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High tech provides the excitement and the headlines.  

–Peter Drucker, Innovation and Entrepreneurship 
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SUMMARY 

This dissertation expands on the economic geography literature on how 

and why innovation clusters spatially by taking a closer look at two correlated 

phenomena: regional specialization and firm clustering. While existing studies 

note that innovative regions are often highly specialized and highly clustered, 

further research is needed on the relative contributions of specialization and 

clustering to regional innovation. I examine these contributions by focusing on 

one key element of any regional innovation project: the labor market for 

scientific and technical professionals. 

The foundation for this study is a typology of regions based on regional 

specialization and firm clustering. I use this typology to answer one key 

research question: how specialization and clustering affect wages and 

recruitment methods in science-based industries. 

I create my typology using firm location data from the Photonics Buyers’ 

Guide, a leading trade publication in the photonics industry; I use the 

standardized location quotient and the average nearest neighbor distance as 

metrics of regional specialization and firm clustering, respectively. I investigate 

small firms’ labor market strategies using job search and wage data from the 

2012 SPIE salary survey of employees in the photonics industry. I also examine 

how people-based and place-based policies for strengthening scientific and 

technical labor markets change when viewed through the lens of specialization 

and clustering. 
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I selected the photonics industry as an example of a science-based industry 

for three reasons: its diversity of applications, its policy importance, and its 

unique colocation of design and manufacturing. 

Regional specialization and firm clustering, while correlated, do not always 

go hand in hand. By disentangling the effects of specialization versus clustering, 

this dissertation contributes to the literature on the spatial analysis of 

innovation. It also offers policymakers a heuristic for deciding on the 

importance of being known for a particular industry (regional specialization) 

and creating dense innovation districts (firm clusters) through preferential 

zoning or other mechanisms.
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CHAPTER 1: INTRODUCTION 

Agglomeration economies fascinate economic geographers and pop culture 

enthusiasts alike. From an economic geography perspective, agglomeration 

economies illustrate the tension between the benefits and costs of 

concentrating economic activity in a small physical area. When firms and their 

suppliers colocate in one region, they trade goods, people, and ideas more 

efficiently. But this colocation also elevates housing prices and crowds 

transportation systems. In pop culture, Silicon Valley is a case in point. While 

goods, people, and ideas circulate more quickly within the Valley, the spatial 

density of economic activity has added pressure to a limited housing supply 

and an inadequate transportation infrastructure. And yet engineers keep 

flocking to Silicon Valley in a twenty-first century gold rush, lured by the 

promise of six-figure technology jobs.  

Economic geographers and industry analysts have not yet explained how 

agglomeration economies influence wages and recruitment methods. While 

there is some evidence of a wage premium in agglomeration economies, the 

mechanism of this premium remains unknown. Perhaps the larger number of 

qualified job seekers, combined with the larger number of firms hiring, leads to 

increased competition for talent that bids up wages. Perhaps the physical 

proximity of firms encourages workers to discuss market rates for salaries with 
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competitors more regularly. Or perhaps an entirely different mechanism is 

responsible for the wage premium in agglomeration economies. 

Similarly, while there is some evidence of the importance of strong labor 

market intermediaries (LMIs) in agglomeration economies (Benner 2002; 

Christopherson and Clark 2007; Saxenian 2002), the degree to which such LMI 

roles are limited to agglomeration economies remains uncertain. Perhaps the 

larger numbers of workers and firms creates an environment too complex to 

navigate without LMI assistance. Perhaps LMIs function similarly in other 

regional economies, even without industry-specific agglomerations. Or perhaps 

it is a mixture of these two narratives. 

In this dissertation, I focus on agglomeration economies in science and 

technology (S&T) industries. Both federal and regional policymakers prioritize 

S&T investment. At the federal level, investments in S&T industries span the 

technology lifecycle from early-stage research in universities to Small Business 

Innovation Research (SBIR) and Small Business Technology Transfer (STTR) 

grants for small businesses to commercialize new inventions to multi-million 

dollar defense technology contracts. At the regional level, investments in S&T 

industries are inextricably intertwined with narratives of reinvention. Whether 

through explicit attempts to recreate Silicon Valley or through support for 

biotech, nanotech, and other technology clusters, regions compete with one 

another for the firms, workers, and prestige American culture attaches to 

advances in science and technology.  
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In the S&T policy of the post-World War II boom, manufacturing was a 

central focus for its ability to absorb scientific advances and its stability as an 

employer. Then, over the next several decades, factories shut down and 

relocated overseas, seeking lower costs. Journalists and social scientists alike 

spoke of the decline of manufacturing, and wondered what could take its place. 

The rise of service jobs—for both the “creative class” of white-collar 

professionals (Florida 2002) and the “contingent labor” (Peck and Theodore 

2001) of the new blue-collar world—raised questions about the relationship 

between advances in S&T and labor markets. In the old model—or what Stone 

(2004) would call production regime—advances in S&T were translated into 

better practices on the factory floor, and thus directly linked to blue collar 

labor. In the old model, career ladders were clear, pensions were guaranteed, 

and unions provided access to collective bargaining. In the new model, career 

ladders span more organizations (Arthur and Rousseau 1996), pensions are 

uncertain or nonexistent (Clark, Strauss and Knox-Hayes 2012), and collective 

bargaining is rare (for a few counterexamples, see Frommer (2003) on film, and 

Van Jarrsveld (2004) and Brophy (2006) on tech workers in Seattle).  

And then, at the height of the offshoring narrative, manufacturing began to 

reemerge in the United States in three ways: (1) through “onshoring”—firms 

returning to the United States from abroad; (2) through maker movements, 

small scale craft production detailed in Clark (2014); and (3) through advances 

in industries like photonics, which colocate design and manufacturing because 

doing it any other way is simply too expensive. In this dissertation, I use the 

photonics industry as a case study. Photonics is the science and technology of 
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light. End products derived from photonics research include fiber optic cables, 

magnetic resonance imaging (MRI) machines, lasers, and more. Because 

photonics influences such a wide variety of industries, from 

telecommunications to medicine to defense, it is what researchers call a 

platform technology. Policymakers often target platform technologies for 

investment as a mechanism to transform many industries. For example, in the 

United States, the Integrated Photonics Institute for Manufacturing Innovation 

(IP-IMI)—announced in November 2014—is a $110 million federal investment 

in photonics, managed by the Department of Defense. 

This dissertation addresses economic geographers’ gap in understanding 

how agglomeration economies influence wages and recruitment methods by 

disentangling two related aspects of agglomeration economies: clustering and 

specialization. Clustering refers to the physical proximity of firms from a single 

industry in a metropolitan area. Specialization refers to the degree to which a 

single industry is under- or over-represented in a metropolitan area compared 

to the nation. The central research question of this dissertation is this: 

RQ: How do specialization and clustering affect wages and 
recruitment methods in science-based industries? 

Distinguishing between specialization and clustering in this way allows me 

to test whether the wage premium scholars find in agglomeration economies 

results from the relatively higher number of firms and workers (specialization), 

the close physical proximity of those firms and workers (clustering), or 

something else entirely. Similarly, this distinction allows me to test whether the 

relative prevalence of various recruitment methods in agglomeration 
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economies results from specialization, clustering, or another factor. In doing so, 

this dissertation provides the foundation for future work on how different 

aspects of agglomeration economies affect labor market processes including, 

but not limited to, wage setting and recruiting. 

My research question assumes that specialization and clustering are 

empirically distinct phenomena. In this dissertation, I show that while 

specialization and clustering are correlated (r = -0.78, p < .001), there exist 

regions that are high in one dimension and low in the other. For example, the 

Los Angeles-Long Beach-Santa Ana, CA metropolitan area is low in 

specialization and high in clustering for photonics, and the Worcester, MA 

metropolitan area is high in specialization and low in clustering for photonics. 

This analysis is based on a dataset I constructed of over 3,000 firms in the 

photonics industry. I obtained the firm data from the Photonics Buyers’ Guide 

(PBG), a leading trade publication in the industry that includes records for firm 

names, founding years, addresses, and websites. I created regional profiles of 

specialization and clustering by geocoding the firm data, assigning each firm to 

its 2010 Census metropolitan area using a point in polygon analysis, and 

calculating standardized location quotients (specialization) and average nearest 

neighbor distances (clustering) for each metropolitan area. 

Given that specialization and clustering are indeed empirically distinct, I 

moved forward with my research question: How do specialization and 

clustering affect wages and recruitment methods in science-based industries? I 

answered this question through a series of OLS regressions. The first set 

predicted the log of an employee’s annual salary from specialization, clustering, 
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and a set of controls known to be associated with wages (gender, education, 

years of experience, and employer size). The second set predicted how an 

employee found a job from the same set of independent variables: 

specialization, clustering, and controls. I found that clustering, not 

specialization, is responsible for the wage premium we find in agglomeration 

economies. Moreover, I found that neither clustering nor specialization have an 

effect on recruitment methods in agglomeration economies. 

The source of employee data for my OLS regressions is a survey of over 

3,000 employees in photonics: the 2012 SPIE Salary Survey. SPIE is one of the 

largest photonics industry associations in the world; its name is not an 

acronym. Jennifer Clark and I helped design the survey. Krisinda Plenkovich, 

SPIE’s policy director, provided us with the anonymized responses. I measured 

wages and recruitment methods through two survey questions: 

[1] What was your total 2011 annual pre-tax earnings at your 
current job, including all salary and bonuses? 

[2] How did you find your current or original position at 
your present employer? (Select one) 

• Printed job advertisement (newspaper or journal) ! 
• Online job advertisement ! 
• In-person job fair ! 
• University career office ! 
• Alumni network ! 
• Professional association ! 
• I was recruited ! 
• Private placement agency ! 
• Public/government placement agency ! 
• Networking or referral through personal contact ! 
• I contacted the employer directly (no job 

was !advertised) ! 
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• Other ___________________________________ ! 
 

I coded the second question according to Granovetter’s (1995) three 

categories of finding a job: networking, directly contacting an employer when 

no position is advertised, and labor market intermediaries such as job boards 

and recruiters. I geocoded each employee response and assigned each response 

to its 2010 Census metropolitan area using a point in polygon analysis. I then 

appended the specialization and clustering statistics for the employee’s 

metropolitan area to each employee record using a join based on the 

metropolitan area ID. The resulting dataset contained variables for employee 

wages, recruitment methods, demographic controls, clustering, and 

specialization. 

Given that clustering, rather than specialization, accounts for the wage 

premium in agglomeration economies, policymakers may benefit from 

reassessing the place-based versus people-based policies debate. Place-based 

policies—from enterprise zones to neighborhood-specific payroll tax incentives 

for technology firms—can be thought of as a means of encouraging clustering. 

People-based policies—from vocational skills training programs to broad-

based tax credits for specific industries—can be thought of as a means of 

encouraging specialization. Place-based policies are not always better than 

people-based policies. Rather, place-based and people-based policies offer 

complementary approaches. They both have their place in a policy portfolio. 

The remainder of the dissertation is structured as follows. Chapter 2 

reviews the relevant literature, highlights the gaps in our knowledge, and 
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illustrates how my research question addresses one of these gaps. Chapter 3 

explains my selection of methods. Chapter 4 presents my results. Chapter 5 

concludes with a discussion of the research results in the context of relevant 

literature, policy recommendations based on the research, and directions for 

future work. 
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CHAPTER 2: LITERATURE REVIEW 

The central research question of this dissertation is this: 

RQ: How do specialization and clustering affect wages and 
recruitment methods in science-based industries? 

I approach this question through the lens of relational economic geography. 

In short, it is known that economic activity is unevenly distributed across social 

and spatial structures, and that social structures both shape and are shaped by 

economic structures. While much is known about how networks and labor 

market segmentation affect labor market outcomes, little is known about how 

agglomeration affects these outcomes. I add to the growing literature on the 

relationship between agglomeration and labor market outcomes by 

distinguishing between two related aspects of agglomeration—specialization 

and clustering—in order to test their effects on wages and recruitment 

methods. 

Relational economic geography: the social and spatial 
embeddedness of economic activity 

Economic phenomena both shape and are shaped by the social contexts 

they inhabit. In other words, “the economic and the social are fundamentally 

intertwined” (Bathelt and Glückler 2003, 118). Social structures facilitate 

economic exchange; contracts between firms and the trading of stocks would 
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be unthinkable without some degree of social trust. Such activities would also 

be unthinkable without formal institutional structures and laws (Baum and 

Oliver 1992). The fact that economic phenomena are made possible by social 

and institutional structures is encapsulated in the concept of economic 

embeddedness (Granovetter 1985). Markets are not only economic networks, 

but also social networks (Knox-Hayes 2009). Further, the social and 

institutional structures that support economic activity are themselves spatial 

(Massey 1984). Labor markets are spatially bounded and a product of the 

interactions among employees, employers, and intermediaries (Peck 1996). 

Firms are spatially bounded in that they inevitably operate in a particular place 

or set of places; each place has its own social norms, institutions, political 

dynamics, and local, state, and national policies (Maskell 2001). 

In an example from the policy realm, Christopherson and Clark (2007c) 

argue that firm strategies and policy environments are mutually constitutive. 

Firms lobby for particular policies—they influence the policy environment—

but at the same time, existing policies constrain the options available to any 

given firm. Further, firms influence regions through the hiring and firing of 

employees, contracting relationships with suppliers (Storper and Walker 1989), 

and interactions with customers and policymakers (Grabher 1993). 

One key task in economic geography is conceptualizing how firms survive. 

In brief, the theory of the firm in economic geography posits that firms have a 

set of core competencies from which they derive competitive advantage. The 

question of how firms create these competencies is a primary site of analysis 

and theorization: “Economic geographers have made a central contribution in 
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their turn through their work on the effects of proximity, distance, and local 

context—on, let us call them, the softer sources of innovation” (Amin and 

Thrift 2000, 7). 

Economic geography approaches the effects of proximity, distance, and 

context on innovation by emphasizing the relationships among actors involved 

in firm innovation. Bathelt and Glückler (2003, 123) argue that regions are not 

spatial concepts independent of economic phenomena; instead, they argue for 

a “relational economic geography” in which “economic action transforms the 

localized material and institutional conditions of future economic action.” They 

describe the aims of relational economic geography as follows: 

Research in relational economic geography thus focuses on 
processes, such as institutional learning, creative interaction, 
economic innovation, and interorganizational 
communication, and investigates these through a 
geographical lens, rather than uncovering spatial 
regularities and structures. Economic processes and 
relations broadly defined are at the heart of this approach 
which integrates (and requires) both economic and social 
theory. (Bathelt and Glückler 2003, 125) 

Relational economic geography relies on a critical realist epistemology. 

This is a middle-road epistemological position: It aims to develop general, 

causal explanations but recognizes that the many filters of human perception 

mean that although an objective reality exists, two individuals are unlikely to 

have the same subjective experience of observation (Sayer 2000). Critical 

realism is thus neither logical positivist nor postmodern (Bathelt and Glückler 

2003, 127). This dissertation adopts the critical realist perspective. 
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How networks shape labor market outcomes 
Individual social and professional networks play a large role in the 

workplace. These networks affect recruitment processes and formal contracts 

at the interviewing and job offer stages; they affect the psychological contract 

once an employment relationship between firm and worker begins; and they 

affect retention when an employee is choosing whether to stay in her current 

position or seek out a new one. 

In terms of recruitment processes and formal contracts, networking is a 

common path to finding a job (Granovetter 1995), particularly among technical 

contractors in Silicon Valley (Barley and Kunda 2006). In the United States, 

applicants to jobs who have been referred by a contact within the organization 

earn more interviews and job offers than non-referred applicants do, even 

when controlling for resume quality and application timing (Fernandez and 

Weinberg 1997). Preliminary work suggests that hiring managers in large firms 

in China also prefer recruiting through employee referrals, as they believe 

referred applicants are of higher quality (Han and Han 2009). However, the 

effects of networking differ based on industry and gender. Referred applicants 

seem to have no greater chances than non-referred applicants to entry-level 

factory jobs (Fernandez and Fernandez-Mateo 2006), and overall, networking 

seems more beneficial for men than for women in professional and managerial 

applications (Forret and Dougherty 2004). 

Given research on perceptions of job candidates, this finding makes sense. 

Hiring managers construct images of the “ideal” employee—images that often 

include demographic attributes such as age, race, sex, and country of origin in 
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addition to the ability to do the job (McDowell, Batnitzky and Dyer 2007). 

These images in turn drive decisions about how much to spend on recruitment, 

where to recruit, and how to evaluate candidates. Further, these recruitment 

decisions differ by job role, with far greater resources devoted to high wage 

labor that is seen as less substitutable than low wage labor (Carnoy, Castells 

and Benner 1997). 

In social network terms, a strong tie exists between two individuals when 

they frequently contact one another or feel emotionally close to one another. 

Family members and close friends are examples of strong tie relationships. A 

weak tie exists between two individuals when they have met one another, but 

do not meet frequently or do not feel emotionally close to one another. 

Acquaintances and distant professional contacts are examples of weak tie 

relationships. In general, an individual’s strong ties have access to the same 

information the individual does, while an individual’s weak ties are more likely 

to have access to information that the individual does not already know. This is 

why weak ties are often a better source of information on new job opportunities 

(Granovetter 1973).  

In any given social network, a structural hole exists where two individuals 

are nonredundant in terms of both cohesion and structural equivalence (Burt 

1995). Cohesion refers to tie strength: two individuals connected by a strong tie 

are redundant, while two individuals connected by a weak tie or by no tie at all 

are nonredundant. Structural equivalence refers to the degree to which two 

individuals share mutual contacts: two individuals with fifty mutual friends 

between them are redundant compared to two individuals with only two 
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mutual friends between them. For example, in the network of Google 

employees, a structural hole exists between two engineers if they have never 

met and if they do not have any mutual contacts. When employees broker 

structural holes (connect two people who are otherwise unconnected) and form 

strong friendship ties within the firm, they consider firms to have more 

performance-related (balanced) and short-term, monetizable (transactional) 

obligations to them (Ho, Rousseau and Levesque 2006).  

Individual networks also influence employee retention. Networking is a 

valuable means of acquiring information on the state of the labor market, and 

this information can be used in deciding whether to pursue a new position. One 

empirical model, drawn from a synthesis of qualitative and quantitative studies, 

indicates that employees network to gain information when they know that 

their potential contacts have valuable information and when they can access 

those contacts quickly and cheaply (Borgatti and Cross 2003). In particular, 

networking is correlated with turnover; employees who build wide social and 

professional networks are more aware of external opportunities and thus more 

likely to change employers (Wolff and Moser 2010). 

Both individual and firm networks matter for labor market outcomes. Firms 

intentionally create networks with other firms for a variety of reasons: to share 

risks, access new markets, get products to existing markets faster, share skills, 

protect their property rights, and access knowledge not immediately available 

through other means (Pittaway, Robertson, Munir, Denyer and Neely 2004, 

145). In general, networking is associated with product, process, and 

organizational innovation (Pittaway, Robertson, Munir, Denyer and Neely 
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2004). In particular, both direct ties (in which firms are directly connected to 

one another through a contracting relationship or other collaboration) and 

indirect ties (in which firms are connected to each other through an 

intermediary or another firm) positively influence innovation (Ahuja 2000). 

Further, relationships among firms are heavily influenced by spatial 

proximity (Breschi and Malerba 2001). The closer two firms are geographically, 

they more likely they are to collaborate or share information—in other words, 

to transact with one another as legal entities (Takeda, Kajikawa, Sakata and 

Matsushima 2008). This is one of the major supposed benefits of industry 

clusters (Porter 2000): the ability of firms to take advantage of the scale effects 

of having many firms with overlapping expertise in one place. However, recent 

empirical work has shown that the benefits of spatial proximity are largely 

confined to a very small distance. Even in the advertising industry in densely 

populated Manhattan, two firms are much more likely to collaborate if they are 

located less than 750 meters from each other (Arzaghi and Henderson 2008). 

That said, both geographical location and network positioning matter for firm 

innovation; studies suggest that locating in an industry cluster and a occupying 

a central network position among managerial ties both lead to higher levels of 

innovation (Bell 2005). 

Firms’ relationships with other firms outside the region are also important. 

Strong relationships with non-regional customers and suppliers provide ideas 

that facilitate firm innovation (Doloreux 2004). Informal networks among small 

manufacturing firms are often non-local, as the best source of information to 

solve a business problem may be located elsewhere (Kingsley and Malecki 
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2004). Regional and non-regional sources of knowledge are important inputs to 

innovation (Doloreux 2004), even though innovation itself is quite 

geographically concentrated (Audretsch and Feldman 1996). 

Even within an industry cluster, relationships among firms are unequal. 

Large, multinational corporations play a disproportionately powerful role in 

firm networks (Christopherson and Clark 2007; Yang and Hsia 2007). Large 

firms influence the supply chains of small firms and anchor clusters (Yang and 

Hsia 2007). Compared to small firms, large firms (including multinational 

corporations) also have greater access to resources such as capital, skilled labor, 

research and development facilities, and intellectual property—key inputs to 

the innovation process (Christopherson and Clark 2007). It is thus no wonder 

that large firms attempt to influence regional innovation policies in their favor 

(Christopherson and Clark 2007). Regional policymakers do have choices 

(Bristow 2010; Christopherson and Clark 2007): they can influence how much it 

costs for firms to operate within the region, which types of research regional 

universities should conduct, which types of skilled workers universities should 

produce, and which types of lifestyle amenities the region’s cities should 

provide to lure firms and skilled workers to the region. These choices have a 

profound influence on the shape of regional innovation and on the character of 

firms in a regional labor market.  

How labor market segmentation shapes labor market outcomes 
Related work on the effect of labor market structures on labor market 

outcomes rests upon the foundation of segmented labor market theory. This 
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line of work emerged due to a set of empirical, theoretical, and policy issues 

with neoclassical labor market models (Cain 1976). The critical issue is the 

persistence of unemployment juxtaposed with the persistence of open 

positions. In other words, even when the number of jobs available is equal to 

the number of people looking for work, not everyone finds a job. When supply 

equals demand, the market does not clear. Segmented labor market theorists 

addressed this issue by positing the existence of a dual labor market consisting 

of a primary (high-wage) segment and a secondary (low-wage) segment. 

Empirically oriented economists then tested dual labor market models 

alongside single labor market models on wage and employment data. In short, 

dual labor market models better explained the distribution of wages and 

employment compared to single labor market models (Dickens and Lang 1988). 

After the initial wave of econometric work, economic geographers began to 

explore labor market segmentation by gender, class, ethnicity, space, and place 

as well as by wages (Bauder 2001; Massey 1984; Peck 1996). One key segment is 

contingent workers. Although definitions differ, part-time workers and 

contractors are often considered contingent (Peck and Theodore 2001) or 

precarious (Kalleberg 2009) workers. Contingent work is characterized by a 

fundamental insecurity about future employment (McDowell and 

Christopherson 2009). In low-wage labor markets, day laborers and other kinds 

of short-term contractors are a case in point (Padavic 2005). In high-wage labor 

markets, contingent workers are often software engineers or other 

professionals who work as freelancers on a contract basis (Kunda, Barley and 

Evans 2002). While contingent work has alternately been heralded as an 
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empowering development for entrepreneurial, free agent workers and a sign 

that the social safety net of a steady paycheck with benefits is crumbling, the 

reality is more complex (Barley and Kunda 2006). Some contingent workers do 

find empowerment and joy in being able to set their own schedules and avoid 

unpleasant colleagues, while others have trouble supporting their families with 

their unpredictable incomes. 

Another way to segment labor markets is by industry. A key finding in 

economic geography is that labor markets in different industries work in 

dramatically different ways. For example, the labor markets of semiconductor 

engineers in the United States in the 1980s were characterized by high turnover 

during booms and low turnover during busts; these workers could afford a high 

rate of inter-firm mobility because their expertise was industry-specific rather 

than firm-specific (Angel 1989). More recently, on Wall Street, the emphasis on 

shareholder value—in other words, maximizing short-term rather than long-

term profitability—leads finance firms to engage in mass hiring and mass 

layoffs in response to immediate market conditions (Ho 2009). That said, some 

investment banks outside the United States still have internal labor markets for 

entry-level and mid-level hires (Royal and Althauser 2003). 

No matter the segmentation, all labor markets consist of at least three sets of 

actors: employers, employees, and intermediaries. Labor market intermediaries 

include temporary employment agencies, university career services offices, 

workforce development offices, professional associations and trade societies, 

and third-party job boards like Monster.com and Dice.com, as well as career- 

oriented social networking websites like LinkedIn.com. Labor market 
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intermediaries help innovative regions develop because they serve three key 

functions: they reduce transactions costs, build networks, and manage risk 

(Benner 2003). For example, ethnic professional associations like The Indus 

Entrepreneurs (TIE) in Silicon Valley help new high-skilled immigrants find 

jobs and other professional opportunities by providing a network of people that 

understand both the host country business culture and the home country 

business culture. These professional associations also help coordinate joint 

ventures between home and host country (Saxenian 2002). 

How agglomeration shapes labor market outcomes 
The Oxford Dictionary of Human Geography defines agglomeration as 

follows: 

The process and outcome of concentrating in one location a 
set of interlinked and interdependent economic activities. 
The word ‘agglomeration’ functions as both a verb and a 
noun. Large and/or dense agglomerations are sometimes 
known as ‘growth clusters’. Studies by economic and 
development geographers have practical implications 
because governments, among others, are keenly interested 
in having successful agglomerations in their territories. 
These not only enjoy sustained growth but are also in 
locations that, for whatever reason, are deemed to be 
strategically important. See also agglomeration economies, 
clusters. (Castree, Kitchin and Rogers 2013, 7) 

For example, many film studios, casting shops, screenwriters, 

entertainment lawyers, and more run their businesses in Hollywood. They are 

all interdependent. And, most importantly for this dissertation, they are all 

located close to one another. For example, aspiring filmmakers would do well 

to move to Los Angeles. In the United States alone, finance in New York, music 
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in Nashville, and electronics in Silicon Valley are examples of agglomeration 

economies. 

