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ABSTRACT

The Riemann zeta function is one of the great wonders of math-
ematics, with a deep and still not fully solved connection to the
prime numbers. It is defined via an infinite sum analogous to
Fourier additive synthesis, and can be calculated in various ways.
It was Riemann who extended the consideration of the series to
complex number arguments, and the famous Riemann hypothesis
states that the non-trivial zeroes of the function all occur on the
critical line 0.5 + ti, and what is more, hold a deep correspon-
dence with the prime numbers. For the purposes of sonification,
the rich set of mathematical ideas to analyse the zeta function pro-
vide strong resources for sonic experimentation. The positions of
the zeroes on the critical line can be directly sonified, as can val-
ues of the zeta function in the complex plane, approximations to
the prime spectrum of prime powers and the Riemann spectrum of
the zeroes rendered; more abstract ideas concerning the function
also provide interesting scope.

1. INTRODUCTION

The Riemann zeta function [1, 2] is a construction in analytic num-
ber theory of great beauty and wide scope, with a central assertion
in its theory, the Riemann Hypothesis (RH), that has remained un-
solved since its original statement in 1859. Musical analogies have
often been made in referring to the problem, with Fourier analy-
sis a tool in the analysis of the equation, and the dual structure
of the non-trivial zeroes of the function and the prime numbers
analogous to the spectral and time domain viewpoints of a sound
signal [3, p. 89]. There is a great deal of interesting mathematics
surrounding the zeta function, commensurate with the efforts of
mathematicians for centuries to gain handles on the RH that all the
non-trivial zeroes of the function appear only along one ‘critical
line’ in the complex number plane. The fuller exploitation of equa-
tions and data relating to RH for musical purposes is the subject of
this present paper, and we treat direct synthesis (‘audification’), as
well as sonification of rhythms and pitch structures.

This paper does not present the first ever sonification of the
zeta function. Multiple authors have synthesized the zeroes of the
function in particular, including Jeffrey Stopple (http://web.
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math.ucsb.edu/˜stopple/explicit.html), Robert
Munafo (https://mrob.com/pub/ries/zeta.html)
and Andrey Kulsha (http://empslocal.ex.ac.uk/
people/staff/mrwatkin/zeta/kulsha.htm). Such
sonifications tend to be based on sinusoidal resynthesis following
the gradual journey along the critical line where all known zeroes
have been found, incorporating the contribution of each zero as it
arises. In perhaps the most developed precedent, the distinguished
physicist Michael V Berry explores a number of sonifications
[4], including a sum of sinusoids corresponding to the Riemann
zeroes, and direct synthesis of the zeta function along the critical
line based on the Riemann-Siegel formula. We differ from this
prior work in considering direct synthesis based on the naive
approach of summing the zeta function, on exploring rhythm
and scales, and in a greater willingness to accept any ‘noisy’
outputs as acceptable within the wider space of sound available
in computer music. We also provide SuperCollider code to
accompany the paper, providing immediate sound examples and
realtime interactive synthesis capability.

This work is in the spirit of composers who have integrated
mathematics into the core of their music compositions, perhaps
foremost of which was Iannis Xenakis, who adapted such content
as hyperbolic curves, probability theory and statistical functions,
group theory and game theory [5, 6]. The inter-relationship of mu-
sic and mathematics is a wider topic than we have space to fully
survey here [7], but composers have demonstrated a number of
approaches to the incorporation of algorithms into their practice,
from strict observance of algorithmic output data to taking vari-
ous liberties [8, 9, 10]. Prime numbers have often appeared in
composer’s work, from just intonation theory using small integer
ratios often favouring primes, to sonification of the sequence of
prime numbers.1 In terms of the model of Vickers and Hogg [11]
the present work is more abstract, as pertaining to a Platonic space
of mathematics rather than real world data, and central within the
continuum between music and scientific sonification. We are inter-
ested in new sonic resources [12, 13], and do not harbour illusions
that sonifications of the zeta function rather than hard mathematics
will somehow resolve the RH. However, the consideration of such
mathematics does widen the appreciation of beautiful ideas and
human ingenuity, genuinely inspiring for new musical creation,
and illuminating with respect to the audibility (or otherwise) of
transplanted advanced mathematics.

