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SUMMARY

Zirconium diboride (ZrB2) is a ceramic material possessing ultra-high

melting temperatures. As such, this compound could be useful in the con-

struction of thermal protection systems for aerospace applications. This work

addresses a primary shortcoming of this material, namely its propensity to de-

structively oxidize at high temperatures, as well as secondary issues concerning

its heat transport properties.

To characterize and improve oxidation properties, thermogravimetric stud-

ies were performed using a specially constructed experimental setup. ZrB2-

SiC two-phase ceramic composites were isothermally oxidized for ∼90 min in

flowing air in the range 1500-1900◦C. Specimens with 30 mol% SiC formed dis-

tinctive reaction product layers which were highly protective; 28 mol% SiC - 6

mol% TaB2 performed similarly. At higher temperatures, specimens contain-

ing lower amounts of SiC were shown to be non-protective, whereas specimens

containing greater amounts of SiC produced unstable oxide layers due to gas

evolution. Oxide coating thicknesses calculated from weight loss data were

consistent with those measured from SEM micrographs.

In order to characterize one aspect of the materials’ heat transport proper-

ties, the thermal diffusivities of ZrB2-SiC composites were measured using the

laser flash technique. These were converted to thermal conductivities using

temperature dependent specific heat and density data; thermal conductivity

decreased with increasing temperature over the range 25-2000◦C. The compo-

sition with the highest SiC content showed the highest thermal conductivity

at room temperature, but the lowest at temperatures in excess of ∼400◦C,
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because of the greater temperature sensitivity of the thermal conductivity of

the SiC phase, as compared to more electrically-conductive ZrB2. Subsequent

finite difference calculations were good predictors of multi-phase thermal con-

ductvities for the compositions examined. The thermal conductivities of pure

ZrB2 as a function of temperature were back-calculated from the experimental

results for the multi-phase materials, and literature thermal conductivities of

the other two phases. This established a relatively constant thermal conduc-

tivity of 88-104 W/m·K over the evaluated temperature range.

Further heat transport characterization was performed using pre-oxidized,

directly resistively heated ZrB2-30 mol% SiC ribbon specimens under the ob-

servation of a spectral radiometer. The ribbons were heated and held at specific

temperatures over the range 1100-1330◦C in flowing Ar, and normal spectral

emittance values were recorded over the 1-6 µm range with a resolution of

10 nm. The normal spectral emittance was shown to decrease with loss of

the borosilicate layer over the course of the data collection time periods. This

change was measured and compensated for to produce traces showing the emit-

tance of the oxidized composition rising from ∼0.7 to ∼0.9 over the range of

wavelengths measured (1-6 µm).

xvii



CHAPTER I

INTRODUCTION

The existence of modern air- and spacecraft has been made possible by sig-

nificant advances in the field of materials science and engineering over the

course of many years. Current interest is directed towards hypersonic air-

craft and reusable, agile spacecraft. These applications require materials able

to regularly and reliably withstand extreme temperatures and environments:

The leading edges of hypersonic aircraft experience temperatures of ∼1400◦C

at Mach 6, and this temperature rises exponentially with speed. Spacecraft

reentering the atmosphere could expect to face temperatures of ∼2000◦C.

Present-day thermal protection systems are not capable of surviving such en-

vironments, and therefore concessions have had to be made in the design of

modern craft [1]. Next-generation thermal protection systems could enable

a sharp-nosed reentry vehicle to safely maneuver to nearly any landing strip

from nearly any point in orbit [2].

Towards the end of developing materials for these next-generation systems,

significant research time and effort over the past several years has been devoted

to select transition metal diborides belonging to a group of materials known as

Ultra High Temperature Ceramics (UHTCs), specifically zirconium diboride

(ZrB2) and the closely-related compound hafnium diboride (HfB2). These ma-

terials are candidates for application in the aerospace field due to their unique

set of properties: ultra-high melting temperature, high hardness and strength,

and high thermal and electrical conductivies (the high thermal conductivities

of the materials minimize both the detrimental temperature gradients which
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can result in thermal shock and the temperature rise at the leading edges) [3].

Despite these impressive characteristics, pure ZrB2 and HfB2 have an Achilles

heel in that their pure forms are not sufficiently resistant to oxidation at ele-

vated temperature (>1000◦C) to be useful for applications involving significant

aerothermal heating. Much of the research towards the materials has addressed

this shortcoming by providing secondary phases which preferentially oxidize

and form a protective ceramic oxide scale upon the bulk ceramic.

Previous research conducted by Peng and Speyer has characterized the

significant protective effect of both silicon carbide (SiC) and transition metal

boride additions to ZrB2-based compositions at temperatures from 1200 to

1500◦C in air via the formation of a protective borosilicate surface layer [4].

This research helped to identify promising compositions, but due to technical

limitations inherent in the materials used to construct the experimental setup,

material behavior in the ”ultra-high” temperature regime (>1600◦C [2]) was

left unexplored. Other researchers have attempted to thermogravimetricly

study similar materials at temperatures up to 1927◦C, but these experiments

were not conducted in situ, but rather by means of weighing ceramic coupons

before and after heating [24]. Such cyclical measurements can be thwarted by

factors such as specimen adhesion to settering structures. A portion of the

work herein presented is derived from in situ measurements in the ultra-high

temperature domain performed using a specially outfitted furnace.

Oxidation resistance is only one facet of the overall fitness of a material for

its application in extreme environments. Ceramic parts being used in extreme

aerospace applications must also dissipate the tremendous amounts of heat

(likely in excess 100 W/cm2) created by the compression of the atmosphere [2].

Survival of a material under such conditions requires that a steady state surface

temperature be attained within a temperature range where the mechanical

2



and chemical stability of the bulk can be assured. The ability of the ceramic

composite to shed heat is thus directly related to the aeronautic capabilities of

the design incorporating the material. The components of air- and spacecraft

dissipate heat by means of both conduction through the bulk, convection to the

surrounding atmosphere, and radiation from the surface to the surroundings.

The rate of heat dissipation by means of the latter method rises with the fourth

power of the absolute temperature, while the rates of former are functions

of the first power of the same parameter. Therefore, at high temperatures,

thermal radiation is the dominant heat transfer mechanism [6].

The efficiency of heat transfer by thermal radiation is described in part

by the emissivity, which is a material property which implies the existence of

highly polished real surfaces; for materials which deviate from this scenario

due to the presence of surface features or other confounding factors, the mea-

sure is referred to as the ”emittance” of the material. The spectral emittance

is a ratio of the energy emitted at a particular wavelength from a unit area of

the surface into a particular solid angle to the same measure from a theoret-

ical perfectly emitting body. For the determination of the spectral emittance

behavior of multi-layered materials systems, a theoretical approach is useful

only in select cases, as such modeling relies on relatively simple constructions

or assumptions. The oxidized surface of a bulk ceramic such as those being

considered in this research is not easily treatable from such a standpoint, so

direct experimental observation becomes necessary [6].

Experimental measurement of emittance is non-trivial in that the sample

must be observed in relative isolation; reflections of thermal radiation from

nearby, hot regions of the experimental setup (such as heating elements or

furnace walls) are indistinguishable from radiation emitted from the specimen.

For ceramic compositions consisting mostly of zirconium diboride, however,
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research conducted by Halloran, et al. took advantage of the fact that ZrB2

behaves as a metallic conductor itself, and thinly machined ribbons of ceramic

compositions tailored for oxidation resistance studies were able to be directly

resistively heated with no substrate [7]. The temperature of their ribbons is

controllable via observation with a high speed pyrometer. A modification of

this setup has been created to allow for the measurement of the materials’

spectral emittance at temperature and was employed for the work performed

for the series of experiments reported herein.
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CHAPTER II

LITERATURE REVIEW

The ultra-high temperature regime is generally accepted to begin at 1600◦C,

and in the context of realistic aerospace applications exceeds 3000◦C. Struc-

tures at the high end of this spectrum consist of rocket engine components

which are designed to ablate over the course of normal operation; the lifetime

of these materials is measured in the tens of seconds rather than the tens

of thousands. The leading edges of hypersonic aircraft (defined as speeds in

excess of Mach 4 or 5) experience temperatures around 1400◦C at Mach 6.

This temperature rises exponentially with speed. The maximum temperature

encountered by NASA’s space shuttles is around 1650◦C at the nose cone and

leading edges of the wings. The space shuttles, being reusable and thus in need

of long material lifetimes, were designed to reenter the atmosphere as blunt

bodies such that a broad barrier layer forms between the shockwave front and

the surface of the vehicle’s thermal protection system (See Figure 1). This bar-

rier layer prevents a substantial portion of the generated heat from reaching

the spacecraft, but its presence also means that the returning shuttle has very

limited maneuverability during its descent and experiences a contemporane-

ous communications blackout. For both hypersonic craft and reentry vehicles,

greater controllability at high speeds is accomplished by means of lower-radius

leading and trailing edges which permit laminar airflow over control surfaces.

These sharp features are subject to greater aerothermal heating due to the

lack of the barrier layer; the leading edges of a maneuverable reentry vehicle

would be expected to experience temperatures in excess of 2000◦C, but unlike
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Figure 1: Diagram showing the substantial barrier layer formed by a blunt
body such as NASA’s Space Shuttle moving at supersonic speed during atmo-
spheric reentry.

the cooler shuttles such a craft could land nearly anywhere on earth from an

arbitrary reentry point [1, 2].

2.1 Densification

High relative densities are desirable in ZrB2 in order to realize its high strength

and thermal conductivity, as well as to minimize any detrimental effect of sur-

face porosity on oxidation resistance. Due to their strong covalent bonding

nature and low self-diffusion, diborides have historically been densified us-

ing high temperature and pressure hot pressing techniques [3]. Gash et al.

used this method in 2004 to produce theoretically dense HfB2-20 vol% SiC at

2200◦C for 1 hour at 25 MPa [35]. In the same year, Loehman et al. found

evidence of a liquid phase sintering mechanism for UHTC densification in

the form of thin silicate grain boundary phases in a hot-pressed ZrB2-2%SiC

ceramic which they attributed to oxide impurities believed present in their

SiC [1]. While hot-pressing is capable of reliably forming parts with simple
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geometries, the components which are desired for aerospace applications often

need to have more complex geometries which would be unobtainable using hot-

pressing. The machining of hot-pressed bodies is expensive, time-consuming,

and wasteful. For these reasons, pressureless sintering has recently been used

as a more economical means of formation capable of producing near-net shape

parts. Pressureless sintering, however, requires that the driving force for den-

sification be a result of surface interactions among contacting particles.

In studies of boron carbide (B4C), the formation of an oxide layer on the

surface of particles interfered with this particle-to-particle contact necessary

for densification [9]. Zhang et al. observed that a ZrB2 powder compact formed

from commercial powder milled in air, despite having a smaller particle size

(and thus, in general, a greater propensity to sinter), pressureless sintered to

less of an extent than the same powder in its as-received state. The same

milling done under an atmosphere of argon, preventing the formation of bo-

ria (B2O3) and zirconia (ZrO2) layers upon the particles, produced a powder

capable of sintering to a greater extent than the larger as-received stock. The

B2O3 was calculated to have a boiling point at 150 mTorr of approximately

1340◦C and was found to be removable under this pressure and temperature.

The ZrO2 was found to be removable via a reaction with a boron carbide

(B4C) additive which resulted in the production of ZrB2, CO(g), and B2O3(l),

enabling the formation of a high density post-sintered ceramic [10]. Additions

of boron-containing compounds for use as sintering aids should be done care-

fully within ZrB2 ceramics, as excess boron in the system can potentially result

in the formation of a eutectic reaction between the line compound ZrB2 and

the high-temperature phase ZrB12, as evidenced in the phase diagram given

in Figure 2 [1]. In other work, Zhang and his group found that the use of a

WC additive and a more patient sintering schedule (540 min. at 2150◦C) also
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resulted in a high density (∼98%). XRD analysis indicated that the tungsten

and carbon had incorporated into the ZrB2 lattice, thus decreasing activation

energy for densification due to the formation of atomic vacancies and electron

deficiencies [11]. The effect of the formation of a liquid phase upon sintering

was explored by Sciti et al. who pressureless sintered a composition of ZrB2-20

vol% MoSi2 to achieve 99.7% of its theoretical density. Microstructural analy-

sis suggested the formation of a Mo-rich and/or silicate glass liquid phase may

have contributed to the solid-state sintering of the ZrB2 by stripping the B2O3

from the particle surfaces [12]. Guo et al. recently explored the use of ZrSi2

as a pressureless sintering aid in ZrB2 and observed the same liquid phase

effects [13]. The silicate liquid phase was found to eventually contribute to

coarsening at higher temperatures by Zhang et al. but the addition of small

amounts of carbon was found to result in the formation of SiC, thus allowing

for solid-state sintering of ZrB2 at temperatures as low as 1950◦C to high den-

sity [14]. Work by Peng and Speyer has resulted in the production of ZrB2

with additions of SiC, TaB2 and TaSi2 pressureless sintered (with the use of

B4C as a sintering aid) at 2000◦C in argon for 1 hour to closed porosity and

then post-hot isostatically pressed at 1800◦C for 30 min at 207 MPa (Ar) to

theoretical density [4].