Agglomeration reduces transport costs for goods, people, and ideas 
Marshall (1920) hypothesized that agglomeration benefits firms by reducing 

transport costs for goods, people, and ideas. Why? First, when firms locate 

closer to their suppliers, they procure goods more quickly and cheaply. 

Similarly, when firms locate closer to their customers, they spend less time and 

money on shipping. Further, when many firms from a single industry locate 

close to one another, suppliers have an incentive to go where are the firms are. 

For example, Los Angeles is a very lucrative place for an entertainment law 

firm to set up shop. 

Second, when firms locate close to one another, the firms collectively 

increase their access to a large pool of skilled labor. If enough of the most 

skilled workers in the film industry locate near Los Angeles, then LA-based film 

studios get access to all the top talent in the world—not only by virtue of their 

social networks, but also thanks to doing business in an agglomeration 

economy. 

Third, when firms locate close to their suppliers, their customers, and each 

other, they create something like a petri dish for ideas. All of the individuals 

involved in the agglomeration meet each other formally, through interfirm 

transactions and collaborations, and informally, through meetup groups, social 

networks, and happenstance encounters at bars and restaurants. Such face-to-

face meetings are a primary mechanism for exchanging ideas. Thus when one 
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firm adopts a process or product innovation, it will not be long before other 

firms incorporate the new ideas and methods into their processes or products. 

Legal barriers like patents and non-disclosure agreements notwithstanding, the 

fastest way for a firm to learn to do new things is to poach a bunch of 

employees from a place where those new things were done.  

Face-to-face contact helps circulate ideas. But that is not all. Agglomeration 

economies simply do not work without significant “buzz”—people meeting up 

and networking. Storper and Venables (2004) argue that face-to-face contact 

serves four key functions in agglomeration economies. First, face-to-face 

contact is an excellent communication technology when people need rapid 

feedback—and when they exchange information that is not codified easily, 

such as the experience of working with a particular person. Second, face-to-face 

contact helps build trust in relationships, so a hiring manager trusts that a 

candidate referred by her trusted colleagues will do well. Third, face-to-face 

contact accelerates people’s socialization into professional group norms, so new 

entrants to an industry get up to speed quickly. Fourth, face-to-face contact taps 

into the universal human desire to seek pleasure, in part through gaining access 

to high status. In the workplace, this means employees want to feel the rush of 

pride and pleasure that comes from being recognized for a job well done. 

Agglomeration economies benefit firms by reducing the transport costs of 

goods, people, and ideas. And face-to-face contact provides the social glue for 

all this to happen. In 1920, Marshall did not have the data to test his hypotheses. 

Recent work supports Marshall’s ideas: agglomeration accelerates the exchange 
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of goods, people, and ideas among establishments described in the US Census 

of Manufacturing (Ellison, Glaeser and Kerr 2010). 

But agglomeration has mixed effects on firm performance 
Despite these benefits, economic geographers have found mixed results 

when testing the effects of agglomeration on firm survival and performance. 

For example, in a study of knitwear firms in Germany, Staber (2001) found that 

agglomerations based on a single industry hurt new firms’ chances of survival, 

but agglomerations of related industries helped. For example, a cluster 

composed entirely of spinning firms would likely hurt member firms, while a 

cluster composed of a mix of spinning, weaving, knitting, embroidering, 

clothing, finishing, and design firms would likely help member firms. In 

contrast, among IT firms in Canada, agglomeration did not influence firm 

survival at the regional level at all, but it did assist in firm survival in a few 

specific neighborhoods in Toronto (Globerman, Shapiro and Vining 2005). In a 

study of biotechnology firms across the United States, Folta, Cooper, and Baik 

(2006) found that agglomeration increased firm performance up until about 65 

firms. After that, diseconomies of agglomeration took hold: increased 

competition drove up wages, housing prices, and utility costs.  

It is possible that these mixed results are a consequence of different 

industry and country samples. After all, knitwear firms and biotech firms do 

not have much in common. The economic and regulatory environments firms 

face in Germany, Canada, and the United States differ as well. And we have not 
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taken into account firm size, even though agglomeration may affect small firms 

differently than large firms.  

On this last point, Wennberg and Lindqvist (2010) argue that at least for new 

firms, the inconsistent results of previous studies are simply due to differences 

in measures of agglomeration. They find that an absolute measure of 

agglomeration (the raw number of employees in a given industry in a given 

region) predicts firm survival and performance better than a relative measure 

of agglomeration (the location quotient for the target industry in the target 

region). So it seems that agglomeration, measured in absolute terms, benefits 

firms—certainly in reducing costs, and potentially in helping new firms survive 

and all firms perform better. 

Agglomeration economies: the policy perspective 
Policymakers care about agglomeration. The empirical observation of the 

spatial concentration of innovative activity (Audretsch and Feldman 1996) 

provides the foundation for this fascination. The overwhelming popularity in 

business and policy circles of Michael Porter’s cluster approach to economic 

development (Porter 2000) adds fuel to the fire. A number of regions have 

attempted to encourage the colocation of firms in special business districts with 

the hope that such geographical concentration would lead to higher levels of 

innovation (Lundequist and Power 2002; Martin and Sunley 2003). The 

popularity of academic and trade non-fiction books on the secrets of Silicon 

Valley speaks to this point (Saxenian 1996; Kenney 2000; Lécuyer 2005; Turner 

2006; Hwang and Horowitt 2012; Menuez 2014). Alternatively described as a war 
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for talent, a competition among regions, and a proliferation of high-tech hubs, 

regional policymakers throughout the United States, Canada, and Europe have 

tried to encourage agglomeration in their jurisdictions.  

The problem is that spatial concentration is neither a necessary nor a 

sufficient condition for innovation. Sometimes the geographical concentration 

of firms leads to captive suppliers and cost-based competition (Florida and 

Kenney 1990). Similarly, because networking among regional firms is helpful 

for innovation (Bell 2005), policymakers can try to encourage firms not yet 

participating in networking to do so (Gellynck and Vermeire 2009). 

Studies of regional institutions emphasize the economic development roles 

of universities, private firms, and government agencies, as well as the “triple 

helix” created by the interactions between them. The emphasis on interactions 

between universities, local industry, and local government agencies dates to 

Frederick Terman’s stint as dean of engineering at Stanford in the 1940s and 

1950s. Among other things, Terman encouraged collaborations between 

Stanford and local firms and pushed the university to create the Stanford 

Industrial Park in 1951 (Leslie and Kargon 1996). However, Terman’s model is 

not easily replicable across regions. During the 1960s, Terman consulted for 

regions in New Jersey, Texas, and South Korea on the Silicon Valley model. Of 

these, only the South Korean project was successful (Leslie and Kargon 1996). 

Similarly, both the University of Pennsylvania and the Georgia Institute of 

Technology had trouble applying Silicon Valley’s lessons during the Cold War 

(O'Mara 2004).  More broadly, institutions and policy discussions should be 

studied within their historical contexts to understand how, when, why, and 
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where they work (Flint and Shelley 1996; Shelley 2002; Solecki and Shelley 

1996). 

Since then, economic geographers have tried to understand which parts of 

the system of universities, private firms, and public policy are key to 

agglomeration economies and which are just incidental. One key finding is that 

a strong research university does not automatically lead to regional economic 

development as measured by patents and spinoff companies (Feldman and 

Desrochers 2003). Rather, the mission and institutional orientation of the 

university are more important. Does the university emphasize commerce, 

science, or both? 

In terms of private firms, three key findings emerge. The first is that large 

firms can often innovate more than small firms because they have 

disproportionate access to key regional resources like labor and university 

research capacity (Christopherson and Clark 2007; Christopherson and Clark 

2007; Christopherson and Clark 2007). The second is that global production 

networks, public policies, community politics, and labor market intermediaries 

all provide boundaries for firms’ employment strategy options as well as 

workers’ labor strategy options (Coe and Jordhus-Lier 2010). And the third is 

that private firms play a key role in the construction of production regimes, 

which encompass “the technology of production, employment relationships, 

managerial strategy, worker responses, union organizational possibilities, legal 

regulation, and social ideology” (Stone 2004). 
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So how do policymakers benefit from agglomeration? At the regional level, 

agglomeration is associated with more job creation, higher tax revenues for 

government agencies, and higher wages for employees (Wennberg and 

Lindqvist 2010). And it is not just that cities with agglomeration economies 

create more jobs. The labor markets are qualitatively better, too. Employees and 

firms find better matches in terms of quality (Andersson, Burgess and Lane 

2007; Melo and Graham 2014), in the sense of ensuring a good fit between 

employee and firm. Further, the network structures that allow workers and 

firms to find each other are consistent across agglomerations, even when 

comparing very different institutional structures in the UK and Germany 

(Casper and Murray 2005). 

The biggest factor in spatial wage disparities across cities is the distribution 

of workers’ skill levels between labor markets (Combes, Duranton and Gobillon 

2008; Yankow 2006). Highly skilled workers get better at their jobs with each 

move from firm to firm, and the accumulation of skills from decades of job-

hopping results in an agglomeration wage premium (Freedman 2008). The 

exposure to different challenges in different firms often results in job-hoppers 

gaining skills more quickly than employees who stay with a single firm. 

The economic development policy advantages of agglomeration are the 

higher rates of job creation and the higher quality of those jobs, measured both 

in terms of wages and fit between employee and employer. Policymakers who 

want to reap these benefits—more and better jobs—need to find policy 

mechanisms to encourage agglomeration in the first place. But studying mature 

agglomerations cannot provide insight into how and why those agglomerations 
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came to be (Feldman and Francis 2004, 132). Despite decades of work on the 

history and path dependence of key agglomerations (e.g., Sturgeon (2000)), the 

literature still lacks a definitive explanation of how and why agglomerations 

come to be. In the absence of any empirical consensus on what makes 

agglomerations form, what do policymakers do? Martin and Sunley (2003, 23-

24) offer a typology of policy attempts to encourage agglomeration:  

1. Serve an intermediary function—set up in-person groups and 

communication mechanisms to bring firms, employees, and research 

institutions together. 

2. Market the region as the best place for a given industry. 

3. Provide financial, marketing, and design services for firms in the target 

industry for agglomeration. 

4. Identify weaknesses in the current value chain for the target industry in 

the region, and then recruit investors and firms to remedy them. 

In addition to these functions, regional policymakers can simply pay firms 

in a target industry to relocate to the region. For example, a chamber of 

commerce might try to recruit biotech firms to its region, or a state may attempt 

to lure a new manufacturing plant into its borders. With the right policy 

coalition across regional and state levels, firms may benefit from economic 

development plans to waive taxes or receive lump sum payments for relocation. 

But do these policy tools actually strengthen scientific and technical labor 

markets? Some scholars argue that policy attempts to encourage agglomeration 

do not work (Schmitz and Nadvi 1999), while others argue that top-down policy-



 

 28 

driven creation of an industry agglomeration is possible in certain places and at 

certain times (see Depner and Bathelt (2005) on an automobile cluster in 

Shanghai). To get to the bottom of what works and does not work with 

agglomeration and economic development policy, we need to distinguish 

between two phenomena: specialization and clustering. 

Why specialization, and clustering matter for scientific labor markets 
Though the notion of agglomeration economies is at least 200 years old—

Marshall’s Principles of Economics was first published in 1890—scholarship in 

this area has grown exponentially in the last twenty years. Web of Science has 

records of scholarly works on agglomeration in the field of geography dating 

back to 1964, and 94% of the 1,038 works were published between 1994 and 2014. 

In 1994, AnnaLee Saxenian  published her groundbreaking ethnography of 

Silicon Valley and Route 128: two key agglomeration economies in the United 

States. Both regions had deep pools of technical talent, strong research 

universities, venture capital, specialized suppliers, and excellent 

infrastructure—yet Silicon Valley outperformed Route 128 across a host of 

economic indicators throughout the 1980s. Saxenian explained Silicon Valley’s 

performance as a product of the region’s flexible, network-based, learning 

oriented business culture. In other words, Silicon Valley’s social and firm 

boundaries were porous, and helpful information flowed across those 

boundaries quickly, which helped individuals and firms adapt to changing 

technological and business conditions in the moment. 
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Saxenian’s book generated waves of policy interest throughout the United 

States and Japan (Saxenian (1996): prologue to the paperback edition). 

Policymakers asked repeatedly how they could create the kind of Silicon Valley 

culture that would lead to regional prosperity in their jurisdictions. Saxenian 

recommended that regional policymakers pursue three different policy 

strategies (1996):  

1. Aid in “stimulating and coordinating cooperation among firms and 

between firms and the public sector” (166). 

2. Support “institutions that provide capital, research, managerial and 

technical education, training, assistance to entrepreneurs, and market 

information” (167). 

3. Help “promote collaboration among fragmented and often jealous city 

and local governments” to address physical infrastructure challenges 

from transportation to housing to environmental concerns (168). 

Four years after Saxenian’s paperback edition, Michael Porter argued that 

economic developers should focus their efforts on the regional scale—and 

particularly on upgrading clusters. In his widely cited article, Porter defines 

clusters as 

geographic concentrations of interconnected companies, 
specialized suppliers, service providers, firms in related 
industries, and associated institutions (e.g., universities, 
standards agencies, trade associations) in a particular field 
that compete but also cooperate. (Porter 2000, 15) 



 

 30 

In other words, Porter’s clusters can be seen as agglomerations. More 

importantly, they are agglomerations of related industries. Porter suggested that 

clusters help firms uncover new market needs and identify new ways of 

addressing existing needs. These innovations form the foundation for both firm 

and regional advantage—both of which are regional policy priorities. Porter 

offered several strategies for policymakers to encourage clusters (2000, 28): 

1. Serve as a facilitator in bringing different firms and government 

agencies together. 

2. Invest in education, training, and research programs to support the 

interrelated industries in this particular cluster; also provide financial 

assistance via recruiting foreign investment, establishing special 

economic zones, and the like. 

3. Remove barriers to competition by streamlining relevant regulations. 

Saxenian and Porter agreed on the first two strategies. For the third, 

Saxenian emphasized bringing together disparate localities to upgrade physical 

infrastructure, while Porter focused on deregulation. During this debate, 

policymakers around the world latched onto the term “cluster” and its promises 

of regional advantage. Academic scholarship tried to keep pace. Figure 1 shows 

the growth in literature in geography alone indexed under the topic header 

“clusters.” Clustering literature grew much faster than scholarly work on 

agglomeration and specialization. 
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Figure 1. Web of Science citations in geography by topic and year. 

The term “cluster” grew so fast in academic and policy circles that by 2003, 

Martin and Sunley asked if the idea of clustering was a “chaotic concept or 

policy panacea.” Judging by the 573 (and counting) articles that have cited 

Martin and Sunley’s article, their argument hit a nerve. The heart of Martin 

and Sunley’s critique is definitional confusion: what counts as a cluster? They 

presented different authors’ definitions, as shown in Figure 2 (Martin and 

Sunley 2003, 12). 
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Figure 2. Martin and Sunley's (2003) summary of cluster definitions. 

Some definitions emphasized the geographical concentration of a single 

industry; others focused on related industries. Some definitions emphasized 

collaborative relationships between firms, while others highlighted 

connections between non-firm institutions in a geographical area. Some 

definitions focused on the need for a certain size threshold—only a “large 

group of firms” counts as a cluster—and others did not include the “scale of 

employment” as a definitional criterion. At the time, this table represented but 

a small subset of all cluster definitions. Clustering is a compelling example of a 

fuzzy concept (Markusen 2003). In the twelve years since Martin and Sunley’s 

article, cluster research and policy initiatives have continued to grow without 
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much improvement in definitional clarity. So where do economic geographers 

go from here? 

I suggest that we use agglomeration as an umbrella term—one that captures 

all of the variations of the cluster concept. In this sense, agglomeration refers to 

both the process and the result of the colocation of interdependent economic 

activities. Then, to clarify the effects of agglomeration, I suggest we use a set of 

narrowly defined and strictly measured sub-concepts for various aspects of 

agglomeration. 

This dissertation emphasizes two aspects of agglomeration: the 

identification of “strong” industries for regional economies, and the spatial 

density of firms within “strong” industries. Thus I propose we use the term 

specialization to refer to the degree to which an industry is over-represented in a 

region compared to a national baseline. We can measure specialization with a 

standardized location quotient (O'Donoghue and Gleave 2004). I then propose 

we use the term clustering to refer to the spatial concentration of firms within a 

target industry. We can measure clustering with an average nearest neighbor 

distance. 

I discuss my choice of measures much more in the next chapter. In this 

chapter, the key point is that distinguishing between specialization and 

clustering within the context of agglomeration economies helps us cut through 

the forest of contradictory effects. If we define and measure two aspects of 

agglomeration economies, we can find out whether those aspects make a 
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meaningful difference to labor market outcomes like wages and recruitment 

methods. 

Summary 
Given that social structures both shape and are shaped by economic 

structures, understanding agglomeration requires understanding both its social 

and economic dimensions. In terms of social dimensions, the networks that 

connect individuals and firms are related to two key labor market outcomes: 

wages and recruitment channels. These network effects are unevenly 

distributed by race and gender. In terms of economic dimensions, segmented 

labor market theory shows that even when the number of job openings and the 

number of job candidates are equal, the market does not clear. Instead, 

candidate-job matching occurs in smaller labor markets segmented by skill, 

gender, race, and space. Against this background, policymakers in major 

metropolitan areas throughout the United States and the world attempt to 

encourage high-tech agglomeration in their districts. These policy strategies are 

partly in pursuit of more and better jobs alongside higher tax revenues, and 

partly in pursuit of the cultural capital that accrues to high-tech hubs like 

Silicon Valley. In order to understand how high-tech agglomeration affects 

labor market outcomes—particularly wages and recruitment channels—more 

work is needed. Perhaps network structures and labor market segmentations 

function similarly in high-tech agglomeration economies and outside them; 

perhaps they do not. To address this gap, this dissertation distinguishes 

between two related aspects of agglomeration—specialization and clustering—
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in order to test their effects on wages and recruitment methods. The next 

chapter explains the dissertation’s methods. 
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CHAPTER 3: METHODS 

Most studies of agglomeration use the term “cluster” in some way—and 

that term is fraught with a multitude of conflicting theoretical and empirical 

definitions. These conflicts partly explain the inconsistent results of previous 

work on the effects of agglomeration on scientific and technical labor market 

quality. In the literature review, I proposed a way out of this conundrum: define 

and measure specific aspects of agglomeration separately, then test the 

relationships between each aspect of agglomeration and the outcomes that 

policymakers prioritize. In this chapter, I explain how this dissertation does 

exactly that. 

Research question and hypotheses 
In this dissertation, I focus on two aspects of agglomeration of interest to 

policymakers: specialization and clustering. Specialization is the degree to which 

an industry is over-represented in a region compared to a national baseline. 

Clustering is the spatial concentration of firms in a target industry within that 

region. I argue that it is impossible to select appropriate economic development 

policies without understanding which aspects of agglomeration are most 

correlated with regional policy goals such as higher wages, more jobs, and 

higher tax revenues.  
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As a proof of concept, I narrow my scope to a regional policy goal of higher 

wages, then test how specialization and clustering relate to that goal. I begin by 

showing that specialization and clustering are indeed empirically distinct 

aspects of agglomeration. I then proceed to test the effects specialization and 

clustering on wages and recruitment patterns in scientific and technical labor 

markets. My research question for the dissertation is this: 

RQ: How do specialization and clustering affect wages and 
recruitment methods in science-based industries? 

Table 1 provides my hypotheses. My first two hypotheses concern the role 

of labor market intermediaries—key institutions that link employees looking 

for work with employers looking to hire. I expected to find variation in the use 

of labor market intermediaries based on the degrees of specialization and 

clustering present in a given metropolitan area. My third and fourth 

hypotheses address wages, one of the key effects of agglomeration. I expected 

that the wage gains scholars have found in previous literature on 

agglomeration were due to specialization, not clustering. 
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Table 1. Hypotheses for the dissertation. 

Hypothesis Testing Justif ication 

H1   
Recruitment 
and regional 
special ization 

High regional 
specialization increases 
the use of labor market 
intermediaries (LMIs) for 
recruitment if the 
number of firms in the 
region is also high (≥ 
50). 

Key studies of the electronics labor 
market in Silicon Valley highlight the role 
of LMIs like recruitment agencies, 
temporary labor firms, and professional 
associations in making the connections 
between employees and employers 
(Benner 2002; Saxenian 1996). 

H2   
Recruitment 
and firm 
clustering 

High firm clustering 
decreases the use of 
LMIs for recruitment if 
the number of firms in 
the region is also low. 

Close proximity facilitates information 
exchange (Arzaghi and Henderson 2008); 
workers in more tightly clustered firms 
should know more about job 
opportunities through their local networks 
and have less of a reliance on 
intermediaries. 

H3   
Wages and 
regional 
special ization 

High regional 
specialization increases 
wages. 

Competition among firms bids up the 
price of labor; previous studies find wage 
premiums in agglomerations. 

H4   
Wages and 
firm 
clustering 

High firm clustering has 
no impact on wages. 

The labor market for wage-setting 
extends beyond the neighborhood of 
nearest firms; overall MSA trends should 
have the biggest effect. 

 

Measuring specialization 
In this dissertation, I measured specialization using the standardized 

location quotient (SLQ). The SLQ is a variation of the location quotient, a 

widely used tool in economic development policy for identifying “strong” or 

export-oriented industries within a region. 
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The location quotient as a measure of specialization 
Regional policymakers who pursue industry-specific agglomeration as an 

economic development strategy must choose which industries to target for 

their jurisdictions. One of the most common tools for making that choice is the 

location quotient. Widely used and criticized since the 1940s, the location 

quotient measures the concentration of a particular industry in a metropolitan 

area compared the concentration of the industry across the country. It is 

expressed as follows: 

!!! =
!!/!
!!/!

 

where 

• ei = employment in focal industry i in region 

• e = total employment in region 

• Ei = employment in focal industry i in nation 

• E = total employment in nation 

The location quotient measures what percentage of employees in a region 

work in a certain industry, then divides that by the percentage of employees in 

the nation who work in that industry. It offers a way for policymakers to find 

out whether any industries are overrepresented in their regions. In other words, 

if software jobs were 5% of all national jobs, but 10% of all San Francisco jobs, 

San Francisco would have a location quotient of 2.0—it would be specialized in 

software. Location quotients reveal the geographical hubs for key industries. 

For example, the Los Angeles metropolitan area has a high LQ for 

entertainment, the Nashville metropolitan area has a high LQ for music, and 
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the San Jose metropolitan area has a high LQ for electronics. Analysts can also 

use firm counts rather than employment to calculate location quotients. In 

those instances, the formula shifts to 

!"!! =
!!/!
!!/!

 

where 

• fi = firms in focal industry i in region 

• f = total firms in region 

• Fi = firms in focal industry i in nation 

• F = total firms in nation 

Either way, the location quotient represents the degree to which the region 

is more or less specialized in a particular industry when compared to the 

national baseline for that industry. In this dissertation, I used firms rather than 

employees for the location quotient for two reasons: (1) this dissertation focuses 

on firm networks rather than overall employment, and (2) 23% of the firms in 

the Photonics Buyers’ Guide do not report employee data. 

Table 2 illustrates key ranges of the firm location quotient. 
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Table 2. Critical values for the firm location quotient. 

Value Meaning Interpretation 

0 
Zero firms in the focal industry within 
the region 

No specialization at all 

< 1 
Proportion of firms in the focal industry 
within the region is lower than the 
national baseline 

Less specialized than the nation—not 
a local strength 

1 
Proportion of firms in the focal industry 
within the region is the same as the 
national baseline 

Just as specialized as the national 
average 

> 1 
Proportion of firms in the focal industry 
within the region is greater than the 
national baseline 

More specialized than the nation—
probably a local strength 

 

 

While LQs serve as a measure of agglomeration, they cannot explain why 

agglomeration economies work. Scholars have proposed four mechanisms that 

accelerate growth in agglomeration economies: (1) firms share suppliers and 

service providers, which lets them purchase from contractors things they need 

but cannot afford to provide for themselves in-house; (2) firms spend less time, 

energy, and money on training because they can poach highly skilled 

employees from neighboring firms; (3) employees incorporate new product and 

process innovations in their work more quickly because they are constantly 

talking to each other about the new stuff on the block; and (4) institutional 

intermediaries make sure that firms, employees, universities, government 

actors, and whoever else needs to be involved are talking to each other and 

sharing information and resources in a productive, timely manner. 
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While the strength of an industry in a region may be correlated with these 

mechanisms, location quotients cannot measure these mechanisms directly. 

But if we take the strength of an industry as just that—the degree to which an 

industry is overrepresented in a region compared to a national baseline—then 

we can test its effects on agglomeration outcomes directly. In other words, 

rather than using a location quotient to find agglomeration economies, I 

propose that we use a location quotient as a measure of specialization—and 

then empirically test how much specialization correlates to labor market 

outcomes that policymakers expect to find in agglomerations in science and 

technology industries. 

The standardized location quotient as an improved measure 
The key critique of traditional location quotients is that their interpretation 

is arbitrary. How can an economic developer decide how high of a location 

quotient is necessary to consider an industry a key regional strength? For 

example, one urban planning scholar suggests the following interpretation 

guidelines (Klosterman 1990, 129). If the location quotient is less than 1.0, then 

the local employment share is less than the national employment share. 

Analysts interpret this to mean that local production falls short of local 

demand, so locals import products to make up the difference. If the location 

quotient is equal to 1.0, then the local employment share is more than the 

national employment share. In this case, local production meets local demand. 

If the location quotient is greater than 1.0, then the local employment share is 

greater than the national employment share. Analysts interpret this to mean 
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that local production exceeds local demand, so locals export products to other 

regions. 

If these guidelines were followed to the letter, an analyst would treat an 

industry with a location quotient of 0.99 as under-represented while treating an 

industry with a location quotient of 1.01 as over-represented. Analysts have 

addressed this difficulty in three ways. First, they have stack ranked industries 

by location quotient, and only focused on the top few industries within a 

region—the industries in which the region is most specialized. Second, they 

have proposed guidelines with 0.75 and 1.25 cutoffs for non-specialized and 

specialized regions, respectively. And third, they have used other criteria—such 

as requests from stakeholders to focus on particular industries—rather than the 

location quotient to select industries to receive economic development funds. 