1For example, the links at http://empslocal.ex.ac.uk/
people/staff/mrwatkin//zeta/curiosities.htm provide
some online projects.
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2. CALCULATION AND DIRECT SYNTHESIS

Whilst the zeta function for complex argument s is written

⇣(s) =
1X

n=1

1
ns

(1)

it is far simpler for computation to consider the related eta
function:

⌘(s) =
1X

n=1

�1n�1

ns
(2)

where ⌘(s) = (1 � 21�s)⇣(s).2

Since we are considering complex argument s we write s =
↵ + ti and use standard identities

ns =

n↵+it =

exp log(n↵+it)) =

exp((↵ + it) log(n)) =

exp(↵ log(n)) exp(it log(n)) =

n↵(cos(t log n) + i sin(t log n))

(3)

Thus in the last step using the Euler form of a complex expo-
nential as cosine and sine terms, and rewriting with �s = �↵�it:

⌘(↵ + it) =
1X

n=1

�1n�1n�↵(cos(t log n) � i sin(t log n)) (4)

we end up with a Fourier-like representation. The complex
number result can be expressed as two infinite sums, one over
cosines and one over sines (which suggests immediate additive
synthesis rendering):

⌘(↵ + it) =
1X

n=1

�1n�1n�↵ cos(t log n) � i
1X

n=1

�1n�1n�↵ sin(t log n)

(5)

The recurring term t log(n) expresses a scaling by t of log(n),
which when passed as argument to a trigonometric function of pe-
riod 2⇡, pushes the terms more or less far in phase. The zeroes of
the Riemann zeta function occur in the remarkable situation that
both the sum of cosines and of sines cancel out.

For additive sound synthesis, brute force summation can be
carried out for s in regions of convergence of the ⌘ function (↵ >
0), though less efficiently than some series acceleration methods
allow. Euler-Maclaurin summation or the Riemann-Siegel formula
on the critical line [1], the Borwein method [14] or the FastZeta al-
gorithm [15] are possible improvements, though best convergence
still requires on the order of t1/2 summands, and complexity of
calculation is thus highly dependent on the height of t. In the
naive sum, the n�↵ coefficients in combination with the sinusoids

2Zeroes due to the term 1� 21�s only occur for ↵ = 1 and t = k2⇡
log 2 ,

for integer k thus outside the ordinary area of interest of the function

Figure 1: Example sequences of n�0.5(cos(t log n) +
i sin(t log n)) for n = 1..100 and t = 0.2, 1, 10 and 1000

cause a spiralling in of the magnitude of the complex numbers,
though this is often a slow process (see Figure 1). Indeed, in per-
ceptual terms, the n�↵ prefix does not drop off at all quickly for
0 < ↵ < 1 in the region of most interest to studies of the zeta func-
tion. A -60 dB drop requires �dbamp(60)

�1
↵ = 0.001

�1
↵ terms,

so for ↵ = 0.5 on the critical line, one million terms. Note though
that the cosine and sine components will periodically drop to zero,
and that depending on t and n, the summands can enter long runs
at particular phases corresponding to positions near trigonometric
zeroes, due to the slowing of log(n).

If synthesis of the whole zeta function sum is carried out for
increasing t on the critical line ↵ = 0.5, zero amplitude of the
function will be heard at the famous zeroes.

For high t on the critical line, the sinusoidal components of
the zeta function sum revolve incredibly quickly until log(n) is
changing slowly enough to offset large t; this will drop to under
one cycle per n at 2⇡ = t log(n + 1) � t log(n) = t log n+1

n so
exp 2⇡

t = 1 + 1
n and therefore n = 1

exp 2⇡
t �1

. Close movement
in phase may also accompany higher multiples of 2⇡ so this is just
the point past which every update is under a cycle in difference; the
formula is quickly adjusted for under ✏ in difference. Under 1 unit
in difference has the approximate solution n = t since a rough ap-
proximation, especially applicable for higher t as log(n) changes
more and more slowly, follows from the derivative d log(n)

dn = 1/n
so that a change of 1 corresponds approximately to the difference
1/n = log(n + 1) � log(n).