2.2 Oxidation

2.2.1 Protective Oxide Layer

Pure ZrB2 has not been observed to resist oxidation in high temperature

regimes. ZrB2 exposed to air at elevated temperatures reacts with oxygen

to form ZrO2 and B2O3. The B2O3 scale is non-protective since B2O3 has

a high vapor pressure above ∼1200◦C (its boiling point, i.e. 1 atm vapor
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Figure 2: Phase diagram of the Zr-B system including non-equilibrium high-
temperature phases.
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pressure, is 1860◦C) [5]. For ZrB2 at temperatures above ∼1000◦C, yet be-

low 1800◦C, B2O3 exists as a liquid amongst surface pores created by the

formation of columnar grains of ZrO2 (see Figure 3) [4]. The B2O3 readily

evaporates, thus exposing the fragmented zirconia and unoxidized bulk be-

low [15]. As temperatures increase, the remaining zirconia undergoes a phase

change at 1650◦C from monoclinic to tetragonal capable of destroying large-

scale components made from the material [16]. For ZrB2-20 vol% SiC, below

1200◦C, oxidation reaction rates are similar to pure ZrB2, but above 1200◦C

the SiC addition improves oxidation resistance. The addition of SiC to the

system confers oxidation resistance upon ZrB2 via formation of an amorphous

borosilicate scale which can be seen in Figure 4 as well as a disruption of the

zirconia scale due to the evolution of carbon oxide gases such that the phase

change is not catastrophic [17, 1, 25]. Work by Rezaie et al. uses compositional,

structural, and thermogravimetric analysis to paint a timeline for the evolu-

tion of the protective oxide mechanisms of the ZrB2-SiC system undergoing

heating in air, finding that between 800 and 1200◦C the oxidation of ZrB2 to

ZrO2 and B2O3 was the dominant chemical process, resulting in passive oxida-

tion behavior due to the continuous formation of the liquid boria layer (and a

corresponding constant rate of weight gain ∼3.3 × 10−3 mg/cm2·◦C). Around

1200◦C, SiC begins to oxidize to form SiO2. In the same temperature regime,

the evaporation of B2O3 becomes rapid, resulting in a weight loss of ∼1.0 ×
10−3 mg/cm2·◦C. Above 1300◦C, the depletion of the B2O3 results once again

in an overall weight gain due to the continued formation of SiO2, which was

measured after having been heated to 1500◦C to be a maximum of ∼10 µm

in thickness. Beneath, a layered structure was found to have formed. Directly

below the more pure silicate glass layer was a < 3 µm thick layer of zirconium

embedded within SiO2, and then a ∼10 µm thick layer of SiC-depleted ZrB2
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and ZrO2 above the untransformed bulk. This layered structure reveals that,

in order for the SiO2 layer to form, oxygen must first diffuse through the ox-

ide layer to the bulk material beneath and oxidize SiC once to SiO(g), which

must then be transported across the depleted region to the upper layers and

oxidize once more to SiO2 [18]. This process can be observed by the changing

composition of the glass phase. Below 1300◦C, B2O3 is found to be the major

component of the glass phase. Above, SiO2 is the major component, and after

24 hr at 1400◦C partially reacted SiC has been found to remain in the scale.

Reaction rate observed to be parabolic, but oxygen consumption data were not

found to match a parabolic rate equation due to selective evaporation of B2O3,

which led to a reduction in barrier layer thickness or changes in diffusion rates

of the various products and reactants as the glass composition changed [17].

The nature of the diffusing species of oxygen through the silicate layer

is a point of some interest, as varying routes of transport may be impacted

differently by additives to the ceramic composite. At and below 1000◦C, the

rate of oxygen diffusion through vitreous silica is proportional to first power of

its partial pressure, which is expected of the kinetics wherein the permeation

of molecular oxygen is the dominant mechanism [19]. Using isotope labeling,

Costello and Tressler confirmed the molecular diffusion at these temperatures,

but observed significant incorporation of their tracer oxygen atoms (18O) into

the silicate network at 1300◦C, which suggests a significant contribution by

a lattice diffusion mechanism. At odds with this interpretation is the fact

that a single activation energy of 27 kcal/mol is reported for the parabolic

oxidation of silicon to temperatures in excess of 1400◦C [20]. Subsequent work

has found that the presence of water in the environment can lead to exchange

between the diffusing molecular oxygen and the oxygen atoms of the silica.

Doremus reviewed several studies of oxygen diffusion through silica glass and
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revealed a correlation between the degree of network diffusion claimed and

the permissiveness of the experimenters in allowing water to be present. He

shows that this exchange mechanism is capable of masquerading as network

diffusion in isotope tracing studies, which had been identified as dubious due

to the fact that the network diffusion kinetics at play are too slow to fully

explain the oxidation rates observed [21].

Parabolic weight change may be used to track the formation of a protective

oxide layer when it is present, though similar oxide scale kinetics are observed

for non-protective scales of zirconia and boria [22]. Parabolic kinetics indicate

that one of the reactants, in this case oxygen, must diffuse through an ever-

thickening layer to react with the bulk material at the base of the scale. This

results in the oxide growth rate dx/dt being inversely proportional to the scale

thickness, x, and proportional to the scaling constant kp

dx

dt
=

kp

x
(1)

Upon integration, this becomes

x2 = 2kpt (2)

leading to the observed parabolic growth evident in Figure 3 [23]. Parabolic

kinetics may be seen in the curves of the isothermal mass change plots in the

lower temperatures displayed in Figure 5. Opila and Halbig fired samples of

ZrB2-20 vol% SiC in stagnant air in a zirconia furnace at temperatures of

1327, 1627, and 1927◦C for one, five, and ten cycles, observing the parabolic

kinetic model holding valid at all temperatures [24]. In situ thermogravimetric

studies of ZrB2-20 vol% MoSi2 observed the material to exhibit (after a 300

min dwell) parabolic oxidation curves above 1200◦C. Parabolic behavior was

observed immediately at 1400◦C. The weight gain after oxidation at 1200◦C
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Figure 3: SEM micrograph of cross section of ZrB2-10 vol% B4C heat treated
in flowing air to 1460◦C. Rectangles enclose regions where EDS performed;
elements detected are listed next to each rectangle. 30 µm thick zirconium
oxide scale is non-protective

was found to be significantly less than that at 1000◦C, again indicating that

the formation of the amorphous silicate layer is beneficial [12].

2.2.2 Environmental Effects

The availability of oxygen is important for a material which forms passivating

oxide scales as a means of protection in extreme environments. In an atmo-

sphere such as the earth’s at sea level with a pO2 ∼ 0.2 atm, an increase in SiC

content (30 vol% instead of 20 vol%) has been shown to improve the protection

of ZrB2 by more readily forming the protective SiO2 layer, but at a pO2 of 2 ×
10−4 atm, the extra SiC only oxidizes partially to the gaseous product SiO(g),

which leaves the system and does not form a protective SiO2-based layer [26].

At lower partial pressure of oxygen still, ZrB2-30 vol% SiC in a pO2 ∼ 10−16

13



Figure 4: SEM micrograph of cross section of ZrB2-28 vol% SiC having un-
dergone oxidation. Note the layered structure: silicate glass over SiC-depleted
zone over unreacted bulk.

atm environment (created by a CO/CO2 mixture) at 1500◦C was found to also

exhibit linear-with-time weight gain kinetics not suggestive of any significant

protection from oxidation. At this pO2, Rezaie et al. show that the ZrB2 ox-

idizes to ZrO2(s) and a volatile B2O3(l), and SiC to CO(g) and SiO(g) leaving

a non-protective, porous ZrO2 scale [27]. It is accepted within the commu-

nity of researchers studying UHTCs that most small-scale experiments do not

approximate a true reentry or hypersonic environment, wherein the materials

would be subjected to low-pressure and partially or fully dissociated gases, but

such experimental environments are valued for their role in screening materials

under often-ideal conditions for the formation of protective oxide layers [2].

Fahrenholtz has presented a thermodynamic analysis of ZrB2-SiC oxidation

in which he observes that pO2 beneath the scale should be considerably less

than that in the atmosphere above due to the chemical potential gradient
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necessary for diffusion. This value, though prescribed by the oxidation reaction

kinetics occurring in the region, is not precisely known; it can, however, be

thermodynamically bound: a pO2 too low would fall below the sooting limit,

and CO(g) present due to the SiC addition would spontaneously reduce to

carbon. Graphite has not been reported in the SiC-depletion layer, so the value

of pO2 present there is assumed to be higher. Fahrenholtz calculates the value

of pO2 in the SiC-depleted layer to be between 4.1 × 10−14 and 1.8 × 10−11 Pa,

forming a gradient which contributes to the migration of SiO(g) from the bulk

to the surface scale [28]. Opeka et al. observed that the protection provided

by the SiO2 layer in limiting oxygen diffusion also provides for a back-pressure

of the SiO(g) to build to the point of rupturing the glass layer, resulting in a

cyclic protective/non-protective scale forming pattern which overall results in

a semi-protective layer. A corresponding change in the kinetics has not been

observed, but the understanding of both the oxidation kinetics and oxygen

transport behavior of the system remains incomplete [29].

Components made from ZrB2 and/or HfB2-based compounds performing

in the earth’s atmosphere would be required to contend with the presence of

water vapor. Nguyen et al. created samples of HfB2-20 vol% SiC and ZrB2-20

vol% SiC which they thermogravimetrically analyzed in an environment of 90%

water vapor and 10% oxygen at a pressure of 1 atm. The HfB2 composition

proved to be substantially more oxidation resistant in this environment over

the temperatures studied (1200, 1300, and 1400◦C) [30].

2.2.3 Transition Metal Boride Additions

While SiC additions have proven useful for the prevention of oxidation in

the temperature range of 1200 to 1500◦C, at higher temperatures the silicate

glass loses effectiveness. To address this issue, researchers evaluated additions
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that are able to help stabalize the silicate glass layer at higher temperatures

or provide a new mechanism of protection as the silicate glass layer fails.

Talmy et al. began with a composition of ZrB2-25 vol% SiC and formed several

test compositions by substituting some of the ZrB2 with other Group IV-VI

transition metal borides (NbB2, CrB2, TaB2, TiB2, and VB2). Independently,

each of these compounds has an oxidation resistance lower than that of ZrB2,

but when present in small amounts in the silicate glass layer, theory suggests

the glassy layer will undergo liquid-liquid phase separation. Each addition

was found to result in increased oxidation resistance compared to the base

composition due to an increase in the liquidus temperature and viscosity, thus

a decrease in the oxygen diffusivity. The effect becomes more pronounced

with increasing cation field strength (defined as Z/r2, where Z is the valance

of the cation and r is the ionic radius), though by 1500◦C the phase separation

and oxidation resistance effects were not seen in any system due to the fact

that the temperature exceeded the dome of immiscibility [31, 29]. Opila et al.

created coupons of HfB2 and ZrB2 containing varying amounts of the additives

SiC and TaSi2 and cyclically oxidized them in 10 min increments in stagnant

air at 1627◦C for a total of 100 min. They found a composition of ZrB2-

20 vol% SiC-20 vol% TaSi2 oxidized to less of an extent than either ZrB2-20

vol% SiC, HfB2-20 vol% SiC, or ZrB2-33 vol% SiC, the latter having been

formulated to test whether the extra silicon in the TaSi2 composition had been

responsible for the improvments in oxidation resistance. Further studies using

arc jet heating, however, found that liquid phases formed at 1927◦C, related

either to the melting of Ta2O5 or that of a largely uncharacterized zirconium

tantalate phase (termed “phase V”). These liquid phases resulted in rapid

degradation of the material [32]. Later work by Talmy et al. demonstrated

that even small amounts of mutual addition of Ta5Si3 and ZrB2 resulted in
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an overall densification for all intermediate compounds of the system. They

observed Ta2O5-induced glass phase separation using EDS analysis of periodic

glassy and crystalline regions present on a test composition surface oxidized

at 1400◦C [33]. 1

Recent work by Peng and Speyer has shown that TaB2 additions above

∼3 mol% or TaSi2 additions above ∼6.7 mol% to the ZrB2-B4C-SiC system

are detrimental to oxygen resistance at 1500◦C (though beneficial at 1200

and 1400◦C). They hypothesize that this effect is due to the disruption to

the glassy oxide layer caused by the formation of TaC in the depleted layer

beneath. Mass change curves generated from this research can be seen in

Figure 5. Additionally, above 1400◦C no tantalum was observed via EDS in

the glassy layer; consequently no evidence of liquid-liquid phase separation

was observed [4].