Yet none of these are particularly satisfying alternatives. The location 

quotient is a useful metric for exploring a region’s potential strengths by 

industry. Analysts just need a more rigorous way to identify the top regional 

specializations. To provide more rigor, O’Donoghue and Gleave (2004) 

proposed an improvement called the standardized location quotient (SLQ). The 

SLQ transforms the location quotient into a new variable with a mean of zero 

and a standard deviation of 1. Briefly, the SLQ is calculated as follows: 

1. Test the distribution of the location quotient for normality. 

a. If normal: proceed to step 2. 

b. If not normal: take the log of the location quotient. Then test 

the distribution of log(LQ) for normality. 
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i. If normal: proceed to step 2. 

ii. If not normal: use a different measure. 

2. Transform the LQ to z-scores as follows: 

a. If LQ is normally distributed: ! = !"!!"#$(!")
!"(!")  

b. If LQ is not normally distributed, but log(LQ) is normally 

distributed: ! = !"#!(!")!!"#$((!"#!(!"))
!" !"# !"  

3. Identify statistically significant LQs using their z-scores. A z-score 

above 1.96 indicates regional specialization, p < .05. A z-score above 

1.65 indicates specialization, p < .10. 

Measuring clustering 
In this dissertation, I measured clustering using an average nearest 

neighbor distance. As indicated earlier, most studies of agglomeration use the 

term cluster in some way. And there are so many such studies—not to mention 

policy initiatives—that Martin and Sunley (2003) asked how policymakers 

around the world became captivated by such a chaotic concept. Theoretical 

and empirical definitions of clusters are many and widely varied, without too 

much overlap between them. But at heart, the cluster concept addresses 

something many economic geographers have observed over the years: 

concentrations of smart people in small spaces coincide with innovative 

activity. Or, as Gertler (2003) put it, there is an “undefinable tacitness of being 

(there).”  
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Correlation is not causation. And if even if we could show a causal link 

between spatial proximity and innovation, we would miss a key part of the 

story. As Boschma (2005) points out, four other types of proximity also 

influence innovation. Cognitive proximity helps people communicate with 

each other—without a shared knowledge base, teaching and learning is 

impossible. Organizational proximity creates channels through which people 

may communicate—for example, if two firms enter into a joint venture, their 

employees now have a reason to meet where they would not have had a reason 

to do so previously. Social proximity also facilitates communication—people 

are more likely to share information with trusted friends, friends of friends, and 

colleagues. Also, institutional proximity—shared laws, rules, cultural norms, 

and habits—helps people trust and communicate with one another.  

Each of these types of proximity offers promising avenues for further 

research along the lines I model in this dissertation: how do they, 

independently and together, affect labor market outcomes? Spatial clustering is 

the best place to start for because it is easy to measure using distances between 

firms, and it addresses the puzzle of agglomeration. 

Different measures of spatial clustering 
Economic geographers and city and regional planners have developed a 

variety of measures for spatial clustering. In this section, I briefly review the 

measures I considered before selecting the average nearest neighbor distance. 

My goal was to identify a measure that would allow me to compare the degree 

of spatial clustering that firms in a single industry exhibit across different 
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metropolitan statistical areas. For example, are photonics firms in Rochester 

more tightly clustered than photonics firms in Tucson? Are technology start-

ups more densely packed in New York or in San Francisco?  

Several clustering methods have been used to address such questions. 

These include the following: 

• Distance from central feature to furthest feature. The problem with 

this approach is that 2 miles in Washington, DC is not the same as 2 

miles in New York City in terms of population distribution or 

transportation time or neighborhood boundaries. I ran into the same 

problem with standard deviational ellipses and standard distances 

(circles). 

• Cluster and outlier analysis (Anselin Local Moran's I). It is unclear 

how to compare the statistic across regions. One potential way is to 

examine the percentage of firms from the region with positive values for 

I and significant p-values. 

• Average nearest neighbor (ANN) index. The ANN index—not the 

distance metric—is designed to compare point patterns in one polygon 

over time. Urban economists and economic geographers use the average 

nearest neighbor method to compare changes in the spatial distribution 

of firms over time, or to compare the spatial distribution of firms in one 

industry to those in another (Ebdon 1985). The significance test does not 

apply when comparing several polygons at the same time—as in the 

case of comparing firm clustering scores across MSAs.  
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• High/low clustering (Getis-Ord General G). This metric compares the 

spatial clustering of particular values (e.g., assessed property values by 

location, firm revenues by location). It is not suited for the spatial 

clustering of locations without any associated values (e.g., firm locations 

without any other firm attributes). 

• Multi-distance spatial cluster analysis (Ripley's K-function). This 

metric compares the extent of clustering at multiple spatial scales in one 

study area. But it is not comparable across study areas. 

• Spatial autocorrelation (Global Moran's I). This metric is not 

comparable across study areas. 

• Hot spot analysis (Getis-Ord Gi*). This metric identifies “hot spots” of 

unusual activity (e.g., disease outbreaks, firm locations). But cannot 

compare the extent of clustering across study areas. In this dissertation, 

I did not focus on finding hot spots of firm neighborhoods; instead, I 

addressed whether photonics firms in Washington, DC are more 

clustered than photonics firms in New York City, for example. 

After reviewing these metrics on my own, I consulted with five 

methodologists in spatial analysis. There is no consensus on the best way to 

measure spatial clustering across study areas: Darla Munroe (Associate 

Professor and Chair of Graduate Studies in the Department of Geography at 

the Ohio State University)1 wrote,  

                                                        
1 http://www.geography.ohio-state.edu/our-department/faculty-more/munroe  
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It is not straightforward to test the degree of clustering 
across multiple locations - most spatial analysis texts do not 
take deviation from random as sufficient evidence 
for/against pattern and there is no other absolute metric to 
provide a null hypothesis. (personal communication, 
6/28/2013). 

The other four methodologists each offered different approaches. 

• Dajun Dai (Assistant Professor, Department of Geosciences, Georgia 

State University)2 suggested a higher-order nearest neighbor function. 

Examining the average distance to two or three nearest neighbors rather 

than one nearest neighbor sometimes provides a different picture of a 

spatial distribution (personal communication, 6/28/2013). ArcGIS does 

not have higher-order (e.g., second-order, third-order, nth-order) nearest 

neighbor analysis built-in, but the CrimeStat program3 does. 

• Geoffrey Hewings (Director, Regional Economics Applications 

Laboratory; Professor, Geography and Regional Science, University of 

Illinois)4 suggested using a hierarchical metric to examine clustering at 

the census tract, community, and MSA levels (personal communication, 

6/27/2013). 

• Bill Drummond (Associate Professor, School of City and Regional 

Planning, Georgia Institute of Technology)5 suggested using a standard 

deviational ellipse as follows: “the number of firms within the ellipse 

divided by the area of the ellipse” (personal communication, 6/26/2013). 

                                                        
2 http://geosciences.gsu.edu/5078.html  
3 http://www.icpsr.umich.edu/CrimeStat/  
4 http://www.geog.illinois.edu/people/hewings  
5 http://www.planning.gatech.edu/people/william-drummond  
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He mentioned a recent paper that uses standard deviational ellipses: 

Yang et al. (2012). 

• Fred Shelley (Professor, Department of Geography and Environmental 

Sustainability, University of Oklahoma)6 suggested running the average 

nearest neighbor index and the standard deviational ellipse on nine 

sample regions from my dissertation proposal, then comparing the 

results. I did so, and we discussed my table before arriving at the 

average nearest neighbor distance as my key measure. I elaborate on 

this process below. 

I selected my sample regions on the basis of the number of photonics firms. 

The nine sample regions are the metropolitan statistical areas with over 50 

photonics firms (Table 3). 

Table 3. Nine MSAs with over 50 photonics firms. 

GEOID MSA 
Photonics 

Firms 

35620 New York-Northern New Jersey-Long Island, NY-NJ-PA 260 
14460 Boston-Cambridge-Quincy, MA-NH 242 
31100 Los Angeles-Long Beach-Santa Ana, CA 222 
41940 San Jose-Sunnyvale-Santa Clara, CA 150 
16980 Chicago-Joliet-Naperville, IL-IN-WI 101 
37980 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 96 
41860 San Francisco-Oakland-Fremont, CA 92 
40380 Rochester, NY 89 
41740 San Diego-Carlsbad-San Marcos, CA 73 

 

                                                        
6 http://parker.ou.edu/~fshelley/  
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For each of these regions, I computed the average nearest neighbor index 

and the standard deviational ellipse. Table 4 shows the average nearest 

neighbor index results for these nine regions. All nine regions seem to be 

clustered using the index. But there are two problems with this metric: first, 

Darla Munroe advised against taking deviation from random as sufficient 

evidence for clustering, and second, the deviation from random in one study 

area is not comparable to the deviation from random in a different study area. 

However, the observed average nearest neighbor distance in miles is 

comparable across study areas, and it varies quite a bit between regions, as 

shown in Figure 3. Visually, there appear to be three groups:  

1. Highly clustered: San Jose, at 0.49 miles on average from one firm to 

its nearest neighbor. 

2. Mid-level clustered: Boston (1.13 miles), Los Angeles (1.21 miles), 

Rochester (1.25 miles), and San Diego (1.27 miles). 

3. Not clustered: San Francisco (1.61 miles), New York (1.65 miles), 

Philadelphia (1.86 miles), and Chicago (2.17 miles). 

Next, I compared these nine regions using the standard deviational ellipse 

as a metric of clustering. Table 5 shows the standard deviational ellipse 

numbers for these nine regions: the area of the ellipse, the number of firms in 

the ellipse, and the square miles per firm in the ellipse. This results in quite a 

different cluster ranking as compared to the average nearest neighbor distance, 

largely due to the differences in study areas. To illustrate the differences in 

study areas, I provide maps for each of my nine sample regions. Each map 

includes the metropolitan statistical area boundary, the boundary of the 
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standard deviational ellipse, and the locations of photonics firms in the 

metropolitan statistical area. Figure 4 maps the ellipse for the New York City 

region, Figure 5 maps the ellipse for the Boston region, Figure 6 maps the 

ellipse for the Los Angeles region, Figure 7 maps the ellipse for the San Jose 

region, Figure 8 maps the ellipse for the Chicago region, Figure 9 maps the 

ellipse for the Philadelphia region, Figure 10 maps the ellipse for the San 

Francisco region, Figure 11 maps the ellipse for the Rochester region, and 

Figure 12 maps the ellipse for the San Diego region. The standard deviational 

ellipse metric of square miles per firm assumes that the firms are evenly 

distributed within the standard deviational ellipse, but as the maps show, this is 

not the case.
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Table 4. Average nearest neighbor index for nine sample regions. 

GEOID MSA 
Photonics 

Firms 
Observed Mean 
Distance (Miles) 

Expected Mean 
Distance (Miles) 

Average Nearest 
Neighbor Index 

z-
score 

p-
value 

35620 
New York-Northern New 
Jersey-Long Island, NY-NJ-
PA 

260 1.65 2.54 0.65 -10.80 0.00 

14460 
Boston-Cambridge-Quincy, 
MA-NH 

242 1.13 1.90 0.59 -12.07 0.00 

31100 
Los Angeles-Long Beach-
Santa Ana, CA 

222 1.21 2.34 0.52 -13.70 0.00 

41940 
San Jose-Sunnyvale-Santa 
Clara, CA 

150 0.49 2.11 0.23 -18.00 0.00 

16980 
Chicago-Joliet-Naperville, 
IL-IN-WI 

101 2.17 4.22 0.51 -9.34 0.00 

37980 
Philadelphia-Camden-
Wilmington, PA-NJ-DE-MD 

96 1.86 3.46 0.54 -8.68 0.00 

41860 
San Francisco-Oakland-
Fremont, CA 

92 1.61 2.59 0.62 -6.93 0.00 

40380 Rochester, NY 89 1.25 2.87 0.44 -10.18 0.00 

41740 
San Diego-Carlsbad-San 
Marcos, CA 

73 1.27 3.80 0.33 -10.88 0.00 
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Figure 3. Average nearest neighbor distance in nine sample regions. 
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Table 5. SD ellipses for nine sample regions. 

GEOID MSA 
Photonics 

Firms 
Area of SD Ell ipse 

(Square Miles) 
Firms in SD 

Ell ipse 
Square Miles per 

Firm 

35620 
New York-Northern New Jersey-Long 
Island, NY-NJ-PA 

260 2,502 157 15.93 

14460 Boston-Cambridge-Quincy, MA-NH 242 1,050 165 6.36 
31100 Los Angeles-Long Beach-Santa Ana, CA 222 1,136 140 8.12 
41940 San Jose-Sunnyvale-Santa Clara, CA 150 112 109 1.02 
16980 Chicago-Joliet-Naperville, IL-IN-WI 101 754 68 11.09 

37980 
Philadelphia-Camden-Wilmington, PA-
NJ-DE-MD 

96 1,091 60 18.18 

41860 San Francisco-Oakland-Fremont, CA 92 895 55 16.28 
40380 Rochester, NY 89 372 69 5.39 
41740 San Diego-Carlsbad-San Marcos, CA 73 307 51 6.01 
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Figure 4. SD ellipse for photonics firms in the New York City region. 
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Figure 5. SD ellipse for photonics firms in the Boston region. 
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Figure 6. SD ellipse for photonics firms in the Los Angeles region. 
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Figure 7. SD ellipse for photonics firms in the Silicon Valley region. 
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Figure 8. SD ellipse for photonics firms in the Chicago region. 
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Figure 9. SD ellipse for photonics firms in the Philadelphia region. 
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Figure 10. SD ellipse for photonics firms in the San Francisco region. 
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Figure 11. SD ellipse for photonics firms in the Rochester region. 
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Figure 12. SD ellipse for photonics firms in the San Diego region. 

After all of these comparisons, I selected the average nearest neighbor 

distance for two reasons. First, the average nearest neighbor distance is 

comparable across metropolitan areas. Unlike many other measures, the 

average nearest neighbor distance does not depend on a uniform study area. 

Second, the average nearest neighbor distance is more representative of the 

spatial distribution of firms in a metropolitan area as compared to the standard 

deviational ellipse, my second choice. Calculating the number of firms within 

the standard deviational ellipse divided by the area of the ellipse gives an 

approximation of firms per square mile, but this is misleading: firms are not 
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evenly distributed within the ellipse, by definition. The average nearest 

neighbor distance shows how far, on average, an employee must walk from one 

company until she arrives at another company from the same industry. This 

metric makes no claims about an even spatial distribution of firms.  

The average nearest neighbor distance is calculated as follows:7  

1. Calculate the distance from one firm to all other firms in the region. 

2. Record the smallest distance in that firm’s record—this is firm i’s 

nearest neighbor distance.  

3. Repeat for all other firms in the region. 

4. Average the nearest neighbor distances for all firms in the region.  

The Python script I wrote to calculate the average nearest neighbor distance 

for each MSA is in Appendix B. Table 6 shows descriptive statistics for the 

average nearest neighbor distance in all regions with at least 10 photonics firms. 

                                                        
7 For more information on the average nearest neighbor distance, see Ebdon (1985). It is also 

quite common in public health: see Waller and Gotway (2004). And for a quick introduction, 
the ArcGIS 10.1 manual is quite helpful: 
http://resources.arcgis.com/en/help/main/10.1/index.html#/How_Average_Nearest_Neighbor_w
orks/005p0000000p000000/.  
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Table 6. Descriptive statistics for clustering in regions with at least 10 

photonics firms. 

 

Average Nearest Neighbor Distance in 
Miles 

Minimum 0.37 
Maximum 6.64 
Mean 2.65 
Median 2.50 
Standard 
Deviation 

1.47 

N 52 

 

Data sources: web scraped firms, an industry survey, and the 

Census 

In this dissertation, I used three data sources. The first is a directory of 

photonics firms that I obtained by scraping the website of the Photonics Buyers’ 

Guide, a leading trade publication for the industry.8 The second is the 2010 

Census, for both TIGER/Line metropolitan statistical area (MSA) boundary 

files9 and County Business Patterns data10 on the number of establishments per 

MSA. The third data source is a salary survey of a variety of professionals in the 

                                                        
8 On the web at http://www.photonics.com/BuyersGuide.aspx, and also available as an 

annual print publication. 
9 TIGER/Line files and documentation for all years available here: 

https://www.census.gov/geo/maps-data/data/tiger-line.html. To download the 2010 files, go to 
https://www.census.gov/cgi-bin/geo/shapefiles2010/main, select “Core Based Statistical Areas” 
in the drop down for layer type, and click Submit. Then under “Metropolitan/Micropolitan 
Statistical Area (2010)” select “All states in one national file” and click Download.  

10 County Business Patterns data and documentation for all years available here: 
http://www.census.gov/econ/cbp/. To download the 2010 files, go to 
http://www.census.gov/econ/cbp/download/10_data/ and click the link for the Complete 
Metropolitan Area file. 
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photonics industry from around the United States.11 SPIE, a leading photonics 

industry association, conducted the survey and then shared the raw data with 

Jennifer Clark and me.12 

Web scraping for emerging industry firm-level data 

Web scraping is a means of systematically extracting information from 

websites. For example, imagine you wanted to collect the names, titles, email 

addresses, and phone numbers of all of the faculty in public policy at Georgia 

Tech. You could create a spreadsheet in Microsoft Excel, manually open all of 

the faculty members’ web pages, and type in the information for each one. Or 

you could write a program to do that for you: go to each website, search for 

name, title, email address, and phone number, and put that information into a 

spreadsheet. Web scraping is the programming approach. For this dissertation, 

I wrote my web scraping code in Python. But there are also tools that allow you 

to extract information from websites without writing code, such as import.io.  

Firm-level data for emerging industries is notoriously hard to come by for 

three reasons. First, firm-level data that include specific firm addresses are 

scarce. Second, firm-level data through which firms can be categorized as 

belonging to an emerging industry are nearly impossible to obtain. Third, 

firms, like individuals, often consent to have their data reported only in 

aggregate in order to protect their privacy. I illustrate these challenges with an 

example. 

                                                        
11 Here is SPIE’s report on their 2012 salary survey: 

https://spie.org/Documents/CareerCenter/SalarySurveyAug12/SPIESalarySurveyReport2012.pd
f.  

12 Find out more about SPIE at http://spie.org/.  
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In the United States, the Longitudinal Business Database (LBD)13 covers 

establishment-level data for all businesses in the nation, but its access is 

restricted through the Census’ Research Data Center Program.14 More 

importantly for this dissertation, the LBD and similar datasets classify 

establishments by NAICS15 industry code, and there is no specific NAICS code 

for photonics, as is the case for many emerging industries. Table 7 describes the 

two closest NAICS codes for photonics: 334413, “Semiconductor and Related 

Device Manufacturing,” and 541712, “Research and Development in the 

Physical, Engineering, and Life Sciences (except Biotechnology).”16  

                                                        
13 Longitudinal Business Database files and documentation for all years available here: 

https://www.census.gov/ces/dataproducts/datasets/lbd.html.  
14 For more information on the Census Bureau Research Data Centers Program, go here: 

https://www.census.gov/ces/rdcresearch/.  
15 NAICS stands for the North American Industry Classification System, a federal standard 

for classifying businesses in the United States. For more information, see 
http://www.census.gov/eos/www/naics/.  

16 Table compiled by searching for these NAICS codes on the Census NAICS tool at 
http://www.census.gov/eos/www/naics/. 
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Table 7. NAICS codes for photonics. 

2012 
NAICS 
Code 

334413 541712 

Tit le 
Semiconductor and Related 
Device Manufacturing 

Research and Development in the 
Physical, Engineering, and Life 
Sciences (except Biotechnology) 

Description 

This U.S. industry comprises 
establishments primarily engaged 
in manufacturing semiconductors 
and related solid state devices. 
Examples of products made by 
these establishments are 
integrated circuits, memory chips, 
microprocessors, diodes, 
transistors, solar cells and other 
optoelectronic devices. 

This U.S. Industry comprises 
establishments primarily engaged in 
conducting research and 
experimental development (except 
biotechnology research and 
experimental development) in the 
physical, engineering, and life 
sciences, such as agriculture, 
electronics, environmental, biology, 
botany, computers, chemistry, food, 
fisheries, forests, geology, health, 
mathematics, medicine, 
oceanography, pharmacy, physics, 
veterinary and other allied subjects. 
 

Photonics 
Index Entry 
within this 
Code 

Photonic integrated circuits 
manufacturing 

Photonics research and 
development services 

 

 

This means that if I wanted to run specialization measures by metropolitan 

area for photonics, and if I wanted to measure the spatial clustering of 

photonics firms by metropolitan area, I would have to include all 

semiconductor firms (NAICS 334413), all non-biotech R&D firms (NAICS 

541712), or both. In other words: there is no way to limit analyses to an emerging 

industry, or to any other industry that is not well-captured in the existing 

NAICS code structure. 
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So in this dissertation I used a different approach. I took a directory of firms 

in my target industry, photonics, and compiled the entries into a database that 

allowed me to run spatial statistics. The two key steps in this process were web 

scraping and geocoding. Each firm’s entry in the Photonics Buyers’ Guide 

includes the firm’s name, address, founding year, number of employees, and 

facility square footage. In 2012, the Photonics Buyers’ Guide listed 2,932 firms in 

the United States. I compiled these 2,932 firms into a spreadsheet by writing a 

Python script to scrape each firm’s record from the Photonics Buyers’ Guide 

website. The script is in Appendix A. I then geocoded these records in ArcGIS. 

Table 8 shows the descriptive statistics for these 2,932 firms. 

Table 8. Descriptive statistics for Photonics Buyers’ Guide Firms. 

 Minimum Median Mean Maximum N 

Year Founded 177317 1987 1982 2012 2,681 
Number of Employees 1 20 112 22,400 2,254 
Facil ity Square Footage 120 12,000 40,090 5,760,000 1,883 

Census TIGER/Line files and County Business Patterns 

The Photonics Buyers’ Guide provided firm-level addresses. When paired 

with two data sources from the Census, this web-scraped dataset allowed me to 

calculate the degree to which each metropolitan statistical area in the United 

States is specialized in photonics, and to what degree each metropolitan 

statistical area can be said to be highly clustered in photonics. 
                                                        
17 This is not a typo. Reade Brothers Co., Ltd. was established in 1773 in Wolverhampton, 

England. The company, now named Reade International Corp., manufactures chemicals for 
pharmaceutical applications. http://www.reade.com/home/about-
reade#Company_Historical_Highlights: 
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To find out how many photonics companies exist in each metropolitan 

statistical area (MSA) in the United States, I geocoded photonics firm records 

after web scraping them. The 2010 Census TIGER/Line shapefiles provide the 

boundaries for all Core Based Statistical Areas (CBSAs) in the United States. 

CBSAs include both metropolitan and micropolitan statistical areas; this 

dissertation focuses on metropolitan statistical areas (MSAs) because they cover 

95% of all photonics firms. In short, this is an urban industry (Table 9).18 To 

associate each firm record with an MSA, I performed a point-in-polygon spatial 

join in ArcGIS.19 

Table 9. Photonics is an urban industry. 

 
Firms in these Areas Percent of All  Firms 

Metropolitan Statist ical Areas 2,771 95% 

United States 2,932 100% 
 

 

To calculate the percentage of firms in each metropolitan statistical area 

that are photonics firms, I used the total number of firms in each MSA from the 

2010 County Business Patterns dataset. Establishments in the County Business 

                                                        
18 Micropolitan statistical areas have an urban core of at least 10,000 inhabitants; 

metropolitan statistical areas have an urban core of at least 50,000 inhabitants. 
19 I used ArcGIS 10.1 for the spatial join, then exported the attribute table of the resulting 

layer to CSV for analysis in R. 
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Patterns are analogous to firms in the Photonics Buyers’ Guide.20 Table 10 

provides descriptive statistics for the County Business Patterns establishments. 

Table 10. Establishments and employment by geographical unit in the 2010 

County Business Patterns. 

 

Areas 
Represented 

Establishments Employment 

Metropolitan Statist ical 
Areas 

363 6,211,033 95,665,547 

Micropolitan Statist ical 
Areas 

570 702,998 9,042,761 

Core Based Statist ical 
Areas 

933 6,914,031 104,708,308 

United States 1 7,396,628 111,970,095 
 

The SPIE salary survey 

Using the Photonics Buyers’ Guide, the TIGER/Line MSA boundary files, and 

the County Business Patterns, I computed the degree to which each 

metropolitan area is specialized in photonics and the degree to which each 

metropolitan area’s photonics firms are spatially clustered. The SPIE salary 

survey was used to test the effect of regional specialization and clustering on 

labor market outcomes. This dissertation focused on two labor market 

                                                        
20 The County Business Patterns dataset defines establishments as follows: “An 

establishment is a single physical location at which business is conducted or services or 
industrial operations are performed. It is not necessarily identical with a company or 
enterprise, which may consist of one or more establishments. When two or more activities are 
carried on at a single location under a single ownership, all activities generally are grouped 
together as a single establishment. The entire establishment is classified on the basis of its 
major activity and all data are included in that classification.” 
http://www.census.gov/econ/cbp/definitions.htm  

The Photonics Buyers’ Guide reports single locations of firms; in many cases, these are 
divisions of broader corporations that have a single function related to optics. 



 

 72 

outcomes: employee wages and recruitment. I measured wages through a SPIE 

2012 survey item (“What was your total 2011 annual pre-tax earnings at your 

current job, including all salary and bonuses?”). I measured employee 

recruitment through a SPIE 2012 survey item (“How did you find your current 

or original position at your present employer?”). The full salary survey 

instrument is in Appendix E. Table 11 shows the descriptive statistics for wages 

in the survey. 

Table 11. Descriptive statistics for wages in the SPIE 2012 salary survey. 