If a zero s off the critical line was ever found with 0 < ↵ < 1,
the functional equation of the zeta function, and the fact that com-
plex conjugates of zeroes are also zeroes implies that four differ-
ent equations are true, namely 0 = ⇣(↵ + ti) = ⇣(↵ � ti) =
⇣(1 � ↵ + ti) = ⇣(1 � ↵ � ti) and four versions of the sums
in cos and sin above sum to zero (there aren’t eight because
equating complex parts to zero, negative or positive versions of
the real and imaginary sums are both zero), so the two sums
already in (5) and further

P1
n=1 �1n�1n�1+↵ cos(t log n) andP1

n=1 �1n�1n�1+↵ sin(t log n). The sonification of positions
off the critical line could consider rendering these sums and thus
illuminating their difference from each other and zero.
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As an alternative sound synthesis resource, expressions of the
form cos(t log(n)) are actually quite productive, including for real
rather than integer n. Conversion of the sum over n to an approx-
imating integral and error term, as in the derivation of the Euler-
Maclaurin formula, is a precedent to consider continuous n.

3. SUPERCOLLIDER SYNTHESIS EXAMPLES

The domain specific audio programming language SuperCollider
[16] was used for sonifications; it has the great advantage that it
is designed for realtime sound synthesis with interactive coding
allowing for fast prototyping [17]. As an example of coding in the
language, the first code block presented here generates the correct
shape on the critical line for the eta function (here, 0  t  30).
Sound and code examples are available along with the release of
this paper.3

(0,0.1..30.0).collect{|t|
var real ,imag;
var signal = Array.fill(100,{|i|

var n = i+1;
var phase = t * log(n) + (pi*i);
//+0.5pi to make cosine, pi*i is (-1)

**(n-1) when put through cosine

(n**(-0.5))*[sin(phase+0.5pi),sin(
phase)];

});

signal = signal.sum;

real = signal[0];
imag = signal[1];

((real*real) + (imag*imag)).sqrt;
}.plot

This static generation can be turned into live synthesis. There
is a limit to the number of sinusoids summed within a single Syn-
thDef, which can be overcome by writing a new UGen specific to
the synthesis capability desired. The EtaFunction UGen utilises a
pre-calculated listing of the natural logs of the first 5000 positive
integers, as part of strategies for sample by sample rendering of
the naive sum.

({
var t = Phasor.ar(0,MouseX.kr(1,1000)/

SampleRate.ir,10,30);
var n = K2A.ar(MouseY.kr(1,200));
var zeta = EtaFunction.ar(DC.ar(0.5),t,n);
var real = zeta[0]; var imag = zeta[1];
Limiter.ar(((real*real) + (imag*imag)).sqrt

*0.5);
}.scope
)

Berry [4] builds up a picture of the primes from the Riemann
zeta function zeroes (the equation is further discussed by Mazur
and Stein [3, p.110]). In this sense, the prime numbers (due to
technicalities, along with the prime powers pn) have a spectrum
defined by the zeta function zeroes ⇢, and vice versa.

3https://composerprogrammer.com/research/ICAD2019examples.zip

primeapproximationN (x) =

�
NX

n=1

cos(⇢n log x) (6)

riemannapproximationN (✓) =

2
X

pn<N

p�n/2 log(p) cos(✓n log p) (7)

Taking the first of these, the approximation of a prime spec-
trum from zeta zeroes, in SuperCollider code this might be calcu-
lated in the language assuming ˜riemannzeroes is an array of the
first 1000 non-trivial zeroes:

var primesignal = Array.fill(1000.min(˜
riemannzeroes.size),{|i|

cos((˜riemannzeroes[i]) * log(x))
});
primesignal.sum.neg.plot;

The equation can also be rendered via UGens for direct syn-
thesis:

var primesignal = Mix.fill(1000.min(˜
riemannzeroes.size),{|i|

cos((˜riemannzeroes[i]) * log(K2A.ar(
MouseX.kr(2,100)).lag(0.1)))

});