2.2.4 High Temperature Study

Above 1500◦C, previous attempts at gathering thermogravimetric data have

been thwarted by failure to remedy or account for a reaction between the

sapphire hook (used to suspend the sample) and the oxidation products [17].

Other researches have utilized other experimental methods to collect informa-

tion at these high temperature domains; Gash et al. performed arc jet testing

on HfB2-20 vol% SiC at two different heat fluxes for two 10 min durations

each. In lower heat flux condition, passive oxidation of SiC helped maintain a

1As a side-note, these same “island and lagoon” structures on the surface of the cooled
ZrB2-SiC have recently been described by Karlsdottir et al. as being the result of a liquid
solution of B2O3, SiO2, and ZrO2 transported by means of convection cells in the oxide layer
at high temperature [7]. No mention is made of the possibility that the structures arose
during cooling from 1500◦C, though it should be noted that the orientation of the faces
of the specimens concerned with respect to the Earth’s gravitational field may play a role.
Karlsdottir’s specimens were oxidized in open air, and a surface parallel to the horizontal
was observed.
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Figure 5: Isothermal mass change with varying vol% additions of TaB2. Note
that the parabolic behavior at 1200 and 1400◦C is not observed at 1500◦C.

steady state surface temperature of 1700◦C. Higher heat flux resulted in tem-

perature spike to 2400◦C, due to a change from passive to active oxidation of

SiC and the resulting presence of a thick, porous HfO2 layer. [35]. Zhang et al.

explored the oxidation behavior of a coupon of composition ZrB2-20 vol% SiC-

10 vol% LaB6 versus that of ZrB2-20 vol% SiC under an oxyacetylene torch for

600 seconds. The former compound reached a surface temperature of 2400◦C,

yet was found to have a compact, adherent, protective oxidized surface ∼545

µm thick, whereas the surface of the latter compound was non-adherent and

marked by significant spallation and cracking as seen in Figure 6. No silicon

was observed through EDS on the surface of the lanthanum-containing com-

pound, rather, the surface was found to consist almost entirely of ZrO2 and

La2Zr2O7 [36].

2.3 Heat Transfer

Understanding of a material’s oxidation behavior is important, but it is only

one facet of material behavior. Should these materials be used for atmospheric
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Figure 6: Photograph of samples after oxyacetylene torch testing. Left sample
(a) of composition ZrB2-20 vol% SiC, right sample (b) of ZrB2-20 vol% SiC-10
vol% LaB6.

reentry or supersonic leading edge applications, they will experience an influx

of aerothermal heat, likely in excess 100 W/cm2 [2]. Assuming the thermal

protection systems achieve a steady state condition, the material will be shed-

ding heat from the surface through the processes of conduction through the

bulk and radiation into the environment. These means by which the mate-

rial is able to cool itself are described in part by its thermal conductivity and

emissivity.

2.3.1 Thermal Conductivity

Thermal conduction in dielectric solids occurs by anharmonic waves, referred

to as phonons, superimposed upon lattice vibrations. Conductive solids have

the additional heat transfer mechanism of electron motion. Figure 7 [37] shows

example thermal conductivity data for a variety of electrical conductors and di-

electrics. For the typical dielectric, with rising temperature above zero Kelvin,

thermal conductivity increases as T 3, reaching a maximum well below room

temperature [38]. This maximum is limited by scattering of phonons with
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microstructural features which disrupt the periodicity of the lattice, e.g. dis-

locations and the strain fields around them, grain boundaries, and porosity.

The temperature of the maximum is related to the Debye temperature, which

is proportional to the maximum in the distribution of standing wave vibra-

tion frequencies. Since the Debye temperature increases with melting point

and elastic modulus, diamond thermal conductivity reaches its maximum at

a comparatively higher temperature. As a result, diamond has the highest

known thermal conductivity at room temperature.

At low temperatures, the concentration of generated phonons is low, hence

there is a long mean-free path between interactions. This mean-free path de-

creases with increasing temperature; the thermal conductivity maximum rep-

resents the point at which the phonon mean free path is of the same order of

magnitude as scattering from microstructural imperfections. As temperature

is increased above the maximum, the thermal conductivity decrease is pro-

portional to 1/T as the phonon-phonon scattering mean-free-path continues

to decrease. The change in thermal conductivity with temperature tends to

decrease to slopes below those predicted by 1/T , as the phonon-phonon mean

free path reaches atomic scale dimensions [38]. Other factors (negatively) af-

fecting the thermal conductivity of dielectrics are the extent of solid solution

and complexity of structure [39]. At the extreme, fused silica, having no lat-

tice periodicity, has a very low thermal conductivity. Its rise with increasing

temperature is from radiation contributions to heat transfer.

The electrically-conductive solids exhibit a similar maximum in thermal

conductivity at cryogenic temperatures; however, at∼100 Kelvin, thermal con-

ductivity is relatively constant with increasing temperature, making electrically-

conductive solids significantly more thermally conductive than the dielectrics

(with the exception of diamond) at temperatures above room temperature.
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Thermal conductivity k is typically measured under steady state conditions

based on an integrated form of Fourier’s Law. For example, given a hollow

cylinder of specimen, the equation for determining k is expressed as

k =
q ln

(
ro

ri

)

2πL(Ti − To)
(3)

where q is the heat flow, ri and ro are the inner and outer radii of the cylin-

der, respectively, L is the length of the cylinder, and Ti and To are the inner

and outer cylinder temperatures, respectively. In the experimental setup, the

cylinder is placed in a furnace in the middle of three coils of heating wire,

one above, one surrounding, and one below. The coils in the axial direction

function as guard heaters to ensure that no axial heat gradient is seen by the

specimen. A heating wire is fed through the center of the cylinder and gener-

ates heat that flows radially outward. This heat flow is monitored based upon

knowing the current and voltage drop across a guage-length of wire. Thermo-

couples monitor inner and outer temperature; steady state is established when

inner and outer temperatures do not change with time. This method, and

others similar for differing sample geometries (e.g. flat plates), can be time

consuming and require large specimen sizes [40].

Thermal diffusivity α is related to thermal conductivity by

α =
k

ρcp

(4)

where ρ is the specimen density and cp is the specimen specific heat. Thermal

diffusivity is appropriate for describing non-steady state heat flow; it increases

with increasing thermal conductivity and decreasing thermal storage require-

ments of the specimen. Specific heat data may be obtained via differential

scanning calorimetry, and density may be measured using pycnometry and a
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sample crushed to a powder, thereby allowing thermal diffusivity data to be

converted to thermal conductivity data [40].

2.3.2 Emittance

The energy per unit time emanating hemispherically from a unit area of surface

at a given wavelength and temperature from a perfectly absorbing and emitting

sample (blackbody) is given by Planck’s Law:

RT (λ) =
2πhc2

λ5

dλ

exp
(

hc
λkT

)− 1
(5)

where RT (λ) is the spectral radiosity, h is Plank’s constant, k is Boltzmann’s

constant, λ is wavelength, c is the speed of light, and T is the absolute tem-

perature. Real bodies absorb less than this ideality due to reflection (common

to metals) or transmission (common to dielectrics). The ratio of the spectral

radiosity of a real body (RB) to that of a blackbody (BB) is the spectral

emissivity:

εT (λ) =
RT (λ)RB

RT (λ)BB

(6)

The maximum value of spectral emissivity is one, which is when the real body

emission equals that of a blackbody at that wavelength. The borosilicate coat-

ing of a ZrB2 ceramic composite is observed to sit atop a partially oxidized,

porous ”SiC-depleted zone”, and as such the morphology of the system pro-

hibits the notion of a true ”emissivity” measurement, but the word is found

in literature addressing such measurements in this materials system. Scatteia

et al. studied the radiative properties of two compositions: ZrB2-15vol%SiC

and ZrB2-15vol%SiC-10vol%HfB2, and reported that total emissivity generally

increased with temperature due to the formation of the protective oxide layer,

and that the specimen containing no HfB2 showed a comparatively higher
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emissivity overall (see Figure 8). The data presented, however, were only

of total emissivity, which encompasses the behavior of the material over the

broad swath of wavelengths considered (0.6 µm to 40 µm) [41]. A more com-

plete view of this important material property requires the consideration of

the spectral emittance instead of total emittance. Spectral emissivity data are

available in the literature for, zirconium diboride, zirconia, and borosilicate

glass on their own, but the behavior of a specific material is sensitive to both

the chemistry and morphology of the surface; this effect is illustrated in Fig-

ure 9, which gives, in part, two trends for the spectral emittance of ZrB2: one

sample polished and etched, the other as sintered. The emittance behavior of

ZrB2 and HfB2 compounds with oxide layers is difficult to predict, as the base

material behaves as an electrical conductor and the coating as a dielectric.

These two classes of materials behave very differently in respect to spectral

emissivity with wavelength and emissivity with temperature. Also, the inter-

face between the base material and oxide coating is typically rough, which can

increase emittance, as the crevices on the surface may behave as blackbody

cavities [6].

Thermal emittance is an important consideration for UHTCs since, while

many important applications involve heating via interaction at high speed with

the atmosphere, the components may cool themelves by radiating to ambient

surroundings. The higher the emittance, the more efficiently the absorbed

heat may be disposed of, and the lower the steady state surface temperature

of the component may be.
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CHAPTER III

THERMOGRAVIMETRIC STUDY OF ZRB2-BASED

CERAMIC COMPOSITES

3.1 Experimental Procedure

Commercially-available powders were used for raw materials. The major crys-

talline phase(s), grade, and suppliers are listed for each powder in Table 1.

The particle sizes of commercially-available TaB2 were deemed too large for

Table 1: Raw Material Characteristics for Oxidation Specimens

Phases Particle Size Supplier
ZrB2 ZrB2 d50 = 2.20 µm Grade B, H. C. Starck, GmbH
B4C stoichiometric B4C d50 = 0.8 µm Grade HS, H. C. Starck, GmbH
SiC α-SiC d50 = 0.88 µm 8S490NDP, Superior Graphite, Chicago, IL

TaB2 TaB2, Ta3B4 < 43 µm ESPI Metals, Ashland, OR

pressureless sintering. Hence, sedimentation-based selection was used to ob-

tain finer particles: Powders were dispersed in ethanol using an ultrasonica-

tor (FS-14 Solid State Ultrasonicator, Fisher Laboratory Equipment Division,

Pittsburgh, PA) for 10 min. The mixture was allowed to settle in ethanol

for 1 h. The top 7 cm (of a total column height of 14 cm) of fluid was then

extracted using a pipette. Based on laser particle size analysis (Model LS 13

320, Beckman Coulter, Fullerton, CA), decanted particles had a d50 of 1.1 µm.

The decanted suspensions were dried in a beaker on a hot-plate.

The compositions of synthesized powder mixtures are given in Table 2.

The powder mixtures were suspended in methanol, and mixed in a ball mill

for 24 h, using B4C as media. These powders were then dried in air in a free
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Table 2: Sample Compositions for Oxidation Specimens

Composition Mole Percent Volume Percent
ZrB2 B4C SiC TaB2 ZrB2 B4C SiC TaB2

1 77.39 7.27 15.34 0 80.35 8.94 10.71 0.0
2 64.25 6.04 29.70 0 70.30 7.82 21.88 0.0
3 37.55 3.53 58.92 0 46.15 5.14 48.71 0.0
4 63.14 5.62 27.91 3.32 68.79 7.25 20.45 3.51

convection oven at 75◦C. The powders were then ball milled again in water with

dissolved polyvinyl alcohol (PVA, Celanese Ltd., Dallas, TX), polyethylene

glycol (PEG, Alfa Aesar, Ward Hill, MA), and Darvan 821A (R.T. Vanderbilt

Company Inc., Norwalk, CT), using B4C as media for 8 h. PVA functioned

as a binder with PEG functioning as a plasticizer, and Darvan 821A served

as a dispersing agent. The highly viscous suspension after this milling step

was dried in a free convection oven at 75◦C, and then sieved using a 60 mesh

screen.

