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SUMMARY

The knowledge and value gained from collecting data and being able to monitor

vehicles’ performance, safety, reliability, etc. have resulted in a sharp increase in the

number of sensors being installed on modern aerospace vehicles. Sensor installations,

which are commonly performed manually, lead to increased risk for installation er-

rors and quality issues. These disruptions, in turn, contribute to the program cost

overruns, increased schedule risk, and production delays seen throughout the indus-

try. As such, reducing the risk and impact of manual installation tasks on aerospace

production flows is becoming increasingly important for such highly schedule- and

cost-constrained vehicles.

Robust scheduling methodologies, which aim to build schedules with reduced risk

of cost or time overruns by minimizing the impact of disruptions, have the poten-

tial to meet the requirements of these scheduling problems. Despite the benefit to

be gained by implementing robust, detailed project scheduling methodologies, tra-

ditional, deterministic strategies still tend to dominate the industry. Two research

challenges must be overcome to support the implementation of such robust scheduling

techniques in an industrial setting: First, the project scheduling methodologies in use

today struggle to model and optimize real-world systems. The increasing complexity

of modern aerospace vehicles is only going to exacerbate these difficulties. Second, the

transition of new planning and scheduling practices from academia to an industrial

setting is commonly challenging. Moreover, this transition is not generally discussed

alongside the development of new methods.
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To address these challenges, this dissertation focuses on the development, im-

plementation, and evaluation of a new planning methodology, named PORRTSS:

Production Optimization to Reduce Risk Through Simulation-based Scheduling. A

representative case study is used to test the methodology’s capability to model a real

production environment and search for improved scheduling options. The case study

involves planning sensor installation processes within a provided production schedule

to reduce the risk of production delays. Traditional scheduling techniques provide a

strong framework to plan and optimize, at a medium level of detail, the completion

of primary production processes (e.g. structural assembly, system integration, etc.).

However, fully defining the interactions and logic required to evaluate the impact re-

sulting from the sensor installations in this scheduling framework is challenging. The

discrete-event simulation paradigm simplifies the definition of these production rules

and constraints; however, DES models commonly require too much detail, modeling

effort, and optimization time/resources to be useful during pre-production planning.

The developed methodology addresses this gap by integrating the process optimiza-

tion strengths of scheduling with the modeling flexibility of simulation. This enables

the fast generation of a limited fidelity simulation that can evaluate the impact of

sensor installations to support simulation-based schedule optimization.

Even with an optimization framework in place, the deployment of scheduling

methodologies developed in academia to an industrial setting remains challenging.

A primary barrier that limits the implementation of developed scheduling practices

is poor interactions between the system and the human planners. The developed

methodology works to overcome these challenges by: 1) increasing the transparency

of the planning process, 2) improving collaboration among the stakeholders, and

3) enabling the stakeholders to directly modify the sensor installation plan. Increased

transparency and improved collaboration is achieved by developing a decision-support

xxi



tool that provides both system- and detailed-level views of the planning results. Fi-

nally, this research does not claim to provide the answer, but instead, recognizes that

there may be additional “soft” constraints. As such, it also provides planners with

the capability to make manual modifications to the optimized production plans. This

ultimately leads to a more implementable and beneficial planning methodology when

compared to the many rigid methods developed in academia.

The PORRTSS methodology begins by identifying process constraints contained

within a provided medium-level production plan. This schedule is accepted as truth,

and the identified process constraints are utilized to automatically generate a baseline

discrete-event simulation. The DES model contains process logic to control sensor

installation processes, and using this logic, the simulation can estimate the impact of

a parametrically defined sensor installation plan.

With a parametric model in place, a multi-objective, meta-heuristic optimization

algorithm (Non-dominated Sorting Genetic Algorithm-II) is linked to the simulation.

The optimizer sets the locations within the primary production plan during which

each sensor is installed. The flexible nature of the optimization routine enables the

inclusion of a variety of objective functions, including process time and heuristic risk

metrics. Once convergence is achieved, the resulting non-dominated points are fed

into a data analysis and decision support environment.

The decision making system is included to support the implementation of the

methodology. An initial system-level view and ranking algorithm enable SMEs to

quickly identify points of interest. These can then be compared in more detail to

identify similarities and differences between the selected plans. A detailed Gantt

chart is also utilized to improve transparency and help understand the reasons for

potential problems. Finally, the user is able to make manual modifications to a

selected plan to include any additional knowledge or understanding.

xxii



With the PORRTSS methodology in place, the following experiments are per-

formed to test its ability to overcome the aforementioned research challenges. Fo-

cusing on the first research challenge, the difficulty in modeling and optimizing the

systems of interest, the appropriateness of the simulation logic and model generation

strategy is tested. This is accomplished by generating a model from a schedule for a

major subassembly of a “real-world” aerospace vehicle. The simulation is shown to

appropriately match the baseline schedule and estimate the impact of parametrically

defined sensor installations. The appropriateness of the optimization integration is

then tested by linking the NSGA-II to the simulation model. An initial experiment

conducted with deterministic simulation evaluations is shown to improve the objec-

tives of interest in a short time, which demonstrates that the optimization strategy is

effective for the problem of interest. This experiment is then expanded to investigate

the impact of directly evaluating the risk in a schedule. This is accomplished by al-

lowing for uncertainty in the simulation and running multiple replication per case to

estimate the output distribution of the process time. The optimization is then seeded

with generation 500 from the deterministic run and evaluated with this additional in-

formation. When comparing the optimization runs with and without the robustness

information, the optimization considering robustness is shown to make immediate im-

provements to the population, especially in the process time risk. While this indicates

that the additional information is effectively utilized by the optimization routine, a

significant number of further runs are needed to make a generalized conclusion. De-

spite this, these experiments demonstrate that the developed methodology is able to

effectively model and efficiently optimize the sensor installation plan.

To address the second research challenge, strategies to improve the “implementabil-

ity” of the developed methodology are investigated. To test the scalability of the
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methodology, the modeling and optimization strategy are applied to a range of prob-

lem sizes and complexities. The results demonstrate that the methodology is capa-

ble of handling models representative of the largest size expected to be seen in an

industrial setting. Alternative, point-solution optimization algorithms are also inves-

tigated to attempt to improve the optimization’s speed. These are shown to perform

adequately when optimizing the deterministic model; however, when considering the

stochastic model, their performance does not appear to leverage the schedule risk eval-

uations provided. Therefore, it cannot be shown that the point-solution algorithms

expand the applicability of the methodology.

A final experiment is conducted to investigate whether the decision-making en-

vironment increases the acceptance and deployability of the methodology. Results

generated by the NSGA-II for a real-world planning problem are propagated to the

decision-making tool. This tool and results are then provided to the industrial en-

gineers, manufacturing engineers, and avionics experts to down-select to a final plan

for execution. Following this exercise, the SMEs confirmed the feasibility of the pro-

vided plans and leveraged the decision-making system to down-select and compare

scenarios of interest. Overall, the real-world implementation demonstrates that the

inclusion of the decision-support environment increased transparency and acceptance

of the methodology.

From these results, the PORRTSS methodology is shown to overcome the two

identified research challenges. The modeling and optimization strategy enables the

automatic generation and evaluation of feasible alternative installation plans. The

inclusion of heuristic robustness metrics and process time risk enables the identifica-

tion of more robust installation plans. Then, the transparency and freedom provided

by the decision-support system is shown to increase the approachability and deploy-

ability of the methodology. Ultimately, this methodology enables the replacement of
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a manual planning process with one that can better estimate and reduce the system-

level impact of small installation steps, which can be large contributors to the time

to complete a schedule.
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CHAPTER I

INTRODUCTION

Aerospace systems of the late 1990s and 21st century have seen a sharp increase in

complexity (as seen in Figure 1) compared to the programs of the Cold War era [204].

As an example, the F-35 has 3 to 8 times the operational capability of an F-16.

However, to achieve such increased capabilities requires 130 subsystems with 90% of

its functions managed by software. This is in contrast to the 15 subsystems with

40% software managed functions on the F-16 [21]. As seen in Figure 2, the increase

in complexity has been accompanied by considerable cost overruns [11, 21, 204] and

schedule delays for many major programs executed during this century, including the

F-35 Joint Strike Fighter [143], Boeing 787, and Airbus 380 [133].

Despite the implementation of methodologies such as Product Lifecycle Manage-

ment (PLM) [168], Integrated Product and Process Development (IPPD), and the
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Figure 1: Complexity of Aerospace Systems (as Measured by Source Lines of Code) [5]
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Figure 2: Total Cost Overruns for Major US Department of Defense Aerospace Pro-
grams Since 1993. Reproduced from [35].
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Figure 3: Total Cost Overruns for Major US Department of Defense Aerospace Pro-
grams Attributable to Technical Complexity. Reproduced from [35].
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Lean Aircraft Initiative (LAI) [184], which were developed to control costs of increas-

ingly complex systems [2], the average percent overrun attributable to complexity

for the U.S. Department of Defense (DoD) portfolio has grown steadily in the last 2

decades. As seen in Figure 3, complexity has accounted for an increasing percentage

of cost overruns since 1997. By 2007, complexity had accounted for approximately

1/3 of the observed cost overruns in the portfolio [35]. In addition, the average delay

to delivery of initial operating capabilities past the baseline for DoD programs was

28.9 months in 2014 [173], which is up from the 21 months average in 2007 [35]. This

leads to the following observation:

Observation 1

Increasing system complexity is contributing to rising program delays and cost

overruns.

This increase in complexity leads to significant challenges during manufacturing

and production [58, 60, 137]. Problems occurring during the completion of tasks and

processes involved in the delivery of goods and services contribute to the observed cost

overruns and schedule delays. Increasingly complex systems require tighter manufac-

turing tolerances to achieve the desired performance [35]. Tight tolerances, in turn,

lead to increased quality assurance (QA) inspections, more frequent tool replacement

and calibration, and higher rates of scrap and rework [26].

Furthermore, the knowledge and value gained from collecting data and being able

to monitor vehicles’ performance, safety, reliability, etc. have resulted in a sharp in-

crease in the number of sensors being installed on modern aerospace vehicles (Table

1) [85, 131, 141, 158, 169]. Integrating those sensors requires that additional produc-

tion steps be dedicated to their installation [13]. For complex aerospace vehicles,

such as space launch vehicles or commercial aircraft, sensor installations are usually

performed manually and present many challenges in terms of accessibility and prece-

dence constraints [116]. With manual installations also come even further risk for
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installation errors and quality issues [43, 171], all of which contribute to production

disruptions. Hence, while integrating sensors onto a vehicle provides valuable data,

it also contributes to the increasing complexity of the newer generations of aerospace

vehicles, and the resulting program cost overruns [11, 21, 204], increased risk, and

production delays [13, 58, 171]. As such, reducing the risk and impact of manual in-

stallation tasks on low volume aerospace production flows is becoming increasingly

important for such highly schedule- and cost-constrained vehicles [41,176].

Table 1: Examples of Increased Sensors and Electronics on Current Generation
Aerospace Vehicles

System Sensors & Electron-
ics Employed

Purpose of Including Electronics

Airbus 380 25,000 Sensors [162] re-
quiring 100,000 wires
[43]

• Better anticipated maintenance
• Faster delivery of replacement parts
• Improved on-time performance
• Reduced flight and maintenance costs [3]

Boeing 787 Generates about 500
GB of data throughout
a flight [162]

• Improved Maintenance and operational deci-
sions

• Streamline data management [74]

Space Launch
System (SLS)

Over 700 development
instrumentation chan-
nels collecting data [82]

• Gather information for:
– Testing systems
– Ground operations
– Navigation and guidance
– Validating environmental and vehicle mod-

els (during the first flight) [82]

Orion Multi-
Purpose Crew
Vehicle

Approximately 1200
sensors on-board dur-
ing Exploration Flight
Test 1 [65]

• Provide information about conditions aboard
the vehicle throughout the flight [65]

• Validate models
• Test systems [1]

The production problems experienced by the Airbus 380 exemplify some of these

challenges. The A380, which has 100,000 wires (40,000 more than Airbus’s next

largest A340-600), experienced delivery delays of about 2 years due to wiring issues.

Fuselage sections were supposed to be delivered to the final integration site with all

of the electrical cabling installed; however, when they arrived, generally only half of

the work had been completed. In addition, many wires were too short because the
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German and French design teams used different versions of the same CAD software.

The planning of the cable installation work orders also was often not done correctly

such that cables that were installed one day needed to be removed on the next day [43].

The aerospace industry has recognized the problems emerging from increased com-

plexity and has responded by devoting significant effort to generating optimized pro-

duction plans that deterministically sequence production tasks [34, 199]. Techniques

such as linear programming and heuristic based optimization have proven effective

and, when used alongside techniques such as PLM and IPPD, helped to bring about

the successful programs of the 1990s [61,79,148,168]. However, the successful design

and scheduling strategies from the 1990s have not brought about similar successes in

the first decade of the 21st century. For OEMs, it has been shown that as systems’

complexity continues to increase, especially related to the number and complexity of

electronic systems and sensors, the traditional schedule optimization techniques are

losing effectiveness [13]. This leads to the following observation:

Observation 2

Increasingly complex systems are challenging traditional schedule optimization

approaches.

The following section further discusses the reasons for the lack of effectiveness

of traditional scheduling approaches and how this partially contributes to cost and

schedule overruns.

1.1 Lack of Schedule Robustness

Scheduling is defined as “an optimization approach by which limited resources are

allocated over time among parallel and sequential activities [15].” System complexity

can be measured by the quantity of components within the system [83, 204]. Hence,

as system complexity increases, OEMs are faced with an increasing number of sensors

or other subcomponents to install during the production process. As seen in Table
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1, every Boeing 787 flight generates approximately 500 GB of data [55], and the

Orion Multi-Purpose Crew Vehicle gathered data from approximately 1200 sensors

during its Exploration Flight Test 1 [65]. In the past, the installations of sensors and

electronic systems were accomplished during a planned integration phase, which was

acceptable because the number of these components was relatively small. However,

it is shown that the increasing complexity of modern systems leads to an increasing

number of installation tasks and processes required to produce the system [21, 43].

Hence, as the installation of sensors and electronic components begins to represent

a more significant block of time, this traditional approach is becoming less viable in

the context of highly cost- and schedule constrained-programs.

Schedule disruptions, such as machine failure, job priority or due date change,

quality issue, variation in processing time, or operator absenteeism [19, 81, 113],

increase as process steps are added to the manufacturing system. Traditional ap-

proaches to mitigate these problems, such as planning slack time in the process [79]

or adding additional emergency capacity [76], are becoming infeasible as the schedule

and cost constraints tighten. Therefore, identifying opportunities to reduce the risk

(e.g. the probability of a cost or time overrun) within the schedule while limiting the

additional time and cost required to complete the process is becoming vital.

Robust design methodology has the potential to meet the requirements of these

scheduling problems. Building from the work of Taguchi, the goal of robust design

is to design a system that is insensitive to noise factors that are difficult or impos-

sible to affordably control [24, 102, 177]. Robust scheduling aims to build schedules

that minimize the impact of disruptions and reduce differences between the plan and

execution [14, 113, 115]. For the purposes of this work, risk is defined as the prob-

ability that a schedule requires more time, money, or resources to complete than

planned or available. The robust scheduling methodology is developed to apply the

ideas from robust design and robust scheduling to reduce this risk. In the language of

6



robust design, the control variables define the schedule and resource allocation. The

noise variables include individual process time variation, random quality issues arising

during the schedule’s completion, supplier delays, etc. Real processes never go com-

pletely according to plan, and by not accounting for situations when processes take

longer than planned, resources go off-line, or quality problems arise, the identified

detailed, optimized schedules can quickly become impractical or infeasible to imple-

ment [19,79,108,149]. In the case of the A380, for example, implementing a schedule

planned to meet the delivery deadlines did not prove effective when the wiring issues

arose and required additional effort. While most problems cannot be solely attributed

to a lack of robustness, improving the process planning to better account for uncer-

tainty has the potential to reduce cost, schedule overruns, and risk [41, 176]. This

leads to the following assertion:

Assertion 1

Robust scheduling techniques can help alleviate some of the increasing costs and

delays experienced by the aerospace industry.

In other words, to help reduce system costs and delivery delays, robust design

principles should be integrated with traditional scheduling practices. In order to get

a better understanding of the issues and challenges of doing so, it is important to first

discuss current scheduling strategies and their limitations.

1.1.1 Current Scheduling Strategy Overview

The scheduling strategy for a static (the number of jobs or tasks is fixed), determin-

istic (all processing times and resource availability is known and fixed) [61] problem

commonly used throughout industry today is summarized in Figure 4. The process

starts by defining a set of tasks, required resources, and precedence relations. This

information is then fed into a schedule model that is able to take a sequence of tasks

and estimate the time to complete the schedule along with its associated costs [149].

7



This model is linked to a deterministic optimization routine that is able to generate

a well-performing schedule that respects any manpower or resource constraints. This

optimizer commonly leverages linear programming and/or heuristic rules to optimize

the sequence and does so without accounting for any variation in task completion

time or resource capacity [8, 79,214].

Deterministic
Schedule Model

• Tasks
• Required resources
• Precedence relations

Deterministic
Optimization Routine

Optimum Schedule

• Generally assuming
no variation in task
completion time or
resource capacity

Monte Carlo Analysis

• Analyze probability
of completing a
schedule on time

High Risk

Low Risk

Simulation

• Analyze impact of
proposed online
improvements

• Help track process
health

After Process is On-Line

Plan extra slack time or add resources for key processes

Figure 4: Current Schedule Modeling Strategy

After a trial optimum schedule is generated, it may be run though a Monte Carlo

analysis to estimate the probability of completing the schedule on time [138]. If the

analysis concludes that the schedule has a large amount of risk (typically defined as

a probability of tardiness [81, 200]), the planner will return to the initial schedule

model to include additional slack time or resources around key processes [79]. This

slack time, which is sometimes used to indicate the robustness of the schedule [8],

gives additional time for critical tasks to be completed while providing down time

for key resources to accept any unexpected jobs that may arise [79, 101]. With the

additional time planned, the optimization is rerun and another round of Monte Carlo
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analysis is performed. If the schedule is then deemed to be low risk, the schedule

is implemented. By planning this extra time or resources, the risk of completing

the schedule within the projected time may decrease, however it does not necessarily

decrease the total time to completion (the decision maker may have added to the

nominal schedule completion time to increase robustness).

If the process being scheduled is repeated often (such as in a production envi-

ronment), then a simulation of the process may be built after it comes online. The

simulation may be used to analyze proposed improvements to the production flow in

an effort to convince management to incorporate necessary changes [6, 79]. Hence,

the simulation, by better accounting for the uncertainty present in the process and

providing a clearer picture of the interactions within the process flow, allows the

planner to assess and articulate the impact the online modifications may have on

cost and risk [18, 57, 58, 91, 99, 100, 110, 119]. However, because the process is al-

ready online and large resources are fixed, significant changes and reconfigurations

are usually either not considered or would be extremely expensive/time-consuming

to implement [106,107].

The previous sections presented the limitations of current scheduling strategies

and further discussed the need to better account for uncertainty and robustness to de-

crease cost and risk. Despite the acknowledged shortcomings of deterministic schedul-

ing, such practices still dominate the industry [128]. Consequently, barriers need to

be identified and alleviated to support the implementation of robust scheduling.

1.1.2 Challenges to Integrating Robust Design Principles with Scheduling
Strategies

Limitations to better deploying robust scheduling within an industrial setting are:

• Scheduling typically relies on analytical models. However, many “real-world”

problems or systems cannot be described using a closed-form, mathematical for-

mulation [17,18,23,57,79,100,110]. Hence, even modeling complicated problems
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using traditional scheduling techniques can be difficult [79].

• For problems or systems that can be modeled, the vast majority of software

tools and developed methodologies used for scheduling purposes today focus on

the deterministic problem [128]. As such, they fail to perform the uncertainty

analysis required to quantify a system’s robustness [115]. This is a significant

limitation because schedules that are optimized “with respect to deterministic

assumptions deteriorate quickly with the introduction of uncertainty [108].”

• The learning curve for any new tools is typically very high [96]. Traditionally,

scheduling and simulation have been viewed as separate disciplines [79], so inte-

grating any type of simulation tool useful for robust scheduling methodologies

often requires significant training.

• Integrating simulation/optimization results into existing scheduling, account-

ing, and other enterprise programs is also difficult. Significant effort has been

devoted to integrating current scheduling tools with companies’ enterprise re-

source planning (ERP) software so that the impact of any changes to the sched-

ule can be quickly understood and propagated. Because the current systems

are so intertwined, completely replacing the currently implemented scheduling

software could lead to significant integration challenges [134,142].

• Many schedule optimization routines currently in use are geared towards de-

terministic optimization. These routines have limited applicability to problems

containing uncertainty, so they must be modified or replaced to accommodate

robustness analysis [19].

• While a wide variety of scheduling strategies have been developed within academia,

only a small amount of advances in scheduling have been transitioned to prac-

tice in the “real world” [60, 128, 185]. One reason for this disconnect is that a
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significant amount of scheduling research has been focused on mathematically

rigorous solutions to very specific problems as opposed to the development of

more deployable, approachable scheduling systems [60,128,214].

These challenges are discussed and substantiated in the following chapter. How-

ever, one can already note that the challenges to integrating new tools to enable

robust design within scheduling are primarily organizational and training/experience

related as opposed to technological. While methods leveraging simulation to account

for uncertainty may have been limited by computing power in the past, simulation

cases no longer prohibitively strain computing budgets [62]. Additionally, discrete-

event simulation has continued to mature, and automating model generation, linking

to external optimization routines, and quickly generating any required statistics is

now immediately possible [99, 100]. This leads to the final assertion upon which this

thesis is based:

Assertion 2

The lack of widely accepted robust scheduling practices is primarily due to

implementation challenges. There is no inherent technological barrier to their

application.

1.2 Summary

This chapter discussed the need to develop scheduling and planning methods that

help reduce the costs of producing and operating increasingly complex aerospace

systems. In particular, one effect contributing to the schedule and cost overruns is

the significant increase in processes that must be completed when producing such

aerospace systems. These additional tasks challenge traditional scheduling practices

for OEMs because completing them during a single integration production step is no

longer a viable option.
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Furthermore, a lack of schedule robustness is identified as a contributor to the

observed delays and cost overruns. Schedule disruptions are shown to cause significant

problems for schedules optimized using traditional, deterministic methods. Therefore,

a method that can better account and plan for uncertainty to decrease process time,

cost, and risk is needed.

Finally, six challenges to integrating tools to enable robust scheduling practices

with existing scheduling practices have been identified. These challenges are primar-

ily organizational and training related; however, there are no inherent technological

barriers to implementing simulation during the pre-production planning phase.

Throughout this chapter, two assertions were made that form the backbone of this

thesis. Assertion 1 contends that integrating robust design techniques with scheduling

can help to alleviate the cost overruns and schedule delays observed in industry.

Assertion 2 claims that the barriers to implementing robust design principles within

scheduling are primarily organizational. The following chapter will build on these

assertions to describe the problem to be addressed and further define the scope and

objective of this thesis.
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CHAPTER II

PROBLEM DEFINITION

This chapter discusses further the challenges associated with the assertions made

in Chapter 1. As such, it follows the structure of the first chapter and begins by

addressing the first assertion:

Assertion 1

Robust scheduling techniques can help alleviate some of the increasing costs and

delays experienced by the aerospace industry.

2.1 Introduction

As discussed in Chapter 1, the increase in system complexity is shown to be a contrib-

utor to the schedule and cost overruns see throughout the aerospace industry [35,136].

The schedule problem’s complexity, which increases with “multiple part types made

in the same facility/line, numerous manufacturing steps (300-500 steps is not un-

common), batch processing, very complex equipment that leads to high levels of

preventive maintenance and downtime, and multiple levels of sub-assemblies [58]”,

increases alongside the complexity of the system to produce [58]. Limitations in

current scheduling practices, especially related to modeling capabilities and system

robustness, also become exacerbated by increased system complexity [61]. The fol-

lowing review of selected simulation and scheduling methods helps to highlight 1) the

failures of common scheduling techniques to efficiently manage systems of increased

complexity, and 2) the potential when integrating improved robust scheduling and

simulation practices to address the observed cost and schedule overruns.

This review is divided into first a review of common scheduling practices and then a
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review of typical uses for simulation models. This delineation is used because schedul-

ing and simulation are typically considered to be associated with different domains

with their own problems and challenges [79]. Scheduling relies “on mathematical

techniques and heuristic methods to allocate limited resources to activities that have

to be done [148],” whereas simulation is used to describe the time-dependent flow of

entities or information [79] within systems too complex for analytical models [109].

This difference has contributed to the disconnect between the two fields even though

both are essentially working towards the same goals: reducing cost, improving effi-

ciency, etc. As such, by examining the strengths and weaknesses of both scheduling

and simulation practices, it is expected that an improved, hybrid scheduling strategy

can be developed.

2.2 Review of Scheduling Strategies

Scheduling strategies can be categorized based on a few distinguishing features. Fig-

ure 5 illustrates the hierarchy of these features. The first distinction is whether the

model is stochastic or deterministic. Deterministic scheduling deals with the case

when all data in the scheduling model (e.g., process times, capacity, etc.) is known in

advance with no uncertainty [53]. A stochastic model relaxes this constraint by allow-

ing for uncertainty in processing times, machine breakdowns, workforce availability,

etc. [77]. Another distinction can be made between static and dynamic models. Static

problems assume that, while there may be uncertainty in processing time or resource

availability, the jobs to be completed will not change because of additional orders

or cancellations and the job ready times are known and fixed [61, 79]. The dynamic

problem allows for jobs to arrive at random during the schedule execution period [61]

and seeks to develop a scheduling system that is able to react to disruptions [145].

In this way, the stochastic, dynamic scheduling problem is the closest to the real

world [41].
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Scheduling

Deterministic: All
data is known in
advance and no

uncertainty is allowed

Stochastic: Uncertainty
is allowed

Dynamic: Uncertainty
in process time, machine
breakdowns, workforce
availability, etc. allowed.
Job availability is also

uncertain.

Static: Uncertainty in
process time, machine
breakdowns, workforce
availability, etc. allowed.
Job availability is fixed.

Figure 5: Scheduling Classification Hierarchy

These distinctions are important because they have a significant impact on the

type of schedule optimization algorithms that are capable of solving the problem [61].

Static, deterministic problems fall under the umbrella of deterministic combinatorial

optimization [61], while problems that are dynamic and/or stochastic typically re-

quire a heuristic or metaheuristic optimization approach for all but the simplest of

problems [27]. Examples of algorithms typically used to solve deterministic schedul-

ing problems are linear programs [148], branch and bound methods, or heuristics

(such as the shifting bottleneck) [123]. Stochastic models, on the other hand, typi-

cally leverage some type of Monte-Carlo or discrete-event simulation combined with a

metaheuristic search algorithm (genetic algorithm, simulated annealing, tabu search,

etc.) [15]. With this structure in mind, the review will begin with static, deterministic

scheduling strategies.

2.2.1 Static, Deterministic Scheduling Strategies

Even though the problems to be addressed in this thesis are clearly stochastic, investi-

gating deterministic schedule modeling and optimization approaches helps to inform
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solution strategies for stochastic problems [61]. There are two main areas within de-

terministic scheduling that are important to investigate for this thesis. The first area

is the schedule representation and optimization methods applied with specific focus

on any heuristics used to guide the optimization. Since deterministic scheduling has

been studied the most of any branch of scheduling, reviewing heuristics identified

in the literature can help to guide the development of a robust scheduling system.

Secondly, a study of the objective functions used throughout the literature illustrate

potential key performance indicators for use in experiments evaluating the proposed

techniques.

Deterministic schedule models are typically represented as a sequence of jobs

that require resources for completion and are subject to precedence constraints [148].

These models form the basis for many familiar project scheduling techniques such as

the Critical Path Method (CPM) or the Program Evaluation and Review Technique

(PERT). The CPM seeks to optimize the schedule by minimizing the critical path,

which is the sequence of jobs that have no slack time [140]. Slack time being the time

that a specific task can be delayed without affecting the project’s completion time, a

delay along the critical path directly impacts the project’s completion time. However,

if a process off the critical path is delayed, the schedule may still be completed on

time by absorbing the delay in the scheduled slack time. PERT is very similar to

CPM except that it begins to address stochasticity by computing the critical path

for optimistic, expected, and pessimistic process completion times [44]. These tech-

niques have been used for project schedule evaluation since their first implementation

by the U.S. Navy during the late 1950s to help control the development of the Polaris

missile [10].

The deterministic schedules used for the CPM and/or PERT are typically repre-

sented as disjunctive graphs (as seen in Figure 6) [60]. Disjunctive graphs contain

a set of jobs to be performed displayed on nodes. Conjunctive arcs (solid arrows)
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connect operations in sequence, while disjunctive arcs (dashed lines) connect jobs

that may not be performed concurrently (e.g., if two jobs require the same equipment

to be performed) [42]. This type of representation is chosen because it lends itself

to combinatorial optimization techniques [16], which will be discussed in the next

section.

Figure 6: Example Disjunctive Graph for a Job Shop with 3 Machines and 3 Jobs [4]

2.2.1.1 Deterministic Combinatorial Schedule Optimization

One of the first combinatorial optimization strategies utilized to solve static, determin-

istic scheduling problems involves linear programming [79]. Deterministic scheduling

is characterized by a large number of potential solutions that satisfy the problem’s

constraints and must be intelligently evaluated to determine the “best” feasible so-

lution [136]. In the case of manufacturing, the best solution is typically that which

either minimizes cost or maximizes profit [64]. As the name suggests, the objective

function and all constraints must be formulated using linear functions, which may

then be solved via algorithms like the simplex or interior-point methods [117, 148].

The standard form for a linear program is:
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Minimize: F (X) =
n∑

i=1
ciXi

Subject to:
n∑

i=1
aijXi = bj j = 1 . . .m

Xi ≥ 0 i = 1 . . . n

(1)

where F is the objective function, X is a vector of design variables (e.g. the

sequence of jobs to complete), ci are the linear cost coefficients, and aij and bj define

the set of constraints [194].

Due to the increasing complexity of planning tasks (more jobs to plan, resources

to seize, and/or constraints to fulfill), many of the exact combinatorial optimization

techniques used to solve scheduling problems become computationally infeasible [29,

136]. This is because many scheduling problems belong to the NP-Hard class of

problems, i.e. problems that are characterized by sharp increases in possible solutions

with small increases in problem size [28, 33, 136]. As a consequence, many heuristic

methods have been developed to find “good” solutions to scheduling problems in a

relatively short amount of time [136]. Reference [136] provides a vast overview of

scheduling heuristics for many problems. The following paragraphs review some of

the most popular examples.

The first set of heuristics to investigate are constructive algorithms, which build

up a solution to the scheduling problem sequencing jobs via simple rules [29, 61].

For schedules with n jobs to be sequentially processed on two machines, Johnson’s

Algorithm seeks to plan the jobs with the shortest process time on the first machine

first. By doing so, the algorithm ensures that the second machine begins processing

orders as soon as possible to minimize make-span (maximum process time) [61]. This

algorithm does produce the optimal schedule (in terms of process time) for limited

cases; however, heuristics using similar rules are applied to more complex problems
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as well [61, 136].

Many other heuristic rules that are shown to produce good schedules have been

discussed in the literature. These rules, typically called selection or dispatching rules,

select the next job to process from a list of available jobs. Similar to Johnson’s

Algorithm, the Shortest Processing Time First (SPTF) rule selects the job with the

shortest process time to process first. This frees the resource as quickly as possible to

limit its constraint on the system. The Most Work Remaining (MWR) rule processes

the job with the most processing time remaining to avoid getting too far behind on

any one job. However, it is sometimes better to process the job with the least total

work remaining to complete jobs and free up the system. Finally, if the system is

complex and the computation resources are available, the planners may choose to

implement a Monte Carlo approach where the jobs are planned randomly and the

best of many possible schedules is chosen.

These heuristic methods attempt to use empirical results to generate good sched-

ules [61, 136]. These rules represent a very common way to generate production

schedules, however they do have significant limitations [214]. While producing high

performing schedules in some instances, there are other cases where the same dispatch-

ing/heuristic rules perform very poorly. Worse, it is not currently possible to predict

the performance of a specific set of rules before applying them to a system [84,214].

Another set of heuristic methods seek to incrementally improve an initial sequence

through neighborhood searches. One such strategy exchanges pairs of jobs until no

exchange improves the solution. In this situation, the proposed solution is a local

optimum, and if the problem is convex, the solution is the global optimum [136].

Generally, neighborhood search techniques, such as the pairwise exchange method,

investigate solutions “in the neighborhood” of a seed solution for improvements. Bot-

tleneck methods, which are some of the most popular approaches in present use,

identify the bottleneck resource (i.e. the most constraining) and then seek to free
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that machine or resource as much as possible. If the bottleneck shifts to another

resource, the algorithm will then move its focus to reduce the load on the new bottle-

neck [136]. The algorithms presented here, while not covering all proposed schedule

optimization strategies, serve to present a range of different overarching methods that

have been investigated throughout the literature. While these processes are popular,

the direct optimization methods struggle with even moderately sized problems while

heuristic approaches have unpredictable performance when applied to new problems.

The following section further discusses the various objective functions typically em-

ployed in deterministic scheduling problems. The objectives discussed are extended

to further include robust scheduling considerations in Section 2.2.2.3.

2.2.1.2 Overview of Objective Functions for Deterministic Scheduling Problems

Planners ideally seek to maximize profit, however quantifying total profit is typically

difficult. As such, the objective functions utilized for deterministic schedules typically

focus on minimizing some form of process time. This is based on the assumption that

cost scales linearly with time; so minimizing time minimizes the process cost [61] and

indirectly maximizes profit. The two most direct forms of time to investigate are

the maximum process time and average process time. These measure the amount of

time that a component is being processed or a job is being performed to complete the

schedule. The maximum process time is also called the process make-span [61, 148].

Other possible objective functions relate to the products’ due dates. If there is a

bonus for completing a job early, the company may choose to minimize the total or

maximum lateness (difference between the due date and completion date). If there is

no bonus for early completion but a penalty for lateness, the company may minimize

the total or maximum tardiness, which is 0 if the job is early or on time but becomes

positive if the job is late [61,148]. A final set of performance measures typically seen

in scheduling relates to factory efficiency. For example, minimizing setup times or
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costs usually helps to reduce make-span or improve throughput [148]. Minimizing the

work-in-process (WIP) inventory is also important to free up equipment and reduce

system congestion [61, 148]. Finally, some planners attempt to improve the system’s

robustness by maximizing the schedule’s slack time; this allows for extra time or

capacity in case some processes do not occur as planned [8, 79]. Maximizing the

Critical Ratio, which is the ratio of the time until the due date to the process time

remaining, is also suggested as a helpful measure to reduce risk [25,136].

The previous paragraph has not sought to provide a complete list of schedule

planning objective functions; instead, the goal was to provide an overview of the

various areas of interest along with the implications and reasoning for the selection

of objective functions. A summary of the objectives discussed can be found in Table

2.

As discussed, static, deterministic scheduling is suitable for many problems and

certainly represents an improvement above the experience-based rules-of-thumb used

in the past. Despite this, literature sources asserting that even with its strong the-

oretical basis, deterministic scheduling generally fails to address the practical con-

cerns of the industry [128, 145]. This is because while increased process automation,

better data management, and improved supply chain coordination have worked to

make the deterministic assumption more valid [61], the increased uncertainty due

to the complexity of many modern products has surpassed the gains from automa-

tion [60,136] and increased the need to consider stochasticity [128]. Additionally, the

manual installation tasks typical of more complex systems do not lend themselves to

automation [116], which limits the potential for improvement brought by investing in

advanced and costly robotic capabilities. Hence, there is a clear need to consider risk

and uncertainty when generating schedules for many modern systems.

The deterministic scheduling and optimization strategies presented here have

shortcomings when dealing with significant stochasticity. While these shortcomings
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Table 2: Examples of Common Objective Functions for Deterministic Scheduling
Problems

Objective
Function

Description Benefits

Process time The amount of time that
a component was processed
to complete the schedule

Cost typically scales with
process time [61].

Minimize lateness Due date−completion date Seeks to complete products
before their due date to re-
ceive a benefit for early de-
livery [61,148].

Minimize
tardiness

Cost ={
0, delivery date ≤ due date
penalty, delivery date > due date

If there is only a penalty for
late delivery, simply seek to
meet all delivery dates [61,
148].

Minimize setup
time

Depending on the flow of
products through the sys-
tem, some machines may
require setup or changeover
time to process a new job.

Improves utilization rates
and reduces non-value
added time. Typically
leads to a reduction in
process time [148].

Minimize
work-in-process

(WIP)

Amount of jobs or compo-
nents currently within the
system.

Helps to free resources and
reduce system congestion
[61,148].

Maximize
schedule slack

time

Maximize the time between
processes while maintaining
due dates and process con-
straints

Improves the schedule’s ro-
bustness by adding addi-
tional time to absorb sched-
ule disruptions [8, 79].

Maximize the
total critical ratio

CR = Time until delivery date
Process time remaining

Attempts to reduce risk
by completing jobs with
longer processing times fur-
ther from their due dates
[25,136].
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have been somewhat addressed by adding an objective function to increase the slack

time between processes, this heuristic objective is fairly simplistic and typically ig-

nores many other sources of available information [79]. The following section explores

scheduling strategies that allow for various forms of non-deterministic behavior.

2.2.2 Non-Deterministic Scheduling Strategies

Non-deterministic/stochastic scheduling allows for uncertainty in the processing time

of jobs, machine availability, etc. [61]. Non-deterministic schedules can be classified

as either static or dynamic. Static, non-deterministic schedules consider uncertainty

in processing time, technician availability, etc. However, the jobs to be completed are

assumed constant [61]. Dynamic scheduling allows for the arrival and availability of

jobs to be uncertain [61,79]. By allowing for these forms of uncertainty, the developed

models can more closely approximate the real world [148]. However, by including

uncertainty, many of the optimization strategies developed for deterministic types of

problems are no longer valid [61]. This section reviews some of the most prominent

stochastic scheduling techniques to help identify strategies that could help to alleviate

the delays discussed in Assertion 1.

Before proceeding through this section, a distinction between predictive and re-

active schedules must be made. A predictive schedule is the initial plan developed

by a scheduling algorithm that accounts for resource constraints [59, 89]. A reac-

tive scheduling system then monitors the production environment and decides how

to modify the predictive schedule to deal with unexpected events such as machine

breakdowns or process time variation [156]. This section concentrates on stochastic

predictive model generation, which is the focus of the proposed robust scheduling

methodology. Reactive scheduling strategies are addressed briefly as a means to sup-

port the development of simulation model logic.

Even though predictive schedules are rarely if ever executed perfectly, defining a
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good baseline schedule is an important step towards completing a project or process.

Indeed, the baseline schedule is important for determining resource allocation, coordi-

nating with suppliers, and approximating future work for employees [187]. The focus

of stochastic, predictive scheduling has primarily been on developing a more robust

initial schedule (sometimes called a proactive schedule [93]), which is a schedule that

is insensitive to noise and requires fewer adjustments [187]. Many methods, along

with many different measures of robustness, have been developed to help determine

a robust schedule. These are discussed and evaluated in the following sections.

In particular, Section 2.2.2.1 first investigates the models typically used for stochas-

tic scheduling. Section 2.2.2.2 then provides an overview of the algorithms typically

employed to optimize such schedules. Section 2.2.2.3 then provides an overview of

the objectives and strategies used for robust schedule optimization. Finally, Section

2.2.2.4 presents a review of common reactive strategies used to repair schedules when

disruptions occur.

2.2.2.1 Stochastic Schedule Model Architecture

The nature of the models used for schedule experimentation is important to discuss

to facilitate an understanding of their capabilities and limitations. Generally, a model

is a “stripped down, simplified and abstract representation of an otherwise complex,

detailed and broad reality [60].” In manufacturing systems, real objects, such as

machines, technicians, material, and tooling, are typically the focus of the modeling

effort [60]. The purpose of a model is to test ideas [67], so models must be built with

that purpose in mind and contain appropriate details to achieve this goal [60, 68].

Depending on the goal of the scheduling process and the types and significance of

uncertainty, various methods to include stochasticity have been employed.

Mathematical models “aim to describe the different aspects of the real world,

their interactions, and their dynamics through mathematics [153].” This is the type
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of formulation primarily used in deterministic scheduling where the problem can be

formulated as a constrained optimization problem [61]. While most applicable to

deterministic scheduling, if noise variables or uncertainty distributions can be defined

for the problem, Monte Carlo analysis can add an element of stochasticity and provide

a means to evaluate the probability of cost overrun for a project [182]. Traditionally,

Monte Carlo simulations are used to evaluate the risk within a determined schedule

or evaluate the accuracy of the initial forecast [195]. However, the results from the

Monte Carlo simulation generally are not used to drive the optimization, and are

typically relegated to a post-optimization risk analysis. In cases where Monte Carlo

analysis is incorporated within the optimization, the results are generally used to

estimate an average value for a deterministic algorithm [163].

Disjunctive graph models, while commonly reserved for deterministic analysis [61],

can be utilized for stochastic analysis by adding uncertainty to process times. These

models can then be optimized via heuristic methods [73, 183]. While this approach

does include stochasticity, the uncertainty is required to be independent, which means

that the methods cannot directly account for disruptions. By assigning independent

uncertainties to each process time, this approach is unable to account for relationships

between processes. For example, a quality problem encountered during one step may

impact the process time of another. As such, graphical or network schedule models

may not be sufficient for robustness investigations that are concerned with mitigating

the impact of specific disruptions.

Most scheduling systems utilize these types of models for their investigation.

These models are commonly classified by the number of jobs, number of machines,

and other assumptions used to define the system. However, this research focuses on

investigating a general methodology linking scheduling and simulation, so these clas-

sifications are superfluous. The interested reader may find further information about
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the classification schemes in [28, 61, 148, 149]. With the types of stochastic sched-

ule models in mind, the following section describes a selection of the optimization

algorithms typically employed to solve stochastic scheduling problems.

2.2.2.2 Optimization Algorithms for Stochastic Scheduling

As previously mentioned, one of the first methods to account for uncertainty was

PERT. The technique assigns time distributions to each process task and then cal-

culates the project’s completion time based on optimistic, expected, and pessimistic

process times [44]. In general, PERT simply replaces a deterministic value with

one determined from the distribution and calculates the critical paths using that

value [112]. There are a few disadvantages that make PERT unsuitable for the com-

plex systems of today. Generally, PERT relies on task relationships that are very

inflexible. Therefore, in instances when some disruption occurs, there is no way for

the model to adapt as the real world system would. Additionally, the disruptions are

not directly captured and are instead rolled up into subjective time estimates, which

are typically over optimistic [112]. Finally, PERT identifies the critical path, but task

sequences that are close to critical could easily shift onto the critical path based on

the process time uncertainty. These tasks are not initially identified as critical, and

may, therefore, not receive the same focus as the ones identified as critical [120].

Moving on from the basic PERT method, there has been much work in utilizing

metaheuristic optimization algorithms to produce predictive schedules under uncer-

tainty [27]. A metaheuristic search is a process that uses an overall heuristic to guide

“the operation of one or more subordinate heuristics (which may be from a local search

process, to a constructive process of random solutions) to efficiently produce quality

solutions for a problem [70].” As such, metaheuristics typically take a solution or

solutions that are generated via a problem specific heuristic and guide its incremental

improvement [155]. Summaries of the various heuristic schedule generation methods
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can be found in references [60,61,136] and are discussed in Section 2.2.1.1. A benefit

of metaheuristic methods is that they are problem agnostic, and can, therefore, be

quickly and easily applied to a wide variety of problems [146].

Metaheuristics, and their underlying heuristic methods, are sometimes called ap-

proximate approaches because they cannot guarantee that a global optimum has been

found. However, they generally find “good” solutions relatively quickly [28,79]. This

is in contrast to the mathematical programming methods described in the previous

section that can typically prove that the optimum was found [61]. Despite not be-

ing able to prove an optimum, metaheuristic optimization methods are popular for

scheduling problems with uncertainty. This is due to the fact that the mathematical

programming methods (linear programming, branch & bound, etc.) designed for the

deterministic problems are feasible only for small stochastic problems and require

significant computational effort [27, 79]. Essentially, schedulers operating in a “real-

world” setting prefer finding a “good” schedule in a reasonable amount of time to

finding the optimal schedule in an exorbitant amount of time [15]. The following

paragraphs discuss three metaheuristic algorithms typically used in scheduling, Tabu

Search (TS), Simulated Annealing (SA), and Genetic Algorithms (GA), along with

specific scheduling applications relevant to this research.

Tabu Search (TS) algorithms search for improvements within a neighborhood

around an initial solution [136]. The algorithm will always move to the best candidate

solution. To avoid becoming trapped within a local optimum, a “tabu” list of disal-

lowed moves is maintained that is designed to encourage exploration and prevent the

algorithm from cycling back to a local optimum. The best solution is always stored in

case no better solution is found, and the algorithm is typically stopped after a certain

amount of time (or moves) after an improved solution has been found [69, 136, 146].

The TS algorithm may also be parallelized by distributing evaluations of points within

the neighborhood or simply running the base algorithm with different starting points
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on multiple processors to speed convergence [178]. One drawback of TS is that it

must move to the best candidate point (not just an improved point), which makes

evaluating the neighborhood costly [136]. However, this drawback can be alleviated

by increasing parallelization.

The tabu search metaheuristic has been applied to scheduling problems by mod-

ifying schedules constructed by some heuristic method [203]. For manufacturing

scheduling problems, the search typically involves adding, removing, or swapping

jobs planned within the schedule according to the rules of the TS [155,183,203]. Be-

cause the effectiveness of the search is based on the initial schedule, the strategies

generally apply multiple heuristics or random permutations to a starting schedule

generated by a heuristic method [183]. The TS method has been shown to be much

faster than traditional deterministic algorithms as problem size increases [27].

Tabu search can also be modified for multi-objective optimization purposes, which

is important when considering the competing objectives typically found in schedul-

ing problems [180]. One method is to combine the objectives into a single weighted

objective function and use the single objective algorithm to solve the problem with

varying weights to explore the Pareto frontier. While this is a simple method, it has

the drawback that weighted-sum methods cannot find concave portions of the Pareto

frontier [90]. Another approach utilizes the tabu concept to disallow recently visited

points while saving optimal or near-optimal points in a separate list to intensify the

search. In this way, points can be compared based on Pareto dominance, and in in-

stances where multiple candidates are Pareto-equivalent, the algorithm will randomly

choose the next point from the equivalent candidates. All of the equivalent points are

included in the list of points for intensification. A more detailed description of this

strategy may be found in reference [90].

Simulated Annealing (SA) is an optimization technique inspired by the annealing

process of metals [136]. SA is another neighborhood search method that aims to
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avoid becoming trapped in a local optimum [12]. The algorithm evaluates points

within the neighborhood of the current design point. If a candidate point is better

than the current point, the algorithm moves to the new point. If the candidate is worse

than the current point, the algorithm moves to the new point if a random number

sample is less than the value of an equation of the same form as Equation 2. In this

equation, ∆f describes the difference between the current point and the candidate

point’s objective function evaluation. Therefore, as ∆f increases, the probability to

accept the worse point decreases. Tk is the current “temperature” of the algorithm. In

the early stages of the algorithm, the temperature is high to improve the probability

of moving to a worse candidate point to encourage exploration of the space. As

the optimization progresses, the temperature is decreased according to an annealing

schedule to gradually hone in on the (hopefully) global optimum [12].

p (∆f) = exp
(
−∆f
Tk

)
(2)

The simulated annealing algorithm can be modified to take advantage of paral-

lel computing. An immediate option is to simply run the algorithm with multiple

starting points in parallel to converge to different points along the Pareto frontier.

Alternatively, instead of evaluating and comparing single solutions, one may evaluate

many solutions within the neighborhood and then apply Equation 2 to each candidate

solution. The next point then may be chosen randomly from the candidates weighted

by Equation 2 [136].

Simulated annealing has been applied to scheduling problems successfully in much

the same way as the tabu search. Generally, the search begins by generating an

initial feasible schedule via a heuristic method [180]. The algorithm then proceeds

to investigate the neighborhood around the initial schedule by swapping, adding,

or removing jobs. SA has been applied to the job shop scheduling problem and

shown to outperform heuristic methods designed specifically for the problem [191].
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References [27, 174] describe multiple applications of simulated annealing to various

job shop scheduling, facility layout, logistics, and other project scheduling problems.