 Wages (SPIE 2012) 

Minimum $2,83221 
Maximum $800,000 
Mean $113,800 
Median $106,000 
Standard Deviation $56,895 
N 3,278 

 

Understanding how and why employees and employers find and value each 

other is a key area of study for both urban economists and labor geographers. 

In particular, the “How did you find your job?” item includes answer choices 

that allowed me to uncover the role of labor market intermediaries (SPIE 2012 

survey): 

                                                        
21 This is not a typo. It likely represents someone who worked only a few weeks in 2011. But 

since the survey data does not contain individual identifiers, I could not reach out to the 
respondent to ask. 
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How did you find your current or original position at your 
present employer? (select one) 
 

• Printed job advertisement (newspaper or journal) 
• Online job advertisement 
• In-person job fair 
• University career office 
• Alumni network 
• Professional association 
• I was recruited 
• Private placement agency 
• Public/government placement agency 
• Networking or referral through personal contact 
• I contacted the employer directly (no job was 

advertised) 
• Other ___________________________________  

 

Mark Granovetter’s classic book, Getting a Job: A Study of Contacts and Careers 

(1995), showed that professionals find jobs in three key ways: via their social 

networks, by directly contacting an employer, and by using formal 

mechanisms—also known as labor market intermediaries (LMIs). LMIs are 

third-party services that match employees and employers, from executive 

search firms to temporary agencies to job boards and public sector workforce 

development programs. In this survey item, all but the last two options 

represent LMIs; the option “networking or referral through personal contact” 

represents social networks, and the option “I contacted the employer directly 

(no job was advertised)” represents direct contact. Granovetter finds that 

professionals rely most heavily on their social networks, while Benner (2002) 

and Saxenian (1996) find that LMIs are crucial in forging the connections that 

facilitate innovation in the electronics industry in Silicon Valley. It was thus 

interesting to discover (a) whether the photonics industry tilts more towards 
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networking, direct contact, or LMIs as a whole and (b) whether these trends 

vary by regional specialization and firm clustering. Table 12 shows descriptive 

statistics for recruitment channels for the SPIE salary survey.  

Table 12. Descriptive statistics for recruitment channels in the SPIE 2012 

salary survey. 

 
Recruitment Channels 

Social networks 29% 
Direct contact 9% 
Labor market intermediary 62% 
N 3,269 

 

 

Using the Photonics Buyers’ Guide, the Census TIGER/Line boundary files 

and County Business Patterns, and the SPIE salary surveys, I constructed a rich 

dataset of photonics industry agglomeration and labor market outcomes by 

metropolitan area. In particular, I measured regional specialization, firm 

clustering, wages, and recruitment methods, along with a set of control 

variables for gender, education, years of experience, and employer size.  

Analytical techniques 

My research question relied on preliminary work showing that 

specialization and clustering are empirically distinct. In the preliminary work, I 

measured specialization and clustering in photonics for each metropolitan area 

in the United States, then created a regional typology of specialization and 
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clustering. For good measure, I also ran correlations between my specialization 

and clustering metrics, and conducted a chi-square test on the regional 

typology. Once I established how specialization and clustering differ, I 

investigated the effects of specialization and clustering on wages and 

recruitment methods through a set of regressions and a pattern matching 

exercise (Yin 2014). 

Preliminary work: Are specialization and clustering distinct? 

Much of the literature on agglomeration uses the cluster concept—and that 

is fraught with conceptual and operational problems. I cut through the forest of 

conflicting effects of agglomeration by defining and measuring two very precise 

aspects of agglomeration: specialization and clustering. I used the standardized 

location quotient to categorize metropolitan statistical areas by their degree of 

specialization in photonics, and I used the average nearest neighbor distance 

for photonics firms in each metropolitan statistical area in the United States to 

categorize metropolitan statistical areas by their degree of clustering for 

photonics firms. The result is a table of all 363 metropolitan areas in the United 

States as of the 2010 Census, along with the following variables for 

specialization and clustering: 

• Specialization 
o # of photonics firms in region 
o # of non-photonics firms in region 
o % of firms in region that are photonics firms 
o photonics location quotient for region 
o log of photonics location quotient for region 
o standardized location quotient for region 

• Clustering 
o # of photonics firms in region 
o If >= 10 photonics firms in region: 
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! average distance from one firm to its nearest neighbor in 
miles 

 

I then assigned each region a category of “low” or “high” for specialization 

and clustering according to the guidelines in Table 13. I used Table 14 to show 

how many regions fall into each category. 

Table 13. Cutoffs for the regional typology of specialization and clustering. 

 
Special ization Clustering 

Low SLQ <= 1.65 ANN distance <= 1.5 miles 
High SLQ > 1.65 ANN distance > 1.5 miles 

 

 

I chose these cutoffs as follows. For specialization, since the standardized 

location quotient is a z-score, the 1.65 cutoff simply reflects the p < .10 guideline 

common in the social sciences. In the results chapter, I show how the SLQ 

cutoff compares with traditional location quotient interpretation guidelines. 

For clustering, Arzaghi and Henderson (2008) found that collaboration 

between advertising firms in Manhattan decayed significantly when those firms 

were located more than 750 meters apart. 750 meters is about half a mile—a 

ten-minute walk. In the strictest terms, I would only label a region high in 

clustering if all firms in the target industry were walking distance from at least 

one other firm. That is unlikely, which is why I used the average nearest 

neighbor distance: the central tendency provides room to identify a clustering 
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trend even when one firm is located quite far from all other firms. Such an 

outlier will increase the average nearest neighbor distance, but its effect will 

lessen as the number of firms in the region grows. 

If all regions in the United States were pedestrian-oriented regions, I would 

keep the walking distance cutoff. But they are not. The vast majority of 

metropolitan areas—and even central cities—in the United States are designed 

and built for driving. So I triple the clustering distance to 1.5 miles—about a 

ten-minute drive in medium to heavy traffic in a central business district.  

While different clustering cutoffs result in different numbers of regions in 

each cell in my typology, the cutoffs do not fundamentally change my research 

findings. That is because the heart of my research is based on continuous 

values. In the preliminary work, I used a correlation coefficient to describe the 

relationship between specialization (measured as the standardized location 

quotient) and clustering (measured as the average nearest neighbor distance). 

For my research question, I used OLS regression to test the relationships 

between specialization, clustering, and wages; I used logistic regression and 

pattern matching (Yin 2014) to test the relationships between specialization, 

clustering, and recruitment methods. The only research finding that that 

changes based on the cutoffs is the pattern matching approach to analyzing the 

relationship between specialization, clustering, and recruitment methods; 

however, the logistic regression also tests this relationship and is not affected by 

a change in cutoffs.  
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In sum, yes, the clustering cutoffs are somewhat arbitrary. The purpose of 

the cutoff is to create a mental category for a policymaker to use. It is simply a 

heuristic—an exploratory tool. But the real results—the degree to which 

clustering is correlated with specialization, and the degree to which clustering 

affects recruitment and wages—rely on the continuous measure of the average 

nearest neighbor distance. The cutoffs have no impact on those results. In 

addition, my policy recommendations are based on the continuous results. All 

of which is to say that I defend my choice of cutoffs as a reasonable 

compromise for a thinking tool and address their somewhat arbitrary nature by 

using the continuous measures of clustering for testing effects and creating 

policy recommendations. 

Table 14. Shell for the typology of specialization and clustering. 

 Low special ization High special ization 

High clustering # of regions # of regions 
Low clustering # of regions # of regions 

 

 

If specialization and clustering were redundant measures of agglomeration, 

we would expect to see all regions in the “low specialization, low clustering” 

and “high specialization, high clustering” categories. In other words, we would 

not expect to find any instances of specialization in the absence of clustering 

(bottom right), or clustering in the absence of specialization (top left). To test 

the relationship between specialization and clustering, I calculated the Pearson 
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correlation coefficient for the standardized location quotient and the average 

nearest neighbor distance. I also ran a chi-square test on the typology table 

above. 

Research question: How do specialization and clustering affect wages and 

recruitment methods in science-based industries? 

Policymakers pursue agglomeration strategies at least in part because they 

expect agglomerations to result in wage premiums and better firm-worker 

matching. Anecdotally, software industry veterans will tell you that the way to 

get paid more, find the best people to work with, and find the best companies to 

work for is to move to Silicon Valley. But we do not know whether these 

benefits are due to specialization, clustering, both, or neither. 

As I mentioned in the section on data sources, I measured wages using a 

survey item that asks people to report their 2011 pre-tax earnings (salary and 

bonus only). I measured recruitment patterns using a survey item that asks 

people how they found their jobs. I then recoded the answer choices into 

Granovetter’s (1995) three job-finding mechanisms: personal networks, directly 

contacting an employer, or labor market intermediaries. 

To test the effects of specialization and clustering on wages, I ran a series of 

ordinary least squares (OLS) regressions on the log of wages. In keeping with 

standard labor economics practice, I used the log of wages because wages are 

not normally distributed. In each model, I controlled for employee education, 

years of experience, gender, and employer size—all variables present in my 

salary survey. The three models are as follows. 



 

 80 

log !"#$% = !! + !!!"#$%&'%(&)%*+ + !!!"#!$%!&'! + !!!"#$%&'()

+ !!!"#$"% + !!!"#$%&!'()*! + !!

log !"#$% = !! + !!!"#$%&'()* + !!!"#!$%!&!" + !!!"#$%&'()

+ !!!"#$"% + !!!"#$%&!'()*! + !!

log !"#$% = !! + !!!"#$%&'%(&)%*+ + !!!"#$%&'()* + !!!"#!$%!&'!

+ !!!"#$%&'() + !!!"#$"% + !!!"#$%&!'()*! + !!

 To test the effects of specialization and clustering on recruitment patterns, I 

ran a series of logistic regressions on whether an employee found their job 

using a labor market intermediary. In each model, I used the same controls as 

in the wage analysis. The three models are as follows. 

LMI = !"#$%&$'(!! + !!!"#$%&'%(&)%*+ + !!!"#!$%!&'! + !!!"#$%&'()

+ !!!"#$"% + !!!"#$%&!'()*! + !)!

LMI = !"#$%&$'(!! + !!!"#$%&'()* + !!!"#!$%!&'! + !!!"#!"#$%&

+ !!!"#$"% + !!!"#$%&!'()*! + !)!

LMI = !"#$%&$'(!! + !!!"#$%&'%(&)%*+ + !!!"#$%&'()* + !!!"#!$%!&'!

+ !!!"#$%&'() + !!!"#$"% + !!!"#$%&!'()*! + !)!

The variable specification for these models is presented in Table 15. 
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Table 15. Variable specification for regression models. 

Concept Operationalization Data Source Limitations 

Wages 
“What was your total 2011 annual pre-tax 
earnings at your current job, including all salary 
and bonuses?” 

SPIE survey 
Self-reported data could be wrong; no distinction 
between those who started work partway through the 
year and those who worked for a full 12 months 

LMI 

“How did you find your current or original 
position at your present employer? (select one)” 
1 = Labor market intermediary choices (coded 
according to Granovetter (1995)) 
0 = All other choices 

SPIE survey 
This is an employee sample rather than employer 
sample; no information about representativeness of the 
survey available 

Experience 
“How many years, total, have you been 
professionally employed? (select one)” 

SPIE survey 
This is ordinal rather than continuous (respondents select 
a category) 

Education 
“What is the highest educational level you have 
completed? (select one)” 

SPIE survey Not a perfect translation into years of education 

Gender “What is your gender? (select one)” SPIE survey 
Transgender, intersex, genderqueer, and otherwise non-
binary individuals may be left out of a binary question 

Employer size 
“How many employees are in your organization 
(world-wide)? (select one)” 

SPIE survey 
This is ordinal rather than continuous (respondents select 
a category) 

Special ization Standardized location quotient PBG, Census 
The Photonics Buyers’ Guide may be an incomplete 
directory of photonics firms 

Clustering Average nearest neighbor distance in miles PBG, Census 
The Photonics Buyers’ Guide may be an incomplete 
directory of photonics firms 
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I also performed a qualitative analysis of recruitment methods using pattern 

matching as described in Yin’s (2014) text on case study analysis. I illustrate this 

technique with H1: “High regional specialization increases the use of LMIs for 

recruitment if the number of firms in the region is also high (≥ 50).” For 

example, I would have rejected this hypothesis under any of the following 

conditions: 

• A non-specialized region uses LMIs more than a highly specialized 

region, and the two have at least 50 firms each. 

• The proportion of LMI use is the same in a specialized and a non-

specialized region, and the two have at least 50 firms each. 

• Highly specialized regions use LMIs more than a non-specialized 

regions in every case in my data, regardless of the number of firms. 

On the other hand, I would not have rejected my hypothesis under the 

following pattern: 

• Among regions with at least 50 firms each, the lowest proportion of LMI 

use in a highly specialized region will be greater than the highest 

proportion of LMI use in a non-specialized region. 

This technique involved the possibility of both literal and theoretical 

replication. A literal replication of a finding would have occurred had I found 

that all highly specialized regions show the same recruitment patterns. A 

theoretical replication of a finding would have occurred had I found that all 
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highly specialized regions differ systematically from all non-specialized regions 

in terms of recruitment patterns. 
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CHAPTER 4: RESULTS 

Agglomeration captivates policymakers and academics alike. However, 

theoretical and empirical confusion around what counts as agglomeration has 

prevented researchers from testing the effects of agglomeration for both 

statistical and policy significance. In this dissertation, I have proposed that we 

study components of the agglomeration concept one at a time, starting with 

specialization and clustering. In the methods chapter, I shared my research 

question and hypotheses, explained how I measured specialization and 

clustering, and described my data sources and analytical techniques. In this 

chapter, I share the results: How distinct are specialization and clustering, 

really? How do specialization and clustering influence wages and recruitment 

patterns in scientific and technical labor markets? 

Preliminary work: How distinct are specialization and clustering? 
If we are to understand how different aspects of agglomeration truly affect 

labor market outcomes, it helps to first find out how the aspects in question 

relate to one another. Yes, specialization and clustering are both components of 

agglomeration—but to what degree do they overlap? Do all agglomerations 

exhibit both specialization and clustering? Or is it possible to identify a region 

specialized in an industry without much spatial concentration among its firms? 

Conversely, is it possible to identify a region with high firm clustering, but no 
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recognizable specialization? Answering these questions provides the 

foundation for testing the effects of specialization and clustering on wages and 

recruitment patterns. 

The distribution of specialization 
Very few regions in the United States are specialized in photonics. Of the 

363 metropolitan areas in the United States, 186 have at least one photonics 

firm. Figure 1 shows the locations of all 2,392 photonics firms in my data set 

within these 186 metro areas. Within these 186 regions, I measured 

specialization using the standardized location quotient (SLQ) as outlined in 

O’Donoghue and Gleave (2004) and explained in my methods chapter. In short, 

the SLQ is the z-score derived from the log of the location quotient. Table 16 

illustrates the distribution of specialization in these regions. 
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Figure 13. Photonics firms in US MSAs. 

 

Table 16. Photonics specialization in US MSAs: SLQ. 

Special ization MSAs Percent of MSAs 

Low (SLQ ≤ 1.65) 173 93% 
Mid (1.65 < SLQ ≤ 1.96) 
significant, p < .10, one-tailed 

722 4% 

High (SLQ > 1.96) 
significant, p < .05, one-tailed 

623 3% 

Total 186 100% 
 

                                                        
22 Vineland, NJ (1.69), Oxnard, CA (1.78), Boston, MA (1.86), Worcester, MA (1.92), Tucson, 

AZ (1.93), Trenton, NJ (1.95), Ithaca, NY (1.95) 
23 Santa Barbara, CA (2.03), Boulder, CO (2.20), Ann Arbor, MI (2.23), San Jose, CA (2.43), 

Manchester-Nashua, NH (2.51), and Rochester, NY (2.56) 
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Only 3% of MSAs exhibit specialization in photonics (strict definition: p 

< .05), or 7% of MSAs (loose definition: p < .10). Figure 14 shows the histogram of 

the standardized location quotient across 52 metro areas. 

 

Figure 14. Histogram of specialization across 186 metro areas. 

Only a small percentage of regions can be specialized by the definition of 

the SLQ, which computes specialization in comparison to other regions. Future 

research should compare the distribution of specialization in photonics with 

the distribution of specialization in other science and technology industries. 

In standard economic development practice, a region is considered to have 

a specialization in a particular industry if its location quotient is above 1.25  
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(McLean and Voytek 1992). By this metric, 33% of the 186 metropolitan areas 

with at least one photonics firm can be regarded as specializing in the industry 

(Table 17). Or, if we consider specialization in all MSAs—even those without a 

single photonics firm—then 17% of 363 metropolitan areas can be regarded as 

specializing in the photonics industry. Figure 15 shows the histogram of the 

location quotient across 186 metro areas. 

Table 17. Photonics specialization in US MSAs: LQ. 

Special ization MSAs Percent of MSAs 

Low (LQ ≤ 0.75): local-serving 
import substitution opportunity 

84 45% 

Mid (0.75 < LQ ≤ 1.25): local-serving 
producing enough to meet local demand 

40 22% 

High (LQ > 1.25): export-oriented 
producing enough for locals + exports 

62 33% 

Total 186 100% 
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Figure 15. Histogram of location quotient across 186 metro areas. 

However, the location quotient does not contribute to my goal, which is to 

identify the select few regions where photonics occupies an unusually large 

portion of the economy. In other words: of all the regions in the United States, 

which ones are photonics powerhouses? 

Specialization is only meaningful when it discriminates between regions. If 

all of the MSAs in the United States are competing against one another, a 

metric that places 62 of them on the same footing is not a very useful ranking.  

The SLQ captures this discrimination in two ways. First, it eliminates the 

asymmetrical nature of the location quotient by taking its log. The log of the LQ 

is normal. When working with a normal distribution, it is much easier to see 
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where any region falls compared to its peers. Second, the SLQ identifies the top 

regions using a standard metric: the p < .05 cutoff of the social sciences. Since I 

was interested in extreme cases, the higher bar of the statistical test was more 

appropriate for the dissertation. Appendix D provides the traditional location 

quotient, the log of that location quotient, and the SLQ for all 186 metropolitan 

areas with at least one photonics firm. 

In sum, 13 out of 186 metropolitan areas (seven percent) can be considered 

specialized in photonics under the p < .10 cutoff; 6 out of 186 metropolitan areas 

(three percent) can be considered specialized in photonics under the p < .05 

cutoff. 

The distribution of clustering 
Clustering is less rare than specialization—at least among photonics firms 

in urban regions in the United States. Of the 363 metropolitan statistical areas 

in the United States, 52 have at least ten photonics firms. Within these 52 

regions, I measure clustering using the average nearest neighbor distance. 

Table 18 shows the distribution of clustering in these regions, and Figure 16 

provides the distribution in finer detail. 
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Table 18. Photonics clustering in US MSAs. 

Clustering MSAs Percent of MSAs 

Low (NN distance > 1.5 miles) 38 73% 
Mid (0.5 miles < NN distance ≤ 1.5 miles) 1224 23% 
High (NN distance ≤ 0.5 miles) 225 4% 

Total 52 100% 
 

 

Only 4% of MSAs exhibit clustering in photonics (strict definition: NN 

distance ≤ 0.5 miles), or 27% of MSAs (loose definition: NN distance ≤ 1.5 miles). 

In other words, photonics firms in metropolitan areas that specialize in 

photonics do not tend to cluster closed to one another. 

                                                        
24 Boulder, CO (0.64), Tucson, AZ (0.95), Trenton-Ewing, NJ (0.99), Santa Cruz-Watsonville, 

CA (1.04), Boston-Cambridge-Quincy, MA-NH (1.13), Santa Barbara-Santa Maria-Santa Goleta, 
CA (1.15), Manchester-Nashua, NH (1.18), Los Angeles-Long Beach-Santa Ana, CA (1.21), 
Rochester, NY (1.25), San Diego-Carlsbad-San Marcos, CA (1.27), Santa Rosa-Petaluma, CA (1.32), 
Ann Arbor, MI (1.38).  

25 Oxnard-Thousand Oaks-Ventura, CA (0.37), San Jose-Sunnyvale-Santa Clara, CA (0.49). 
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Figure 16. Distribution of photonics clustering among US MSAs. 

The relationship between specialization and clustering 
These results are consistent with the literature on agglomeration, which 

states that specialization and clustering are highly correlated but not always co-

present. In a five cases, regions exhibit contrary trends: low specialization and 

high clustering, or high specialization and low clustering. Table 19 shows my 

typology of regions based on specialization and clustering. I tested the 

relationship between specialization and clustering with a chi-square test on the 

typology table, a categorical measure, and a correlation coefficient on the 

standardized location quotient and the average nearest neighbor distance, a 

continuous measure. 
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Table 19. Specialization and clustering typology. 

 Low special ization High special ization 

High clustering 426 (8%) 1027 (19%) 
Low clustering 37 (71%) 128 (2%) 

 

 

Specialization and clustering are related, whether measured categorically or 

continuously. Measured categorically, specialization and clustering are 

significantly related: chi-squared = 31.05, p < .001. Measured continuously, 

specialization and clustering and significantly related: r = -0.78, p < .001. 

Given these results, does the agglomeration wage premium hold for 

specialization and clustering independent of one another? In other words: if we 

see higher salaries in regions with both high specialization and high clustering, 

which one is driving the effect? Is the wage premium due to specialization, 

clustering, both, or some other aspect of agglomeration not measured here? 

Research question: How do specialization and clustering 
influence wages and recruitment patterns? 

The key premise of this dissertation is that the definitional confusion 

around what constitutes agglomeration economies—theoretically and 

empirically—prevents us from testing the effects of different aspects of 

                                                        
26 Santa Cruz-Watsonville, CA; Los Angeles-Long Beach-Santa Ana, CA; San Diego-

Carlsbad-San Marcos, CA; Santa Rosa-Petaluma, CA 
27 Oxnard-Thousand Oaks-Ventura, CA; San Jose-Sunnyvale-Santa Clara, CA; Boulder, 

CO; Tucson, AZ; Trenton-Ewing, NJ; Boston-Cambridge-Quincy, MA; Santa Barbara-Santa 
Maria-Santa Goleta, CA; Manchester-Nashua, NH; Rochester, NY; Ann Arbor, MI 

28 Worcester, MA 
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agglomeration economies on outcomes that policymakers care about. In this 

dissertation, I narrow the scope to testing the effects of specialization and 

clustering on two labor market outcomes that policymakers interested in 

fostering high-tech labor markets care about: wages and recruitment methods. 

Table 20 provides an overview of my results. 
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Table 20. Results for the dissertation’s research question. 

 Hypothesis Justif ication Result 

H1 

High regional 
specialization 
increases the use of 
labor market 
intermediaries 
(LMIs) for 
recruitment if the 
number of firms in 
the region is also 
high (≥ 50). 

Key studies of the electronics 
labor market in Silicon Valley 
highlight the role of LMIs like 
recruitment agencies, 
temporary labor firms, and 
professional associations in 
making the connections 
between employees and 
employers (Benner 2002; 
Saxenian 1996). 

Rejected. LMI use is 
higher in a  low 
specialization region 
(Chicago: 67%) than a 
high specialization 
region (San Jose: 55%), 
and they both have 
over 50 firms. 

H2 

High firm clustering 
decreases the use 
of LMIs for 
recruitment if the 
number of firms in 
the region is also 
low. 

Close proximity facilitates 
information exchange (Arzaghi 
and Henderson 2008); workers 
in more tightly clustered firms 
should know more about job 
opportunities through their 
local networks and have less of 
a reliance on intermediaries. 

Supported. the 
highest proportion of 
LMI use in a mid 
clustering region 
(Tucson: 46%) is lower 
than the lowest 
proportion of LMI use 
in a low clustering 
region (Washington DC: 
47%). 

H3 
High regional 
specialization 
increases wages. 

Competition among firms bids 
up the price of labor; previous 
studies find wage premiums in 
agglomerations. 

Partial ly supported. 
Specialization increases 
wages only when we do 
not also take clustering 
into account. 

H4 
High firm clustering 
has no impact on 
wages. 

The labor market for wage-
setting extends beyond the 
neighborhood of nearest firms; 
overall MSA trends should 
have the biggest effect. 

Rejected. Clustering 
increases wages, 
whether we take into 
account specialization 
or not. 

How specialization and clustering affect wages 
Employees often move to agglomerations in their industries to attain higher 

wages. Software engineers in Silicon Valley get paid more, even if the cost of 

living is higher. The question is whether the wage premium comes from 

specialization, clustering, both, some other aspect of agglomeration, or simply 

the cost of living. I found the wage premium is primarily a result of clustering. 
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This section illustrates the wage premium through both categorical and 

continuous measures of specialization and clustering. First, I examine mean 

differences in wages in high versus low clustering regions, and high-versus low 

specialization regions. Then, I explain the construction and the results of three 

regression models: the effect of specialization alone on wages, the effect of 

clustering alone on wages, and the effects of specialization and clustering on 

wages when taking both into account. I conclude this section with a discussion 

of the limitations of these models as well as proposals for future research to 

address those limitations. 

Table 21. Summary statistics for wages in high versus low clustering regions. 

Wages High clustering Low clustering 

Min $2,832 $3,000 
Mean $121,481 $114,804 
Median $118,000 $109,500 
Max $800,000 $480,000 
Standard deviation $63,533 $54,415 
Regions 14 38 
Employees 889 1,114 

 

 

Table 21 shows that median wages are $8,500 higher in high clustering 

regions as opposed to low clustering regions. Mean wages are $6,677 higher in 

high clustering regions as opposed to low clustering regions. This difference is 

statistically significant (t = 3.50, p < .001). However, the data indicate that there 
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are no significant differences between high specialization and low 

specialization regions (Table 22). 

Table 22. Summary statistics for wages in high versus low specialization 
regions. 

Wages High special ization Low special ization 

Min $13,000 $2,832 
Mean $122,241 $117,320 
Median $115,000 $110,000 
Max $412,000 $800,000 
Standard deviation $58,097 $59,113 
Regions 11 41 
Employees 670 1,333 

 

 

Table 22 shows that median wages are $5,000 higher in high specialization 

regions as opposed to low specialization regions. Mean wages are $4,921 higher 

in high specialization regions as opposed to low specialization regions. This 

difference is not statistically significant at the 95% confidence level (t = 1.78, p = 

0.08). 