Approximately 400 mg of powder were uniaxially pressed into cylindrical

pellets using a maximum pressure of 117 MPa, holding for 1 min. The pellets

were loaded into latex encapsulants which were in turn evacuated. These were

cold isostatically pressed (CIP) in a water/oil mixture at 345 MPa for 1 min.

This was followed by a binder removal heat-treatment of 0.25◦C/min to 500◦C

under a flowing argon atmosphere. Fifteen pellets were fabricated for each

composition.

These pellets were fired in a graphite tube furnace (Model M11, Centorr

Vacuum Industries Inc., Nashua, NH) under flowing argon, using graphite

setters. The furnace was initially evacuated to ∼4 Pa (roughing pump) and

backfilled with argon. The typical heating schedule was 50◦C/min to 2100◦C,
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soaking for 1 h, and then cooling at 40◦C/min to room temperature. The pel-

lets were then hot isostatically pressed (HIP, American Isostatic Press, Colum-

bus, OH) at 1800◦C for 30 min under an argon gas pressure of 207 MPa. The

densities of unfired pellets were determined from measured dimensions and

mass; the densities of pressureless sintered and post-HIPed pellets were de-

termined using Archimedes’ method. All HIPed specimens were 100% dense

based on theoretical densities calculated from the rule of mixtures.

All of the surfaces of the post-HIPed samples were ground away using

320 grit SiC grinding paper (Buehler, Lake Bluff, IL), and the resulting pel-

let dimensions were measured with calipers, from which surface areas were

calculated. Pellets were ∼5.3 mm in diameter and 3-4 mm in height. The ox-

idation behaviors were then investigated using thermogravimetric analysis. A

schematic of the experimental setup is shown in Figure 10. An analytical bal-

ance (model AX205, Mettler-Toledo, Inc, Columbus OH) with a measurement

precision of 0.01 mg was fully encased in a water-cooled aluminum enclosure.

The enclose had a coupling extending from its top which mated with a water-

cooled coupling attached to the base of the furnace which was sealed to and

supported a stabilized zirconia tube with a 4.7 cm inner diameter. This tube

extended upward through the hot zone of the furnace and continued through

the top of the furnace for an additional 35.5 cm into the ambient air. Loose

refractory alumina fiber rested at the top of the tube to minimize air turbu-

lence within the tube which would otherwise disturb the balance reading. A

mass flow controller (Model GFC 17, Aalborg, Orangeburg, NY), attached to

a cylinder of compressed dry air controlled air flow into the enclosure and then

through the zirconia tube which in turn extended through the furnace. The

furnace (model DT-36-VT 2000◦C vertical tube furnace, Deltech, Inc, Den-

ver, CO) was of cylindrical shape, mounted (cylindrical axis) vertically. Outer
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radial positions of the furnace were heated using uniformly-spaced MoSi2 U-

tube heating elements. These were partially insulated from radial positions

toward the furnace center by shaped stabilized zirconia bricks. Along still

more inner radial positions of the furnace, six symmetrically-placed rod-type

stabilized zirconia heating elements extended vertically through the furnace.

Two independent PID control systems were used, one which brought the fur-

nace temperature up to ∼1300◦C via the MoSi2 elements, at which point power

was additionally applied across the semiconducting zirconia elements. The hot

zone of the furnace was approximately 10 cm along the axial direction, with

another 40.5 cm of length extending from the edges of the hot zone to the

axial extremes of the furnace. Raising the hot-zone temperature from room

temperature to 1900◦C required ∼2 days. The furnace was brought to isother-

mal soak temperatures of 1500, 1600, 1700, 1800, and 1900◦C and held at each

of those temperatures while isothermal oxidation experiments were performed

on all compositions. Data was collected on a personal computer through rapid

polling (using Microsoft Visual Basic 4.0) through RS232 communications.

A brass tripod with set-screw feet (for orientation adjustment) was fab-

ricated and placed on the balance stage. Inserted into this was a stabilized

yttria-stabilized zirconia (McDaniel Advanced Ceramic Technologies, Beaver

Falls, PA) hollow tube (6.3 mm outer diameter, 61 cm long). Placed at the

top of the hollow tube were stabilized zirconia crucibles, consisting of a bot-

tom stem which could be inserted into the stabilized zirconia tube, and a

cylindrically-shaped partially hollowed cylindrical container. These were fab-

ricated by uniaxially pressing 2 cm cylinders of stabilized zirconia powder (8

mol% Y2O3 stabilized ZrO2, d50 = 0.5 µm, Inframat Advanced Materials,

Manchester, CT) mixed with binder at 125 MPa. These were subsequently

loaded into latex bags which were evacuated and sealed, and were then CIPed
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at 345 MPa. These functioned as blanks for CNC machining (model DSLS

3000, Taig Micromill, Chandler AZ) into the aforementioned crucible shape.

Binder was extracted from the green parts in static air at a heating rate of

0.5◦C/min to a soak temperature 500◦C, and held for 4 h. These parts were

then fired in the same furnace as the oxidation experiments using soak temper-

atures in the range 1600-1800◦C for 1 h. Specimens for oxidation experiments

were placed in these crucibles (on top of zirconia chips lining the bottom of

the crucible) so that the axial direction of the disks was horizontal, leaving

a portion of the disk within the crucible, and a larger proportion extending

above the upper lip of the crucible.

The analytical balance and its enclosure, with the specimen mounted above

it, were raised using a foot-pedal-based jack system into the hot zone of the

furnace. Specimens were elevated over ∼5 min so as to raise the sample quickly

to its soak temperature, while minimizing the propensity for thermal shock of

the stabilized zirconia crucibles and supporting tube. Air flow rate upward

through the tube was maintained at 0.1 l/min. Specimen weight change was

based on the weight measured by the balance while the specimen was at room

temperature. Weight change data during the period of elevating the balance

was omitted since the balance measurement was unstable. To evaluate re-

peatability, 2-3 thermogravimetric oxidation heat-treatments were performed

on each composition at each soak temperature. Displayed traces are those

considered most representative.

Thermogravimetric analyzers show a buoyancy effect [40] in which the con-

densed phases of the specimen, and the structure which holds it up, applies

an upward force based on the mass of gas which is displaced (Archimedes

principle). As the furnace is heated, this gas expands and the displaced mass

decreases, giving the impression of a weight gain on the TG trace. This mass
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change can be calculated assuming an ideal gas (air), a constant temperature

in the hot zone of the furnace, and a linear temperature gradient extending

from the edge of the hot zone to the point of exit of the furnace, which is

assumed to be at room temperature. For the specimen, crucible, and the hot-

zone portion of the hollow tube the crucible is mounted on, the buoyancy mass

m was calculated based on:

m =
MpVH

RTF

where M is the molar mass of air, p is atmospheric pressure, VH is the volume of

the specimen, crucible, and support tube (1032.31 mm3), R is the gas constant,

and TF is the hot zone absolute temperature. For the hollow stabilized zirconia

tube extending through the linear temperature gradient, the bouoyant mass

was calculated based on:

m =
MpA

R
(

TF−TR

h

) ln

(
TF

TR

)

where A is the cross-sectional area of the tube, TR is absolute room tempera-

ture, and h is the height of the portion of the furnace associated with the linear

temperature gradient going from room temperature to the hot zone temper-

ature. The mass of displaced gas at a given hot-zone temperature minus the

mass of displaced gas at room temperature was calculated.

In addition, as the samples are oxidized, due to their geometry, the surface

area of untransformed bulk available for further reaction decreases. This can

artificially lower the rate of the reaction, so a correction is made to account

for this loss. For the reactions

ZrB2(s) +
5

2
O2(g) −→ ZrO2(s) + B2O3(g)

and

SiC(s) + 2O2(g) −→ SiO2(l) + CO2(g)
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it is assumed that boron oxide forms as an escaping gas and silica forms as a

liquid/glass. These reaction stoichiometries dictate that the number of moles

of ZrO2 formed are equal to the number of moles of ZrB2 consumed, nZrO2 =

nZrB2 , and similarly nSiO2 = nSiC. Note that the latter equality holds even if

the reaction produced CO as opposed to CO2.

Let ∆M be the measured mass change after 100 min exposure to a given

oxidation temperature. Then:

∆M = (MZrO2 −MZrB2) + (MSiO2 −MSiC)

where MZrB2 and MSiC are the masses of zirconium diboride and silicon carbide

converted, respectively, and MZrO2 and MSiO2 are the masses of zirconia and

silica produced, respectively. Letting W be the molar mass:

∆M = nZrB2(WZrO2 −WZrB2) + nSiC(WSiO2 −WSiC)

We define XSiC as the mole fraction of SiC in the original ZrB2-SiC composi-

tion, thus:

nSiO2 =
∆M(

1
XSiC

− 1
)

(WZrO2 −WZrB2) + (WSiO2 −WSiC)
(7)

Let ρ be the density and V ′ be the volume of oxide formed:

V ′ =
nSiO2WSiO2

ρSiO2

+
nZrO2WZrO2

ρZrO2

(8)

Given a disk geometry for the partially oxidized specimen of diameter d

and height h, with a uniform oxide coating thickness of T :

V ′ = 2π

(
d

2

)2

T + (h− 2T )

(
π

(
d

2

)2

− π

(
d− 2T

2

)2
)

(9)

The diameter d and and height h of the disk vary during oxidation since the

densities of the consumed phases and the corresponding formed oxide phases

are not the same. Let ∆V be the volume of products formed minus the volume
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of reactants consumed; that is, the change in volume of the disk. Recognizing

the equivalence of moles of ZrB2/ZrO2 and SiC/SiO2:

∆V = nSiC

(
WSiO2

ρSiO2

− WSiC

ρSiC

)
+ nZrB2

(
WZrO2

ρZrO2

− WZrB2

ρZrB2

)
(10)

If the dimensions of the disk before oxidation are d0 and h0, then after partial

oxidation, the change in volume is:

∆V = π

(
d

2

)2

h− π

(
d0

2

)2

h0

Assuming that the thickness of oxide scale forming on all surfaces is the same,

then the change in linear dimensions from oxidation in the axial and radial

directions would be the same: d− d0 = h− h0, thus:

∆V =
π

4

(
(h− h0 + d0)

2 h− d2
0h0

)
(11)

Equation 8 (inserting in equation 7 and the definition of mole fraction) may be

used to determine the volume of oxide formed. Inserting this into equation 9,

along with calculated values of d and h from equations 10 and 11 will yield T

through numerical solution.

Crystalline phases in the samples were identified using X-ray diffraction

(XRD, Model X’Pert PRO Alpha-1, PANalytical, Netherlands). Scans were

recorded at room temperature over a 2θ range of 10-80◦ at a scan rate of

0.01◦/s. XRD of oxidized specimens were taken from cross sections formed via

a diamond wafering blade.

Specimens were directly photographed with a digital camera after cross-

sections were made via a diamond-impregnated wafering blade. Microstruc-

tures of oxidized samples were investigated using scanning electron microscopy

(SEM, LEO 1530, Carl Zeiss SMT, Inc., Thornwood, NY) and energy dis-

persive spectrometry (EDS, Oxford Pentafet detector with ultrathin window,
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Oxford Instruments, Oxfordshire, UK). For displayed micrographs, specimen

cross-sections were fractured surfaces formed via impact, with the oxidized sur-

faces mounted on the SEM stub to be parallel with the beam axis. Specimens

were coated with gold (sputtering for 2 min) to form a conductive surface. For

measurement of layer thicknesses, specimens were cut perpendicular to the ox-

idized surfaces using a diamond-impregnated wafering blade, and then imaged

in the SEM. Separate measurements of the top, sides, and bottom layer thick-

nesses were recorded. Side thicknemss measurements were generally averages

of measurements from the left and right sides.

3.2 Results and Discussion

Initial experiments were performed using an alumina gas flow tube and either

alumina stages or crucibles to hold the specimens. Oxidation heat-treatment

in this study at and above 1700◦C showed substantial reaction of specimens

with their containers. For that reason, the furnace was reconstructed so that

no alumina was present in the hot zone. All results which follow correspond

to oxidation under that configuration.

Phases identified from XRD of oxidized specimen cross sections were ZrB2,

SiC, and ZrO2. For compositions in which TaB2 was a batch additive, no

distinct TaB2 phase was detected, but a shift in 2θ positions of ZrB2 peaks

imply the formation of a ZrxTa1−xB2 solid solution. Trace amounts of ZrC

were detected for the composition with ∼60 mol% SiC after oxidation heat-

treatments at 1600 and 1700◦C. Trace amounts of ZrC were also detected for

the composition with∼3 mol% TaB2 after oxidation heat-treatment at 1800◦C.

