry fiber bed can possibly be accounted for in terms of pure conducticr

only. This agrees with Finck's assertion (I8) that natural convec-tion is

not an important heat transfer mechanism in dry porous beds unless very

loosely packed.

It is now necessary to consider the problem of evaluating the apparent

thermal conductivity of a partially saturated glass fiber bed. The follow-

ing analysis offers this possibility.



It has been established experimentally (2) that liquid flow during

hot surface drying is toward the air interface in the region of that

interface and toward the hot surface interface in the region of that

interface. Therefore, at some internal and intermediate position a plane

of zero flow must occur. Heat supplied to the section of the bed between

the hot surface and this plane where liquid flow is zero, minus the heat

transferred from this section must equal the heat absorbed (1) by evapora-

tion from this section, and (2) as sensible heat by the fiber and water

present in this section. The heat supplied to the bed is given by Squatio.

(35). A derivation similar to that required for Equation (33) yields:

1.C 1.0 1.0

Q _ ( a bt - ep LX<°- dx- t L( -e)p-CC Ad dx +esLpC- di (3e)

x=x= x=x x=x

where x1 signifies the position in the bed where liquid flow is zero;

ds/o6 is the rate of change of local saturation; aos_/J is, therefore,

the rate of change of cumulative saturation for the section of the bed

between x = x and x = 1.0; and all other terms are as defined earlier.

Before Equation (38) can be used to evaluate k , it is necessary to

establish the location of the plane xl. At this location the driving.

force for liquid flow, FPc/_x, will be zero. 'The capillary pressure at

any point in a porous bed will be affected by the saturation at that poin-

and also by the temperature. Thus, the capillary driving force will be

some function of the moisture gradient and the temperature gradient.

Since the temperature gradient in the central regions of the bed is not

very great it is a fairly good assumption that the plane of zero liquid
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flow will be close to the plane where the moisture gradient is zero--some-

where between x = 0.4 and x = 0.6 for the constant rate period.

Once the location of this plane has been established, all terms with

the exception of k are calculable from experimental data. Thus, according

to Equation (38) the apparent thermal conductivity can be estimated for

various drying times. It is found that at a particular drying time this

value is relatively independent of the precise location of the plane of

zero liquid flow. IThe location of the plane was therefore established at

the point where the moisture gradient is zero and k calculated for various

drying times in the constant rate period. These values correspond to a

definite saturation at x = xl, and so a relationship between apparent

thermal conductivity and saturation can be construed. This data is

blotted in Fig. 33. The previously calculated apparent thermal conductivit"

at zero saturation is included and the dotted section represents a very

arbitrary interpolation. The significance of this relationship will now

be considered.

Equation (36) has been introduced as a model to define conduction in

the fiber bed. The thermal conductivity of water is about 15.0 x 10'

cal./cm. sec. (°C./cm.). Using this value for k- and the previously

proposed numerical values for kF and k allows the conductivity of the

fiber bed as a function of moisture content to be determined. This relation-

ship is compared with the previously calculated apparent thermal conductivity

relationship in Fig. 34.

It is obvious that the calculated conductivity as defined by Equation

(36) cannot account for the apparent thermal conductivity calculated from

experimental data. This suggests the following possibilities:
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(1) Conduction contributes as little as 50% toward the over-all

heat transfer and hence convection and/or radiation must account for

the remainder.

(2) The physical model implied by the assumptions defining the

conductivity, k, does not correspond to what actually occurs in the fiber

bed. That is, the actual conductivity is greater than that calculated on

the basis of the defined model.

Although the physical model suggested for conduction in a porous

material can be severely criticized, it is difficult to accept that it

is so far from reality as to underestimate the actual conduction by a

factor of more than two. The consequences of assuming that the calculated

conduction is in fact a fair estimate of the actual conduction is, of

course, that the combination of radiation and convection must contribute

significantly to over-all heat transfer.

Finck (18) suggests that, for very loosely packed kapok, up to 15%

of the total heat transfer may occur by radiation. For the more closely

packed glass fiber bed with liquid water as well as water vapor present,

it is probable that radiation will contribute substantially less than this

to over-all heat transfer. It does not appear, therefore, that radiation

can account for much of the discrepancy between calculated conductivity and

the apparent thermal conductivity of the glass fiber bed. Therefore, the

existence of a significant convection heat transfer mechanism must be

seriously considered.

A number of consequences follow the acceptance of convection as an

important factor in determining the value of the apparent thermal conductivity.



First, the definition of heat flow as the product of an apparent :onduc-

tivity and a temperature gradient must be recognized as highly empirical

since convective heat transfer is not fundamentally associated with a

temperature gradient. Second, and possibly more important, no unique

relationship can be expected to exist between apparent thermal conductivity

and moisture content. Such factors as local evaporation or condensation

rate, direction and rate of liquid flow, etc., in addition to local satura-

tior might well affect convective heat transfer. In other words, nhe

apparent conduczivity will be affected not only by the degree cf licuid

saturation but also by factors which are associated with the actual rate

at which drying is effected.

In the light of these comments, it is necessary to reconsi-er the

significance of the apparent conductivity relationship shown in Fig. 55

and '. Th.e data points shown represent the apparent conductivity f:r

different saturations in essentially the same section of the bed (central

portion) during the constant rate period. Under these circumstances i

is possible that if we divide the factors which affect the apparen-t on-

ductivity into (1) saturation, and (2) nonsaturation factors, that the

nonsaturation factors are reasonably constant and that the relationship

shown does illustrate essentially a saturation-apparent conductivity

relationship. On this basis, it is of interest to note the general shape

of the extrapolated curve. It can be seen that at a saturation of 1.0

(void volume totally occupied by water) the apparent conductivity and

actual conductivity curves meet. This implies that convective heat trans-

fer under such conditions is nonexistent. Since there is no void space
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available, neither internal evaporation nor condensation can occur and

it is quite reasonable to suppose that convection will not be important.

As the saturation decreases, two opposing "saturation" factors can be

considered operative. First, the available space into which vapor can

be introduced increases thus potentially increasing the evaporation rate.

Second, the decreasing quantity of water available for evaporation poten-

tially reduces the evaporation rate. At a saturation level of about 0.15

the latter factor is apparently predominant and convective heat transfer

diminishes rapidly until for a dry fiber bed it becomes once more neglig-

ible.