Simulated annealing can also be applied to multi-objective problems. A typical

strategy is to combine the objective functions into a single, weighted criterion. The

SA is then used to solve the problem with variations on the weightings to find different

regions of the Pareto frontier [180]. Another approach relies on the fact that SAs find

multiple global optima along the Pareto Frontier with equal probability. Therefore, if

the objective function is the Pareto domination rank of a point, the algorithm should

have an equal probability of finding any point along the Pareto frontier. Hence, this

strategy starts the algorithm at multiple points and collects each optimal point found

to construct the Pareto frontier [139].

A more direct exploration of the Pareto frontier is possible with simulated an-

nealing. Instead of using a single composite objective, the SA can select new points

based on the points’ Pareto rank [139]. To encourage exploration along the frontier,

the algorithm moves to a trial point if it is a better or equal rank. Movement to a

dominated point is controlled by Equation 2 where ∆f is found based on a composite

objective function. Various weighting types are discussed in reference [139]. This

strategy could prove useful if no information about the relative importance of the

objectives is available.

The final metaheuristic schedule optimization algorithm to be discussed is the

Genetic Algorithm (GA). By simulating the Darwinian natural selection process, the

GA guides a population of points towards an optimum [12]. The general strategy

begins by generating an initial population of random design points. The initial pop-

ulation may also include population members created via other heuristic methods to

seed the population with good designs. After evaluating the “fitness” (objective func-

tion value) of each member of the population, some members of the population are

chosen for reproduction based on their relative fitness. Upon selection of two parent
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points, child points are created by genetic crossover. Similar to biological reproduc-

tion, crossover entails swapping portions of each parent’s design bit string (called a

chromosome) to form the children. After the crossover, the new designs may undergo

a mutation phase where random binary bits in the design bit string are flipped. This

ensures that genetic diversity is maintained while also searching in the neighborhood

of current solutions to move towards the global optimum. A more detailed description

of typical genetic algorithms can be found in references [12,194].

Genetic algorithms are extremely amenable to parallel computation. Upon deter-

mining a new population to evaluate, each member may be calculated independently

and distributed to any number of computing cores. GAs typically require many

function evaluations to arrive at the optimum point, so parallelization is extremely

important, especially when the objective function evaluation is relatively slow. For

this reason, combining GAs with surrogate modeling techniques is a popular strat-

egy [194].

The overall genetic algorithm strategy can be extended to multi-objective opti-

mization as well. A popular multi-objective genetic algorithm is the Non-dominated

Sorting Genetic Algorithm II (NSGA-II). This algorithm uses non-domination to sort

the potential parents. Each group of non-dominated points are then further ranked

based on their crowding distance, which is essentially a solution’s “closeness” to an-

other population member in the same non-dominated rank. By including the crowding

distance, the algorithm attempts to maintain diversity and evenly sample the Pareto

frontier [50]. A review of multi-objective optimization techniques applied from 1991

to 1999 found that 70% of articles utilize GAs as the primary optimization routine,

which speaks to their extreme flexibility and wide applicability [92]. Hence, because

of its natural multi-objective formulation and evidenced applicability to a wide range

of problems, the NSGA-II is a strong candidate for the problem at hand.
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With an understanding of the schedule modeling architectures capable of account-

ing for stochasticity and some of the optimization methods available, the following

section describes how the strategies are commonly implemented to identify robust,

predictive schedules.

2.2.2.3 Review of Robust Schedule Generation Strategies

As mentioned previously, a primary purpose for including uncertainty within schedul-

ing is to generate schedules that are robust [180]. Schedules generated with robustness

considerations are sometimes classified as proactive schedules [93,180]. Proactive/ ro-

bust schedules are created in order to protect the schedule from disruptions that

may occur during execution and minimize the need to repair the schedule during

operation [93]. Within the literature, many scheduling strategies have been proposed

that claim to produce robust schedules by optimizing different objective functions. A

review of the most popular strategies is provided.

The most common approaches to improve schedule robustness are to include idle

time (also called buffer or slack time) in the schedule and make additional resources

available when disruptions occur [8, 79, 81, 93]. The idle time provides a buffer if

there are delays in the schedule. Idle time has the additional benefit of providing

open capacity to process an unexpected, urgent job [79]. Extra resources in the form

of machines or personnel can be brought online to help recover from disruptions as

well [79,81]. Different strategies for choosing the amount of buffer time to include have

been proposed. Critical chain scheduling focuses on ensuring project completion by

the due date by allocating buffer to jobs on the critical chain [80,93]. Other systems

include buffer in front of processes that would incur a large cost if delayed [93] or

processes closer to the end of the schedule that have a larger possibility of having a

disruption [46]. Furthermore, maximizing the minimum of slack times or the ratio

of slack time to the corresponding activity’s duration has been proposed to help
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reduce the variation in make-span and schedule instability [105]. Reference [79] also

lists some other qualitative considerations for robust scheduling including identifying

potential problems, scheduling difficult jobs first to improve learning, and keeping the

most flexible resources free.

Another proposed strategy to improve schedule robustness is to generate multiple,

well-performing schedules during the generation phase. Then, as the process is being

completed and disruptions occur, the company may switch to a schedule (or partial

schedule) that is unaffected by the disruption. While helping to mitigate the problems

caused by schedule disruptions, this strategy, called contingent scheduling, is focused

more on flexibility than robustness. In other words, the algorithm does not search

for a specific schedule that is robust, but instead provides many alternatives that can

potentially handle various disruptions [93].

With any of these robust schedule generation strategies, the quality of the pro-

posed solution may be measured in multiple ways. Reference [8] suggests simply

using the total amount of slack time in the schedule as an indicator of robustness.

Two additional measures, typically called schedule stability and quality robustness,

are commonly found in the literature. Schedule stability (sometimes called solution

robustness) is related to the difference between the predictive schedule and the real-

ized schedule [80,93,105,126,213]. This may be quantified by the difference between

planned and actual start times, the number of processes that are disturbed, or the

number of times a process must be re-planned [80,105,126,213]. The schedule can be

simulated multiple times to estimate the proposed schedule’s stability [48,93].

As opposed to schedule stability, which assumes that a variation from the plan will

degrade the schedule’s performance, quality robustness deals directly with the uncer-

tainty’s impact on the objective functions (e.g. cost, make-span, etc.) [93]. Because

the end goal of creating a robust schedule is to minimize the impact of disruptions,
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many sources in the literature suggest optimizing the expected value of a chosen ob-

jective function as is common in stochastic resource-constrained scheduling [93,170].

Another related measure is the customer service level, which seeks to minimize the

probability that the completion date exceeds the due date [48,93]. Risk-averse entities

completing high-cost projects commonly require an 80% probability to remain within

schedule and/or budget to pursue a project [87]. As such, the quality robustness of

a project schedule can be quantified by the 80th quantile of an objective function of

interest.

It is desirable to improve both the schedule stability (to minimize re-tasking the

workforce, change paperwork, etc.) and quality robustness (to optimize the expected

value of the objective function(s)) [48, 126, 180]. Reference [186] reports on a study

that optimizes a composite objective for schedule stability and quality robustness.

Others have introduced a non-dominated, multi-objective approach to design robust

schedules. Pareto optimal solutions that simultaneously minimize a schedule perfor-

mance function, like make-span, along with the function’s standard deviation have

been developed [218]. This particular study reports results for various flow shop

scheduling problems that compare the robust scheduling scheme with a deterministic

optimization strategy for various levels of time uncertainty. While the determinis-

tic methodology is able to produce slightly better best-case scenario schedules when

compared to the robust scheme, the robust scheme’s average performance is better for

most experiments and its standard deviation is always better. Finally, as expected,

the results become even more pronounced as the degree of uncertainty increases, which

indicates that the more uncertainty contained within a process, the more benefits to

be expected from robust scheduling [218].

As presented throughout this section, developing and implementing robust schedul-

ing strategies help to reduce the impact of process time uncertainty on an overall
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schedule. Generally, the strategies seek to place buffer time within a schedule us-

ing various heuristics or to leverage optimization approaches to minimize schedule

disruptions that are mainly due to process time uncertainty. A generated sched-

ule’s performance is typically evaluated through Monte-Carlo simulation by drawing

from distributions set on process times. Finally, results have demonstrated that by

including robustness considerations, the generated schedules are able to better cope

with disruptions, hence leading to schedules with better average performance with re-

duced risk. The following section briefly discusses reactive scheduling strategies that

are used to repair predictive schedules when disruptions occur during the schedule’s

execution.

2.2.2.4 Review of Reactive Scheduling Strategies

Reactive scheduling strategies modify the predictive/proactive schedule as disruptions

occur during the schedule’s execution [93]. Generally, if the initial schedule was

generated with a proactive approach, there will be enough buffer in the system such

that small, expected variation in process time can simply be absorbed by the original

schedule. However, more significant disruptions, such as equipment breakdowns or

technician absenteeism, could lead to disruptions that cannot be absorbed. These

are the cases where reactive scheduling strategies must be employed to ensure the

schedule remains feasible and within the time and budget allowable [93].

A few general rescheduling strategies exist to ensure the schedule remains feasible.

One strategy involves right-shifting each operation following a disturbance [79]. This

means that the processes affected by the disruption are delayed for as long as necessary

for the schedule to become feasible again. Because no jobs are re-sequenced or moved

to alternate resources, this strategy does not take advantage of any additional capacity

that may be available [60, 79]. The next strategy, called partial rescheduling, re-

sequences jobs at stations that are impacted by the disruption [60, 79]. This allows
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the scheduler to take advantage of the fact that while a delay may occur in one section

of the schedule, other jobs and processes can still be completed. Therefore, once the

resource comes back online, it may be beneficial to change the job processing order

[79]. Finally, at the extreme, the entire schedule can be regenerated when problems

occur. This is rarely done in practice because the rescheduling optimization may take

too much time to complete. Additionally, there are costs from “schedule nervousness,”

which results from constant re-tasking on the production floor [60, 79, 136, 152]. In

general, a partial rescheduling strategy that reduces the impact on the schedule’s

performance while also limiting the changes to the original schedule is preferred.

This is because it takes advantage of new information about the current state of the

production line while limiting the severity of changes to the schedule [93,136].

To avoid further delays on the production floor, any rescheduling strategy must be

implemented quickly. As previously mentioned, this typically will eliminate complete

re-optimization procedures that could take hours to complete. Similarly, rescheduling

only some portions of the flow, using metaheuristics or other optimization procedures,

could still be too time consuming. In such instances, dispatching rules or other

heuristic methods described previously can be used to correct the schedule. The

rules utilize real-time information to reschedule jobs around the disruption (machine

breakdown) [136]. In the extreme case where no schedule optimization is used and the

work is planned completely by dispatching rules, disruptions are inherently considered

by the system by the rules in place [79]. However, while this flexibility is desirable,

dispatching rules are typically outperformed by other strategies [214].

2.2.3 Discussion and Summary

This section has reviewed aspects of scheduling strategies that are relevant to this

dissertation. While in no way a complete review of all modeling, optimization, and

evaluation possibilities, the section intends to provide a foundation to understand the
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myriad of approaches developed throughout the last 60-70 years. In deterministic

scheduling, all data is know and assumed to be fixed. With stochastic scheduling,

uncertainty in various parts of the problem is allowed. Stochastic scheduling problems

can be either static or dynamic. Static problems allow for uncertainty stemming from

process times variation, breakdowns, etc. but assumes that the jobs are all known

and fixed. Dynamic scheduling removes this final constraint to allow for jobs to arrive

at varying points during the schedule’s execution.

Stemming from the various scheduling assumptions, models, and constraints, a

number of solution strategies have been developed within the literature. Table 3 pro-

vides an overview of the 4 main categories of solution strategies presented through-

out this chapter. Exact strategies, such as linear programming and branch & bound

methods, are among the first methods developed and have a large amount of research

behind their development. However, the types of problems that are solvable using

exact methods are limited to simple, deterministic problems [136, 214]. As prob-

lems began to grow in complexity, heuristic methods, which cannot guarantee an

optimum but have proven effective in many situations, began to be developed [136].

These methods typically use general rules-of-thumb to develop a schedule. The initial

schedule may be further refined through various local search methods like pairwise

swaps or the shifting bottleneck strategy. While being an important improvement,

the heuristic methods tend to have unpredictable performance and can also become

trapped in local optima fairly easily. To alleviate this, metaheuristic methods that

guide lower level heuristic methods to help better explore the space and avoid be-

coming trapped in local optima have been developed. These methods have proven

effective at providing “good” solutions to very complex problems at the expense of

increased runtime over heuristic methods. Finally, for extremely dynamic cases when

predictive scheduling is not possible, dispatching or priority ranking procedures can

be applied to select the next job or operation in real-time based on proven rules.
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These strategies essentially apply some of the constructive heuristic methods in real

time. Schedule repair techniques fall within this category.

While a wide variety of scheduling strategies have been developed within academia,

only a small amount of advances in scheduling have been transitioned to practice in

the real world [45, 60, 126,128,185,201]. One reason for this disconnect is that a sig-

nificant amount of scheduling research has been focused on mathematically rigorous

solutions to very specific problems as opposed to developing more general, approach-

able scheduling systems [60,214]. Additionally, implementing an optimization routine

that fulfills the practical needs of an organization without a planner’s intervention is

extremely difficult. Optimizers must be fed a rigid objective function that may be

difficult to quantify exactly. This in turn could lead to solutions that have good ob-

jective function values but are not feasible or cannot capture all possible options. For

instance, defining an explicit cost for missing a due date may be difficult to quantify

without detailed knowledge of the situation that only a human planner can have [84].

Typically, the scheduling systems are unable to account for this type of information

and integrate a planner’s knowledge [45, 79, 126, 127, 207], which causes planners to

sometimes abandon the use of advanced systems [60].

Another difficulty preventing the widespread adoption of planning systems, espe-

cially those able to account for uncertainty and provide robust solutions, is that many

“real-world” problems cannot be effectively described using traditional methods [79].

This is because scheduling typically relies on analytical models; however, in many

cases, it is simply not possible to describe the system in a closed form, mathemati-

cal statement [17, 18, 57, 79, 100, 110]. Because of this limitation, the simplifications

and assumptions required to model many real world systems with analytical mod-

els strip away much of the model’s effectiveness [18, 57, 167]. This, combined with

the rigid, black-box optimization methods described previously, tend to dissuade

many planners from fully and effectively implementing scheduling strategies in an
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Table 3: Summary of Schedule Solution Strategies
Exact Heuristic Metaheuristic Dispatching Rules

Applicable to:
• Deterministic • Deterministic

• Static stochastic
• Deterministic
• Static stochastic

• Deterministic
• Static stochastic
• Dynamic stochastic

Example
algorithms
and rules:

• Linear programming
(LP)

• Branch & Bound
• Mixed integer pro-

gramming

• Constructive algorithms
• Monte Carlo (MC)
• Pairwise swap
• Shifting bottleneck

• Tabu search (TS)
• Simulation annealing (SA)
• Genetic algorithm (GA)

• Shortest processing time
first (SPTF)

• Most work remaining
(MWR)

• First in, first out (FIFO)

General
benefits:

• Can guarantee opti-
mum for some prob-
lems

• Significant body of
research and meth-
ods to draw from

• Typically the fastest solu-
tion strategies (especially
constructive algorithms)

• Can be combined together
(create an initial solution
with a constructive algo-
rithm and then refine it
with pairwise swaps or
shifting bottleneck)

• Well performing in certain
cases

• Effectively explores large search
spaces while utilizing information
derived from lower level heuristics

• Capable of escaping local optima
• Generally provides better so-

lutions than heuristic methods
without the extraordinary time
required for exact methods

• Strategies are typically problem
agnostic

• Strategies are generally conducive
to multi-objective optimization
and parallelization

• Simplest methods to im-
plement

• Best approach for highly
dynamic situation where
predictive schedules are
not useful or quickly be-
come obsolete

General
disadvantages:

• Quickly become
computationally
infeasible for even
relatively small
problems

• Can only support de-
terministic optimiza-
tion

• Cannot directly opti-
mize for robustness

• Unable to guarantee exact
optimum is found

• No such heuristic can be
applied successfully to all
problems and there is no
way to know how it will
perform a priori

• Typically become trapped
in local optimum easily

• Typically require many function
calls to reach a “good” solution

• Unable to guarantee exact opti-
mum is found

• More difficult to implement and
tune the search parameters than
lower level heuristics

• Does not necessarily pro-
duce a formal schedule

• Difficult to predict perfor-
mance of rules before im-
plementation
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increasingly complex environment. In other words, insufficient interfaces between

planners and scheduling systems has contributed to the lack of widespread imple-

mentation [45,60,198,205].

In summary, traditional scheduling procedures struggle to model modern systems

that require effective scheduling to remain within schedule and under budget. This

leads to the first research question to be addressed in this thesis:

Research Question 1

How can the challenges of implementing scheduling techniques be overcome to

provide a system capable of producing robust schedules to reduce cost and

delays?

This research question is the backbone of this thesis. There are a few key points

within the question that will be addressed in the following paragraphs to formulate

specific sub-research questions.

The first point of discussion deals with the specific challenges to implementation

that need to be overcome. Most of the identified challenges stem from a disconnect

between formal scheduling and “real-world” applications. Specifically, the difficulty

that many schedule modeling methodologies have in effectively representing complex

systems needs to be addressed. Effectiveness, in this case, entails quickly modeling

the system with the correct amount of detail such that it can be used in optimization.

This leads to the first sub-research question:

Research Question 1.1: Which modeling techniques can be applied to effec-

tively model increasingly complex production systems for use in the proposed

schedule optimization methodology?

While effectively modeling a system is a step forward, a model is not useful unless

it can be used to make decisions [67]. Furthermore, a scheduling system must not

only provide the ability to make decisions but also should facilitate the automation
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of the decisions via an optimization routine [60]. Hence, any modeling techniques

must have the capability to interface with an optimization routine to efficiently find

a solution. This leads to the next sub-research question:

Research Question 1.2: Which optimization technique(s) should be imple-

mented to adjust the developed model effectively to search for optimal schedules?

In addition to having the ability to work with the developed scheduling model,

the optimization routine must also have the capability to search for schedules with

improved robustness. As such, any optimization routine selected must be able to ac-

cept objective functions beyond mathematical relationships that are able to quantify

the schedule’s robustness as discussed in Section 2.2.2.3. This leads to the following

research question:

Research Question 1.3: How can the selected optimization technique(s) be

utilized to improve the schedule’s robustness?

The following sections discuss the formulated research questions and develop hy-

potheses to guide the experimentation and development of a methodology that sup-

ports the implementation of robust scheduling techniques. In particular, Section 2.3

examines potential simulation techniques that can potentially be leveraged to model

complex systems. Upon selecting a candidate simulation framework, Section 2.4 will

further explore the chosen framework’s typical applications within scheduling.

2.3 Techniques for Modeling Complex Systems

Traditional schedule modeling techniques struggle to appropriately represent the in-

creasing complexity encountered in modern systems. Hence, over the past couple

decades, various forms of simulation have become increasingly popular as a means to

represent complex systems to enable intelligent decision making and address some of

the shortcomings of traditional schedule modeling strategies [18,57,58,91,99,100,110,
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119]. There are 3 primary forms of simulation that are common in operations research

(OR): (1) Discrete-event Simulation (DES), (2) Agent-based Simulation/Modeling

(ABS/ABM), and (3) System Dynamics (SD) [31,119]. The following sections briefly

investigate each to determine which is best suited to model the complex manufac-

turing systems of interest. Proper selection of a modeling strategy is important to

ensure time and resources are devoted to the technology with the best potential to

solve the problem at hand [190].

The potential simulation frameworks’ appropriateness is judged on the following

criteria:

• The modeling paradigm shall be capable of capturing the required levels of

complexity to be relevant to modern manufacturing systems.

• The simulation framework should be as simple to implement as possible. This

will enable easier transitions by planners who may not be completely familiar

with the modeling structure. The framework should also facilitate automated

model generation strategies. In doing so, the developed scheduling system has

a better chance of being adopted by “real-world” practitioners.

• The simulation structure shall interface with optimization algorithms to enable

the search for robust schedules.

• The modeling standard shall limit runtime to facilitate the number of cases

required by the optimization.

• The simulation shall be capable of evaluating the robustness of a system (sched-

ule stability and quality robustness).

2.3.1 Discrete-Event Simulation

Discrete-event simulation is a candidate modeling methodology to effectively represent

complex systems of interest in this thesis. Discrete-event simulation is “the modeling
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of systems in which the state variable changes only at a discrete set of points in time”

and “are analyzed by numerical methods [18].” Numerical methods entail running the

model to approximate the solution; in contrast, analytic schedule models contain ob-

jective functions that can be mathematically evaluated. This mathematic evaluation

may involve simple linear relationships or more complicated probability theory and

calculus, however in all cases, the objective function has a closed-form solution [18].

Because DES models must be “run” to obtain an estimation of the objective [18],

many optimization routines available for deterministic schedule optimization are not

applicable to simulation models.

Even though discrete-event simulation removes the ability to use many efficient

optimization algorithms, it is still an extremely popular modeling paradigm. This is

because DES is able to better model “real-world” systems that are too complex for

analytical models [100, 110]. DES is also designed for modeling manufacturing and

queuing systems. As such, many of the modeling constructs are useful for a study in

scheduling. Consequently, discrete-event simulation is a strong candidate to model

the complex systems described in Research Question 1.

2.3.2 Agent-based Modeling

Agent-based Modeling (also referred to as Agent-based Simulation or Agent-base Mod-

eling and Simulation) is a modeling framework particularly suited to representing

systems “comprised of autonomous, interacting agents [118].” In the generally agreed

terminology, agents are independent components within the system that can make

decisions based on interactions with other agents [118]. Agents can represent any

component in the system, from physical, manufactured components to technicians

and machines. The decisions made by the agents can be based on preset rules (such

as the dispatching rules discussed previously) or may be adaptable based on observed
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behavior [118]. Finally, an agent has goals that it is trying to attain (such as max-

imizing its efficiency or working to minimize process time) and works toward that

goal [118].

Agent-based modeling relies on a monotonically advancing simulation clock to

track progress [151]. At each clock tick, each agent is able to move, complete tasks,

and make decisions based on the available information. Selecting the appropriate

time step is one of the most important aspects of ABM: if the time steps are too

small, the model runtime is too large without significant gains in accuracy; however

steps that are too large can lead to a loss of accuracy and ability to represent the real

system [151]. Run-time is highly dependent on this selection and can quickly increase

as the required granularity of the simulation increases [151].

ABM has been be applied to production modeling and queuing systems [31,36,56,

111, 119, 135, 151]. In general, ABM is a good way to model highly dynamic systems

where decisions must be made at many different levels of the organization [135].

Supply chain dynamics or the selection of workers or machines to use to process a job

are some typical uses of ABM in the manufacturing sector.

However, for queuing and network systems, many constructs that are implicit in

a DES must be created for ABM. For instance, there must be physical room in the

environment for agents to stack up in front of a server or machine to form a queue,

so accurate physical spacing is a must for accurate ABM [151]. Reasons such as this

means that ABMs are typically more difficult to construct than DESs for queuing

systems [119, 151]. However, its flexibility means that ABM is also a candidate to

model and optimize the schedule for complex systems.

2.3.3 System Dynamics

The final commonly employed modeling construct is system dynamics. In a SD model,

“the real-world processes are represented in terms of stocks, [. . . ] flows between these
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stocks, and information that determines the values of the flows [31].” The stocks can

represent anything from raw material supplies to information, money, and workforce

effort allocation [31, 150]. System dynamics models are developed as a system of

differential equations that operate on continuous, aggregate stocks. As such, there

are no distinguishable individuals in the stocks or queues [31].

System dynamics models are best used to model high-level properties of a sys-

tem [31, 91, 100, 119]. The review paper by Jahangirian et al. indicates that SD is

primarily applied to high level domains such as strategy development, project man-

agement, and supply chain management [91]. In more detailed domains, such as

production planning, resource allocation, and scheduling, there were either no papers

on SD applications to these fields or the number of SD papers were significantly less

than those leveraging ABM or DES [91]. Therefore, because SD is too abstract to

effectively model the details of a discrete manufacturing environment, it is not a suit-

able technique for further investigation. As such, the following section focuses on a

comparison of DES and ABM to decide which framework to carry forward.

2.3.4 Comparison of Discrete-event Simulation and Agent-based Model-
ing

The two candidate modeling techniques that possess the required characteristics for

application to this thesis are discrete-event simulation and agent-based modeling. Ta-

ble 4 provides a summary of the frameworks’ capabilities compared to the metrics

of interest. The table includes System Dynamics for completeness, but because SD

is not applicable for this study, it is not further considered. DES’s strength lies in

the fact that it inherently contains many modeling constructs and classes to model

manufacturing and queuing networks, which typically makes modeling these environ-

ments easier in DES than ABM [119,151]. While not having these built in constructs,

AMBs are much more flexible than traditional DES and can better model systems

containing many dynamic decisions [119].
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Table 4: Summary of Modeling Frameworks

Discrete-Event
Simulation

Agent-Based
Modeling

System
Dynamics

Capture high
levels of

complexity
Ease of

implementation

Automated
model

generation

Not-applicable:
SD is not able to

capture the
granularity
required.

Interface with
optimization

Reduced
runtime

Evaluate
robustness

The proposed application requires an approach that can be automated to some

extent (to reduce the modeling burden) and can be easily linked to an optimiza-

tion routine. Because DESs are more inherently amenable to production modeling,

this should lead to a more easily defined process to automate the model building.

Additionally, the model must effectively interact with an optimization routine. The

optimizer defines a plan to be followed, and then the model should be able to take this

plan and approximate how the system performs. This capability can be better incor-

porated into a DES than an ABM because ABM typically approaches scheduling by

allowing the individual agents to make process decisions (somewhat like dispatching

rules). Requiring an ABM to follow a defined schedule removes much of the learning

and adaptation that motivates the use of ABM. Finally, ABM requires a sacrifice

of accuracy to reduce runtime because of its continuous clock formulation. DES, on

the other hand, is able to maintain accuracy and granularity because it only calcu-

lates properties and functions at required times [151], so DES should be able to limit
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runtime better than ABM.

One aspect of ABM that would be useful is to dynamically make decisions when

disruptions occur on the factory floor. Because the optimizer has to develop a plan

assuming that there are no disruptions, allowing agents to decide when to rework a

component would be helpful to ensure that the schedule is followed as it would be

in the “real world.” Modern simulation software, however, typically contains aspects

from all three paradigms [100]. Therefore, while discrete-event simulation is the

primary paradigm used throughout this thesis, ideas and constructs from ABM can

also be leveraged where appropriate.

With discrete-event simulation chosen as the primary modeling framework, the

following section provides an overview of relevant discrete-event simulation modeling

concepts. Unless otherwise specified, “simulation” henceforth refers specifically to

discrete-event simulation. Section 2.4.1.1 then discusses common uses for simulation

and addresses optimization approaches regularly used in conjunction with simula-

tion. Next, it presents the advantages and disadvantages of simulation. Section 2.4.2

concludes with the formulation of hypotheses aimed at answering Research Question

1.

2.4 Overview of Discrete-Event Simulation

Discrete event simulation models do not have a closed form, mathematical solution.

Therefore, to understand how the models are used to estimate the response of a system

to varying input parameters, a description of the fundamental modeling parameters

is presented. One initial note is that most modern simulation languages embrace

object-oriented programming to increase code re-usability and ease modeling [23,57,

100]. As such, many of the modeling concepts describe different types of objects,

classes, and interfaces typically found in simulations. The interested reader may

consult any number of discrete-event simulation references [18,57,99,100,110] to gain
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further knowledge about the typical formulations and detailed overviews of simulation

concepts. The following overview highlights some of the concepts relevant to this

thesis.

The first modeling concepts of interest are called entities. Entities typically

represent components, people, or information that flow through the modeled sys-

tem [99, 100]. Throughout the process, the entities may change state (e.g. raw ma-

terial is machined into a sub-component). The states are tracked via attributes that

are attached to each entity. The entities also track statistics about their movement

through the system (such as flow time or waiting time). These statistics can be

collected and summarized at the end of the simulation run.

Throughout the simulation run, the entities request the use of resources to com-

plete various processes [110]. In the manufacturing sense, these resources can be

machines, technicians, transporters, etc. Like entities, resources also have various

states (such as Busy, Idle, or Off-shift). These states are also tracked through the

simulation run.

The final primary components of any simulation are the queues present in the

model. Discrete-event simulation works by processing lists (queues) of entities using

resources according to specified rules and logic. Any entity proceeding through the

process moves by joining queues of other entities waiting for resources. The primary

modeling challenge is then to correctly link every queue and resource to provide a

path for entities to follow that mimics the real world system.

2.4.1 Common Discrete-event Simulation Implementation Process

The primary use for discrete-event simulation is to evaluate the performance of pro-

posed changes to systems that are too complex to model analytically [110]. Because

simulation is typically stochastic, each run only produces an estimate of the objective

function. As such, using single runs for optimization is commonly viewed as bad
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practice when considering uncertainty, and running multiple replications to produce

statistics for optimization is typically seen as too time consuming, even for modern

computers [110].

The generally applied simulation development and implementation process is out-

lined in Figure 7. This process involves first collecting data and documenting as-

sumptions. The team then decides if a simulation using the data and assumptions

described within an assumptions document is valid and detailed enough to accomplish

the study’s objective. Next, the actual simulation is coded and verified against logic

or programming errors. Finally, the simulation is validated against the real-world

system [110].

Once the model has been validated, the simulation can be exercised to deter-

mine the effectiveness of proposed improvements to the system. The first step is to

design experiments that test the various proposed alternatives [18, 110]. This step

also involves determining the appropriate number of replications to run, warm-up

period length, and the length of time to simulate [18]. Once this is accomplished,

the experiments are run and the data generated is collected and analyzed. The fi-

nal recommendations are then documented and discussed before the final solution is

implemented [18,110].

As discussed, simulation studies typically follow a rigorous development, verifi-

cation, validation, and experimentation process to determine results. Discrete-event

simulation studies, in particular, are typically formulated to assess the effectiveness

of a relatively small number of considered alternatives [18, 99, 100, 110]. These alter-

natives often represent large, strategic decisions (like whether or not to buy an ex-

pensive piece of equipment), and therefore, companies are willing to invest significant

resources into investigating the decision [37, 58]. The following section will discuss

how simulation is utilized to schedule production processes. Note that the common
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Figure 7: Steps in a simulation study. Reproduced from reference [110].
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implementation of simulation for scheduling does not consider uncertainty when plan-

ning the schedule. It also commonly does not optimize the predictive schedule and

instead focuses on evaluating various dispatching rules, which may not provide an

optimal solution.

2.4.1.1 Scheduling via Simulation

In addition to being used to evaluate alternative system designs, discrete-event sim-

ulation is utilized to generate production schedules [17, 37, 79, 84, 100, 167]. This is

accomplished by first instantiating the simulation to the current state of the produc-

tion environment. This current state includes any work in progress, current machine

states (e.g. online, in maintenance, etc.), and orders to be fulfilled. With the cur-

rent state running, dispatching rules are applied to determine the order in which to

complete jobs through the factory [17, 37, 79, 84, 100, 167]. To create a schedule, all

uncertainty within the model is turned off; this allows the model to represent the

expected system performance [100]. The model is then run from the current state

and executes jobs based on the defined dispatching/selection rules. Throughout ex-

ecution, the model tracks the start and completion of jobs along with the resources

being utilized. With this information, the model then exports the schedule that can

be distributed to the production floor [17,100,167].

While removing uncertainty may be acceptable when the scheduling time horizon

is small [79], doing so often leads to overly optimistic schedules as the horizon expands

because disruptions are more likely to occur [100]. However, because the simulation

likely includes more details than an algorithmic schedule model, the schedule pro-

duced from simulation is likely to be more accurate [100]. Similar to some robust

scheduling methods, the proposed schedule’s robustness could be estimated based on

the buffer time within the schedule. This approach, however, lacks the ability to

effectively measure the schedule’s quality robustness. Therefore, by replicating the
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schedule with the simulation’s stochasticity turned on, the riskiness of meeting dead-

lines can be evaluated [100]. In this way, a job with low slack time proceeding through

a well controlled process has lower risk than one with a high amount of slack time but

a poorly controlled process. Assessing this risk and the impact of many disruptions

that may occur during schedule execution is a strength of this “risk-based planning

and scheduling” approach [100].

Scheduling jobs utilizing dispatching rules within simulations does have some ben-

efits over the algorithmic dispatching rules methods discussed in Section 2.2.1.1. This

method allows the planner to model more complex systems and apply more detailed

dispatching rules than the more traditional methods [100]. Additionally, simulation

allows for the rules and priorities to be easily modified to generate many potential

schedules [84]. Then, based on the planner’s requirements, the “best” schedule can be

chosen among the candidates [84], and by replicating each schedule multiple times,

the schedule risk can be analyzed and traded [100].

There are, however, still many disadvantages to this approach. The first being

that there is still no way to know if a dispatching policy produces a “good” schedule,

so there may be significant trial and error involved to determine a solution [84]. Ad-

ditionally, this analysis is typically driven by the materials resource planning (MRP)

system that determines material and capacity levels. In some cases, this release is

infeasible, and no set of priority rules can make it feasible [84]. Finally, this approach

develops a schedule by applying rules to a deterministic model. If there is significant

variability in the system, the generated schedule may not be very applicable to the

realized system [84]. In such cases, replicating the schedule can show the planner

that the developed schedule may perform poorly, but in this scheduling paradigm,

this information is generally not used to guide the search for a more robust schedule.

While the previously mentioned strategy is the most common way for simulation

to be used to schedule processes within industry, simulation has increasingly been
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paired with metaheuristic optimization routines to improve a process while also con-

sidering variability [62, 79]. In this instance, the simulation is used to estimate the

performance of a design by running multiple replications through the system. Then,

the metaheuristic optimization routine provides candidate solutions to test through

the simulation [62,63,79]. The typical simulation-optimization procedure is outlined

in Figure 8. In this paradigm, the optimization routine selects candidate solutions

and feeds them to the discrete-event simulation. These candidate solutions com-

monly consist of tuning heuristic selection rules within the simulation [79, 104, 161].

The simulation is then run for a specified number of replications to enable the statis-

tical estimation of the system’s performance. The performance metrics are then fed

back to the optimization routine where the process is repeated until some convergence

criteria or maximum computational effort is reached [62,63].

Optimization Search
Routines Candidate Solution(s)

Stochastic discrete-event
simulator

Performance Estimates

(statistical analysis)

Figure 8: Optimization for simulation framework. Reproduced from reference [62].

The simulation-based optimization framework described above has the potential

to generate robust, proactive schedules for problems too complex for traditional, al-

gorithmic scheduling strategies [62]. Even with this potential, there are challenges

that prevent fuller implementation. First, even with the continuing increase in com-

putational power, computational time is still seen as a limiting factor for the im-

plementation of simulation-based optimization [38, 39, 62, 110]. Scheduling problems
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typically exacerbate this problem because of their high dimensionality and combina-

torial nature [62]. Additionally, similar to the problems with applying many schedul-

ing advancements in industry, there is typically no general approach to successfully

implement simulation-based optimization to “real-world” problems. Therefore, im-

plementing simulation fully within industry, especially for simulation-based schedule

optimization, has significant room for advancement [79].

2.4.2 Discussion

Section 2.4 has described the general formulation of discrete-event simulation method-

ologies and discussed their common implementations. Discrete-event simulation is

primarily seen as a tool to be used to evaluate large-scale decisions (such as whether

or not to buy a new machine) or potential changes to production strategies (such as

a modification to workforce levels). The simulation paradigm is also used to generate

manufacturing schedules. Primarily, this is accomplished by initiating the simulation

to the current factory state and then running the simulation with different dispatch-

ing rules to generate a schedule. In this instance, the uncertainty in the simulation

is turned off initially to create the expected schedule, and then the resulting trial

schedules can be replicated with the uncertainty to predict risk. While this strat-

egy enables scheduling for complex systems that may not have been possible with

other scheduling systems, it still relies on dispatching rules that have uncertain per-

formance. Even with the post-schedule generation risk analysis, the method may not

be able to find a robust solution if the proposed dispatching rules are not appropriate

for the situation.

The implementation of simulation-based optimization begins to merge many of

the benefits of simulation with the usefulness of metaheuristic optimization routines.

Simulation is able to estimate the performance of systems too complex for algorithmic

approaches, and by running replications of a schedule, can estimate the robustness
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of a solution (by investigating the solution’s variance or upper quantile). Coupled

with a metaheuristic optimization routine, the simulation can be guided to a more

robust solution by using knowledge gained from replicating a trial point. However,

metaheuristic optimizers typically require many function calls to find a good solution,

so even with ever increasing computational speeds, the typical implementation using

a detailed simulation may not be fully viable.

Through this discussion, hypotheses can be formulated in response to the research

questions posed in the previous section. The first sub-hypothesis (in response to

Research Question 1.1) details how to effectively model modern, complex production

systems for scheduling purposes:

Research Question 1.1: Which modeling techniques can be applied to effec-

tively model increasingly complex production systems for use in the pro-

posed schedule optimization methodology?

Hypothesis 1.1: If discrete-event simulation is leveraged, then increasingly com-

plex scheduling environments can be modeled effectively such that the infor-

mation required for use in a selected optimization routine can be captured.

This hypothesis focuses on the fact that discrete-event simulation is a proven

paradigm for modeling highly complex systems. By leveraging simulation, simplifying

assumptions that could cause schedule models to be incapable of effectively modeling

complex systems do not need to be made. Additionally, modern simulation pack-

ages have embraced object-oriented programming, which can reduce modeling effort

and improve reusability. Better user interfaces help to reduce the learning curve for

planners new to simulation. Taken together, the discrete-event simulation paradigm

should prove to be an efficient modeling framework to model complex systems at the

level of detail required for this study.
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With a modeling framework capable of effectively representing the systems of

interest, the research will turn to improving the system through optimization. To

address this, the following hypothesis is proposed:

Research Question 1.2: Which optimization technique(s) should be imple-

mented to adjust the developed model effectively to search for optimal sched-

ules?

Hypothesis 1.2: If a metaheuristic optimization routine is linked to the devel-

oped discrete-event simulation schedule model, then installation plans with

improved performance can be efficiently identified.

This hypothesis focuses on the ability of the simulation to provide estimates of

objective functions for use in optimization. A metaheuristic optimization routine is

chosen as the most likely to succeed because it only relies on knowledge of the objective

function, which can be easily extracted from simulation models. Metaheuristics,

as discussed previously, are also commonly amenable to parallelization and can be

multi-objective. With the class of optimization algorithm selected, the following sub-

hypothesis can be developed:

Research Question 1.3: How can the selected optimization technique(s) be uti-

lized to improve the schedule’s robustness?

Hypothesis 1.3: If the optimization routine and model can estimate robustness

related responses (quality robustness) and support multi-objective optimiza-

tion, then the methodology will be capable of finding robust schedules.

There are two main parts of this hypothesis that must be true to enable the

methodology to find robust schedules. First, the model to be optimized must have
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the ability to evaluate the robustness of a proposed solution. This means that deter-

ministic schedule models, in addition to being too simple for many complex systems of

interest today, cannot provide the required information for use in robust optimization.

Fortunately, simulation techniques are inherently designed to include uncertainty and

are, therefore, appropriate for this application.

The chosen optimization routine also must support multi-objective optimization.

This is because many scheduling decisions involve competing objectives which must

be balanced to provide a robust solution. With a multi-objective formulation, one

could directly include some of the various forms of robustness measures as discussed

in section 2.2.2.3. Furthermore, heuristic metrics can be included alongside the direct

estimation of quality robustness. Also, by including schedule stability or flow time

variation as objective functions along with traditional objectives such as average cost

or make-span, the optimizer could directly search for robust solutions. This is in

contrast with many strategies that apply heuristic objectives, such as increasing buffer

time, as a surrogate for true robust objective functions.

These three developed hypotheses then lead to the overall hypothesis for this

portion of the research:

Research Question 1: How can the challenges of implementing scheduling tech-

niques be overcome to provide a system capable of producing robust sched-

ules to reduce cost and delays?

Hypothesis 1: If a schedule is modeled at the appropriate level of detail via

discrete-event simulation and optimized with a multi-objective, metaheuris-

tic algorithm, then the methodology is capable of improving the robustness

of complex systems’ schedules.
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This hypothesis stresses the need to develop both models and appropriate opti-

mization frameworks in order to improve the robustness of complex systems’ sched-

ules. The modeling must be performed at the correct level of detail. Too much detail

increases the time and resources required for model creation and inflates run-time.

However, too little detail may not represent the system well enough and can fail to

provide the necessary information to make decisions. By combining the DES model

with the optimization routines described previously, the hypothesis predicts that the

methodology can generate robust schedules.

2.5 Implementation Challenges

In the previous sections, various scheduling, simulation, and optimization techniques

were reviewed. Individually, most if not all of the described techniques are relatively

mature and have been implemented in some fashion. One also notices that the increase

in computational speed has facilitated the deployment of more advanced and compu-

tationally intensive scheduling methods. Starting from the efficient but scope-limited

exact methods to the broader but complexity-limited heuristic and metaheuristic

schedule optimization models to the simulation-based optimization methods that can

handle highly complex systems, the methods advance alongside the gain in compu-

tational power [62]. Hence, as stated in Assertion 2, the technological challenges

preventing the effective modeling and simulation of complex production and manu-

facturing systems can be overcome.

Assertion 2

The lack of widely accepted robust scheduling practices is primarily due to

implementation challenges. There is no inherent technological barrier to their

application.

The following section, therefore, focuses on the implementation challenges identi-

fied in Section 2.2.3, specifically the need to reduce implementation time, reduce the
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time to identify quality solutions, improve the link between scheduling and simulation

practitioners, and better incorporate the human decision maker’s knowledge.

The challenges specified in Assertion 2 encompass multiple barriers that have

prevented recent advancements from being implemented in industry. The first chal-

lenge, as discussed in Section 2.2.3, is that many academic advances have either been

too mathematical or too specific for widespread implementation. Furthermore, these

methods are commonly very rigid, which limits the ability to take advantage of the

human planner’s knowledge. Also, while studies and recommendations detailing the

implementation of scheduling systems have been performed, the focus was primarily

placed on database design and other activities related to materials resource plan-

ning [148]. Research into the design of systems and methodologies that implement

new advances in scheduling is generally lacking [60].

Developed optimization strategies are also commonly designed for too specific of

an application or are not transparent enough to allow users to modify an algorithm for

his or her own application [62]. Improving these shortcomings by developing a more

general modeling and optimization framework is a desirable feature to help improve

industry adoption [62]. It is documented that the implementation of problem-specific

solution strategies can be very time consuming [146], so a more generalized framework

that is able to reduce the problem solving time, in both implementation and solution

identification, can help to convince management to invest in the simulation study [58].

The final large implementation challenge stems from the fact that many man-

ufacturing planners, who are typically well versed in algorithmic modeling and op-

timization methods, generally view simulation as a tool that is separate from their

domain [79]. As such, it may be difficult for the planners to appreciate the benefit that

simulation-based strategies can provide. This is related to the “Big Challenge” iden-

tified by Fowler for better integrating modeling and simulation with manufacturing:

greater acceptance of modeling and simulation in industry [58]. Hence, providing an
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interface between the traditional scheduling paradigm and simulation-based methods

may help to overcome this challenge.

These identified implementation challenges reinforce the proposition that a devel-

oped scheduling system must not only provide high quality schedules, but must also

be deployable to the “real world.” This leads to the following research question:

Research Question 2: Does a methodology that improves the interface be-

tween scheduling, simulation, and the human planners better address the needs

of the planners?

This overall research question motivates the development of a “deployable” schedul-

ing system. The implementation challenges described above must be overcome to

encourage acceptance and deployment of the methodology. Two quantifiable chal-

lenges (the need to reduce the problem setup time and the time to identify quality

solutions) lead to the development of the following research questions. Following

the investigation of these sub-research questions, further requirements to better link

scheduling and simulation practices are investigated in response to Research Ques-

tion 2. The first sub-research question investigates the possible means to reduce the

methodology’s implementation time:

Research Question 2.1: How can the methodology’s setup time and effort be

reduced to encourage further adoption within industry?

The first sub-research question is important to encourage further adoption within

the industry because constructing the DES model is a very time consuming process

[58]. A reduction in problem solving time helps to increase the time available for

problem solving iterations and reduce the financial burden on the company [58].

In doing so, reducing the problem definition and setup time could help to increase

simulation’s acceptance within the industry by making its implementation less costly.
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While reducing the problem definition and simulation setup time is important to

improve the strategy’s usefulness and reduce its initial barrier to implementation, the

methodology must ultimately provide meaningful results within a reasonable time

horizon. As such, the following research question is developed:

Research Question 2.2: How can the effectiveness of the methodology in terms

of solution quality and computation time be improved to make implementation of

a simulation-based scheduling methodology economically viable and operationally

feasible?

The following section addresses Sub-research Questions 2.1 and 2.2 by investigat-

ing potential ways to reduce the methodology’s implementation time. Hypotheses are

then formulated to address the research questions.

2.5.1 Methodology Implementation Time Reduction

The implementation time for the proposed modeling and optimization framework

involves first modeling the complex system of interest and then incorporating the

model into an optimization framework. The modeling process follows a process similar

to that shown in Figure 7 but with optimization integration inserted. To facilitate

a discussion of potential efficiency and effort-reduction opportunities, the steps are

grouped into the following phases [58]:

1. Model Design

2. Model Development

3. Model Deployment

The following subsections discuss potential ways to improve efficiency during each

phase of the simulation study. For the purposes of this work, the integration with the

optimization routine is included within the Model Deployment phase of the study.
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2.5.1.1 Potential Improvements During Model Design

Model design identifies issues to investigate throughout the study, plans the execution

of the project, and develops a conceptual model [58]. One of the primary goals of

this phase is to identify the level of complexity to include in the model [37, 58]. The

driving force behind the selection of the level of detail to model is the identification of

the questions to be answered through the study [18,37]. The inclusion of more detail

than required to support the project’s goals should be limited because it adds to the

time required to gather preliminary observations and data about the system, increases

the amount of programming and debugging required, and increases the runtime, and

cost, required to obtain a solution [57]. Therefore, ensuring that the details and

assumptions developed during model design are appropriate is critical to ensure that

the model is efficiently developed during the subsequent phase [18,37,57].

2.5.1.2 Potential Improvements During Model Development

The model development phase involves building the model, verifying the model’s

logic, and then validating its outputs against actual available data [18,58]. Fowler et

al. identified the model building phase as an area that requires a significant amount

of effort and has room for efficiency improvements [58]. One more recent improve-

ment to simulation languages that has improved model building efficiency is object-

oriented programming (OOP) [58, 100]. Simulation languages that fully leverage the

object-oriented paradigm help to improve “models’ reliability, robustness, reusabil-

ity, extensibility, and maintainability [100].” By using objects to create high level

constructs, such as servers, the expertise required to create the simulation models is

lowered [58,100]. Finally, because objects enable complex problems to be reduced to

smaller blocks, OOP helps to facilitate the verification of the final model [58,100].

The next step for improvement is to leverage the object-oriented paradigm to

automate the creation of the simulation model. There is a plethora of information
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available in modern manufacturing environments, from process routing to the time to

complete tasks throughout the factory [58]. Leveraging this information to automat-

ically build the simulation model inherently speed up the model construction time.

Furthermore, if previous work dedicated to identifying process constraints and pre-

ferred work flows completed during a traditional scheduling exercise can be leveraged,

much of the effort spent gathering data and modeling complex resource constraints

may be reduced. Automated model generation should also help in the verification pro-

cess. By eliminating the potential for human error during model creation, a model

automatically generated from individually verified components should have fewer to

no issues stemming from integrating the components [58]. As such, an automated

model generation scheme can, after an initial modeling investment, greatly speed the

model development phase and help alleviate the financial hurdle to implementing a

simulation study.