Figure 11 shows TG traces of the compositions exposed to temperatures

ranging from 1500 to 1900◦C. At 1500 and 1600◦C, all compositions are roughly

grouped together with the exception of ∼15 mol% SiC, which showed a higher
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initial weight gain, but roughly equal rate of weight gain with time as the

other specimens. This was not the case for 1700 to 1900◦C heat-treatments;

the ∼15 mol% SiC composition gained weight at a comparatively rapid rate,

though the rate slowed over the 10-30 min time span. At 1900◦C the ∼30

mol% SiC and ∼28 mol% SiC – ∼3 mol% TaB2 specimens showed a constant

and remarkably small weight gain over the evaluated time span. The ∼60

mol% SiC specimen showed an initial rapid rate of weight gain that decreased

at longer times. The thermogravimetry trace shown for the specimen with ∼60

mol% SiC was altered from the original, which displayed periodic spikes from

the popping of bubbles, after which an instantaneous downward shift in mass

was recorded. For the trace displayed in Figure 11, the spikes were deleted

and subsequent data were adjusted upward to align with the data before the

spikes.

The results of buoyancy calculations are shown in Figure 12. Also shown

in this figure is a summary of the results in Figure 11 by comparing the mass

change after 100 minutes of exposure at the various soak temperatures. Ac-

counting for buoyancy effects, a weight loss for the specimen with ∼30 mol%

SiC occurred after heat-treatments at 1600 and 1700◦C. Using the weight loss

(per unit surface area) in Figure 12, the thickness of a ZrO2/SiO2 oxide coat-

ing was calculated (Figure 13) based on equations developed in the appendix.

Weight losses used in the calculation were based on the differences between

measured values after 100 min and the weight change associated with buoyancy

for a given temperature.

The oxidation resistances of all specimens except ∼15 mol% SiC are re-

markably good. The substantial difference between oxidation resistances of

specimens with ∼15 mol% SiC and ∼30 mol% SiC is visually apparent when

the oxidation scale was examined in cross section (Figure 14). With ∼15
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mol% SiC (Figure 14a) the extensive oxidation product layer is mostly zirco-

nia (based on EDS analysis of this region of the specimen in the SEM) with a

small concentration of silica, in the region nearest to unreacted ZrB2/SiC. The

specimen with ∼30 mol% SiC (Figure 14b) showed comparatively impressive

oxidation resistance, with only a thin (∼0.1 mm) reaction product layer (the

makeup of which is discussed subsequently) covering an unaltered interior.

Figure 15 shows a cross-sectional fracture surface of near-surface regions

of the ∼15 mol% SiC specimen oxidized at 1600◦C. An amorphous silica-

containing layer (a) with embedded zirconia coats the specimen surface. Boron

is unreliably detected with the available EDS so the extent to which the amor-

phous layer contained boron oxide has not been established. Slightly (∼10

µm) below this layer are fragmented zirconia particles (b), making up collec-

tive shapes correlating to ZrB2 grains appearing in the specimen interior. The

zirconia regions were distinguished from ZrB2 by presence/absence of oxygen

peaks in EDS data, and the tendency for bright spots from charging effects on

the non-conductive ZrO2 regions. Pores (c) (of shapes similar to SiC grains

seen in the specimen interior) reside in the region of transition from ZrO2 to

ZrB2 grains. The specimen interior (d) consists of ZrB2 lighter-shaded grains

and darker-shaded SiC grains.

As shown in Figure 16, the ∼15 mol% SiC specimen heat-treated at 1800◦C

showed distinct layers of oxidation products penetrating from the surface in-

ward: a zirconia-embedded silica-containing glass surface layer (a), a region of

high concentration of ZrO2 particles infused with silica-containing glass (b),

a region in which zirconia particles with no surrounding liquid/glass phase

are elongated in the direction orthogonal with the surface (c). A transition

along a distinct interface is then observed to ZrB2 grains with pores taking

the place of what was once SiC grains (d). The most interior region consists
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of the original ZrB2-SiC matrix (e). The ∼15 mol% SiC oxidized at 1700◦C

showed similar layers, though of diminished thicknesses. The microstructure

in Figure 16 came from the top portion of the specimen.

Increasing the SiC content from 15 to 30 mol% produces a microstructure

with a separate silicate glassy layer largely devoid of zirconia, and layers similar

to that previously described underneath, with the exception that there was no

zone of elongated ZrO2 and porosity (Figure 17). At 1900◦C (Figure 18), the

specimen with ∼30 mol% SiC developed a glassy silica-containing surface layer

(a), within which the amount of embedded zirconia is difficult to determine.

At greater depths, this transitions through a sharp boundary to a broad zone

of ZrB2 (b), which is devoid of SiC. These particles have rounded from their

appearance as grains in the original two-phase matrix, surrounded by porosity.

Still deeper, at another sharp boundary, the original ZrB2/SiC matrix can be

seen (c).

The microstructure of∼60 mol% SiC oxidized at 1700 and 1800◦C is similar

to ∼30 mol% SiC oxidized at the same temperatures, though the relative

depths of the SiC-depleted ZrB2 zones are thinner, and the zone of ZrO2

surrounded by glass is more dilute in ZrO2.

After heat-treating this composition at 1900◦C, bubbles are observed in

the glassy silica-containing layer (Figure 19).

In previous work performed by Peng and Speyer at 1200-1500◦C, addi-

tion of TaB2 to specimens oxidized at 1600◦C changed the appearance of the

layer of ZrO2 embedded in glass to one in which the crystalline phases appear

more fragmented [4]. That effect was not as visually apparent for oxidation

heat-treatments at 1700-1800◦C; however, these specimens showed somewhat

thinner layers of glass-infused zirconia and SiC-depleted ZrB2, as compared to

specimens without TaB2 additions, but similar SiC content. After oxidation
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at 1900◦C (Figure 20), the region of ZrB2 depleted of SiC was substantially

thinner than the case in which TaB2 was not added (Figure 18).

There was clear visual evidence of the flow of silicate glassy phase onto the

ZrO2 chips on which specimens were resting, as well as down onto the bottom of

the zirconia crucible. Figure 21 shows the temperature variation in thicknesses

of the glassy surface layers, the oxide ZrO2/silicate liquid layers beneath them,

and the SiC-depleted ZrB2 regions still further into specimen interiors. For∼15

mol% SiC composition, distinct glass layers were not apparent. The layers

of predominantly ZrO2 were coarser than the SiC-depleted layers; both layers

generally coarsened with increasing soak temperatures. The ZrO2 layer became

generally coarser in going from top to bottom of the specimen. For the ∼30

mol% SiC specimens, the thickness of the layer at the specimen bottom was

again coarser than the sides or top. Glassy surface layers were apparent, whose

thickness did not vary substantially with soak temperature. The composition

with ∼60 mol% SiC showed a substantial increase in layer thicknesses in going

from 1800 to 1900◦C soaking temperatures. Layer thicknesses were generally

least coarsened for the compositions with ∼28 mol% SiC and ∼ 3 mol% TaB2.

For both ∼30 mol% SiC and the composition with ∼28 mol% SiC and ∼3

mol% TaB2, glassy layer thicknesses appeared to decrease slightly in going

from 1700 to 1800◦C soak temperatures.

3.3 Discussion

Up through oxidation temperatures of 1600◦C, all evaluated compositions de-

veloped a passivating glassy surface layer along with an oxide layer beneath

it which were protective for the evaluated time period. Starting at 1700◦C,

the composition with ∼15 mol% SiC lacked enough SiC to form an adequate

volume of silica/borosilicate glass for passivation.
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Silicate liquid phase was drawn into the crucible either by gravity, or by

capillary action at the contact points. The capillary removal mechanism would

imply preferential removal of liquid in close proximety, which is near the bot-

tom of the specimen. This in turn would make this region more vulnerable to

oxidation, the coarser the oxide layers observed in these regions.

The ∼15 mol% SiC specimen shows a slowing of weight gain after ∼30

min to a near-linear weight gain with time (Figure 11). If oxidation were

occurring through a diffusion-resistive layer which was coarsening with time,

TG traces with a more continuous parabolic shape would have been expected.

It is interpreted that initial parabolic behavior changed to a linear weight gain

as the formation of silica liquid through oxidation was matched by its capillary

extraction.

Calculated oxide layer thicknesses from weight loss data were within the

spread of the three measured (top, middle, bottom) thicknesses of the oxide

portion of the microstructure (Figure 21). Compared to the total thicknesses of

all the characteristic layers, the calculated thicknesses were roughly lower. The

differences may be attributable to the inaccuracy of assumptions in the buoy-

ancy calculations (e.g. linear temperature gradient), development of porosity

(e.g. vapor pressure within the specimen pushing liquid toward the surface),

and/or preferential oxidation of SiC in interior regions near unaltered ZrB2-SiC

(which was not accounted for in the calculation).

Figure 22 is a plot of equilibrium constants as a function of temperature

for differing versions of the oxidation of SiC and ZrB2, showing that all indi-

cated reactions are highly favorable. The equilibrium constants are so large

at all temperatures, that a buildup of product gas partial pressures to and

exceeding ambient would not stop reactants from going toward products. It is

reasonable to assume that in the gaseous environment within the SiC-depleted
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ZrB2 region, that the partial pressure of oxygen is substantially lower than the

ambient, as it is being consumed through oxidation and its supply is limited

by diffusion through layers closer to the surface. In the reduction of metal

oxides, plots such as Figure 22 can be used to specify the pO2 for which certain

metals will oxidize while other metal oxides will reduce. In this case; however,

the equilibrium constants do not represent the same ratio of partial pressures,

making such evaluations difficult.

The SiC-depleted ZrB2 zone is seen ubiquitously for oxidation temperatures

of 1700◦C and above. Figure 23 shows the stability of reaction product SiO2(l)

in contact with reactant SiC(s). If it assumed that a pressure within the SiC-

depleted ZrB2 layer cannot exceed atmospheric (since a bubble would otherwise

form and burst), and equimolar amounts of SiO and CO gaseous products

form, then as shown in the figure, SiO2(l) will react with SiC to form vapor

phases above ∼1525◦C. Thus for temperatures above this, any SiO2 which

forms immediately reacts with the SiC in contact with it to form gas phases

which escape from the reaction zone. In contrast, oxidation of ZrB2 forms B2O2

vapor and a zirconia scale; this scale impedes subsequent oxidation of the ZrB2

beneath it. Hence, available oxygen preferentially attacks constantly-exposed

SiC, rather than neighboring ZrB2 grains (protected by even a thin layer of

ZrO2). This analysis is consistent with the observation that SiC-depleted ZrB2

regions are not visually apparent until oxidation temperatures of 1700◦C were

used. The same result would be expected if the immediate oxidation product

of SiC was SiO(g) rather than SiO2(l). Figure 24 shows that SiO(g) production

is favored by high temperatures and low oxygen partial pressures. The extent

to which SiO2(l) spontaneously decomposes to SiO(g) depends on the rate of

escape of SiO(g) through the layers closer to the specimen exterior.

The formation of bubbles in the specimen with ∼60 mol% SiC oxidized at
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1900◦C, implying the formation of vapor pressures exceeding ambient, may be

attributed to a number of contributing factors. Gaseous products of oxidation,

e.g. CO(g) and B2O2(g) are not thought to be a major contributor since these

gases form only in equimolar quantities to the amount of oxygen consumed,

and the oxygen partial pressure in these buried layers is interpreted to be quite

low. Only if the diffusion of these gaseous products through layers closer to

the surface is significantly hindered as compared to the diffusion of oxygen,

would significant partial pressures of these reaction products form. A more

significant contributer would be the volatilization of B2O3(l) whose equilibrium

vapor pressure is ∼0.3 atm at 1900◦C. The high concentration of SiC would

imbue relatively close proximity of SiC and SiO2(l) (since there is a vast SiC

source near the surface, its consumption to form the passivating glass/liquid

layer does not require much penetration into the specimen interior), and the

lower viscosity of the fluid at this temperature would facilitate liquid migration

to contact interior SiC, facilitating reaction. These condensed phase to gaseous

phase reactions would form copious amounts of SiO(g) and CO(g).