This explanation for the curves of Fig. 34 does give a realistically

consistent picture of the general relationships that one might anticipate

between convection and conductive heat transfer in relation to saturation.

However, this does not mean that the relationship shown in Fig. 33 can be

used to evaluate k anywhere in the bed at any time from only a knowledge

of the local saturation. In fact, the only reasonable application of Fig.

33 is to evaluate k from a knowledge of the local saturation for the

central portion of the bed and only for the constant rate period of drying.

This can be illustrated by evaluating k according to Equation (38)

for the falling rate period of drying. It should be remembered, however,

that the experimental data used to make this calculation lacks the precisicr

obtained during the constant rate period. Table VII compares these values

of k with the predicted values according to the extrapolated curve of

Fig. 33, and with the calculated true conductivity values.
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Saturation

0.128

o.096

0.071

0.050

TABLE

COMPARISON OF VARIOUS

k from Falling
-Rate Period
.etermination,

cal./cm.2seM.(OC./cm.)
x 10

4.1

3.4

5.0

2.3

VII

CONDUCTIVITY VALUES

k Calculated
ka Estimated from Equation
from Fig. 35, (36)

cal./cm. 2 sec.("C./cm.) cal./cm.2sec.(°C./c/m.)
x 10 4 x 104

8.5 2.8

7.3 2.3

6.1 2.0

5.0 1.7

It is reasonable tc suppose that convective heat transfer will be more

important during the constant rate than the falling rate period since the

drying rate is significantly greater in the former. This view is supported

by the data presented in Table VII. This clearly illustrates the discon-

certirg and discouraging fact that the evaluation of the apparent conduc-

tivity at one point in the fiber bed and at one particular drying time 

of questionable value in predicting the apparent conductivity under any

other conditions or circumstances.

Brief consideration can now be given to the apparent thermal conduc-

tlvity relationship defined by Han and Ulianen and presented in Fig. 4.

The theoretical significance cf the apparent thermal conductivity implied

in the derivation by Han and Ulmanen has already been mentioned. It is

improbable in view of the previous discussion that convective heat transfer

is not significant in the pulp system. Hence, it must be inferred that the

shape of the curve obtained by Han and Ulmanen is a result not only of the

decrease in the moisture content but also of the decrease in drying rate
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which from their basic data demonstrably accompanies the decrease in

moisture content. In other words, the depicted relationship between

apparent thermal conductivity and moisture content is not unique and

cannot realistically be used to imply the existence of certain mechan-

istic phenomena.

The most satisfactory analysis of heat transfer that can be supplied

by the data of this study suggest that in the hot surface drying of a

glass fiber bed both conduction and convection contribute significantly

to over-all heat transfer. Radiation is probably not significant. The

convective heat transfer is the result of fluid movement associated with

the drying process and hence is some function of the rate at which drying

is proceeding.

Future investigation should consider the validity of the suggested

model for evaluating the conductivity of a porous material. A glass

fiber system in which the pore space is totally filled with a solid such

as wax would seem amenable to conductivity measurement and hence a test

of the suggested model. A verification of the importance of convective

heat transfer during hot surface drying by some direct experiment would

offer support for the analysis presented above.

EVAPORATION

During the constant rate period of the hot surface drying of a glass

fiber bed it has been shown that evaporation of water occurs (1) at the

hot surface 'interface, (2) internally from the zone of condensation, and

(3) at the air interface. It is possible on the basis of certain assumptions

to evaluate each of these quantities from the experimental data.
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The rate of evaporation from the air interface is given by the air

interface boundary equation (31). Its evaluation requires a knowledge of

the apparent conductivity, k , at the interface. It is assumed that for

the constant rate period the apparent conductivity at the air interface

can be determined from a knowledge of the local saturation according to

Fig' 3. The validity of such an assumption is dependent upon whether

conditions at the interface and in the central region of the bed are suf-

ficiently similar that convective heat transfer is essentially the same.

In order to complete the picture it is assumed that for the falling

rate period the data supplied in Table VII can be used as a valid estimate

of the apparent conductivity in this period. Here again this implies the

similarity of convective heat transfer at the air interface to that in the

central region of the bed.

On the basis of these assumptions the open surface evaporation rate,

( Soe)-_0, can be evaluated from Equation (31). The result of this

evaluation is presented in Fig. 35. The similarity between this curve

and the over-all drying rate curve is apparent.

The water vapor which is produced at the hot surface interface and

diffuses out of the zone of condensation can be evaluated from a material

and energy balance for the zone of condensation. The derivation of such

a material and energy balance yields Equation (39).

1.0

Q-f^^e -e eL
LL

(\L axy Lx \o)x=x2 =2x=
1.0 1.0 1.0

- eL LCL xt J d + L(l-e) dx + LePLCL dR (39)

x=x^ x-x2 x=x2
7 d7 + L-l~e)QFCF



-1232-

V,1x 1- oWKee/Mse)
'31Vb NOIIVtlOdVA3 3D)vjinlS N3dO

r.1

;42

D 0

2
7)

co (

0

"-4



-124-

where Q is the heat supplied from the hot surface according to Equation

(33); (S/ve9)x-=_ is the rate of change of total saturation resulting

from water vapor produced at the hot surface interface which diffuses from

the bed; 3s/He is the rate of change of local saturation; 2 represents

the location of the plane which separates the zone of condensation from

the zone of evaporation; and all other terms are as defined previously.

Two assumptions are necessary before Equation (39) can be used to

evaluate (S /_ e)~=x from experimental data. First, the location of
- -2

the plane 2 must be determined. It seems reasonable that the junction

between the zones of condensation and evaporation will occur somewhere

near the point where the moisture gradient begins to increase sharply.

From Fig. 25 this can be seen to occur in the region x = 0.7 to. = C.3.

The assumption is made that 2 = .'7. Second, it is necessary to make she

same assumption with regard to the estimation of k that was made in Drder

to evaluate the open surface evaporation rate; namely, that conditions at

x = 0.7 and in the central region of the bed are sufficiently similar

during the constant rate period that the data from the central region can

be considered to apply at 5 = 0.7.