What if other factors are taken into account? In a series of multiple 

regression models, I included a set of control variables known to affect wages: 

years of experience in the workforce, years of education, employer size, and 

gender. Both years of experience and years of education represent an 

employee’s skill set. Together, they form a subset of the concept of an 

employee’s human capital. In general, people with more years of experience 
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and more years of education make more money. Employer size, measured as 

the number of employees in the firm, represents the most salient aspect of a 

firm for determining wages. In general, larger firms pay more than smaller 

firms. And gender, though not related to skill, also affects wages, as we know 

from countless studies on the gender pay gap. Table 23 shows the results for 

each model. 
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Table 23. Three models for predicting the log of wages. 

 

Model 1:  
log(wages) ~ 

special ization + 
controls 

Model 2: 

log(wages) ~ 
clustering + 

controls 

Model 3: 

log(wages) ~ 
special ization + 

clustering + 
controls 

Special ization 
(SLQ) 

.03958 * — .005359 

Clustering (average 
nearest neighbor 
distance in miles) 

— -.03488 * -.03148 * 

Years of 
experience 

.02430 * .02421 * .02421 * 

Years of education .07020 *  .07019 *  .0724 * 
Employer size .00002134 * .00002123 * .00002126 * 
Gender (male = 1, 
female = 0) 

.1870 * .1851 * .1853 * 

Intercept 9.656 * 9.768 * 9.755 * 
Observations 1,988 1,988 1,988 
R-squared 0.3334 0.3355 0.3356 

F-statist ic 
198.3 
on 5 and 1982 DF 
p-value: < 2.2e-16 

200.2  
on  
5 and 1982 DF 
p-value: < 2.2e-
16 

166.7  
on 6 and 1981 DF 
p-value: < 2.2e-16 

 

Signif icance levels: 

* p < .05 

** p < .01 

*** p < .001 

 

These models do not differ in terms of explanatory power—the R-squared 

value does not vary much between them. While specialization and clustering 

are both significant predictors of wages when considered independently, when 

I add them both as predictors in model 3, only clustering is significant. So what 
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do these effect sizes mean for salaries? Table 24 exponentiates the coefficients 

so that they are displayed in the units of wages—annual salaries in dollars. 

Table 24. Effect sizes on wages for model 3: specialization and clustering. 

 
Estimate e^Estimate Signif icance 

Specialization (SLQ) .005359 1.005373385 
 

Clustering  
(average nearest neighbor distance in 
miles) 

-.03148 0.969010336 *** 

Years of experience .02421 1.024505441 *** 
Years of education .0724 1.075085292 *** 
Employer size .00002126 1.00002126 *** 
Gender (male = 1, female = 0) .1853 1.20357946 *** 
Intercept 9.755 17240.21474 *** 

 

 

So, for example, when the average nearest neighbor distance increases by a 

mile, the average wage in the region declines by three percent—it becomes 97 

percent of what it had been. By contrast, when an employee gains an additional 

year of experience, she can expect her wages to increase by 2.5 percent. What 

this means for our understanding of wages is that clustering, not specialization, 

seems to drive the agglomeration wage premium. If a policymaker is going after 

higher wages for scientific and technical labor, it makes more sense to 

encourage clustering by providing incentives to locate within a specific 

neighborhood than it does to encourage specialization by providing incentives 

to locate anywhere within a metro area. 
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That said, there are obvious limitations with this approach. First, this model 

only explains 33% of the variance in wages. The clustering wage premium could 

disappear if additional variables, such as the cost of living in a metropolitan 

area, could be taken into considering. Second, this is analysis is based on 

photonics data; the same trends may not hold in other science and technology 

industries. Third, this is based on a SPIE salary survey; SPIE salary respondents 

could differ from non-respondents in terms of skills, employment locations, 

gender, and wages. Fourth, I assumed that there is enough overlap in labor 

markets between SPIE salary survey employees and Photonics Buyers’ Guide 

firms that using PBG firm data to measure clustering and specialization while 

predicting wages from the salary survey is reasonable. But I do not have any 

means to verify how much these two populations overlap. How do 

specialization and clustering affect recruitment patterns? Is clustering the 

primary driver? Or is it specialization, some combination of specialization and 

clustering, or neither? 

How specialization and clustering affect recruitment patterns 
For employees and hiring managers alike, one of the benefits of 

agglomeration is being able to find the right job or candidate faster. As 

Marshall (1920) wrote, agglomeration reduces the transport costs for people, 

including the search costs required to find the right colleagues and direct 

reports. If faster recruiting is a product of strong social networks and having the 

right kind of skill sets in the region, then specialization should have the bigger 

effect. But if faster recruiting is due to direct face-to-face contact, then 
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clustering should have the bigger effect. I found that recruitment patterns do 

not differ based on clustering and specialization. 

Table 25. Recruitment patterns in high versus low clustering regions. 

How did you f ind your job? 
High 

clustering 
Low 

clustering 

Networking or referral through personal contact 31% 30% 
I contacted the employer directly (no job was 
advertised) 

9% 8% 

Labor market intermediary ( includes I was 
recruited, alumni network, professional 
association, placement agency, career off ice, job 
fair,  job ad, other) 

59% 62% 

N 889 1,114 
 

 

Table 25 shows the distribution of recruitment patterns in high versus low 

clustering regions. A chi-square test confirmed that there is no statistically 

significant difference in recruitment methods between high and low clustering 

regions (chi-squared = 2.38, p = 0.30). 
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Table 26. Recruitment patterns in high versus low specialization regions. 

How did you f ind your job? 
High 

special ization 
Low 

special ization 

Networking or referral through personal 
contact 

31% 30% 

I contacted the employer directly (no job 
was advertised) 

10% 8% 

Labor market intermediary ( includes I was 
recruited, alumni network, professional 
association, placement agency, career 
off ice, job fair,  job ad, other) 

59% 62% 

N 670 1,333 
 

 

Table 26 shows the distribution of recruitment patterns in high versus low 

specialization regions. A chi-square test confirmed that there is no statistically 

significant difference in recruitment methods between high and low 

specialization regions (chi-squared = 3.41, p = 0.18). Similarly, based on three 

binomial logit models—analogous to the models for wages, but with LMI use as 

the dependent variable—neither specialization nor clustering had an effect. 

Table 27 shows the results of these models. The coefficients are reported as 

odds, not log odds. None of the independent variables were significant; only the 

intercepts for models 1 and 3 were significant at the p < .05 level. As expected by 

the lack of significance among predictor variables, the models themselves lack 

explanatory power as measured by likelihood ratio tests, reported below for 

each model. 
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Table 27. Three models for predicting recruitment methods. 

 

Model 1:  
LMI ~ 

special ization + 
controls 

Model 2: 

LMI ~ 
clustering + 

controls 

Model 3: 

LMI ~ 
special ization + 

clustering + 
controls 

Special ization (SLQ) 0.955 
 

0.914 
Clustering (average 
nearest neighbor 
distance in miles) 

 
1.016 0.960 

Years of experience 0.996 0.996 0.996 
Years of education 0.986 0.987 0.986 
Employer size 1.000 1.000 1.000 
Gender (male = 1, 
female = 0) 

0.902 0.902 0.899 

Intercept 2.471* 2.250 2.814* 
Observations 1,988 1,988 1,988 
    

Likelihood Ratio Tests for Each Model 
chi-squared 2.846 2.033 3.293 
degrees of freedom 5 5 6 
p-value 0.724 0.845 0.771 

 

This finding contradicts expectations from the literature on recruitment 

patterns in technology clusters. For example, a long history of work points to 

the uniquely flexible, fast-moving labor market as one key to Silicon Valley’s 

innovative capacity (Benner 2002; Saxenian 1996). In flexible labor markets, 

highly skilled employees transition quickly between jobs in part due to their 

strong social networks. 

Future research should examine the structure of social networks in 

different regions along the axes of specialization and clustering. For example: 

do the average sizes of networks differ substantially by region? How do people 

for ties? On average, do the proportions of strong and weak ties—which we 
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know are important for finding a job (Granovetter 1995)—differ in high 

clustering versus low clustering regions? Further, how do people use their 

networks in their job searches? And do those networking strategies translate to 

better outcomes for individuals, firms, and regions? Given a sufficiently rich 

data set with social network data, clustering and specialization data, and 

human capital data, researchers can explore all of these questions.
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CHAPTER 5: CONCLUSIONS AND POLICY 
RECOMMENDATIONS 

Summary of problem and hypotheses 
The purpose of this study was to evaluate the effect of specialization and 

clustering on the labor market strategies of small and medium-sized firms in 

science-based industries. To this end, I posed the following research question: 

RQ: How do specialization and clustering affect wages and 
recruitment methods in science-based industries? 

This dissertation makes three key contributions to the research literature. 

The first contribution is theoretical: I disentangle specialization from 

clustering. While the two are correlated—Silicon Valley is the classic case in 

point—they are not identical. Distinguishing the effects of one from those of 

the other contributes to our understanding of the spatial segmentation of labor 

markets. In other words: who works where, and how does that segmentation 

affect our regional economies? Further, distinguishing specialization from 

clustering allows policymakers to make more informed decisions regarding 

recruiting companies to a metro area (a specialization strategy) versus 

recruiting companies into a tax-advantaged innovation district (a clustering 

strategy). 

The second and third contributions are methodological: I provide a 

systematic method for cataloging the firms in a science-based industry, and 
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then I calculate the spatial clustering of those firms by metropolitan statistical 

area (MSA). Rather than estimate the strength of an industry in a metropolitan 

area by virtue of a self-designated cluster association or survey responses, I 

offer a repeatable process to approximate the population of firms using web 

scraping and geocoding. This method is particularly valuable for industries that 

do not have a single category within federal statistical classification schemes 

such as NAICS (the North American Industry Classification System). Science 

policy researchers interested in emerging industries can use the web scraping 

and geocoding method detailed here to answer questions related to the spatial 

organization of firms those industries. 

Similarly, rather than estimate the spatial clustering of an industry in a 

metropolitan area through a visual survey or a manual cataloging of firms, I 

offer a repeatable process to calculate the spatial density of firms using a variety 

of spatial statistics. After consulting with a number of spatial analysis experts 

and reviewing the literature on the topic, I chose to use an average nearest 

neighbor distance. Economic geographers interested in comparing the spatial 

clustering of firms across metropolitan areas—especially if they want a method 

they can use in regressions to test the relationship between spatial density and 

innovation outcomes—can use my review of the average nearest neighbor 

distance and other spatial metrics to select the indicator best suited to their 

needs. 



 

 108 

Summary of methods used 
I answered my research questions using two key methods: a spatial analysis 

of specialization and clustering and a set of regressions to examine the 

relationships among specialization, clustering, wages, and recruitment. In the 

spatial analysis, I used the standardized location quotient (SLQ) to measure 

specialization in the photonics industry, and I used the average nearest 

neighbor distance to measure the spatial clustering of photonics firms. In my 

regressions, I examined two key labor market outcomes: compensation and 

recruitment. I measured compensation as the annual wages paid in base salary 

and bonuses to photonics employees, and I measured recruitment methods 

through a survey question that asks photonics employees how they found their 

jobs. I controlled for education, years of experience, gender, and employer size. 

Summary of data used 
In my spatial analysis, I approximated the population of photonics firms by 

scraping entries on the 2,932 firms listed in the Photonics Buyers’ Guide, a leading 

trade publication in the photonics industry. I collected the name, address, 

website, founding year, number of employees, and square footage of each firm, 

where available. I geocoded the firm records, then performed a spatial join with 

Census 2010 metropolitan statistical area boundary files to append the Census 

record for the metropolitan area within which the firm resides to the firm 

record. I then split the list of firms by metropolitan area, resulting in unique 

datasets of firm records by metropolitan area. I ran my spatial statistics—the 

standardized location quotient and the average nearest neighbor distance—on 

the metropolitan area datasets. 
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In my regressions, I used the 2012 SPIE salary survey to measure labor 

market strategies. The survey is also my source for control variables regarding 

education, work experience, gender, and employer size. SPIE is a leading trade 

association in photonics; respondents to the salary surveys have self-identified 

as working in photonics. I geocoded the survey responses, then performed a 

spatial join with Census 2010 metropolitan statistical area boundary files. I then 

joined the spatial statistics from my previous analysis to each survey response 

based on the metropolitan area from which that response arrived. I ran a set of 

regressions on the full data set of 3,161 responses from across the United States 

to examine compensation and recruitment trends nationally. That allowed me 

to pool regions with low response rates into larger categories so that I could test 

the effects of clustering and specialization on compensation and recruitment 

trends. 

Summary of findings 
This dissertation offers three key findings. First, regional specialization and 

firm clustering, while correlated, do differ. There exist regions that are 

specialized in the photonics industry but do not exhibit firm clustering, and 

there exist regions that have spatially dense clusters of firms but do not have 

enough firms within the context of the metropolitan area to count as 

specialized in any meaningful sense of the word. Future research should 

investigate how specialization and clustering separately affect innovation and 

economic development outcomes, such as patenting, firm revenues, regional 

growth, and so on. Future work should also replicate this study on other science 
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and technology industries to determine whether photonics can be considered 

representative of high-tech industries in general. 

Second, spatial clustering affects employee wages far more than regional 

specialization does. In fact, the wage increase for engineers associated with 

regional specialization disappears when we take clustering into account. When 

the average nearest neighbor distance in a metropolitan area decreases by one 

mile, the average wage for its photonics engineers increases by about $30,000. 

Future research should repeat this analysis in different science and technology 

industries while controlling for cost of living. If it holds, we have grounds for a 

fascinating qualitative study on what, exactly, firms are paying for—and how 

employees and their regions benefit from higher wages. Combined with 

research on the innovation and economic development outcomes associated 

with specialization versus clustering, this finding will help regional 

policymakers decide whether and how to encourage a particular industry. 

Third, this dissertation suggests that place-based supports may be more 

important than people-based supports as a means of strengthening S&T labor 

markets. This follows from the finding that clustering, not specialization, drives 

the regional wage premium. Future research should replicate this study with 

other S&T industries, and measure labor market and innovation outcomes 

more directly. 

Results: specialization, clustering, wages, and recruitment methods 
The central research question of the dissertation is this: 
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RQ: How do specialization and clustering affect wages and 
recruitment methods in science-based industries? 

To answer this question, I tested four hypotheses. Table 28 illustrates my 

results by hypothesis. 

Table 28. Results by hypothesis. 

 
Hypothesis Justif ication Result 

H1 

High regional 
specialization 
increases the use 
of labor market 
intermediaries 
(LMIs) for 
recruitment if the 
number of firms in 
the region is also 
high (≥ 50). 

Key studies of the electronics 
labor market in Silicon Valley 
highlight the role of LMIs like 
recruitment agencies, 
temporary labor firms, and 
professional associations in 
making the connections 
between employees and 
employers (Benner 2002; 
Saxenian 1996). 

Rejected. LMI use is 
higher in a  low 
specialization region 
(Chicago: 67%) than a 
high specialization 
region (San Jose: 55%), 
and they both have 
over 50 firms. 

H2 

High firm 
clustering 
decreases the use 
of LMIs for 
recruitment if the 
number of firms in 
the region is also 
low. 

Close proximity facilitates 
information exchange (Arzaghi 
and Henderson 2008); workers 
in more tightly clustered firms 
should know more about job 
opportunities through their 
local networks and have less of 
a reliance on intermediaries. 

Supported. the 
highest proportion of 
LMI use in a mid 
clustering region 
(Tucson: 46%) is lower 
than the lowest 
proportion of LMI use in 
a low clustering region 
(Washington DC: 47%). 

H3 
High regional 
specialization 
increases wages. 

Competition among firms bids 
up the price of labor; previous 
studies find wage premiums in 
agglomerations. 

Partial ly supported. 
Specialization increases 
wages only when we do 
not also take clustering 
into account. 

H4 
High firm 
clustering has no 
impact on wages. 

The labor market for wage-
setting extends beyond the 
neighborhood of nearest firms; 
overall MSA trends should 
have the biggest effect. 

Rejected. Clustering 
increases wages, 
whether we take into 
account specialization 
or not. 
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This finding fits into the broader research literature on the mechanics of 

labor markets in science-based industries. Many researchers have studied how 

employers, employees, and labor market intermediaries interact; they are 

interested in what makes job markets competitive in a global economy and 

resilient in the face of economic shocks. This finding also addresses the 

research literature on the wage dynamics of high-tech industries. Plenty of 

economists have studied the returns to agglomeration economies in terms of 

regional GDP growth and the like; this study contributes an understanding of 

the returns to specialization and clustering from the perspective of employee 

wages. 

In terms of the structure of labor markets, I found that specialization and 

LMI use are not related, but that clustering and LMI use are related. The 

strength of an industry in a region has little to do with how employees and 

employers find one another. Rather, the physical proximity of firms creates 

more opportunities for people to exchange information about job openings and 

candidates—at least when the number of firms is small. It would be fascinating 

to conduct a social network analysis of employees and firms in a science-based 

industry across several metro areas segmented by specialization and clustering. 

With that, we would be able to find out more about how information flows 

from one actor to another, and under which circumstances the environmental 

structures of specialization and clustering foster or inhibit that flow. In the 

absence of such a study, we are limited to generating hypotheses—not testing 

them. 
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In terms of the returns to employee wages on specialization and clustering, 

my findings suggest that proximity matters. When I controlled for spatial 

clustering, regional specialization had no impact on firm wages. Thus the 

spatial boundary for wage setting is not regional—it is local. In fact, it may be 

hyperlocal. In my study, I labeled regions highly clustered when the average 

distance from one firm to its nearest neighbor was less than half a mile—about 

750 meters. That is walking distance. It is quite possible that the immediate 

neighborhood of a firm sets wage expectations far more than the metropolitan 

area, just as the immediate neighborhood of a building sets rents far more than 

the prevailing housing supply and demand in a broader metropolitan area. In 

fact, we may be able to take this analogy further: while the range of rents in a 

metro area is determined by the supply and demand of housing, which is why 

San Francisco is quite expensive, within that range actual rents vary immensely 

by neighborhood. Perhaps the range of wages in a metro area is determined by 

broader supply and demand factors in the labor market—number of employers 

for this type of technical labor, number of workers with these qualifications—

but the actual offer a hiring manager makes to an employee varies immensely 

by immediate neighborhood. Do technical candidates interview with firms 

located walking distance from one another? When they use multiple offers to 

negotiate their salaries, do those offers come from spatially proximate firms? 

These are interesting questions to explore while taking into account the roles of 

employee education, experience, gender, employer size, and so on.  

In sum, labor market intermediaries are less important in small, spatially 

clustered sets of firms. It makes intuitive sense: if 15 firms are within walking 



 

 114 

distance of each other, and everyone knows everyone, then job openings and 

candidates move quickly through the communication networks of the 

community without the need for placement agencies. This means policymakers 

trying to encourage a very small number of firms might put them all in a 

walkable “innovation district”—at least if the goal is for all the firms to be in the 

know about new developments as quickly as possible.  

In addition, wages in areas packed with similar firms are much higher. 

What does that mean for employees? How do they use the funds they gain from 

working for a company in a cluster? And what does it mean for firms? What 

returns do they receive from paying more for technical labor? Maybe the labor 

is better; maybe the firms find more qualified candidates who produce better 

work. Maybe the firms have lower turnover. These are all questions for future 

research. 

Discussion and research contributions 
This dissertation makes three contributions to the research literature: one 

theoretical contribution and two methodological contributions. The theoretical 

contribution is to distinguish between specialization and clustering. I proposed 

that these are two distinct aspects of agglomeration, and my empirical findings 

show that while correlated, they are indeed distinct phenomena. This finding is 

of interest to economic geographers who study how labor markets work inside 

and outside agglomeration economies. It shows that it is possible to identify an 

industry concentration (specialization) without physical proximity (clustering) 

and vice versa, and suggests that specialization and clustering affect labor 
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market outcomes differently. This finding is also useful for science and 

technology policy scholars who want to measure the strength of a given S&T 

industry in a metropolitan area. Now the proportion of employees or firms in 

the industry in an area—the location quotient—is not the only meaningful 

conceptualization of industry strength; S&T policy scholars can also consider 

the degree to which employees or firms in the industry in an area are clustered, 

an alternate conceptualization of industry strength, and one that matters for 

S&T labor market outcomes. 

The dissertation’s two methodological contributions are a systematic 

method for cataloging the firms in a science-based industry, and a repeatable 

process to calculate the spatial density of firms using a variety of spatial 

statistics. I showed how to use web scraping and geocoding—standard tools in 

programming and geography, respectively—to create a database consisting of 

the population of firms in a science-based industry. Ideally, researchers could 

find such a database through government statistics, but this is often impossible 

in emerging industries. With a little bit of Python and a lot of domain 

knowledge, it is possible to collect secondary data from sources that were 

previously inaccessible to many economic geographers.  

Access to these sources opens up a variety of research possibilities on the 

spatial organization of firms and their connections to each other, which brings 

me to the second methodological contribution. In this dissertation, I measured 

the spatial density of firms using the average nearest neighbor distance, and I 

provided a list of a variety of alternative measures for other researchers to use. 

These spatial metrics are of interest to economic geographers and science and 
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technology policy scholars who are interested in the spatial structure of S&T 

economies. While I used my spatial density measures to test the difference 

between specialization and clustering in labor market outcomes, they could be 

used in a host of research projects on how the geography of science develops 

and changes over time. 

Research limitations 
As all research projects do, this dissertation has both theoretical and 

empirical limitations. I begin with theoretical limitations. Rooted in 

evolutionary economic geography, this study was designed to test whether two 

aspects of agglomeration economies—specialization and clustering—are 

empirically distinct. An obvious limitation is thus the lack of attention to other 

aspects of agglomeration economies. As my literature review noted, economic 

geographers and science and technology policy scholars alike study the 

interactions between universities, firms, government institutions, and the 

intermediaries that connect them (Etzkowitz and Leydesdorff 2000). Further, 

these entities are connected in a variety of ways; physical proximity is but one 

of at least five types of proximity (Boschma 2005). It is possible that 

specialization and clustering patterns change dramatically when we take other 

institutions into account. It is also possible that measuring clustering along the 

axes of other types of proximity—cognitive, organizational, social, and 

institutional—would offer different theoretical implications for economic 

geographers and different policy avenues for policymakers. 
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My study has three key empirical limitations. The first is a concern about 

generalizability to other geographies and industries. This study is a proof of 

concept for distinguishing specialization and clustering in a science-based 

industry in the United States. Although I expect other researchers to find 

similar results in other science-based industries and other countries based on 

existing literature, it is impossible to know for sure until those studies are 

conducted. Perhaps the more interesting limitation is the lack of 

generalizability to industries outside science and technology. While science 

and technology industries are key drivers of economic growth and high policy 

priorities, they are not the only industries that states target for support. It would 

be fascinating to know whether similar patterns hold in non-S&T industries in 

which policymakers encourage investment. 

The second empirical limitation is a concern about the use of proxies where 

more direct measurement would have been better. For example, I used the 

Photonics Buyers’ Guide (PBG)—a widely respected trade publication—as my 

source of information on photonics firms. While the PBG is useful, it does not 

and cannot capture every single firm that participates in the photonics industry 

in the United States. Absent a comprehensive NAICS or similar classification, I 

argue that this is the best we can do. But a study on another science-based 

industry with a more comprehensive list of the population of firms would 

address this limitation. Similarly, I measured the strength of a labor market 

solely through wages. While wages have a long history in economic geography 

and econometrics as a labor market indicator, they are not the only indicator. 

Other indicators include the length of time it takes to find an S&T job, the 
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vacancy rate for S&T occupations, the percentage of people with advanced 

degrees in S&T who are working outside S&T fields, and more. A useful source 

for these indicators at a more aggregate level is the NSF Science and 

Engineering Indicators, an annual publication available as both a report and a 

set of data tables.29 

The third empirical limitation is a concern about the degree to which my 

disparate sources of data can be considered to measure the same thing. For 

example, I measured employee characteristics through the SPIE salary survey 

and firm locations through the Photonics Buyers’ Guide. While SPIE is one of the 

largest industry associations in the world for photonics, and while the Photonics 

Buyers’ Guide is a respected trade publication in photonics, there is no guarantee 

that the respondents to the SPIE salary survey work for firms listed in the 

Photonics Buyers’ Guide. In other words, the spatial clustering characteristics of 

SPIE respondents’ firms might actually differ quite a bit from the spatial 

clustering characteristics of PBG firms. The obvious way to fix this is with 

matched employer-employee data, a rare and valuable find for a researcher. I 

argue that in an emerging industry without NAICS or similar classifications, 

like photonics, this is the best we can do. But it would still be better to replicate 

this study on an industry with matched employer-employee data, to make sure 

that the clustering patterns for firms and the wage patterns for employees are 

indeed related. 

                                                        
29 NSF Science and Engineering Indicators 2014 available at 

http://www.nsf.gov/statistics/seind14/. For previous years, see 
http://www.nsf.gov/statistics/seind/.  
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Future research 
My suggestions for future research derive directly from my discussion of 

limitations in the previous section. Thus I propose research to address the three 

empirical limitations and the two theoretical limitations. 

To address the empirical limitations—generalizability to other industries 

and geographies, the use of indirect proxies, and the problems with disparate 

employer and employee datasets—I suggest the following projects. First, 

researchers can replicate this study in other industries, starting with S&T 

industries like biotechnology and software and then branching into more 

traditional industries as they come up in policy priorities. Second, researchers 

can replicate this study in other geographies. This might work in two ways: a 

direct replication in another country with clustering measured at the 

geographical unit most similar to our metropolitan statistical areas (MSAs), and 

a theoretical extension of this work that looks at how clustering metrics change 

at different geographical scales, such as zip codes, cities, counties, MSAs, states, 

and countries. Third, researchers can use better proxies. Especially if they 

choose more established S&T industries with better government records, they 

can find a more comprehensive directory of the population of firms in the 

target industry, then measure a broader set of labor market indicators to 

measure the health of the industry’s labor market across all metropolitan 

statistical areas in the United States. This brings us to the fourth suggestion. If 

researchers can find a matched employer-employee dataset for an S&T 

industry, they can examine whether the S&T industry wage patterns in 
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different regions are truly related to the specialization and clustering of the 

S&T industry in those regions. 