3.4 Conclusions

The minimum SiC content for passivization in pore-free ZrB2-SiC mixtures is

between 15 and 30 mol% SiC. The passivating near-surface microstructure for

isothermal heat-treatments at and above 1700◦C consists of consecutive layers

of a silicate liquid/glass, ZrO2 infused with liquid/glass, ZrB2 devoid of SiC,

and then an unaltered ZrB2-SiC microstructure. When more rapid oxidation

is observed, a layer of zirconia and porosity is observed, which can be quite

extensive. Use of ∼6 mol% TaB2 along with the ∼28 mol% SiC resulted

in what appeared to be thinner oxide passivating layers and equally good

oxidation resistance. Bubbles observed in the glassy layer and their periodic
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bursting implied from thermogravimetry in the 60 mol% SiC specimen heat-

treated at 1900◦C indicate the buildup of product gases and/or condensed

phase vapors which exceeded ambient pressure. The selective removal of SiC

from near-surface ZrB2-SiC microstructure was proposed to be the result of

reaction products of SiC oxidation being unprotective to yet-unreacted SiC,

as compared to reaction products of ZrB2.
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Figure 10: Schematic of experimental setup for thermogravimetric experi-
ments.
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Figure 11: Compilation of thermogravimetry traces for various isothermal
exposures to flowing dry air at the indicated temperatures. Circle: 15.34 mol%
SiC; square: 29.74 mol% SiC; upward triangle: 58.92 mol% SiC; downward
triangle: 27.91 mol% SiC – 3.32 mol% TaB2. In this figure, symbols are used
only to identify traces; each TG trace is made up of ∼1000 data pairs.
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a b

Oxidized regions

Figure 14: Cross sections (via diamond wafering blade) of specimens heat-
treated at 1800◦C for ∼90 min. a) 15.34 mol% SiC. b) 27.91 mol% SiC. The
ruled lines are 1 mm apart. The specimen in a) was mounted in the crucible
in the furnace such that the bottom of the part is out of the page, and the top
extends into the page. The reaction layer in b) is not uniform as portions of
it snapped off as the displayed axial cross-section was being cut.
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100 µm

ab

c

d

Figure 15: ∼15 mol% SiC specimen oxidized at 1600◦C for ∼90 min. Marker
”a” indicates the amorphous silica-containing layer, ”b” the fragmented zirco-
nia, ”c” the porosity from the missing SiC, and ”d” the untransformed bulk.
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100 µm
e

d

c

b

a

Figure 16: ∼15 mol% SiC specimen oxidized at 1800◦C for ∼90 min. Marker
”a” indicates the amorphous silica-containing layer with embedded zirconia,
”b” the fragmented zirconia infused with silica-containing glass, ”c” the tran-
sition zone with zirconia devoid of glass, ”d” the SiC-depleted zone, and ”e”
the untransformed bulk.
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20 µm
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b

c

d

Figure 17: ∼30 mol% SiC specimen oxidized at 1700◦C for ∼90 min. Marked
regions: a) Glassy region adjacent to the surface. b) Zirconia particles im-
mersed in silicate glass. c) ZrB2 regions depleted of SiC. d) Un-transformed
ZrB2-SiC.
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100 µm

a

b

c

Figure 18: ∼30 mol% SiC specimen oxidized at 1900◦C for ∼90 min.Marked
regions: a) Glassy region adjacent to the surface. b) ZrB2 regions depleted of
SiC. c) Un-transformed ZrB2-SiC.
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200 µm

a

b

c

Figure 19: Comparatively low-magnification of ∼60 mol% SiC specimen oxi-
dized at 1900◦C for ∼90 min. a) Glassy layer with imbedded bubbles. b) ZrB2

with regions which had SiC replaced by porosity. Cracks/fissures in this layer
are interpreted to have resulted from stresses via differences in coefficient of
thermal expanions during cooling. c) Un-transformed ZrB2-SiC.
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20 µm

a

b

c

d

Figure 20: ∼28 mol% SiC - ∼3 mol% TaB2 specimen oxidized at 1900◦C for
∼90 min. Letter markers correspond to the same region types as in Figure 17.
Marked regions: a) Glassy region adjacent to the surface. b) Zirconia particles
immersed in silicate glass. c) ZrB2 regions depleted of SiC. d) Un-transformed
ZrB2-SiC.
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Figure 21: Thicknesses of various layers, as measured in the SEM, of
oxidation-altered ZrB2-based ceramics.
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Figure 22: Equilibrium constant versus temperature as calculated by the
expression ∆G◦

rxn = −RT ln kp where ∆G◦
rxn is the standard (1 bar) Gibbs

energy of reaction, R is the gas constant, T is absolute temperature, and kp

is the equilibrium constant. kp = 1/p
O

5/2
2

, kp = pB2O2/pO2
2
, kp = pCO/p

O
3/2
2

,

kp = pCOpSiO/pO2 , for the highest to lowest traces, respectively. Standard
Gibbs energies of reactions were based on the Gibbs energies of formation of
compounds [?].
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CHAPTER IV

DETERMINATION OF THERMAL CONDUCTIVITY

OF ZRB2-BASED CERAMIC COMPOSITES

4.1 Experimental Procedure

Commercially-available ZrB2 (Grade B, d50 = 2.20 µm, H. C. Starck, GmbH),

α-SiC (Grade 8S490NDP, d50 = 0.88 µm, Superior Graphite, Chicago, IL),

and B4C (Grade HS, d50 = 0.8 µm, H. C. Starck) powders were used for raw

materials. The compositions of synthesized powder mixtures are given in Ta-

ble 3. Powders were ethanol-washed, and then mixed in aqueous suspension

Table 3: Sample Compositions for Thermal Diffusivity Specimens

Mole Percent Volume Percent Mass Percent
Code ZrB2 B4C SiC ZrB2 B4C SiC ZrB2 B4C SiC
ZBS2 77.39 7.27 15.34 80.36 8.92 10.72 89.57 4.12 6.31
ZBS10 64.25 6.04 29.70 70.32 7.82 21.87 82.63 3.80 13.57
ZBS26 37.55 3.53 58.92 46.15 5.13 48.72 62.36 2.87 34.77

with binder, dried, screened, uniaxially pressed into cylindrical pellets, cold

isostatically pressed, and then exposed to thermolysis, sintering, and hot iso-

static pressing heat (and pressure) treatment steps to form fully dense multi-

phase bodies. This synthesis methodology is described in detail in the previous

section. All HIPed specimens were 100% dense based on theoretical densities

calculated from the rule of mixtures. The specimens were 12.7 mm in diameter

by 2.0-2.1 mm in thickness.

Thermal diffusivity was measured by the flash method using a Netzsch
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LFA 427 instrument, following the “Standard Test Method for Thermal Diffu-

sivity by the Flash Method” standard ASTM E1461-01. The principle of the

measurement is to irradiate (neodynium YAG laser, 1.06 µm) one radial face

of the specimen with a short burst of energy (0.3-1.2 ms pulse width). An

infrared pyrometer (InSb IR detector) measures the back face temperature,

which quickly rises from the ambient temperature (established with a sur-

rounding furnace, feedback controlled via a thermocouple). If the specimen is

adiabatic with respect to its surroundings during the time period of the exper-

iment, then the back face temperature would rise to a saturation temperature

as temperature equilibriated throughout the part (generally 0.5-2◦C). In one

embodiment, the time required to reach the mid-point in temperature between

the starting ambient temperature and the saturation temperature, t1/2 would

be measured from the data. If it was further assumed that the energy pulse

time period was negligible compared to t1/2, then the Parker [42] expression

may be used to determine the thermal diffusivity:

D =
0.1388a2

t1/2

where a is the specimen thickness.

In this work, the above assumptions were not made; rather, the software

accounted for radial and axial heat loss and the effect of a finite pulse pe-

riod [43, 44]. A non-linear regression routine was used, fitting to the entire

time-temperature curve (∼2000 points), adjusting both diffusivity and loss

factor to best fit the data.

All the samples were coated with approximately 10 µm graphite to improve

the absorption of radiation. Samples of each of the three compositions were

evaluted at 25, 400, 800, 1200, 1600, and 1950◦C, with some variation, with

multiple measurements made at each temperature.
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4.2 Results and Discussion

Figure 25 shows the results of the laser flash thermal diffusivity measurements

on the three compositions. At any given temperature above 400◦C, thermal

diffusivity decreased with increasing SiC concentration. At room temperature,

the composition with the highest SiC concentration had the highest thermal

diffusivity.

Thermal diffusivity D (m2/s) was translated to thermal conductivity k

(W/m·K) using the specific heat cp (J/g·K) and densityρ (g/m3): k = Dρcp.

Heat capacities for the individual phases (ZrB2, SiC, and B4C) were taken from

JANAF [45] data, and converted to specific heats using molar masses. The

specific heats of the three compositions (shown in Figure 26) were calculated

from a mass-based rule of mixtures using the as-batched compositions. Room

temperature theoretical densities of the individual phases [46] were converted

to values at other temperatures using thermal expansion data for ZrB2 [47],

α-SiC [48], and B4C [49]. Linear coefficients of thermal expansion αl were con-

verted to volume coefficients αV by: αV = 3αl. The temperature-dependence

of theoretical densities were then determined by:

ρ =
ρ0

1 + αV ∆T

where ρ0 is the 25◦C density, and ∆T is the temperature difference with 25◦C.

These values were then used in a volume-based rule of mixtures calculation

of the temperature-dependent theoretical densities for the three compositions

(Figure 26). Using these data, the thermal conductivities of the three compo-

sitions were calculated (using linear interpolation to line-up data points), and

are shown in Figure 27. The temperature and compositional dependencies of

thermal conductivities followed similar trends as those followed by the original

thermal diffusvitity data.
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Figure 28 shows the thermal conductivities of SiC, B4C, ZrB2 and ZrB2-

SiC mixtures from the literature. The agreement among the various sources

for SiC and B4C is relatively good, while the two sources of ZrB2 and ZrB2-SiC

data are relatively more divergent. Above room temperature, the decrease in

thermal conductivity of SiC emulates that of a dielectric (though it is actually a

semiconductor), while ZrB2 behavior is more typical of an electrical conductor.

Thus for a multi-phase microstructure at room temperature, SiC is thermally

conductive relative to ZrB2, while at the high end of the measured spectrum,

SiC is thermally insulating relative to ZrB2. This is consistant with the trends

observed in Figure 27. Thermal conductivities in ZBS10 are∼10 W/m·K lower

than Tye et al.’s results [57] for a similar composition.

The literature data in Figure 28 were used in a finite-difference [59] calcu-

lation. The microstructures of the three compositions fabricated in this work

are shown in Figure 29. These microstructures were mathematically divided

up into 80 × 20 grids, and the majority phase in each cell was assigned to be

the thermal conductivity of that cell (shown as distinct colors in Figure 30b).

In the case of ZBS26, a small amount of porosity (likely grain pull-outs) was

indicated in the microstructure; cells with this as the predominant phase were

assigned a thermal conductivity of 0.05 W/m·K. Based on this construction,

the microstructures indicate compositions for ZBS2 (80.2% ZrB2, 10.9% SiC,

8.9% B4C), ZBS10 (68.2% ZrB2, 22.8% SiC, 9.0%B4C), and ZBS26 (47.9%

ZrB2, 48.0% SiC, 4.1% B4C), which are remarkably close to the as-batched

compositions (volume percent) listed in Table 3.

The finite difference method was applied as depicted in Figure 31. Nodes

were assigned to be at the centers of each cell. The temperatures at the left and

right edges of the microstructure (cell array) were assigned to fixed values of

5◦C above (left side) and 5◦C below (right side) a specified temperature. Heat
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Single crystal SiC (R66) plotted in Watari et al. [50], based on Slack [51]. b.
Mixture of α and β SiC hot pressed with BeO sintering aid, 100% dense [50].
c. (pre-) Hexoloy SA (Saint Gobain, Niagara Falls, NY) α-SiC, 98% relative
density [48]. d. 95 vol% α-SiC - 5 vol% β-SiC, hot-pressed [52]. e. 76 vol% β-
SiC - 24 vol% α-SiC, hot-pressed [52]. f. B4C corrected for porosity [53]. g. B4C
data of Gilchrist and Preston [54] as plotted by Bouchacourt [53]. h. Spark-
plasma sinterered B4C (not isotopically enriched), 98% relative density [55].
i. EP (Eagle-Pitcher) hot-pressed B4C [56]. j. Hot-pressed B4C, 98% relative
density [56]. Right: literature values of thermal conductivity for ZrB2 and
ZrB2-SiC. k. Hot-pressed ZrB2 - 20 vol% SiC [57]. l. Hot-pressed ZrB2 [57].
m. Hot-pressed ZrB2 [58]. n. Hot-pressed ZrB2-30 vol% SiC [58].
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flow was assumed to be two-dimensional, with the third dimension being of

unit dimension. The upper and lower edges were assumed to be adiabatic. The

adiabatic boundary for the upper and lower edges was positioned directly on

the nodes for mathematical convenience. Steady state heat flow was assumed,

and the temperature gradients between neighboring cells was assumed to be

linear. Under these conditions, the sum of heat flows into and out of each node

must be zero. Such equations fall into categories a-i, as shown in Figure 31

and the following expressions:

a.
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1
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+ 1
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i. km,n (Tm,n − Tright) +
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1
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+
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For the 80 × 20 matrix, this generated 1600 simultaneous equations. Code

for setting up the matrix and solving the simultaneous equations by matrix

inversion was written in Visual Basic 4.0. The temperature-dependent ther-

mal conductivities of the individual phases were taken as the average of the

literature values (single-crystal SiC excluded). A depiction of the solution set

of node temperatures for ZBS10 at 1500◦C is shown in Figure 30c.