2.5.1.3 Potential Improvements During Model Deployment

The main focus for efficiency gains during the model deployment phase is the ex-

ecution time of the model [58]. For this thesis, the time required to optimize the

system is also included. Therefore, focus is placed on reducing the time required

for a single simulation replication as well as the computing time and the number of

replications required to optimize the system. The primary means to reduce single run

execution time, as discussed previously, is to limit the amount of detail captured by

the model [58]. Hence, selecting the correct level of fidelity and focusing on efficiency

throughout the modeling effort is essential to this goal.

The first technique to reduce the time to optimize the system is parallelization.

Modern simulation software includes the ability to distribute individual replications

across multiple computing cores or even multiple computers over a network. With

the abundance of computing power commonly available today, this relatively simple
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addition can greatly speed any optimization run. As such, maximizing the problem’s

parallelization is an important first step to reducing the time for optimization.

Another approach to improving optimization speed is to intelligently decide on the

number of replications required for each trial solution [62]. Traditionally, the number

of replications is decided a priori in an effort to populate the response distributions

with enough information to estimate the system’s performance to a specified confi-

dence level [160]. During optimization, however, this approach is typically inefficient

as replications are wasted evaluating solutions that are clearly sub-optimal [62]. In-

deed, the goal of optimization is to find the “best” design, not to provide an exact

estimate of the performance of the optimum. As such, much computational effort is

wasted evaluating the performance of designs that are clearly inferior to others [39,62].

Therefore, developing a procedure to intelligently run replications so that the algo-

rithm spends most of its time evaluating “good” solutions can help to improve the

optimization’s efficiency [39,62].

While the previous set of techniques focuses on reducing the time required for

the optimization routine by reducing the time to evaluate solutions, the following

techniques attempt to reduce the number of solutions that must be evaluated. If

the optimization technique employed is an evolutionary algorithm, seeding the ini-

tial population with “good” points may help reduce the number of generations re-

quired [66, 147]. For scheduling problems, the initial population can be seeded with

points generated through various heuristic or dispatching procedures [66,147]. Com-

bining these solutions with randomly generated solutions can help to ensure that the

algorithm still explores the design space while having well-performing initial points

to exploit. This procedure also ensures that an evolutionary algorithm with elitism

(the best designs are always kept) never perform worse than a heuristic method used

to create some of the initial population members [66].

Beyond improving the initial population, some potential modifications to the
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search strategy can also be made to improve the convergence of scheduling prob-

lems. One such strategy is to hybridize a genetic algorithm with an intermediate

local search [66]. This is a promising strategy to hone in on a solution because while

genetic algorithms are good at exploring the design space, they typically have dif-

ficulty converging [66]. As such, a local search can be used to fine tune individual

population members after the genetic operations have been completed. In this way,

the genetic algorithm can handle the global search, while the local search is used to

speed the convergence of individual population members [66].

Similar to the previous strategy, the mutation strategy of a genetic algorithm may

be modified utilizing information beyond the fitness function [147]. In a scheduling

problem, delays and disruptions typically occur on the most highly utilized (or bot-

tleneck) machine. Any process information that shows where delays or disruptions

are occurring could be used to guide the potential jobs or sequences for mutation. For

example, intelligent mutation strategies are developed such that if a child is selected

for mutation, a job being processed on a machine with the maximum workload is

moved to one with the minimum workload [147].

Finally, in the case that a solution is required very quickly or the problem is

too large that population-based optimization is not feasible even with parallelization,

point-based optimization algorithms may be used. While these strategies do not in-

trinsically explore the space as well as population based methods do [29], they can

potentially arrive at solutions more quickly. The effectiveness of the point-based opti-

mization strategies compared to the NSGA-II are contingent on the problem’s runtime

(both in terms of single replication runtime and the number of replications required),

complexity, and a priori knowledge of relative objective functions’ importance.

With these potential improvements to optimization strategies applicable to schedul-

ing delineated, the following section discusses requirements to overcome the “soft”

implementation challenges, namely, the need to improve the link between scheduling
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and simulation while also better incorporating the human decision maker into the

methodology.

2.5.1.4 Improved Link between Scheduling and Simulation

A potential means to improve the link between scheduling and simulation is to in-

corporate strategies developed for visual, collaborative decision making. In recent

years, collaborative decision making and data visualization have been recommended

as important methods to help identify solutions to complex, multi-faceted prob-

lems [78, 97, 98, 179, 181]. Furthermore, many problems faced in todays world re-

quire a multi-disciplinary team to arrive at a solution that satisfies all sides of the

issue [78,168,184,212]. In situations where the users may have different backgrounds

and preferences, each user may prefer or be more comfortable with one view over

another [78]. When multiple views or representations are required, ensuring that

each are interconnected is necessary to support collaboration across disciplines [78].

Therefore, identifying views and decision making strategies familiar to each user can

help to facilitate collaboration amongst the stakeholders.

It is observed that “it seems necessary for viable scheduling systems to combine

the best of historical human expertise, theoretical or mathematical knowledge, and

the common sense of the current user [136].” Human schedulers are seen to have

superior capabilities in the following areas [79,84,127,207]:

Objective Flexibility: As discussed previously, fully describing and capturing the

objectives of a scheduling problem mathematically is extremely difficult. Hu-

mans, however, “can cope with many stated, non-stated, incomplete, erroneous,

and outdated goals and constraints [79].” Furthermore, even without the use of

stochastic scheduling techniques, the human can potentially identify schedules

that are robust to disruptions [207].
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Communication: Humans can communicate and negotiate with operators and cus-

tomers. This can provide alternative solutions that a rigid optimization cannot

identify.

Intution: Humans can better integrate past experiences and knowledge into their

scheduling decisions. From knowing which operators to assign to a job to plan-

ning job A on machine 2 instead of machine 1, the human can implement this

knowledge without directly quantifying the impact to the optimization routine.

Hence, an effective data visualization and user interface is likely necessary to support

the human decision maker [45,60,79,125,198,201,205].

The purpose of providing this decision support tool is two-fold. First, providing

a means to down-select among promising scenarios and potentially modify selected

plans enables the human planners to utilize their experience to supplement the mod-

els, objectives, and constraints used to generate the solutions [60]. Secondly, the

decision support tool can greatly improve the transparency of the solution process.

Increased trust through increased transparency in the outputs of the tool are im-

portant to encouraging its usage [60, 206]. Especially for critical decisions with high

uncertainty and tight constraints, it is critical that the planner feels that he or she is

in control and not using a “black-box” to obtain a solution [206]. Hence, providing

an appropriate decision support tool to incorporate human experience and increase

the transparency of the solution process can potentially enhance the understanding

of results from a simulation exercise and improve the link between simulation and

scheduling practitioners.

The following section formulates hypotheses for Research Question 2 and its sub-

research questions. These hypotheses guide the design of experiments formed to test

whether the features discussed increase the “deployability” of the proposed method-

ology.
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2.6 Discussion

The previous section has discussed some strategies found within the literature that

could help to address implementation issues preventing simulation from being more

utilized by manufacturing planners to optimize schedules with uncertainty. A primary

issue is that simulation studies are commonly seen as too time consuming to be

worth the investment. Additionally, there is a more “social” challenge curtailing the

use of simulation in the industry: a general lack of acceptance of simulation as an

appropriate problem solving strategy [58]. The improvements discussed throughout

this section to improve the model design, development, deployment, and analysis

phases have the potential to help overcome the identified challenges. Therefore, the

following hypothesis in response to Research Question 2.1 is formulated:

Research Question 2.1: How can the methodology’s setup time and effort be

reduced to encourage further adoption within industry?

Hypothesis 2.1: If the advanced object-oriented nature of modern discrete-

event simulation packages is leveraged to help automate model generation

and if metaheuristic algorithms are appropriately implemented to increase

the optimization’s flexibility, then the methodology’s implementation time

and effort will be reduced.

Hypothesis 2.1 stresses reducing modeling time to improve the time to imple-

ment simulation for manufacturing scheduling. The hypothesis states that the object-

oriented nature of modern simulation languages can allow for automated model gen-

eration. It also states that the problem-agnostic trait of metaheuristic algorithms can

support the development of general optimization frameworks, thereby enabling them

to be applied fairly quickly. This hypothesis posits that by leveraging these features,

the time required to implement the proposed simulation-based optimization study

can be reduced.
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While reducing the implementation time is valuable to help reduce the cost of

initiating the methodology, the computational time required to identify a feasible

and “good” solution must also be reasonable. In other words, the methodology must

be capable of producing a solution in time to be usable within the planning horizon.

Therefore, based on the discussion about strategies that have the potential to improve

the model deployment time (Section 2.5.1.3), the following hypothesis is formulated:

Research Question 2.2: How can the effectiveness of the methodology in terms

of solution quality and computation time be improved to make implementa-

tion of a simulation-based scheduling methodology economically viable and

operationally feasible?

Hypothesis 2.2: If alternative optimization strategies are implemented, then

the methodology can be used to explore and exploit the solution space

quickly enough to make implementation feasible and viable for a wider range

of time and resource constraints and solution quality requirements.

Hypothesis 2.2 recognizes that, in order to improve computation time enough to

make the methodology feasible for use in a time restricted environment, the execu-

tion efficiency must be addressed at many levels. The first portion of the hypothesis

recognizes that an important part of reducing the computation time is to limit the

complexity of the simulation. A simpler simulation is preferable if it is still able to

answer the study’s questions and enable the user to judge competing designs. With

an efficient simulation developed, focus must then shift to improving the optimization

routine. Techniques discussed in the previous section provide promising strategies to

reduce the time to reach an optimum while also potentially improving the solution

quality. With these improvements in place, the hypothesis states that the optimiza-

tion can be sped enough to make it usable for the development of time sensitive

planning and scheduling problems.
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With these sub-research questions addressed, the following hypothesis is formed

in response to Research Question 2:

Research Question 2: Does a methodology that improves the interface between

scheduling, simulation, and the human planners better address the needs of

the planners?

Hypothesis 2: If the methodology requires a low amount of implementation

effort and is shown to provide clear benefits with acceptable increases in

computation time over traditional scheduling methods while effectively in-

tegrating the knowledge of the human planner, then the methodology can

be successfully implemented to solve “real-world” problems.

This overarching hypothesis contends that, in addition to the improvements inves-

tigated through Sub-research Questions 2.1 and 2.2, properly integrating the knowl-

edge of the human planner is needed to ensure deployability. This is intended to

improve acceptance of the simulation results while also enabling the decision makers

to utilize the simulation results without intimate knowledge of simulation.

The following section identifies the main gaps addressed by this research and

concludes this chapter with a discussion of the overall research objective.

2.7 Gap Analysis

This research addresses multiple gaps identified within the literature. The first gap

to be addressed is related to Research Question 1. The current scheduling tools have

difficulty in modeling and optimizing the complex manufacturing systems that are

commonly required for modern aerospace vehicles. These difficulties are the result of

various limitations in commonly implemented methodologies.

The first limitation, as addressed by Sub-Research Question 1.1, is that the math-

ematical models typically employed to represent schedules have difficulty capturing
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the level of detail required to make well-informed decisions. Additionally, as addressed

by Sub-Research Question 1.2, many traditional optimization paradigms (e.g. linear

programming, branch & bound, etc.) are not suitable for application to simulation

models. While applicable optimization paradigms have been developed, there is little

research into how this interface can be improved for scheduling-specific optimiza-

tion problems. The final limitation, from Sub-Research Question 1.3, is that many

common practices do not explicitly account for uncertainty to improve the sched-

ule’s robustness. Uncertainty and disruptions will continue to increase with system

complexity, so this consideration will continue to grow in importance.

The second gap identified in the literature is a lack of discussion about the per-

ceived relevance of existing approaches and their implementation within the industry.

It has been observed that many advances in scheduling, while well-formulated in

academia, struggle to be transferred to industry. As such, Research Question 2 seeks

to understand what makes a newly developed scheduling system deployable to in-

dustrial practitioners to encourage adoption. Usefulness is tied to reducing the time

and effort required to both setup a system and use it to generate results. As such,

opportunities to improve aspects of implementation throughout model development

and execution have been identified in response to Sub-Research Questions 2.1 and

2.2. Finally, developing the method to effectively work with the human planner is

key to encourage implementation.

Addressing these gaps called for the development of a new methodology that

enables robust scheduling for increasingly complex manufacturing processes. This

leads to the development of the research objective discussed in the following section.

2.8 Research Objective

From the gap analysis and assertions previously discussed, the following research

objective is formulated:
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Research Objective

To enable the integration of robust design principles with current, deterministic

scheduling practices to efficiently schedule processes so as to reduce risk within

increasingly complex production systems

To fulfill this research objective, a methodology is required that has the following

characteristics. These characteristics are directly dictated by the hypotheses formu-

lated in Sections 2.4.2 and 2.6.

Required Characteristics & Capabilities

1. Quickly and easily generate any required models from existing scheduling tools

2. Be mostly automated and integrated with current systems

3. Capability to evaluate schedule robustness

4. Integrate with an optimization routine that is suitable for the problem and is

capable of improving the system’s schedule robustness

5. Be scalable to manufacturing problems seen throughout the aerospace industry

6. Incorporate the knowledge and experience of the human planner

A methodology exhibiting these characteristics and capabilities can help reduce

costs by supporting many levels of the organization. Example applications can be

found in Table 5.

2.9 Chapter Summary

This chapter has reviewed common scheduling practices and has identified gaps that

make it difficult to schedule processes for modern, complex systems. Through the

review, research questions (Research Question 1 and its sub-research questions) de-

signed to elicit characteristics of a successful robust scheduling system are developed.
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Table 5: Examples of the Proposed Methodology’s Benefit Throughout an Organiza-
tion

Analysis Level Management Level Organizational Level
Support legacy tools to
break down barriers to

implementation

Identify overarching
strategies for robust

optimization

Reduce risk of schedule
overruns

Following a further review of complex system modeling techniques, hypotheses are

formulated that identify the necessary characteristics of a modeling and optimization

framework to overcome the identified gaps. In addition, this chapter has identified

the need to incorporate both technical feasibility and economic viability consider-

ations into any developed methodology to ensure it can be deployed within an in-

dustrial setting. This leads to additional research questions (Research Question 2

and its sub-research questions). The hypotheses put forward then delineate addi-

tional requirements to reduce the barriers to implementation and increase the overall

methodology’s usefulness. This chapter then provides a summary of the identified

research gaps and the research objective that are further addressed by the proposed

methodology described in the following chapter. Figure 9 illustrates this disserta-

tion’s research structure. The following chapter discusses the methodology proposed

to fulfill the research objective.
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Observation 1:
Increasing sys-
tem complexity
is contributing
to rising pro-

gram delays and
cost overruns.

Observation 2:
Increasingly

complex systems
are challenging

traditional sched-
ule optimization

approaches.

Assertion 1:
Robust schedul-
ing techniques
can help alle-
viate some of
the increasing

costs and delays
experienced by
the aerospace

industry.

Assertion 2:
The lack of

widely accepted
robust scheduling

practices is
primarily due to
implementation
challenges. There
is no inherent
technological
barrier to their
application.

Research
Question 1:
How can the
challenges of
implementing
scheduling
techniques
be overcome
to provide a

system capable
of producing

robust schedules
to reduce cost
and delays?

Sub-Research
Question 1.1:

Which modeling
techniques can be

applied to effectively
model increasingly
complex production

systems for use
in the proposed

schedule optimization
methodology?

Sub-Research
Question 1.2: Which
optimization tech-
nique(s) should be
implemented to

adjust the developed
model effectively
to search for op-
timal schedules?

Sub-Research
Question 1.3: How
can the selected

optimization tech-
nique(s) be utilized
to improve the sched-

ule’s robustness?

Research
Question 2:

Does a method-
ology that

improves the
interface between
scheduling, sim-
ulation, and the
human planners
better address
the needs of
the planners?

Sub-Research
Question 2.1: How
can the method-
ology’s setup time
and effort be re-

duced to encourage
further adoption
within industry?

Sub-Research
Question 2.2: How
can the effectiveness
of the methodology
in terms of solution
quality and com-
putation time be
improved to make
implementation of
a simulation-based
scheduling method-
ology economically
viable and opera-
tionally feasible?

Hypothesis 1.1: If discrete-event
simulation is leveraged, then in-
creasingly complex scheduling

environments can be modeled ef-
fectively such that the information
required for use in a selected opti-
mization routine can be captured.

Hypothesis 1.2: If a metaheuristic
optimization routine is linked
to the developed discrete-event
simulation schedule model, then
installation plans with improved

performance over an initial, random
set of schedules can be identified.

Hypothesis 1.3: If the optimization
routine and model can estimate
robustness related responses

(quality robustness) and support
multi-objective optimization, then
the methodology will be capa-
ble of finding robust schedules.

Hypothesis 1: If a schedule is
modeled at the appropriate level of
detail via discrete-event simulation

and optimized with a multi-
objective, metaheuristic algorithm,
then the methodology is capable
of improving the robustness of
complex systems’ schedules.

Hypothesis 2.1: If the advanced
object-oriented nature of modern
discrete-event simulation pack-

ages is leveraged to help automate
model generation and if metaheuris-
tic algorithms are appropriately
implemented to increase the op-
timization’s flexibility, then the
methodology’s implementation
time and effort will be reduced.

Hypothesis 2.2: If alternative
optimization strategies are im-

plemented, then the methodology
can be used to explore and exploit
the solution space quickly enough
to make implementation feasible
and viable for a wider range of

time and resource constraints and
solution quality requirements.

Hypothesis 2: If the methodology
requires a low amount of imple-
mentation effort and is shown to
provide clear benefits with ac-

ceptable increases in computation
time over traditional scheduling

methods while effectively integrat-
ing the knowledge of the human
planner, then the methodology
can be successfully implemented
to solve “real-world” problems.

Figure 9: Summary of Research Structure
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CHAPTER III

PROPOSED METHODOLOGY

The assertions and review of the current literature discussed throughout the previ-

ous chapters have identified gaps within current scheduling practices for low volume,

complex production systems. The development of a new robust scheduling methodol-

ogy (PORRTSS: Production Optimization to Reduce Risk Through Simulation-based

Scheduling) with the characteristics established in the previous chapter is needed to

fulfill the research objective formulated as a result of the identified gaps. The required

characteristics are derived from the hypotheses put forward to answer research ques-

tions identified throughout the literature review. Therefore, by implementing the new

methodology, experiments can be performed to test the hypotheses and, ultimately,

evaluate the efficacy of the proposed methodology. An overview of the proposed

methodology is provided in Figure 10. Each step of the methodology is discussed

further through the remainder of this chapter.

3.1 PORRTSS Methodology Overview
3.1.1 Step 1: Model Generation

The goal of Step 1 is to generate a simulation model suitable for optimization using

information readily available in a tactical level schedule model. To do so, a determin-

istic schedule similar to those currently used in industry is used as the input. This

schedule at a minimum contains a list of tasks to be completed, the nominal time to

complete each task or process, planned task start and end times, a set of resources

(e.g. manpower, materials, etc.) required for each task, and precedence relations for

each process. These pieces of information are contained in any scheduling program

that is in use today, and would be generated during a pre-planning phase. With
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Input: Production Schedule

• Tasks
• Nominal time required to complete
• Required resources
• Precedence relations

The questions the methodology is in-
tended to answer (e.g. which set of pro-
cesses are high risk and would bene-
fit from proactive scheduling) must also
be defined.

Automated Model
Generation

Reduces modeling effort by lever-
aging production schedule inputs
to automatcally generate pro-
duction model

Simulation

• Estimates performance of sys-
tem including uncertainties

• Evaluates solution robustness

Stochastic
Optimization Routine

• Sets decision variables to
drive the simulation

• Decision variables are defined
based on the questions the en-
vironment is intended to an-
swer

Solution
Down-Selection

• Down-selects a promising
schedule from set of generated
Pareto optimal solutions

• Provides the capability for de-
cision makers from various
disciplines to collaborate on
the down-selection and man-
ual schedule modification pro-
cess

Schedule
Propagation &

Analysis

• Leverages legacy tools to
propagate optimization
results throughout the
organization

Output: Schedule Formatted for the Or-
ganization’s Systems

• Accessible by manufacturing engineers, pro-
curement, and accounting personnel

• Assesses how the proposed schedule impacts
the entire process

• Estimates cost
• Provides manpower requirements
• Robust plan for high-risk portions of the flow

investigated through Steps 1–4

Step 1 provides the simulation
model necessary to evaluate
schedules generated in Step 2

Objective Function
Evaluation

Schedules
to Evaluate

Once solution criteria are met,
the Pareto optimal schedules
identified during Step 2 are
down-selected in Step 3

Provides

Step 3 provides
a single sched-

ule for propaga-
tion to Step 4

Step 1: Model Generation

Step 2: Simulation-
based Optimization

Step 3: Schedule
Down-Selection
& Modification

Step 4: Schedule Propagation
& System-wide Analysis

Addressed within this
document

Responsibility of organization
sponsoring study

Figure 10: The PORRTSS: Production Optimization to Reduce Risk Through
Simulation-based Scheduling Methodology
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this information, an automated model generation procedure is developed and imple-

mented to translate this information into servers, links, and resources required for the

simulation model.

Simplifications to the simulation model can be made by leveraging decisions made

during the original schedule generation. To illustrate, the original schedule optimiza-

tion algorithm generates a optimal schedule (according to a defined objective) that

accounts for all resource and precedence constraints. In this optimal schedule, tasks

that have the same predecessors (and, hence, become available for completion at the

same point) could require the same resources. In this case, the schedule optimization

sequences these tasks to respect the resource constraints. By constraining the sim-

ulation to complete these tasks in the optimized order, even though the precedence

relations do not specify this order, the simulation can approximate the resource con-

straints without directly modeling them. This helps to reduce the time to create and

verify the simulation model while also limiting model run-time.

The outcome of this step is a simulation model that matches the performance

of the input schedule but is also capable of incorporating more detailed logic and

stochastic elements to better estimate the system’s robustness.

3.1.2 Step 2: Simulation-based Optimization

The purpose of Step 2 is to incorporate the generated simulation, which is capable of

estimating robustness measures, with a multi-objective, metaheuristic optimization

routine to improve the robustness of the plan. With a sufficiently detailed simulation

model in place, a stochastic optimization routine is then employed to intelligently

set decision variables for the simulation. The objective function for the optimization

includes an evaluation of system robustness. Robustness and risk are measured by the

resulting schedule’s quality robustness as well as additional heuristic metrics identified

by the subject matter experts. Many options to improve the speed of the optimization
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for inclusion in the methodology are investigated. Once the solution criteria are met,

the optimizer passes the proposed schedule(s) to a schedule down-selection decision

support environment.

3.1.3 Step 3: Schedule Down-Selection & Modification

The goal of Step 3 is to support the experienced decision makers in the down-selection

to a single schedule for implementation. Hence, this step provides data visualization

and interaction capabilities to support collaborative decision making. This includes

the capability to assess various levels of the plan: from high level, system-wide met-

rics to lower level, task-by-task interactions. Furthermore, the ability to modify the

proposed plans and assess the results is provided to enable the planners to have ulti-

mate control of the schedule. In doing so, this step helps to improve confidence in the

methodology, incorporate expert knowledge from multiple backgrounds, and, finally,

identify a schedule for system propagation during Step 4.

3.1.4 Step 4: Schedule Propagation & System-wide Analysis

As shown in Figure 10, Step 4 is not a new capability identified and tested within this

work. Rather, Step 4 of the methodology is included as a means to “close the loop”

and identify how the results from Steps 1–3 are incorporated back into the sponsoring

organization’s overall planning system. As such, the capabilities discussed within this

section are included for completeness but are neither developed nor tested throughout

this work.

In most cases, the deterministic schedule models have the capability to perform

some measure of Monte Carlo analysis to assess the schedule’s risk. While not as

capable as the simulation, Monte Carlo analysis is able to interface more directly

with the organization’s established systems and is likely to be more trusted than a

new method. Therefore, a Monte Carlo analysis may be used to estimate how the

proposed schedule’s risk propagates through the rest of the production plan.
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After understanding how the proposed schedule impacts the overall process, the

schedule is propagated through the system. This enables other members of the or-

ganization (from marketing and sales to the manufacturing engineers planning the

step-by-step work orders) to utilize the more detailed and robust schedule in their

work. As such, the methodology delivers a schedule formatted for use throughout the

organization that estimates cost, provides manpower requirements, and assesses how

the proposed schedule impacts the rest of the process.

Before detailing the specific implementation of the methodology in the next chap-

ter, the next section discusses the case study that is used as a testbed for the method-

ology.

3.2 Case Study Description

The methodology is applied to plan the installation of sensors on an aerospace system.

The major structural manufacturing and sub-system installation plan consisting of

potentially over 1000 production steps is well defined. Planning sensor installations,

however, is a more challenging exercise because each sensor has specific constraints on

the times it can be installed during the primary production process. Some examples

of the general constraints and requirements that may be important are:

• Some sensors require other sub-components to be integrated before they can be

installed

• Access to the installation site could be blocked by other assemblies → the

blocked sensors must be installed before access is blocked

• Installations must not occur during times when access is either unsafe or infea-

sible (e.g. during testing, inspections, moving operations, etc.)
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The top-down design decision support process (Figure 11) [121] is commonly ap-

plied when addressing any engineering problem. As such, the following sections dis-

cuss how this process is implemented for the problem of interest:

1) Establish Need

2) Define the Problem

3) Establish Value

4) Generate Feasible Alternatives

5) Evaluate Alternatives

6) Make Decisions

Figure 11: Top-Down Design Decision Support Process [121]

While the case study description provided in the following section briefly mentions

the implementation of portions of the methodology, a full description of each step is

contained in Chapter 4.

3.2.1 Establish Need

Sensor installations represent a significant portion of the manufacturing processes

required to build the vehicle. Due to significant budget and schedule constraints,
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delays during production must be kept to a minimum. Being able to properly plan

sensor installations as to minimize their impact on the primary production flow is

thus critical to minimizing these potential delays.

The aerospace vehicle’s production process is complex with high quality standards

and many manual assembly and installation processes. This leads to a potentially

highly variable production process. Adding sensor installations to this manufacturing

system, with their limited installation windows and accessibility challenges, can only

lead to increased variability and risk. Therefore, to help ensure that the overall sched-

ule is met, controlling the uncertainty by developing a robust installation schedule is

imperative.

3.2.2 Define the Problem

Sensor installations have traditionally been planned manually by leveraging manu-

facturing engineers’ best judgment. In addition to being a very tedious and time

consuming process that could delay other important planning activities, this tradi-

tional process is not able to quantify the impact on process time, risk, etc. of a chosen

sensor installation plan. Because of this limitation, the developed plan may miss op-

portunities for system-level process improvement and risk reduction because of the

low-level scope of the planning.

Furthermore, directly applying traditional scheduling methods to this problem

is challenging. An objective function is difficult to formulate as a linear program

or directed graph due to complexity related to the number of sensor installation

opportunities available throughout the process flow. For instance, a sensor installation

started in parallel with a primary process may not be completed during that process.

In this case, depending on whether the next process is able to proceed alongside

the sensor installation or not, this may or may not cause a delay. Additionally,

dealing with specific rework scenarios (e.g. where a sensor may be damaged during
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installation) cannot be directly captured in common Monte Carlo implementations.

As such, applying the PORRTSS methodology to this problem can help to reduce

production risk by enabling the quantification of the impact of the sensor installations

on the production flow. Such capability could motivate managers to replace the

tedious, SME driven processes traditionally used to plan sensor installations by this

more robust approach.

3.2.3 Establish Value

Implementing the PORRTSS methodology to this case study has two primary goals:

1. Improve the sensor installation plan for a major subassembly of a complex, low

production rate aerospace vehicle by:

• Minimizing the increase in process time from delays due to sensor instal-

lations

• Improving the robustness of the proposed schedule by:

– Accounting for process time uncertainty in the installation plan

– Accounting for rework when optimizing the schedule

– Providing options to install sensors early in the installation window to

provide buffer for potential schedule changes or sensor damage

– Planning for sensors that are physically close to be installed near each

other in the schedule such that technicians may become familiar with

the installation site

– Quantifying the risk to the production schedule due to sensor instal-

lations

• Minimize the manpower required to install sensors to free resources for

other tasks

• Maximize the number of sensors that are installed on the vehicle
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2. Reduce the burden on planners by automating the scheduling process for sensors

by:

• Automatically building a model capable of quantifying the impact of sen-

sor installation by adding details to information already contained within

schedule models

• Optimizing the schedule using the developed model and metaheuristic op-

timization routine

• Providing decision support tools to support collaboration

3.2.4 Generate Feasible Alternatives

In order to identify feasible installation schedules, it is necessary to capture the con-

straints that impact or prohibit the installation of sensors. A wide variety of con-

straints exist for the problem: accessibility to the installation site, not allowing instal-

lations during unsafe or otherwise inhibiting primary production processes, etc. To

facilitate this exercise, a compatibility matrix is defined that enumerates these con-

straints by matching each sensor installation with each primary production process

during which it can be installed. A notional example can be found in Table 6.

Table 6: Notional Sensor and Process Compatibility Matrix
Sensor 1 Sensor 2 Sensor 3 Sensor 4

Process 1 1 1 0 1
Process 2 1 0 0 0
Process 3 1 1 1 1
Process 4 0 0 0 0

The compatibility matrix maps each sensor to each primary production process

to specify if the sensor can (1) or cannot (0) be installed in parallel with each pro-

cess. This formal approach helps to organize the various constraints that could arise

from multiple sources. With the constraints specified, feasible alternative installation
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schedules can be formulated. By specifying the constraints in this way, only feasible

installation sequences are considered, which simplifies the optimization algorithm.

Then, during model execution, the matrix is used again to check whether primary

processes or sensor installations may continue based on process logic.

3.2.5 Evaluate Alternatives

With feasible alternatives defined, the model is then used to evaluate proposed instal-

lation schedules. Based on the requirements of the problem and by making conser-

vative assumptions about the schedule provided, it was determined that simulating

the process flow was sufficient to quantify the impact of the sensor installations (as

opposed to a much more detailed physical simulation with actual locations modeled

within the factory). With this model in place, each plan is replicated to provide an

output distribution to evaluate the quality robustness of the proposed installation

plan. The generation and evaluation of alternatives is guided by the implemented

optimization routine.

The formal optimization problem statement is described in Equation 3:

Minimize: F (xlabor,xcriticality,xi) ,

i = 1 . . . nsensors

Subject to: Compatibility Constraints

(3)

where: xlabor represents the maximum number of sensors that can be installed concur-

rently (due to a limited number of technicians) and xcriticality denotes the criticality of

a sensor that will not be re-installed if it is damaged during installation. For example,

if a sensor that is included to gather data to validate a model is damaged, it may

not be worth replacing. However, if a sensor critical for guidance or vehicle health

monitoring is damaged, it must be re-installed regardless of the effort required. Next,

xi denotes the primary production process during which each sensor i is planned to be

installed. Finally, the compatibility matrix accounts for all of the process constraints
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impacting the manual installations. All other constraints impacting the primary pro-

cess tasks are accounted for by observing the process flow from the deterministic

schedule. While the capability to include “criticality”-based scenarios is available, it

is not currently used in the algorithm (because it is preferable to find scenarios where

all sensors are installed). Therefore, the rest of this work assumes that all sensors, if

they are damaged during installation, are re-installed.

The objective functions of interest are described in Table 7. Risk is reduced in

multiple ways through the selection of the objectives:

1. The results of each replication are summarized by their median (to improve

expected performance) and the 80th quantile (to reduce risk). In other words,

it is possible that an installation plan has a good median performance, but be-

cause some of the sensor installations could cause significant delays, the 80th

quantile could be significantly worse. The median and 80th quantiles of each ob-

jective are, therefore, included as separate objective functions for sorting. This

accomplishes the general goal of robust scheduling by providing good average

performance while also working to reduce risk (improving the quality robustness

of the schedule).

2. Maximizing the slack time between a planned sensor installation and its final

installation opportunity (as defined by the compatibility matrix) gives planners

increased flexibility to re-plan an installation. This may be required if the

sensor is damaged during the initial installation or the installation simply no

longer works with the actual state of the factory during production. Increasing

schedule slack time is an established practice to reduce schedule risk and helps

to differentiate between installation plans that may have similar impacts on the

process time.
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3. In an effort to reduce the risk of major delays due to a critical sensor’s installa-

tion error, additional slack time is allocated to these installations. This should

provide more opportunities to discover a quality issue and re-install critical

sensors.

4. Attempt to install physically close sensors around the same time within the

schedule to reduce the time spent by the technicians getting familiar with the

installation site. Furthermore, by bringing multiple sensors to a single instal-

lation site, the number of times the technicians must move in the vehicle is

reduced, which could help to reduce the opportunities for damage.

By including these metrics, the risk to the production plan is proactively reduced by

improving the plan’s quality robustness and, by including slack time, rescheduling

is eased. Finally, by closely scheduling neighboring sensor installations, the burden

on the installation technicians should be reduced by increasing his or her familiarity

with the installation location.

3.2.6 Make Decisions

Because the optimization routine returns a set of non-dominated solutions, a planner

must make the final determination about which schedule is “best.” This determina-

tion is made by considering the specific risk tolerance, available cost and time, and

supplier information available at the time. Furthermore, these decisions require in-

put from multiple stakeholders, industrial and manufacturing engineers along with

the avionics team, so properly supporting collaborative decision making is essential.

This is accomplished by providing a decision support environment.

Once a decision is reached, the chosen sensor installation schedule is fed back

into the organization’s overall production schedule. This will enable an evaluation of

the developed plan on the overall schedule while also integrating the identified plan

with the rest of the production schedule. By following this process, the organization
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Table 7: Overview of Objective Functions
Objective
Function

Description

Process Time The time from the start of the first process to the completion of the final task
during which work is completed. This excludes off-shift time (e.g. nights and
weekends).

Slack Time
Metric for All

Sensors

The slack time metric for an individual sensor installation is the number of
production processes between the planned installation and the final installa-
tion opportunity. The metric is used instead of actual simulation time to avoid
encouraging delays in the process that artificially increase the time between a
planned installation and its final opportunity. Mathematically:

Slack Time ≡
iFinal Installation Opportunity∑

i=iPlanned Installation

{
Primary Processi is compatible, 1
Primary Processi is not compatible, 0

Slack time is a common heuristic designed to increase solution robustness.
Increased slack time means that the sensor has more alternate opportunities
to be installed if there is a delay or if the sensor is damaged during its planned
installation. The Slack Time for All Sensors metric sums all of the slack times
to provide an overarching measure of risk to compare between installation
plans.

Slack Time
Metric for

Critical
Sensors

This metric only sums the slack time for sensors defined as highly critical. In
doing so, the mission critical sensors are favored with more slack to provide
more opportunities for their installation without leading to production delays.

Closely
Schedule

Neighboring
Installations

A significant portion of the time required to install sensors is spent locating and
accessing the installation site. This metric favors scenarios where sensors that
are physically close to each other are planned close together in the schedule.
This metric is calculated by the following equation:

n−1∑
i=1

n∑
j=i+1

|ti − tj |
max (|~xi − ~xj | , 1) (4)

where: t represents the planned start time of each sensor installation and ~x
represents the physical XYZ location of each sensor.
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would create a robust installation schedule that mitigates risk and, ultimately, helps

to reduce schedule delays and cost overruns.

The following section identifies how the PORRTSS methodology compares to the

current system in place.

3.3 Current vs. Proposed Planning Process

The end goal of the planning process described throughout the previous section is

to identify primary processes during which sensors can be installed without signifi-

cantly impacting the baseline schedule. To better understand the potential benefits of

implementing the PORRTSS methodology, an understanding of the current method

common to project planning in complex manufacturing systems is provided.

Project and process planning and scheduling can be classified into multiple levels

based on the level of detail and abstraction considered [60, 132, 136, 164, 165, 175].

Table 8 provides some common examples of this classification. The methodology

is designed to help the transition from the middle/short-range (also referred to as

Tactical phase [60]) to a more detailed scheduling (or Operational [60]) phase project

plan.

The common method used to transition to the more detailed planning phases is to

break down a project into manageable phases via a Work Breakdown Structure (WBS)

[47,52,54,94]. A notional WBS demonstrating where the case study could fit alongside

other common aircraft systems [154] is presented in Figure 12. Different levels of

the WBS are leveraged during different levels of the planning process [47, 132]. For

example, during the Tactical planning phase, the planners use macro level, aggregate

work packages (e.g. Levels 2 and 3 in Figure 12) to perform “rough cut capacity

planning [132].” Then, upon entering the more detailed, operational scheduling phase,

lower level (e.g. Level 4 and possibly beyond in Figure 12) information is utilized

to plan the actual work steps (e.g. drill holes at position X, locate sensor, install
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Table 8: Classification of Scheduling Levels (Based on Reference [136] and Supple-
mented by References [47, 60,132,165,175])

Level Examples of Problem Horizon
Long-range planning

(Strategic)
Plant expansion, plant lay-
out, plant design

2–5 years

Middle-range planning
(Strategic)

Production smoothing, lo-
gistics

1–2 years

Short-range planning
(Tactical)

Requirements plan, shop
bidding, due date setting,
macro process planning us-
ing aggregated work pack-
ages

3–6 months

Scheduling
(Operational)

Job shop routing, assem-
bly line balancing, process
batch sizing, detailed work
package planning

2–6 weeks

Reactive
scheduling/control

(Operational)

Hot jobs, down machines,
late material

1–3 days
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fasteners, etc.) required to complete the project or vehicle [47, 52,132].

Various entities within the organization are responsible for executing each level of

planning [95, 136]. Long and mid-range planning is primarily executed by Industrial

Engineers (IEs) in concert with project management and finance offices [95,157]. The

IEs are primarily concerned with identifying system improvements that “serves the

higher good or works to optimize the performance of the larger system [157].” When

moving to the operational planning phase, Manufacturing Engineers (MEs), who

are intimately familiar with the product’s design and expected performance, work

with the Industrial Engineers to identify “the machines, the equipment, the tooling,

and the personnel to carry out the plan [95].” Hence, in the context of planning

and scheduling, the MEs are concerned with developing a set of work orders and

manufacturing steps to execute the higher level plan set forth by the IE department.

Because of the intimate knowledge and experience required to generate manu-

facturing plans (especially in low volume production systems) [95, 202, 215], detailed

planning is primarily accomplished manually [79, 202, 215]. Especially as the com-

plexity of the vehicle or system increases, this process puts a significant burden on

planners who must develop instructions at very low-levels with limited ability to

understand the system-level impact of their decision. Furthermore, because a sig-

nificant amount of the planners time is spent identifying constraints, this lower-level

planning and scheduling process is typically only concerned with identifying a feasible

plan [59,60,75]. In the past, a simply feasible plan was sufficient because the number

of sensors and small components to install was relatively small; however, with the in-

crease in sensors and small components stemming increased complexity and sensing

desires, the potential impact to the schedule may now be much greater. As such, a

feasible plan that has poor performance can now lead to increased risk in the overall,

system-level production plan.

In light of this discussion, Figure 13 compares the generic current and proposed
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Vehicle

Structural AssemblySubsystem Installation Engine Integration

Electrical Connections

Actuator Installation

Sensor Installation Install Sensor A

Install Sensor B

Install Sensor C

Level 1

Level 2

Level 3

Level 4

Figure 12: Notional Partial Work Breakdown Structure for the Case Study (Compo-
nents of the WBS Inspired by Reference [154])
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processes to plan the sensor installations. The currently implemented methodology

(Figure 13a) begins with an mid-level primary production plan developed by the

industrial engineering department. This plan contains an overall definition of the steps

required to build the vehicle (at Levels 2 and 3 of the WBS in Figure 12). This mid-

level process plan is then provided to the manufacturing engineering team to manually

define specific, low-level steps and work orders to execute the plan. In parallel, the

MEs also identify opportunities to install sensors and other sub-components within

the schedule using their knowledge and experience with the system. The steps to

install sensors (e.g. Level 4 and beyond in Figure 12) are typically too small to be

directly considered in the tactical process plan; even when considered, the small

subcomponents are commonly grouped into a large “Install all sensors” process step

that is not specific to individual components. Hence, with the opportunities identified,

the MEs manually identify primary processes during which to install sensors and

subcomponents and produce specific work instructions to complete the installations.

Once a feasible plan has been defined and work orders issued, the plan is executed.

If a disruption occurs during execution, the production manager or foreman decides

on the best course of action to recover based on his or her best judgment or a set of

heuristic rules [79].

In contrast to this traditional planning process, the methodology proposed in

Section 3.1 is illustrated in Figure 13b. In the revised process, the baseline primary

production plan is utilized by Step 1 of the PORRTSS methodology to generate a

simulation model to quantify the impact of the sensor installations. The simulation

model then incorporates the completed compatibility matrix and sensor information

to optimize the installation plan within step 2. Step 3 then provides the optimization

results back to the MEs and IEs within a visualization environment to select the plan

to execute. Steps 2 and 3 serve to replace the manual identification of a feasible plan,

which is time consuming and not a quantifiable process, from the baseline process.
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IEs develop primary
production plan

MEs begin to plan detailed
manufacturing steps

Opportunities to install
sensors are identified within
the primary production plan

MEs manually plan each
individual sensor installa-
tion. Plans are developed

using their qualitative knowl-
edge. The main goal is to
identify a feasible plan.

Developed plan is ex-
ecuted. Disruptions
are handled manually.

(a) Baseline Sensor Installation Planning Process

IEs develop primary
production plan

Step 1: Automatically
generate simulation model

Step 2: Incorporate com-
patibility matrix and sensor
information to optimize

sensor installation locations.

Step 3: Decide among pro-
vided optimized results using
step-by-step and system-level
information about the impact
of the sensor installations.

Opportunities to install sen-
sors are identified within the

primary production plan. Infor-
mation is captured within
a compatibility matrix.

MEs begin to plan detailed
manufacturing steps

Step 4: Developed plan
is executed. Disruptions
impacting sensor instal-
lations are handled using
knowledge from Step 3.

(b) Proposed Sensor Installation Planning Process

Figure 13: Comparison of Current & Proposed Sensor Installation Planning Process

93



Now, by enabling the decision makers to select a plan based on its system level impact,

the proposed process augments the experience of the MEs and IEs with quantifiable

objectives. With a detailed plan outlined, it can then be propagated to the rest of the

scheduling system for execution on the floor. Finally, because this process quantifies

the impact of individual installations, this information can be used to help guide

schedule recovery strategies after disruptions during execution.

There are two expected benefits from the implementation of the proposed planning

process. First, by providing a quantifiable comparison between installation plans, the

proposed process can identify optimal plans instead of plans that are simply feasible.

Second, by formalizing the constraint identification with a compatibility matrix, the

identification of feasible plans can be automated, which should greatly reduce the

amount of time required to identify a plan. Both of these benefits are thoroughly

examined through the experimental plan outlined in Chapter 4.

3.4 Chapter Summary

This chapter introduces a methodology that enables robust schedule modeling and

optimization for complex manufacturing systems. The methodology leverages rela-

tively recent advances in object-oriented simulation software to help ease simulation

creation from pre-existing schedule models. The developed simulation models are

able to more directly capture uncertainty within the production environment. Then,

by replicating the simulation, the model can estimate the impact on the system’s

schedule quality robustness due to natural variation in process time, probability of

damage to the sensors during installation, etc. This simulation is then linked to an

optimization routine to search for well-performing and robust schedules. Because the

problem is multi-objective, the optimization returns a set of Pareto optimal schedules

that must then be further down-selected based on user-defined preferences. The se-

lected schedule is then integrated with the overall schedule model for possible Monte
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Carlo analysis to evaluate its impact on the larger, overall production schedule.

The case study that the PORRTSS methodology is applied to is also described.

Planning the installation of sensors for a complex, low production rate aerospace

vehicle’s major subassembly is representative of the problems this methodology is

designed to solve. Indeed:

• The production system contains complex logic and rules that are difficult to

effectively model with traditional scheduling tools

• Aerospace vehicles generally have tight budgets and schedules with little cushion

for disruptions

• Sensor installations can significantly delay the production process if not properly

planned

• There is uncertainty in both the primary production tasks’ and sensor installa-

tions’ processing times

• The large scale (in terms of time, cost, and infrastructure) of aerospace vehicles

and their production processes make the additional analysis required for this

methodology worthwhile

The following chapter discusses in detail the implementation of the methodology

for the aforementioned case study. Experiments aimed at testing the hypotheses

developed in the previous chapter are then introduced.
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CHAPTER IV

IMPLEMENTATION

This chapter discusses the implementation of the PORRTSS methodology in the

context of the sensor integration case study. The development and testing of the

methodology follows the engineering decision making process presented in the previ-

ous chapter. Chapter 1 establishes the need for a robust scheduling methodology to be

applied to complex manufacturing systems. Chapter 2 defines the problem by explor-

ing the shortcomings in common scheduling and simulation techniques. Chapter 2

also establishes value by developing motivating research questions and hypotheses to

guide the research’s experimentation. The previous chapter describes the PORRTSS

methodology and the case study that is used to evaluate potential implementation

alternatives. This chapter identifies feasible alternative options within the method-

ology. This chapter then concludes by discussing the experimental plan designed to

evaluate the alternatives.

The following sections discuss the steps taken to implement the PORRTSS method-

ology to address the use case described in the previous chapter. In particular, links

between the methodology steps and the research questions and hypotheses are made.

This helps to inform the experimental plan, which is discussed in Section 4.6. An

overview of the methodology’s implementation specific to the case study can be seen

in Figure 14. The following section describes the users and stakeholders that inter-

act throughout the methodology’s process. This discussion is included to frame the

examination of the implementation steps.
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Input: Vehicle Production
Schedule Model & Compati-
bility Matrix
• Processes and precedence relations
• Sensors to be installed
• Baseline primary process start and

end times
• Compatible installation locations

for each sensor

Automated Model
Generation

Convert schedule model into a DES
with logic governing how sensors may
be installed.

Vehicle Production and
Sensor Installation DES
• Estimate performance of system

including uncertainty for any po-
tential sensor installation plan

Multi-Objective
Optimization Routine

• Decision variables: select which pri-
mary production process during which
to install each sensor

• Objectives: process time, robustness
measures, man-hours (median and
80th quantile), heuristic robustness
objectives (Discussed in Table 7)

Sensor Installation
Schedule Down-Selection

• Develop a data visualization and in-
teraction environment to support the
selection of a final sensor installation
plan

• Include the ability to make modifica-
tions to the plan and assess their im-
pact

Production Schedule
Integration & Propagation

• Either integrate results directly with tra-
ditional schedule or provide recommenda-
tions that are manually integrated

• Provides the framework for coordinating
work orders and tracking progress

Schedule formatted that:

• Estimates cost
• Provides manpower requirements
• Assesses how the proposed schedule im-

pacts the entire process

Step 1 provides simulation model to assess
the performance of sensor installation plans
generated in Step 2

Objective Function
Evaluation

Schedules
to Evaluate

Step 2 provides Pareto
optimal solutions to down-
select in Step 3

Provides

Step 3 provides a
single sensor installation

plan to integrate with
the overall production

schedule in Step 4

Step 1: Model Generation

Step 2: Sensor In-
stallation Simulation-

based Optimization

Step 3: Sensor Instal-
lation Plan Down-

Selection & Modification

Step 4: Installation Schedule Prop-
agation & System-wide Analysis

Addressed within this
document

Responsibility of organiza-
tion sponsoring study

Figure 14: PORRTSS Methodology Applied to the Case Study
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4.1 Implementation Stakeholders

Before examining the implementation of the methodology, a discussion of the users’

and stakeholders’ roles, responsibilities, and expectations is necessary. This discus-

sion is based on the common division of responsibilities in a low-production envi-

ronment [95, 157, 202, 215]. In the context of the case study, the four main users

of the methodology are 1) Industrial Engineers (IEs), 2) Manufacturing Engineers

(MEs), 3) Avionics Engineers, and 4) the person responsible for implementing the

methodology. Each is discussed in the following paragraphs.

The industrial engineers are responsible for producing and maintaining the overall

schedule at the system level [157]. As such, they define and optimize the primary

process schedule based on precedence relations, resource constraints, and defined

schedule objectives [59]; this is the schedule used for the input to Step 1 of the

current methodology. A goal of the IEs is to quantify and reduce the risk in the

production plan [157]. Hence, they expect the methodology to help quantify the

impact of the sensor installations on the overall schedule, identify and justify the

amount of resources that are required for the sensor installations, and conduct trades

between schedule impact, risk, and resources (cost). To support the execution of

the methodology, the IEs are responsible for providing the baseline primary process

schedule, contributing to the final selection of the sensor installation plan to pursue,

and utilizing the selected plan to schedule resources and update their risk assessments

(constituting Step 4 of the methodology).