In order to explore this further live, a UGen PrimeSpectrum
was created, with critical input parameters x (for position along
the real axis) and N (for the number of zeta zeroes utilised in the
sum):

{
var x = SinOsc.ar(MouseX.kr(1,100)).range

(2,100);
var n = K2A.ar(MouseY.kr(1,1000));
//limit and scale down due to larger

outputs well outside -1 to 1
Limiter.ar(PrimeSpectrum.ar(x,n)*0.1);
}.scope

The live modulation of the number of zeroes made available in
the approximation is an interesting effect; the clarity of the image
of primes and their powers is enhanced the more zeroes are com-
mitted. As well as losing their sharp spikes at primes and prime
powers, the y values fall off to the negative as more and more ze-
roes are missed off. The UGen has a maximum of 5000 zeroes
based on its internal database of zeroes and the viability of cal-
culation. Very high x can be calculated without sufficient zeroes
in the calculation, and the resulting noisy output is still an attrac-
tive synthesis resource. This openness to noise in results differs
from Berry’s strait-laced and rather tonal-centric earlier concep-
tion. Similarly, a RiemannSpectrum UGen was built, through a
precalculated table of prime powers and with arguments for the
position along the spectrum and the number of components in the
sum.

Expressions of the form cos(t log(n)) are easily deployed in
SuperCollider unit generator graphs to create novel sound timbres.
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The log acts to compress larger numbers more, that is, provide a
nonlinear waveshaping (requiring strictly positive input; � 1 is
used in the examples here). The t scales the output within the
phase input for a cosine function. There is a relationship here to
the nonlinearities possible through frequency modulation synthe-
sis [18]. Unlike calculating full sums, use of this formula for an
individual summand is very low cost on a modern CPU, with syn-
thesis of these patches just a matter of percentage points.

In the first SuperCollider example, a sine oscillator is used to
sweep up and down in n, with the range of sweep under mouse
control on the Y axis, and a further mouse control on the X axis
for t:

{cos(MouseX.kr(1,100) * log( abs(SinOsc.ar(
MouseY.kr(1,1000,’exponential’))*10) +
1))}.play

The abs function causes full wave rectification, which has the
spectral effect of creating many harmonics of the base frequency
with amplitude fall off as per 1

1�4k2 for harmonic multiple k. The
log function can be analysed as follows:

log(10| cos(x)| + 1) =

log 10 + log(| cos(x)| +
1
10

) =

log 10 + log(| cos(x)| � 9
10

+ 1) =

log 10 +
1X

k=1

(| cos(x)| � 9
10 )k

k

(8)

using the power series formula for log(1+x) since || cos(x)|�
9
10 | < 1. The final expression illustrates the complexity of har-
monics that will arise from the composition of absolute and log
operators here; the powers by k of a sum of harmonics will lead
to a further set of ring modulated components at sum and differ-
ence frequencies (at further multiples of the harmonics, reinforc-
ing in a complex way the amplitude of the original absolute of
sinusoid harmonics). The final expression is then the modulator
for frequency modulation, leading to complicated sidebands from
modulations of modulations, with amplitudes following a product
of Bessel functions [19]. Since all the input sinusoids forming the
modulator are harmonically related, the output of FM will be it-
self at harmonic frequencies, with a very complicated distribution
of energy. The t scale factor will scale the indices of modulation,
increasing the audibility of sidebands (harmonics) for larger t.

The second SuperCollider interactive example demonstrates a
nice combination, two trigonometric expressions of the argument
t log(n) fluttering against each other, with user control via mouse
of t and the contrasting rate of sweep on n between the two com-
ponents:

( {
var y = MouseY.kr(1,1000,’exponential’);
var n = SinOsc.ar(4,0,y).abs +1;
var m = SinOsc.ar(7.9,0,y).abs +1;
var t = MouseX.kr(1,100);

(n.squared.reciprocal)* cos(t * log(n) ) +
(m.squared.reciprocal) * sin(t * log(m) )
}.play
)