From these temperatures, the thermal conductivities of the multi-phase

microstructures were then determined by calculating the heat flux from the

left-end reservoir to the left edge nodes, and then determining an effective

thermal conductivity through the entire microstructure based on a 10◦C tem-

perature gradient. The results of this calculation are shown in Figure 32.

These data are consistent with those experimentally derived for these composi-

tions (Figure 27); above 400◦C, thermal conductivity decreased with increasing

SiC concentration, and at room temperature, the specimen with the highest

SiC content had the highest thermal conductivity. These data were lower

in thermal conductivity for a given composition and temperature than those

experimentally determined; agreement was closer at higher temperatures.

The finite difference method was used for a separate calculation in which

the thermal conductivities of SiC and B4C were taken as the average of liter-

ature values, as before. The thermal conductivities of the three compositions

were taken from the experimentally-derived results herein, and the values of the

thermal conductivities of the ZrB2 phase was back calculated. The determina-

tion was based on a numerical search routine written into the code, iterating

seed values of kZrB2 , comparing the resulting calculated multi-phase thermal

conductivity to that experimentally determined, generating a corrected seed
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value, and so on, until the calculated and measured composite thermal conduc-

tivites were within 0.1 W/m·K. The results of these calculations are shown in

Figure 33. With one exception (ZrB2:ZBS26 at 1600◦C), calculated thermal

conductivities were relatively constant at ∼88-104 W/m·K, which is higher

than the two literature data sets in Figure 28, being closer to the results of

Tye et al. [57] than Zimmermann et al. [58]. The solution for ZBS26 at 1600◦C

was based on an extrapolated value of the averaged literature thermal conduc-

tivity for SiC from lower temperature values, which is likely unreliable. Since

ZBS26 had the highest concentration of SiC, the 1600◦C calculated thermal

conductivity of ZrB2, now a minority phase, was substantially shifted upward

to compensate for the assumed value of thermal conductivity of SiC.

4.3 Conclusions

Thermal conductivities in the temperature range 25-2000◦C were calculated

from laser-flash thermal diffusivity data, using specific heat, theoretical den-

sity, and thermal expansion data. The more dielectric-like behavior of the

SiC imbued a greater temperature sensitivity to ZrB2-SiC-B4C multiphase

ceramics with increasing SiC content. Finite difference calculations, using

averaged literature values for the thermal conductivities of individual ZrB2,

SiC, and B4C phases, correctly predicted the trends observed from experi-

mental measurements; the composition with the highest SiC content (48.7

vol%) showed the highest room temperature thermal conductivity, but above

∼400◦C, demonstrated the lowest thermal conductivity. The temperature-

dependent thermal conductivity of pure ZrB2 was back-calculated using finite-

difference calculations, experimental results for multi-phase compositions, and

averaged literature values for SiC and B4C; it was relatively constant (88-104

W/m·K) over the full evaluated temperature range.
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Figure 29: Fracture-surface microstructures of the three evaluated composi-
tions. Phases are identified by compositional contrast as ZrB2, SiC, and B4C,
light to dark, respectively.
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Figure 30: a. Electron micrograph of a ZBS10 fracture surface. b. 80 × 20
grid with colors assigned to each cell based on the majority phase in that cell.
c. Cells with rainbow coloring to indicate relative temperature; violet indi-
cates highest temperature and red indicates lowest temperature. For ZBS10
at 1500◦C: kSiC = 21.0 W/m·K, kB4C = 9.06 W/m·K, kZrB2 = 73.78 W/m·K,
based on averages of literature values.
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Left edge (fixed temperature of 5◦C above designated temperature). e. Right
edge (fixed temperature of 5◦C below designated temperature). f. Upper left
corner. g. Lower left corner. h. Upper right corner. i. Lower right corner.
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Figure 32: Thermal conductivity of three compositions calculated using aver-
aged literature values of ZrB2, SiC, and B4C, the distribution of phases based
on a grid overlay of SEM micrographs, and the finite difference method.
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Figure 33: Thermal conductivity of ZrB2 calculated based on thermal conduc-
tivities of ZrB2-SiC-B4C multi-phase microstructures and averaged literature
thermal conductivities for SiC and B4C.
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CHAPTER V

MEASUREMENT OF EMITTANCE OF

ZRB2-BASED CERAMIC COMPOSITES

5.1 Experimental Procedure

Theoretically dense test specimens were fabricated using techniques developed

by Peng and Speyer [4]. Commercially available powders were used for raw

materials. The major crystalline phase(s), grade, and suppliers are listed for

each powder in Table 4.

Table 4: Raw Material Characteristics for Emittance Specimens

Phases Particle Size Supplier
ZrB2 ZrB2 d50 = 2.20 µm Grade B, H. C. Starck, GmbH
B4C stoichiometric B4C d50 = 0.8 µm Grade HS, H. C. Starck, GmbH
SiC α-SiC d50 = 0.88 µm 8S490NDP, Superior Graphite, Chicago, IL

The composition of the synthesized powder mixture is given in Table 5.

The specimens were produced following the same procedures as are detailed

Table 5: Sample Composition for Emittance Specimens

Mole Percent Volume Percent Mass Percent
Code ZrB2 B4C SiC ZrB2 B4C SiC ZrB2 B4C SiC
ZBS10 64.25 6.04 29.70 70.32 7.82 21.87 82.63 3.80 13.57

in the High Temperature Study portion of this document. Rectangular speci-

mens were commercially machined (Advanced Ceramics Manufacturing, Tuc-

son, AZ) to their final dimensions as self-supporting ribbons sized roughly 1

cm in height, 3 cm in length, and 0.3 mm in thickness in the thinned regions.
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The experimental setup consisted of three main components: the Ribbon

Testing Unit (RTU), the power control system, and the data collection appa-

ratus. A schematic of the experimental setup can be seen in Figure 34.

The Ribbon Testing Unit (RTU) is a custom-designed and built chamber

which supported the specimens and allowed observation of the specimens while

they were at temperature (generally 1200◦C) in a controlled atmosphere. The

specimens were positioned in the center of the unit upon two large copper

feed-through bus bars and held in place by a custom copper clamping system

which provided an electrical connection to the thickened ends on either side of

the thinned region. The specimens were oriented such that the broad sides of

the ribbons (considered to be the ”front” and ”back”) faced modular viewports

through which a spectral radiometer and a pyrometer, respectively, could make

observations (an accessory viewport vantage point was designed to observe the

front of the ribbon at an angle of 45◦ from the surface normal, but this was

not used in this work). The viewports were of a modular configuration to

accommodate the full range of the measurement capabilities of the spectral

radiometer. Specimens were loaded into the RTU via an O-ring sealed plate

on the top of the unit. Accessory instrumentation could be mounted within

the chamber and controlled via a 12-pin data passthrough attached to an

accessory modular access port. Atmosphere control was accomplished via two

6.35 mm gas flow tubes on opposite sides of the ribbon. The inlet tube provided

ultra-high purity argon at a known flowrate, and the outlet tube led to either

a mechanical vacuum pump or a bubble flowback check valve, selected via

a 3-way junction. Internal pressure of the chamber was monitored with a

mechanical pressure guage mounted downstream on the outlet line.

The power control system itself consisted of three basic parts: a pyrometer

76



input, a computer running a control program, and a power supply unit con-

trolled by output from the computer. Beginning with the input: the temper-

ature of the specimens was observed from their ”back” face through a fused

silica viewport by a two-color pyrometer (Modline 5R, IRCON, Inc, Santa

Cruz, CA) focused on a circle approximately 4 mm diameter in the center of

the heated ribbon. These data were rapidly queried by a custom ”PI” control

program written in Visual Basic (the control software was capable of ”PID”

control, but no derivative control was deemed necessary given the negligible

thermal momentum of the ribbon specimens). The two-color pyrometer was

blind to temperatures below 1000◦C, so specimens were heated to this point

by a gradual linear power ramp until a valid signal was reported by the py-

rometer. The output of the control system consisted of a 4-20 mA signal to an

SCR which moderated the power delivered from a 280 V 60 Hz single-phase

wall source to a series of two step-down transformers rigged to provide ∼10 V

potential across the ribbon samples.

Data collection was accomplished with a computer-controlled spectral ra-

diometer (OL Series 750 Automated Spectroradiometric Measurement Sys-

tem, Gooch & Housego (formally Optronic Laboratories), Orlando, FL) which

diffracts incoming radiation on a grated mirror mounted on a rotating turret,

thereby directing specific wavelengths to a detector. The unit was capable of

evaluating the spectral radiance of the specimens over a range of wavelengths

from 350 to 16000 nm using one of two detectors: a silicon detector (350

to 1000 nm), and a liquid nitrogen-cooled CdHgTe detector (1000 to 16000

nm)(at 1400 K, over 98 percent of blackbody radiation is emitted at wave-

lengths less than 14000 nm [6]). The spectral radiometer itself was calibrated

against a specially-constructed steel blackbody cavity mounted within a MoSi2

furnace at 1500◦C (verified independently with a trusted thermocouple) and
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shielded from excess oxidation by a flow of dry argon gas. The radiometer was

equipped with two reflex telescopes: one with optics constructed from fused

silica, the other with optics of ZnSe, which allowed measurements over the

entire detectable spectrum to be made upon a target area less than 1 cm in

diameter from a distance of 90 cm. The spectral radiometer itself was not

air-tight, but instead featured a purge gas port through which a positive pres-

sure of shield gas could be provided to flood the unit. The optical path from

the radiometer to the RTU was contained by a length of PVC pipe which was

itself outfitted with a purge gas port. To minimize the effect of atmospheric

absorbtion due to the presence of H2O and CO2 across some bands of the

infrared spectrum on the measurements made in those ranges, a shield gas of

dry synthetic air was flooded through the radiometer and its line of sight to

the specimen for a period of no less than four hours prior to measurement,

and continued throughout each measurement. A typical experiment would be-

gin with a prepared ribbon specimen. Samples first underwent oxidation in a

MoSi2 furnace in stagnate air on a zirconia setter at 1500◦C for 1 hour (in situ

oxidation of the ribbons was attempted by running a ribbon with the RTU

open to the atmosphere to 1400◦C, but the specimens broke near the setpoint

and the aforementioned higher-yield oxidation procedure was selected). The

oxide coating on these samples was ground by hand from the top and bottom

surfaces of the thickened regions with dry 220 grit SiC sandpaper such that

an electrical connection could be achieved in the RTU (a handheld multimeter

set to measure the resistance of the sample was used to check the progress

of the oxide removal, with sub-ohm readings being considered indicative of a

fully cleaned surface). Samples were loaded into the copper clamping system

(which was periodically sanded with 220 grit SiC paper to remove trace oxida-

tion at the contact points) and the chamber was evacuated and backfilled with
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ultra-pure argon three times. The argon was then set to flow through the RTU

at a typical rate of 100 cc/min, and a measurement program was prepared on

the computer’s proprietary software suite which controlled the radiometer and

collected its data. A typical control program for the power supply system was

then loaded on its controlling computer: linear power ramp to pyrometer de-

tection range (1000◦C), then 200◦C per minute to 1200◦C, and a dwell period

of 60 minutes before a transition to zero power instruction. The overhead

lights in the room were lowered both to limit signal pollution and to allow for

better observation of the sample through the auxiliary viewport of the RTU

in order to anticipate or troubleshoot failures.