The next group to interact with the methodology are manufacturing engineers.

The MEs are responsible for translating the schedule provided by the IEs into specific

work orders and task instructions for the technicians on the factory floor [95]. They

also work with the IEs to help define feasible process sequences; as such, MEs are

familiar with the CAD model and manufacturing and assembly processes required to

produce the system [95]. This familiarity means that the MEs are responsible for
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working with the avionics experts to identify feasible installation opportunities and

complete the constraint matrix (as discussed in Section 4.3.2), which is the other key

input for Step 1.

The MEs are the primary beneficiaries of the detailed sensor installation plan pro-

vided by this methodology. In the manual planning paradigm that the methodology

is designed to improve upon, the MEs would be responsible for translating an over-

arching “sensor integration” block, which essentially says “install this block of 100

sensors at some point during this group of 200 production processes,” provided by

the IE department into a specific, operational level plan. This task is traditionally

accomplished by manually exploring the CAD model and identifying portions of the

flow where the MEs believe the installations could occur. It has been shown that

human planners typically “spend 80-90% of their time determining the constraints

that will affect the process [60].” This claim, further supported by Fox and Smith

and Grant [59, 75], helps to illustrate that better automation in the constraint def-

inition and alternative generation is needed. Furthermore, the time spent defining

constraints and alternatives is likely exacerbated in this instance because of the sys-

tem’s complexity. Due to the difficulty in defining constraints, the MEs are primarily

concerned with identifying a feasible plan with little time to identify a well-performing

plan when manually scheduling sensor installations.

The methodology explored in this work provides many options for these detailed

level plans. After the one-time compatibility matrix exercise, the estimated impact

of each individual sensor installation, and a yet unseen estimate of the system level

impact of a decision can be understood. This knowledge should help to improve the

plan by better automating the alternative generation step and allowing the MEs to

spend more time making decisions between production plans rather than identifying

a single, feasible plan [59,60,75].

To ensure that customer specified performance requirements are met and that
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the manufacturing plan works with the product design, the planners (e.g. industrial

and manufacturing engineers) are increasingly supported by personnel more familiar

with the system or sub-system of interest [7]. For the case study, these personnel are

avionics engineers. The avionics personnel have a significant amount of experience in

designing and placing sensors, harnesses, and couplings on aerospace systems. This

experience enables them to support the manufacturing engineers when determining

the process constraints. Also, because these personnel interact directly with the cus-

tomer on the avionics requirements, they are able to identify the most important

installations (e.g. the most difficult or those sensors that are critical to mission suc-

cess). With this knowledge, the avionics SMEs may choose to provide extra slack time

or ensure easy access to the installation sites for these critical sensors to decrease the

likelihood of damage.

The benefit that the avionics personnel anticipate from the application of this

methodology is to hopefully make the avionics packages’ integration, which is re-

quested by the customer, feasible within the constrained manufacturing window. The

manufacturing impact is commonly not considered when determining the subsystems

to be installed on a vehicle [7, 86]. Hence, to help improve customer satisfaction, the

avionics personnel are very invested in ensuring that all sensors and related equip-

ment are given the best chance for installation without damage. This methodology

supports this goal by identifying plans with less risk and larger windows to complete

critical sensor installations.

The final user/stakeholder of the methodology is the methodology implementa-

tion expert. The implementor is responsible for integrating the schedule model pro-

vided by the Industrial engineers with the constraint matrix, which results from the

manufacturing and avionics engineers’ analysis. The schedule is converted to an ap-

propriate simulation model by leveraging the automated model generation procedure

within Step 1 (described further in Section 4.2). The model is then linked with the
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optimization routine through the process described in Step 2 (Section 4.3). Upon

generating optimized cases, the implementor is responsible for providing the results

in a suitable manner back to the IE, ME, and avionics engineers to support decision

making. The resulting decision support environment is incorporated within Step 3 of

the methodology and is discussed further in Section 4.4. Finally, once a final schedule

is chosen for implementation, the IEs are responsible for integrating the plan into

their overall schedule in Step 4 to estimate system-level risk.

With the roles and responsibilities of each stakeholder defined, the following sec-

tions discuss the methodology’s implementation steps outlined above.

4.2 Step 1: Model Generation

The goal of this step is to produce a simulation model that properly captures the

process constraints and can estimate the impact of parametrically defined sensor

installations. The resulting simulation can then be used to drive the optimization in

the following step to ultimately identify a schedule that is robust to the identified

sources of variability. This should be accomplished with the minimal amount of

data gathering effort and simulation complexity. The automated model generation

strategy is implemented to reduce the effort required to gather information, develop,

and build the model required for the methodology. Without this, the model building

phase would quickly make the methodology infeasible as the problem size increases.

Additionally, automating this process helps to standardize the constructed models to

help ensure that the methodology can be applied to multiple problems as opposed

to being a “one-off” analysis. A general overview of the schedule model generation

strategy is provided in Figure 15.

The model generation strategy relies on the fact that data extracted from the

schedule model corresponds to features (e.g. servers, links, entities, etc.) in a sim-

ulation model. As mentioned previously, simulations can be built to different levels
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Schedule Output Provides:

Process Durations

Process Planned
Start and End Times

Precedence Relations

Resources Required
to Complete Tasks

Other Constraints

Schedule-to-
Simulation Translator Entities

Servers

Links be-
tween Servers

Simulation Model:

Figure 15: Schedule Model Generation Outline

of abstraction. Depending on the levels of abstraction and fidelity chosen different

pieces of information from the schedule model are required. The end goal is to ap-

propriately (i.e. to the level of detail required to make decisions in Step 2) define the

major pieces of the discrete-event simulation, namely the servers, entities, and links

between servers. Table 9 describes in detail how the schedule model information can

be mapped to the various components of a simulation.

To accomplish this, the nature of the constraints accounted for within the sched-

ule model must be understood. Reference [59] has identified 5 main categories of

scheduling constraints that are commonly considered. Table 10 presents the identi-

fied constraints and examples of each from reference [59].

Each of these categories must be accounted for in the simulation. This commonly

requires an extensive data gathering step during which the simulation builder must

understand each physical, causal, and availability constraint [110]. Then, during
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Table 9: Schedule Information Used to Generate Simulation Model
Schedule Model

Information
Corresponding Simulation Information

Servers

Process Durations Time required to complete a process on the defined server
Resources Required
to Complete Tasks

Resources (e.g. workers, material, etc.) that a server must seize to
complete its process

Entities

Process Durations Entity specific process times (in the cases where multiple components
are processed on a single server)

Process Constraints Requirements to process an entity or move through the system

Links between Servers

Precedence Relations Develop links between processors to enforce precedence relationships
Planned Start and

End Times
Create further links between processes to respect portions of the
schedule that are already planned

model construction, the builder typically must directly account for each of these con-

straints (or assume them away) while providing the ability to account for preferences

and evaluate the organizational goals. For the problem at hand, gathering informa-

tion and then modeling the vast number of tooling availability and technician capacity

constraints within the simulation would be extremely difficult. Furthermore, includ-

ing this complexity within the simulation would negatively impact model execution

time, which is a main concern for this study.

A promising source of information about the constraints identified in Table 10 that

can help to simplify the simulation model is the schedule model itself. Scheduling,

which is by definition “the allocation of tasks to resources over time in order to achieve

optimality in one or more objective criteria in an efficient way [214],” necessarily iden-

tifies, defines, and incorporates relevant constraints into its optimization process. As

simulation in manufacturing is mostly seen as a tool to evaluate “on-line” process

changes (e.g. long term impact of adding a production line or changing production

103



Table 10: Scheduling Constraints (Reproduced from Reference [59])

Constraint Example
Organizational goals • Due date

• Work-in-process
• Shop stability
• Shifts
• Cost
• Productivity goals
• Quality

Physical constraints • Machine physical constraints
• Set-up times
• Processing time
• Quality

Causal restrictions • Operation alternatives
• Machine alternatives
• Material requirements
• Personnel requirements
• Inter-operation transfer times

Availability constraints • Resource reservations
• Machine down time
• Shifts

Preference constraints • Operation preferences
• Machine preferences
• Sequencing preferences
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rules) [17] and the interaction between manufacturing software applications (e.g. sim-

ulation tools and schedule modeling and optimization software) are limited [88], most

of the information used to design and generate the schedule is “re-discovered” when

constructing the simulation model.

This methodology aims to leverage simulation during the initial planning phase,

so this “re-discovery” and possible duplication of effort must be avoided. The tradi-

tional scheduling process attempts to optimize an objective by selecting, from all of

the physically feasible schedules (e.g. those that observe precedence, material, capac-

ity, etc. constraints), a single preferred process sequence [214]. Matching this preferred

sequence in a simulation is traditionally difficult because even if the precedence and

capacity constraints are modeled correctly, the simulation does not immediately pro-

duce the same results as the schedule. This is because, in cases where multiple jobs

are available and competing for a resource, the simulation still does not know the or-

der chosen by the schedule optimization. It is here that priority rules may be applied

to attempt to capture the decisions made by the scheduling algorithm. This, however,

again represents a duplication of effort as the schedule model has already defined an

optimal process plan, so identifying a rule to match this result is not value-added.

Recall that the simulation is intended to use the provided optimal schedule to help

identify the best sequence location during which to install sensors. Two aspects of this

goal are critical to the implementation of the model generation strategy. First, the

simulation is intended to accept the provided primary process schedule as truth and

only make changes to the sensor installation plan. This means that the simulation

does not require a means to modify the provided sequence of primary processes as

would be possible if the model included detailed constraints and dispatching rules.

Second, identifying the best sensor installation plan does not necessarily require the

simulation to exactly model the sensor installation process; the optimization simply

needs a comparison between potential plans.
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With these requirements defined, a process to glean information from the schedule

model to build a simulation capable of comparing sensor installation plans is imple-

mented by incorporating strategies developed for process mining [130,188,189]. Pro-

cess mining “aims at the automatic construction of models explaining the behavior in

the event log [189].” These models, which are constructed primarily by observing the

start and end times of processes, are easily transferred into discrete-event simulations.

The discrete-event paradigm can very easily model precedence relationships generated

from process mining studies using links to build a schedule graph. Simply including

the precedence relationships explicitly defined in the schedule model is not sufficient

to fully define the schedule because they do not account for resource constraints [59];

however, the start and end dates of the processes in the optimized schedule can be

used to supplement the precedence relationships. Because the provided schedule is

a planned schedule, the start and end dates may be mined to quickly determine the

optimized primary process sequence. This is because the planned schedule starts jobs

immediately after preceding ones without any delays that would actually be present

in the executed plan. For example, in the planned schedule model, if process B follows

process A, then the start time of process B is exactly equal to the end of process A.

There are no discrepancies due to technicians not clocking into a job immediately

after finishing a previous job or small changes that may be made on the floor. Hence,

by adding these identified relationships to the already defined precedence relations,

the baseline simulation (without sensor installations) can follow the provided schedule

without the need for additional logic.

Figure 16 demonstrates the logic implemented through a notional Gantt chart.

The top diagram illustrates the planned execution for processes P1, P2, and P3 from

the schedule model. The arrows represent defined precedence relationships. Once

P1 is completed, P2 and P3 can both be processed according to the precedence re-

lationships. However, additional constraints exist that prevent parallel execution.
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Provided
Schedule: P1

P2

P3

Schedule optimization rec-
ognizes resource constraint
that prevents P2 and P3
from being completed in
parallel (even though both
are allowed based on prece-
dence).

Simulation
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Added

Precedence
Constraints:

P1

P2

P3

Simulation model does not
know about the resource
constraint and completes
P2 and P3 in parallel.

Simulation
with Added
Precedence
Constraints:

P1

P2

P3

By adding a “pseudo-
precedence relaionship”
between P2 and P3, the
proper schedule is main-
tained without any addi-
tional details modeled.

Defined
Precedence
Relationship

Pseudo-
Precedence
Relationship

Figure 16: Demonstration of Basic Model Generation Logic Incorporating Choices
Made by the Schedule Optimization Routine
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Consequently, the optimization routine must determine in which order to execute the

two available processes. In this case, the schedule model has determined that process-

ing P2 before P3 is the best option. The middle diagram illustrates how a simulation

would execute the schedule when only provided with the defined precedence infor-

mation. In this instance, the simulation would ignore the additional constraints and

process P2 and P3 in parallel. Even by directly modeling the additional constraints

(e.g. personnel or work zone requirements), the simulation would need to apply a

heuristic rule to determine is P2 or P3 should be completed first. This ignores the

optimized schedule model and would likely lead to a primary process schedule that

does not follow the provided schedule.

The bottom case in Figure 16 demonstrates how the implemented process ad-

dresses the problems encountered by the middle case. The bottom case, without

directly modeling any additional constraints, is able to observe the optimized sched-

ule through the addition of a pseudo precedence relationship between P2 and P3.

This additional constraint is identified by the model generation algorithm by ob-

serving that P3’s start time is equal to P2’s ending time in the originally optimized

schedule. Then, the simulation is built to include this pseudo constraint such that

P1 and P2 must be completed before P3 can begin.

This method has the benefit of accounting for many of the availability, physical,

and causal constraints identified in the schedule model without directly gathering

information or modeling these constraints. Furthermore, these simplifications reduce

the model’s complexity, which helps to reduce the time spent verifying the model

and, ultimately, improves runtime.

There are, however, drawbacks to this approach. Mainly, because the model

is going to include uncertainty on the process times, it is conceivable that after a

while, the simulation model could get far out of sequence and the pseudo precedences

no longer fully capture the constraints in the model. For instance, if the processes
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occurring in parallel change significantly, the resource constraints that led to the

additional pseudo constraints may no longer be applicable. While this is possible (or

even likely), there are a number of “milestone” processes throughout the flow that

require most if not all previous tasks to be completed before continuing. These would

bring the model back to the original sequence and to improve the validity of this

method.

Furthermore, the it is likely that this process leads to a more conservative estimate

of the schedule completion time. This is because there are likely cases where pseudo

precedence relationships are added to processes that simply happen to have an ending

time that matches another starting time but are not actually related. Especially

in the pre-production planning phase, the times assigned to tasks are usually only

estimated down to the half hour, which can lead to many tasks ending or starting at

the same time. This means that there can be instances where a process is waiting for

a completely unrelated task to finish before starting.

Despite these limitations, it is proposed that this procedure is sufficient for the

problem at hand because the resulting simulation can provide valid comparisons be-

tween installation plans. The nature of the optimization problem does not require

an exact evaluation of the time to install the sensors, just a comparison between

plans. Furthermore, these types of simplifications are required for this methodology

to be feasible in terms of implementation time and runtime. The consequences of the

choices made in the model generation strategy are examined in the experimentation

plan.

The following section briefly describes the software implementation of the model

generation strategy.
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4.2.1 Software Implementation

The model generation strategy is implemented in C# to translate schedule model in-

formation into a format readable by a discrete-event simulation software package. For

this research, the chosen simulation package is Simio [166]. Simio is chosen because

it is a modern simulation language that supports object-oriented programming and

provides access to its application program interface (API). Further justification for

the selection of Simio is provided in the following section. Access to the API is neces-

sary for integrating optimization routines and automating model building. The model

generation code translates the schedule model information into a spreadsheet list of

objects to be included within the Simio model following the logic described in the

previous section. Information about the off-shift times in the schedule is considered

such that a task that begins at the start of a shift can be identified as a predecessor

to one that ends at the conclusion of the previous shift. Then, using Simio’s API, the

objects identified are placed into a shell model. The spreadsheet contains all of the

properties for the objects (including process time, resources required, etc.) that are

automatically placed within the model. The C# code finally defines the links between

servers following the logic discussed in the previous section.

In all but the simplest cases, this model generation strategy is not immediately

effective with a completely new simulation model and standard object library. The

methodology is designed to be implemented in systems with potentially complex

rules and interactions, so the logic available in the base classes is likely not capable

of modeling the system. As such, before integrating with the schedule model, custom

objects and logic must be defined within a “shell” simulation model. This is made

easier by the object-oriented programming paradigm found within Simio. The logic is

formulated within a smaller, testing model and generalized such that simple property

definitions from the generated spreadsheets can fully define the model. Then, once

the logic is verified, the model can be built automatically using a developed add-in
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to place model objects based on the spreadsheet created from the schedule model.

With the simulation developed, the simulation-based optimization routine con-

tained within Step 2 of the methodology can search for an improved installation

schedule.

4.3 Step 2: Simulation-based Optimization

The simulation-based optimization utilizes the developed simulation to identify a non-

dominated set of robust sensor installation plans the reduce the risk of system-level

schedule and cost overruns. This section first describes the specific requirements of

the modeling environment to further justify the selection of Simio. It then discusses

the process logic that was developed and implemented to: 1) Enable the parametric

planning of manual tasks within the primary production flow. 2) Assess their impact

on a variety of metrics of interest. With the modeling implementation described, the

constraint definition strategy and integration of the optimization routine is described.

Finally, the specific optimization algorithms that are explored through this research

are presented.

The requirements for the production model(s) are driven by the nature of the prob-

lem to be addressed and the capabilities desired. The production planning problem

to be modeled has the following characteristics:

Discrete: Production occurs in specific, discrete steps

Stochastic: Uncertainty exists in time to complete a specific task as well as passing

quality assurance (e.g. amount of rework necessary, etc.)

Complex: Due to the accessibility constraints and potential for multiple, concurrent

processes, manual installations cannot be identified as feasible at the start of a

simulation run. Rather, compatibility between sensor installations and the pri-

mary production plan must be dynamically checked throughout the simulation
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run. This serves to determine if manual installations or primary processes are

allowed to proceed based on the current state of the production system.

Therefore, in addition to supporting automated model generation (as discussed

in Section 4.2), the modeling package must also be capable of dynamically applying

production rules throughout the simulation to account for process compatibility con-

straints. Furthermore, to better accommodate the large number of cases required for

the optimization, the chosen package should support distributed computing across a

network. These additional requirements further justify the selection of Simio. The in-

telligent object paradigm contained within Simio allows for easy coding of the dynamic

checks required. Furthermore, the software package can be setup to automatically

distribute runs across a network without any specialized coding requirements.

Using Simio, a baseline model of the primary production processes is first built

based on the provided production schedule models and value stream maps. The

following section discusses how the base production logic contained within Simio is

modified to support the parametric definition of sensor installations.

4.3.1 Production Logic

The primary planning decision of interest throughout this work is: during which

primary processes should which sensors be installed to minimize the impact to the

baseline production flow? To support this decision, logic is added to the model to

enable the user to parametrically define scenarios to complete the manual installation

tasks of interest.

This is accomplished by assigning manual installation tasks to primary production

processes before the model run (e.g. complete the installation of sensor 24 during

primary process 78). Then, when the assigned process is about to begin, logic is

initiated to begin installation processes for the defined manual sensor installation

task(s). The logic used to control the manual sensor installation processes obeys the
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following rules and assumptions:

A1. All manual installation sequences scheduled to occur during a primary process

must be started before the primary production flow can proceed. This is illus-

trated in Figure 17a. Once all installation sequences have started, the successive

primary process is allowed to begin if it is compatible with the ongoing manual

installations (Figure 17b). If it is not compatible, then the subsequent primary

process must wait for the sensor installations to finish before beginning (Figure

17c).

A2. If an incompatible production process has started before a manual installation,

the manual task must wait until the incompatible process has completed to

begin processing (Figure 17d).

A3. Each manual installation requires a technician to be completed. Therefore, the

processes must wait for a technician to be available and seized before beginning.

The technicians respond to work requests based on a first come, first served

basis. Hence, setting the number of technicians in the simulation controls the

number of sensor installations tasks that can be completed in parallel.

A4. Manual installation processes can contain sub-processes that do not require a

technician (e.g. time to allow an adhesive to cure before proceeding with the

installation). In these cases, technicians are released to complete other touch

labor tasks. Once the sub-process is completed, the next sub-process requiring

a technician is added to the queue to request a technician.

The baseline model is generated incorporating this logic. The following section

discusses the general process taken to generate the compatibility matrix based on

subject matter expert opinions.

113



Manual Processes M1 M2 M3

Primary
Production
Processes

P1 P2

Primary process P2
must wait until M3,
which is planned

during P1, to begin
before starting,

even though P2 is
compatible with
M1, M2, and M3.

a)

Manual Processes M1 M2

Primary
Production
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P1 P2

P2 is allowed to start
immediately because
it is compatible with
M2 and all of P1’s
defined installations

have begun.

b)

Manual Processes M1 M2

Primary
Production
Processes

P1 P2

P2 is not allowed to
start immediately

because it is
incompatible with M2.

c)

Manual Processes M1 M2

P1 P2

P3

M1 and M2 (planned to
occur in parallel with
P1) are incompatible
with P3, so they
must wait for P3
to complete before

starting. P2 must then
again wait for M2 to
finish before starting.

Primary
Production
Processes

d)

Figure 17: Examples of Manual Installation Logic
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4.3.2 Compatibility Matrix Generation

As discussed in Section 3.2.4, the constraints for this methodology are captured within

a compatibility matrix that maps each sensor to primary processes during which it can

feasibly be installed. The constraints for this problem are identified during constraint

definition workshops conducted with avionics experts, manufacturing engineers, and

industrial engineers working on the vehicle of interest. To better solicit expert in-

formation for the generation of the compatibility matrix, a compatibility matrix tool

is developed. The tool enables users to apply rules to each sensor and/or primary

production process instead of directly manipulating the matrix, which would be over-

whelming. The rules available and example applications of the rules are:

No sensor can be installed during a specific process: Due to safety concerns,

no sensor installations can occur during certain overhead crane operations or

electrical tests.

Sensor X must be installed before primary process A: The vehicles of inter-

est are extremely cramped with components, subsystems, structure, etc. Ac-

cessibility issues quickly arise as general integration begins, so this constraint

ensures that sensor installations are planned before another component blocks

access to the installation site.

Sensor X must be installed after primary process A: Some sensors are installed

onto other subsystems. This constraint ensures the sensors are not planned for

installation before the installation site itself has been integrated.

Sensor X cannot be installed during primary process A: This constraint en-

ables the expert to capture any accessibility, safety, or quality problems for

individual sensors and processes. For example, if a process calls for a drilling

operation above a sensor installation location, the sensor cannot be installed
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during that time to avoid the technicians interfering with each other and po-

tential damage to the sensor from drilling debris.

During the workshops, the subject matter experts assign the above rules to each

of the sensors that are to be installed within the current production flow. The re-

sulting compatibility matrix is used throughout to drive the model operation and

optimization.

While the present implementation requires SME input to define a compatibility

matrix, opportunities to automate its development could be explored in the future. As

the matrix is primarily concerned with interference between components, simulating

the actual installation processes to identify interferences could be pursued. This

would greatly simplify the implementation of the methodology and better encourage

implementation. This is further discussed in the future work (Section 7.5).

The next section discusses the general implementation of the optimization routine.

4.3.3 Optimization Routine Requirements

The choice of the optimization strategy is dictated by the nature of the problem to

be solved as well as the hypotheses formulated in the previous chapter. Hence, the

optimization routine must:

Handle discrete variables: Scheduling problems are inherently discrete in nature.

The purpose of scheduling is to properly plan discrete processes to minimize

cost, time, risk, etc. Therefore, the optimization algorithm chosen to improve a

schedule must be capable of solving problems with discrete decision variables.

Be multi-objective: As discussed throughout this thesis, scheduling problems are

multi-objective in nature. Even when single-objective algorithms are utilized,

the objective function is commonly a weighted cost function of multiple objec-

tives. Additionally, the inclusion of robustness measures into the optimization
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increases the number of dimensions to analyze. Hence, to reduce the result’s re-

liance on preset weightings and have the capability to add additional robustness

measures to the optimization strategy, a multi-objective strategy is desired.

Limit the number of simulation runs required to find a solution: The sim-

ulations required to estimate the performance of the manufacturing systems of

interest to this thesis are relatively complex. In addition, the number of sim-

ulation replications required to estimate the quality robustness of the system

may be significant. These points lead to potentially long run-times for single

optimization cases or generations. Hence, effort must be made to limit the num-

ber of cases required by implementing strategic optimization improvements that

take advantage of specifics about the problem at hand. These improvements

can involve limiting the replications required by intelligently controlling por-

tions of the problem’s uncertainty, using problem specific information to better

guide the search, and improving the intensification process by supplementing

the metaheuristic search with a local search algorithm. Potential optimization

improvements are discussed further throughout the experimental plan.

Effectively explore the complex decision space: The scheduling problem for

the case study has a complex design space with non-linear and competing ob-

jective functions. As such, effectively exploring the design space while avoiding

becoming trapped in local optima is a must for the algorithm.

Incorporate robust design principles to reduce the impact of schedule

disruptions: The algorithm must be able to incorporate and optimize for ro-

bustness measures (e.g. schedule quality robustness) because the case study

represents high risk, high impact processes. This thesis aims to demonstrate

that the incorporation of robust principles directly with the optimization rou-

tine helps to reduce the occurrence and impact of schedule delays.
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Provide a general framework that can be applied to similar problems: The

methodology is designed to be a general framework for working with complex

manufacturing processes; therefore, the optimization should avoid (as much as

possible) problem specific customizations. In this way, the methodology may

be expanded to other problems with limited customization.

With these required characteristics defined, the following section details the imple-

mentation of the optimization algorithms investigated as a part of this work.

4.3.4 Simulation-based Optimization Implementation

This section describes the implementations of the various optimization routines in-

vestigated throughout this dissertation within MATLAB [122]. Each algorithm is

coded using a base MATLAB code to evaluate cases within Simio. The algorithms

are chosen in an attempt to explore trades between search result quality, search time

required, and the uniformity of the search over the Pareto frontier of solutions. These

are common metrics to evaluate multi-objective optimization algorithms [27,139,217],

and are discussed further in Section 4.6.

The purpose of implementing multiple algorithms is to help identify a suite of opti-

mization strategies capable of solving problems with a range of complexities, solution

quality requirements, solution space exploration needs, and time horizons. There is

always a trade-off between these requirements, so providing the decision maker with

the ability to select a promising algorithm for the current problem can improve the

“implementability” of the methodology. To explore each of these, a population-based

metaheuristic (NSGA-II) is compared to single solution-based heuristic neighborhood

search methods (Shifting Bottleneck-Inspired Local Search and Expanded Neighbor-

hood Local Search) and single solution-based metaheuristic algorithms (Weighted

Sum Simulated Annealing and Pareto Dominance-based Simulated Annealing). As is

discussed during the experimental plan, each class of algorithm is expected to provide
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different strengths that can be mapped to the requirements of the problem. Further

discussion about the algorithms chosen can be found in Section 4.6.6.

The following sections discuss each algorithm implemented for comparison during

experimentation.

4.3.4.1 Non-dominated Sorting Genetic Algorithm-II Implementation

The NSGA-II algorithm is implemented within MATLAB and connected to the Simio

discrete-event simulation through an API executable. An overview of the optimization

strategy can be found in Figure 18. The algorithm first uses the compatibility matrix

to determine how many bits are required to define the range of feasible installation

locations within the primary process flow. Therefore, each sensor installation location

is encoded by the compatible process it is installed during. This inherently removes

infeasible cases from consideration, which helps to simplify the algorithm.

To start the optimization, the MATLAB code populates an initial generation with

random, feasible sensor installation schedules. The optimizer is also capable of loading

a pre-determined generation that was developed through some heuristic method to

help seed the optimization with well-performing points. The entire generation is then

evaluated by Simio via the API executable. The model only needs to be loaded

once per generation and can distribute all of the replications required for a single

generation. Therefore, with unlimited parallelization, the evaluation time is only

subject to the time required to evaluate a single replication.

Once the population is evaluated, it is returned to MATLAB to determine the

next set of population points to try. Common implementations of genetic algorithms

usually evaluate the entire population at each generation, even if some members were

evaluated in previous generations. When the objective function evaluation is almost

instantaneous, this is acceptable; however because evaluating the simulation model
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could take minutes, this is highly inefficient for the problem at hand. Therefore, a

cache system is implemented to save previous function evaluations and avoid wasting

function calls.

The optimization is run until a specified stopping condition is reached. The stop-

ping condition used varies depending on the time available to reach a good solution

population and the purpose of running the optimization. If the goal is to compare

algorithms, the optimization is stopped after a certain number of generations. If the

optimization is being run to identify a high-performing set of solutions without time

constraints, more detailed multi-objective optimization convergence criteria can be

implemented. The two criteria implemented measure the relative improvement of

each generation compared to the initial population and the number of Pareto points

in a generation that survive to future generations. These criteria are discussed further

in Section 4.6.6.2. Since the NSGA-II is used as the baseline optimization algorithm,

the multi-objective convergence criteria are used to check the stopping condition.

As described previously, the main decision variables are defined to help select,

for each sensor, the primary production process during which it is to be installed.

An important response to take into account is the quality robustness of the solution.

Multiple options for quantifying this metric are possible and are discussed further in

Section 4.6. Finally, because the optimization is multi-objective, it produces a family

of Pareto optimal solutions. These solutions are then down-selected by applying user

preferences to weight the relative importance of the objective functions in Step 3 of

the methodology before being propagated back to the overall production schedule in

Step 4.

The NSGA-II is a very popular algorithm because it is extremely flexible; however,

because it is a population-based strategy, it could require a significant amount of time

and function evaluations to reach a “good” solution. As such, additional algorithm

that operate on single point solutions are investigated in the following sections. These
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Figure 18: Optimization Strategy

point solution-based algorithms, while sacrificing the exploration of the design space,

are likely able to converge to promising solutions more quickly than the NSGA-II.

Furthermore, depending on the complexity of the design space, different neighborhood

definitions and overall search strategies may be more or less effective. Section 4.6.6

further describes the purpose of implementing the following algorithms.

All of the following algorithms follow the general compatibility matrix → MAT-

LAB → Simio formulation discussed in this section. The following section describes

the implementation of heuristic shifting bottleneck-inspired local searches.
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4.3.4.2 Shifting Bottleneck-Inspired Local Search Strategies

The commonly implemented shifting bottleneck strategy identifies the most constrain-

ing portion of the schedule (e.g. the bottleneck machine). With the bottleneck identi-

fied, a smaller problem is solved to alleviate the bottleneck (e.g. by planning processes

from the bottleneck onto another machine). When the optimal solution to this sub-

problem is identified, a new bottleneck is found, and the algorithm iterates.

The classic implementation of the shifting bottleneck procedure only considers

make-span as it objective function [136]. The sensor installation problem of interest,

however, is multi-objective and requires a modification to the classic implementa-

tion. For the three primary objective function categories of interest (process time,

slack time, and neighboring installation preference) described in Table 7, each sensor

installation’s contribution to each objective can be identified. In other words, for

each sensor, the delay to the primary production process, its individual slack time,

and its closeness (within the schedule) to neighboring installations can be calculated.

This information can then be used to identify the “bottleneck” sensor (i.e. the sensor

leading to the most degradation in schedule performance).

Identification of the “bottleneck” sensor is accomplished by first normalizing each

of the three individual sensor installation performance metrics such that the worst

performing installation per metric equals one. With the normalized values, a compos-

ite objective can be created by summing the three normalized values. Other options

for combining the objectives are available, however the summation method has been

shown to provide sufficient results in similar situations [40]. Once the composite val-

ues for each installation are determined, one of the sensor installations is selected for

modification based on either a greedy strategy or weighted random draw. This sensor

installation is then moved to a different compatible location in the schedule. At each

iteration, multiple options for the new location can be evaluated, and then the best
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performing schedule is selected as the next point. Not all possibilities must be eval-

uated for each iteration because this could be extremely time consuming; however, if

the same sensor is chosen for modification during the following iteration, previously

explored options are excluded from consideration.

Two variations of this algorithm are investigated. The greedy alternative always

selects the “worst” performing sensor installation (according to the composite objec-

tive function) to modify. This is akin to following the steepest descent direction in

a typical optimization formulation. If moving the selected sensor to all other poten-

tial installation locations does not produce an improved result (based on a weighted

objective value), then the algorithm has become stuck in a local minima and exits.

The stochastic alternative selects the sensor to modify based on a probability (in-

stead of always selecting the worst as in the greedy alternative). Each installation is

weighted based on the composite individual sensor installation performance metric,

and then the installation to modify is selected from this weighted probability distri-

bution. The algorithm then proceeds in the same manner as the greedy strategy. In

general, greedy algorithms typically struggle to explore the space at all, so by adding

a measure of stochasticity to the problem, this algorithm has a better chance to find

an improved solution. However, if the initial schedule is well-performing (e.g. the

algorithm only needs to find the local optima), then the stochastic algorithm may

take longer to improve the solution than the greedy algorithm. An overview of the

procedures for the shifting bottleneck inspired algorithms can be seen in Algorithm 1

in Appendix A. Appendix A additionally contains algorithms for each of the following

optimization strategies discussed. The next section discusses the implementation of

a stochastic expanded neighborhood search algorithm.
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4.3.4.3 Stochastic Expanded Neighborhood Search

The stochastic expanded neighborhood search optimization strategy takes general

ideas from the shifting bottleneck heuristic (e.g. identify the constraining steps and

attempt to modify the schedule to improve the performance of those steps) but in-

corporates a more expanded search heuristic. In the bottleneck-inspired methods

described previously, the search in each iteration of the algorithm is limited to mov-

ing a single sensor installation throughout the schedule. This expanded neighborhood

search, however, is allowed to move multiple sensors during each iteration. As such,

this algorithm can potentially explore the space more quickly.

As with the previous algorithms, the stochastic expanded neighborhood search

algorithm is initialized with a random plan for sensor installations. The plan is

evaluated and the performance of each individual sensor is calculated. Then, a specific

number of sensors to move during this iteration are selected from a single sensor up to

5% of the total number of sensors to plan. Similar to the stochastic shifting bottleneck

method, sensor installations to be modified are selected from a weighted probability

distribution based on their individual performance. Each installation to be modified

is then assigned a new, random, feasible installation location. The new schedule is

then evaluated based on a weighted sum of the objectives such that each contributes

approximately equally to the total objective function value. If the weighted sum

objective is improved, the new schedule is accepted. Otherwise, the original schedule

is kept, and the next iteration begins.

While somewhat similar to the shifting bottleneck heuristic methods described

in the previous section, this method is less susceptible to becoming stuck in a local

minima. This is because the “neighborhood” definition for this method is broader

than the first algorithms described; hence, the possibility exists to jump out of a local

minima. The general procedure for this algorithm is outlined in Algorithm 2.

While the stochastic neighborhood search algorithm presented in this section
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should provide enhanced exploration compared to the shifting bottleneck-inspired

algorithms, it is still a heuristic method that could become trapped in a local min-

ima. Furthermore, the algorithm may have difficulties making the small changes to

converge at the end of an optimization run. However, the algorithm can also be used

as an underlying heuristic for metaheuristic algorithms, which could help to avoid

these challenges. Therefore, the following section discusses the implementation of a

standard simulated annealing algorithm that can guide the neighborhood searches

discussed in this section to enhance exploration and avoid becoming trapped in local

minima [214].

4.3.4.4 Weighted Sum Simulated Annealing

The simulated annealing (SA) algorithm begins by evaluating an initial, randomly

generated schedule. This schedule is then modified using either the stochastic shifting-

bottleneck algorithm (Algorithm 1) or the stochastic neighborhood search algorithm

(Algorithm 2). Then, following the common implementation of a simulated annealing

algorithm, the new point is accepted if it is better than the current point. If it is

worse, the point is accepted with the probability defined by Equation 2 (reproduced

below) to attempt to escape local minima. After each iteration, the “temperature”

(tk) is reduced according to an annealing schedule. Reducing the temperature reduces

the probability that a worse move is accepted, so as the algorithm progresses, it moves

from an exploration mode to an exploitation mode. A summary of the algorithm can

be found in Algorithm 3.

p (∆f) = exp
(
−∆f
Tk

)
(2)

As with the shifting bottleneck-inspired local search and expanded neighborhood

search algorithms, this weighted sum simulated annealing algorithm uses a composite,

weighted objective function. The three main categories of objective functions (process
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time, slack, and the neighboring installation metric) are weighted such that they

contribute approximately equally to the overall objective evaluation [129].

The initial temperature is selected such that there is a high probability (about

80%) of accepting a worse move [22]. The procedure to select this initial temperature,

as proposed by Ben-Ameur, first evaluates a set of transitions around the neighbor-

hood of the initial point. The goal of this sampling procedure is to understand the

range of the objective function values within the neighborhood, and the size and sam-

pling strategy used is based on experience with the problem [22]. With a sample (S)

of the positive transitions (i.e. those with increases in the cost function) around the

neighborhood of the initial point evaluated, an initial guess of the temperature can

be made. An estimation of the probability of the transition at χ̂ (Tn) can then be

computed by the following equation with n = 1:

χ̂ (Tn) =
∑

t∈S exp−Emaxt

Tn∑
t∈S exp−Emint

Tn

(5)

where Emaxt is the upper cost function value for each transition t in S. Emint is

each corresponding lower cost function value. With the guess χ̂ (Tn) calculated, the

temperature guess is updated by the following equation:

Tn+1 = Tn

[
ln χ̂ (Tn)

lnχ0

] 1
p

(6)

where χ0 is the desired initial acceptance probability and p is a real number ≥ 1. This

process is iterated until the estimated transition probability is close to the desired

probability. With the initial temperature defined, the simulated annealing algorithm

can proceed. While many complicated annealing schedules are available, this thesis

is focused on showing the utility of including additional algorithms, not identifying

the best algorithm and settings for this particular optimization problem. As such,

the simple annealing schedule defined in Equation 7 is utilized [30,103,208].
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T (t) = αT (t− 1), α < 1 (7)

The main benefit expected from the SA algorithm is that it is better able to

explore the design space and avoid becoming trapped in local minima better than the

purely heuristic methods. Hence, the algorithm’s performance should be less sensitive

to the initial schedule than the stochastic local search. This could, however, come at

the cost of increased computational time because SA algorithms can be inefficient at

the start of the search by accepting too poor of points. Hence, a modified version of

the simulated annealing algorithm that modifies the annealing schedule to improve

early efficiency is discussed in the following section.

4.3.4.5 Weighted Fast Simulated Annealing

A cited drawback of a traditional simulated annealing algorithm is the excessive

amount of computational effort required to converge to a solution [40]. One source of

inefficiency in the classic implementation is that too many uphill moves are accepted

in the early stages of the algorithm’s run. Since the starting point for the algorithm is

commonly randomly assigned, accepting worse moves early does not necessarily help

the algorithm identify and move to a region of well-performing points [40].

In an effort to alleviate these issues, a modified annealing schedule is implemented

as described in reference [40]. The modified schedule is composed of 3 phases:

1) High temperature random search: The initial temperature is set high such

that the probability of accepting worse moves is close to 1. This early random

search period works to ensure the algorithm is not initially trapped in a local

minima. This period is relatively short lived, and the algorithm quickly moves

to the next portion of the annealing schedule.

2) Pseudo-greedy Local Search: This is the period that attempts to reduce the

function calls required to find the region of good solutions. In this period, the
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initial temperature is quickly reduced and approaches zero. In this way, very

few inferior solutions are chosen such that the algorithm quickly moves into a

promising region.

3) Hill-climbing Search: After the Pseudo-greedy Local Search has identified a

promising region of the search space, the temperature is raised again to facilitate

exploration of the promising neighborhood. The temperature is then gradually

reduced as in the classic simulated annealing algorithm to hopefully converge

to a promising solution.

The algorithm itself is implemented similarly to the simulated annealing algorithm

described in Section 4.3.4.4. The primary difference is that the annealing schedule

follows Equation 8 [40].

Tn =



∆avg

ln P
, n = 1

T1∆cost

nc
, 2 ≤ n ≤ k

T1∆cost

nc
, n > k

(8)

In this equation, n is the iteration number, ∆avg is the average initial increase in

objective function values, P is the initial desired probability to accept a worse point,

∆cost is the cost change for the current temperature, and c and k are parameters.

Using this annealing schedule, the implemented algorithm is described in Algorithm 4.

One modification from the implementation by Chen [40] is that the initial temperature

is identified following the improved process from Ben-Ameur [22] as described in

Section 4.3.4.4.

Of the 4 objective functions of interest, the process time can be considered the

primary function; however, there are many similar sensor installation plans that lead

to a schedule with low process time. Therefore, the greedy phase of this algorithm,

when combined with a weighting scheme that favors a reduction in process time,

128



should be able to identify a well-performing region quickly. Then, when the algorithm

enters the final phase, it is hoped that it can find a schedule with a similarly low

process time but also works to explore and increase the slack time and the closeness

of neighboring sensors within the schedule.

The two implementations of a simulated annealing algorithm discussed above

represent a classic approach to dealing with multi-objective searches (e.g. using a

weighted sum to condense the problem to a single objective) [139]. While this ap-

proach is useful and, if run multiple times, should help to quickly identify portions

of the Pareto frontier [139], the results identified are subject to proper weightings,

which is less then desirable. The following section describes an approach that does

not require user input weights and instead uses the Pareto dominance principle.

4.3.4.6 Pareto Dominance-based Multi-objective Simulated Annealing

The desire to explore the Pareto frontier without biasing the search via user-defined

weightings or requiring the long runtimes common to population-based methods moti-

vates this multi-objective Simulated Annealing strategy. Instead of relying on weight-

ing schemes and multiple runs of the algorithm to find Pareto optimal solutions, this

algorithm is designed to explore the Pareto frontier in a single run. This is accom-

plished by incorporating the Pareto dominance principle into the objective function

evaluation criteria. The algorithm described throughout this section is based on ref-

erence [139].

The Pareto Donimance-based, Multi-objective Simulated Annealing algorithm

uses the same basic framework as Algorithm 3. The neighborhood definition and

annealing schedule remain the same; however, the determination about whether or

not to move to a new point is now based on Pareto dominance. Therefore, instead of

using a weighted sum to determine a fitness function, the Pareto rank of the original

and candidate solution are used to determine whether or not to move. If the trial
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point’s rank is better, then the algorithm moves to the new point. If they are incom-

parable (i.e. the original and trial points’ ranks are the same), then the algorithm still

shifts to the new point to encourage exploration. Reference [139] observed that this

strategy helped to find regions in the middle of the Pareto frontier. Finally, if the

trial point is Pareto dominated by the original point, then the new point is accepted

with a probability defined by Equation 2.

Reference [139] examined multiple ways to evaluate ∆f for use in Equation 2.

Assuming f is a vector of objective functions, they suggest evaluating ∆f as the min-

imum, maximum, random weighting, sum, or average of the difference between fold(i)

and fnew(i), where f(i) is the value of the ith objective. Additionally, a fixed ∆f value

was used so that the probability to move was based solely on the temperature. The

article reports that the random, average, and fixed strategies performed well across

their test-bed problems; hence, the random strategy is chosen for implementation to

potentially prevent one objective with a significant amount of potential improvement

(e.g. the slack time objectives) from heavily biasing the search. An overview of the

algorithm can be found in Algorithm 5.

This section has reviewed the various optimization algorithms and strategies that

are investigated throughout this thesis. These investigations are intended to provide a

suite of algorithms that can be selected based on the complexity of the problem, time

available to identify a solution, and knowledge about the importance of the identified

objectives. The following section briefly reviews the process taken to identify the

number of replications required to estimate the objective functions when allowing for

uncertainty.

4.3.5 Optimization Computing Budget Allocation

As previously discussed, the “large number of simulation replications [that] are often

required to effectively distinguish between designs is a major challenge that often
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inhibits stochastic simulation optimization [38].” Hence, ensuring that the proper

number of simulation replications are run such that the optimization is able to distin-

guish between competing plans while not wasting resources is essential to the success

of this methodology.

While techniques have been identified that dynamically allocate computing re-

sources to promising designs [38, 62], this is beyond the scope of this thesis. Enough

replications should be run such that each case’s process time median and 80th quan-

tile can be estimated to a specified certainty or indifference region. The process time

is the only metric considered here because it is the primary metric impacted by the

simulation’s stochasticity. The other metrics (e.g. slack time and the neighboring

sensor installation metric) are heuristic measures that are not largely impacted by

the stochastic nature of the simulation.

This leads to the need to properly identify an overarching number of replications

required to properly rank each point to a certain probability. To accomplish this, a

random set of 100 sensor installation scenarios (with 2–4 technician cases run for each

scenario) are run for 100 replications each. The 100 replications are shown to provide

relatively stable solutions for both the median and 80th quantile of the process time

(Figures 19 and 20). Hence, the median and 80th quantiles of process time calculated

from 100 replications are used to estimate the “true” values of the median and 80th

quantiles. Figure 19 presents the calculated median value of the process time at

each replication for the 100 installation scenarios examined. For example, a point at

Replication 40 represents the median value of replications 1–40. Figure 20 presents

the same information for the 80th quantile of the process time.

With the truth data identified, the estimations can be examined at each replica-

tion to determine their closeness to the “true” median and 80th quantile. Figure 21

summarizes the difference between the estimates and “true” values of process time as

more replications are completed. The box in each box plot shows the interquartile
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Figure 19: Median Value of 100 Random Sensor Installation Plans for Each Replication
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Figure 20: 80th Quantile Value of 100 Random Sensor Installation Plans for Each Replication
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range, and the whiskers denote the 5th and 95th quantiles of the data. The figure

shows that the estimation’s improvement is very rapid until around replication 20.

At replication 35, shown as a red box plot, the whiskers are within a reasonable in-

difference region (i.e. variation between the whiskers is not significant). Hence, it is

concluded that 35 replications are sufficient to adequately distinguish between points

for optimization.

This concludes the discussion of the major components required for Step 2 of the

PORRTSS methodology. Therefore, the following section details the integration and

stakeholder interaction required to successfully complete Step 2.

4.3.6 Simulation-based Optimization Component Integration

Figure 22 summarizes the flow of data from the provided schedule and sensor data

through the optimization. The outcome of this step in the methodology is a Pareto

optimal set of results that must be down-selected and re-integrated with the original

planning and scheduling system during Steps 3 and 4, as described in the following

section.

4.4 Step 3: Sensor Installation Schedule Down-Selection

With a Pareto efficient set of solutions identified during Step 2, this step of the

methodology provides the means to down-select to a final robust schedule for actual

implementation. To facilitate this final selection, a decision making environment must

be created to compare the Pareto optimal results across the metrics of interest and

provide the capability to manually modify the plan based on the planners’ expertise.

Furthermore, to increase the potential for the methodology to be implemented in the

“real world”, the visualization environment must contain visuals that are commonly

employed by production planners and schedulers to facilitate collaboration across the

multiple stakeholders.
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Figure 21: Box Plots Presenting the Difference Between the Current Estimation and
True Value of Process Time as More Replications are Completed
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The selection process must incorporate input from each of the three main method-

ology stakeholders: 1) Industrial Engineers (IEs), 2) Manufacturing Engineers (MEs),

3) Avionics Engineers1. Each stakeholder has a different, possibly competing, goal for

the sensor installations. The IEs want a plan that has minimal impact and risk to

the production plan. The manufacturing engineers are looking for a plan that makes

the installations easier for the technicians to complete. Finally, the avionics engineers

want to ensure that the sensors, especially the critical ones, are installed and tested

correctly and with the highest quality. With these potentially competing goals, a

decision support system that can facilitate collaboration is required. The following

section discusses the selection and development of visualization techniques and views

contained within the decision support environment developed for the purpose of this

research.

4.4.1 Visualization Development

The decision support environment must be capable of visualizing and ranking poten-

tial solutions in multiple dimensions to support the effective a posteriori selection of

a solution from the provided set of Pareto optimal solutions [114, 172]. As discussed

in Table 7, this problem has 4 objectives of interest; however, due to the parameter

settings considered (different number of sensor installation technicians) and the pos-

sible strong competition between objectives, the optimization could easily produce

thousands of candidate points. Hence, identifying a proper way to visualize, filter,

and down-select between these points is necessary [124].