To address the theoretical limitations—the absence of other institutions in 

S&T agglomerations and the absence of four other types of proximity—I 

suggest the following projects. First, using a matched firm-employee dataset for 

another S&T industry from above, select four regions from each specialization 

and clustering quadrant. Then, in those sixteen regions, conduct detailed case 

studies (Yin 2014) to show how the links between different institutions function 

to create S&T labor market outcomes in each region. Based on my research, I 

would expect the ways in which different institutions interact with each other 

to vary drastically based on regional specialization and clustering in the focal 

S&T industry. For example, I would expect social networks between different 

types of institutions to be much more dense in high clustering regions, with a 

concomitant increase in the speed with which regional actors pivot toward a 

new goal. Second, design a series of projects to assess the degree to which 

clustering along different axes of proximity—cognitive, organizational, social, 

institutional—shapes a broader set of S&T labor market indicators. These 

projects could be completely quantitative in nature, given sufficient secondary 

data and operational measures for each of these types of proximity. Or they 

could be woven into the case studies mentioned in my first suggestion. Either 

way, I would expect other forms of proximity to affect how actors in S&T labor 

markets relate to one another, and I would expect those changes to in turn 

influence S&T labor market outcomes. 
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Policy discussion 
I discuss the policy implications of this dissertation through the lens of two 

broad policy categories: place-based supports and people-based supports. The 

debate about investing in places or in people dates to at least the 1960s, when 

(Winnick 1966) argued that place-based supports benefit some people who do 

not need support—for example, wealthy residents living in predominantly 

poor areas—and diverts investment from people in need located outside the 

place-based supports. On the other hand, people-based supports get the right 

resources in the hands of the right people. When they are well targeted, they do 

not leave anyone out, and they do not provide benefits to people who do not 

need them. From the 1960s through the 1980s, economists generally favored 

Winnick’s view; indeed, even today, some argue that policymakers ought to 

forgo place-based supports in favor of people-based policies (e.g., Glaeser 

(2005)). 

That said, contextually appropriate place-based supports work for three 

reasons (Fainstein and Markusen 1996). The first is that investing in places 

creates positive externalities in a variety of economic areas, from physical asset 

values to information circulation to overall labor market health. The second is 

that place-based supports further encourage the urban agglomeration 

economies that are at the core of Marshall’s explanation of regional economic 

growth. And the third is that investing in physical infrastructure in existing 

urban cores prevents decline that is, in the end, more costly than ongoing 

maintenance. 
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The question, then, is not whether to invest in people or places, but under 

which circumstances to invest in each. Today, we realize that people-based 

supports are both more efficient and equitable for solving individual issues, 

and place-based supports are more efficient and equitable for solving public 

goods problems. Comprehensive urban policy portfolios include both. 

In this section, I explore both place-based and people-based approaches for 

strengthening scientific and technical labor markets. While the literature on 

place-based and people-based approaches is largely in the realm of urban and 

economic development policy, I limit myself to policy supports for scientific 

and technical labor markets.  

For that reason, I will not discuss enterprise zones or job training programs 

for chronically under- and unemployed workers. Enterprise zones are common 

place-based policy instruments with federal, state, and local history dating to at 

least the 1980s; the most recent manifestation of enterprise zones is the Obama 

administration’s Promise Zone initiative.30 In short, such zones aim to stimulate 

investment in blighted areas. They aim to create economic value where there is 

almost none. On the other hand, place-based supports in the world of scientific 

and technical labor markets aim to grow already existing investment in tech-

heavy areas. For example, payroll tax exclusions in San Francisco for biotech, 

clean tech, and stock encourage local firms that are already thriving to grow 

                                                        
30 To date, the Obama administration has launched two Promise Zone competitions. The 

press release for the second is available at http://www.whitehouse.gov/the-press-
office/2014/09/19/obama-administration-launches-second-promise-zone-competition-create-
eco, and more information on the initiatives is available through the Department of Housing 
and Urban Development at 
http://portal.hud.gov/hudportal/HUD?src=/program_offices/comm_planning/economicdevelop
ment/programs/pz. 
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even more.31 They aim to expand economic value that is already booming. 

Similarly, job training programs for the chronically under- and unemployed 

are common people-based policy instruments with a long federal, state, and 

local history; Texas’ Self-Sufficiency Fund32 is but one recent example. Such 

programs aim to help people with minimal or no income develop the skills to 

obtain jobs that provide a living wage. Again, they aim to create a mechanism 

for generating economic value where there is almost none. On the other hand, 

people-based supports in the realm of scientific and technical labor markets 

aim to further strengthen already strong scientific and technical skills. For 

example, research and development tax credits in a variety of states encourage 

firms to invest even more in the innovative capacity of their research programs. 

Maryland in particular incentivizes rapid growth: the state offers a 10% tax 

credit on R&D expenses if those expenses are higher than average over the past 

four years, whereas expenses equal to or lower than the firm’s four-year 

average are only eligible for a 3% tax credit.33 Programs like these aim to make 

good S&T research and development into great S&T research and 

development. 

People-based supports target upskilling and labor market reproduction. By 

nature, they are not place-specific. In other words, they are a specialization 

strategy. Place-based supports attempt to increase demand for labor in a 

                                                        
31 A complete list of San Francisco tax credits, including these payroll tax exclusions, is 

available at http://sfgsa.org/index.aspx?page=4240.  
32 For more information on the Texas Self-Sufficiency fund, see 

http://www.twc.state.tx.us/svcs/funds/self-sufficiency-program-overview.html.  
33 For more information, see the Maryland Department of Business and Economic 

Development’s page on R&D tax credits: http://business.maryland.gov/fund/programs-for-
businesses/research-and-development-tax-credit.  
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particular neighborhood. In other words, they are a clustering strategy. To 

examine the implications of specialization and clustering on people-based and 

place-based supports, I sought to identify cases that met the following criteria. 

• The place-based case must illustrate attempts to increase demand 

for S&T labor among particular employers. The people-based 

case must illustrate S&T labor market upskilling and 

reproduction. My findings about the relationships between 

specialization, clustering, wages, and recruitment methods have 

policy implications for increasing demand for S&T labor among 

particular employers, and for labor market upskilling and 

reproduction. The policy cases must offer an opportunity to 

illustrate these implications. 

• The S&T industries in both cases must be industries to which 

photonics may be generalized. A key question for any S&T labor 

market study is to what degree the findings maybe generalized to 

other S&T industries. Photonics must be reasonably analytically 

generalizable to the industries in both cases. 

• The cases must be recognized in national media. Both cases must 

have media coverage in at least two national outlets, such as Fortune, 

the New York Times, the Wall Street Journal, and similar publications. 

• The cases must be politically contentious. Both cases must 

demonstrate value conflicts that cannot be resolved by further 

evidence of efficacy—or the lack thereof. In other words, they cases 
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must show “Should we do this?” conflicts rather than only “Does this 

work?” conflicts. 

I did not limit my search to photonics cases because nationally recognized, 

politically contentious photonics cases are limited. While photonics is a big 

policy priority at both federal and regional levels, as the NNMI shows, it is a 

relatively unknown industry in the popular national media—which means it is 

also without a platform for addressing politically contentious value conflicts. 

Extending my search to other S&T industries allowed me to illustrate the policy 

implications of the dissertation with industries with which general readers are 

more familiar. 

However, if future researchers would like to replicate this policy discussion 

with photonics cases, I would advise them to select those cases as follows. First, 

create a catalog of photonics policy initiatives in each of the 52 metropolitan 

areas with at least 10 photonics firms listed in this dissertation. Identify those 

policy initiatives by searching policy documents and news articles as well as 

conducting interviews with science and technology policymakers in each 

region. Then choose two to four of the identified initiatives to serve as case 

studies. Collect more in-depth information on each of those initiatives through 

both primary and secondary sources. 

I argue that this level of detailed photonics discussion is not necessary 

because photonics is likely generalizable to a range of other science and 

technology industries, as shown in previous work (Clark 2013; Feldman and 

Lendel 2010). In the end, I selected two cases from the San Francisco 
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metropolitan area: the Central Market and Tenderloin Payroll Tax Exclusion, 

also known as the Twitter tax break, and the rise of technology boot camps, ten-

week private courses that prepare students for entry-level jobs in a variety of 

technical fields. These cases meet my criteria as follows. 

• The place-based case must illustrate attempts to increase demand 

for S&T labor among particular employers. The people-based 

case must illustrate S&T labor market upskilling and 

reproduction. The place-based case, the payroll tax exclusion, 

illustrates an attempt to encourage technology firms such as Twitter 

to increase demand for S&T labor in the Central Market and 

Tenderloin area. The payroll tax exclusion only covers a few square 

blocks and was targeted at a handful of employers. The people-

based case, technology boot camps, illustrates a new model for labor 

market upskilling and reproduction. Driven by market rather than 

policy demands, California regulators are struggling to catch up. 

• The S&T industries in both cases must be industries to which 

photonics may be generalized. Both cases are drawn from the 

software industry, emblematic of the rise of technology and service 

jobs in the United States. Software, like photonics, is a platform 

technology: it is used in a variety of end markets, from defense to 

telecommunications to medicine. 
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• The cases must be recognized in national media. The Twitter tax 

break was covered in the Wall Street Journal34, Fortune35, Forbes36, and 

Bloomberg Business37, among others. The technology boot camp 

phenomenon was covered in Business Insider38, National Public 

Radio39, Fortune40, and the New York Times41, among others.  

• The cases must be politically contentious. The Twitter tax break 

demonstrates a value conflict about the role of technology and 

gentrification in low-income neighborhoods populated by people of 

color. Evidence about the number or quality of jobs created as a 

result of the tax break cannot resolve this conflict. The technology 

boot camp phenomenon demonstrates a value conflict about the 

importance of technical education compared to other kinds of 

education, as well as all of the class and race tensions of the Twitter 

tax break. Evidence about the career achievements about boot camp 

graduates cannot resolve these conflicts. However, as I discuss in the 

                                                        
34 John Letzing, “Tax Breaks Pay Off in San Francisco,” 8/29/2012, 

http://www.wsj.com/articles/SB10000872396390444506004577615253293219254 
35 Michal Lev-Ram, “Welcome to the Twitterloin, where tech-savvy cool meets gritty hood,” 

3/5/2015, http://fortune.com/2015/03/05/twitter-office/ 
36 Tomio Geron, “The Twitter Tax and Zendesk: How Tech Companies Affect the City,” 

11/5/2012, http://www.forbes.com/sites/tomiogeron/2012/11/05/the-twitter-tax-and-zendesk-how-
tech-companies-affect-the-city/ 

37 http://www.bloomberg.com/news/articles/2014-04-03/twitter-tax-break-is-target-in-san-
francisco-income-war 

38 Terence Chea, “Guy Spent $11,000 on a Coding ‘Bootcmap’ and Doubled His Salary,” 
4/12/2013, http://www.businessinsider.com/guy-spent-11000-on-a-coding-bootcamp-and-
doubled-his-salary-2013-4 

39 Anya Kamenetz, “12 Weeks to a 6-Figure Job,” 12/20/2014, 
http://www.npr.org/blogs/ed/2014/12/20/370954988/twelve-weeks-to-a-six-figure-job 

40 JP Mangalindan, “Can Silicon Valley boot camps get you a $120K job?” 10/10/2013, 
http://fortune.com/2013/10/10/can-silicon-valley-boot-camps-get-you-a-120k-job/ 

41 Tamar Lewin, “Web-Era Trade Schools, Feeding a Need for Code,” 10/13/2014, 
http://www.nytimes.com/2014/10/14/us/web-era-trade-schools-feeding-a-need-for-code.html 
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boot camp case, the proliferation of boot camps aimed at specific 

gender, class, and racial groups offers one avenue toward resolution. 

The remainder of this section is organized as follows. First, I examine place-

based supports for scientific and technical labor markets, with a particular 

focus on payroll tax exclusions in technology districts. Second, I examine 

people-based supports for scientific and technical labor markets, with a 

particular focus on science and technology skill development initiatives for 

workers already employed in S&T fields. Third, I show how distinguishing 

between specialization and clustering changes our understanding of place-

based and people-based supports for scientific and technical labor markets. I 

conclude with a call for future research. 

Place-based supports 
Place-based supports are designed to improve places and the connections 

between them. For example, improvements to physical infrastructure—such as 

roads, transit, and fiber optic cables—increase the economic value of a place. 

Land use policies are also place-based supports; zoning laws and allowed 

variances shape both the character and the economic potential of city 

neighborhoods. 

In the world of science and technology labor markets, one of the most 

recent examples is the “Twitter tax break” in San Francisco. This is a payroll tax 

exclusion covering a few square blocks in the Tenderloin and central Market 
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Street area (Figure 17).42 Companies that located within the neighborhood 

covered by the exclusion were allowed to continue to pay their 2011 payroll tax 

bill, even as they added new employees in the following years.43 A recent report 

by the Office of Economic Analysis in the City and County of San Francisco 

found that the three-year rate of job growth in the tax exclusion area was more 

than double that of the city as a whole during the same period.44 On the other 

hand, real estate values did not increase at a higher rate than in the rest of the 

city, and sales taxes actually increased at a lower rate than in the rest of the city. 

                                                        
42 Boundary map courtesy of the City and County of San Francisco Office of Economic and 

Workforce Development: 
http://www.oewd.org/modules/showdocument.aspx?documentid=235.  

43 The legislative text for the Central Market/Tenderloin Payroll Tax Exclusion is available 
at http://www.oewd.org/modules/showdocument.aspx?documentid=236. 

44 Read the report, “Review of the Impact of the Central Market Payroll Tax Exclusion,” 
published in October 2014, at 
http://sfcontroller.org/Modules/ShowDocument.aspx?documentid=5914. It is especially 
interesting in comparison to the forecasted economic impact report, “Payroll Expense Tax 
Exclusion in Central Market Street and Tenderloin Area,” from March 2011, just before the 
legislation was passed. 
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Figure 17. Boundary map for the Central Market and Tenderloin Area 
Payroll Tax Exclusion, from the City and County of San Francisco Office of 

Economic and Workforce Development. 
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This sounds effective, but the economic impact of the payroll tax exclusion 

depends on whether the companies that located within the central Market 

Street area would have located in San Francisco anyway. If yes, then the tax 

exclusion is a net loss—the city is missing out on all the revenue that would 

have been collected had payroll tax bills continued to rise as companies 

continued to hire more workers. If no, then the tax exclusion is a net gain—the 

revenue collected from 2011 to 2014 is compared to zero, the amount the city 

would have obtained had all of the companies that located within the tax 

exclusion zone moved out of the jurisdiction of the City and County of San 

Francisco. In other words: it is impossible to prove a counterfactual. Who can 

say that these companies would have moved out of San Francisco without the 

payroll tax exclusion? Any answer can only be speculation. 

Nonetheless, the payroll tax exclusion is an excellent example of a place-

based policy. And it is quite controversial.45 Before it was implemented, 

advocates for the payroll tax exclusion argued that it would redevelop a 

lackluster area of Market Street, that it would add technology jobs, and that it 

would prevent key technology firms (including, but not limited to Twitter) from 

leaving San Francisco, thereby damaging the local S&T labor market.46 

Opponents of the payroll tax exclusion argued that it would damage San 

                                                        
45 See the city’s main paper reporting on the issue by Rachel Gordon, “SF’s Twitter tax-

break plan spurs political fight,” March 20, 2011 at SFGate. 
http://www.sfgate.com/politics/article/SF-s-Twitter-tax-break-plan-spurs-political-fight-
2387943.php. 

46 See an op ed in favor of the tax break by Randy Shaw, “Landmark measure would 
revitalize SF’s mid-market and uptown Tenderloin” in Beyond Chron, from February 8, 2011 at 
http://www.beyondchron.org/landmark-measure-would-revitalize-sfs-mid-market-and-
uptown-tenderloin/.  
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Francisco’s already struggling city finances, and that companies valued at over 

$1 billion do not need any tax relief.47 

Three years later, it is hard to tell. No one can know for sure how many 

companies would have moved but chose to stay. In other words, policies like 

these offer uncertain risks and benefits (Barke 2009)—and policymakers and 

participants in political conversations around these policies alike must assess 

potential and actual outcomes in spite of this uncertainty. Advocates continue 

to praise the payroll tax exclusion,48 and opponents continue to vilify it.49 It 

makes sense: policy positions are as much a product of political and social 

values as they are about any economic impact analysis, even among scientists 

(Silva, Jenkins-Smith and Barke 2007). In this case, the key values at stake are 

technological progress and social justice. Encouraging technology jobs in the 

name of progress often conflicts with the desire to provide opportunities and 

advancement for all social groups, including those underserved by existing 

power structures. But these do not always conflict. As the next section shows, 

                                                        
47 For example, see Bruce Brugmann, “No tax breaks for Twitter,” a February 1, 2011 opinion 

piece on a blog hosted by the paper San Francisco Bay Guardian. 
http://www.sfbg.com/bruce/2011/02/01/editorial-no-tax-breaks-twitter. The San Francisco Bay 
Guardian (no longer publishing new issues, but the website still lives) and Beyond Chron, both 
self-identified progressive publications, hate each other; for a sample of their arguments, see 
http://www.sfbg.com/politics/2011/02/11/why-payroll-tax-breaks-are-stupid.  

48 For example, Bob Linschield, the president and CEO of the San Francisco Chamber of 
Commerce championed the payroll tax exclusion as “a key driver in the area’s comeback,” and 
said the SF Controller’s economic impact report showed “the effect is proving positive”—even 
though it is impossible to prove the counterfactual that Twitter would have left in the absence 
of the tax exclusion. Read Linschield’s op-ed at 
http://www.sfexaminer.com/sanfrancisco/comeback-for-central-market-spurred-by-tax-
incentive/Content?oid=2697681.  

49 For example, the Service Employees International Union (SEIU) Local 1021 has been 
protesting the Twitter tax break since the beginning. On April 15, 2014, they marched to Twitter 
to deliver a bill for the taxes the company would have paid from 2011 to 2014. See 
http://nextcity.org/daily/entry/san-francisco-union-seiu-twitter-tax-day-protest-break for more 
details. 
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technical boot camps targeted at underserved and underrepresented 

populations have begun to emerge. And that leads us to people-based supports. 

People-based supports 
Rather than focus on specific geographical areas, people-based supports are 

designed to improve people and the connections between them. For example, 

building networking infrastructure—such as fostering relationships between 

actors in universities, industry, and government—is a common policy strategy 

in innovative regions. STEM education policies are also people-based supports: 

K-12 and higher education form the backbone of skill development for the next 

generation regional workforces, and are thus a key element of S&T labor 

market reproduction.  

In science and technology labor markets, one of the more interesting recent 

trends is that of technology boot camps.50 In approximately ten weeks, these 

courses promise to produce graduates capable of taking entry-level positions in 

technical roles from developer to product designer to data scientist. For 

example, General Assembly’s Web Development Immersive includes not only 

technical fundamentals but also introductions to local development teams and 

portfolio preparation.51 At about $15,000 per course, boot camps do not come 

cheap. But they do offer a new model for labor market upskilling in rapidly 

                                                        
50 For example, see the Fortune article, “Can Silicon Valley boot camps get you a $120K 

job?” at http://fortune.com/2013/10/10/can-silicon-valley-boot-camps-get-you-a-120k-job/, the 
Associated Press article reprinted by Business Insider, “Guy Spent $11,000 on a Coding ‘Bootcamp’ 
and Doubled His Salary” at http://www.businessinsider.com/guy-spent-11000-on-a-coding-
bootcamp-and-doubled-his-salary-2013-4, and NPR Education’s blog post, “12 Weeks to a Six-
Figure Job” at http://www.npr.org/blogs/ed/2014/12/20/370954988/twelve-weeks-to-a-six-figure-
job.  

51 https://generalassemb.ly/education/web-development-immersive  
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changing conditions. The financial models differ as well. While some boot 

camps require payment up front, others accept a portion of graduates’ first year 

salaries as payment—which means graduates who do not find jobs in 

technology do not pay any tuition. Further, boot camps targeted at women, 

people of color, and other underserved communities attempt to reconcile value 

conflicts between technological progress and social justice. In San Francisco, 

Hackbright Academy runs a trans-inclusive coding boot camp for women, and 

CODE2040 focuses on bringing black and latino/a engineering talent into 

technology. In Washington, DC, Code for Progress offers coding fellowship 

programs for women and people of color. Such initiatives now extend to youth, 

too: Black Girls Code is one example. Yes We Code offers a directory of such 

initiatives around the nation. 

How technology boot camps fit into the broader landscape of upskilling and 

labor market reproduction in S&T labor markets remains to be seen. So far, 

they have been driven by market rather than policy demands; the boot camps 

are privately run organizations, not accredited educational institutions. That 

may change. In January 2014, the California Department of Consumer Affairs’ 

Bureau for Private and Postsecondary Education (BPPE) sent cease-and-desist 

letters to several technology boot camps in San Francisco.52 The argument is 

that as providers of vocational education, technology boot camps can and 

should be regulated as such. For example, the BPPE wants to ensure that 

performance claims on boot camp websites—such as the percentage of 

                                                        
52 See Christina Farr, “California regulators seek to shut down ‘learn to code’ bootcamps” at 

http://venturebeat.com/2014/01/29/california-regulator-seeks-to-shut-down-learn-to-code-
bootcamps/.  
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graduates that are employed in technology, and the average salaries of 

graduates from each course—are based on accurate, independently verified 

numbers.53 Whatever happens with the regulation and oversight of technology 

boot camps in San Francisco, their existence raises questions about how policy 

might address upskilling and retooling for S&T workers across the educational 

spectrum. After all, not all S&T jobs require advanced degrees. One report 

suggests that up to 50% of all S&T jobs do not require a four-year degree 

(Rothwell 2013). 

Obviously, people live and work in particular places. That is the premise of 

relational economic geography: both economic activity and the relationships 

that make economic action possible are unevenly distributed across space and 

time. Yet the distinction between place-based and people-based policy still 

holds. The primary focus of place-based policy is strengthening a particular 

place; the primary focus of people-based policy is strengthening a particular set 

of people (or organizations). When the goal is to strengthen a set of people in a 

particular place—for example, to improve S&T skills in a particular 

neighborhood—both place-based and people-based policies may be used in 

tandem. 

Industry supports are a special case of people-based policies. Policies that 

offer incentives to particular industries—such as film tax credits in Georgia54—

                                                        
53 See Selena Larson, “Why coding boot camps should be regulated,” at 

http://readwrite.com/2014/02/18/why-coding-bootcamps-should-be-regulated.  
54 For more detail on Georgia’s film tax credits, see the Georgia Department of Economic 

Development’s page at http://www.georgia.org/industries/entertainment/production-
incentives/. For an overview of film tax incentives across all 50 states, see the National 
Conference of State Legislature’s 2014 report, “State Film Production Incentive Programs,” at 
http://www.ncsl.org/Portals/1/Documents/fiscal/2014FilmIncentivePrograms.pdf.  
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attempt to attract and retain a set of people, where the set is defined by industry 

rather than by education or another attribute. Emerging industries like 

biotechnology and nanotechnology often become policy targets; more recently, 

with innovations in additive manufacturing, advanced manufacturing has 

become a target for forward-looking regions. 

As another example, Arizona,55 Minnesota,56 North Carolina57 and Texas58 

offer tax incentives for companies that locate data centers in their states. In 

North Carolina, large data centers that invest in both real and personal 

property are “exempt from sales and use taxes on machinery and equipment.” 

What counts as “large” depends on the county; in richer counties, “large” 

means a minimum investment of $300 million in real and/or personal property, 

while in poorer counties, “large” means a minimum investment of $150 million 

in real and/or personal property. 

As a general principle, policymakers use industry supports to attract 

economic activity that is projected to grow quickly in the future. They use other 

people-based supports to develop the skills necessary to support employers in 

target industries. And they use place-based supports to redevelop declining 

neighborhoods and increase their brand and market value as great places to 

live and work. 

                                                        
55 More details via the Arizona Commerce Authority: 

http://www.azcommerce.com/incentives/computer-data-center-program.  
56 More details via the Minnesota Department of Employment and Economic 

Development: http://mn.gov/deed/business/locating-minnesota/incentives/, under the 
“Industry Incetives” tab.  

57 More details via the Charlotte Regional Partnership: http://charlotteusa.com/business-
info/costs-of-doing-business/.  

58 More details via the Austin Chamber of Commerce: http://www.austinchamber.com/site-
selection/taxes-incentives/incentives/.  
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We know from the policy evaluation literature that industry supports tend 

to work better for regions that already have some kind of core competence in 

the industries they target for policy intervention. It is easier to grow an existing 

strength than to build a new one from scratch, with few exceptions. We also 

know that people-based supports are hard, and depend on significant 

coordination among universities, government agencies, and local employers for 

defining skills and constructing training programs accordingly. Even so, the 

policy world still has no silver bullet for ramping up the quantity and quality of 

STEM education—even as S&T jobs continue to grow. Finally, we know that 

place-based supports generally exist in innovative regions. But we do not have 

unambiguous causal evidence for the results of place-based supports in the 

absence of people-based supports. In other words, building physical 

infrastructure and amenities for the creative class is not enough to generate a 

robust S&T labor market. 

Places and people through the lens of specialization and clustering 
This dissertation provides a new lens for analyzing industry supports, other 

people-based supports, and place-based supports. 