Most ribbon specimens which were tested over the course of this project

failed during heating to the setpoint. More cautious heating rates (30◦C/min

from pyrometer control to setpoint) were attempted, but did not yield a lower

specimen mortality rate; the cause of failure is believed to have been associated

with defects within the specimens resulting in regions of uneven heating which

then led to local thermal shock cracking which quickly resulted in catastrophic

failure. Emittance measurements were not begun until the specimens had

attained a temperature within 3◦C of the specified setpoint (the control system

was found to reliably hold the observed specimen temperature to within this

range of the setpoint during steady operation). Due to the changing nature

of the surfaces, identical measurements were conducted one after the other to

characterize any changes over the time at temperature.

5.2 Results and Discussion

Spectral radiosity measurements were performed in two separate batches cor-

responding to the availability of machined ribbon specimens. Due to unex-

pected damage to the original control pyrometer necessitating lengthy repairs,
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the first batch of measurements were performed under the control of a dif-

ferent pyrometer than that which was used for the second batch (the first

batch pyrometer being a unit on loan from the distributer). The make, model,

and settings of the pyrometers were identical, however the calibrations of the

two units, performed by the supplier, were seemingly different. Figure 35

shows the spectra from 1-6 µm of two similarly-oxidized ZBS10 ribbons held

at a pyrometer-reported temperature of 1200◦C. Attempts to independently

measure the temperature of the incandescent ribbon samples by means of a

thermocouple were thwarted both by inadequate thermal contact between the

weld point and the ribbon to be measured, as well as a reaction between the

metal leads of the thermocouple and the oxide surface at temperature.

A less-independent measure of actual ribbon temperature can be made using

Wien’s displacement law,

λmax =
b

T
(12)

Wherein λmax is the peak wavelength, b Wien’s displacement constant (here

2897768.5 nm·K), and T the absolute temperature.

While Wien’s displacement law assumes blackbody or greybody behavior

with constant emittance, the resulting deviation is slight (∼5◦C at the tem-

peratures considered) if the slope of the emittance is modest at and around

the wavelength of peak radiance, λmax. Assuming applicability of Wien’s dis-

placement law for the spectra collected at a pyrometer-reported temperature of

1200◦C, the spectra collected in the first batch indeed indicates a temperature

of ∼1200◦C (λmax ∼1.97µm), while the spectra collected in the second batch

indicate a temperature of ∼1220◦C (λmax ∼1.94µm). Figure 36 displays these

data beneath the respective blackbody values as described by the Planck equa-

tion for the temperatures indicated. The spectral emittance values, calculated
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as a ratio of observed radiance to that of a blackbody at equal temperature,

are displayed among Figures 37, 38, and 39. These figures indicate a good

correspondence between the data gathered across the two batches for the 1200

and 1300◦C-range specimens (data were not collected at 1100◦C in the first

batch).

Countering the effect of the increasing emittance with wavelength is an

observed decline in emittance over time, as evidenced by the lower radiance

values of the secondary runs from the second batch. All data presented were

collected under a flowing Ar atmosphere, within which the borosilicate oxide

layer is unstable. At each temperature, the two emittance datasets were col-

lected over the course of a single heating of a newly oxidized ZBS10 ribbon.

Two identical data collection programs were run by the spectral radiometer,

each lasting ∼30 min and occurring immediately one after the other. Com-

parison of the differences in emittance between these two runs (Fig 40) reveals

a fairly constant drop of magnitude ∼0.02 in emittance between the first and

second observations at 1120◦C, ∼0.015 at 1220◦C, and ∼0.01 at 1330◦C. The

alteration of the emitting surfaces of the ribbon specimens is evident in opti-

cal cross-sections shown in Figure 41. As the time span between measurement

at each wavelength value was effectively equal, an effectively constant drop

in the emittance is indicative of an overall consistent, linear decline in emit-

tance with time at the temperatures considered. Assuming a linear drop in

emittance at the constant rates displayed by the traces in Figure 40, spectral

emittance plots may be modified to account for the decline in emittance values,

which models the anticipated spectrum of a specimen not undergoing loss of its

borosilicate layer. The results of this correction are displayed in Figures 42, 43,

and 44. Error bars have been placed upon the data points to acknowledge the

aforementioned uncertainty in precisely determining temperature.
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Observations at higher temperatures were attempted, but the entirety of

the borosilicate oxide layers was apparently lost from the ribbon surfaces over

the course of the 60 min holds at pyrometer-reported temperatures of ”1400”

and ”1500”◦C, resulting in significant change to the spectral emittance over

time, which serves to invalidate any attempt at accurate temperature deter-

mination by optical examination. The lack of a borosilicate layer upon the

specimens which received such heat treatment is suggested by the absence of

a specularly-reflecting characteristic of their surfaces (as shown in Figure 45)

and an absence of such a layer in optical micrographs of their cross sections

(Figure 46, as compared to the samples in Figure 41). A striking difference is

evident in the comparison of XRD spectra taken from the hot zone surfaces

of the ribbons (Figure 47), which suggests a complete lack of an amorphous

phase upon the specimens heat treated at the two highest temperatures.

5.3 Conclusions

Due to unanticipated difficulties encountered with the data collected from

the Ribbon Testing Unit as well as unexpectedly low yields of usable ribbon

specimens, the results of this portion of the overall research project failed to

meet many of the objectives which had been outlined in the proposal of this

work, which called for a precise determination of spectral emittance from a

variety of compositions from the thermogravimetric portion of the study. De-

spite these shortcomings, the data which were generated and interpreted do

demonstrate that the most successful composition identified by the oxidation

studies, ZBS10, when oxidized, has a fairly high value of emittance as com-

pared to those reported in the literature for the constituents of the oxide layer.

The high, near-grey emittance appears to result from the rough zirconia struc-

tures supported within the borosilicate matrix which forms the oxide scale, as
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loss of the borosilicate is commensurate with a decline in observed emittance.
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Figure 34: Schematic of experimental setup for thermal emittance experi-
ments.
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Figure 35: Experimental data taken from two ZBS10-composition ribbons at
a pyrometer-reported temperature of 1200◦C. Symbols are meaningless save
to identify the curves; the resolution of the Batch 1 scan is 20 nm, the Batch
2 scans 10 nm. For both batches, a newly oxidized specimen was used, so
the discrepancies in these results are indicative of change elsewhere in the
experimental setup.
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Figure 36: Experimental data curves from oxidized ZBS10-composition rib-
bons are shown beneath the calculated blackbody emittance curves as given by
the Planck equation for the indicated temperatures, 1220 and 1200◦C, which
correspond to the Wien’s displacement law-derived temperatures for the Batch
2 and Batch 1 ribbons, respectively. Symbols are meaningless save to identify
the curves; the resolution of the Batch 1 data is 20 nm, and that of the Batch
2 data is 10 nm.
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Figure 37: Emittance values calculated by dividing the experimental data val-
ues of spectral radiance from the oxidized ZBS10-composition ribbon held at a
pyrometer-reported temperature of 1100◦C by the spectral radiance values of a
blackbody at 1120◦C obtained from the Planck equation. Shaded regions indi-
cate wavelength ranges where atmospheric interference due to the absorption
characteristics of CO2 and H2O perturbed the data (positive displacement due
to differences in experimental conditions with those of the calibration scan).
Symbols are meaningless save to identify the curves; the resolution of the data
is 10 nm.
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Figure 38: Emittance values calculated by dividing the experimental data
values of spectral radiance from the oxidized ZBS10-composition ribbons held
at pyrometer-reported temperatures of 1200◦C by the spectral radiance values
of a blackbody at the temperatures indicated by applying Wien’s displace-
ment law to the experimental spectra. Shaded regions indicate wavelength
ranges where atmospheric interference due to the absorption characteristics of
CO2 and H2O perturbed the data (positive displacement due to differences
in experimental conditions with those of the calibration scan). Symbols are
meaningless save to identify the curves; the resolution of the Batch 1 data is
20 nm, and that of the Batch 2 data is 10 nm.
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Figure 39: Emittance values calculated by dividing the experimental data
values of spectral radiance from the oxidized ZBS10-composition ribbons held
at pyrometer-reported temperatures of 1300◦C by the spectral radiance values
of a blackbody at the temperatures indicated by applying Wien’s displace-
ment law to the experimental spectra. Shaded regions indicate wavelength
ranges where atmospheric interference due to the absorption characteristics of
CO2 and H2O perturbed the data (positive displacement due to differences
in experimental conditions with those of the calibration scan). Symbols are
meaningless save to identify the curves; the resolution of the Batch 1 data is
20 nm, and that of the Batch 2 data is 10 nm..
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Figure 40: Differences in the observed emittance values obtained during the
subsequent observations of the second batch of oxidized ribbons held at the
apparent temperatures of 1120, 1220, and 1330◦C. Data points obtained by
subtracting the emittance values of the first observation from those of the
second; the difference corresponds to the change in apparent spectral emit-
tance after ∼30 min at the indicated temperature. Shaded regions indicate
wavelength ranges where atmospheric interference due to the absorption char-
acteristics of CO2 and H2O perturbed the data (positive displacement due
to differences in experimental conditions with those of the calibration scan).
Symbols are meaningless save to identify the curves; the resolution of the data
is 10 nm.
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Figure 41: Optical micrographs of polished cross-sections of the ribbon speci-
mens held for 60 min at the indicated temperatures. The untransformed bulk
is visible as the bright region at the base of the images. The Si-depleted zone
sits above the untransformed bulk. White hatch marks on the left hand side of
the images denote the regions of observed borosilicate glass. The region above
these hatch marks consists of the resin used to support the specimens during
polishing.
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Figure 42: Individual data points shown indicate the spectral emittance values
observed during the first instance of data collection from an oxidized ZBS10-
composition ribbon at 1120◦C plus a linear rise of magnitude 0.02 over the
range of 1-6 µm in accordance with the decline in emittance observed by
comparison with the second instance of data collection. Upper and lower error
bars indicate the change to these data should the assumed temperature be
lowered or raised by 5◦C, respectively. Shaded regions indicate wavelength
ranges where atmospheric interference due to the absorption characteristics of
CO2 and H2O perturbed the data (positive displacement due to differences in
experimental conditions with those of the calibration scan).
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Figure 43: Individual data points shown indicate the spectral emittance values
observed during the first instance of data collection from an oxidized ZBS10-
composition ribbon at 1220◦C plus a linear rise of magnitude 0.015 over the
range of 1-6 µm in accordance with the decline in emittance observed by
comparison with the second instance of data collection. Upper and lower error
bars indicate the change to these data should the assumed temperature be
lowered or raised by 5◦C, respectively. Shaded regions indicate wavelength
ranges where atmospheric interference due to the absorption characteristics of
CO2 and H2O perturbed the data (positive displacement due to differences in
experimental conditions with those of the calibration scan).
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Figure 44: Individual data points shown indicate the spectral emittance values
observed during the first instance of data collection from an oxidized ZBS10-
composition ribbon at 1330◦C plus a linear rise of magnitude 0.01 over the
range of 1-6 µm in accordance with the decline in emittance observed by
comparison with the second instance of data collection. Upper and lower error
bars indicate the change to these data should the assumed temperature be
lowered or raised by 5◦C, respectively. Shaded regions indicate wavelength
ranges where atmospheric interference due to the absorption characteristics of
CO2 and H2O perturbed the data (positive displacement due to differences in
experimental conditions with those of the calibration scan).
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Figure 45: Photograph of the observed ”front” surfaces of the post-heat-
treated ribbon specimens from Batch 2. From left to right, the pyrometer-
reported temperatures whereat each specimen was held for 60 min in flowing
Ar are 1100, 1200, 1300, 1400, and 1500◦C. Note the lack of specular reflection
from the central portions of the ribbons held at the two highest temperatures.
The marks on the ruler at the base of the image are 1 mm apart.

1400°C 1500°C

10 µm

Figure 46: Optical micrographs of polished cross-sections of the ribbon spec-
imens held for 60 min at the indicated pyrometer-reported temperatures. The
untransformed bulk is visible as the bright region at the base of the images.
The Si-depleted zone sits above the untransformed bulk. For these tempera-
tures, there is no observed borosilicate glass. The region above the Si-depleted
zone consists of the resin used to support the specimens during polishing.
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Figure 47: Portion of the XRD spectra taken from the hot zones of the second
batch of heat-treated, oxidized ZBS10-composition ribbons, identified here by
their pyrometer-reported dwell temperatures in degrees Centigrade, as well as
a scan of an oxidized ZBS10-composition ribbon having not undergone heat
treatment in the RTU. Note the presence of a slight amorphous hump for all
specimens except the two held at the highest temperatures for the 60 min
dwell.
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