An interactive scatterplot matrix is identified by reference [172] as a strong visu-

alization tool for this type of data. The relevant identified strengths of scatterplot

matrices (reproduced from reference [172]) are:

1While the Methodology implementor is a user of the methodology, he or she is not considered
a stakeholder at this point. This is because while his or her role is essential, the implementor is not
going to be making the final decisions on the plan.
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• Ideal for design spaces with few dimensions but many data items

• Useful for the visualization of correlations and trade-offs

• Used as a region query by selecting interesting data points

Because of these strengths, an interactive scatterplot matrix that enables the user

to filter and color points based on their preferences and select points of interest for

more detailed analysis forms the backbone of the data visualization environment. To

further support the stakeholders who may be unfamiliar with scatterplot matrices,

additional multi-criteria decision making (MCDM) techniques are implemented.

From discussions with the methodology’s stakeholders, the IEs and MEs are more

comfortable making decisions with the help of a multi-criteria ranking algorithm. The

goal of including the decision making algorithm is to help guide the analysis conducted

using the scatterplot matrix by coloring points based on their rankings. As such, an

algorithm that uses a user friendly weighting method is desired to help identify regions

of points that are high performing according to the defined preferences.

A popular MCDM method that fits these requirements is the Technique for Order

Preference by Similarity to Ideal Solution (TOPSIS) [196]. The underlying principle

driving the TOPSIS algorithm is that the “best” solution should be geometrically

closest to the ideal solution (e.g. the individually best values for each objective func-

tion) and farthest from the negative ideal solution [144]. Furthermore, this algorithm

provides the ability to guide decision making by illustrating the effect of changing

user preferences (e.g. by coloring points based on how their rankings change with

modified preferences).

Figure 23 demonstrates the implementation of the TOPSIS algorithm in the deci-

sion support environment. The relative weighting of each objective can be modified,

which updates the Ranked Solutions table. The table rows’ colors indicate how a
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Figure 23: TOPSIS Weighting Selection and Ranked Solutions

Response Weighting
Median Flow Time 5.0

Slack Time for All Sensors 0.5
Slack Time for Critical Sensors 0.5

Technicians (Cost) 0.7
Neighboring Sensor Metric 1.0

80th Quantile of the Flow Time 2.5

Index Median Flow
Time

80th Quantile
Flow Time

All Sensor
Slack Time

Critical Sensor
Slack Time

Technicians Neighboring
Sensor Metric

5,864 1.014 1.012 0.842 0.863 3 1.019
977 1.012 1.012 0.845 0.846 3 1.06
2,480 1.019 1.033 0.903 0.933 3 1.047
758 1.013 1.012 0.851 0.846 3 1.064
2,807 1.012 1.013 0.817 0.833 3 1.029
1,511 1.012 1.013 0.816 0.833 3 1.029
3,770 1.014 1.03 0.897 0.899 3 1.079
623 1.014 1.012 0.851 0.845 3 1.065
3,257 1.013 1.012 0.851 0.846 3 1.068
4,382 1.014 1.027 0.833 0.853 3 1.017

solution’s rank changed as the weightings change. For instance, if a rows rank im-

proves, it is colored green; if it worsens, the row is colored red. Finally, if the rank

remained constant, it is left white. This coloring helps the user to see how changing

the weighting is impacting the type of solutions that come out on top.

The TOPSIS results are further used to color points on the scatterplot matrix

(Figure 24). The points are colored from green to red based on their TOPSIS rank.

This provides a visual cue as to the regions of well performing points. Furthermore,

by seeing how the high performing regions change as the weightings are modified,

the decision maker can quickly identify, at a macro level, those regions that are

consistently well-performing.

While the macro level analysis provided by the scatterplot matrix and TOPSIS

algorithm is very helpful to identify candidate solutions, the decision makers require

more details to make a final selection and improve the transparency of the solution

process. The primary metric to minimize is the delay to the primary processes due to
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sensor installations. Therefore, providing the capability to visually compare scenarios,

which are identified using TOPSIS and the scatterplot matrix, based on the delays

to the individual processes is needed.

A promising visualization technique for these comparisons are parallel coordinate

plots [9]. An example of the implemented parallel coordinate plot is displayed in

Figure 25. The parallel plot presents the delay to the start of each process caused

by sensor installations completed during previous processes (vertical axis) for each

primary production process (horizontal axis). To further illustrate the distribution

of the points (especially if a significant number of scenarios are chosen) [209], a box-

and-whiskers plot for the delay to each process’ start is drawn behind the parallel

plot. A description of the box-and-whiskers plot is illustrated in Figure 26.

This new combination of the parallel and box-and-whiskers plots is motivated by

the desire to identify scenarios that are unusual and processes that are largely affected

by the differences in the chosen scenarios. The parallel plot provides an easy means

to identify the selected scenarios that are much more poorly performing than others.

However, as the number of scenarios for comparison begins to increase, it becomes

more difficult to effectively identify points that have delays over the median or higher

quantile of the data. In these cases, the box-and-whiskers plot can help by providing

quick access to summary statistics about the selected scenarios. Furthermore, if the

user is interested in identifying processes that have a very inconsistent amount of

delay across the scenarios chosen, he or she may turn off the parallel plot. With only

the box-and-whiskers plot visible, the user can immediately see those processes with

inconsistent delays, which may require additional investigation using the Gantt chart.

Using the table shown in Figure 23, the user can select scenarios to be compared

by checking the Selected box. Doing so populates the aforementioned parallel plot

with information about the selected points. Then using the parallel plot, the user can

understand, at a high level, where each plan contains delays. While this provides a
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Figure 25: Example Decision Support Environment Scenario Comparisons - Parallel Coordinate Plot Displaying the Delay to
the Start of Each Primary Process Due to Sensor Installations for Selected Scenarios
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good starting point to make the final decision, the IE and ME stakeholders may also

like to assess the impact that a specific the sensor installation has on the schedule.

This schedule information should be provided in a convenient format with appropriate

interactivity, as discussed in the following section.

Minimum

25th Quartile
Median
Mean
75th Quartile

Maximum

Figure 26: Description Box-and-Whiskers Plot Used in the Decision Making Envi-
ronment

4.4.1.1 Schedule Visualization and Interaction

It is observed that “it seems necessary for viable scheduling systems to combine the

best of historical human expertise, theoretical or mathematical knowledge, and the

common sense of the current user [136].” Hence, an effectively implemented schedule

decision making system necessarily requires an effective data visualization and user

interface to support the human decision maker [45, 60, 79, 125, 198, 201, 205]. An

immediately understandable and popular method to display this schedule information

is a Gantt chart [79, 210]. Gantt charts are simple tools to provide information in

a very comprehensible format [210] while also having the ability to identify reasons

for inefficiencies [79]. The popularity of the Gantt chart has only increased with the

advent of interactive scheduling applications due to their strength in both displaying

and interacting with schedules [72, 210]. Therefore, an interactive Gantt chart is

implemented into the decision support environment to display information about the

current schedule, facilitate manual schedule modification, and increase transparency

[210].
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mary Process

Subcomponent
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Requiring Touch
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Installation not
Requiring Touch
Labor

Off-Shift Time

Figure 27: Example Decision Support Environment Gantt Chart
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Figure 27 shows an example of the implemented Gantt chart. The process bar

colors help to illustrate the impact of the sensor installations on the schedule. Figure

27 also provides the legend for the Gantt charts to be displayed throughout the

remainder of this thesis. In the Gantt chart, the red bars clearly indicate where

delays in the process are observed. The causes for the delays can be understood by

investigating the green and purple sensor installations planned during the primary

process of interest. This chart provides the IE and ME decision makers with the

ability to identify when, in the schedule, delays occur and ultimately helps them

moving forward with a chosen plan.

Incorporating the planners’ expertise is seen as an important aspect of successful

scheduling systems [79, 84, 159, 207, 210]. Consequently, it is desired that the human

scheduler has input into the schedule beyond choosing the “best” schedule provided

by the optimization routine. This capability is included in a “re-planning” view that

allows the user to make manual changes to the schedule and re-run the simulation

to see their impact. This view contains an interactive Gantt chart that allows the

user to select a specific process in the Gantt chart and move sensor installations to

or away from the selected primary process. By then re-running the simulation, the

planner can identify if the changes he or she made had an impact on the quantifiable

objective functions. Then, using his or her knowledge, the planner can weigh this

possible change against any other potential qualitative gains from the modification.

Once promising schedules have been identified, down-selected, and potentially

modified, they are returned to the original production schedule. Specific formatting

and naming conventions must be observed to ensure interoperability. By integrating

the results with the original schedule, the planners can then propagate the results

through the entire production system. This enables them to understand how the

uncertainty and risk affects the overall project completion time to decide whether the

proposed solution is acceptable. The following section discusses this integration.
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4.5 Step 4: Schedule Propagations & System-wide Analysis

The final step is to propagate the overall schedule throughout the organization. While

this is an important step in the methodology, propagating the schedule is the sole

responsibility of the IEs and MEs and is, thus, not implemented by the methodology

implementor in this thesis. If propagated, the schedule is used to estimate overall cost

by the financial and accounting teams, generate work orders by the manufacturing

engineers, schedule shifts and resources by production managers, etc. Therefore,

ensuring that the results derived from Step 2 and finalized in Step 3 are correctly

formatted for the systems in place is necessary to ease adoption.

With the specific implementation of the methodology to the representative case

study described, the experimental plan can now be discussed. The case study is

used to test each developed hypothesis. Ultimately, the experiments attempt to

support the two overarching hypotheses: 1) the methodology is technically feasible for

implementation in complex manufacturing environments, and 2) it is “implementable”

in the context of complex, low volume, high impact production flows.

4.6 Experimental Plan

The experimental plan follows the structure of the hypotheses. Therefore, the exper-

imental plan begins by addressing Sub-Hypothesis 1.1:

4.6.1 Experiment 1.1: Effectiveness of Discrete-event Simulation to Model
the Production System of Interest

Hypothesis 1.1: If discrete-event simulation is leveraged, then increasingly com-

plex scheduling environments can be modeled effectively such that the information

required for use in a selected optimization routine can be captured.

The case study features a production environment with strict quality controls and

many accessibility and safety issues that need to be considered when planning tasks.

Therefore, planning sensor installations within this production system represents the
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level of complex manufacturing environments that the methodology is designed to

solve. The following experiment is setup to test Sub-Hypothesis 1.1:

Experiment 1.1 Using the logic and automated model generation strategy de-

scribed in Sections 4.2 and 4.3.1, build a discrete-event simulation of the

vehicle’s production flow with the capability to model sensor installation

steps.

Evaluation Criteria The ability of the discrete-event simulation to assess the

impact of varying the sensor installation schedule on the overall production

flow.

Specifically:

Model Generation Logic is Appropriate: The resulting simulation

should respect the choices made by the schedule optimization routine.

Incorporation of sensor installations and uncertainty should not violate

identified causal process constraints.

Appropriate Sensor Installation Process Logic: The assumptions de-

scribed in Section 4.3.1 are investigated. The model must adhere to

each assumption to ensure the logic is appropriate for integration with

the optimization routine.

Impact of Concurrent Installations Allowed: Increasing the number of

concurrent sensor installations (by allowing more technicians to install

sensors in parallel) should reduce the impact of the installations. Fur-

thermore, because additional resources are available, the risk in the

schedule should also be reduced with a more technicians.

Impact of Compatibility Assumptions: Modifying the compatibility
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assumptions should impact the delay and risk incurred in the sched-

ule. More stringent assumptions should increase delays.

4.6.2 Experiment 1.2: Determine Optimization Strategy’s Ability to Im-
prove System Performance

Once the discrete-event simulation is shown to effectively model the production sys-

tems of interest and evaluate the possible schedule alternatives, Sub-Hypothesis 1.2 is

investigated to determine whether the implemented metaheuristic optimization rou-

tine is capable of improving the schedule’s performance:

Hypothesis 1.2: If a metaheuristic optimization routine is linked to the developed

discrete-event simulation schedule model, then installation plans with improved

performance can be efficiently identified.

This sub-hypothesis proposes that a metaheuristic optimization strategy is suited

to solve the problem at hand. A major benefit from the formulation of the case study

is that the absolute optimum schedule (with respect to process time) is known: the

best possible case is to install all sensors in parallel with the primary schedule to avoid

any delays due to sensors. This provides a baseline to compare against in Experiment

1.2:

Experiment 1.2 Link a metaheuristic optimization algorithm to the schedule

simulation and attempt to find a set of well-performing schedules. This ex-

periment solely focuses on the link between simulation and optimization: no

uncertainty is included in the simulation for this experiment

Evaluation Criteria Ability to efficiently identify schedules that are determin-

istically well-performing with regards to the multiple objectives of interest

as described in Table 7. Performance is measured by comparing the im-

provement of the Pareto frontier of identified installation plans to the initial

148



random population of schedules. Efficiency is measured by the number of

generations and time required to identify well-performing points. In addition

to qualitative investigations of the algorithm’s convergence, Section 4.6.6.2

discusses a set of multi-objective algorithm performance metrics (e.g. the rela-

tive improvement and consolidation ratio) useful for quantitatively evaluating

the improvement of the population of installation plans.

If successful, this experiment provides evidence that a metaheuristic optimization

routine linked to the simulation model is capable of finding improvements to the tested

schedule. To complete the investigation of Hypothesis 1, robustness-related measures

(specifically quality robustness) must be included as discussed by Sub-Hypothesis 1.3.

4.6.3 Experiment 1.3: Impact of Robust Optimization Considerations

Hypothesis 1.3: If the optimization routine and model can estimate robustness

related responses (quality robustness) and support multi-objective optimization,

then the methodology will be capable of finding robust schedules.

Testing this sub-hypothesis requires including robustness criteria (e.g. quality ro-

bustness) in the optimization. This, in turn, requires that the model be able to

estimate schedule robustness criteria and that the optimization algorithm be able to

use these criteria to identify better schedules. This leads to Experiment 1.3:

Experiment 1.3 Expand the optimization objective functions to search for sched-

ules with reduced risk. Include uncertainty within the simulation to enable

the evaluation of schedule quality robustness. Evaluate the risk in the opti-

mal points identified through the deterministic optimization and compare to

those identified through the stochastic optimization.

Evaluation Criteria
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Quality Robustness: Ability to identify schedules with reduced process

time and risk.

Improvement to Other Risk Metrics: Ability to provide a family of so-

lutions that work to reduce risk associated with sensor installations.

Comparison to Deterministic Results: Ability to differentiate between

deterministically optimized schedules and schedules optimized that in-

clude quality robustness (e.g. the 80th quantile of the process time).

Ability to answer the question: Do the results from the stochastic op-

timization routine have lower risk than those identified through the de-

terministic optimization runs?

Conducting these three experiments help to validate Hypothesis 1.

4.6.4 Experiment 1: Methodology’s Capability to Reduce Risk in Pro-
duction Schedules

Hypothesis 1: If a schedule is modeled at the appropriate level of detail via

discrete-event simulation and optimized with a multi-objective, metaheuristic al-

gorithm, then the methodology is capable of improving the robustness of complex

systems’ schedules.

Hypothesis 1 posits that a framework containing the attributes described by Sub-

Hypotheses 1.1–1.3 is able to improve the robustness of a complex manufacturing

system’s schedule. This leads to Experiment 1:

Experiment 1 Integrate the capabilities discussed in Experiments 1.1, 1.2, and

1.3 into an integrated framework. Complete Steps 1 and 2 of the methodology

for the use case discussed in Section 3.2.

Evaluation Criteria Investigate whether the integrated framework enables:
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• Modeling of complex manufacturing systems

• Optimization of the developed model

• Assessment through the model and improvement through the optimiza-

tion routine of the schedule’s robustness

This first set of experiments (1.1–1.3) is designed to primarily test the technical

feasibility of the PORRTSS methodology. The second set of experiments investigates

ways that the traditional simulation-based optimization approach can be improved

to promote its implementation in the “real-world.” As previously discussed through

the literature review, improving “implementability” is linked to reducing the time

and effort required to setup the methodology (to save cost), shortening the time

required to arrive at a solution (to make decisions within the planning horizon), and

improving solution quality (to reduce cost and risk in the production environment).

This investigation will begin by testing Hypothesis 2.1.

4.6.5 Experiment 2.1: Modeling Speed Improvements

Hypothesis 2.1: If the advanced object-oriented nature of modern discrete-event

simulation packages is leveraged to help automate model generation and if meta-

heuristic algorithms are appropriately implemented to increase the optimization’s

flexibility, then the methodology’s implementation time and effort will be re-

duced.

This sub-hypothesis focuses on reducing the time and effort required to proceed

through the model design and development phases of a simulation project. This

sub-hypothesis is tested through the following experiment:

Experiment 2.1 This experiment focuses on evaluating the ability to quickly

apply the methodology to new sets of data. Therefore, this experiment will

compare the time and effort required to implement the methodology for:
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• Manual development of the model with a small number of processes

• Automated model development with a small number of processes

• Automated model development for full-scale problem with more complex

logic

Evaluation Criteria

• Time and effort required to generate model for new data set

– Comparison of assumptions required between the manual and au-

tomated strategies

• Methodology scalability→ does modeling the larger number of processes

require modifying the methodology?

• Changes required to apply the optimization algorithm to a model with

a larger number of processes and more complex logic

With the identification of ways to reduce the time to implement the methodol-

ogy, Hypothesis 2.2 investigates reducing the time to arrive at a set of high quality

solutions.

4.6.6 Experiment 2.2: Improve Optimization Convergence Quality and
Time

Hypothesis 2.2: If alternative optimization strategies are implemented, then the

methodology can be used to explore and exploit the solution space quickly enough

to make implementation feasible and viable for a wider range of time and resource

constraints and solution quality requirements.

This sub-hypothesis deals with applying different optimization improvement strate-

gies. The following experiment is designed to test this range of strategies:
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Experiment 2.2 Investigate a range of optimization algorithms (specified in Ta-

ble 11) and robustness responses to consider (Table 12) applied to a subset

of the problem.

Evaluation Criteria

• Ability to converge to a well-performing schedule with low impact on

process time and low risk

• Computing time required for the optimization algorithm to converge

Table 11: Optimization Algorithms to Investigate in Experiment 2.2

Optimization Algorithms
• Genetic Algorithm
• Shifting Bottleneck Inspired Heuristic
• Expanded Neighborhood Local Search
• Weighted-sum Simulated Annealing
• Pareto-based Simulated Annealing
• Weighted-sum Fast Simulated Annealing
• Pareto-based Fast Simulated Annealing

Table 12: Schedule Robustness Considerations to Investigate in Experiment 2.2

Robustness Considerations
• None (Optimize the deterministic model)
• Median of replications
• Higher quantile (80th)
• Multi-objective (median and variance and/or other risk metrics)

Table 13 describes the strategies identified throughout literature that are inte-

grated to improve the optimization’s capability. These improvements help to reduce

the time required to arrive at quality solutions. The main goal of this experiment is

to identify the combination of optimization algorithms and robustness considerations
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that effectively search the design space. The “effectiveness” can depend on a variety

of factors including the size of the model (i.e. the time required to run the model), the

time available for the optimization, and the weighting or preference of the decision

maker on the various objective functions. Ultimately, this investigation is conducted

to identify multiple optimization strategies to select from based on the individual

problem’s characteristics.

Table 13: Experiment 2.2 Integrated Strategies to Improve Optimization Performance
Desired Improvement Strategies

Reduce Time to Evaluate
a Simulation Replication

• Model at the correct level of detail
• Observe modeling best practices (remove unnecessary

logic, efficiency improvements, etc.)

Reduce Time to Evaluate
Full Set of Replications

Required to Estimate
System Responses

• Maximize parallelization
• Reduce replications required by appropriately control-

ling uncertainty
• Minimize overhead time (time to load the models, cal-

culations for the optimization, etc.)

4.6.6.1 Strategy Down-Selection

A challenge to consider when conducting this experiment is the time required to com-

plete each run of the optimization algorithm. The major drawback of metaheuristic

algorithms are the number of function calls required for convergence, so unfortunately,

not every combination of algorithms, objectives, model sizes, convergence improve-

ment strategies, and robustness considerations can be tested. Therefore, a down-

selection process is followed to identify promising strategies for extended analysis.

The steps in the down-selection process are outlined in Figure 28.

Implementing this down-selection process assumes that the performance of the al-

gorithms is similar for both the deterministic and stochastic problems. The primary

difference between the two problems is that the stochastic problem (e.g. one that

runs multiple replications to estimate the 80th quantile or standard deviation of the
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Algorithms Considered
• Greedy “Shifting Bottleneck”
• Stochastic “Shifting Bottle-

neck”
• Stochastic Neighborhood

Search
• Simulated Annealing
• Fast Simulated Annealing
• Pareto Dominance-based Sim-

ulated Annealing

Step 1: Deterministic
Algorithm

Experimentation

Baseline:
Deterministic
NSGA-II

Robustness Considerations
• None
• Median of replications
• Median and Higher quantile

(80th)
• Multi-objective (median and

variance of results)

Downselect promising
algorithms

Step 2: Investigate
Robustness

Objective Functions

Baseline:
NSGA-II with
Uncertainty.
Optimizing

median and 80th

quantile of
objective
functions.

Figure 28: Experiment 2.2 Down-Selection Strategy

process time) includes an additional objective function to measure schedule robust-

ness. While it is shown that increasing the dimensionality of the objective space can

increase challenges related to finding the true Pareto frontier [51], the specifics of the

problem at hand limit this effect. First, the median of the process time should behave

similar to the deterministic process time because the stochastic process time is set

as a triangular distribution centered around the nominal process time. As such, the

median of the process time essentially replaces the deterministic process time in the

optimization. Second, the added robustness measure, whether it is the 80th quantile

of the process time or standard deviation, should also behave similarly to the median

process time. For example, if the median is decreasing, the 80th quantile and standard

deviation, because of the problem simplifications, should generally decrease as well.

Finally, the optimization problem is formulated such that it is unconstrained. Deal-

ing with constraints is difficult for metaheuristic algorithms and leads to challenges
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when adding dimensions [51], so by removing the need for constraint handling, the

algorithm should scale better to higher dimensional problems. Therefore, the assump-

tion that the deterministic algorithm’s performance is translatable to the stochastic

problem is reasonable.

Throughout the down-selection process, the NSGA-II serves as the baseline for

comparison of solution quality, exploration, and convergence time. The NSGA-II is

a suitable candidate to provide this baseline because, as discussed in Section 5.1.2,

genetic algorithms are generally highly flexible algorithms that, if given enough time,

thoroughly explore the Pareto frontier. The NSGA-II can also naturally accommodate

multi-objective optimization, so its results are not influenced by objective function

weightings. As such, the results found from an extended evolutionary search should

provide a suitable approximation of the best quality of results that could be gen-

erated. Results from other algorithms and strategies can then be compared to the

NSGA-II results. With the down-selection strategy for this experiment outlined, the

following section briefly introduces the performance metrics that are used to compare

the algorithms.

4.6.6.2 Algorithm Performance Metrics

Common metrics used to compare multi-objective optimization approaches are [27,

51,139,192,193,217]:

1) Search Precision: The algorithm should identify globally Pareto optimal solu-

tions (or at least solutions close to the Pareto frontier).

2) Computational Time/Effort: The algorithm must be efficient (measured by

actual time and/or number of function calls).

3) Uniform Search Over Pareto Frontier: The solutions should be widely and

evenly spread over the Pareto frontier.
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Comparing computational effort is relatively simple (usually either number of

function calls or actual computation time [217]), however for multi-objective prob-

lems, comparing the solution quality (closeness to frontier and wide, even spread)

is not straightforward [216]. In many studies for multi-objective optimization, algo-

rithm comparisons are done qualitatively (e.g. by comparing plots of Pareto frontiers

observed from various runs) [192, 197]. To supplement the subjective nature of this

comparison, a more quantitative approach is desired.

Quantitatively assessing the performance of a population of points resulting from

a multi-objective optimization run generally requires knowledge of the true Pareto

frontier (i.e. the full set of non-dominated solutions that would be found if every pos-

sible combination is evaluated) [192,193,197]. Determining this true Pareto frontier is

not feasible in this instance, so a baseline estimate is identified and discussed below.

With the true frontier identified, a common metric used to evaluate an algorithm is

the average normalized distance from each generated Pareto efficient solution in the

current Pareto frontier to the closest member of the true Pareto frontier [197]. When

the true Pareto frontier is not know, substituting a “combined pool of all generation-

wise populations” is appropriate [49]. Equation 9 (reproduced from [197]) defines

this metric. In the equation, n is the number of Pareto efficient points found in the

current population, di is the normalized Euclidean distance from point i to the closest

point on the true Pareto frontier, and p = 2.

G ≡

(
n∑

i=1
dp

i

)1/p

n
(9)

Another common metric to compare population-based algorithms is the spacing

between identified optimal points [197]. If the goal is to find Pareto optimal solutions,

the algorithm ideally produces a population that is very close to the true Pareto

frontier and equally spaced along the frontier to provide a diverse set of options to
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the decision maker [216]. Hence, a spacing metric can be defined as seen in Equation

10 (reproduced from [197]).

S ≡
√√√√ 1
n− 1

n∑
i=1

(
d̄− di

)2
(10)

where n is again the number of Pareto efficient points found, di is the normalized

distance from point i to the nearest point in the found set of Pareto points, and d̄ is

the average of di, where di is defined as:

di ≡ min
j
{|~pi − ~pj|} (11)

where ~p is the vector of values for each Pareto point. A value of 0 for the metric

defined in Equation 10 indicates that the points are evenly spaced.

A final metric of interest to help identify the quality of an algorithm’s results is

the percentage of points identified that are Pareto optimal [197]. While this metric

does not give a sense for the quality of solutions, it helps to illustrate how efficiently

the algorithm is able to generate Pareto optimal solutions.

These metrics help to quantify the effectiveness of a population based metaheuris-

tic, however there remain challenges to their use in the comparisons for this disser-

tation. One challenge is that the actual Pareto frontier must be known to calculate

the metrics. Because the frontier for the problem studied in this thesis is unknown,

this necessitates the need for a baseline algorithm. Secondly, the metrics are designed

to study population-based, evolutionary algorithms, while the present study is inter-

ested in single points algorithms as well. Hence, the experiments must be conducted

in such a way as to enable relevant comparisons using these metrics.

To address the first challenge, a suitable baseline Pareto frontier must be pro-

duced to enable comparisons between additional algorithms. The NSGA-II algorithm

is selected to provide this baseline because it 1) inherently handles multi-objective

optimization without requiring weighting schemes or other biases and 2) is one of the
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most popular evolutionary algorithms used for multi-objective optimization. Because

evolutionary algorithms “have become the method at hand for exploring the Pareto-

optimal front in multi-objective optimization [216],” the NSGA-II is, if given enough

time, likely to be the most successful of the considered algorithms. Furthermore, be-

cause the problem at hand only contains discrete variables, there is no discretization

errors usually associated with genetic algorithms. Hence, to provide the baseline for

the other algorithms of interest, the NSGA-II is run until it converges. After the al-

gorithm has converged, the Pareto optimal cases from every generation are gathered

to serve as an estimate of the true Pareto frontier to enable comparisons between the

other algorithms of interest.

Determining the convergence of a multi-objective algorithm is, however, also not

straightforward [71, 192, 193]. One challenge is that many measures utilized to test

the performance of a multi-objective algorithm, as discussed above, rely on knowledge

of the true Pareto Frontier. To overcome this challenge, metrics that compare the

relative improvements of the algorithm are proposed.

The first proposed metric investigates the relative improvement of each genera-

tion using the generational distance (i.e. closeness to the Pareto frontier) defined by

Equation 9 [20,192,193]. Mathematically, the relative improvement is defined as [193]:

RP ≡ ln
√
G1

Gi

(12)

where G1 is the generational distance of the initial population and Gi is the genera-

tional distance of the ith generation. In each case, G is calculated using the Pareto

frontier containing the Pareto points identified through all of the generations of the

optimization run. By normalizing by the first generation, this metric shows how the

current generation compares to the initial generation. Hence, this metric increases

as the current generation gets closer to the found Pareto frontier. As progress slows,
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the relative improvement begins to flatten. This indicates that while new Pareto ef-

ficient points may be found, the overall quality of the population is not significantly

increasing. Therefore, at the point when the relative improvement curve flattens, the

algorithm can be considered converged.

The second metric to be used to help determine the convergence of the NSGA-II

is a consolidation ratio [71]. The consolidation ratio is interested in the “survival” of

Pareto points from each generation. The general idea is that if the Pareto efficient

points from one generation are still non-dominated in a future generation (i.e. no

improved points have been identified), then the algorithm has converged. For each

generation, an archive of non-dominated points from that and all previous genera-

tions are stored. Then, starting from generation i = j + 1, where j is a specified

generational offset to reduce noise, the archive from generation i is compared to that

from generation i − j. For instance, if j = 10, then the number of Pareto efficient

points from generation 1 that are still present in the archive from generation 11 are

compared. The number of surviving points found is then divided by the total number

of points in the archive from generation i − j to provide a fair comparison. A value

of 1 means that every point from generation i− j is still present in generation i. As

this metric approaches a specified limit (e.g. when 80% of the Pareto points survive

j generations), then the algorithm can be considered converged because there is little

improvement still occurring [71].

Both metrics are considered when determining the convergence of the NSGA-

II. The relative closeness metric helps to show how much improvement, compared

to the initial generation, the algorithm is achieving as it nears convergence. The

consolidation metric indicates whether running additional generations are likely to

identify a significant number of new Pareto points. Therefore, once the algorithm

slows improvement and is not producing many new Pareto points, it is considered

converged and, because the NSGA-II is shown to perform very well for this class of
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problems, can provide a baseline to compare the other algorithms.

With a suitable baseline identified, an approach to compare results from point so-

lution algorithms to the population-based NSGA-II must be developed. By running

the algorithm multiple times at various starting locations, the algorithm should arrive

at different points on the Pareto frontier. Then, by comparing this “population” to

the baseline frontier determined by the NSGA-II using Equation 9, the resulting solu-

tions’ closeness to the baseline Pareto frontier can be evaluated. The spacing metric

(Equation 10) is only evaluated for the Pareto-based simulated annealing algorithms

because the weighted sum algorithms ideally should converge to a single point.

With the experimental down-selection process discussed and detailed algorithm

performance metrics identified, Experiment 2.2 is performed. Upon successful com-

pletion, Experiments 2.1 and 2.2 help to inform the experiment testing the overall

Hypothesis 2.

4.6.7 Experiment 2: Methodology’s Potential for Implementation to Han-
dle “Real-World” Problems of Interest

Hypothesis 2: If the methodology requires a low amount of implementation effort

and is shown to provide clear benefits with acceptable increases in computation

time over traditional scheduling methods while effectively integrating the knowl-

edge of the human planner, then the methodology can be successfully implemented

to solve “real-world” problems.

This Hypothesis focuses on taking the results from the previous experiments and

applying the methodology to a “real-world” problem. Therefore, Experiment 2 is

developed:

Experiment 2 Apply the developed methodology to support the scheduling of

sensor installations for a major subassembly within the case study vehicle.
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Evaluation Criteria Investigate whether the needs identified in Hypothesis 2

have supported the implementation of the methodology. Specifically, inves-

tigate:

• Time required (methodology setup and optimization time) to find the

set of potential solutions. Can this be accomplished within the required

planning window?

• Optimization results and analyses are improved compared to the base-

line’s planning process

– Are the proposed plans feasible?

– Are the results of high enough quality and well spread across the

Pareto frontier to facilitate decision making?

– Did the model properly identify portions of the production flow

impacted by sensor installations?

• Stakeholders can leverage the provided data visualization and decision

support tool to down-select and modify the sensor installation plans

This final experiment is important to the overall evaluation of the methodology

because it tests the “implementability” of the methodology. One of the major com-

plaints about many scheduling methodologies is that they are difficult to use in the

“real world.” Hence, exploring how the decision makers utilize the provided results

and decision making environment enables a final check on the quality of the methodol-

ogy. In essence, this experiment is designed to confirm that the developments explored

and implemented through the previous experiments combined with the presentation

of the results in the decision making environment produce a scheduling system that

can be applied by industrial users.
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4.6.8 Experimental Plan Summary

The experimental plan is designed to continuously test and build up the capabilities

required to integrate robust design principles to schedule production and assembly

processes in manufacturing environments with significant constraints. Upon comple-

tion of the experimental plan, a determination can be made as to the capability of the

developed methodology to model and optimize these systems to reduce risk. One area

that is not directly examined is the methodology’s extendability to other scheduling

problems. While the experimental plan does not directly test the methodology’s ex-

tendability by applying the methodology to multiple problems, the customizations

and effort required to implement the methodology for the specific case study are re-

ported. Hence, the effort required to implement specific portions of the methodology

can inform possible users about its applicability to their problem.

The following chapter discusses the completion of the experimental plan and ini-

tial observations made. Experimental results are presented and discussed. The Hy-

potheses generated throughout Chapter 3 are then examined in the context of the

experimental results to assess whether they are plausible responses to the identified

research questions.
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CHAPTER V

EXPERIMENTATION & RESULTS

The experiments identified in Chapter 4 are completed to incrementally build up

support for the hypotheses developed throughout this thesis. The ultimate goal of

this chapter and Chapter 6 is to demonstrate that the PORRTSS methodology, by

demonstrating the capabilities and characteristics identified throughout Chapters 3

and 4, successfully addresses the identified research gaps and improves on the current

detailed planning process. Hence, results from Experiment 1 are addressed in the

following section.

5.1 Experiment 1: Methodology’s Capability to Reduce Risk
in Production Schedules

This experiment is designed to investigate Hypothesis 1:

Hypothesis 1: If a schedule is modeled at the appropriate level of detail via

discrete-event simulation and optimized with a multi-objective, metaheuristic al-

gorithm, then the methodology is capable of improving the robustness of complex

systems’ schedules.

The sub-hypotheses and associated experiments are developed in order to build

up support for Hypothesis 1. Therefore, each sub-hypothesis is examined in detail in

the following sections. The results are generated using a simulation of the structural

assembly and sub-system integration process for a major sub-assembly of the case

study’s vehicle. The process flow is chosen because 1) it is representative of the

complexity encountered in other sequences for the case study and 2) has a reasonable

runtime to ensure many model runs can be evaluated.
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Research Question 1: How can the challenges of implement-
ing scheduling techniques be overcome to provide a system

capable of producing robust schedules to reduce cost and delays?

Sub-Research Question 1.2: Which op-
timization technique(s) should be imple-
mented to adjust the developed model

effectively to search for optimal schedules?

Sub-Research Question 1.1: Which model-
ing techniques can be applied to effectively

model increasingly complex produc-
tion systems for use in the proposed
schedule optimization methodology?

Sub-Research Question 1.3: How can the se-
lected optimization technique(s) be utilized

to improve the schedule’s robustness?

Characteristics Required
• Effectively model:

– Capture data to enable decisions to be made
– Not require and excessive amount of time or

detail to complete the modeling process
• For improved scheduling:

– Capable of modeling typical scheduling de-
cisions (e.g. order of completion, process
routing, etc.)

– Evaluate schedule robustness responses

Characteristics Required
• Interface with the developed simulation
• Objective function will be relatively expensive to

evaluate, so the optimization must be efficient
• Easily implemented
• Support multi-objective optimization
• Only require objective function evaluations
• Handle uncertainty in the objective function

evaluations
• Amenable to parallelization

Characteristics Required
• Estimate the schedule’s robustness
• Optimization must be capable of searching for a

schedule with improved robustness

Hypothesis 1.1: If discrete-event sim-
ulation is leveraged, then increasingly
complex scheduling environments can
be modeled effectively such that the in-
formation required for use in a selected
optimization routine can be captured.

Hypothesis 1.2: If a metaheuristic opti-
mization routine is linked to the developed
discrete-event simulation schedule model,
then installation plans with improved

performance can be efficiently identified.

Hypothesis 1.3: If the optimization rou-
tine and model can estimate robustness
related responses (quality robustness)
and support multi-objective optimiza-
tion, then the methodology will be
capable of finding robust schedules.

Hypothesis 1: If a schedule is modeled at the appropriate level of detail via discrete-
event simulation and optimized with a multi-objective, metaheuristic algorithm, then
the methodology is capable of improving the robustness of complex systems’ schedules.

Figure 29: Research Question and Hypothesis 1 Buildup
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Figure 29 presents an overview of the research questions and hypotheses investi-

gated throughout Experiment 1. To build up overarching support for Hypothesis 1,

the following section investigates Experiment 1.1.

5.1.1 Experiment 1.1: Effectiveness of Discrete-event Simulation in Mod-
eling Production Systems of Interest

Before investigating any optimization or schedule improvement approaches, this initial

experiment is designed to demonstrate the capability to assess the impact of a defined

installation plan on the overall production schedule using the model generation logic

discussed in Section 4.2. With the simulation model and compatibility matrix in place,

results demonstrating the effectiveness of the logic and its usefulness for decision-

making are reported to investigate Hypothesis 1.1:

Hypothesis 1.1: If discrete-event simulation is leveraged, then increasingly com-

plex scheduling environments can be modeled effectively such that the information

required for use in a selected optimization routine can be captured.

The effectiveness of the model logic is investigated using Experiment 1.1’s evalu-

ation criteria:

Appropriate Model Generation Logic: The resulting simulation should respect

the choices made by the schedule optimization routine. Incorporation of sen-

sor installations and uncertainty should not violate identified causal process

constraints.

Appropriate Sensor Installation Process Logic: The production flow logic dis-

cussed in Section 4.3.1 is investigated. Each assumption is detailed and an

example from the model run is presented in Section 5.1.1.2. The model must

adhere to each assumption to ensure the logic is appropriate for integration with

the optimization routine.
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Impact of Concurrent Installations Allowed: Increasing the number of concur-

rent sensor installations (by allowing more technicians to install sensors in par-

allel) should reduce the impact of the installations. Furthermore, because ad-

ditional resources are available, the risk in the schedule should also be reduced

with more technicians.

Impact of Compatibility Assumptions: Modifying the compatibility assumptions

should impact the delay and risk incurred in the schedule. More stringent as-

sumptions should increase delays.

The following sections discuss how the model logic meets the aforementioned effec-

tiveness criteria.

5.1.1.1 Model Generation Experimental Results

Evaluating the model logic begins by ensuring the baseline simulation without any

uncertainty or sensor installations matches the schedule model. The Gantt charts

for the schedule and simulation can be compared to ensure the simulation matches

the schedule. Figures 30 and 31 display the Gantt charts for the baseline schedule

and simulation model, respectively. As seen in the figures, the general structure of

the schedule is very similar. Some slight discrepancies can be explained by the small

number of processes that must be completed in a single shift (e.g. a moving operation

requiring a crane). For these processes, the schedule does not start them near the end

of a shift; however, the simulation model does not account for this constraint because

it only affects a small number of processes and the overall impact is negligible (the

simulation and schedule’s process time match within an acceptable 0.1%).

The simulation must also observe the structure of the provided schedule even

when sensors are incorporated. Figure 32 provides the Gantt chart for the primary

production processes when sensors are installed. The figure is plotted on the same

scale as Figures 30 and 31. The general structure of the Gantt chart is again similar
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Figure 30: Gantt Chart for the Optimized Schedule Model
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Figure 31: Gantt Chart for the Baseline Simulation Model without Sensor Installations
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Sensor installations delay primary process
Successive processes resume according to defined precedence network

Process must wait for all previous tasks to be completed

This process and its successors are compatible with the ongoing sensor installations

Process delayed to complete sensor installations
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Figure 32: Gantt Chart for the Simulation Model with Sensor Installations
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to the baseline shown in Figure 31. It can be seen that the primary difference between

both figures is that adding sensor installations logically causes some of the primary

processes to be started late (because sensor installations during previous tasks delayed

the process) or be extended. Figure 32 illustrates, at a high level, how a delay early

in the process cascades to linked processes further along in the flow. A more detailed

look at the causes of these delays is presented in Section 5.1.1.2.

The full set of process constraints are not captured by identifying the pseudo-

precedence relationships; this could lead to some violations of physical or causal con-

straints when sensor installations disturb the baseline flow. While this is an expected

result of the assumptions made, this should not lead to an overly optimistic model

that cannot discriminate between sensor installation plans. To investigate this, the

total number of parallel processes throughout the Gantt chart can be identified. If

many more parallel tasks are allowed in a simulation run with sensor installations,

this would indicate that the model is allowing extra parallel work because it does not

have a full picture of the constraints. Taski is considered in parallel with taskj if the

following condition is true: endi > startj & starti < endj. The baseline simulation

(Figure 31) for this case has 526 processes that occur in parallel while the simulation

with sensor installations (Figure 32) has only 446. Therefore, there is actually less

parallel work occurring, indicating that the simulation with sensor installations is

actually more conservative in the completion of primary processes.

These somewhat qualitative investigations of the impact of the model generation

strategy are lacking a complete quantitative justification. Unfortunately, without

complete access to the schedule model and underlying constraints, complete justifica-

tion is not possible (i.e. the full set of constraints are not known; only those that can

be identified by analyzing the precedence network and schedule start and end times

are available). However, because the model is designed to identify the best sensor

installation plan (as opposed to providing a true evaluation of the schedule impact
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due to the installations), the simulation model is capable of providing sufficient in-

formation for the optimization routine.

5.1.1.2 Investigation of Sensor Installation Logic

With the simulation appropriately respecting the choices of the provided, optimized

schedule, each of the assumptions described in Section 4.3.1 (reproduced below) are

investigated to ensure the sensor installations are correctly modeled to support op-

timization. The results are investigated by examining Gantt charts that are output

from a simulation run. This section provides examples from the verification process;

a more thorough process that examined the logic in multiple models with a myriad

of installation plans was conducted to fully verify the logic. The Gantt chart is color

coded to help investigate the impact of the sensor installations. The process logic

rules are:

A1. All manual installation sequences scheduled to occur during a primary process

must be started before the primary production flow can proceed. Once all

installation sequences have started, the successive primary process is allowed

to begin if it is compatible with the ongoing manual installations. If it is

not compatible, then the subsequent primary process must wait for the sensor

installations to finish before beginning.

A2. If an incompatible production process has started before a manual installation,

the manual task must wait until the incompatible process has completed to

begin processing.

A3. Each manual installation requires a technician to be completed. Therefore, the

processes must wait for a technician to be available and seized before beginning.

The technicians respond to work requests based on a first come, first served

basis. Hence, setting the number of technicians in the simulation controls the

number of sensor installations tasks that can be completed in parallel.
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A4. Manual installation processes can contain sub-processes that do not require a

technician (e.g. time to allow an adhesive to cure before proceeding with the

installation). In these cases, technicians are released to complete other touch

labor tasks. Once the sub-process is completed, the next sub-process requiring

a technician is added to the queue to request a technician.

The first assumption (A1) to investigate is that the model starts each sensor

installation sequence defined to occur during a primary process before allowing the

successive primary process to begin. This manifests itself as a delay in the current

process, which ends when the last sensor installation has started. Figure 33 illustrates

this assumption. In the figure, Sensor 27 and Sensor 28 are set to be installed during

Primary Process 29. Due to the installation technicians being utilized to install other

sensors, these 2 cannot start immediately. Once each are started, however, Primary

Process 30 is started as well because it is compatible with each sensor installation.

The dashed yellow line shows where Sensor 28 and Primary Process 30 are allowed

to start, concluding the delay to Primary Process 29.

The second half of assumption A1 requires that, if a successive primary process

is not compatible with the sensors currently being installed, it does not start until

the installations are completed. An example of this can be seen in Figure 34. In

this plan, Sensors 7–14 are planned to be installed during Primary Processes 6 and

7. Sensor 14 is the final sensor planned to be installed during Processes 6 and 7;

therefore, if all of the installations were compatible with Process 8, then the process

would have been allowed to begin upon starting Sensor 14’s installation because all

of the sequences from the previous process have started. However, because of the

compatibility constraints, Process 8’s start is delayed as indicated by the light red

block. Hence, Figures 33 and 34 demonstrate the process taken to verify process

assumption A1.

173



Primary Process Delay to Primary Process Subcomponent Installation
Requiring Touch Labor

Subcomponent Installation
not Requiring Touch Labor Off-Shift Time

Primary Process 30 can start once Sensor 28,
which is planned to be installed during Primary
Process 29, has started.

Dashed line demarks the end of Process 29’s
delay and the start of Sensor 28 and Process 30

Figure 33: Gantt Chart to Illustrate Logic for Assumption A1
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Primary Process Delay to Primary Process Subcomponent Installation
Requiring Touch Labor

Subcomponent Installation
not Requiring Touch Labor Off-Shift Time

All of the planned instal-
lations are started here;
however, Process 8 is not
compatible with Sensor 11
or 14’s installation process.
Hence, Process 8 must wait
until the installations are
completed before proceding.

Figure 34: Gantt Chart Illustrating Logic to Delay the Start of Primary Processes
due to Assumption A1
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Primary Process Delay to Primary Process Subcomponent Installation
Requiring Touch Labor

Subcomponent Installation
not Requiring Touch Labor Off-Shift Time

Sensor 268, planned during
Process 4, must wait for the
incompatible Process 3 to
complete before starting.

Figure 35: Gantt Chart Illustrating Logic to Delay the Start of Sensor Installations
due to Assumption A2

Assumption A2 states that if an on-going primary production process is incompat-

ible with a sensor installation attempting to begin, the installation must be delayed

until the incompatible process is completed. Figure 35 demonstrates this logic. Sen-

sor 268, which is planned during Primary Process 4, is incompatible with Primary

Process 3. Hence, when Process 4 begins slightly after Process 3, Sensor 268 is forced

to wait for Process 3 to end before beginning processing. Then, because Sensor 268

is also incompatible with Process 6, the primary process is required to wait until the

entire Sensor 268 installation sequence is completed.

Assumption A3 details that the model must limit the number of possible parallel

sensor installation tasks to the number of technicians made available. The results of

this assumption can be seen in Figure 36. The two Gantt charts illustrated in this

figure are generated using the same sensor installation plan. Figure 36a has only 1

installation technician available to install sensors, while the chart in Figure 36b has 4
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technicians in the system. With the extra technicians, the plan illustrated in Figure

36b is able to complete 4 sensor installations that require touch labor (denoted by

the green bars) in parallel. Figure 36 also illustrates that the processes that do not

require touch labor (shown in purple) are not impacted by the number of technicians

and do not affect the number of parallel touch labor processes allowed. Similar results

are seen throughout the full verification process.

The final model assumption to be examined is A4, which states that the sensor

installations requiring touch labor must follow the shift schedule of their assigned

primary production process. This scenario is demonstrated in Figure 37. In the

figure, off-shift time is represented by the shaded gray area. The processes to install

Sensors 70, 71, and the mount for Sensor 73 are completed after the factory is brought

back on shift. The cure process for Sensor 73 is allowed to complete during the off-

shift time because it does not require any touch labor. Once the production system

comes back on-line, the final installation step for Sensor 72 is allowed to be completed.

Hence, assumption A4 is properly observed within the production model.

This section has demonstrated that the production logic is properly observed in

the model. The following sections serve to verify that by following this logic, the

expected overall trends are observed in the model.

5.1.1.3 Concurrent Installations Allowed - Experimental Results

The system-level impact of varying the number of concurrent sensor installations

allowed (i.e. number of technicians available to perform installations) can be seen in

Figure 38 and is summarized in Table 14. The histograms present the deterministic

process time for the 1000 population members from generation 250 of the NSGA-II

algorithm optimization run. The time is normalized by the baseline process time (the

process time without sensor installations).
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(a) Sensor Installations with 1 Technician Available

Primary Process Delay to Primary Process Subcomponent Installation
Requiring Touch Labor

Subcomponent Installation
not Requiring Touch Labor Off-Shift Time

(b) Sensor Installations with 4 Technician Available

Figure 36: Comparison of Parallel Sensor Installations with 1 and 4 Technicians
Available
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Primary Process Delay to Primary Process Subcomponent Installation
Requiring Touch Labor

Subcomponent Installation
not Requiring Touch Labor Off-Shift Time

Sensor cure pro-
cesses do not re-
quire touch labor
and can, therefore,
be completed when
off-shift

Installation tasks
requiring touch
labor cannot be
completed while
ohh-shift

Figure 37: Gantt Chart Illustrating Parallel Task Shift Schedule

The results presented in Figure 38 illustrate that, generally, the model is respond-

ing as expected to varying the number of concurrent installations allowed. Increased

parallelization is expected to lead to fewer delays, which is seen by the median shifting

to the left as more technicians are added. Additionally, an increase in parallelization

adds flexibility to the schedule. This flexibility is expected to enable the simulation

to perform well (in terms of process time) for a wider range of scenarios; therefore,

the range of process times recorded should narrow with more technicians. This is

also seen in Figure 38 as the standard deviation of the results decreases when more

technicians are added to the system.