On the basis of these assumptions, Equation (39) can be used to

evaluate (dS_/9)- - from the experimental data. The result is shown

graphically in Fig. 36.

The over-all drying rate (Fig. 24) represents the summation of the

data presented in Fig. 35, the data presented in Fig. 36 and the vapor

which is produced by evaporation from the zone of evaporation. By differ-

ence, then, the internal evaporation rate can be evaluated. This is presented
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as the rate of change of cumulative saturation due to internal evaporation

from the zone of evaporation in Fig. 37. The contributions of the various

components to the over-all drying rate are shown in Fig. 38.

In view of the assumptions involved in its construction, Fig. 38 can-

not be confirmed as an accurate quantitative picture of the relative

importance of the various contributors to the over-all drying rate. How-

ever, it is a good qualitative picture and illustrates the type of balance

one should expect in achieving a particular ever-ail drying rate.

In the constant rate period, it appears that roughly equal conrri'u-

tions are made (1) by water vapor which diffuses from the hot surface

interface through the zone of condensation, (2) by water vapor which is

produced by internal evaporation from the zone of evaporation, and (5) by

water produced by open surface evaporation. An increasing rate of dif-

fusion from the zone of condensation is offset by decreasing internal and

open surface evaporation rate to give the over-all drying effect measured

experimentally.. The constant rate period ends when liquid water disappears

from the hot surface and hence evaporation at the hot surface ceases. The

zone of evaporation broadens to eliminate the zone of condensation and,

therefore, the rate of internal evaporation increases sharply. In the

falling rate period, internal evaporation appears oc account for 70-30C

of the over-all drying rate.

It is now worth considering at least qualitatively on the basis of the

above analysis the manner in which evaporation and condensation occur

locally in the interior of the bed during the constant rate period. Condi-

tions at a drying time of 10 minutes are typical of the constant rate period

and so subsequent evaluation will be restricted to that drying time.
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The total contribution to the drying rate from internal evaporation

at 10 minutes drying time has been evaluated and is given in Fig. 37 as

-4 -1
0.63 x 10 sec. -

The total condensation rate is equal to the difference between the

evaporation rate at the hot surface interface and the rate at which vapor

diffuses from the zone of condensation. This latter value has been calcu-

lated and is recorded in Fig. 36 as C.81 x 10. The hot surface evapora-

tion rate can be evaluated according to hot surface interface boundary

equation (29). However, this evaluation requires a numerical definition

of the apparent thermal conductivity at the hot surface interface. To

assrum.e that the conditions near the hot surface interface are similar ct

those in the central region of the bed is obviously urtre. If one uses

a value of k obtained on the basis of such an assumption (i.e., from Fig.

33) one can estimate the hot surface evaporation rate, (S 2Ae)- i ', fr-m

Ecuation (29) to be 0.65 x 10 . This value is less than the cuantitv f

vapor which diffuses from the zone of condensation and therefore indicates

that the assumed value for k must be too large. The smallest value for

k that can logically be assumed is that to be expected for pure conduction

only. Using such a value for k obtained from the lower curve of Fig. 34

gives a hot surface evaporation rate of 1.92 x 1C . It follows therefore

that the probable value lies between this value and the diffusion rate from

the zone of condensation, 0.18 x 10- . Hence, the total condensation rate

-4
lies between zero and 1.11 x 10.

By way of interjection, it is of interest to note the possible implica-

tion of the above calculations that the influence of convective heat transfer
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on over-all heat transfer is less pronounced where condensation is occur-

ring than where evaporation is occurring.

From the above estimates and assuming that the transition point

between the zone of condensation and evaporation occurs at x = 0.7, any

number of curves can be drawn to represent the appropriate distribution

of internal condensation and evaporation. However, the most probable dis-

tribution is shown in Fig. 39. The following reasons are cited to support

this view.

(1) The maximum change in saturation in the zone of evaporation

-cccrs between the air interface and x = 0.2. It appears reasonable tz

attribute to this section the maxim'-_ evaporation rate. Since the avai2.-

able space increases continuously in this region the increase in evapora-

tion rate should be continuously increasing. The changes in saturation

between x 2 and x = 0.7 are not great. This suggests that the evapora-

tion rate '; ch near x = .7 must be small will not increase greatly over

this region. The area under the curve from x = 0.7 to x = 0 should be

0.'81 x 10-

(2) The maximum rate of change of saturation in the zone of condensa-

tion occurs between x = 0.7 and x = 0.8. It seems reasonable, therefore,

to attribute to this region the maximum change in condensation rate. in

the zone x = 0.8 to x = 1.0 two opposing factors would appear to be operative.

The quantity of vapor available for condensation is a maximum near x = 1.0.

Also the space available for vapor is a maximum. On this basis it would

seem that the condensation potential as far as space is concerned increases

in the direction away from the hot surface while the condensation potential
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in terms of availability of vapor decreases. The balance of these factors

should result in the type of curvature indicated. The area under the

curve from x = 0.7 to x = 1.0 should be less than 1.11 x 10 sec. 1

WATER VAPOR DIFJFSION

The analysis for the glass fiber bed indicates that during the constant

rate period of a hot surface drying operator. water vapor produced at The

hot surface interface diffuses through the zone of condensation to the

accompaniment of continual condensation and then through the zone of evap-

oration to the accompaniment of continual evaporation. It is of interest

to consider, therefore, the quantitative aspects of such diffusion.

*.he rate of water vapor diffusion is dependent upon the par-:ia

pressure gradient, the cross-sectional area available for diffusion, and

an emPirical diffusion coefficient. For unit geometric area this can ce

expressed as:

dW - D(l-s)e (40)

de L CL

where dW/d6 is the mass rate of diffusion of water vapor; D is an empirical

diffusion coefficient; (l-s)e is the fraction of the geometric area avail-

able to water vapor diffusion; and jp/c is the partial pressure gradien-.

In terms of the cumulative saturation concept used throughout this

thesis:

d^ ^asdW %eL w (1l)
7e = PLL - (41)

whence

-L D (42)
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where dS_/a6 is the water vapor diffusion rate expressed as a rate. change

of cumulative saturation.

'The rate of diffusion of water vapor across the boundary between the

zones of condensation and evaporation has been calculated according to

equation (39) and presented as (S /3e)-_ in Fig. 36. It is apparent

that at this particular location aS/3e must equal (S/e)-_- .