The last example is a variant of the main naive sum formula
for complex output, here sonified to left and right stereo positions,
with 40 summands, and a phasor continually incrementing t in a
sawtooth rise, the rate of progress controlled by the user via mouse
X position on screen. The tanh function is used to keep the final
output within bounds and provide a little distortion edge:

({
var alpha = 0.5;
var t = Phasor.ar(0,MouseX.kr(1,10000,’

exponential’)/SampleRate.ir,1,100);

tanh(
Mix.fill(40,{|i|
var n = i+1;

var temp = t * log(n);
(n**(alpha.neg)) * ((-1)**i) *

[cos ( temp), sin ( temp)] ;
}));

}.play
)

4. SPACINGS BY ZEROES

The set of zeroes ⇢ of the zeta function are an interesting resource
for the spacing of events.

Figure 2 presents the spacing of the first seventeen zeros of the
zeta function,4 as a rhythm.

To four decimal places, the rhythmic events are at:

14.1347, 21.022, 25.0109, 30.4249, 32.9351, 37.5862,
40.9187, 43.3271, 48.0052, 49.7738, 52.9703, 56.4462, 59.347,
60.8318, 65.1125, 67.0798

The inter-onset interval (the gaps) corresponding to these, in-
cluding the rest at the start before the first event, are:

14.1347, 6.8873, 3.9888, 5.414, 2.5102, 4.6511, 3.3325,
2.4084, 4.6781, 1.7687, 3.1965, 3.4759, 2.9008, 1.4847, 4.2808,
1.9673, 2.4666

An optimal re-scaling was sought by exhaustive grid search to
bring this set of event times as close as possible to uniform 24th

notes (0.16666 of a beat), leading to the quantised solution:

1, 0.5, 0.3333, 0.3333, 0.1667, 0.3333, 0.1667, 0.1667,
0.3333, 0.1667, 0.1667, 0.1667, 0.1667, 0.1667, 0.3333, 0.1667,
0.1667

Listening to the original zero spacing, versus this quantisation,
the two are clearly distinct, though the general shape of the former
is captured by the approximation.

Results on the number of zeroes up to height T tend towards:

4Tables of zeroes are available online, see for instance http://
www.dtc.umn.edu/˜odlyzko/zeta_tables/index.html as
well as multiple associated pages across the On-Line Encyclopedia of Inte-
ger Sequences https://oeis.org/A013629. There are web pages
that allow access to higher runs of the zeroes http://www.lmfdb.
org/zeros/zeta/?limit=100&t=100000
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Figure 2: A Riemann zeta function rhythm: the spacing of the first seventeen zeroes

N(T ) ⇡ T
2⇡

log
T

2⇡e
(9)

The spacing of the zeroes is closer over increasing t, the dif-
ference being approximately 2⇡

log n ,5 asymptotically the nth zero
appearing at 2⇡n

log n . This is actually an inverse dual to the primes,
which are approximately distributed such that the number to n are

n
log(n) and the nth prime appears around n log(n).6 High up the
critical line Odlyzko demonstrates three consecutive zeroes sepa-
rated by only around 0.05 for t proximate to 1022 [20]. Synthesis
for low n = 1..10 for the approximate equation (and cumulative
sum) leads to the values

9.065, 14.784, 19.316, 23.22, 26.727, 29.956, 32.977, 35.837,
38.566, 41.186

We can synthesize rhythms using this approximation equation,
or quantised approximations to the approximation, and scale them
as needed. Due to the slowing of the log function, which can be
thought of as only really increasing by 1 on the order of each addi-
tional digit in the decimal number7, short runs in n at high t will be
approximately linear. So the most interesting part of this formula
for rhythms is the early part. There are studies which show that for
high t the spacing of the zeta function takes on a random aspect
relating to the eigenvalues of certain random matrices studied in
physics [21, 22]; in a related publication, Michael Berry has soni-
fied various categories of random matrix, including in comparison
to Riemann zero data, using frequency modulation [23].

Following the dual viewpoint of rhythmic grids and tuning
systems [24], the data set of the zeroes is also immediately ap-
plicable to construct pitch systems.8 A scale based on the spacing
of the first 10 zeroes, if constrained proportionally within one oc-
tave and with initial gap from 0 preserved, would be mapped to the
interval [0,1] as follows to 4 d.p.:

0, 0.284, 0.4224, 0.5025, 0.6113, 0.6617, 0.7551, 0.8221,
0.8705, 0.9645, 1

Adding 1 to all values would shift these to be ratios from uni-
son 1 to standard octave 2.