Table 14: Summary of Concurrent Sensor Installations’ Impact on Process Time

Scenario Median Standard Deviation
2 Technicians 1.095 0.017
3 Technicians 1.058 0.013
4 Technicians 1.047 0.012
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Figure 38: Comparison of Simulation Results for 2–4 Concurrent Sensor Installations
Allowed
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Similar trends are expected when investigating the process time distributions for

a single case with uncertainty. Figure 39 shows the process times for a single sensor

installation plan run through the stochastic simulation. As anticipated, the additional

technicians shifts the distribution to the left, which indicates fewer delays from sensor

installations. From these results, the model logic is shown to appropriately capture

the impact of varying the number of sensor installation technicians available.

5.1.1.4 Compatibility Assumptions Impact - Experimental Results

The compatibility matrix provides the information for the sensor installation logic

to appropriately guide the simulation’s execution. Hence, making the compatibility

assumptions more stringent (e.g. by adding additional incompatible process/sensor

pairs) should increase the process time and help to verify the interaction between the

constraints and the installation logic. To explore this behavior, half of the baseline

compatibility matrix’s compatible installations are changed to be incompatible. A sen-

sor installation plan is then created for this more stringent compatibility matrix. The

simulation is then run with the same sensor installation plan for both the updated,

more stringent compatibility matrix and the baseline matrix. Results for scenarios

with 2–4 sensor installation technicians are presented in Figure 40.

As shown in Figure 40, the scenarios using the less constraining, baseline compat-

ibility matrix require significantly less time to complete the plan. Even though the

installation plan was developed for the more constraining matrix (so that all sensor

installations are planned to occur within a compatible process), the process time is

still significantly impacted. This indicates that parallel processes, which may now

be incompatible, are causing more delays in the more constrained cases. Further-

more, more compatible processes are likely followed by incompatible processes, which

prevents the model from moving forward until the current sensor installations are

completed. Overall, modifying the compatibility assumptions lead to the expected
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Figure 39: Comparison of Process Time for a Single Stochastic Simulation Run with
2–4 Concurrent Sensor Installations Allowed
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changes in the model behavior and help verify that the simulation is ready for inte-

gration with the optimization routine.

5.1.1.5 Results Discussion

The results presented throughout this section have demonstrated that the modeling

approach is able to sufficiently represent and assess the manual sensor installations

of interest. The model respects the assumptions developed to both effectively model

the process to install the sensors and estimate their impact for integration with an

optimization routine. Hence, Experiment 1.1 is successful and supports the hypoth-

esis. The verified model is next utilized to carry out Experiment 1.2 as discussed in

the following section.

5.1.2 Experiment 1.2: Optimization’s Ability to Improve System Perfor-
mance

With the modeling strategy shown to provide the capability to estimate the metrics

of interest in an efficient manner, Experiment 1.2 is conducted to investigate the

appropriateness of the optimization routine. Following the outline in Figure 29, this

experiment is designed to solely test the link between a metaheuristic optimization

routine and the simulation model investigated in the previous section to evaluate

Hypothesis 1.2:

Hypothesis 1.2: If a metaheuristic optimization routine is linked to the de-

veloped discrete-event simulation schedule model, then installation plans with

improved performance can be efficiently identified.

The goal is to show that a metaheuristic algorithm is able to improve the produc-

tion plan by utilizing information from the simulation model to improve the identified

metrics of interest. As previously mentioned, this experiment focuses solely on finding

a good deterministic solution to the problem and does not consider quality robust-

ness. The impact of the uncertainty analysis is investigated in Experiment 1.3. This
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experiment also only investigates results from a single metaheuristic algorithm (the

NSGA-II). The genetic algorithm is chosen for this initial experiment because GAs

are shown to thoroughly explore Pareto frontiers and do not require knowledge of the

inner workings of a problem to be effective [66]. Generally, the other metaheuristic

algorithms of interest (e.g. Simulated annealing, Neighborhood searches, etc.) require

lower level heuristics to be efficient (while a genetic algorithm typically does not); as

such, their investigation is reserved for Experiment 2.2, which examines the impact

of strategies designed to speed the optimization. Therefore, results for the NSGA-II,

whose implementation is described in Section 4.3.4.1, are presented in the following

section.

5.1.2.1 Experiment 1.2 Results

The results presented throughout this section are generated over 1686 generations

of the NSGA-II, which is composed of approximately 198,000 individual function

calls. After this number of generations, the non-dominated set of solutions has not

seen meaningful improvement for a few hundred generations. Of the 198,000 points

generated, ∼7,500 are Pareto optimal across the 4 objective functions for 3 installation

technician parameter settings. An initial investigation of the model showed that

utilizing only a single installation technician is not sufficient to produce quality results.

Hence, the case with 1 installation technician is ignored in the optimization.

Results for this experiment are shown in Figures 41 and 42 for selected generations.

Figure 41 shows the algorithm’s progression for the scenarios utilizing 2 technicians,

while Figure 42 represents the cases with 4 technicians. The figures present results for

the four responses of interest (process time, slack time for all sensors and only critical

sensors, and the neighboring sensor installation metric) generated from deterministic

runs of the model. Each population has 1000 members, but only the Pareto efficient

members from each generation are plotted. The results are normalized; the slack
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time and neighboring installation metric are normalized to the best result identified

throughout the optimization (largest slack time and smallest neighboring installa-

tion metric), while the process time is divided by the baseline time with no sensor

installations (to illustrate the overall impact of the sensor installations).
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Figure 41: Normalized NSGA-II Progression for Deterministic Optimization with 2
Technicians

The results shown in Figures 41 and 42 demonstrate that the optimization al-

gorithm is able to utilize the model to move towards the Pareto frontier of well-

performing (according to the defined metrics) installation plans. For all technician
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levels, the Pareto frontier is improved in all objective functions as the algorithm pro-

gresses. For the 2-technician scenario, the improvement is more pronounced than the

4-technician scenario. With the additional technicians, the 4-technician scenario can

better handle additional sensor installations planned in parallel. This leads to an in-

creased number of plans with low values for process time. However, when only using

2 technicians, the simulation could experience more significant delays when compared

to scenarios using 3 or 4 technicians. For example, a strategy to increase the slack

time of an installation plan could be to plan more sensors in parallel earlier in the

process flow. The scenario with 3 or 4 technicians may be able to accommodate this

plan without incurring delays; however, the 2-technician scenario may not be able to

get all of the sensors installed within the required process time to avoid delaying the

schedule.

Figure 43 shows the final set of Pareto optimal solutions for each of the 2–4 tech-

nician scenarios. Increasing the number of technicians available not only improves the

process times, but it also leads to less compromise between slack time, process time,

and the neighboring sensor metric. This is again because the additional technicians

allow the optimization algorithm to plan more sensor installations closer together

without encountering a delay. Therefore, the schedule can be front-loaded with more

parallel sensor installations to increase their slack without causing delays. This fur-

ther indicates that the NSGA-II effectively explored the design space.

Understanding the objective functions with the most room for improvement helps

to improve the understanding of the problem at hand. To this end, Figure 44 shows

the best values obtained from each generation of the genetic algorithm. Figure 45

presents the median values of each objective by generation to provide an indication

of the population’s performance. The values are normalized as discussed previously.

The figures show that the majority of improvement to the process time occurs in the

first 100–300 generations. This is expected as the problem is not overly constrained.
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As seen in Figure 44, a sharp decrease in process time is observed in the 4-technician

scenario near generation 750. After this initial decrease in the best values found, the

median population value (Figure 45) begins to decrease again, which indicates that

well-performing portions of the newly identified plan are being propagated through

the population.

The other metrics show significant improvement to the best scenario as the al-

gorithm progresses even after the process time stops improving around generation

1000. This indicates that, while the process time may not be improved by a signifi-

cant percentage through the later stages of the optimization run, there are significant

opportunities to reduce risk in the plan by better planning slack and ensuring that

neighboring sensors are installed closer together. The median values for slack time

also continue to increase as presented in Figure 45. As previously discussed, the slack

time can be almost continuously improved by moving all sensor installations earlier

in the flow; hence, the algorithm actually begins to sacrifice improvements to the

neighboring sensor installation metric to explore points with more slack time.

In addition to the qualitative investigations of the optimization results, the quan-

titative convergence metrics discussed in Section 4.6.6.2 are also evaluated. Figure

46 presents the relative improvement, consolidation ratio, and ratio of Pareto points

for the deterministic NSGA-II. The consolidation ratio was calculated with a separa-

tion of 10 generations (i.e. the results show the ratio of Pareto optimal points from

generation i− 10 that are still Pareto efficient in generation i).

These 3 metrics all indicate that the NSGA-II drives the optimization towards an

improved set of sensor installation plans. The increase of the relative improvement

and consolidation ratio indicate that the algorithm quickly improves during the first

100–200 generations and then slowly proceeds towards convergence. The ratio of

Pareto points also quickly improves from about 7% in the random initial population

to 81% in generation 100. This shows that the algorithm is outperforming a random
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Figure 46: Optimization Algorithm Convergence Metrics for the Deterministic NSGA-
II

search by more efficiently producing Pareto optimal points. The following section

discusses the results’ implications for Hypothesis 1.2.

5.1.2.2 Experiment 1.2 Discussion

The results presented throughout this section demonstrate that the genetic algorithm

is able to simultaneously improve the 4 primary objective functions of interest. Fur-

thermore, by including cases with 2–4 installation technicians as separate objective

functions within the optimization routine, the algorithm is able to simultaneously

identify well-performing plans for each staffing level. Finally, the qualitative multi-

objective algorithm performance and convergence metrics demonstrate that the al-

gorithm is purposefully improving the sensor installation plan to identify a family of

well-performing solutions.

Hypothesis 1.2 is thus strongly supported by the results from the experiment.

The DES model provided adequate objective function evaluations to allow the linked

genetic algorithm to improve the schedule model. The optimized results not only

reduced the total amount of process time required to complete the schedule, but also

reduced risk by adding slack to the process and working to ensure that neighboring
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sensors are installed close together. The following section furthers this investigation

by examining how the inclusion of quality robustness evaluations in the optimization

routine informs the results to better reduce risk associated with the sensor installation

tasks.

5.1.3 Experiment 1.3: Impact of Robust Optimization Considerations
Results

Continuing along Experiment 1’s buildup demonstrated in Figure 29, this section

investigates the impact of considering quality robustness directly in the optimization

routine. The optimization results presented throughout this section were generated

using the stochastic version of the production model as discussed in Section 4.3.4.1.

The purpose of this section is to investigate the benefits of directly considering these

sources of uncertainty while optimizing the sensor installation plan to evaluate the

validity of Hypothesis 1.3:

Hypothesis 1.3: If the optimization routine and model can estimate robustness

related responses (quality robustness) and support multi-objective optimization,

then the methodology will be capable of finding robust schedules.

Throughout, the following evaluation criteria are investigated:

Quality Robustness: Ability to identify schedules with reduced process time and

risk (measured by the 80th quantile of the process time).

Improvement to Other Risk Metrics: Ability to provide a family of solutions

that work to reduce risk associated with sensor installations.

Comparison to Deterministic Results: Ability to differentiate between determin-

istically optimized schedules and schedules optimized that include quality ro-

bustness (e.g. the 80th quantile of the process time). The question one tries to

answer is: Do the results from the stochastic optimization routine have lower

risk than those identified through the deterministic optimization runs?
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The results are generated by running the simulation model for 35 replications

(shown in Section 4.3.5 to provide a sufficiently accurate estimate of the objective

functions). The median and 80th quantile for the process time is then calculated

(the slack time and neighboring sensor installation metrics are not significantly im-

pacted by the uncertainty). The 80th quantile is selected for the risk metric because

risk-averse entities are known to pursue projects with an 80% probability of remain-

ing within cost and schedule [87]. These calculations then replace the deterministic

process time utilized in the deterministic formulation.

Without the availability of a large cluster of computing nodes, evaluating 35 repli-

cations for a single case significantly increases the computation time for each gener-

ation. Simio’s Replication Runner is used to distribute evaluations across a network

of desktop computers that support 64 concurrent replications. A single generation of

the NSGA-II with the deterministic model can be evaluated in about 2 minutes with

these resources; when evaluating 35 replications per case, this time increases to over

40 minutes per generation.

This computation time is too large to reasonably run anywhere close to the num-

ber of generations evaluated using the deterministic model. Therefore, generation 500

from the deterministic optimization is used to seed the optimization run with quality

robustness. At this point in the deterministic run, the process time has not signifi-

cantly improved for over 100 generations. The optimization with quality robustness

is then run for an additional 450 generations. Results from this optimization run are

discussed in the following sections.

5.1.3.1 Quality Robustness Improvement

The first evaluation criterion investigates the algorithm’s ability to improve the ro-

bustness of the sensor installation plan. Figures 47 and 48 present the improvement of

the median and 80th quantile of the process time over each generation of the stochastic
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NSGA-II run. Figure 47 presents the best value found per generation, while Figure

48 presents the median value of each generation.
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Figure 47: Best Values for the Process Time Observed for Each Generation of the
Stochastic NSGA-II

Figure 47a shows that there is not an immediate improvement to the best median

process time found by the optimization algorithm. This indicates that the determin-

istic objective functions provide a good indication of the median performance, at least

for the highly performing scenarios. Figure 47b, however, shows a steady improve-

ment to the best value of the 80th quantile of process time for the 2- and 3-technician

scenarios through the first approximately 50 generations. The 4-technician scenario,

however, does not see as much of an improvement possibly because the additional

technicians work to increase the amount of parallel work possible. By increasing the

number of parallel sensor installations, the 4-technician scenario can work to mitigate

the impact of a sensor installation failing or having multiple installations take longer

than the primary process during which they are planned. Hence, by including the

quality robustness metrics, the algorithm appears to be able to quickly identify plans
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Figure 48: Median Values for the Process Time Observed for Each Generation of the
Stochastic NSGA-II

with reduced risk using fewer resources.

Figure 48 shows that the median of the population members’ median and 80th

quantile of process time is quickly improving across the board. This shows evidence

that some population members identified through the deterministic optimization,

which may have had strong deterministic performance, do not perform as well when

considering stochasticity. Figure 49, which presents the normalized distribution cre-

ated by subtracting the deterministic process time from the median process time for

generation 500 of the NSGA-II, further supports this claim. While many instances

see similar values for the median and deterministic process times, there are a number

of cases with significant differences. Furthermore, as expected, the distribution is

slightly shifted to the positive direction, which indicates that the deterministic pro-

cess time is commonly overly optimistic. As such, these points that are shown to

be dominated when evaluating quality robustness are quickly identified and removed

from the population.
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Times for Generation 500 of the Deterministic Optimization (Positive Values Indicate
that the Stochastic Median is Greater than the Deterministic Value of Process Time)

In both Figure 47 and 48, the optimization algorithm is shown to improve the

quality robustness of the best population member and the population as a whole.

Figure 47b shows a more significant decrease in the best 80th quantile of process

time than the median, which indicates that the algorithm has successfully used the

80th quantile objective function to find plans that use fewer resources but still have

reduced risk. While this result is encouraging, the remaining evaluation criteria must

be investigated to fully test Hypothesis 1.3.

5.1.3.2 Varied Family of Plans to Increase Robustness

The second evaluation criterion requires that the optimization considering quality ro-

bustness provides a family of Pareto optimal solutions that concurrently improve the

deterministic risk metrics (slack time and the neighboring sensor installation metric).

In other words, the algorithm should explore regions with improved slack time along

with higher robustness. Figure 50 presents the results from the optimization consid-

ering robustness. The scatterplot matrix displays information about both the median

and 80th quantile of the process time in addition to the slack time and neighboring

sensor installation metric.

Figure 50 demonstrates that the algorithm is able to identify a varied set of points
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that enable trades between the quality robustness (median and 80th quantile of pro-

cess time) and the deterministic risk metrics. The plot comparing the median and

80th quantile of the process time shows that cases with similar median process times

can have different amounts of risk. As such, including the higher quantile information

equips the decision maker with information to identify a plan with a good balance

between quality robustness and the deterministic risk metrics. The following sec-

tion compares the results presented so far to results obtained using the deterministic

optimization strategy.

5.1.3.3 Comparison of Optimization Results Generated with and without Robust-
ness Considerations

The inclusion of quality robustness in the optimization should provide information to

the algorithm to better identify robust plans. Hence, results from the optimization

formulations with and without robustness are compared. Recall that the optimization

with uncertainty was seeded with the population from generation 500 of the deter-

ministic run. Hence, to facilitate comparison, the populations from generations 600,

700, 800, 900, and 950 of the deterministic run are evaluated for 35 replications to

estimate the median and 80th quantile of the process time.

Before discussing the results further, it must be noted that the following analyses

cannot be generalized and are limited for 2 primary reasons: first, the amount of

computing time/resources available are limited. While completing a single optimiza-

tion run using the available network of computers is feasible, re-running the entire

optimization enough times to identify statistically significant differences is not. Sec-

ond, the use case does not see a very large impact from the stochasticity. While

Figure 49 did demonstrate a difference between the deterministic and stochastic re-

sults, the majority of the deltas are within the indifference region. In other words,

for the majority of the plans evaluated, the uncertainty does not make many of the

plans identified deterministically significantly worse. Hence, the information added

200



by considering the quality robustness is of limited value.

With this caveat, the remainder of this section discusses preliminary observations

and trends identified by comparing optimization runs with and without considering

robustness. Section 7.5 discusses future steps that can be completed to better support

this study.
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Figure 51: Comparison of the Generational Distance for the Optimization Runs with
and without Quality Robustness Considerations

Figure 51 presents the generational distance (G), which is the average distance

from each non-dominated point in a generation to the overall Pareto frontier as de-

fined by Equation 9, for the optimization runs with and without considering quality

robustness. The “true” Pareto frontier used in the calculation is generated by combin-

ing the results from each generation of the stochastic algorithm with results from the

re-evaluated cases of the deterministic run. Furthermore, the stochastic algorithm

is allowed to run for an additional 75 generations to generate an improved Pareto

frontier with the goal of removing bias in the G calculations. This is needed because

comparing the distance from the non-dominated points of the last generation to an

201



overall Pareto frontier that contains those population members would not produce a

fair result. For example, a large number of the plans that are Pareto efficient in the

final generation would also be non-dominated across all of the evaluated generations.

In these cases, their individual distance from the “true” Pareto frontier would be zero

and would, hence, unfairly bias results. The final deterministic population (genera-

tion 1686) is also re-evaluated and added to the “true” Pareto frontier used in the

evaluation of G.

The results presented in Figure 51 follow the trends observed in Figures 47 and

48. The optimization run considering quality robustness experiences a sharp decrease

in the generational distance within the first 25 generations. The deterministic opti-

mization scenario, conversely, does not see a similar improvement to its generational

distance until somewhere between generation 800 and 900. It is between these gener-

ations that a significant improvement to the population’s deterministic process time

is identified and propagated through the population (Figures 44 and 45). Hence,

the stochastic optimization run does see an immediate improvement when compared

to the deterministic algorithm; however, the overall performance is not significantly

different by the time the final generation is evaluated (Generation 950).

To further investigate this initial improvement, Figures 52 and 53 present the

Pareto frontiers from generation 1 and 10 of the optimization runs with quality ro-

bustness considerations for the 2- and 4-technician scenarios, respectively. In both

scenarios, the algorithm has pushed the frontier outward by reducing the process

time metrics while improving slack time and the neighboring sensor installation met-

ric. Figure 54 focuses on the Pareto frontier for the 80th quantile of process time and

the slack time. As shown in the figure, the initial 10 generations of the stochastic

NSGA-II have identified population members with, in some cases, significant (larger

than the indifference region) reductions in process time with similar amounts of slack.
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This further shows that the stochastic optimization run is capable of improving a pop-

ulation identified deterministically with a limited number of generations.

Figure 55 demonstrates how the algorithm with quality robustness considerations

helps to improve convergence. The percentage of non-dominated points initially drops

in the run with stochasticity because random points were added to the seed popu-

lation; however, the algorithm is able to reach above 90% non-dominated points by

generation 10. In contrast, the algorithm without robustness considerations remains

in the 65–75% range for the entire optimization run. Hence, by having access to the

quality robustness information, the algorithm is able to more efficiently generate new

Pareto optimal points.

The performance of the two optimization runs is further compared by exploring the

process times observed in the Pareto optimal set as the optimization run progresses.

Figure 57 presents the distribution of the median process time in the Pareto optimal
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set found by the optimization considering quality robustness (blue dashed box plots)

and without (black solid box plots). Figure 58 presents the distributions of the

80th quantile of the process time. The presented box-and-whiskers plots follow the

convention shown in Figure 56.

5th Quantile

20th Quantile
Median
Mean
80th Quantile

95th Quantile

Lowest Process Time Found
Figure 56: Description of the Box-and-Whiskers Plot Presented in Figures 57 and 58

These figures indicate that the optimization run considering quality robustness

generally identifies points with lower process times than the deterministic optimiza-

tion. In Figure 57, the best process times when considering robustness (shown as the
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x marker) are always lower or approximately similar to the best value found by the

deterministic algorithm. Furthermore, the lower end of the box plots (the 5th and

20th quantile) show that more sensor installation plans with lower ranges of process

time are maintained in the population that is evaluated with stochasticity.

Figure 58 exhibits more pronounced differences between the 80th quantile of pro-

cess times observed in the populations of the two optimization runs. In many cases,

the 5th quantile value for the cases from the stochastic optimization run are close to,

or better, than the best value from the deterministic optimization. This is expected

since the median and deterministic process time should be generally similar; however,

the 80th quantile represents new information that is provided to the optimization with

quality robustness. Hence, these results indicate that including the 80th quantile of

the process time provides valuable information that can lead to solutions with better

robustness than those identified with only the deterministic model.

While process time is specifically the objective that is expected to see the most

improvement when including robustness in the optimization’s formulation, the impact

to the overall Pareto frontier is also important. Hence, Figures 59 and 60 present

the Pareto frontier from generation 600 of the optimization runs with and without

robustness considerations. The optimization with the robustness considerations can

be seen to have improved values for process time for comparable values of slack and the

neighboring sensor installation metrics. This impact is more pronounced for the 80th

quantile of the 4-technician scenario. This could indicate that the information about

the plan’s risk enables the algorithm to identify scenarios that utilize the additional

man-power to better reduce risk. Ultimately, this indicates that the quality robustness

calculations add information to the optimization algorithm beyond that provided by

the deterministic process time evaluations. The following section summarizes the

results from Experiment 1.3 and discusses the validity of Hypothesis 1.3.
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NSGA-II Optimization with and without Considering Quality Robustness
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209



1.1

1.15

80
th

Q
ua

nt
ile

of
P

ro
ce

ss
T

im
e

-
2

T
ec

hn
ic

ia
ns

0.7

0.8

0.9

C
ri

ti
ca

l
Se

n-
so

r
Sl

ac
k

T
im

e

0.7

0.8

0.9

A
ll

Se
ns

or
Sl

ac
k

T
im

e

1.05 1.1 1.15

1.5

2

Median Process
Time - 2 Technicians

N
ei

gh
bo

ri
ng

Se
ns

or
M

et
ri

c
-

2
T

ec
hn

ic
ia

ns

1.1 1.15
80th Quantile

of Process Time
- 2 Technicians

0.7 0.8 0.9
Critical Sen-

sor Slack Time

0.7 0.8 0.9
All Sensor Slack Time

Deterministic Simulation Evaluation

Stochastic Simulation Evaluation

Quality robustness information en-
ables the optimization to slightly re-
duce process time impact (median)
and risk (80th quantile)for similar
slack times

Figure 59: Comparison of the Pareto Frontiers Found at Generation 600 from the
Optimization with and without Considering Quality Robustness with 2 Technicians

210



1.04

1.06

1.08

80
th

Q
ua

nt
ile

of
P

ro
ce

ss
T

im
e

-
4

T
ec

hn
ic

ia
ns

0.7

0.8

0.9

C
ri

ti
ca

l
Se

n-
so

r
Sl

ac
k

T
im

e

0.7

0.8

0.9

A
ll

Se
ns

or
Sl

ac
k

T
im

e

1.04 1.06
1

1.5

2

Median Process
Time - 4 Technicians

N
ei

gh
bo

ri
ng

Se
ns

or
M

et
ri

c
-

4
T

ec
hn

ic
ia

ns

1.04 1.06 1.08
80th Quantile

of Process Time
- 4 Technicians

0.7 0.8 0.9
Critical Sen-

sor Slack Time

0.7 0.8 0.9
All Sensor Slack Time

Deterministic Simulation Evaluation

Stochastic Simulation Evaluation

Quality robustness information en-
ables the optimization to reduce pro-
cess time impact (median) and risk
(80th quantile)for similar slack times

Quality robustness information en-
ables the optimization to identify pop-
ulation members with similar median
process times but reduced risk (80th
quantile)

Figure 60: Comparison of the Pareto Frontiers Found at Generation 600 from the
Optimization with and without Considering Quality Robustness with 4 Technicians

211



5.1.3.4 Section Summary

The results presented throughout this section support two conclusions. First, utilizing

only the deterministic process time in the optimization routine enables the algorithm

to identify plans with improved quality robustness. This shows that, for the selected

problem, the deterministic results provide a good indication of the performance of

the installation plan under uncertainty. While this dissuades the need to consider

the expensive quality robustness evaluation in the optimization, Figure 51 also shows

that the optimization including robustness is able to make significant progress in a

relatively few number of generations. Hence, for problems similar to the test case

problem, running a small number of generations with the quality robustness calcula-

tions at the end of a deterministic optimization run could provide quick refinement

to the Pareto frontier of solutions.

With regards to the experimental evaluation criteria, the optimization with quality

robustness considerations is shown to improve the robustness of the identified plans.

The additional information made available to the optimization algorithm by evalu-

ating the quality robustness is shown to increase the percentage of Pareto optimal

points identified at each generation. This shows that the new information increases

the ability of the algorithm to find Pareto efficient points, which likely leads to the

improved performance in fewer generations.

The algorithm with robustness is also shown to provide a set of non-dominated

solutions that cover a range of objective function values to enable the decision maker

to trade between quality robustness and the additional risk metrics. Furthermore,

differences between the 80th quantile of process time for plans with similar median

process times make an additional trade available to the decision maker.

The final criteria investigated provides a comparison between the deterministic

and stochastic optimization results. The investigation of the generational distance

metric (Figure 51) shows that the optimization with robustness quickly improves
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towards the Pareto frontier; however, the deterministic optimization does eventually

achieve similar performance between generations 800 and 900. Therefore, as discussed

previously, these results can not be used to draw generalized conclusions and could

potentially just be due to luck.

Similar trends are seen when specifically investigating the process times identified

by the deterministic and stochastic optimization runs (Figures 57 and 58). While

considering robustness does lead to populations with members having reduced medi-

ans and 80th quantiles of process time, the results are not vastly improved over the

long term by the optimization considering robustness. Finally, the investigation of

the Pareto frontiers from generation 600 of the deterministic and stochastic optimiza-

tion runs illustrates that the stochastic results are slightly better. Additionally, the

improvements are mostly seen in the process time metrics; the points identified on

the Pareto frontier of the slack and neighboring sensor installation metrics are gener-

ally similar. Overall, these findings exhibit trends that indicate that the robustness

considerations are utilized by the algorithm to identify better populations.

The results from this experiment, therefore, support Hypothesis 1.3. The multi-

objective nature of the optimization algorithm combined with the evaluation of quality

robustness appear to lead to the identification of more robust schedules. However, as

discussed throughout, the results are not significant enough to draw clear conclusions

about the benefit of including robustness. Indeed, the slight benefits observed likely

do not justify the significantly more time/computing resources required. This aspect

is further addressed during the discussion of Experiment 2.2.

The following section discusses the implications of Experiments 1.1–1.3 to the over-

arching Experiment 1.
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5.2 Experiment 1 Discussion

Experiment 1 is carried out by utilizing the capabilities built through the evaluation

of Experiments 1.1–1.3 (as shown in Figure 29) to complete Steps 1–2 of the method-

ology. When completing these steps, the following capabilities are investigated to

determine the appropriateness of Hypothesis 1:

• Modeling of complex manufacturing systems

• Optimization of the developed model

• Assessment through the model and improvement through the optimization rou-

tine of the schedule’s robustness

As shown in Experiment 1.1, the optimized schedule model and compatibility ma-

trix are utilized to generate a simulation model. The experiment has demonstrated

the capability of the model to assess the impact of parametrically-defined sensor in-

stallations to the level of detail required for the optimization routine. Hence, the

modeling strategy is capable of modeling the complex production system rules re-

quired to drive the implemented schedule optimization strategy.

Then, as investigated through Experiments 1.2–1.3, the optimization strategy

developed is capable of improving the multiple objectives of interest. The multi-

objective formulation enables the identification of a family of solutions that can be

explored by the decision maker to best reduce risk in the installation plan.

Finally, Experiment 1.1 demonstrates that the model is capable of assessing the

robustness of the installation plan by evaluating the simulation for multiple repli-

cations. Furthermore, Experiment 1.3 demonstrates that the inclusion of quality

robustness in the optimization does help to improve the robustness of the identified

population of installation plans.

Hypothesis 1 is thus supported by the results generated by completing Steps

1 and 2 of the PORRTSS methodology. The simulation is quickly generated at a
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level of detail sufficient to delineate between installation plans. Then, through the

multi-objective optimization routine, a variety of installation plans are generated that

improve the robustness of the plan.

The following section discusses the results of experiments designed to test potential

improvements to the deployability of the detailed scheduling methodology.

5.3 Experiment 2: Methodology’s Potential for Deployment
to “Real-World” Problems of Interest

Experiment 2 is setup in order to investigate Hypothesis 2:

Hypothesis 2: If the methodology requires a low amount of implementation

effort and is shown to provide clear benefits with acceptable increases in com-

putation time over traditional scheduling methods while effectively integrating

the knowledge of the human planner, then the methodology can be successfully

implemented to solve “real-world” problems.

As with Hypothesis 1, this hypothesis contains sub-hypotheses that build up sup-

port for the overarching hypothesis. Hence, this section begins by reporting results

from Experiment 2.1 and Experiment 2.2. With those experiments completed, the

overall hypothesis is then discussed in Chapter 6. Figure 61 presents an overview of

the research questions and hypotheses investigated through the following experiments.

The following section discusses the results from Experiment 2.1.

5.3.1 Experiment 2.1: Methodology Implementation Time Reduction

The goal of this experiment is to test how the PORRTSS methodology’s implemen-

tation time can be decreased as described in Hypothesis 2.1 (reproduced below). As

previously discussed, many of the mid-term, detailed planning and scheduling prob-

lems of interest may not have a long enough time horizon to justify a complete, manual
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Research Question 2: Does a methodology that improves
the interface between scheduling, simulation, and the hu-
man planners better address the needs of the planners?

Sub-Research Question 2.1: How can the method-
ology’s setup time and effort be reduced to
encourage further adoption within industry?

Sub-Research Question 2.2: How can the effective-
ness of the methodology in terms of solution quality
and computation time be improved to make imple-
mentation of a simulation-based scheduling method-
ology economically viable and operationally feasible?

Characteristics Required
• Operational feasibility:

– Able to model and optimize real-world systems
– Able to reach a solution within teh required plannign

horizon
• Economically viable: Able to find a “good” solution with a

limited mount of computational resources and engineering
time

Characteristics Required
• Automation of model generation
• Appropriate level of detail modeled
• Object-oriented modeling framework
• Reduction in verification and validation effort
• Relatively simple integration with optimizer

Hypothesis 2.2: If alternative optimization strate-
gies are implemented, then the methodology can
be used to explore and exploit the solution space
quickly enough to make implementation feasible
and viable for a wider range of time and resource
constraints and solution quality requirements.

Hypothesis 2.1: If the advanced object-oriented
nature of modern discrete-event simulation

packages is leveraged to help automate model
generation and if metaheuristic algorithms are
appropriately implemented to increase the op-
timization’s flexibility, then the methodology’s
implementation time and effort will be reduced.

Hypothesis 2: If the methodology requires a low amount of
implementation effort and is shown to provide clear benefits
with acceptable increases in computation time over tradi-
tional scheduling methods while effectively integrating the
knowledge of the human planner, then the methodology can
be successfully implemented to solve “real-world” problems.

Figure 61: Research Question and Hypothesis 2 Buildup
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simulation study. As such, improvements to the model construction and optimization

integration strategy are identified and implemented into this thesis’s methodology.

Hypothesis 2.1: If the advanced object-oriented nature of modern discrete-event

simulation packages is leveraged to help automate model generation and if meta-

heuristic algorithms are appropriately implemented to increase the optimization’s

flexibility, then the methodology’s implementation time and effort will be re-

duced.

Implementing the methodology encompasses two primary steps:

1. Constructing the model

2. Integrating the metaheuristic optimization routine

First, the strategies and assumptions used to construct the models are investigated

in the following section.

5.3.1.1 Discussion of Model Constructions Strategies and Assumptions

Throughout this research, a diversified set of models are constructed to represent

various portions of the case study’s production flow at different levels of detail. A

summary of the model sizes and assumptions are presented in Table 15.

The first model is an initial proof-of-concept focused on a small subset of the

vehicle’s sensors. To help verify the method and model logic, the extremely detailed

sequence is simplified to enable manual model construction. The provided schedule

for this initial investigation contains over 500 primary production processes. A signif-

icant number of these tasks are duplicate processes that occur in parallel at different

locations on the vehicle. For modeling purposes, these parallel processes are combined

into a single overall process to be completed. For example, if identical components

are to be installed in parallel in multiple places throughout the vehicle, then these are

condensed into a single process. This strategy reduces the modeling effort down to
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Table 15: Overview of Model Sizes and Complexity Modeled Throughout this Research

Description Primary
Processes

Sensors
to Install

Model Assumptions

Small model
with

simplifications

∼500
processes

combined and
simplified to

∼200

∼50 • Simplified processes do not exactly replicate the provided schedule model
• Many parallel processes were combined, which reduces the ability to

understand the interactions between parallel processes
• Multiple processes combined into a single server limits the information

that can be easily obtained from the model

Medium-sized
model with
single shift

schedule

∼200 ∼200 • Processes are not combined→ the baseline model without sensor instal-
lations very closely matches the provided schedule model

• Each process has a separate server → full data collection is possible
• Single-shift schedule enables simple definition of process time

Large-sized
model with

multiple shift
schedules

> 1000 ∼500 • Processes are not combined→ the baseline model without sensor instal-
lations very closely matches the provided schedule model

• Each process has a separate server → full data collection is possible
• Multiple-shift schedule does not allow for a good definition of process

time → Flow time is used as the completion time metric
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approximately 200 processes. While an improvement, this is still too many servers to

manually place and link in Simio without taking an excessive amount of time. This

manual approach is also prone to errors. Because many processes occur in series, the

200 processes can be further simplified by identifying progressions of serial processes

and condensing them into a single discrete-event server. For example, instead of re-

quiring 10 servers connected in series for a set of 10 serial processes, one server can be

made to model the completion of multiple serial processes. This strategy produced

a manageable number of servers (∼30) to place manually and complete the modeling

proof-of-concept.

Upon proper data preparation, constructing the first model prototype required

about 15 hours of effort (excluding the significant time required to build the generic

background logic). The construction effort was primarily dedicated to manually plac-

ing each server, linking them based on the schedule precedence relationships, and link-

ing the input data tables to their proper servers. After building a prototype model,

the verification effort required a significant amount of additional effort. Verification

required identification of positions in the flow where the simplifications caused a large

disparity between the simulation results and the provided schedule model. Through-

out this effort, modeling mistakes were corrected and assumptions were modified,

which increased the effort required to complete the model.

The small proof-of-concept model performed adequately, but does not contain

the resolution and accuracy required by the decision makers to identify an actual

production schedule. Combining multiple processes into a single server limits the

information that can be retrieved from the model for decision making. There are also

significant limitations when considering uncertainty. By collapsing multiple parallel

processes into a single, overall process, potential discrepancies between the completion

times of each process cannot be accounted for. Finally, due to the simplifications,

some process constraints and relationships are ignored, which leads to an inability to
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match the simulation to the provided schedule model.

The limitations stemming from the simplifications and assumptions in the small

model illustrate the need to increase the modeling detail. Increased fidelity enables

better planning of processes and an improved understanding about the impact of

uncertainty on the schedule. Unfortunately, for a real problem of interest, which is

denoted as the Medium sized model in Table 15, manually modeling the flow without

simplifications is unrealistic. Constructing a model with ∼200 servers and ∼500 links

would require an excessive amount of time and effort. Furthermore, verifying the

model logic for every link and server would require at least as much time as building

the model. This demonstrates the lead to the need to automate the creation of the

simulation model.

The automated process described in Section 4.2 helps to reduce the time required

to construct the simulation from weeks to about a day of effort. In addition to

automating the actual model object definition, utilizing the model generation strat-

egy significantly reduces the need for model verification by eliminating human error.

Therefore, for the medium sized model, the automated generation technique greatly

reduced the modeling time, while also producing a more detailed and easily verifiable

model. The resulting model’s process time matches the original schedule within 0.1%,

which is sufficiently accurate.

The final test for the model generation’s ability to reduce the modeling effort is to

examine the time to build the large model described in Table 15. The large model uses

the schedule from the small model without simplifications and extends it to include

additional assembly steps. The model generation strategy used for the medium sized

model is applied to the large-scale model. The time to translate the schedule model

to a format compatible with Simio is not significantly affected by the larger scale;

however, the time and reliability of the process to generate the objects within Simio

is significantly worsened. The capability of Simio to handle the larger number of
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servers and links is strained. While the medium model required approximately 10

minutes to translate the object spreadsheet to a working Simio model, the large model

required multiple days along with using the 64-bit version of Simio to enable access

to more memory. Hence, it seems that there are practical limitations to model size

that are approached by the large scale model. Despite this, the strategy is successful

in creating a model that replicates the schedule (within 0.1% of process time) with

the required granularity.

5.3.1.2 Model Generation Results Discussion

The results presented above illustrate the success of the implemented model gener-

ation strategy. For “medium-sized” models, automating the creation of the models

significantly reduces construction and verification time. Furthermore, the automat-

ically generated models provide more detailed statistics than the simplified, “small”

model, while also being capable of better matching the deterministic schedule’s re-

sults.

The “large-scale” model approaches the practical software limitations. Including

the larger number of objects strains the software’s capabilities. Despite these draw-

backs, the model can be feasibly generated. Compared to a manual approach, which

requires significant assumptions and simplifications, this strategy provides increased

knowledge about the system-level impact of a decision. The large model represents

the most complex assembly sequence that would be considered; therefore, the model

generation strategy reduces the implementation time of the methodology for a range

of applicable problems.

More recent advances in the Simio language could potentially help better describe

the “large-scale” model. When the PORRTSS methodology was in development, the

precedence network had to be defined using linked servers; however, task sequences
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can now be defined by linking a sequence table to a single server. This would elim-

inate the need to define multiple servers and links in the model, which would help

to resolve the identified capability gap. Furthermore, implementing this new feature

would reduce the time to run a single replication. An investigation of these new ca-

pabilities could provide a wider range of applicability for this methodology. This is,

however, beyond the scope of the current work.

The following section investigates the other contributor to the methodology’s de-

velopment time: integration of the optimization routine.

5.3.1.3 Optimization Integration

A major advantage of the general metaheuristic optimization framework chosen for

this research is its extreme flexibility. Because these algorithms operate primarily on

the objective function evaluations, once a framework is constructed, the algorithm

should be immediately adaptable to additional models utilizing the same input and

output formats. Furthermore, the code’s modularity should enable quick implemen-

tation of new metaheuristics with little to no modification of the underlying function

evaluator. Hence, this section investigates the general applicability of the optimiza-

tion algorithm to the various models discussed in the previous section. Additionally,

the implementation of new overarching, metaheuristic algorithms and objective func-

tions is discussed.

The optimization framework, as previously discussed, utilizes the same inputs as

the Simio model (e.g. compatibility matrix, sensor installation times, and primary

process information) to setup the optimization problem. Hence, if a Simio model is

successfully generated and run, the optimization algorithm requires very little modifi-

cation to accommodate the new model. Indeed, other than changing the model name

and potentially adding or subtracting objectives from consideration, the algorithm
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requires no further modification to begin optimizing new models. Both the medium

and large scale models were successfully implemented with the optimization. Hence,

while model size may impact the algorithm and strategy chosen for the optimization

(discussed throughout Section 5.3), it does not affect the general applicability of the

developed framework.

Another benefit of the metaheuristic paradigm is that the code-base should allow

for easy swapping and implementation of search strategies. After an initial amount of

effort devoted to creating the underlying function evaluation code-base, incorporating

new metaheuristic strategies is relatively simple. With the Simio model setup as a

black box function, implementing a new strategy simply requires changing how to

select new input values based on the simulation’s results. With the code-base to

run the NSGA-II previously created in MATLAB, implementing a basic Simulated

Annealing algorithm required only a day of effort. The following section summarizes

the results related to Experiment 2.1 and discusses the implications for Hypothesis

2.1.

5.3.1.4 Experiment 2.1 Discussion

The purpose of this experiment is to investigate Hypothesis 2.1 by addressing im-

provements to the model creation and optimization implementation phases of the

research. The time to create a model is significantly reduced through the implemen-

tation of an automated model generation scheme. The automated approach relies

on the object-oriented nature of the simulation framework to create modular objects

capable of representing a schedule. Then, using these objects as a base, the strat-

egy is able to successfully assign properties and link the objects to effectively model

the provided schedule. This approach was successfully applied to multiple schedules

without requiring modification, which demonstrates its scalability and flexibility.

The metaheuristic optimization approach is also shown to be flexible in both
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its applicability to a range of problems and the ease of integrating new algorithms.

Models created with the model generation strategy could immediately be integrated

with the optimization routine without modification. Furthermore, because of the

nature of the metaheuristic algorithm’s structure, additional algorithms are easy to

implement and swap with the first NSGA-II. Therefore, from these results, Hypothesis

2.1 is supported. The following section discusses the results from Experiment 2.2

aimed at investigating a range of optimization strategies for application to problems of

various complexity with diverse solution time and computational resources available.

5.3.2 Experiment 2.2: Improve Optimization Convergence Quality and
Time Results

Following Figure 61, Experiment 2.2 investigates a range of optimization algorithms

and robustness considerations in an effort to identify a well-performing set of strategies

that can be implemented for a range of problems. The best optimization strategy to

apply is always highly problem-dependent, so investigating and discussing the benefits

of a range of methods is important to examining the applicability of this methodology.

The investigation is conducted via a two-stage down-selection process that identifies

promising optimization strategies and quality robustness considerations. In doing so,

this experiment investigates Hypothesis 2.2:

Hypothesis 2.2: If alternative optimization strategies are implemented, then

the methodology can be used to explore and exploit the solution space quickly

enough to make implementation feasible and viable for a wider range of time and

resource constraints and solution quality requirements.

The first round in the down-selection process is to investigate a variety of al-

gorithms (both heuristic and metaheuristic) without considering quality robustness

(e.g. using the deterministic model). Results from each algorithm/strategy identi-

fied are presented and compared to results from the NSGA-II, which serves as the
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baseline. The strategies to carry forward, where the identified robustness measure-

ment techniques are investigated, are then selected. The second round investigates

how each robustness measure integrates with the strategies selected during the initial

round. Ultimately, the goal is to provide an indication for how the various algorithms

perform for problems of different complexities, time and resource constraints, and

solution quality requirements.

The following section presents the results from each algorithm discussed in Section

4.3.4.

5.3.2.1 Deterministic Optimization Algorithm Down-Selection

This section presents the results from the first down-selection utilizing determinis-

tic evaluations of the schedule. As described previously, results generated from the

NSGA-II algorithm are used to provide the baseline Pareto frontier. As demonstrated

through Experiment 1.2, the deterministic NSGA-II has converged sufficiently to pro-

vide a baseline to compare the performance of the deterministic algorithms.

With the converged baseline, the techniques and metrics discussed in Section

4.6.6.2 are used to compare the proposed algorithms and strategies. Furthermore,

because process time is an important metric, the best process time found is also

examined. To help ensure fairness across the experiments, a set of 5 initial points

are created and used to start each algorithm. The process time is weighted such

that it is 4 times as important as the slack time and neighboring sensor installation

metrics. While the weightings impact the region of the design space investigated

by the algorithms, the weights should not impact the comparison of the algorithms.

Each algorithm is run for 1500 generations with the goal of investigating how well it

can converge to a solution in a limited amount of time.

Results from each examined optimization strategy are displayed in Figures 62 and
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63. The results do not contain points from the greedy shifting bottleneck inspired

search or the Pareto optimal based simulated annealing strategies. The greedy algo-

rithm, which always moves the “worst” performing sensor installation, consistently

stalled after only 1–2 improving moves. The Pareto simulated annealing algorithm

also did not perform well. For many iterations of the algorithm, the candidate points

were of the same Pareto rank. This caused the algorithm to essentially devolve into a

random search, which did not begin to approach the baseline frontier. In an effort to

improve the Pareto simulated annealing’s performance, only a single sensor installa-

tion technician scenario was run at a time to reduce the dimensionality. This, however,

did not produce any meaningful improvement, so the following down-selection process

is focused on the heuristic and metaheuristic, weighted-sum algorithms.

Figures 62 and 63 show that the underlying heuristic appears to drive the op-

timization towards different regions of the Pareto frontier. This is explicitly noted

on Figure 62. The algorithms employing the shifting bottleneck heuristic tend to

identify regions with lower process time than the algorithms using the expanded

neighborhood formulation. However, the expanded neighborhood algorithms more

consistently identify points with better values for the neighboring installation metric.

This could indicate that by limiting the neighborhood definition, the shifting bot-

tleneck heuristic is able to better refine the process time. The process time can be

significantly impacted by moving a single sensor installation; however, the neighboring

sensor installation metric, as it is related to the interaction of all sensor installations,

may require more significant moves to see a major change. Hence, the shifting bot-

tleneck heuristic algorithms appear to drive down the overall objective function by

steadily driving down the process time. In contrast, the expanded neighborhood al-

gorithms, by modifying a larger portion of the plan at each iteration, are able to

better drive down the weighted objective through identifying changes that improve
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Figure 62: Weighted Sum Optimization Comparison with 2 Technicians
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Figure 63: Weighted Sum Optimization Comparison with 4 Technicians
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the neighboring sensor installation metric. However, the expanded neighborhood al-

gorithms seem to not be capable of making the small changes to the installation plan

that would help incrementally reduce the process time to the levels achievable by the

shifting bottleneck algorithms.

Table 16 presents the summarized results from the deterministic optimization runs.

As discussed in Section 4.6.6.2, the closeness to the Pareto frontier (G) is calculated

as follows. Each objective function is normalized between 0–1, where 0 represents

the worst value found for the objective in the baseline Pareto frontier. A value of

1 corresponds to the best value found in the Pareto frontier. This normalization

ensures that the closeness calculation does not favor one metric over another. With

the frontier and points to examine normalized, the closest point in the baseline Pareto

frontier to the current point is identified. The Euclidean distance between these

points is then averaged across each trial for a single algorithm to identify the average

closeness to the Pareto frontier. As such, (G) can be conceptually thought of as the

average (across all objectives and trials) percent degradation from the baseline Pareto

frontier to the trial points.

Based on the average distance to the Pareto frontier, the weighted sum fast simu-

lated annealing with the expanded neighborhood algorithm performed the best. Many

points identified by this algorithm approach the Pareto fronter in the neighboring sen-

sor installation metric dimension. The next best algorithm (according to the average

distance metric) is the regular weighted sum simulated annealing algorithm with the

shifting bottleneck heuristic. This algorithm consistently identified points with im-

proved process times though worsened values for the neighboring installation metric.