Ln the zone of condensation, water vapor saturation must be exceeded

for condensation to occur. I.Te assumption can, therefore, be made that

the partial pressure existing at any point in the zone of condensation

is the partial pressure required to saturate a- the existing local teper-

ature.

Hence:

AD aPs dt ' ,
_ ~ t =(_3)

where dp -/t is the rate of change of the saturation partial pressure =f

water vapor with temperature and can be calculated from the steam tables.

On the basis of the above assumption, the empirical diffusion coef-

ficient, D, can be evaluated from experimental data according to Equation

(-2) for the conditions existing at the boundary between condensation and

evaporation zones at various intervals during the constant rate period.

These values are presented in Table VIII.

The value of the diffusion coefficient can be seen to remain relatively

constant over the constant rate period for the conditions prevalent at the

boundary position. A diffusion coefficient is generally a strong function
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TABLE VIII

VALUES OF DIFFUSION COEFFICINT

Drying Time,
min. 

5

10

15

20

Average value

Diffusion Coefficient,
g./cm. sec.

1.30 x 10

1.29 x 10-4

1.29 x 10

1.15 x 10-l

1.26 x 10'

Df temerature. Since the temperature at the 'ourndary position ch-ange

crly slightly it is reasonable to expect this constancy.

Classical mass transfer (C2) gives the steady state diffusion of one

gas through a second stagnant gas as:

U C DP
v v o

" = FT (1- Rx

where U is the velocity of the diffusing gas; Pv is its density; M! is

its molecular weight; D is the molecular diffusion coefficient of the gas;
-v

P is the total pressure; R is the universal gas constant; T is the acsoluie

temperature; p is the partial'pressure of the gas; and p/jx_ is the partial

pressure gradient.

Reducing Equation (44) to a form analagous with Equation (42) gives:

w

c,)

Mv (l-s)D P

RTP%(l-p)L2 2
(45)

(';)
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Therefore, it is apparent that for water vapor:

18 D P
D = v (46)

RT(l-p)

An empirical correlation for the molecular diffusion of water vapor

in air attributed to Spalding (20) gives:

1.46 x i0 T/2

~v p TT + 441

where D is expressed as ft. /hr.; P is in atmospheres; and T is in °R.
-v-

This relation is used tC express the molecular diffusion coefficient, 3D,

as cm. /sec. as a functon of(°C.) in Fig. 40.

The temperature at the boundary between condensation and evaporation

zones is approximately constant for the constant rate period at 7COC.

Evaluating D for this temperature from Fig. 40 and substituting into

Equation (46) gives a measure of the empirical diffusion coefficienr in

terms of the assumed relation to molecular diffusion. This value is

,.12 x 10 g./cm. sec. compared with the average value of 1.26 x 10-

from -Table VIII.

Assuming for the moment that water vapor diffusion in a glass fiber

bed during drying is in fact molecular diffusion, it is to be expected that

the apparent molecular diffusion coefficient would be less than the normal

molecular diffusion coefficient by virtue of the fact that in a porous

bed the path of the diffusing vapor will be tortuous.

The tortuosity factor for liquid-saturated porous beds is generally

considered to have the value 1.41 (t4 ). Basing an evaluation on Parker's
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analysis cf tortucsity variations in partially saturated beds of glass

fibers gives values of tortuosity for beds of water saturation 0.5 to

0.9 as 3.7 to 2.7. Assuming the equivalence of tortuosity for liquid

and vapor paths at the same fluid saturation suggests a tortuosity factor

for the diffusing vapor under conditions at the boundary at about 3.2.

The apparent tortuosity factor obtained by comparing the true molecular

diffusion coefficient with the calculated empirical coefficient (5.12/1.26)

is 2.'.

This rather tenuous argument lends support to a conclusion that

water vapor diffusion within a glass fiber bed can be reasonably handled

by the laws governing molecular diffusion.

On the basis of this analysis cf water vapor diffusion and with the

help of the qualitative picture of distribution of local internal evapora-

tion giver in Fig. 39, it is possible to establish a qualitative picture

of the partial pressure gradient in the glass fiber bed.

The rate of diffusion of water vapor from the zone of condensation

is given by Fig. 36. From the cumulative area under the curve shown in

Fig. 39, the diffusion rate at any point can be reconstructed at 10 minutes

of drying. Using the diffusion coefficient concepts developed by the

above analysis allows the partial pressure gradient, Up/_K, to be evalu-

ated at any point according to Equation (42).

The curve shown in Fig. 41 describing the partial pressure as a func-

tion of x gives partial pressure gradients in agreement with the above

calculations and therefore is consistent with the general analysis established

to date.
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It will be seen that the partial pressure at the open surface of the

bed is substantially below the saturation partial pressure but signifi-

cantly above the partial pressure of the air stream. The partial pressure

in the fiber bed falls below the saturation partial pressure at the end

of the zone of condensation. Thereafter, the discrepancy between saturated

and actual partial pressure increases, increasing the driving force for

evaporation. The maximum increase in this driving force occurs after

= 0.2 and thus corresponds to the region of maximum evaporation as de-

fined by Fig. 39. The partial pressure at the surface remains suffciently

above the partial pressure in the air stream to yield a substantial partial

pressure gradient across the boundary layer to allow final diffusion from

the bed of the total vapor produced.

Future investigation of water vapor diffusion during drying could

study the steady state diffusion rate through dry porous beds as well as

porous beds partially saturated with a water-immiscibce liquid. hnis

should allow a more comprehensive analysis of the factors -such as tortuosity

which presumably affect the diffusion rate and how they are affected by the

degree of liquid saturation of the bed.

LIQUID WATER FLOW

The flow of liquid water during the hot surface drying operation 's

in response -o a capillary pressure gradient. The definition of liquid flow

requires the elucidation of this driving force together with the resistance

to flow. In the development of Equation (28) these two flow-defining fac-

tors were introduced through the d'Arcy equation and appear as the capillary

driving force, cP /SE, and the unsaturated permeability, K .-- '-c



The capillary pressure of a liquid existing in a porous system at

equilibrium is dependent upon (1) the effective pore radius, (2) the

surface tension of the liquid, and (3) the temperature of the system.