Disaggregating specialization and clustering changes industry supports by 

providing a finer lens to analyze industry structure within a region. For 

example, a regional policymaker considering an industry support for an 

industry that is low in both specialization and clustering for that region might 

proceed with caution; the literature suggests that creating a new industry 

specialization from scratch is difficult, and doing so without a small cluster to 



 

 138 

start with may be even harder. On the other hand, if the target industry were 

high on clustering but low on specialization, it would be possible to build on a 

small but dense core of expertise—something that would not show up with a 

location quotient analysis alone. For target industries that are high in both 

clustering and specialization, policy strategies likely involve supporting already 

strong people and places—an opportunity to invest in an industry’s self-defined 

networks and initiatives. Finally, for target industries that are high in 

specialization but low in clustering, policymakers can ask themselves whether 

the existing spatial arrangement is meeting regional needs for S&T innovation 

and labor market reproduction. If the answer is yes, then policy strategies likely 

involve supporting existing networks; if the answer is no, then policy strategies 

likely involve a long-term plan to encourage more clustering. 

In terms of other people-based supports, disaggregating specialization and 

clustering allows policymakers to distinguish between skill upgrading for the 

metropolitan area as a whole and skill upgrading in particular neighborhoods. 

Regional policy is hard partly because the region is not a political jurisdiction. 

While we have metropolitan statistical areas to define labor markets and serve 

as a Census unit of analysis, we do not have many models for the many 

municipalities and counties of a region to coordinate with one another. 

Especially when it comes to S&T labor markets, we are just as likely to see cities 

within the same region competing with one another for particular firms as we 

are to see them cooperating for the economic viability of the entire region. As 

the economic impact evaluation of the central Market Street payroll tax 

exclusion in San Francisco noted, the absence of the payroll tax exclusion likely 
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would not have changed the labor market of the San Francisco MSA—but it 

did change the labor market of central Market Street. That is clustering in 

action, and it raises key questions about who shapes labor market outcomes at 

what scale. 

And that brings us to place-based supports. Disaggregating specialization 

and clustering shows that clustering drives the wage premium we see in 

agglomerations—as far as we know from this dissertation. Future research 

should replicate this analysis with other S&T industries to confirm. In the 

meantime, it is possible that place-based supports, which encourage more 

dense company locations compared to people-based supports, may offer a 

higher return on policy investment. If the goal is to strengthen S&T labor 

markets—whether we measure this by the number of S&T jobs, the quality of 

those jobs, the level of innovation produced by those workers, or something 

else—it is possible that investing in getting a target industry into a particular 

neighborhood may help. 

That said, this project provides but a beginning. To know what really works 

in strengthening S&T labor markets, several open questions need to be 

answered. Here are a few key avenues for future work. 

First, future work should examine S&T labor market outcomes more 

directly. This study was limited to examining one outcome, wages, and one 

process, the method by which people found their current jobs. On the ground, 

policymakers assess the health of S&T labor markets using a variety of metrics, 

from the number and types of S&T jobs to the production and retention of S&T 
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graduates to S&T company and industry growth to S&T innovation indicators 

such as patents and awards. Examining whether specialization and clustering 

help predict these outcomes—alongside predictors we already know of from 

current literature—would go a long way in solidifying policy 

recommendations. 

Second, future work should take into account other institutions known to 

be associated with innovative regions. For example, it would be interesting to 

find out whether a weighted clustering index that measures density based on 

proximity not only to other firms but to universities and other anchor 

institutions performs better in predicting S&T labor market outcomes. It is 

clear that firms, universities, and governments—along with organizations that 

connect and span those actors—all play a role in creating and sustaining S&T 

labor markets. Measuring the spatial proximity of those ties will extend this 

work and help policymakers choose sites for place-based investments. 

Third, future work should take into account social network structures of 

different regions. Do specialization and clustering lead to structurally distinct 

social networks among S&T workers and firms? I would imagine that they do, if 

only due to the broad set of literature showing that physical proximity leads to 

more frequent social interaction. The effect drops precipitously as distance 

increases; I would thus expect social networks to include more strong ties in 

which everyone knows everyone in high clustering, low specialization regions 

compared to low clustering, low specialization regions. And as we know from 

the social network literature, strong ties are important for building trust and 

getting things done, while weak ties are important for finding new information 
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and creating new things. Both are necessary for individual career success, and 

both are necessary in the aggregate for strong regional labor markets. The 

social network avenue also offers a way to measure physical proximity and 

frequency of interactions in different regions—a quantitative window into the 

anecdotes that say “everyone knows everyone and we bump into each other all 

the time” in a technology cluster. 

Specialization and clustering change the game. By distinguishing between 

these two aspects of agglomeration, I provide a finer lens to analyze industry 

structure. That lens helps policymakers choose which kinds of industry 

supports to use in their work—if any. Further, I provide evidence that wage 

premiums in S&T agglomerations are hyperlocal. That finding provides a real 

argument for focusing on place-based supports, and it provides an opportunity 

for policymakers to prototype policy changes one city block or neighborhood at 

a time. 

What remains to be seen is how changing models for S&T skill 

development and new federal investments in advanced manufacturing will 

shape the future of innovation in science and technology industries. For 

example, technology boot camps may provide a lasting service as a new form of 

labor market intermediary, or they may fade with the next technology bust. 

Similarly, initiatives like the National Network for Manufacturing Innovation 

(NNMI)59 may create long-lasting physical and social infrastructure for S&T 

                                                        
59 More details via the Advanced Manufacturing Portal: 

http://manufacturing.gov/nnmi.html.  
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innovation, or they may fade as one more experiment in seeding federally 

funded research centers. 

In any case, mapping out the components of regional S&T labor markets is 

a long-term project. The components themselves change over time, as do the 

relationships between them. And while spatial proximity may be more 

important than social proximity in the short term—at least insofar as spatial 

proximity leads to social proximity—only time and replications of this work 

with other S&T industries will tell. 

One of the most interesting experiments in S&T labor markets, particularly 

relevant to this dissertation, is the Integrated Photonics Institute for 

Manufacturing Innovation (IP-IMI).60 Announced October 3, 2014, the White 

House press release states describes the IP-IMI as follows:61 

The Department of Defense is launching a competition to 
award more than $100 million in federal investment 
matched by $100 million or more in private investment to 
the winning consortia to build a new Institute for 
Manufacturing Innovation (IMI) focused on Integrated 
Photonics.  This Institute will focus on developing an end-to-
end photonics ‘ecosystem’ in the U.S., including domestic 
foundry access, integrated design tools, automated 
packaging, assembly and test, and workforce development. 

Each manufacturing innovation institute serves as a regional 
hub, bridging the gap between applied research and product 
development by bringing together companies, universities 
and other academic and training institutions, and Federal 
agencies to co-invest in key technology areas that encourage 

                                                        
60 More details via the Advanced Manufacturing Portal: http://manufacturing.gov/ip-

imi.html.  
61 White House Office of the Press Secretary, October 3, 2014. “FACT SHEET: President 

Obama Announces New Manufacturing Innovation Institute Competition.” 
http://www.whitehouse.gov/the-press-office/2014/10/03/fact-sheet-president-obama-announces-
new-manufacturing-innovation-instit  
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investment and production in the U.S.  This type of 
“teaching factory” provides a unique opportunity for 
education and training of students and workers at all levels, 
while providing the shared assets to help companies, most 
importantly small manufacturers, access the cutting-edge 
capabilities and equipment to design, test, and pilot new 
products and manufacturing processes. 

The Air Force Research Laboratory released the official opportunity 

announcement on November 5, 2014.62 Less than two weeks later, 191 

representatives from industry, academia, and government63 attended 

Proposers’ Day, a series of meetings in Virginia “to familiarize potential 

proposers with the concept and vision for the Integrated Photonics Institute 

and the associated technology needs.”64 As of this writing, the structure and 

location of the eventual Integrated Photonics Institute is still unknown. 

Interested parties submitted concept papers on December 19, 2014; requests for 

full proposals will be sent to teams with the best concept papers. 

For the purposes of this dissertation, the IP-IMI is interesting in three key 

ways. First, it shows that the photonics industry is a national priority. The 

Department of Defense has allocated $100 million for the Institute, and that 

will be matched by another $100 million from the private sector. Second, it 

shows that regions are actively competing to take part in the photonics 

industry. The funding is for an Institute to serve as a hub for a regional 

ecosystem of integrated photonics—which requires cooperation from 

universities, government agencies, and private sector firms. Consortia of these 

                                                        
62 Record on FedBizOpps.gov: 

https://www.fbo.gov/index?s=opportunity&mode=form&id=a354f1a61c1e7f0a5f222ae309b5ae8e  
63 Full list of attendees available at http://manufacturing.gov/docs/ip-imi-ProposersDay-

attendees.pdf.  
64 Quote from IP-IMI home page at http://manufacturing.gov/ip-imi.html.  
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actors from different regions are submitting proposals to procure funding for 

the Institute. Third, the IP-IMI provides an example of an integrated approach 

to research, product development, and skills training. Proposals for the 

Institute are evaluated not only on their business plans but also on technical, 

education, and workforce development criteria, such as building on existing 

STEM activities to develop photonics-specific curricula for K-12, community 

colleges, and four-year universities. It will be interesting to see how the IP-IMI 

changes not only the S&T labor market in which it ends up locating, but also 

the landscape of photonics labor markets in the United States as a whole. And 

policymakers in regions across the country will look to the IP-IMI for 

evaluation lessons on what strategies work for creating integrated S&T 

ecosystems at the regional scale. 

Policy recommendations 
The policy recommendations from this dissertation are necessarily 

tentative. Future research is needed to overcome the theoretical and empirical 

limitations in this work. That said, given the evidence in this dissertation, and 

given the broader research literature on S&T agglomerations, it is possible to 

make two key policy recommendations. 

The first is that regional economic developers would do well to consider 

where their target industries fall in terms of specialization and clustering. The 

strategies to encourage industries vary based on the quadrant in which they 

fall. Low specialization, low clustering industries are unlikely to become 

regional differentiators, and may not be worth public investment. Low 
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specialization, high clustering industries have the potential for building 

expertise in a niche area that would not show up in a traditional location 

quotient analysis. Those industries can be encouraged to prototype new 

products and services with small funds for rapid experiments. High clustering, 

high specialization industries are the darlings of economic development; in this 

case, economic developers would do well to ask the key actors in the industry 

what they need to grow, and then listen and do what they can. In other words, 

this is an opportunity to invest in an industry that is already locally strong and 

likely full of self-defined networks and initiatives. High specialization, low 

clustering industries could use one of two types of intervention. If these 

industries are already meeting regional needs for S&T innovation and labor 

market reproduction—in other words, if they are creating enough new 

products and services and hiring and training enough local workers—then 

economic developers would do well to support existing networks, similar to the 

strategy for high specialization, high clustering regions. If, however, these 

industries are not meeting both of those needs—they fall short on S&T 

innovation, labor market reproduction, or both—then economic developers 

may consider long-term plans to encourage clustering through mechanisms 

such as geographically bounded payroll tax exemptions. Such plans are not a 

substitute for encouraging social networks and knowledge transfer; rather, they 

are a way to complement those strategies with the added nudge of physical 

proximity. 

The second policy recommendation is to experiment with place-based 

approaches to strengthening S&T labor markets. While I do not advocate an 
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abandonment of people-based approaches, particularly in the realm of skill 

development, adding place-based approaches to the mix might be helpful. For 

example, experimenting with a payroll tax exclusion for a particular industry in 

an already strong S&T labor market areas—provided that comprehensive 

policy evaluations are built into the plan—could yield useful insights about 

which labor market indicators are most helped by place-based approaches. 

Such insights could then be used to prioritize public spending in the future. If a 

payroll tax exclusion feels like too much of a risk or too high of a cost, economic 

developers could experiment with preferential zoning—or even fast-tracked 

zoning applications—for certain kinds of S&T firms in already strong S&T 

labor market areas.  

Policy decisions should be tailored to regional conditions. These conditions 

include regional specialization and clustering as well as labor market 

characteristics such as role-specific supply and demand. Policymakers can 

choose among tools to influence labor supply, labor demand, or connections 

between supply and demand. Policy tools to influence labor supply generally 

fall into the category of people-based supports for labor market upskilling and 

reproduction. Policy tools to influence labor demand generally fall into the 

category of place-based supports for firm expansion, though they can also 

include people-based supports for particular employers or industries regardless 

of geography. Policy tools to influence the connections between labor supply 

and demand include creating or supporting labor market intermediaries and 

investing in research and development.  
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Selecting the right policy tool for the job requires a clear articulation of 

policy goals and regional conditions. For example, if the policy goal is to 

develop a regional data science hub, then the next step is to assess regional 

conditions in relation to this goal. To what degree is the region already 

specialized and clustered in data science? If the region already exhibits 

specialization in data science, and if firms in the industry agree that they are 

producing enough product and process innovations and have no trouble 

meeting their hiring goals for data scientists, then policymakers should 

consider emphasizing place-based supports to help firms expand. For example, 

policymakers could use payroll tax exclusions in a specific neighborhood to 

encourage firms to hire more rapidly and to collaborate with one another more.  

The effects of the payroll tax exclusions would likely be larger if firms in the 

region are not already clustered. If firms in the region are already clustered, 

policymakers should also consider upgrading infrastructure that connects firms 

with universities and other data scientists both within and outside the region, 

as both regional and non-regional ties accelerate growth. 

On the other hand, if the region does not exhibit specialization in data 

science, or if firms in the industry are dissatisfied with their rate of product and 

process innovation, or if firms in the industry have trouble finding skilled labor 

for data science roles, then people-based supports are in order. In this case, 

policy interventions should focus on upskilling and labor market reproduction 

for data science: provide financial incentives for providers of data science 

education to increase their offers, or for universities, boot camps, and the like to 

create offerings where there are none. Such interventions may include the 



 

 148 

strategic hiring of faculty and technical leads from other cities with larger data 

science hubs. S&T firms cannot expand without access to an adequate supply 

of technical talent, so producing that talent through regional universities and 

vocational training programs is the policy priority. 
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APPENDIX A: PYTHON SCRIPT FOR 
PHOTONICS BUYERS’ GUIDE SCRAPING 

# file name: get-firm-data.py 
 
from bs4 import BeautifulSoup 
import sys 
import codecs 
 
# open file, convert to string, give to BeautifulSoup 
filename = sys.argv[1] 
input_file = open(filename,'rb') 
page = input_file.read() 
input_file.close() 
soup = BeautifulSoup(page) 
# print "Soup Object: ", soup 
 
# extract company ID from filename 
companyID = filename.split("=")[-1] 
print "Company ID: ", companyID 
 
# extract company name 
companyName = soup.findAll(attrs={"class":"BG_Breadcrumb"})[0].b.string 
print "Company Name: ", companyName 
 
# extract company website 
 
try:  
 companyWebsiteBlock = 
soup.findAll(attrs={"id":"ctl00_BodyContent_PAN_WebInfo"})[0] 
 companyURL = companyWebsiteBlock.findAll('a')[-1].get('href').split("=")[-
1] 
except Exception:  
 companyURL = "" 
print "Company URL: ", companyURL 
 
# extract address 
addressBlock = soup.findAll(attrs={"id":"ctl00_BodyContent_PAN_Address"}) 
# print "Address Block: ", addressBlock 
 
# extract street 
companyStreet = addressBlock[0].b 
 
print "Street: ", companyStreet 
 
addressList = [] 
 
for string in companyStreet.strings: 
    addressList.append(str(string)) 
 
print "Address List: ", addressList, len(addressList) 
 
companyStreet = addressList[0] 
 
# if len(addressList) == 3: 
#  companyCityStateZip = addressList[1] 
# elif len(addressList) > 3: 
#  companyCityStateZip = addressList[2] 
# else: 
#  companyCityStateZip = addressList[-2] 
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#  raise Exception("Weird Company Address: "+ companyID) 
 
for i,field in enumerate(addressList): 
 if "United States" in field: 
  companyCityStateZip = addressList[i-1] 
    
  
csz = companyCityStateZip.split(',') 
companyCity = csz[0] 
 
sz = csz[1].split() 
companyState = sz[0] 
companyZip = sz[1][:5] 
 
  
print "Company Street: ", companyStreet 
print "Company City: ", companyCity 
print "Company State: ", companyState 
print "Company Zip: ", companyZip 
 
# extract street 2 
# extract city 
# extract state 
# extract zip 
# extract Google Maps URL 
 
try:  
 gMapsURL = addressBlock[0].b.a.get('href') 
except Exception:  
 gMapsURL = "" 
print "Google Maps URL: ", gMapsURL 
 
# description 
try: 
 companyDescription = 
unicode.encode(soup.findAll(attrs={"id":"ctl00_BodyContent_PAN_Description"})[0].c
ontents[0].strip().replace('\n',' ')) 
except: 
 companyDescription = "" 
  
# print "Description: ", companyDescription 
 
# stats: established, employees, square footage 
# which stats are available? 
try: 
 companyStats = 
soup.findAll(attrs={"id":"ctl00_BodyContent_PAN_Demographics"})[0].contents 
except Exception: 
 companyStats = [] 
  
companyEstablished = "" 
companyEmployees = "" 
companySqFt = "" 
 
for i in xrange(0,len(companyStats)): 
 if "Established" in str(companyStats[i]): 
  companyEstablished = str(companyStats[i+1]).strip() 
 if "Employees" in str(companyStats[i]): 
  companyEmployees = str(companyStats[i+1]).strip() 
 if "Facility" in str(companyStats[i]): 
  companySqFt = int(str(companyStats[i+1]).strip().replace(',','')) 
 
print "Established: ", companyEstablished 
print "Employees: ", companyEmployees 
print "Facility Square Footage: ", companySqFt 
 
record = [ 
companyID,  
companyName,  
companyStreet,  
companyCity, 
companyState, 
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companyZip,  
gMapsURL,  
companyDescription,  
companyEstablished,  
companyEmployees,  
companySqFt, 
companyURL] 
 
import csv 
 
#with open(companyID+".csv",'wb') as outfile: 
csvwriter = csv.writer(sys.stdout,delimiter = ',',quoting = csv.QUOTE_ALL) 
csvwriter.writerow(record) 
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APPENDIX B: PYTHON SCRIPT FOR 
CALCULATING AVERAGE NEAREST 

NEIGHBOR DISTANCE 

#!/usr/bin/env python 
 
# file name: nearestneighbors.py 
# thank you to the ArcGIS forum user setanrabb for the script template 
# http://forums.arcgis.com/threads/45487-Average-Nearest-Neighbour-results-
table?highlight=AverageNearestNeighbors 
 
# import libraries 
 
import arcinfo, arcpy, glob, os, string, sys, arcgisscripting, math 
from arcpy import env, mapping, conversion, sa 
gp = arcgisscripting.create() 
gp.overwriteoutput = True 
 
# Set the workspace and list feature classes 
env.workspace = "C:\Users\Kirsten\Data\ArcGIS\PBG by CBSA\SBA 
PBG_Geocoded_Project\SBA.gdb" 
fcs = arcpy.ListFeatureClasses() 
 
# Create a dictionary 
nn = {} 
 
# For each feature class in the list of feature classes 
for fc in fcs: 
    try: 
        nn[fc] = gp.AverageNearestNeighbor_stats(fc, "EUCLIDEAN_DISTANCE", 
"GENERATE_REPORT") 
    except Exception: 
        pass 
 
 
# Make output table 
with open(r"C:\Users\Kirsten\Data\ArcGIS\results.csv","w") as resfile: 
    print >> resfile, "cbsa_code, nn_index, nn_zscore, nn_pvalue, nn_emean, 
nn_omean, nn_report" 
     
    for fc in nn:  
        nn_output = nn[fc] 
        nn_values = nn_output.split(";") 
        print >> resfile,fc.split('_')[-1:][0] + ", " + ",".join([str(d) for d in 
nn_values]) 
         
#### 
 
try: 
    # Set the current workspace (to avoid having to specify the full path to the 
feature classes each time) 
    arcpy.env.workspace = workspace 
  
    # Obtain Nearest Neighbor Ratio and z-score 
    # Process: Average Nearest Neighbor... 
    nn_output = gp.AverageNearestNeighbor_stats(crime_data, "EUCLIDEAN_DISTANCE", 
"NO_REPORT", "#") 
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    # Create list of Average Nearest Neighbor output values by splitting the 
result object 
    nn_values = nn_output.split(";") 
    print "The nearest neighbor index is: " + nn_values[0] 
    print "The z-score of the nearest neighbor index is: " + nn_values[1] 
    print "The p-value of the nearest neighbor index is: " + nn_values[2] 
    print "The expected mean distance is: " + nn_values[3] 
    print "The observed mean distance is: " + nn_values[4] 
    print "The path of the HTML report: " + nn_values[5] 
 
# View output 
for fc in nn: 
    nn_output = nn[fc] 
    nn_values = nn_output.split(";") 
    print "The nearest neighbor index is: " + nn_values[0] 
    print "The z-score of the nearest neighbor index is: " + nn_values[1] 
    print "The p-value of the nearest neighbor index is: " + nn_values[2] 
    print "The expected mean distance is: " + nn_values[3] 
    print "The observed mean distance is: " + nn_values[4] 
    print "The path of the HTML report: " + nn_values[5] 
     
     
        ''' 
    print "The nearest neighbor index is: " + nn_values[0] 
    print "The z-score of the nearest neighbor index is: " + nn_values[1] 
    print "The p-value of the nearest neighbor index is: " + nn_values[2] 
    print "The expected mean distance is: " + nn_values[3] 
    print "The observed mean distance is: " + nn_values[4] 
    print "The path of the HTML report: " + nn_values[5] 
    ''' 
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APPENDIX C: R SCRIPT FOR CALCULATING 
REGIONAL SPECIALIZATION 

# Filename: lq_stat.R 
 
# aggregate pbg2012 by msa to get firm counts 
attach(pbg2012) 
msa_firm_counts <- as.data.frame(table(msa)) 
colnames(msa_firm_counts) <- c("msa", "pbg_f") 
detach(pbg2012) 
 
# join w/ county business patterns to get establishment counts 
  # drop micropolitan areas from CBP data 
  census10_cbsa_data$msa <- census10_cbsa_data$GEOID10 
  CBP_Census <- merge(cbp10msa_agg, census10_cbsa_data, by="msa") 
  CBP_Census_metro <- CBP_Census[which(CBP_Census$MEMI10==1),] 
 
  # join w/ PBG 
  CBP_Census_PBG_Metro <- merge(CBP_Census_metro, msa_firm_counts, by="msa", 
all.x= TRUE) 
 
# calculate SLQ 
SLQ_calc <- CBP_Census_PBG_Metro # rename for ease of typing 
 
 
attach(SLQ_calc) 
SLQ_calc$pct_photonics <- pbg_f / est 
SLQ_calc$msa_lq <- SLQ_calc$pct_photonics / pct_photonics_us 
SLQ_calc$log_lq <- log(SLQ_calc$msa_lq) 
detach(SLQ_calc) 
 
# normality test of LQs: Shapiro-Wilk test 
shapiro.test(SLQ_calc$msa_lq) # p < .05 not normal 
shapiro.test(SLQ_calc$log_lq) # p = 0.3564 normal 
 
# normality test of LQs: Kolmogorov-Smirnov test 
ks.test(SLQ_calc$msa_lq, "pnorm") # p < .05 not normal 
ks.test(SLQ_calc$log_lq, "pnorm") # p = .06 normal? 
 
# Q-Q plots 
qqnorm(SLQ_calc$msa_lq) # clearly not normal 
qqnorm(SLQ_calc$log_lq) # normal 
 
# calculate z-scores 
SLQ_calc$z_lq <- ( SLQ_calc$log_lq - mean(SLQ_calc$log_lq, na.rm=TRUE) ) / 
sd(SLQ_calc$log_lq, na.rm=TRUE) 
 
# view all the z-scores 
sort(SLQ_calc$z_lq) 
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APPENDIX D: LQ, LOG(LQ), AND SLQ FOR 186 
REGIONS 

Table 29. LQ, log(LQ), and SLQ for 186 regions. 