Hence, these two algorithms are carried forward to investigate whether their per-

formance is severely changed when different robustness measures are added to the

formulation.
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Table 16: Summary of Deterministic Down-Selection Results

Algorithm
G

(Closeness to the
Baseline Pareto

Frontier)

Best Process Time
- 2 Technicians

Best Process Time
- 4 Technicians

Baseline: NSGA-II N/A 1.052 1.037

Weighted Sum Fast Simulated
Annealing with Expanded

Neighborhood Heuristic
0.041 1.090 1.045

Weighted-Sum Simulated Annealing
with Shifting Bottleneck Inspired

Heuristic
0.049 1.070 1.043

Stochastic Shifting Bottleneck
Inspired Local Search 0.058 1.070 1.045

Expanded Neighborhood Local
Search 0.062 1.087 1.048

Weighted Sum Fast Simulated
Annealing with Shifting Bottleneck

Inspired Heuristic
0.067 1.071 1.045

Weighted Sum Simulated Annealing
with Expanded Neighborhood

Heuristic
0.067 1.091 1.047
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5.3.2.2 Algorithm Performance with Robustness Considerations

The two selected metaheuristic strategies are used to optimize the system with ro-

bustness considerations. Three set of robustness measures are evaluated:

1. Median Process Time

2. Median and 80th Quantile of Process Time

3. Median and the Standard Deviation of Process Time

Each robustness measure is used in conjunction with the two selected metaheuris-

tics. These combinations are then used in two optimization trials each; the starting

points chosen are the same as the first two from the deterministic cases. This fa-

cilitates comparisons between the deterministic and stochastic results. Again, the

process time is weighted 4 times as important as the other metrics. When the stan-

dard deviation is included, it is weighted such that it is equally as important as the

neighboring sensor installation and slack time metrics. Finally, each optimization

case is allowed to run for 1000 iterations (instead of 1500) to reduce the time required

to complete the experiment. The relative performance of the algorithms can still be

compared with the lower number of iterations.

Figures 64 and 65 present results from this experiment with 2 and 4 technicians

respectively. Continuing the trend from Experiment 1.3, the inclusion of the robust-

ness measures do produce meaningful improvements to the results. Some cases that

optimize to reduce the standard deviation do produce the lowest standard deviations;

however, this comes at the cost of higher process time. Additionally, the optimization

utilizing the 80th quantile of process time does identify solutions with slightly lower

80th quantiles compared to those optimized with only the median. Ultimately, results

from the deterministic optimization runs have very similar median and 80th quantile

values for process time to some of the stochastic results (with improved slack time).
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Figure 65: Final Points Found Using Various Metaheuristic Algorithms and Robust-
ness Measures - 4 Technicians
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This indicates that the observed trends may be due to the stochastic nature of the

optimization algorithms and not the changes to the objective functions.

Similar to the challenges discussed in Section 5.1.3.3, the limited computational

resources available preclude completing the number of optimization runs required to

produce significant results. Also, as indicated by the initial results and observations

throughout this work, the selected, real-world use case is not likely to receive benefits

from including the robustness criteria. Some of the expected trends are observed

(e.g. including the standard deviation can lead to solutions with a lower standard

deviation), but the results are not conclusive. As discussed in Section 7.5, follow-

up studies should run a larger number of cases with models of varying levels of

uncertainty. This could serve to better justify the inclusion of quality robustness

measures based on the nature of the problem and solution requirements. The following

sections reviews the experimental results to draw conclusions about Hypothesis 2.2.

5.3.2.3 Experiment 2.2 Discussion

This experiment has been completed to test Hypothesis 2.2:

Hypothesis 2.2: If alternative optimization strategies are implemented, then

the methodology can be used to explore and exploit the solution space quickly

enough to make implementation feasible and viable for a wider range of time and

resource constraints and solution quality requirements.

To test this hypothesis, various optimization strategies and objective functions have

been applied to the use case. Optimization techniques are primarily judged on the

solution quality achieved and the time required to achieve these results; however, in

any comparison of optimization techniques, it is recognized that the best strategy

to implement is highly dependent on the specific problem at hand [211]. Even when

considering the project scheduling problem of interest in this thesis, a range of problem

specific characteristics can impact the choice of optimization strategy. Hence, the
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following characteristics are presented to frame the generated results:

Time Available/Computational Resources Available: The time and computa-

tional resources available to solve the optimization problem dictates the number

of function evaluations available to reach a solution or set of solutions.

Complexity of the Solution Space: The complexity of the solution space impacts

how easily an algorithm can identify better performing solutions and could

influence the class of optimization algorithms that is likely to succeed.

Knowledge of the Desired Solution: Previous experience with similar problems

may enable the decision maker to set constraints on the solution space or identify

a weighted objective function that can identify good solution(s). This could lead

to better performance over a purely unconstrained, non-dominated search [32].

Convergence Requirements: The required closeness of the final point(s) to the

true optimum can also dictate the choice of optimization strategy.

These results work to marginally support Hypothesis 2.2. The results presented

throughout this section indicate that a point-based algorithm applied to the deter-

ministic model can identify solutions that are of decent quality when compared to the

NSGA-II. These solutions, however, can be found using significantly less time and/or

computational resources than the NSGA-II. Hence, if a proper weighting scheme can

be identified from previous experience with similar problems, then the point-based

strategies can work to reduce the turn-around time with limited losses in solution

quality.

If additional time and/or resources are available, it may be better to use a

population-based evolutionary algorithm (such as the NSGA-II). With a problem

containing limited uncertainty, optimizing a deterministic model may be sufficient.

However, as indicated by results from Experiment 1.3, running a limited number of

generations with the stochastic model could help to refine the deterministic solutions.
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While not explicitly observed in this work, systems with increased uncertainty

have been shown to benefit from including robustness measures in the optimiza-

tion [93, 218]. Hence, for a more complex or constrained system, the optimization

with robustness measures has the potential to improve performance. The methodol-

ogy’s ability to quickly incorporate these additional objectives helps to broaden its

applicability.

The experimental results are inconclusive; the use case model does not exhibit

significant benefits from optimizing with robustness, and an exorbitant amount of

time would be required to run more optimization cases with the resources available.

This means that the results cannot confirm that a wide range of model characteristics

can be supported by the various optimization strategies.

The following section introduces the results from Experiment 2, which are discussed

in depth within Chapter 6.

5.4 Experiment 2: Methodology Implementation

Experiment 2 is designed to serve as a final review of the PORRTSS methodology’s

capability to support planners. As such, the experiment requires a thorough review of

the actual steps taken to implement the methodology to solve a “real-world” problem.

This includes describing how the methods and improvements developed and tested

through Experiments 1 and 2.1–2.2 support the implementation. Hence, Chapter 6

provides a description of the methodology as applied to the use case with focus on

how the developed capabilities have supported implementation. Additionally, Chap-

ter 6 discusses the developed decision support system and provides examples of how

it supports planners to make better decisions.

The following section summarizes the results from Experiments 1 and 2.1–2.2.
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5.5 Chapter Summary

This chapter has presented the results from Experiments 1 and 2.1–2.2. Experiment

1 primarily tested whether Steps 1 & 2 of the PORRTSS methodology provide the

capability to identify a detailed installation schedule that improves the robustness

of the overall production plan. Experiment 1’s sub-experiments are performed to

systematically explore the modeling, optimization, and risk reduction capabilities

implemented in Steps 1 & 2.

Experiment 1.1 is performed to test whether the discrete-event simulation paradigm,

when combined with the automated model generation strategy, is capable of modeling

the process flow to sufficient detail to enable optimization. The results demonstrate

that the causal constraints and choices made within the schedule are properly ac-

counted for by the simulation. The sensor installation logic, which is developed to

quantify the impact that the sensor installations have on the overall production flow,

is verified. Finally, the varying the number of parallel sensor installations allows and

the compatibility assumptions produce the expected system-level changes. Increas-

ing the number of parallel sensor installations allowed generally reduces the average

and standard deviation of the process time. Furthermore, making the compatibil-

ity assumptions artificially constrained increases the impact of sensor installations.

Furthermore, more constraining compatibility assumptions increases the impact stem-

ming from sensor installations. These trends help to verify that the installation logic

leads to the expected system-wide performance. These results, therefore, support

Hypothesis 1.1 and demonstrate that the simulation is ready for integration with the

optimization routine.

The ability of the implemented optimization strategy to improve the determin-

istic installation plan is examined in Experiment 1.2. The Non-dominated Sorting

Genetic Algorithm-II is utilized to optimize the primary production process dur-

ing which each sensor is to be installed. It is observed that the NSGA-II is able to
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quickly improve the population of sensor installation plans for all objectives of interest.

The simulation-based optimization problem, therefore, is appropriately formulated.

Hence, the observed results from this experiment support Hypothesis 1.2.

With the optimization strategy shown to successfully optimize the deterministic

model, Experiment 1.3 is conducted to test whether directly evaluating and consid-

ering the quality robustness of the candidate schedules in the optimization strategy

works to improve the general robustness of the plans. The optimization routine is

shown to provide plans with improved robustness (as measured by the 80th quantile of

the process time). The impact is especially seen in the 2-technician scenarios, which

indicates that the inclusion is able to reduce risk with fewer resources. In addition to

the improvement of the process time, the robust optimization strategy is still shown

to provide a well-spread family of solutions for the decision makers to trade against.

When compared to the results from the deterministic optimization strategy, the

robust optimization is shown to quickly make improvements to the Pareto frontier.

Starting from the deterministic seed population, the robust optimization strategy

identifies populations that are closer to the Pareto frontier in just 25 generations

than the deterministic population in 300 generations. This indicates that the inclusion

of the quality robustness metrics adds some useful information to the optimization

routine; however, as the original strategy without robustness does eventually become

close in performance to the strategy with robustness, the utility of including quality

robustness is potentially limited. For the test problem at hand, it appears more

economical to optimize deterministically. Then use the converged population to seed

a small number of robust optimization cases.

Despite this caveat, Hypothesis 1.3 is supported by the experimental results. The

information provided by the quality robustness evaluation is shown to help guide

the optimization to improved plans with reduced risk. It is also shown to help the

algorithm maintain a population with an increased percentage of Pareto optimal
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points.

From these results, the capabilities implemented in Steps 1 & 2 of the PORRTSS

methodology are shown to work to improve the robustness of the production sched-

ule. Discrete-event simulation is shown to be capable of modeling the system at the

required level of detail to support optimization. The multi-objective, metaheuristic

optimization routine is then shown to be capable of providing improved, robust in-

stallation plans in the objectives of interest. Thus, the results from Experiment 1

support the overarching Hypothesis 1.

With the initial capabilities developed for Steps 1 & 2 of the PORRTSS method-

ology investigated, Experiment 2 and its sub-experiments are focused on identifying

promising areas to improve the deployability of the methodology. Experiment 2.1

investigates the impact of including the automated model generation strategy and

flexible, metaheuristic optimization routine on the methodology setup time. The au-

tomated strategy, which is enabled by leveraging the object-oriented nature of the

simulation language, is shown to more quickly and accurately build the simulation

when compared to a manual process. Furthermore, automating the model generation

helps to improve the scalability of the methodology: as demonstrated in the case of

the largest production model considered in this research. Finally, the automation

reduces the assumptions required to build the model and increases the information

available from the simulation.

With the various models automatically generated, each are then implemented with

the optimization routine. A generated model can begin optimization immediately,

and changing objective functions is quite simple. The code-base used to evaluate the

simulation model is also very modular, which enabled new metaheuristic algorithms

to be incorporated in less than a day’s worth of effort. Therefore, Experiment 2.1’s

results support the hypothesis that the object-oriented simulation, which enables

automated model construction, combined with a metaheuristic algorithm helps to
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significantly reduce the method’s implementation time.

The final Experiment discussed throughout this chapter is conducted to evalu-

ate Hypothesis 2.2. Recognizing that this methodology may be applied to problems

with wide-ranging complexities, time requirements, computational resources avail-

able, and solution quality requirements, it is desired to identify a number of opti-

mization strategies that can support the deployment of the methodology in a larger

number of instances and contexts. As objective function evaluations are relatively

expensive, a number of point-based algorithms are explored with the deterministic

algorithms. Observing that the 2 underlying heuristics led to identifying points in

different regions of the solutions space, 2 algorithms are selected for further explo-

ration with direct consideration for quality robustness. These algorithms are then

used to evaluate the performance of different quality robustness quantifications. Fol-

lowing the trend observed in Experiment 1.3, the comparison of robustness measures

is inconclusive. Hence, Hypothesis 2.2 cannot be confirmed because the benefit from

including robustness in the optimization for a range of problems cannot be properly

assessed.

This chapter has thus reviewed the capabilities developed to support the deploy-

ment of Steps 1 & 2 of the methodology. To better encourage adoption within in-

dustry, Chapter 6 discusses the entire use case. In doing so, the importance of the

decision-maker to increasing the deployability of the methodology is investigated.
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CHAPTER VI

USE CASE & DECISION SUPPORT

The purpose of this chapter is to discuss the results of Experiment 2. This is accom-

plished by implementing the PORRTSS methodology in support of a “real-world”

problem. Throughout, the capabilities identified in Hypothesis 2 (reproduced below)

that are hypothesized to lead to the successful implementation of the methodology

are discussed. As such, the chapter begins with a discussion on how the various

stakeholders, described in Section 4.1, work together to implement the methodology.

Then, the decision support tools developed to support the down-selection and manual

modification of the plan in Step 3 of the methodology are discussed. The new trades

enabled by the methodology are then presented in the context of the case study out-

lined in Section 3.2. Finally, results from Experiment 2 are examined to assess the

appropriateness of the hypothesis.

Hypothesis 2: If the methodology requires a low amount of implementation effort

and is shown to provide clear benefits with acceptable increases in computation

time over traditional scheduling methods while effectively integrating the knowl-

edge of the human planner, then the methodology can be successfully implemented

to solve “real-world” problems.

Experiment 2 strays from the purely quantitative evaluations of the previous ex-

periments to a more qualitative discussion and evaluation of the PORRTSS method-

ology with subject matter experts. While this removes some objectivity from the

experimental evaluation, the evaluation is based on comments and feedback from

avionics, manufacturing, and industrial engineers who are working with the vehicle

and have used the methodology to plan sensor installations for portions of the vehicle.
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Therefore, in lieu of an objective measure for implementability, the feedback received

from discussions with the set of decision makers who have used the methodology is

the next best data source for this experiment.

Because this experiment is designed to examine the actual use of the PORRTSS

methodology, a description of the entire methodology’s process is provided in this sec-

tion. Most components have been covered in the discussion of previous experiments;

hence, while the entire methodology is presented, previously examined details are

summarized. Finally, updates to the methodology and decision support environment

have been included following feedback received after its implementation. Hence, the

updated version of the decision support tool is presented. Notes on feedback received

from the SMEs are included throughout the experimental discussion.

The following section describes the steps taken by the various stakeholders to support

Step 1 of the PORRTSS methodology.

6.1 Compatibility Matrix Development

One of the major steps in the PORRTSS methodology is the development of a com-

patibility matrix for the sensors and primary processes of interest. The matrix is

created by the relevant subject matter experts (the manufacturing engineers and

avionics experts for the case study) using the compatibility matrix tool described in

Section 4.3.2. This follows a constraint identification process whereby the system

experts (the avionics experts) work with the manufacturing engineers to understand

how the vehicle must be assembled to obtain the required system performance. Using

the compatibility matrix generation tool, the avionics and manufacturing engineers

were able to create a compatibility matrix for a major subassembly of the vehicle of

interest by exploring the sensor installations within the CAD model. This results in a

traceable set of constraints to be used to drive the simulation model and optimization
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routine. The generation of the simulation model utilizing the compatibility matrix

and schedule information provided by the IEs is discussed in the following section.

6.2 Automated Model Generation Deployment

The methodology implementor is first provided with the required data from the IE

and avionics personnel to begin the model generation process. The industrial engi-

neers provide optimized results from their schedule model to form the basis of the

production model. The implementor then runs the schedule-to-Simio translation code

described in Section 4.2.1. This code generates an input spreadsheet to place objects

in the previously developed shell Simio model. Furthermore, input data tables for the

simulation are created for the scheduled tasks, sensor installations, and compatibility

matrix.

The input data sets required to generate the model are readily available to the

stakeholders. The schedule model requires a simple export from the industrial engi-

neers’ constraint-based scheduling models. The sensor information is kept within a

large database that can be filtered based on the portion of the vehicle currently under

investigation. Then, because there are a relatively few number of sensor types, generic

installation sequences and times for each type are identified. Therefore, through au-

tomation, this portion of the methodology requires little input from the primary

stakeholders.

With the simulation model and constraint matrix developed, the next section de-

scribes the deployment of the optimization routine to identify a Pareto efficient set

of solutions during Step 2 of the PORRTSS methodology.

6.3 Simulation-based Optimization Deployment

The simulation-based optimization routine is developed such that it can be imme-

diately deployed once a simulation model and compatibility matrix are created. As
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such, there is not a significant amount of effort that is required for the optimization to

be deployed for a new problem. Thus, the optimization routine is implemented with

the objectives described in Table 7 (process time, critical and all sensors slack time,

and the neighboring sensor installation metric). The statistics chosen to summarize

each trial for the case study are the median and 80th quantile of the replications.

These are chosen because the stakeholders are interested in minimizing the impact

(the median process time) and risk (80th quantile of process time) resulting from the

installation of sensors. Risk is further reduced by including the slack time (to allow

for a larger window for potential re-installations) and the neighboring sensor metric

(to make installations easier for technicians). The neighboring installation metric was

identified by the manufacturing engineers as a way to make the installation processes

easier for the technicians and was, therefore, added after analyzing an initial set of

optimization results.

With the optimization routine implemented, the problem is optimized utilizing a

2-staged approach. Because the objective evaluations are expensive, an initial set of

generations are run without considering the uncertainty in the problem. The goal is

to generate a set of solutions that are nominally well-performing to be used to seed the

stochastic optimization runs. After the deterministic optimization stop significantly

improving, which happens at around generation 500 (after 3 days of computation time

on a quad core i7 desktop with 16GB of memory), the stochasticity is re-enabled to

evaluate the median and 80th quantile of process time. The entire set of inputs from

the final deterministic runs are re-evaluated by running the 35 required replications

(as discussed in Section 4.3.5). In an effort to enhance the genetic diversity, an

additional 200 random population members are added to the 1000 original members.

The stochastic optimization formulation is then run until it again stops improv-

ing or reaches a maximum generation/time limit. The optimization runs are dis-

tributed over a network of computing nodes to reduce the time required to compute
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the objective function values. Results from Experiments 1.2 and 1.3 demonstrate

that the deterministic model’s process time is similar to the median process time in

the stochastic model. Hence, following this strategy to first identify deterministically

well-performing solutions to then refine with the quality robustness evaluations helps

to improve efficiency.

Upon completing the optimization runs, the resulting Pareto efficient points are

propagated to the decision support environment for down-selection and modification

in Step 3 of the PORRTSS methodology. For the use case implemented by the stake-

holders, the stochastic portion of the methodology was not included. This is because

there was a small amount of time available to obtain a set of results. Therefore, while

the following sections discussing the down-selection process include stochastic ele-

ments for illustration of the trades made available, these were not used in the actual

implementation.

6.4 Sensor Installation Scenario Down-Selection and Man-
ual Modification

This section walks through the down-selection process (Step 3 of the methodology)

as followed by the methodology’s stakeholders when planning for sensor installations

on the “real-world” vehicle. As such, a step-by-step progression through the process

is presented with accompanying visuals. Step 3 begins with an initial down-selection

from the set of potentially thousands of Pareto optimal points to a smaller subset to

be carried through for further analysis.

6.4.1 Initial Down-Selection

As discussed in Section 4.4, the first step in the down-selection process is to explore

the solution space to identify objectives of importance and regions of well-performing

points. At each stage of this initial down-selection, top-ranking points can be se-

lected for further, detailed scenario comparison. This detailed scenario comparison is
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(a) Ten Best Potential Installation Plans Identified by TOPSIS Based Solely on Flow Time

Index Median
Flow Time

80th Quan-
tile Flow
Time

All Sensor
Slack Time

Critical
Sensor Slack
Time

Technicians Neighboring
Sensor
Metric

4,512 1 1.006 0.756 0.737 4 1.737
3,951 1 1.005 0.787 0.789 4 1.648
840 1 1.005 0.735 0.707 4 1.498
1,638 1 1.005 0.735 0.707 4 1.498
3,462 1 1.006 0.78 0.765 4 1.549
5,274 1 1.006 0.797 0.779 4 1.793
4,302 1 1.006 0.78 0.765 4 1.549
6,102 1 1.01 0.789 0.763 4 1.602
4,995 1 1.006 0.779 0.765 4 1.55
3,225 1 1.004 0.714 0.703 4 1.495
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Figure 66: Initial Down-Selection Visuals
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discussed in Section 6.4.3.

Figure 66 shows the initial table of ranked solutions and corresponding scatterplot

matrix. The values presented in Figure 66a are normalized by the best values found

for each objective. The points are initially ranked, using a TOPSIS algorithm, solely

by the median flow time. Flow time, which is the process time including breaks,

nights, and weekends, is used to measure the impact of the sensor installations as it

is a more common metric in planning. Process time is used to drive the optimization

because it is a continuous function (flow time has discontinuities) and, therefore,

provides a better objective for the optimizer. All of the values are normalized by the

best value found during the optimization run. Hence, the ideal point has a value of

1 for each objective. Finally, because the median and 80th quantile of the flow time

are normalized by their respective best values, it is possible to have an 80th quantile

with a lower normalized value than the median’s normalized value.

The initial weighting that solely focuses on the flow time metric is not extremely

helpful to drive the down-selection process. It does not help to identify any regions

that are well-performing in a multi-objective sense; it only shows the user that if cost

and the other risk metrics (slack time and the neighboring sensor distance metric)

are not a concern, then the user should select the solution with the lowest flow time

regardless of any additional metrics. However, for comparison purposes, a couple of

the points with the minimum flow time are selected for later scenario comparison.

To further the exploration and begin to identify a potentially better set of points,

Table 17: TOPSIS Algorithm Weightings when Considering Flow Time and Cost
Response Weighting

Median Flow Time 5.0
Slack Time for All Sensors 0

Slack Time for Critical Sensors 0
Technicians (Cost) 0.7

Neighboring Sensor Metric 0
80th Quantile of the Flow Time 0
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(a) Ten Best Potential Installation Plans Identified by TOPSIS Considering Flow Time and Cost (Tech-
nicians) Based on Weightings Defined in Table 17

Index Median
Flow Time

80th Quan-
tile Flow
Time

All Sensor
Slack Time

Critical
Sensor Slack
Time

Technicians Neighboring
Sensor
Metric

6,187 1.036 1.04 0.743 0.721 2 1.609
6,175 1.036 1.039 0.737 0.715 2 1.596
2,581 1.036 1.039 0.737 0.713 2 1.605
5,920 1.037 1.045 0.73 0.706 2 1.593
6,178 1.037 1.04 0.735 0.711 2 1.591
1,924 1.037 1.039 0.728 0.703 2 1.608
2,755 1.037 1.039 0.74 0.718 2 1.633
5,416 1.037 1.039 0.731 0.706 2 1.602
5,893 1.037 1.041 0.781 0.758 2 1.719
3,142 1.037 1.041 0.758 0.75 2 1.385
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(b) Scatterplot Matrix with Points Colored from Green to Red Based on their TOPSIS Rank From
Weightings Defined in Table 17

Figure 67: Down-Selection Visuals Considering Flow Time and Cost (Number of
Technicians)

248



cost should be brought into the equation. This is accomplished by adding importance

to the Technicians metric for the TOPSIS algorithm. Table 17 shows the weightings

chosen for this investigation. The technicians metric represents the number of sensor

installation technicians available to install sensors, and it can be seen as a surrogate

for the labor costs required to install the sensors.

The resulting TOPSIS rankings and scatterplot matrix can be seen in Figure 67.

Comparing Figure 67a to 66a, adding the slight weighting to the technicians metric

leads to ranking solutions that utilize only 2 technicians scoring better than ones

requiring 4 technicians. This is because 2 technicians are able to complete some of

the installation plans with only ∼3.5% more flow time than the best scenarios found

utilizing 4 technicians. Hence, based on the chosen weightings, sacrificing a small

amount from the median flow time is worth halving the number of technicians. Some

of these top-ranked points are again selected for future comparison.

One interesting trend identified in Figure 67b is that many of the highest ranking

points have a relatively low amount of slack time. This indicates that there are

positions later in the process that nominally have good opportunities to install sensors,

but this must be balanced with the desire to have a larger amount of slack time to

provide more opportunities for re-installations. Therefore, it is interesting to add

importance to these heuristic risk-reduction metrics to see how the distribution of

highly ranked points changes.

Table 18: TOPSIS Algorithm Weightings when Considering Flow Time, Cost, and
the Slack Time for All Sensors

Response Weighting

Median Flow Time 5.0
Slack Time for All Sensors 0.5

Slack Time for Critical Sensors 0
Technicians (Cost) 0.7

Neighboring Sensor Metric 0
80th Quantile of the Flow Time 0
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(a) Ten Best Potential Installation Plans Identified by TOPSIS Considering Flow Time, Cost (Technicians),
and the Slack Time for All Sensors Based on Weightings Defined in Table 18

Index Median
Flow Time

80th Quan-
tile Flow
Time

All Sensor
Slack Time

Critical
Sensor Slack
Time

Technicians Neighboring
Sensor
Metric

4,279 1.037 1.045 0.813 0.826 2 1.36
5,776 1.037 1.042 0.788 0.766 2 1.701
5,893 1.037 1.041 0.781 0.758 2 1.719
1,990 1.038 1.04 0.786 0.773 2 1.628
5,725 1.04 1.045 0.812 0.825 2 1.363
6,097 1.038 1.041 0.772 0.751 2 1.343
6,187 1.036 1.04 0.743 0.721 2 1.609
3,142 1.037 1.041 0.758 0.75 2 1.385
2,422 1.037 1.041 0.758 0.75 2 1.385
3,202 1.037 1.042 0.759 0.75 2 1.383
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Weightings Defined in Table 18

Figure 68: Down-Selection Visuals Considering Flow Time, Cost (Number of Tech-
nicians), and the Slack Time for All Sensors
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To begin considering the additional risk metrics, weight is added to the Slack

Time for All Sensors. The updated weightings are provided in Table 18. By adding

a relatively low weighting to the slack time when compared to the flow time, the

TOPSIS algorithm is identifying points that have a larger amount of slack time with

low flow times.

The resulting TOPSIS rankings based on the weightings defined in Table 18 are

presented in Figure 68. The general regions of well-performing points identified in

Figure 68b are very similar to the regions in Figure 67b. The plots depicting the slack

time vs. the flow time show a slight shift towards favoring points with slightly higher

flow time but larger amounts of slack.

Comparing the tables with the top 10 installation plans (Figure 68a vs. Figure

67a), one can see that all of the rows in Figure 68a except point 6197 are colored

green. This shows that most points in the list moved up in its ranking based on the

change in weighting scheme. Indeed, the best points identified in Figure 68a have

about the same amount of flow time and use only 2 sensor installation technicians

when compared to the previous weighting scheme (Figure 67a), but generally have

an increased amount of slack time. Hence, no true trade has been made thus far: by

allowing for a ∼4% increase in the flow time, the number of technicians required can

be halved while the slack time for all sensors is about 85% of the best value found.

The down-selection process can continue by adding importance to the Slack Time

Table 19: TOPSIS Algorithm Weightings when Considering Flow Time, Cost, and
the Slack Time for All and Critical Sensors

Response Weighting

Median Flow Time 5.0
Slack Time for All Sensors 0.5

Slack Time for Critical Sensors 0.5
Technicians (Cost) 0.7

Neighboring Sensor Metric 0
80th Quantile of the Flow Time 0
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(a) Ten Best Potential Installation Plans Identified by TOPSIS Considering Flow Time, Cost (Technicians),
and the Slack Time for All and Critical Sensors Based on Weightings Defined in Table 19

Index Median
Flow Time

80th Quan-
tile Flow
Time

All Sensor
Slack Time

Critical
Sensor Slack
Time

Technicians Neighboring
Sensor
Metric

4,279 1.037 1.045 0.813 0.826 2 1.36
5,725 1.04 1.045 0.812 0.825 2 1.363
2,734 1.044 1.05 0.856 0.845 2 1.84
698 1.014 1.034 0.928 0.94 3 1.651
5,792 1.014 1.035 0.919 0.922 3 1.759
6,103 1.043 1.045 0.828 0.844 2 1.322
3,079 1.042 1.047 0.82 0.825 2 1.388
1,657 1.044 1.047 0.837 0.852 2 1.711
662 1.016 1.035 0.929 0.942 3 1.657
1,990 1.038 1.04 0.786 0.773 2 1.628
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Figure 69: Down-Selection Visuals Considering Flow Time, Cost (Number of Tech-
nicians), and the Slack Time for All and Critical Sensors
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for Critical Sensors metric. This serves to add importance to the overall slack metric

(because the critical sensor slack contributes to a significant portion of the all sensor

slack) while also prioritizing the additional slack time for the critical sensors. Table

19 presents the weightings for this scenario.

The resulting ranked table and scatterplot matrix based on the weightings defined

in Table 19 are presented in Figure 69. Figure 69b shows that scenarios with slack

times near the top of the range of values observed are becoming more favored. This

can be seen further in Figure 69a where scenarios utilizing 3 technicians are beginning

to enter the top 10 ranked solutions. By using 3 technicians, these scenarios are able

to complete more sensor installations early in the flow (to improve the slack time)

while not impacting the flow time. Therefore, based on the preferences defined to this

point, the selection between 2 and 3 technicians available to the flow is important

and requires additional attention. As such, top ranked points from this table that

utilize both 2 and 3 technicians are selected for further analysis.

The results shown in Figure 69a demonstrate that, notably for 2 technician sce-

narios, the neighboring sensor installation metric is fairly high. Hence, considering

this metric in the TOPSIS algorithm could help identify points that make the actual

installations easier for the technicians. Therefore, the weightings are updated to those

presented in Table 20. A weighting of 1.0 is selected to put the neighboring sensor

installation metric on an approximately equal footing with the slack time metrics.

Table 20: TOPSIS Algorithm Weightings when Considering Flow Time, Cost, the
Neighboring Sensor Installation Metric, and the Slack Time for All and Critical Sen-
sors

Response Weighting

Median Flow Time 5.0
Slack Time for All Sensors 0.5

Slack Time for Critical Sensors 0.5
Technicians (Cost) 0.7

Neighboring Sensor Metric 1.0
80th Quantile of the Flow Time 0
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(a) Ten Best Potential Installation Plans Identified by TOPSIS Considering Flow Time, Cost (Technicians),
the Slack Time for All and Critical Sensors, and the Neighboring Sensor Installation Metric Based on
Weightings Defined in Table 20

Index Median
Flow Time

80th Quan-
tile Flow
Time

All Sensor
Slack Time

Critical
Sensor Slack
Time

Technicians Neighboring
Sensor
Metric

2,480 1.019 1.033 0.903 0.933 3 1.047
5,864 1.014 1.012 0.842 0.863 3 1.019
3,770 1.014 1.03 0.897 0.899 3 1.079
4,598 1.018 1.039 0.881 0.909 3 1.052
5,897 1.019 1.035 0.893 0.915 3 1.055
3,068 1.019 1.033 0.902 0.931 3 1.07
5,666 1.016 1.03 0.898 0.901 3 1.078
1,985 1.018 1.029 0.895 0.874 3 1.046
5,540 1.02 1.035 0.895 0.889 3 1.037
3,347 1.016 1.035 0.862 0.888 3 1.051
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(b) Scatterplot Matrix with Points Colored from Green to Red Based on their TOPSIS Rank From
Weightings Defined in Table 20

Figure 70: Down-Selection Visuals Considering Flow Time, Cost (Number of Tech-
nicians), the Slack Time for All and Critical Sensors, and the Neighboring Sensor
Installation Metric
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The resulting ranked solutions table and scatterplot matrix are presented in Figure

70. By including the neighboring sensor installation metric, the TOPSIS algorithm

has identified more solutions utilizing 3 technicians that are able to provide enough

benefit to be worth the additional costs. Therefore, by allowing for the additional

costs, solutions are identified that have low flow times and slack times with low values

for the neighboring sensor metric. Figure 70b shows a distinct shift towards favoring

points using 3 technicians that have low flow times, low neighboring sensor metrics,

and medium to high slack times. This sharply contrasts the more compromised

solutions that utilized 2 technicians shown in Figure 69b.

With promising points identified through an investigation of the various metrics

related to impact, cost, and heuristic risk, the direct impact of the schedule’s quality

robustness on the selection of promising points is investigated. The quality robustness

for the case study is quantified as the 80th quantile of the flow time identified by

summarizing results from multiple simulation replications. The weightings used for

this portion of the investigation are presented in Table 21.

Figure 71 shows the results for the weightings in Table 21. As seen in Figure 71b,

increasing the importance of the 80th quantile of the flow time did not significantly

impact the regions of well-performing points. New properties can be seen in the

ranked table (Figure 71a). As seen in the table, the new weightings have identified

points that sacrifice slack time for more quality robustness (e.g. solutions in which

Table 21: TOPSIS Algorithm Weightings when Considering the Median and 80th

Quantile of Flow Time, Cost, the Neighboring Sensor Installation Metric, and the
Slack Time for All and Critical Sensors

Response Weighting

Median Flow Time 5.0
Slack Time for All Sensors 0.5

Slack Time for Critical Sensors 0.5
Technicians (Cost) 0.7

Neighboring Sensor Metric 1.0
80th Quantile of the Flow Time 2.5
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(a) Ten Best Potential Installation Plans Identified by TOPSIS Considering the Median and 80th Quantile
of Flow Time, Cost (Technicians), the Slack Time for All and Critical Sensors, and the Neighboring Sensor
Installation Metric Based on Weightings Defined in Table 21

Index Median
Flow Time

80th Quan-
tile Flow
Time

All Sensor
Slack Time

Critical
Sensor Slack
Time

Technicians Neighboring
Sensor
Metric

5,864 1.014 1.012 0.842 0.863 3 1.019
977 1.012 1.012 0.845 0.846 3 1.06
2,480 1.019 1.033 0.903 0.933 3 1.047
758 1.013 1.012 0.851 0.846 3 1.064
2,807 1.012 1.013 0.817 0.833 3 1.029
1,511 1.012 1.013 0.816 0.833 3 1.029
3,770 1.014 1.03 0.897 0.899 3 1.079
623 1.014 1.012 0.851 0.845 3 1.065
3,257 1.013 1.012 0.851 0.846 3 1.068
4,382 1.014 1.027 0.833 0.853 3 1.017
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Figure 71: Down-Selection Visuals Considering the Median and 80th Quantile of Flow
Time, Cost (Number of Technicians), the Slack Time for All and Critical Sensors, and
the Neighboring Sensor Installation Metric
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the median and 80th quantile of the flow time are similar).

This presents an interesting trade for the decision maker. The modeled uncertainty

within the simulation identifies a point with a low 80th quantile of process time has

a low amount of risk. The simulation is, however, limited to the types of risk and

uncertainty modeled. This led to the inclusion of the slack time and neighboring

sensor metric as heuristic alternatives, which help to capture some risk indicators

without directly modeling their impact. Therefore, the decision maker must decide

if he or she should accept a slightly increased amount of potential delays in the hope

that the slack time can contribute to reduced risk. These decisions require further

investigation of the selected points, which is discussed in Section 6.4.3 following the

section summary.

6.4.2 Initial Down-Selection Summary

The initial set of trades presented above provides a good starting point for the down-

selection process. By exploring a variety of weighting scenarios, the stakeholder is

able to identify regions of the design space that contain promising solutions and select

solutions for more detailed analysis.

While the scatterplot matrix and TOPSIS algorithm provide a solid platform to

select a variety of potential points for implementation, the goal of the down-selection

process is to identify a single scenario for implementation. The capabilities presented

throughout this section lack the detailed information required to comfortably make

this decision. As such, the goal of the initial down-selection is to identify a set of 10 or

so points that are representative of the various promising regions identified by varying

the TOPSIS weightings. The points selected by following the down-selection process

discussed in this section are presented in Table 22. These representative points are

then passed for more detailed analysis, as presented in the following section.
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Table 22: Installation Plans Selected for Further Comparison (All Dimensions Nor-
malized)

Index Median
Flow Time

80th Quantile
Flow Time

All Sensor
Slack Time

Critical Sensors
Slack Time

Technic-
ians

Neighboring
Sensor Metric

4,512 1 1.006 0.756 0.737 4 1.737
840 1 1.005 0.735 0.707 4 1.498

6,187 1.036 1.04 0.743 0.721 2 1.609
6,175 1.036 1.039 0.737 0.715 2 1.596
4,279 1.037 1.045 0.813 0.826 2 1.36
5,725 1.04 1.045 0.812 0.825 2 1.363
2,480 1.019 1.033 0.903 0.933 3 1.047
5,864 1.014 1.012 0.842 0.863 3 1.019

977 1.012 1.012 0.845 0.846 3 1.06
758 1.013 1.012 0.851 0.846 3 1.064

6.4.3 Scenario Comparison

The primary purpose of the scenario comparisons are to identify where and why de-

lays are occurring in the selected points of interest. This transition from overarching

values for the objective (flow time, slack time, etc.) to more detailed information

pertaining to the delays at individual processes is important to increase traceability

and transparency. For instance, with the information provided by the scenario com-

parisons, the stakeholder can better determine whether an observed increase in flow

time can be mitigated (potentially by deploying more technicians for a specific set

of processes) or is acceptable (because many sensors are installed during the delay).

Using this information, he or she can better delineate between the promising scenarios

to select a single scenario to carry forward.

The two visuals useful for the scenario comparison are a parallel coordinate plot

and Gantt chart. When scenarios of interest are selected during the initial down-

selection process, they are added to the installation delay parallel plot. Figure 25

presents a parallel plot for a segment of installation processes for the scenarios selected

through the initial down-selection process. As a note, the process names are set before

the analysis and are not fully indicative of the order of the processes; the location

along the X axis does, however, give an indication of the sequence.
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Figure 25: Parallel Plot Showing Delays to Each Primary Process Due to Sensor Installations for the Points Selected through
the Initial Down-Selection (Reproduced from page 142)
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The parallel plot allows decision makers to identify and assess, on a process-by-

process basis, the delays caused by each sensor installation scenario. Ideally, a plan

would be found that leads to no delays in the primary production flow; however, this

is likely not possible due to the compatibility constraints. Instead, the optimization

algorithm should identify plans that best distribute the sensor installations to min-

imize the overall amount of delay while also considering the heuristic risk metrics

(slack time and the neighboring sensor installation metric).

The parallel coordinate plot presented in Figure 25 supports the application of

human intuition and increases transparency in the planning process. These capa-

bilities are identified in literature as essential to a deployable scheduling method-

ology [60, 206]. By showing how the sensor installations and resulting delays are

distributed amongst the primary production processes, the decision maker is able to

better understand how the optimizer identified the installation plans. By being pro-

vided with information about each sensor installed at each primary process, the user

can then leverage his or her experience to better understand the severity of the delay

or identify potential mitigation strategies.

The parallel plot allows the user to scroll through the entire process to compare the

scenarios of interest. From Figure 25, the decision maker can quickly see that Pareto

points 5725, 4279, and 6175, which all utilize only 2 technicians, incur large delays in

the presented processes. Using knowledge of the delayed process, the decision maker

can begin to understand where and how the additional technicians reduce the impact

of sensor installations on the flow. To further this understanding, the linked Gantt

chart is utilized to identify further details about the selected points for comparison.

A Gantt chart specifically tailored to understand the impact of sensor installations

is thus incorporated into the decision support environment. An example of the Gantt

chart is presented in Figure 73. The Gantt chart is linked to the parallel plot such that

when the user clicks on one of the parallel plot’s lines, the Gantt chart automatically
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updates to display this scenario’s information and zooms onto the specific process

selected. For example, the Gantt chart in Figure 73 is displayed immediately when

the line for Pareto point 4279 is selected in the parallel plot at Primary Process 61.

This brushing capability enables the user to quickly zoom in on areas of interest or

concern that he or she identifies in the parallel plot.

Using the Gantt chart displayed in Figure 73, the user is able to obtain a very

detailed picture of why Primary Process 61 is delayed. Process 61, which is a successor

of Process 60, must wait until the installation sequences for all of the sensors planned

to occur during Process 60 are started. Once the last sensor sequence planned for

Process 60 is started (Sensor 198), Primary Process 58 is allowed to begin because it

is compatible with all of the ongoing sensor installations.

In using the parallel plot and linked Gantt charts, the decision makers are thus

able to better understand the choices made by the optimizer to increase transparency.

This information, when combined with the overall metrics provided by the scatterplot

matrix and response table, allows the planners to down-select a strategy that forms

the basis of the plan for implementation.

As demonstrated, the parallel plot and Gantt charts provide an overview of the

strategies employed by each scenario to minimize the process delays while also im-

proving the other metrics of interest. Additionally, the Gantt chart enables the user

to better see why a delay occurs and to potentially make a judgment as to whether

the delay is acceptable (e.g. if a large number of sensors are installed, it could be

acceptable to delay the primary process for some time). Finally, in the implemented

version of the decision support environment, the parallel plot is supplemented with in-

formation about each sensor installed during the process. The SMEs can then utilize

this information to gain further insights about how the sensor installations impact

the heuristic risk metrics and identify any additional problems or constraints that

may not have been captured by the model.
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Primary Process Delay to Pri-
mary Process

Subcomponent
Installation
Requiring Touch
Labor

Subcomponent
Installation not
Requiring Touch
Labor

Off-Shift Time

Primary process 61 must wait un-
til Sensor 198, which is defined to
be completed during Process 60, is
started.

Figure 73: Gantt Chart Displaying Results From Pareto Point 4279
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At this point in the selection process, the user has identified, from the provided

set of solutions, the single sensor installation plan that he or she prefers. The user has

also contributed to the solution process by applying his or her preferences to make

this selection. In order to add further freedom to the down-selection process and not

limit the user to the solutions identified by the optimization routine, an opportunity

to explore manual modifications to the plan is also provided, as discussed in the

following section.

6.4.4 Scenario Modification

The constraints (compatibility matrix) and set of objective functions are implemented

to guide the optimization algorithm. Despite the best efforts of the implementors

and SMEs, these constraints and objectives can never fully capture the preferences

and experience of the SMEs. As such, after the SMEs have narrowed the set of

solutions down to a single solution of interest, the capability to easily modify the

sensor installation plan to accommodate any additional knowledge from the human

planners is provided.

This capability is provided in a re-planning view in the decision support environ-

ment. While the views discussed in the previous sections focused on ranking overall

sensor installation scenarios, the re-planning view helps the user to sort through

each sensor installation in a single sensor installation plan. An overall view of the

re-planning view is shown in Figure 74.

The primary interfaces available in the re-planning view are: 1) lists of the primary

processes and sensor installation processes, 2) an interactive Gantt chart that is linked

to the process and sensor lists, 3) and a re-planning recommendation table. Each of

these interfaces are discussed below.

The primary process and sensor installation task lists help the user navigate the

Gantt chart. Clicking on either a sensor or primary process zooms to that area of
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Figure 74: Re-planning View
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the Gantt chart. Furthermore, selecting a sensor task highlights the primary process

during which it is planned for installation in the process list and Gantt chart. The

planned process is also listed in the sensor task list. The interface also works in the

opposite direction, so that when the user clicks on a primary or sensor installation

process in the Gantt chart, the corresponding row in a table is highlighted. This

allows the user to quickly gather information about each task to help him or her

decide whether a modification to the plan is required.

Making modifications to the installation plan is accomplished by using the tables

provided in the middle of the re-planning view. There are two options provided to

re-plan sensor installations. First, the user may have identified a primary process that

could support more sensor installations. In this case, the Move Sensors to Current

Process tab provides a list of sensors that are compatible with the selected primary

process. In addition to providing the compatible sensors, this table also provides

metrics related to each individual sensor’s current installation (not illustrated because

of data restrictions). The provided metrics are:

Buffer Time (Slack Time): The total time between the currently planned instal-

lation and its final installation opportunity. This metric is summed across all

of the sensor installations to determine the overall All Sensor Slack and Critical

Sensor Slack Time metrics used to drive the original optimization algorithm.

Delay Caused By Sensor Installation: This is the total delay due to sensor in-

stallations to the primary process during which the sensor is currently planned.

The user may use this metric to identify processes that have too many sensor

installations planned and move the installation to the current process.

Installation Opportunities Remaining: The number of compatible primary pro-

cesses remaining for the sensor installation. The user may chose to move sensors
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with few compatible installations remaining after their planned opportunity ear-

lier in the process to help guard against disruptions. For instance, if a sensor

has many opportunities available, then it might be acceptable to plan it later

in the process. However, if it is planned near the end of its installation window,

this option may not be available to the production manager.

The user may choose to manually explore the sensors that can be moved to a

selected process. The table can be sorted by each metric, and the Gantt chart zooms

to a selected sensor when highlighted. This allows the user to gain a fuller picture of

how the installation is performing. A multi-criteria ranking algorithm (TOPSIS) is

also provided to help the user better identify sensors to move to the current process.

The user may set the importance of the three individual sensor metrics, and the table

provides ranked options for re-planning.

The user may also choose to work in the opposite direction when making modifi-

cations to the installation plan. In this case, he or she would go to the Move Sensors

from Currently Selected Process tab. This tab, which is shown below the Move Sen-

sors to Current Process tab in Figure 74, provides the sensor installations that are

planned to occur during the currently selected primary process. When a sensor is

selected in the Sensor to Move column, the Process to Move Sensor To column is

populated with every compatible process that could accept the currently selected

sensor installation. Selecting a sensor or primary process in either column highlights

the respective process in the Gantt chart. Once the user has selected the sensor to

move and the destination process, clicking the Move Installation button propagates

the move.

Upon completing some modifications to the installation plan, the user can save the

input file and re-run the simulation model. Once the simulation run is completed, the

results are pulled back into the decision support tool. Without considering quality

robustness (i.e. only running a single case of the simulation model), this evaluation
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takes ∼30 seconds on a quad core desktop. Running 35 replications of each 2–4 sensor

installation technician scenarios to estimate the quality robustness of a new solution

requires approximately 2 1/2 minutes. This allows the user to see the impact on the

overarching metrics of interest, the parallel plot, and the Gantt chart. The modified

plan can also be propagated back to the re-planning view for further modification.

This capability enables the user to make incremental changes to the installation plan

to avoid any major, unexpected detriments to performance.

After the user is satisfied with the modified installation plan, the plan can be

output to a list that matches each sensor installation with their planned primary

production process. At this point, one final trade can be investigated utilizing the

decision support environment. Throughout the entirety of this use case, it has been

assumed that the number of technicians utilized for sensor installations remains con-

stant throughout the execution of the schedule. In most cases, this is not required as

a plan calling for 4 technicians may only need all 4 technicians during a few specific

processes.

The parallel plot can be used to examine where the additional technicians are

needed to reduce delays within the schedule. Recall that the sensor installation plans

are evaluated for each of the 2–4 sensor installation technician scenarios. Because

the logic is implemented such that each sensor installation sequence must be started

during its defined primary process, a similar amount of work must be accomplished

during each primary production task. The primary difference is that with more

technicians, more parallel installations are allowed. Therefore, using the parallel

plot, the user can determine if the additional parallel work supported by utilizing

more technicians is required to avoid delays in each process. For example, if the

2 and 4 technician case both lead to no delays in a set of processes, the user can

explore tasking only 2 technicians for those processes. However, if a large delay is

seen when only 2 technicians are used, then the decision makers may decide to assign
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Figure 75: Parallel Plot Displaying Process Delays for the Same Sensor Installation Plan from 2 (Pareto Point 5098), 3 (Pareto
Point 5099), and 4 (Pareto Point 5100) Sensor Installation Technician Scenarios
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4 technicians during that set of processes.

To illustrate this trade, Figure 75 compares results for the 2–4 technician scenarios

for the same sensor installation plan. The figure shows that Primary Processes 8 and

9 are delayed due to sensor installations occurring in previous processes. The amount

of this delay is reduced significantly when moving from 2 (Pareto Point 5098) to 3

(Pareto Point 5099) technicians and by a lesser extent when moving from 3 to 4

(Pareto Point 5100). The user may then conclude that tasking a third technician to

install sensors during the preceding processes is worth the extra cost. Looking forward

in Figure 75, the delays caused by sensor installations are about the same for the 2–

4 technician scenarios from processes 11–24. Hence, during these processes, it may

be better to utilize only 2 technicians to save cost during this sequence. Providing

this basic understanding of the number of technicians required during different points

of the process flow can help the planners translate the provided schedule into an

implementable plan during Step 4 of the PORRTSS methodology.