(1) The capillary pressure of a liquid in a porous bed as a function

of the degree of liquid saturation of the bed gives an empirical measure

of the effective pore size. Such a capillary pressure-saturation relation-

ship under equilibrium conditions has been assessed for the glass fiber bed

and is presented inr Fig. 42. This data can be transformed into a cumulative

effective pore-size distribution function according to Equation (k). This

transformation is shown in Fig. 45. This relationship defines the radius

of urvature at capillary equilibrium of all water-air interfaces present

in the glass fiber system at any particular degree of water saturation.

The local degree of water saturation at any point in the glass fiber bed

as any drying time has been evaluated experimentally. The assumption an

be arbitrarily made that the curvature of the Iccal air-water interfaces

urder the nonequilibrium conditions existing within the fiber bed during

the drying operation is the same as for equilibrium conditions at the same

saturation. By this assumption the effective pore radius at any point in

the fiber bed at any drying time can be assessed from a knowledge of the

local saturation by consulting Fig. 43.

(2) The surface tension of a liquid is a strong function cf tempera-

ture. Since the temperature in the glass fiber bed during drying varies

i is apparent that the surface tension will also vary. Hence, the point-

to-point variation in capillary pressure will not only be a function of

local saturation but also of the local surface tension.
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CAPILLARY PRESSURE,

Figure 42. Capillary Pressure Curve
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(3) Over the temperature range which is being considered in relation

to the drying of the glass fiber bed it is a good assumption that the

primary effect of the temperature on capillary pressure is a result of

its influence on surface tension. In other words, the capillary pressure

will be the same function of temperature as is surface tension.

On the basis of this preamble it is reasonable to accept that the

capillary'pressure is a function of saturation and temperature only; i.e.,

P = f(s,t). From this it follows that:

Ac is t a a 

According to the assumptions of the above analysis, 6P /os can be

evaluated from Fig. 42; 3P /t_ can be evaluated from a knowledge of the

variation of surface tension with temperature obtainable from any handbook;

and the other factors can be evaluated from the experimental data. .ence,

the capillary driving force can be evaluated at any drying time for any

point in the glass fiber bed.

A similar analysis allows an estimate of the value of the permeability,

K , to be made using concepts developed by Parker (15). In his work,

Parker studied the equilibrium water permeability of glass fiber beds as

a function of the degree of water saturation of the fiber bed. A necessary

assumption in applying his concepts to a drying study is that the point

permeability in the glass fiber bed during drying is the same as the

equilibrium permeability for the bed at the same saturation.

Parker derived and demonstrated the utility of the following relation-

ship:
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K k T2 C2 JAn2 ds
K - (49)
r K k TC2 (2( ds

oc . c c rm

where K is the relative permeability, K is the unsaturated permeability,
-r --2

K is the saturated permeability, the term k TC2 represents shape and

tortuosity characteristics of a saturated bed, the term k T2C represents
-oc--c c

these characteristics of an unsaturated bed, and m is the effective cumula-

tive pore size at saturation s.

Parker shcwe. -hat at least as a first approximation, the ratio

k T2^C/k TC 2 is independent of fiber diameter; that is, glass fiber beds
-o- - -oc -c-

of different average fiber diameter gave the same value for this ratio.

Hence, this value should also apply to the glass fiber beds used in the

drying study.

The saturated permeability of the glass fibers of this study was

measured as a function of porosity. This data is show.n in Fig. 44. From

this curve, the saturated permeability, K, at the porosity value of the beds

used in the drying study is obtained.

The effective pore size distribution function, m, obtained from

-api-llary pressure measurements has been presented in Fig. 43. Using

2
the data represented by this figure, m can be plotted against s and the

erm . m_2 _ds and / m ds evaluated from the area beneath this curve.

Hence, using Parker's data to evaluate Ca/k ocC and evaluating

the other terms experimentally, K can be calculated as a function of

saturation. This relationship is shown in Fig. 45. Hence, according to
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this analysis a knowledge of the local saturation in the glass fiber bed

at any point and drying time allows the evaluation of the unsaturated

permeability at that point and drying time.

We are now in a position to test the validity of the assumptions

used to define the capillary driving force and permeability which in turn

define liquid flow during drying. Boundary equation (32) defines the

rate at which liquid water flows to the air interface. Using this equa-

tion together with Equation (48) to define _Pc/i-, and Fig. 45 to define

K allows the calculation of the open surface evaporation rate, (ow./oJ) =.

This value can be compared with that calculated from heat transfer consider-

ations defined by Equation (5-). This comparison is made in Table -X.

Drying Time,
min.

5

10

15

20

TABLE IX

COMPARISON OF RATE DATA

(Ls_ e)_=0 According (as/v e) o According

to: Heat Transfer to Liquid Flow
Considerationrs, Considerations,

sec.- x 10" sec.-l x 10

0.70 157

0.70 137

0.66 72

0.59. 50

Assuming that the surface evaporation rate defined by heat transfer

considerations is reasonable, it is apparent that the estimate according

to the assumptions involved in defining liquid flow is one to two hundred

times too high. Since the temperature effect turns out to be negligible

in terms of the saturation effect as far as capillary pressure is concerned,

Ratio

224

196

110

85



it is evident that this discrepancy must be attributed to the factor

(cP /os)(sx )Kc. The moisture gradient cannot be expected to account

for any significant portion of this error and so the product K cP /as

must be considered responsible.

Since the two factors have been evaluated according to equilibrium

concepts it must be concluded that the dynamic conditions existing in the

fiber bed during drying introduce additional considerations which signifi-

cantly affect these factors. More specifically, either both or one of

these two factors is significantly smaller for the unsteady state condi-

tions prevalent during drying than would be the case at capillary equil-

ibrium.

Considering these factors separately it is somewhat difficult to

cc..ceive that the liquid permeability, K , would be substantially less

at a given saturation for unsteady state relative to steady state zondi-

tions. However, the capillary-pressure saturation relationship will

depend on the effective radius of curvature of air-water interfaces .

is readily conceived that in addition to being a function of the pore

structure of the porous media, this curvature will also be some function

of the local evaporation or condensation rate, liquid-flow rate, etc.

Hence, it seems most probable that the discrepancy noted is primarily due

to the improper assumption that the equilibrium capillary pressure-satura-

tion relationship remains valid under unsteady state conditions.