5 2⇡(n+1)
log(n+1) � 2⇡n

log(n) ⇡ 2⇡(n+1)
log(n) � 2⇡n

log(n) = 2⇡
log n

6Rosser’s theorem states pn >
n

log(n) ; the actual prime counting func-
tion is a result of Riemann including an effect of the zeroes of the zeta
function.

7To a scale factor of log(10), the number of decimal digits in a number
is log10(n) = log(n)

log(10)
8Berry acknowledges that arbitrary enclosing intervals can be taken, but

restricts himself in examples to the piano keyboard [4]

Or as cents (value*1200), to 2 d.p. given how a single cent is
well under the just noticeable difference, in the absence of beating
phenomena from simultaneous presentation:

0, 340.77, 506.82, 602.99, 733.51, 794.03, 906.17, 986.51,
1044.57, 1157.36, 1200

This reveals a proximity to 12TET 4th, tritone, flattened sixth,
and sixth. If quantised to bare 12TET MIDI notes the mapping is
non-injective:

60, 63, 65, 66, 67, 68, 69, 70, 70, 72, 72

Of course, any number of zeroes can be taken, and the squash-
ing of zeroes together with increasing t will lead to the top part of
the scale having increasingly many microtones relative to the ini-
tial steps. A scale can be constructed with respect to any enclosing
ratio (in the manner of the Bohlen-Pierce ‘tritave’ of a ratio of 3 or
arbitrary ratio r [25]). Scales can also be devised on the primes or
prime powers: Though tuning systems are often built using prime
powers (for example, 3-limit Pythagorean tuning constructed by
rationals of powers of 2 and 3), a tuning system literally lifted from
the prime number (or prime powers) spacing is a rarer beast, Roger
Dean providing one counter-example by constructing scales based
on prime harmonics of a fundamental [26].9 Given the dual loca-
tion equations between the primes and the zeroes at n log n and

n
log n respectively, one attractive potential musical resource is an
alternation of expanding and contracting spacings following these
formulae.

The signals discussed earlier in the paper, for instance, the ap-
proximate prime and Riemann spectra or the eta function rendered
over time for changing s, can themselves be the trigger for dis-
crete materials, by the use of such techniques as peak picking and
onset detection reacting to extrema in signal or derivative rather
than zero crossings. Such discrete sets of values, or the original
zeroes, might also be scaled and rounded off to become indices
into any set of musical objects, such that aside from the spacing of
events and materials for pitch systems, the sequence of positions
could control arbitrary parameters in sound synthesis and algorith-
mic composition.

9A fascinating unpublished manuscript by Peter Buch available online
[27] uses the Riemann zeta function as a way to find low integer steps per
octave that best approximate pure just intonation ratios; the correspondence
that arises with often mentioned steps per octave in the tuning literature (7,
12, 19 et al.) is impressive.
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5. CONCLUSIONS

This paper has explored some further mapping possibilities to
sound for equations associated with the Riemann zeta function.
We have embraced some noisier possibilities and not assumed 12
note equal temperament or any other discrete system is the final
aim in rendering to musical sound, though examples have included
applications in rhythms and pitch scales. In a number of places we
have observed some perceptual limits on the use of such mathe-
matics, and an observer is highly unlikely to recover deep mathe-
matical knowledge of the zeta function or primes from the sonifi-
cations. Aesthetic choices in mapping delimit the scientific result
[28, 29], and we tend more to the aesthetic potential here.

There remains a huge amount of fascinating mathematics to
explore for novel musical mappings. Accompanying the core Rie-
mann Hypothesis are a host of mathematical equivalents, including
statements about such mathematical objects as Farey sequences of
rationals and permutation groups, of potential applicability in artis-
tic sonification [30]. Indeed, number theory contains many more
special kinds of number and number theoretic functions of poten-
tial interest to composers.
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