This culminates Step 3 of the methodology, which is the last step of the method-

ology developed throughout this thesis. With the installation plan output, it is the

responsibility of the stakeholders to incorporate it into their overall plan. This can be

accomplished by integrating the sensor installation plan with the rest of the produc-

tion schedule; however, this could require a large amount of effort that may not be

worthwhile for the type of low-volume project that this is methodology intended for.

Hence, the sponsors may take a more manual approach and simply provide the list to

the manufacturing engineering team to guide the creation of work orders and daily

production plans. The determination of the integration approach to take, however,

can be decided by the sponsoring stakeholders based on the scope and needs of their

production schedule.

This concludes the discussion of the revised implementation of the methodology.
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The following section shortly discusses the actual trades performed when the POR-

RTSS methodology was implemented and utilized in an actual industrial setting.

6.5 Methodology Implementation in the Industrial Setting

The major changes between the original implementation (the one used to plan pro-

cesses in an actual, industrial setting) and the PORRTSS methodology are:

1. The original implementation did not consider the neighboring sensor installation

metric

2. The automated re-planning capabilities were not implemented

Both capabilities were added in response to feedback received following the planning

process. The feedback received is discussed in the following paragraphs.

The neighboring sensor installation metric was added to the optimization formu-

lation following discussions with the SMEs after going through the planning process.

While the avionics and manufacturing engineers who were investigating the proposed

sensor installation plan were generally satisfied with the feasibility of the plan, they

had identified multiple instances in which sensors that were located very close to each

other were planned for installation very far apart in the schedule. Recognizing the

opportunity to ease the burden on the technicians by allowing them to bring multiple

sensors to the same installation site at one time, the users manually grouped some

installations together after they had identified a set of promising plans.

Because the re-planning capabilities were not implemented, the users made the

modifications to the installation plans manually. To do this, the users selected a few

schedules that had similar performance based on their weightings and experience-

based judgment. With these plans selected, they explored each schedule using the

Gantt charts. Then, this information, the users created a composite sensor installation

plan using the selected plans as a guide.
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While the SMEs are highly capable of making local improvements to the plan,

understanding the potential system-level impact of a change is extremely important.

As discussed throughout this thesis, a major limitation of manual, human-driven

planning is that it is difficult for a planner to fully understand the long-term inter-

actions and repercussions of a decision [60]. The re-planning capabilities discussed

in the previous section can help this by enabling the human planners to make small

modifications to the plan, which can then be evaluated to identify the system-level

impact.

With the discussion of the methodology’s implementation complete, the following

section summarizes the implementation of the methodology to the use case and high-

lights the new trades provided. This is included to identify specific elements of the

methodology that contribute to its deployability in support of Hypothesis 2.

Hypothesis 2: If the methodology requires a low amount of implementation effort

and is shown to provide clear benefits with acceptable increases in computation

time over traditional scheduling methods while effectively integrating the knowl-

edge of the human planner, then the methodology can be successfully implemented

to solve “real-world” problems.

6.6 Use Case Summary

By implementing the PORRTSS methodology, multiple new trades and capabilities

are available to decision makers when compared to the baseline method discussed in

Section 3.3. The trades and capabilities provided by the new methodology are:

1. Multi-objective, system-level impact assessment with detailed zooming capabil-

ities

2. System-level assessment of local plan modifications

3. Manpower requirements analysis
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Each capability is discussed beginning with the multi-objective, system-level impact

assessment.

6.6.1 Multi-objective, System-level Impact Assessment

The main goal of the manual, baseline planning process (as discussed in Section 3.3) is

to identify a feasible installation plan. Manual planning processes commonly require

significant effort to identify feasible plans, which leaves little time to find plans with

strong, system-level performance.

The PORRTSS methodology, by providing a multi-objective, system-level assess-

ment of multiple potential installation plans, allows the users to perform more in-

formed, cooperative decision making to find a well-performing plan. By formalizing

the process to identify constraints through the constraint matrix definition tool and

providing quantitative assessments for a large number of possible plans, the planners

are now able to dedicate more time to finding better performing plans. Furthermore,

the decision support environment helps to increase the transparency of the planning

process, which is essential to increasing confidence in the selected installation plan.

Because the planning system enables the users to rank the responses of interest, the

extensive knowledge of the human planner can be incorporated into the final deci-

sion. Finally, by including a quantified assessment of the plan’s quality robustness

(in the form of the process/flow time’s 80th quantile) and the heuristic risk metrics

(slack time and the neighboring sensor installation metric), the methodology allows

the planners to consider the risk of a plan instead of solely relying on its deterministic

performance. The consideration of risk becomes more important as the scope, cost,

and complexity of the project increases.

6.6.2 Manual Plan Modification and Assessment

Building upon an initial plan selected using the system-level assessment, the pro-

vided decision support environment also supports manual plan modifications and
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assessments. Recognizing that the scheduling system should work with the human

planner, the decision support tool provides capabilities to guide the manual modifi-

cation of the selected baseline plan. Then, when the planner has made changes, he

or she can re-evaluate the plan by running it through the simulation. By bringing

the simulation results back into the decision support environment, the planner is able

to quantitatively assess the impact of his or her changes and identify any potential

major, unintended changes to the system-level metrics of interest. In doing so, the

planner is able to incorporate some preferences that may not have been captured by

the objective functions or model while ensuring that the plan still performs well.

6.6.3 Manpower Requirements Analysis

Upon the selection and modification of a plan, the decision support tool enables the

planner to identify portions of the process flow that require more or less manpower

than specified by the selected scenario. By providing a guideline for when to plan for

additional personnel, the decision support tool works to ensure additional personnel

are available when needed while not continuously having un-needed personnel on

hand.

These three main capabilities supported by the methodology and decision support

environment have provided a system capable of planning sensor installations with

reduced risk in a constrained production environment. With this overview completed,

the following section expands on the implications for Hypothesis 2.

6.7 Experiment 2 Results Discussion

The discussion presented throughout this chapter is included to investigate Hypothesis

2. This hypothesis prescribes 4 needs that must be met to enable the PORRTSS

methodology to be successfully implemented in a “real-world” scenario. The 4 needs

are:

1. Require a low amount of implementation effort

273



2. Provide clear benefits over the baseline planning process

3. Require an “acceptable” (i.e. within the planning horizon) amount of computa-

tion time

4. Effectively integrate the knowledge and experience of the human planner

The evaluation criteria from Experiment 2 (reproduced below) are discussed to iden-

tify if 1) the needs identified in Hypothesis 2 are met and 2) whether this led to an

implementable methodology. The evaluation criteria investigated are:

• Time required (methodology setup and optimization time) to find the set of

potential solutions. Can this be accomplished within the required planning

window?

• Optimization results and analyses are improved compared to the baselines plan-

ning process

– Are the proposed plans feasible?

– Are the results of high enough quality and well spread across the Pareto

frontier to facilitate decision making?

– Did the model properly identify portions of the production flow impacted

by sensor installations?

• Stakeholders can leverage the provided data visualization and decision support

tool to down-select and modify the sensor installation plans

Each criterion is evaluated in the following sections. Section 6.7.1 investigates how

the flexibility in the methodology’s implementation allows for implementation within

a range of time constraints. Section 6.7.2 discusses how the optimization process and

results compare to the baseline planning process. Finally, Section 6.7.3 discusses how
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the capabilities provided in the decision support tool work to increase implementabil-

ity by increasing transparency and incorporating the planner’s knowledge into the

scheduling system.

6.7.1 Methodology Completion within the Required Time Horizon

The planning process for the vehicles and projects of interest can occur months to

years in advance. In these cases, many months could be available to implement the

PORRTSS methodology. This extended amount of time, however, was not available

during the completion of the case study. Due to a set of planned meetings between

the stakeholders, only 3 weeks were available to complete the first 2 steps of the

methodology after receiving the required inputs. The automated model generation

strategy enabled the implementor to construct and verify the simulation model over

the course of only 2 days. Then, because the optimization routine is designed to

work directly with the simulation inputs, no modification was required to start the

optimization run. Due to the time constraints and limitations on the distribution

of replications, the optimization, at the time, was completed without considering

stochasticity and run on a quad core desktop.

By ignoring the stochastic nature of the model, the results are likely optimistic

and do not directly consider the schedule robustness of the solution. However, by

providing the ability to quickly change the objectives considered in the analysis, the

methodology was able to provide a set of optimized solutions within the required

time period. In this case, providing options to explore within the shortened time

window was more important than fully exploring the solution’s robustness. Through

this implementation, the model generation and optimization speed improvements

combined with the flexibility to complete the optimization at different levels of detail

served to increase the implementability of the methodology.

When compared to the baseline planning process, the process proposed throughout
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this work provides much greater flexibility in terms of the time required to implement.

The systematic process for defining constraints has been completed within a few days

of meetings and analysis sessions. Then, generating the model and optimizing the

sensor installation locations within the schedule has been completed within a couple

weeks. Compared to the manual, judgment-based process, the new methodology is

capable of producing potential solutions in a much more automated fashion. By au-

tomating a traditionally manual process, this methodology helps to free employees

to complete other analysis tasks. This, in turn, can encourage implementation by

contributing to cost reductions.

The following section investigates how the results and analyses produced from Step

2 support its implementation.

6.7.2 Optimization Results to Support Implementation

This evaluation is difficult because there is no direct comparison available between

results from the proposed and baseline planning process (as described in Section

3.3). With this limitation acknowledged, the remainder of this section discusses how

the results and analysis provided improve upon the expected results from the purely

manual planning process. The main benefit expected by implementing the PORRTSS

methodology is to automate the feasible plan generation procedure. By automatically

providing a large set of Pareto optimal installation plans, planners can quantitatively

evaluate the alternatives at a system and detailed level. Before investigating the

quality of the results, the feasibility of the generated alternative installation plans

must be investigated.

The provided Pareto optimal installation plans are necessarily feasible accord-

ing to the provided compatibility matrix. The optimization formulation guarantees

that only feasible plans are evaluated by the simulation model. Then, as shown in
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Experiment 1.1, the model follows the defined production logic that ensures the com-

patibility matrix is properly observed during the simulation run. While the plans

are feasible according to the defined constraints, a final check by the SMEs is needed

to ensure that no major undefined constraints are missing from the formulation that

would negate the usefulness of the results.

When the SMEs and decision makers evaluated the results produced from Step

2 of the methodology, no issues with the feasibility of the provided scenarios were

discovered. While the true test of the feasibility will occur when the plan is executed,

having the SME’s assurance that the generated schedules could be completed similarly

to the provided schedule is the best confirmation that could be expected. With the

feasibility of the provided scenarios confirmed to the best possible certainty, the results

must also provide the information required to make informed decisions about which

scenario to select for execution.

Two classes of information are necessary to help the decision makers select be-

tween competing scenarios. First, the provided results must be of good quality and

spread along the Pareto frontier to ensure that the decision makers have the ability

to explore trades among the Pareto efficient solutions. Second, the results should in-

dicate portions of the production flow that are most impacted by sensor installations.

This information can be used by the decision makers to plan for mitigation strategies

that are outside of the simulation’s scope.

When reviewing the planning process completed by the SMEs, they agreed that

the results provided a range of solutions that enabled them to explore compromises.

Additionally, the information about the locations in the primary production flow

that are impacted by sensor installations enabled them to better compare the pro-

vided plans. Therefore, in the estimation of the decision makers, the methodology is

able to produce results that are helpful to the planning process.
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The following section discusses the importance of the decision support environment

in enabling the SMEs to better interpret the provided schedules to support improved

implementation.

6.7.3 Decision Support Environment’s Importance to Successful Imple-
mentation

The decision support environment is essential to the successful implementation of the

methodology. As discussed throughout this chapter, the high level scatterplot matrix

and multi-criteria ranking algorithm enable the decision makers to effectively explore

the range of results provided from Step 2. Then, by selecting scenarios for further

comparison, the parallel plot and Gantt chart help the decision makers to better un-

derstand how the production flow is impacted by sensor installations. Upon selecting

a scenario to propagate forward, the re-planning view supports decision makers, who

again may have little to no experience with the simulation, in making manual modifi-

cations to the plan. Therefore, the incorporation of the decision-support environment

enables the decision makers to better understand the optimized plans and to directly

incorporate their knowledge into the planning process. This helps to increase trust

in the analysis and support the methodology’s implementation.

During the down-selection process conducted by the SMEs, they used the scat-

terplot matrix and TOPSIS algorithm extensively to explore the design space and

select points of interest. With points of interest selected, the parallel plot was used

to compare solutions. It was seen that many solutions experienced delays in similar

locations within the production flow. Furthermore, when exploring scenarios with

different numbers of sensor installation technicians, the SMEs were able to identify

points in the production flow where more or less technicians were needed to success-

fully complete the schedule. Therefore, when reviewing the planning process with the

SMEs, the provided visualization and analysis capabilities provided sufficient infor-

mation to decide between the Pareto efficient scenarios.
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The re-planning capabilities were not fully implemented during the planning pro-

cess completed by the SMEs. Instead, the SMEs selected a few promising scenarios

and manually investigated modifications and combinations of the plans to identify the

final schedule to implement. The majority of the re-planning capabilities were added

in response to this shortcoming, and the resulting capabilities were well-received.

Therefore, because the re-planning capabilities incorporate components identified by

the literature as being essential to a schedule decision making system and were based

on feedback from the SMEs, the re-planning capabilities are also shown to further the

implementability of the methodology. The following section reviews the results from

this experiment and explores its implications for Hypothesis 2.

6.8 Experiment 2 Results Review

The results from Experiment 2 have shown that the PORRTSS methodology is able

to be successfully implemented in a “real-world” environment. While this is an impor-

tant result, the goal of Experiment 2 is to show that the methodology was successful

because it successfully incorporates the capabilities put forward by Hypothesis 2 (as

discussed in the beginning of Section 6.7).

The importance of each of the components to the implementation of the POR-

RTSS methodology are discussed. The ease of implementation and flexibility in the

optimization algorithm and objective functions enables the methodology to accom-

modate very short implementation times. The optimization results and data provided

about each optimized point are shown to provide feasible alternatives with sufficient

information to support down-selection. Finally, the decision support system allows

the decision-makers to effectively sort through the results, understand how the sensor

installations are impacting the production flow, and incorporate their knowledge to

improve the plan. This demonstrates that the capabilities developed and integrated
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throughout this dissertation ultimately support the implementation of the methodol-

ogy. Therefore, Hypothesis 2 is supported by the results from Experiment 2.

The following section presents a summary of this chapter.

6.9 Chapter Summary

This chapter presents a case study that details the completion of Steps 1–3 of the

PORRTSS methodology to evaluate Experiment 2. The steps taken by the stakehold-

ers to develop a compatibility matrix and simulation model are first discussed. It is

shown that the automated model generation strategy is successful in translating the

provided schedule model and compatibility matrix into a simulation model usable in

Step 2. The optimization routine can then immediately take the generated schedule

model and begin to generate optimized sensor installation plans.

Once the optimization routine has reached its stopping criteria (either maximum

number of generations or convergence metrics), the results are propagated to the de-

veloped decision support environment. A use case is presented that illustrates how

the decision makers were able to use the decision support environment’s scatterplot

matrix and TOPSIS algorithm to down-select to a few promising scenarios. With

these solutions, the parallel plot and Gantt chart were used to further examine the

potential schedules and select one to take forward into the re-planning view. Finally,

the re-planning view enabled the decision makers, with little knowledge of the under-

lying simulation, to make changes to the selected plan and evaluate the results before

finalizing the schedule to send to Step 4 of the methodology.

The use case description provided the basis for evaluation of Experiment 2. The

4 capabilities that Hypothesis 2 identifies as contributing to the implementability of

the methodology are:

1. Require a low amount of implementation effort
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2. Provide clear benefits over the baseline planning process

3. Require an “acceptable” (i.e. within the planning horizon) amount of computa-

tion time

4. Effectively integrate the knowledge and experience of the human planner

Each capability is discussed in the context of the case study, and its contribution to the

implementation of the methodology is reviewed. The low implementation effort and

optimization flexibility enabled the methodology to be implemented in the required

amount of time. The generated results then enabled the decision makers to identify a

promising scenario by utilizing the decision support environment. These results from

Experiment 2 therefore support the claims of the Hypothesis and generally show

that the capabilities developed throughout this work have led to an implementable

methodology.

This chapter concludes the discussion of the experimental results and use case. The

following chapters provide an overview of this dissertation and identifies the contri-

butions provided by this work.
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CHAPTER VII

SUMMARY & CONCLUSIONS

This chapter provides a summary of this dissertation and discusses conclusions, con-

tributions, and potential avenues for future work.

7.1 Summary of Thesis Objectives

The knowledge and value gained from collecting data and being able to monitor ve-

hicles’ performance, safety, reliability, etc. have resulted in a sharp increase in the

number of sensors being installed on modern aerospace vehicles. Integrating those

sensors requires that additional production steps be dedicated to their installation.

For complex aerospace vehicles, such as launch vehicles, satellites, or commercial air-

craft, sensor installations are usually performed manually and present many challenges

in terms of accessibility and precedence constraints. With manual installations also

come increased risk for installation errors and quality issues, all of which contribute to

production disruptions. Hence, while integrating sensors onto a vehicle provides valu-

able data, it also contributes to the increasing complexity of the newer generations of

aerospace vehicles. This, in turn, contributes to the program cost overruns, increased

risk, and production delays seen throughout the industry. As such, reducing the risk

and impact of manual installation tasks on aerospace production flows is becoming

increasingly important for such highly schedule- and cost-constrained vehicles.

Robust design methodology has the potential to meet the requirements of these

scheduling problems. The goal of robust design is to design a system that is insen-

sitive to noise factors that are difficult or impossible to affordably control. Robust
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scheduling aims to build schedules that minimize the impact of disruptions and re-

duce differences between the plan and execution. Real processes never go completely

according to plan, and by not accounting for situations when processes take longer

than planned, resources go off-line, or quality problems arise, detailed, optimized

schedules can quickly become impractical or infeasible to implement.

Despite the benefit to be gained by implementing robust, detailed project schedul-

ing methodologies, deterministic scheduling strategies still tend to dominate the in-

dustry. The limitations to a better deployment of robust scheduling techniques in an

industrial setting lead to the two research needs that are addressed throughout this

work:

1. The project scheduling methodologies in use today struggle to model and opti-

mize real-world systems. The increasing complexity of modern aerospace vehi-

cles is only going to exacerbate these difficulties and require improved plans to

reduce system-level risk. Hence, a methodology that can better plan produc-

tion and installation processes (e.g. subsystem or sensor integration) in more

complex systems to reduce risk is needed.

2. The transition of new planning and scheduling practices from academia to an

industrial setting is commonly challenging. Moreover, this transition is not

generally discussed alongside the development of new methods. Therefore, ca-

pabilities to encourage adoption must be identified and implemented.

These research gaps and requirements lead to the development of the overall research

objective:

Research Objective

To enable the integration of robust design principles with current, deterministic

scheduling practices to efficiently schedule processes so as to reduce risk within

increasingly complex production systems
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A new planning methodology (PORRTSS: Production Optimization to Reduce

Risk Through Simulation-based Scheduling) that leverages strengths from traditional

scheduling methods, discrete-event simulation, and metaheuristic optimization is thus

proposed. The methodology has the following characteristics:

• Incorporates discrete-event simulation with traditional schedule optimization

• Supports simulation-based optimization by:

1. Leveraging decisions previously made by the schedule optimization to re-

duce the model fidelity and optimization decision space

2. Effectively parallelizing the simulation replications

3. Formulating the problem such that it is unconstrained

• Improves solution robustness by directly optimizing the modeled schedule’s

quality robustness and heuristic risk-reduction metrics

• Effectively includes the expertise of the human decision maker by:

1. Increasing transparency in the constraint definition, modeling, and opti-

mization process

2. Providing decision support from the system-level down to a detailed, task-

by-task view

3. Enabling the assessment of manual plan modifications

The following section concludes on the proposed approach’s ability to meet the afore-

mentioned research objective by summarizing the research questions, hypotheses, and

experimental results presented throughout this work.
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7.2 Research Summary

An overview of the research structure is presented in Figure 9 (reproduced below).

In Chapter 1, it is observed that increasing complexity is contributing to rising costs

and delays that are challenging traditional schedule optimization methods. Then,

two assertions are made that drive the research: First, it is asserted that robust

scheduling techniques have the potential to alleviate some of the increasing costs

and delays. Then, Assertion 2 contends that the lack of accepted robust, detailed

scheduling practices are primarily due to implementation challenges.

These observations and assertions led to the development of two primary research

questions within Chapter 2. Research Question 1 investigates how to overcome the

identified challenges to implement a detailed, robust scheduling methodology. Three

sub-research questions are posed to investigate different challenges. Research Ques-

tion 1.1 is developed to identify the modeling technique that is appropriate to model

the systems of interest for the PORRTSS methodology. In response to this research

question, Hypothesis 1.1 is developed:

Hypothesis 1.1: If discrete-event simulation is leveraged, then increasingly com-

plex scheduling environments can be modeled effectively such that the information

required for use in a selected optimization routine can be captured.

Experiment 1.1 is designed to test this hypothesis. The results from the ex-

periment demonstrate that the discrete-event paradigm is capable of respecting the

choices of the schedule model while modeling the impact of parametrically defined,

detailed scheduling decisions. This allows the simulation to estimate the system-level

impact of these decisions, which demonstrates that discrete-event simulation is an

appropriate modeling paradigm.

With the selected modeling approach, Research Question 1.2 explores optimization

techniques that are capable of exploring the multi-objective solution space. Hypoth-

esis 1.2 is presented in response to this research question:
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Observation 1:
Increasing sys-
tem complexity
is contributing
to rising pro-

gram delays and
cost overruns.

Observation
2: Increasingly
complex systems
are challenging

traditional sched-
ule optimization

approaches.

Assertion
1: Robust
scheduling

techniques can
help alleviate
some of the

increasing costs
and delays

experienced by
the aerospace

industry.

Assertion 2:
The lack of

widely accepted
robust scheduling

practices is
primarily due to
implementation
challenges. There
is no inherent
technological
barrier to their
application.

Research
Question 1:
How can the
challenges of
implementing
scheduling
techniques
be overcome
to provide a

system capable
of producing

robust schedules
to reduce cost
and delays?

Sub-Research
Question 1.1:

Which modeling
techniques can be

applied to effectively
model increasingly
complex production

systems for use
in the proposed

schedule optimization
methodology?

Sub-Research
Question 1.2: Which
optimization tech-
nique(s) should be
implemented to

adjust the developed
model effectively
to search for op-
timal schedules?

Sub-Research
Question 1.3: How
can the selected

optimization tech-
nique(s) be utilized
to improve the sched-

ule’s robustness?

Research
Question 2:

Does a method-
ology that

improves the
interface between
scheduling, sim-
ulation, and the
human planners
better address
the needs of
the planners?

Sub-Research
Question 2.1: How
can the method-
ology’s setup time
and effort be re-

duced to encourage
further adoption
within industry?

Sub-Research
Question 2.2: How
can the effectiveness
of the methodology
in terms of solution
quality and com-
putation time be
improved to make
implementation of
a simulation-based
scheduling method-
ology economically
viable and opera-
tionally feasible?

Hypothesis 1.1: If discrete-event
simulation is leveraged, then in-
creasingly complex scheduling

environments can be modeled ef-
fectively such that the information
required for use in a selected opti-
mization routine can be captured.

Hypothesis 1.2: If a metaheuris-
tic optimization routine is linked
to the developed discrete-event
simulation schedule model, then

installation plans with improved per-
formance can be efficiently identified.

Hypothesis 1.3: If the optimization
routine and model can estimate
robustness related responses

(quality robustness) and support
multi-objective optimization, then
the methodology will be capa-
ble of finding robust schedules.

Hypothesis 1: If a schedule is
modeled at the appropriate level of
detail via discrete-event simulation

and optimized with a multi-
objective, metaheuristic algorithm,
then the methodology is capable
of improving the robustness of
complex systems’ schedules.

Hypothesis 2.1: If the advanced
object-oriented nature of modern
discrete-event simulation pack-

ages is leveraged to help automate
model generation and if metaheuris-
tic algorithms are appropriately
implemented to increase the op-
timization’s flexibility, then the
methodology’s implementation
time and effort will be reduced.

Hypothesis 2.2: If alternative
optimization strategies are im-

plemented, then the methodology
can be used to explore and exploit
the solution space quickly enough
to make implementation feasible
and viable for a wider range of

time and resource constraints and
solution quality requirements.

Hypothesis 2: If the methodology
requires a low amount of imple-
mentation effort and is shown to
provide clear benefits with ac-

ceptable increases in computation
time over traditional scheduling

methods while effectively integrat-
ing the knowledge of the human
planner, then the methodology
can be successfully implemented
to solve “real-world” problems.

Figure 9: Summary of Research Structure (Reproduced from page 74)
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Hypothesis 1.2: If a metaheuristic optimization routine is linked to the developed

discrete-event simulation schedule model, then installation plans with improved

performance can be efficiently identified.

This Hypothesis is tested via Experiment 1.2. Results from the experiment demon-

strate that the multi-objective, metaheuristic optimization paradigm is capable of

finding a family of non-dominated solutions without considering quality robustness

(i.e. by optimizing the deterministic model). Further, it is shown that the optimiza-

tion formulation is able to efficiently generate new Pareto efficient solutions, thereby

out-performing a random search.

Upon demonstrating that the optimization formulation is applicable, Research

Question 1.3 is offered to determine the impact of directly including quality robustness

in the optimization’s formulation. The following hypothesis is put forward in response:

Hypothesis 1.3: If the optimization routine and model can estimate robustness

related responses (quality robustness) and support multi-objective optimization,

then the methodology will be capable of finding robust schedules.

Experiment 1.3 investigates this hypothesis by comparing results and convergence

criteria when optimizing with and without uncertainty in the simulation model. Re-

sults indicate that, for the problem of interest, the optimization with robustness

considerations slightly outperforms the deterministic optimization. Promising results

are observed in the early generations of the optimization with robustness considera-

tions. The first 25 generations show significant improvement, and the Pareto frontier

from these initial generations indicates that a large portion of the improvement is

related to the 80th quantile of process time. This particularly demonstrates that the

stochastic optimization is utilizing the additional information to reduce the risk in

the provided non-dominated installation plans. Finally, it is observed that the opti-

mization without robustness does not produce Pareto optimal points as efficiently as
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the run with robustness considerations.

While the results of this experiment are promising, they are not sufficient to draw

generalized conclusions. In truth, to generate statistically significant results, the ex-

periment should be replicated multiple times to ensure that one run was not simply

more favorable than the other. This, however, would require an exorbitant amount

of time and/or computational resources while not significantly contributing to the

overall research objective. Furthermore, the benefits of including robustness consid-

erations are highly problem-specific (e.g. a well-controlled process that experiences

little variation could still benefit from this methodology’s planning approach with-

out requiring evaluations of quality robustness). When devising this experiment, the

stochasticity was expected to have a much larger impact on the simulation. In this

scenario, it was anticipated that the robust optimization would be clearly superior and

that specific decisions could be identified that significantly reduced the plan’s risk.

Because this turned out to not be the case, the benefits to including the quality ro-

bustness in the optimization could not be identified. Ultimately, the negative impact

of increasing uncertainty on a schedule’s performance is well-documented, so conclu-

sively demonstrating that directly optimizing for robustness improves performance is

not necessary to establishing the validity of the methodology.

With Hypotheses 1.1–1.3 investigated, the developed capabilities can be built up

to test Hypothesis 1:

Hypothesis 1: If a schedule is modeled at the appropriate level of detail via

discrete-event simulation and optimized with a multi-objective, metaheuristic al-

gorithm, then the methodology is capable of improving the robustness of complex

systems’ schedules.

Experiment 1 tests this hypothesis by completing Steps 1 and 2 of the PORRTSS

methodology for the assembly and system integration flow of the use case’s production

process. The experiment shows that the process can be modeled at an appropriate
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level of detail and optimized to produce a family of solutions with improved robust-

ness compared to a random population. Hence, Hypothesis 1 is supported, and the

methodology is shown to overcome many of the schedule modeling and optimization

capability gaps identified within literature.

With a technical solution leveraging simulation-based optimization implemented,

Research Question 2 is developed to explore ways to bridge the second research gap.

This question seeks to identify whether an improved link between scheduling, simula-

tion, and human planners better supports the stakeholders’ needs. Two sub-research

questions are developed to explore the links between simulation, scheduling, and opti-

mization. Then, a representative use case is completed to investigate the links between

the analysis capabilities and the human planner. The use case is comprised of the

production flow for a modern aerospace system. The production plan is provided at

a medium level of detail, and the methodology is utilized to plan the installation of

sensors within the defined production flow.

Research Question 2.1 investigates strategies to reduce the methodology’s imple-

mentation time, which is identified as a barrier to further acceptance of simulation in

industry. Hypothesis 2.1 is thus developed:

Hypothesis 2.1: If the advanced object-oriented nature of modern discrete-event

simulation packages is leveraged to help automate model generation and if meta-

heuristic algorithms are appropriately implemented to increase the optimization’s

flexibility, then the methodology’s implementation time and effort will be re-

duced.

Experiment 2.1 is designed to examine whether the characteristics of the selected

modeling and optimization paradigms work to reduce the time required to imple-

ment the methodology. The results demonstrate that the object-oriented nature of

modern discrete-event simulation does facilitate automated model generation, which

speeds model construction and verification. Then, the metaheuristic optimization
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routine can be immediately implemented for simulation models generated through

this methodology. Finally, the metaheuristic paradigm is shown to be flexible to en-

able easy incorporation of new objective functions and optimization strategies. Hence,

results from this experiment support Hypothesis 2.1.

Research Question 2.2 seeks to explore alternative optimization strategies and

robustness formulations to improve the methodology’s implementability for a range

of circumstances. Recognizing that there can be a wide range of time and resources

available for optimization, solution quality requirements, problem complexity, and

knowledge of the design space, Hypothesis 2.2 is formulated:

Hypothesis 2.2: If alternative optimization strategies are implemented, then the

methodology can be used to explore and exploit the solution space quickly enough

to make implementation feasible and viable for a wider range of time and resource

constraints and solution quality requirements.

To test this hypothesis, a 2-staged algorithm down-selection process is imple-

mented. First, multiple heuristic and metaheuristic algorithms are investigated using

the deterministic problem. Then, two promising algorithms are carried forward to

investigate alternative robustness measures. The investigation of the robustness mea-

sures is inconclusive, which leads to an inconclusive result for Experiment 2.2. More

computational resources would be required to properly evaluate the Hypothesis. Fur-

ther, a process flow with more and better defined stochasticity could promote more

distinct differences between the deterministic and stochastic optimization routines.

This could help to better validate the hypothesis.

Building upon the results from the sub-research questions, Hypothesis 2 is pro-

posed:
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Hypothesis 2: If the methodology requires a low amount of implementation effort

and is shown to provide clear benefits with acceptable increases in computation

time over traditional scheduling methods while effectively integrating the knowl-

edge of the human planner, then the methodology can be successfully implemented

to solve “real-world” problems.

This hypothesis is tested by completing the entire case study. The purpose is to

demonstrate that the developed capabilities lead to a successful, real-world imple-

mentation of the methodology. In completing the investigation, it is shown that the

flexibility of the methodology allows the stakeholders to trade solution quality for a

shorter turn-around time (by optimizing the deterministic model). Then, the ability

to automate the generation of alternative installation plans and provide a system-level

impact analysis provides improvements over the baseline, manual planning process.

Finally, the integration of the human decision maker’s knowledge improves trans-

parency and increases trust. Therefore, results from the experiment demonstrate

that the inclusion of the prescribed modeling, optimization, and analysis capabilities

have produced a more implementable methodology.

This section has reviewed the structure of this work and summarized the results

and conclusions drawn. The following section reviews the major contributions of this

research.

7.3 Summary of Contributions

The contributions of this work are related to the two identified research gaps. The

first major contribution is a new methodology (PORRTSS: Production Optimization

to Reduce Risk Through Simulation-based Scheduling) that better integrates the

strengths of simulation and scheduling practices to address the identified needs of

low-volume aerospace production and assembly processes. Similar approaches can be
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leveraged for high-volume systems; however, low-volume projects can benefit more

from improved pre-production planning practices. This is because these vehicles

(e.g. satellites, prototype aircraft, launch vehicles, etc.) are typically very schedule-

and cost-constrained. Additionally, there is little to no learning in these systems,

so identifying a robust plan during the planning period is critical. The second key

contribution is an investigation of capabilities that improve the interaction between

human planners and the scheduling process. This encourages implementation of the

developed methodology by increasing transparency and trust. Both contributions are

discussed in the following sections.

7.3.1 Contribution 1: Improved Interaction between Scheduling and Sim-
ulation Practices

As discussed throughout the literature review, scheduling and simulation are com-

monly viewed as separate disciplines to be applied to different problems. As such,

planning methodologies and research efforts that integrate the strengths of each are

lacking. In response, this work has developed and implemented a new methodology

that integrates the capacity optimization strengths of scheduling with the modeling

flexibility of simulation. Ultimately, this new method is designed to solve a relevant,

real-world planning problem.

For the problem at hand, traditional scheduling techniques provide a strong frame-

work to plan and optimize, at a medium level of detail, the completion of production

processes (e.g. structural assembly, system integration, etc.). Fully defining the inter-

actions and logic required to evaluate the impact (in terms of process time) stemming

from subcomponent/sensor installations in this scheduling framework is challenging.

The discrete-event simulation paradigm simplifies the definition of these production

rules and constraints; however, as noted in the literature review, DES models com-

monly require too much detail, modeling effort, and optimization time/resources to

be useful during pre-production planning.
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The PORRTSS methodology significantly reduces the modeling effort required to

generate a suitable simulation model. The methodology extracts process and con-

straint information from the optimized primary process schedule. This information is

condensed into a set of precedence relationships, which simplifies the modeling pro-

cess and helps to reduce the time required to run the simulation model. Concepts

implemented in this process mining technique, while developed for a pre-planning

problem, can be extended to mine information from actual production data. This is

further discussed in Section 7.5.

With the process information extracted from the input schedule, a simulation can

be quickly built using an automated model generation strategy. This provides a sim-

ulation that matches the provided schedule but adds the capability to parametrically

define locations within the process flow to install subcomponents. The fidelity of the

simulation model can be constrained by leveraging decisions made by the schedule

optimization. By treating the scheduled primary production process as truth, the

simulation does not need to model many of the capacity, workforce, or physical con-

straints typically required in a simulation model. This helps to make simulation-based

optimization more feasible. This model is then linked to an optimization routine to

automatically generate and improve detailed plans for subcomponent installations.

Ultimately, this enables more informed decision making by automatically generating

multiple feasible alternatives and providing an evaluation of system-level performance

metrics.

The second contribution focuses on how these feasible alternatives can be better

explored by improving the interface between the planning system and the human

planners.
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7.3.2 Contribution 2: Improved Interface between Human Schedulers
and the Planning Methodology

A primary barrier that limits the implementation of developed scheduling practices is

poor interactions between the system and the human planners. Improved interaction

is achieved by: 1) increasing the transparency of the planning process, 2) improving

collaboration among the stakeholders, and 3) enabling the stakeholders to directly

modify the plan. This work has identified and implemented capabilities into a decision

support tool that supports this improved interface.

Increased transparency is achieved by providing both a system- and detailed-

level view of the planning results. Planners with many years of experience are not

likely to trust a system-level value for process time that results from a new analysis

tool. Hence, the installation delay parallel plot and Gantt chart help to increase

transparency by providing details about how and why the process was delayed.

The second, related improvement over commonly developed systems is the im-

proved collaboration between the stakeholders. In the case of projects common

to low-volume production systems, multiple stakeholders must be included in the

scheduling process. The PORRTSS methodology works to facilitate collaboration

through each step of the process. When developing the compatibility matrix, the im-

plemented tool allows the IEs, MEs, and avionics experts to work together to identify

process constraints. This traceable process helps the stakeholders to better define

and understand the constraints that drive the analysis.

Following the model development and optimization, the decision support tool

enables the stakeholders to collaborate again to identify the single plan to carry out.

The combination of the scatterplot matrix and TOPSIS ranking algorithm helps the

decision makers to identify regions of high performing schedules. Then, by providing

a more detailed scenario comparison view, they can better understand how their

decisions are impacting the process.
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The re-planning capabilities enable the decision makers to incorporate any ad-

ditional preferences or compromises. Many academic scheduling processes claim to

provide the answer; however, by recognizing that there may be additional “soft” con-

straints, the re-planning capabilities can incorporate the valuable experience of the

planners. Hence, as shown throughout this work, building the methodology with

the planner in mind helps to improve the interaction between the process and the

planners. This ultimately leads to a more implementable and beneficial planning

methodology when compared to the many rigid methods developed in academia.

With the overall contributions described, the following section discusses the limi-

tations of the current work.

7.4 Methodology Limitations

There are limitations present throughout all steps of the PORRTSS methodology.

Due to a lack of data access, Step 1 currently requires unverifiable assumptions about

the process constraints. The entire set of man-power, resource, and work area con-

straints are not available in the provided date. Hence, the schedule mining technique

employed is only capable of identifying constraints from the process timestamps and

likely does not capture the entire set of constraints. This could make the simulation

model slightly optimistic and lead to plans that are infeasible. The specific problem

investigated reduces the likelihood of this, however, because there are many “mile-

stone” processes in the flow. These processes would cause the simulation to return

to the baseline primary process schedule, which is necessarily feasible, and limit the

extent of infeasibility.

There are also limitations related to the compatibility matrix generation. The cur-

rently implemented process requires a significant amount of input from SMEs. Along

with limiting the potential for implementation, this could produce errors or oversights
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that could lead to an infeasible sensor installation plan. Improvements to this pro-

cess could work to increase the validity of the results and speed the methodology’s

implementation time.

Progressing to Step 2 of the PORRTSS methodology, the optimization algorithm

could be improved to increase efficiency. The results are currently ranked without

any considerations for user preferences. In reality, many non-dominated solutions may

never be chosen for execution. For instance, it is unlikely that the user would choose

to sacrifice a significant amount of process time for a small increase in slack time.

The optimization routine also does not intelligently select the number of replications

to evaluate for each population member, which leads to reduced search efficiency.

The scope of experiments 1.3 and 2.2 that could be completed also limit the con-

clusions that can be drawn. The limited set of test problems and computational time

and resources available restrict the extent of the conclusions. While the optimization

algorithms investigated generally appear appropriate for the specific problem, further

investigations are necessary to help generalize the experiments’ results.

Finally, Step 3 of the methodology is limited in the scope and flexibility of the

scheduling decisions available. Ideally, the decision support system would enable

modifications to both the primary production plan and the sensor installation plan.

By only allowing changes to the installation plan, opportunities for improved plans

may be missed. Further, the decision support system does not support the modifica-

tion of process constraints. This capability could be useful if infeasible processes are

identified when analyzing the data.

The following section identifies opportunities for future work to overcome some of

these identified limitations.
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7.5 Recommendations for Future Work

This section discusses potential areas of future work that can expand and improve

upon the limitations of the PORRTSS methodology. The first area involves improving

and automating the compatibility matrix generation. Ultimately, this improvement

can be leveraged to help plan the initial primary production process.

7.5.1 Compatibility Matrix & Primary Production Flow Generation

One major hurdle to the implementation of the PORRTSS methodology is the time

and effort required to construct the compatibility matrix. When in an active vehicle

development program, the planners may not have the time to develop constraints for

an unproven planning methodology. Therefore, identifying a process to automatically

generate the compatibility matrix would help to ease the burden of the planners and

better encourage implementation.

The majority of the constraints identified by the stakeholders are related to in-

stallation site access. For example, if a large avionics rack or structural component

is installed that blocks access to a subcomponent installation site, the subcomponent

must be installed first. These constraints could potentially be identified by simulating

the physical installation process and identifying the components that interfere with

an installation.

Video game development platforms are well-suited for these simulations. Detect-

ing and reacting to collisions between objects is an important and well-developed

capability of game design software. Simplified motion paths to simulate the instal-

lation process (e.g. movement of the component and a representative operator from

the center of the vehicle to the installation site) is readily possible. Then, by iden-

tifying the objects that collide with the operator and/or component, compatibility

constraints can be determined. This technique could be utilized to initially generate

a compatibility matrix or check the feasibility of a defined matrix.
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With further development, this technique could be expanded to determine com-

plete, feasible assembly sequences for all steps and components. By identifying con-

straining components, a sequence could be identified that minimizes interference be-

tween all steps. This knowledge can then be fed into the developed methodology to

help automatically identify plans with low process time and high robustness. There-

fore, by automating these sequence and compatibility generation steps, the effort

required to implement the methodology could be significantly reduced.

The following section describes potential expansions to the schedule process mining

process to better support simulation of complex production systems.

7.5.2 Schedule Mining to Support Simulation

The barriers to the use of simulation tools in complex production systems have been

well-documented throughout this work. One major barrier is the time required to

collect, analyze, and model process data and constraints. The process mining tech-

nique described throughout this work represents a first step towards a more general

methodology that can reduce this implementation effort.

Trades and analyses of interest to a more general production system are different

from those discussed throughout this work. Instead of process optimization, higher

volume systems are commonly more interested in overarching strategies that can

improve the flow or mitigate disruptions. Supporting these goals with simulation

requires that multiple, representative processes can be quickly modeled to support

virtual experimentation.

By leveraging the actual schedule completion information, which inherently re-

spects process constraints, precedence relationships can be extracted from the data.

Similar to this work’s implementation, both “firm” and “preference” precedence con-

straints can be identified. The firm predecessors are identified as the processes that

298



always (or almost always) are completed before the current process. This helps to

give an overall structure to the sequence.

Preference relations, which represent processes that commonly end closely prior

the current process’s start, can then be stochastically added to provide variation

between testing schedules. This variation is important to test the robustness of any

implemented selection rule on a wide selection of scenarios. A preference precedence

relationship can be added from Processi to Processj based on a weighted probability

defined by:

Percent of historical schedules where Processi finishes before Processj

Median distance (in terms of sequence position) between Processi and Processj

By following this process, schedules that are representative of the complex and highly

variable processes encountered in aerospace production environments can potentially

be quickly identified for simulation.

Similar analyses can be leveraged to identify constraints within the process. A

common approach to modeling constraints is to divide a vehicle into work zones.

Each work zone can then only support a single task at any given time. By linking

each process to a physical location, historical process information can be utilized to

optimize the location of work zone divisions. The work zone optimization could be

implemented as follows:

1. Assign an initial set of work zone divisions

2. Classify each process into a work zone (or multiple zones) based on their defined

physical location(s)

3. Evaluate an objective function by counting the number of processes occurring

at the same time in the same work zone. For example, two processes occurring

simultaneously in the same work zone indicate that the work zone may not be

correctly defined.
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4. Modify the work zone divisions based on an optimization procedure and repeat

until convergence

The identified work zones can then be modeled as seizable resources in the simulation.

Incorporating these two strategies can help to reduce the time to model a baseline

process. Then additional fidelity can be added to the simulation model to support

trades of interest. Strategies such as this can help to further incorporate simulation

into production planning environments.

The following section discusses potential areas of investigation relating to simulation-

based optimization.

7.5.3 Expanded Investigation of the Robust Simulation-based Optimiza-
tion

The importance of including quality robustness as an objective function (instead

of simply a deterministic evaluation of process time) should be more rigorously ex-

amined. The use case model included in this work saw a minimal impact from the

stochasticity; hence, generating a model of a process with increased uncertainty could

better exhibit the importance of including quality robustness. Furthermore, the low

number of computing resources available limited the optimization cases that could

be reasonably evaluated. As such, the impact of including the quality robustness

measures is not certain and requires further investigation.

Many other optimization techniques and strategies can also be investigated. Dy-

namically selecting the number of replications to run can reduce the number of cases

to evaluate. Modifying the solution ranking criteria to incorporate user preferences

could make the multi-objective search more efficient. For instance, because reducing

the process time is the most important objective function, assigning a constraint to

the increase in process time to trade for gains in slack time can help to guide the

optimization. Investigating alternative algorithms and objective functions can also
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better tailor the methodology to new problems.

The next section describes further capabilities that can be investigated to improve

the data analysis.

7.5.4 Decision Support Improvements

Improvements to the decision support tool can also be investigated. Primarily, addi-

tional capabilities to improve the interaction between the planner and the planning

process can be incorporated. First, providing the capability to update the compati-

bility matrix in the decision support tool could help to identify individual cases where

the initial matrix is overly constraining. Furthermore, providing the ability to show

the assembly’s progression in the CAD model can better illustrate the process and

provide a final feasibility check. Ultimately, the best decision support visuals and pri-

oritization algorithms are problem dependent; however, providing improved linkages

between system-level metrics, process details, and the actual CAD information can

improve the planning process.
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APPENDIX A

OPTIMIZATION ALGORITHM PSEUDO-CODE

Algorithm 1: Shifting Bottleneck-Inspired Algorithm
Input: k: Maximum number of schedules to try per iteration
Initialize random schedule: x
Evaluate initial schedule: f(x)← evaluateSchedule(x)
while stopping condition not met do

Determine performance of each individual sensor in f(x)
if algorithm==greedy then

Select worst performing sensor for re-planning: smod

if All available options for smod have been attempted then
Find new smod whose options have not all been attempted

end
else

Select sensor for replanning based on weighted probability distribution:
smod

if All available options for smod have been attempted then
Find new smod whose options have not all been attempted

end
end
if smod does not equal smod,old then

Generate up to k schedules by moving smod

else
Generate up to k schedules by moving smod that are not the same as
those already evaluate

end
Evaluate f(x) for each possible position of the selected sensor
Set x as the point that produces the best value of f(x)
smod,old ← smod

Check stopping criteria
end
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Algorithm 2: Stochastic Neighborhood Search Algorithm Procedure
Initialize random schedule: x
Evaluate initial schedule: f(x)← evaluateSchedule(x)
while stopping condition not met do

Determine performance of each individual sensor in f(x)
Determine total number of sensors to re-plan: n← rand [1, 0.05ntot]
for i← 1 to n do

Select sensor for re-planning based on weighted probability distribution
Add selected sensor to list for re-planning

end
Randomly select new location to install each sensor in the re-planning list
Generate xnew using the new locations to install the selected sensors
f (xnew)← evaluateSchedule(xnew)
if f (xnew) is better than f(x) then

x← xnew

end
Check stopping criteria

end

Algorithm 3: Simulated Annealing Algorithm
Input: Initial Temperature: To

Initialize random schedule: x
Evaluate initial schedule: f(x)← evaluateSchedule(x)
while stopping condition not met do

Find xnew and f(xnew) using the stochastic neighborhood search
(Algorithm 2)
if f (xnew) is better than f(x) then

Accept xnew

else
Accept xnew with probability p (∆f) = exp

(
−∆f

Tk

)
end
Reduce temperature based on annealing schedule
Check stopping criteria

end
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Algorithm 4: Fast Simulated Annealing Algorithm
Input: Initial Temperature: To

Initialize random schedule: x
Evaluate initial schedule: f(x)← evaluateSchedule(x)
while stopping condition not met do

Find xnew and f(xnew) using the stochastic neighborhood search
(Algorithm 2)
if f (xnew) is better than f(x) then

Accept xnew

else
Accept xnew with probability p (∆f) = exp

(
−∆f

Tk

)
end
n← n+ 1
Set temperature based on annealing schedule described in Equation 8
Check stopping criteria

end

Algorithm 5: Pareto Dominance-based Simulated Annealing Algorithm
Input: Initial Temperature: To

Initialize random schedule: x
Evaluate initial schedule: f(x)← evaluateSchedule(x)
while stopping condition not met do

Find xnew and f(xnew) using the stochastic neighborhood search
(Algorithm 2)
if Pareto Rank ~fnew ≤ ~fold then

Accept xnew

else
Calculate ∆f = ~α

(
~fnew − ~fold

)
, where ~α is a vector of random values

between 0 and 1
Accept xnew with probability p (∆f) = exp

(
−∆f

Tk

)
end
Reduce temperature based on annealing schedule
Check stopping criteria

end
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