The results of this analysis of liquid flow during the drying of a

glass fiber bed suggest a number of interesting experimental approaches

to a further elucidation of this phenomenon. A study of the effect of
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steady state evaporation or condensation on the radius of curvature of

the air-water interface in actual capillary tubes of varying size would

be of significance. Also, studies of unsteady state unsaturated permea-

bility in glass fiber systems, and of steady state unsaturated permeability

in the presence of steady state evaporation or condensation would also

contribute manifestly to a further elucidation of liquid flow during dry-

ing for a model system.
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SUMMARY AND CONCLUSION

The hot surface drying operation has previously been investigated

with regard to the effect of boundary conditions such as hot surface

temperature or air stream conditions upon the over-all drying rate. These

studies have resulted in empirical observation and the classification of

the drying cycle into the constant rate and falling rate periods. Various

hypotheses have been advanced to explain local observations.

A more penetrating study by Dreshfield of the hot surface drying cf

pulp beds elucidated the moisture distribution and demonstrated the exis-

tence of a plane of evaporation at the hot surface interface. These

results were supported by a similar study conducted by Ulmaren. These

two studies indicated the need for a basic investigation of internal heaz

and mass transfer during the hot surface drying of a porous material.

This investigation was designed with the aim of adding to the understanding

of hot surface drying through a study of these transfer processes.

A glass fiber system was selected for study because of its following

ideal properties:

1) During drying no changes occur in the internal geometry.of the

fiber bed (in distinction to pulp beds where shrinkage occurs).

2) All water in the bed is simply capillary-held and hence free to

flow (in distinction to pulp beds where chemically bound water and water

trapped within the fiber lumen are also present).

The experimental method developed byDreshfield was used with minor

but improving modifications to obtain a measure of the hot surface drying

rate and moisture distribution for the glass fiber system.
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Fine-wire thermocouples were employed to secure a measure of the

temperature distribution within the glass fiber system during hot surface

drying.

Capillary pressure measurements were made according to the method

adopted by Parker, to evaluate the internal pore structure of the glass

fiber bed.

A high precision of measurement was obtained for the hot surface

drying characteristics of any one particular glass fiber bed. However,

a between-bed variation in measurement was detected which could not be

eliminated. This was attributed to variation in the quantity and distri-

bution of fine material in different glass fiber beds. This variation

was found to have no effect on the results for the constant rate period

but had an accumulating effect upon the later drying period. A rational

adjustment of the data was made to correct for this variation in the later

drying period in order to allow a reasonable qualitative picture to be

presented. Primary analysis of data was restricted to the constant rate

period where measurement was quite precise.

A mathematical description of heat and mass transfer during the hot

surface drying of a glass fiber bed was derived. These derivations resulted

in boundary equations to account for mass and energy interchanges at the

hot surface and air interfaces, and a generalized differential equation

to apply to any internal point in the fiber bed.

Hot surface interface boundaries equations:
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Q=m t a 
L ax-/ l.0 L x=1.0

Kc PL x)=1.0 i .= ePLa- -\ a 9/F=I.O

Air interface boundary equations:

\,L axj=c

Kc L (bP

LH± \Vx yx=O

= X.e-L L
~~~Z 

= eLL=OL asL -=o

Generalized differential equation:

3e L2 a 2

°LC LK it dP6L t c t +." -- ' -- .-- 1-e)o~C + eso- '7

IL2 ? 2F 60 - F LlL ~c' ' j ~
~

An examination of the experimental data in relation to the mathe-

matical model supports the concept of the existence during the constan:

rate period of a zone of condensation within the fiber bed adjacent to the

hot surface, and a zone of evaporation near the open or air interface.

The description of drying which is most consistent with this concept is

that water which evaporates at the hot surface interface diffuses back

through the bed under the influence of the partial pressure gradient. In

the zone of condensation the diffusion is accompanied by continual conden-

sation. However, at some point in the fiber bed the partial pressure falls

below that required to saturate the available pore space and at all'

+ XeP L -)
aL 0 =l. O



subsequent positions to the air interface the diffusing vapor is supple-

mented by internal evaporation.

The over-all drying rate is thus the result of evaporation of water

from three sources; viz. (1) water which evaporates at the hot surface

interface and diffuses back through the zone of condensation, (2) water

which evaporates internally from the zone of evaporation, and (3) water

which evaporates from the air interface.

The falling rate period for the glass fiber bed commences when licuid

water disappears from the hot surface interface. Evaporation at the inter-

face therefore ceases and the zone of evaporation expands to eliminate the

zone of condensation. Thereafter, the over-all drying rate is the result

of internal evaporation and open surface evaporation.

A consideration of the experimental evidence of this study together

with that from the very similar study with pulp beds by Ulmanen on the

basis of the above picture of the hot surface drying operation allows the

following general conclusions.

I) The apparent constancy of the drying rate during the constant

rate period of a hot surface drying operation can be attributed to a

compensating balance between surface evaporation and water vapor diffusion

from the interior of the bed.

2) The constant rate period is not necessarily characterized by any

particular drying mechanism for all porous materials, nor is it necessarily

distinguished from the falling rate period by a significant change in

mechanism.

-1 53r



3) The over-all drying rate of a porous material is a function of

the interrelated internal heat and mass transfer processes. The concept

of rate controlling mechanism is therefore misleading when applied to the

hot surface drying operation.

4) The interrelated internal heat and mass transfer processes of the

hot surface drying operation are affected by the boundary conditions of

drying and by the physical and chemical characteristics of the particular

porous material.

5) The importance of the effect of internal structure upcon hot sur-

face drying phenomena is illustrated by a comparison of the significant

differences between the drying characteristics of a glass fiber and a pulp

bed. These can be attributed solely to the differences in internal pcre

structure and chemical nature between the two systems.

A quantitative treatment of the drying data for the glass fiber bed

was introduced in order to obtain some idea of the significance of the

various factors which affect heat, vapor, and liquid flow.

Heat transfer was analyzed by an evaluation of dry and wet bed apparent

thermal conductivity according to derived material and energy balance

equations for different regions of the fiber bed. Several conclusions

evolve from the subsequent analysis.

1) It is possible that pure conduction can account for the heat

transfer in the dry fiber bed.

2) It is improbable that pure conduction can account for the heat

transfer in the partially saturated fiber bed.

3) It is unlikely that radiation is of any significance to heat

transfer in the glass fiber bed.
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4) It is highly probable that convection contributes significantly

to heat transfer in the partially saturated fiber bed. Convective heat

transfer appears to be some function of the local fluid movement includ-

ing local evaporation and condensation. It is possible that local evapora-

tion contributes more significantly to convective heat transfer than does

local condensation.

A quantitative evaluation was made of evaporation which occurs at

the hot surface interface, internally in the fiber bed, and from the air

interface. On the basis cf certain assumptions it was found that:

1) For a glass fiber bed during the constant rate period approxi-

mately equal contributions are made to the over-all drying rate by water

vapor produced (a) by evaporation at the hot surface interface, (b) by

internal evaporation, and (c) by evaporation from the air interface.

2) In the falling rate period internal evaporation accounts for

70-0%o. of the over-all drying rate; evaporation from the air interface

accounts for the remainder.

Water vapor diffusion was investigated quantitatively through an

evaluation of diffusion coefficients which govern the diffusion of water

vapor from the zone of condensation. The calculated coefficients were

compared with values predicted according to reported empirical studies of

molecular diffusion of water vapor through air. It was concluded that

discrepancies between calculated and predicted diffusion coefficients

could be accounted for by a tortuosity factor such as is commonly associated

with fluid flow through materials.



Liquid flow during drying was quantitatively investigated by an

evaluation of the capillary driving force and the unsaturated pernea-

bility according to existing equilibrium concepts. The introduction of

such an evaluation into the equation describing liquid flow to the air

interface gave a flow rate a hundred times greater than could possibly

be expected. From this it was concluded that:

1) Equilibrium concepts cannot be used to adequately define capil-

lary driving force and permeability during 'the unsteady sta-e conditions

existing during drying.

2) It is probable that the major discrepancy is associated with the

evaluation of the capillary pressure gradient according to equilibrium

capillary pressure-saturation measurements.



SIGNIFICANCE OF THIS STUDY AND THOUGHTS

FOR FUTURE WORK

This investigation represents the first published study which has

been able to analyze the internal heat and mass transfer phenomena

associated with a hot surface drying operation to any satisfactory extent.

The result has been a significant clarification of hot surface drying as a

chemical engineering process. The importance of internal heat and mass

transfer as the heart of the drying operation has been emphasized. in

addition, a consistent mathematical interpretation has been introduced

which should give impetus to more detailed studies of the drying pher.mencr.

Finally, the significance of internal pore structure as an important dryir.g

variable has been demonstrated.

Specific research work to clarify heat transfer, liquid flow, and

vapor diffusion in a porous material has already been suggested. In

addition, empirical drying studies similar to this one, using different

ideal and nonideal systems would contribute information of great value

in extending the 'concepts suggested by this study to apply to the paper

system. In particular, a detailed study of an ideal porous system in

which experimental perfection would allow a precise definition of all

stages of drying (in distinction to this study where experimental error

was encountered for measurements during the falling rate period) would be

a significant contribution.

In view of the results of this thesis, the air drying operation should

be re-examined with a view to clarifying existing concepts of "constant

drying rate" and "surface evaporation" as expressed in the comprehensive

work of Higgins (1).
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The general aim of all such research work is to reduce the drying

operation to a well-documented phenomenon. It should then be possible

to establish experimentally one or two parameters for a particular

material (a particular pulp) which could be substituted into empirical

relationships to predict drying time under any boundary conditions.
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NOMENCLATURE

Fraction of the cross-sectional area occupied by fiber, dimension-
- less.

Fraction of the cross-sectional area occupied by the gaseous mixture
- of air and water vapor, dimensionless.

Fraction of the cross-sectional area occupied by liquid water,
- dimensionless.

CF Specific heat of fiber, cal./gl°C.

C. Specific heat of liquid water, cal./g.°C.
-L-

D Empirical diffusion coefficient, g./sec.

D Molecular diffusion coefficient, cm. /cm. sec.
--v

e Porosity, dimensionless.

hL Heat content (enthalpy) of liquid water, cal./g.

h Heat content of water vapor, cal./g.

k Actual conductivity of glass fiber bed, cal./cm. sec. (°C./cm.).

2
k Apparent thermal conductivity of glass fiber bed, cal./cm. sec. (s'./ ... . ,.

k, Actual conductivity of glass fibers, cal./cm. sec. (°C./cm.).

kL Actual conductivity of liquid water, cal./cm. sec. (0C./cm.).
--L

k Actual conductivity of mixture air/water vapor, cal./cm.2 sec. (0C./cm.).
~V

K Liquid permeability of fiber bed at complete water saturation, cm. .

K Liquid permeability of partially saturated glass fiber beds, cm. 2

Kr Relative permeability, K /K, dimensionless.

L Thickness of fiber bed, cm.

m Hydraulic radius, cm.

M Mass of liquid water, g./cm.2 .

P Total pressure, dynes/cm.2.

P Capillary pressure, dynes/cm. 2 .

-c
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, Partial pressure of water vapor, dimensionless.

p Saturation partial pressure of water vapor, dimensionless.

Q Heat flow, cal./cm.2 sec.

c Quantity of heat, cal./cm.2

R Universal gas constant.

r Radius of equivalent circular capillary, cm.

r!,2 Principal radii of curvature of a surface, cm.

S Total saturation (referring to liquid water), dimensionless.

S Total saturation (referring to water vapor), iLmensic-ness.

s Local saturation (referring to liquid water), dimensionless.

s Local saturation (referring to water vapor), dimensionless.

T Temperature, °K.

t Temperature,. °C.

u Velocity of diffusing vapor, cm./sec.

rW Mass of water vapor, g./am.2

x Distance from open face to any position in fiber bed, cm.

x Fraction of the distance from the open to the hot surface, dimension-
less.

y Surface tension, dynes/cm.

x Latent heat of vaporization of water, cal./g.

0- Contact angle between liquid and solid phase, degrees.

e Tire, sec.

p- Density of glass fibers, g./cm. 3.

PL Density of liquid water, g./cm.3 .

v Density of water vapor, g./cm.3 .

A1 Viscosity, poise.
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APPENDIX I

PREPARATION OF THERMOCOUPLES

The thermocouple is made by silver soldering 0.002-inch diameter

Hoskins chrome and alumel thermocouple wires to form a junction. The

soldering technique is essentially the one reported by Higgins (1) and

is represented in Fig. 46. Thermocoupie wires (A) are clamped between

(C) (E) 1

clothes pegs (B) mounted on Frame (C). A double twist is made to form

a junction (D). A bead of silver solder (E) supported on an insulated

copper bar (F) is heated to melting by a hot oxygen-gas flame (G). The

thermocouple junction is treated with a special flux and then dipped inzo

the bead of liquid solder by manipulating frame (C). A very fine soldered

joint can be obtained with practice and is desired in order to obtain rapid

temperature response. The short lengths of wire above the junction are

cut away leaving the lead wires joined at the junction.
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APPENDIX II

PREPARATION OF RADIOACTIVE SOURCE

In this study, two radioactive isotopes were used, strontium90 and

204
thallium . The strontium isotope being more energetic than the thallium

was used for basis weight measurements beyond the range of thallium. For

the lower basis weight measurements thallium2 0 was substituted in order

to obtain better precision.

To be utilized, these isotopes must be incorporated into a source

fulfilling two major requirements. The source must irmmobilize e he radi-

active isotope so that it can be located at a particular position wi-hin

the test bed and remain fixed in that position throughout a series ;f d-

ing runs. Second, the source itself must be of such configuration or

dimensions thar its physical presence in the test bed does not -easu'rabyl

affect the drying characteristics of she bed.

The method of source preparation utilized by Dreshfield (2) and by

ULmanen (12) was found to have several disadvantages. Chief among these

was the fact that the radioactive isotope was not completely immobilized.

A certain amount of leaching of the isotope invariably occurred during any

drying run.

An alternative method of source preparation, intriguing because of

its simplicity, was suggested by Mr. Dickey of the staff of The Institute

of Paper Chemistry. This idea consisted of trapping radioactive material

in glass and spinning the glass into fibers. The isotope encased by glass

should be effectively immobilized while the presence of a few of these



fibers, albeit of larger diameter, in the test bed should not alter its

drying characteristics. A minimum of development work soon established

the validity of these assumptions and radioactive glass fiber sources

were prepared accordingly. A detailed description of the method of

preparing these fibers is presented below.

One end of a piece of 5-mn. soft glass tubing (about four inches

long) is sealed using black construction glass. (The reason for using

colored glass is to allow for the production of darker fibers which can

be readily distinguished from the white fibers of the bed.) This sealed

end is blown cut to a bulb configuration with a diameter about twice hat

of the tube itself. The vessel then resembles a thin test tube with a

black blister at the closed end.

Radioactive strontim 9 0 (or thallium 4 ) is added from stcck solution

by m.icropipet to the prepared vessel. The equivalent of about 200 micro-

uries (mc. ) of stronti-um9 or 600 mc. of thallium2 0 ' are thus transferred.

The next step is to precipitate this radioactive material. Stront-um..

sulfate and thallium sulfide are insoluble in water. Therefore, dilute

sulfuric acid and a solution of ammonium sulfide are utilized as precipi-

tants. Small amounts of these solutions are added to the radioactive

solutions already contained in their respective vessels. The precipitates

so formed are centrifuged into the bulb at the bottom of the vessel. A

radioactive count indicated that the major part of the activity, which

prior to centrifuging had been found uniformly along the length of the

vessel, was now concentrated in the bulb. The supernatant liquid is removed

from the vessel, and the moist precipitate at the bottom of the vessel is

dried at a low temperature (50°C.) for twelve hours or so.



The bulb at the bottom end of the vessel is collapsed by flame heating,

thus trapping the precipitate in the glass. Filaments are then pulled out

from the bulb end and tested for radioactivity. Sections of the filament

which give a substantial radioactive count are broken into fibers about one

inch long and stored for use.

This method readily produced a supply of radioactive fibers containing

either strontiu 9 or thallium . These were and can be used, recovered,

and re-used for a period of time limited only by the decay rate of r.e

radioactive material. The strontium source can be used for a century while

he thallium source probably has an effective lifetime of about two to

three years.
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APPENDIX III

DENSITY MEASUREMENTS

The standard pycnometric density determination is too well known to

warrant a description. However, when this technique is applied to the

density measurement of fibers, a unique problem arises. Significant amounts

of air are trapped or adsorbed by the fiber network. This contributes

significantly to the volume of water that is displaced from the pycncmeter.

Therefore, the density value obtained is less than the true density. To

avoid this defect the follcwing procedure was developed.

A one-graem sample of glass fibers is deposited in a suction f las with

boiling water and placed under a vacuum. This is the first deaeratior. treat-

..ent. After the slurry has cooled to room temperature, the fibers are trans-

ferred in a saturated condition to a pycnometer in a vacuum desiccator.

Boiling water is poured into the pycnometer and desiccator until the pycrn-

meter is completely submerged. The system is placed under a vacuum and the

second deaeration treatment begins. When the water has cooled to the des- re

temperature, the'pycnometer is stoppered, removed, dried, and weighed. The

slurry contained in the pycnometer is filtered through a tared filter

crucible, thus collecting the fiber sample. After drying, the weight of

sample can be accurately determined.

This procedure as an adjunct to the normal pycnometric technique allo

the density of the fibers to be accurately ascertained.



APPENDIX IV

LOCATION OF BASIC DATA

Data collected during the experimental stages of this thesis were

recorded in The Institute of Paper Chemistry Note Book Nos. 1751 and

1825. This appendix locates in detail the primary data utilized for

the analysis of this thesis report.

ITEM

Caiibr-aion of uniform bore tube of capillary
pressure apparatus

Calibration of fine-wire thermocouple

Beta gage "gain" and 'voltage' settings

Average fiber diameter

Basic calibration, drying, and temperature data:
D-124 to D-136

Capillary pressure data:P105, P106

Capillary pressure study:plate calibration

Pycnometric density cf glass fiber

Notebook Pages

1751

1751

1751

1751

1825

1825

1825I-- 2. 5, 

*,-

109- 129

130-131

130

132-1355

I

C-