MSA ID MSA NAME LQ LOG(LQ) SLQ 

10420 Akron, OH 0.91 -0.09 0.02 

10580 Albany-Schenectady-Troy, NY 1.08 0.08 0.20 
10740 Albuquerque, NM 2.02 0.71 0.88 

10900 Allentown-Bethlehem-Easton, PA-NJ 2.76 1.01 1.22 
11100 Amarillo, TX 0.42 -0.87 -0.82 

11180 Ames, IA 2.48 0.91 1.10 
11340 Anderson, SC 1.37 0.32 0.46 

11460 Ann Arbor, MI 7.02 1.95 2.23 
12020 Athens-Clarke County, GA 0.57 -0.55 -0.48 

12060 Atlanta-Sandy Springs-Marietta, GA 0.55 -0.60 -0.54 
12260 Augusta-Richmond County, GA-SC 0.24 -1.41 -1.41 

12420 Austin-Round Rock-San Marcos, TX 0.73 -0.31 -0.22 
12580 Baltimore-Towson, MD 1.08 0.08 0.20 

12700 Barnstable Town, MA 0.31 -1.18 -1.16 
13140 Beaumont-Port Arthur, TX 0.32 -1.14 -1.12 

13380 Bellingham, WA 0.40 -0.91 -0.87 
13460 Bend, OR 1.74 0.55 0.72 

13780 Binghamton, NY 1.48 0.39 0.54 
13980 Blacksburg-Christiansburg-Radford, VA 1.54 0.43 0.59 

14020 Bloomington, IN 1.30 0.26 0.40 
14260 Boise City-Nampa, ID 0.31 -1.18 -1.16 

14460 Boston-Cambridge-Quincy, MA-NH 5.00 1.61 1.86 
14500 Boulder, CO 6.83 1.92 2.20 

14740 Bremerton-Silverdale, WA 0.89 -0.11 -0.01 
14860 Bridgeport-Stamford-Norwalk, CT 3.36 1.21 1.43 

15380 Buffalo-Niagara Falls, NY 1.50 0.41 0.56 
15540 Burlington-South Burlington, VT 3.00 1.10 1.31 
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MSA ID MSA NAME LQ LOG(LQ) SLQ 

15980 Cape Coral-Fort Myers, FL 0.16 -1.82 -1.86 

16180 Carson City, NV 1.18 0.16 0.30 
16580 Champaign-Urbana, IL 1.03 0.03 0.15 

16700 Charleston-North Charleston-Summerville, SC 0.15 -1.87 -1.91 
16620 Charleston, WV 0.69 -0.37 -0.29 

16740 Charlotte-Gastonia-Rock Hill, NC-SC 0.57 -0.57 -0.50 
16860 Chattanooga, TN-GA 0.45 -0.79 -0.74 

16940 Cheyenne, WY 1.87 0.62 0.79 
16980 Chicago-Joliet-Naperville, IL-IN-WI 1.08 0.07 0.20 

17020 Chico, CA 0.54 -0.62 -0.56 
17140 Cincinnati-Middletown, OH-KY-IN 0.49 -0.71 -0.65 

17300 Clarksville, TN-KY 0.59 -0.53 -0.46 
17460 Cleveland-Elyria-Mentor, OH 1.11 0.11 0.23 

17820 Colorado Springs, CO 0.61 -0.49 -0.42 
17980 Columbus, GA-AL 0.44 -0.82 -0.77 

18140 Columbus, OH 0.77 -0.26 -0.17 
18700 Corvallis, OR 2.45 0.90 1.09 

19060 Cumberland, MD-WV 1.18 0.16 0.30 
19100 Dallas-Fort Worth-Arlington, TX 0.74 -0.31 -0.21 

19260 Danville, VA 1.13 0.12 0.25 
19380 Dayton, OH 2.32 0.84 1.03 

19660 Deltona-Daytona Beach-Ormond Beach, FL 0.64 -0.44 -0.36 
19740 Denver-Aurora-Broomfield, CO 0.68 -0.38 -0.29 

19780 Des Moines-West Des Moines, IA 0.17 -1.77 -1.81 
19820 Detroit-Warren-Livonia, MI 0.88 -0.13 -0.02 

20500 Durham-Chapel Hill, NC 0.65 -0.43 -0.35 
21340 El Paso, TX 0.38 -0.97 -0.94 

21140 Elkhart-Goshen, IN 0.52 -0.66 -0.60 
21300 Elmira, NY 2.72 1.00 1.20 

21500 Erie, PA 0.40 -0.91 -0.87 
21660 Eugene-Springfield, OR 1.58 0.46 0.61 

22020 Fargo, ND-MN 0.40 -0.91 -0.87 
22500 Florence, SC 0.59 -0.54 -0.46 

22660 Fort Collins-Loveland, CO 1.08 0.07 0.20 
23060 Fort Wayne, IN 1.21 0.19 0.32 

23540 Gainesville, FL 0.84 -0.17 -0.07 
24300 Grand Junction, CO 1.63 0.49 0.65 

24340 Grand Rapids-Wyoming, MI 0.28 -1.27 -1.26 
24540 Greeley, CO 2.44 0.89 1.09 

24580 Green Bay, WI 0.33 -1.11 -1.08 
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MSA ID MSA NAME LQ LOG(LQ) SLQ 

24660 Greensboro-High Point, NC 0.14 -1.94 -1.99 

24860 Greenville-Mauldin-Easley, SC 1.01 0.01 0.12 
25420 Harrisburg-Carlisle, PA 0.94 -0.06 0.05 

25540 Hartford-West Hartford-East Hartford, CT 3.33 1.20 1.42 
25860 Hickory-Lenoir-Morganton, NC 0.33 -1.11 -1.08 

26100 Holland-Grand Haven, MI 0.89 -0.12 -0.01 
26180 Honolulu, HI 0.12 -2.15 -2.21 

26420 Houston-Sugar Land-Baytown, TX 0.23 -1.49 -1.49 
26620 Huntsville, AL 1.08 0.08 0.20 

26820 Idaho Falls, ID 0.69 -0.37 -0.28 
26900 Indianapolis-Carmel, IN 0.66 -0.42 -0.34 

27060 Ithaca, NY 5.44 1.69 1.95 
27260 Jacksonville, FL 0.22 -1.50 -1.51 

28020 Kalamazoo-Portage, MI 0.73 -0.32 -0.23 
28140 Kansas City, MO-KS 0.40 -0.91 -0.87 

28700 Kingsport-Bristol-Bristol, TN-VA 0.41 -0.88 -0.84 
28740 Kingston, NY 0.54 -0.62 -0.56 

28940 Knoxville, TN 0.79 -0.24 -0.14 
29140 Lafayette, IN 0.64 -0.45 -0.37 

29420 Lake Havasu City-Kingman, AZ 0.68 -0.39 -0.30 
29540 Lancaster, PA 0.21 -1.56 -1.58 

29620 Lansing-East Lansing, MI 0.53 -0.64 -0.58 
29820 Las Vegas-Paradise, NV 0.38 -0.96 -0.93 

30700 Lincoln, NE 0.92 -0.08 0.03 
30780 Little Rock-North Little Rock-Conway, AR 0.72 -0.33 -0.24 

30860 Logan, UT-ID 2.26 0.81 1.00 
31020 Longview, WA 1.14 0.13 0.26 

31100 Los Angeles-Long Beach-Santa Ana, CA 1.69 0.53 0.69 
31140 Louisville/Jefferson County, KY-IN 0.17 -1.78 -1.81 

31540 Madison, WI 1.50 0.41 0.56 
31700 Manchester-Nashua, NH 9.09 2.21 2.51 

31900 Mansfield, OH 0.92 -0.08 0.03 
32780 Medford, OR 0.44 -0.83 -0.78 

33100 Miami-Fort Lauderdale-Pompano Beach, FL 0.31 -1.17 -1.15 
33140 Michigan City-La Porte, IN 2.04 0.71 0.89 

33340 Milwaukee-Waukesha-West Allis, WI 0.79 -0.24 -0.14 
33460 Minneapolis-St. Paul-Bloomington, MN-WI 1.04 0.04 0.16 

34740 Muskegon-Norton Shores, MI 1.49 0.40 0.55 
34900 Napa, CA 0.64 -0.45 -0.37 

34980 Nashville-Davidson--Murfreesboro--Franklin, TN 0.34 -1.09 -1.07 
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MSA ID MSA NAME LQ LOG(LQ) SLQ 

35300 New Haven-Milford, CT 1.80 0.59 0.76 

35380 New Orleans-Metairie-Kenner, LA 0.09 -2.45 -2.53 
35620 New York-Northern New Jersey-Long Island, NY-NJ-PA 1.23 0.21 0.34 

35660 Niles-Benton Harbor, MI 0.69 -0.38 -0.29 
35980 Norwich-New London, CT 1.31 0.27 0.41 

36260 Ogden-Clearfield, UT 0.67 -0.41 -0.32 
36740 Orlando-Kissimmee-Sanford, FL 1.51 0.41 0.57 

36780 Oshkosh-Neenah, WI 0.70 -0.36 -0.27 
37100 Oxnard-Thousand Oaks-Ventura, CA 4.63 1.53 1.78 

37340 Palm Bay-Melbourne-Titusville, FL 1.75 0.56 0.72 
37460 Panama City-Lynn Haven-Panama City Beach, FL 0.56 -0.57 -0.51 

37620 Parkersburg-Marietta-Vienna, WV-OH 0.67 -0.40 -0.32 
37700 Pascagoula, MS 1.94 0.66 0.83 

37860 Pensacola-Ferry Pass-Brent, FL 0.28 -1.28 -1.27 
37980 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 1.67 0.51 0.68 

38060 Phoenix-Mesa-Glendale, AZ 0.78 -0.25 -0.16 
38300 Pittsburgh, PA 1.58 0.45 0.61 

38340 Pittsfield, MA 3.13 1.14 1.35 
38940 Port St. Lucie, FL 1.02 0.02 0.14 

38860 Portland-South Portland-Biddeford, ME 0.58 -0.54 -0.47 
38900 Portland-Vancouver-Hillsboro, OR-WA 1.53 0.43 0.58 

39100 Poughkeepsie-Newburgh-Middletown, NY 1.36 0.31 0.45 
39300 Providence-New Bedford-Fall River, RI-MA 1.96 0.67 0.85 

39340 Provo-Orem, UT 0.70 -0.36 -0.27 
39460 Punta Gorda, FL 0.72 -0.33 -0.25 

39580 Raleigh-Cary, NC 0.44 -0.83 -0.78 
39740 Reading, PA 1.83 0.60 0.77 

39820 Redding, CA 2.33 0.85 1.04 
39900 Reno-Sparks, NV 0.86 -0.16 -0.05 

40140 Riverside-San Bernardino-Ontario, CA 1.09 0.08 0.21 
40220 Roanoke, VA 0.31 -1.18 -1.16 

40380 Rochester, NY 9.54 2.26 2.56 
40420 Rockford, IL 0.34 -1.09 -1.07 

40900 Sacramento--Arden-Arcade--Roseville, CA 0.91 -0.10 0.01 
41420 Salem, OR 0.28 -1.27 -1.26 

41500 Salinas, CA 0.30 -1.20 -1.18 
41620 Salt Lake City, UT 0.48 -0.73 -0.68 

41700 San Antonio-New Braunfels, TX 0.13 -2.08 -2.14 
41740 San Diego-Carlsbad-San Marcos, CA 2.43 0.89 1.08 

41860 San Francisco-Oakland-Fremont, CA 1.97 0.68 0.85 
41940 San Jose-Sunnyvale-Santa Clara, CA 8.40 2.13 2.43 
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MSA ID MSA NAME LQ LOG(LQ) SLQ 

42020 San Luis Obispo-Paso Robles, CA 1.62 0.48 0.64 

42060 Santa Barbara-Santa Maria-Goleta, CA 5.85 1.77 2.03 
42100 Santa Cruz-Watsonville, CA 3.72 1.31 1.54 

42140 Santa Fe, NM 2.64 0.97 1.17 
42220 Santa Rosa-Petaluma, CA 3.25 1.18 1.40 

42340 Savannah, GA 0.30 -1.20 -1.18 
42540 Scranton--Wilkes-Barre, PA 0.38 -0.97 -0.94 

42660 Seattle-Tacoma-Bellevue, WA 0.76 -0.28 -0.19 
43100 Sheboygan, WI 0.94 -0.06 0.05 

43300 Sherman-Denison, TX 1.00 0.00 0.12 
43780 South Bend-Mishawaka, IN-MI 0.75 -0.29 -0.19 

43900 Spartanburg, SC 1.59 0.47 0.62 
44060 Spokane, WA 1.02 0.02 0.14 

44140 Springfield, MA 2.55 0.94 1.13 
41180 St. Louis, MO-IL 0.50 -0.69 -0.63 

44300 State College, PA 1.58 0.46 0.61 
44700 Stockton, CA 0.47 -0.76 -0.71 

45060 Syracuse, NY 1.49 0.40 0.55 
45220 Tallahassee, FL 0.29 -1.24 -1.22 

45300 Tampa-St. Petersburg-Clearwater, FL 0.87 -0.14 -0.03 
45460 Terre Haute, IN 1.35 0.30 0.44 

45780 Toledo, OH 0.69 -0.37 -0.29 
45940 Trenton-Ewing, NJ 5.43 1.69 1.95 

46060 Tucson, AZ 5.34 1.67 1.93 
46140 Tulsa, OK 0.31 -1.16 -1.14 

46540 Utica-Rome, NY 3.74 1.32 1.55 
47220 Vineland-Millville-Bridgeton, NJ 4.25 1.45 1.69 

47260 Virginia Beach-Norfolk-Newport News, VA-NC 0.54 -0.62 -0.56 
47300 Visalia-Porterville, CA 0.82 -0.20 -0.09 

47380 Waco, TX 0.51 -0.67 -0.61 
47900 Washington-Arlington-Alexandria, DC-VA-MD-WV 0.47 -0.77 -0.71 

47940 Waterloo-Cedar Falls, IA 0.61 -0.49 -0.42 
48620 Wichita, KS 0.17 -1.76 -1.80 

48900 Wilmington, NC 0.77 -0.27 -0.17 
49180 Winston-Salem, NC 0.49 -0.72 -0.66 

49340 Worcester, MA 5.30 1.67 1.92 
49620 York-Hanover, PA 0.59 -0.53 -0.46 

49740 Yuma, AZ 0.86 -0.16 -0.05 
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APPENDIX E: 2012 SPIE SALARY SURVEY 

 

2012 SPIE Global Salary Survey 
 
Question Text 
 

 
 
Thank you for participating in the annual SPIE Global Salary Survey. All participants are eligible 
to receive a preliminary report on survey results and to be entered into a drawing for an iPad2.  
 
Survey results will be analyzed on an aggregate basis. All identifying information remains strictly 
confidential. 
 
This survey should take about 5 to 10 minutes to complete. Thank you for participating.  
 
The SPIE Team 

 
 
What is your current employment status? (select one)  
   ! Full-time employed 
   ! Part-time employed (30 hours or less per work week) 
   ! Unemployed 
   ! Retired    >>>> Skip to Page 16: Do you have any other thoughts that you would like to 
share with the SPIE staff? (Optional) 
 

(End of Page 1) 
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Text 
In what country are you employed or were you most recently employed? 
   ! Afghanistan 
   ! Albania 
   ! Algeria 
   ! Andorra 
   ! Angola 
   ! Antigua and Barbuda 
   ! Argentina 
   ! Armenia 
   ! Australia 
   ! Austria 
   ! Azerbaijan 
   ! Bahamas 
   ! Bahrain 
   ! Bangladesh 
   ! Barbados 
   ! Belarus 
   ! Belgium 
   ! Belize 
   ! Benin 
   ! Bhutan 
   ! Bolivia 
   ! Bosnia 
   ! Botswana 
   ! Brazil 
   ! Brunei Darussalam 
   ! Bulgaria 
   ! Burkina Faso 
   ! Burundi 
   ! Cambodia 
   ! Cameroon 
   ! Canada 
   ! Cape Verde 
   ! Central African Republic 
   ! Chad 
   ! Chile 
   ! China, People’s Republic of 
   ! Colombia 
   ! Comoros 
   ! Congo, Democratic Republic of the 
   ! Congo, Republic of the 
   ! Costa Rica 
   ! Cote d'Ivoire 
   ! Croatia 
   ! Cuba 
   ! Cyprus 
   ! Czech Republic 
   ! Denmark 
   ! Djibouti 
   ! Dominica 
   ! Dominican Republic 
   ! East Timor 
   ! Ecuador 
   ! Egypt 
   ! El Salvador 
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   ! Equatorial Guinea 
   ! Eritrea 
   ! Estonia 
   ! Ethiopia 
   ! Fiji 
   ! Finland 
   ! France 
   ! Gabon 
   ! Gambia 
   ! Georgia 
   ! Germany 
   ! Ghana 
   ! Greece 
   ! Grenada 
   ! Guatemala 
   ! Guinea 
   ! Guinea-Bissau 
   ! Guyana 
   ! Haiti 
   ! Honduras 
   ! Hungary 
   ! Iceland 
   ! India 
   ! Indonesia 
   ! Iran 
   ! Iraq 
   ! Ireland 
   ! Israel 
   ! Italy 
   ! Jamaica 
   ! Japan 
   ! Jordan 
   ! Kazakhstan 
   ! Kenya 
   ! Kiribati 
   ! Korea, North 
   ! Korea, South 
   ! Kosovo 
   ! Kuwait 
   ! Kyrgyzstan 
   ! Laos 
   ! Latvia 
   ! Lebanon 
   ! Lesotho 
   ! Liberia 
   ! Libya 
   ! Liechtenstein 
   ! Lithuania 
   ! Luxembourg 
   ! Macedonia 
   ! Madagascar 
   ! Malawi 
   ! Malaysia 
   ! Maldives 
   ! Mali 
   ! Malta 
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   ! Marshall Islands 
   ! Mauritania 
   ! Mauritius 
   ! Mexico 
   ! Micronesia 
   ! Moldova 
   ! Monaco 
   ! Mongolia 
   ! Montenegro 
   ! Morocco 
   ! Mozambique 
   ! Myanmar 
   ! Namibia 
   ! Nauru 
   ! Nepal 
   ! Netherlands 
   ! New Zealand 
   ! Nicaragua 
   ! Niger 
   ! Nigeria 
   ! Northern Ireland 
   ! Norway 
   ! Oman 
   ! Pakistan 
   ! Palau 
   ! Palestine State 
   ! Panama 
   ! Papua New Guinea 
   ! Paraguay 
   ! Peru 
   ! Philippines 
   ! Poland 
   ! Portugal 
   ! Qatar 
   ! Romania 
   ! Russian Federation 
   ! Rwanda 
   ! Saint Kitts and Nevis 
   ! Saint Lucia 
   ! Saint Vincent and the Grenadines 
   ! Samoa 
   ! San Marino 
   ! Sao Tome and Principe 
   ! Saudi Arabia 
   ! Senegal 
   ! Serbia 
   ! Seychelles 
   ! Sierra Leone 
   ! Singapore 
   ! Slovakia 
   ! Slovenia 
   ! Solomon Islands 
   ! Somalia 
   ! South Africa 
   ! Spain 
   ! Sri Lanka 
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   ! Sudan 
   ! Suriname 
   ! Swaziland 
   ! Sweden 
   ! Switzerland 
   ! Syria 
   ! Taiwan 
   ! Tajikistan 
   ! Tanzania 
   ! Thailand 
   ! Togo 
   ! Tonga 
   ! Trinidad and Tobago 
   ! Tunisia 
   ! Turkey 
   ! Turkmenistan 
   ! Tuvalu 
   ! Uganda 
   ! Ukraine 
   ! United Arab Emirates 
   ! United Kingdom 
   ! United States    >>>> Skip to Page 3: In what state are you employed or were you most 
recently employed? 
   ! Uruguay 
   ! Uzbekistan 
   ! Vanuatu 
   ! Venezuela 
   ! Vietnam 
   ! Yemen 
   ! Zambia 
   ! Zimbabwe 
 

(End of Page 2) 
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In what state are you employed or were you most recently employed? 
   ! Alabama 
   ! Alaska 
   ! American Samoa 
   ! Arizona 
   ! Arkansas 
   ! California 
   ! Colorado 
   ! Connecticut 
   ! Delaware 
   ! District of Columbia 
   ! Florida 
   ! Georgia 
   ! Guam 
   ! Hawaii 
   ! Idaho 
   ! Illinois 
   ! Indiana 
   ! Iowa 
   ! Kansas 
   ! Kentucky 
   ! Louisiana 
   ! Maine 
   ! Maryland 
   ! Massachusetts 
   ! Michigan 
   ! Minnesota 
   ! Mississippi 
   ! Missouri 
   ! Montana 
   ! Nebraska 
   ! Nevada 
   ! New Hampshire 
   ! New Jersey 
   ! New Mexico 
   ! New York 
   ! North Carolina 
   ! North Dakota 
   ! Northern Marianas Islands 
   ! Ohio 
   ! Oklahoma 
   ! Oregon 
   ! Pennsylvania 
   ! Puerto Rico 
   ! Rhode Island 
   ! South Carolina 
   ! South Dakota 
   ! Tennessee 
   ! Texas 
   ! Utah 
   ! Vermont 
   ! Virginia 
   ! Virgin Islands 
   ! Washington 
   ! West Virginia 
   ! Wisconsin 



 

 166 

 

 

 

 

 

   ! Wyoming 
 

(End of Page 3) 
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   Please enter the five-digit ZIP Code of your current or most recent workplace. This data is used 
for regional comparisons only. (optional) ____________________ 
 
 
 

(End of Page 4) 
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What is your role in your current or most recent job? (select one) 
   ! Business Development 
   ! Consultant 
   ! Engineering & Design 
   ! Investor/VC/Financier 
   ! Leadership 
   ! Librarian 
   ! Marketing 
   ! Press 
   ! Production/Manufacturing 
   ! Project/Program Management 
   ! Purchasing 
   ! Recruiting/HR/Training 
   ! R&D: Application/Product Development 
   ! R&D: Applied Research 
   ! R&D: Basic Research/Science 
   ! Sales 
   ! Student 
   ! Technical/Lab 
   ! University/college professor 
   ! Other ___________________________________ 
 
What is your current or most recent job level? (select one) 
   ! Technician/Operator/Lab Tech 
   ! Staff 
   ! Lead/Senior level 
   ! Supervisor/Manager 
   ! Director 
   ! V.P. 
   ! C-level 
   ! Graduate or undergraduate student 
   ! Instructor or Adjunct Professor 
   ! Assistant or Associate Professor 
   ! Full Professor 
   ! Academic Dean, Provost 
   ! Other ___________________________________ 
 
What is your specific job title? 
   Job title ____________________ 
 
 
What is your gender? (select one) 
   ! Female 
   ! Male 
 

(End of Page 5) 
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What is your organization or employer type? (select one) 
   ! Company/corporation 
   ! University/college 
   ! Military/defense 
   ! Civilian government 
   ! Government laboratory or research institute 
   ! Private laboratory or research institute 
   ! Other research institute 
   ! Not-for-profit organization 
   ! Self-employed/consultant 
 
How many employees are in your organization (world-wide)? (select one) 
   ! Less than 10 employees 
   ! 11-50 employees 
   ! 51-100 employees 
   ! 101-250 employees 
   ! 251-1000 employees 
   ! 1001-2500 employees 
   ! 2501-5000 employees 
   ! More than 5000 employees 
 

(End of Page 6) 
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Select the primary discipline of your most recent work or teaching. If your work is primarily 
managerial, business development, or administrative, please select the primary focus or market 
of your division or organization. (select one) 
   ! Aerospace 
   ! Astronomy/astrophysics 
   ! Biomedical/medical 
   ! Civil/environmental 
   ! Chemical 
   ! Computer science/software/information technology 
   ! Electrical 
   ! Illumination 
   ! Interdisciplinary engineering or research 
   ! Lasers 
   ! Manufacturing 
   ! Materials 
   ! Mechanical 
   ! Nanotechnology 
   ! Optical design 
   ! Optical systems 
   ! Photonics 
   ! Physics 
   ! Remote sensing 
   ! Semiconductor 
   ! Systems engineering or research 
   ! Other ____________________ 
 

(End of Page 7) 
 

  



 

 171 

 

 

 

 

 

What is the highest educational level you have completed? (Select one) 
   ! Some secondary education 
   ! Secondary education (High School Diploma or equivalent) 
   ! Technical Degree or Certificate 
   ! Associate Degree 
   ! Bachelor's Degree 
   ! Master's Degree (MA, MS, or equivalent) 
   ! Master's of Business Administration (MBA or equivalent) 
   ! PhD, Doctorate, or equivalent 
   ! MD or similar medical doctor degree 
   ! Multiple advanced degrees at the same level or in different degree paths (such as MA+MS, 
MD+PhD, or MS+MBA)    >>>> Skip to Page 9: What combination of advanced degrees have you 
earned? (Choose all that apply) 
   ! Other ___________________________________ 
 

(End of Page 8) 
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What combination of advanced degrees have you earned? (Choose all that apply) 
   " MA or MS 
   " More than one MA or MS 
   " Master's of Business Administration (MBA) 
   " PhD or similar Doctorate 
   " More than one PhD or similar Doctorate 
   " MD 
   " JD or similar law degree 
 

(End of Page 9) 
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Select the primary application for your research or product(s). (select one) 
   ! Astronomy 
   ! Basic Research, Science 
   ! Biomedical, Medical Imaging, Health Care 
   ! Chemical and Biological Analysis 
   ! Communications and Networking 
   ! Computing Systems, Data Processing 
   ! Consumer Electronics 
   ! Defense, Security, Law Enforcement 
   ! Displays: Consumer, Information, Entertainment 
   ! Earth Sciences, Environmental Monitoring, Climate 
   ! Education and Training 
   ! Industrial Sensing and Measurement 
   ! Laser Industry 
   ! Lighting and Illumination 
   ! Machine Vision, Factory Automation 
   ! Materials Processing, Lasers in Manufacturing 
   ! Optical Data Storage 
   ! Optics Design and Engineering 
   ! Optics Manufacturing 
   ! Semiconductor Manufacturing 
   ! Solar and Alternative Energy 
   ! Structural and Infrastructure Sensing 
   ! Vehicle Sensing and Control 
   ! Other ____________________ 
 

(End of Page 10) 
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How many years have you worked at your current job? (select one) 
   ! Less than one year 
   ! 1-2 years 
   ! 3-5 years 
   ! 6-10 years 
   ! 11-15 years 
   ! 16-20 years 
   ! 21-25 years 
   ! 26-30 years 
   ! More than 30 years 
 
How did you find your current or original position at your present employer? (select one) 
   ! Printed job advertisement (newspaper or journal) 
   ! Online job advertisement 
   ! In-person job fair 
   ! University career office 
   ! Alumni network 
   ! Professional association 
   ! I was recruited 
   ! Private placement agency 
   ! Public/government placement agency 
   ! Networking or referral through personal contact 
   ! I contacted the employer directly (no job was advertised) 
   ! Other ___________________________________ 
 
How many years, total, have you been professionally employed? (select one) 
   ! None 
   ! Less than 5 years 
   ! 5-10 years 
   ! 11-15 years 
   ! 16-20 years 
   ! 21-25 years 
   ! 26-30 years 
   ! More than 30 years 
 

(End of Page 11) 
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Please indicate the degree to which you agree or disagree with the following statements about 
your job. 
 
 Strongly 

disagree 
Disagree Neither agree 

nor disagree 
Agree Strongly 

agree 
I am paid 
fairly for the 
work I do 

! ! ! ! ! 

I respect the 
work of my 
peers 

! ! ! ! ! 

My supervisor 
is highly 
competent 

! ! ! ! ! 

My work is 
meaningful 

! ! ! ! ! 

When I do 
good work, I 
receive 
proper 
recognition 
from 
supervisors 
and 
coworkers 

! ! ! ! ! 

I have good 
opportunities 
for promotion 
within my 
organization 

! ! ! ! ! 

I have the 
autonomy 
and 
independence 
I need to do 
my best work 

! ! ! ! ! 

I work too 
many hours 
each week 

! ! ! ! ! 

I enjoy my 
work 

! ! ! ! ! 

Health care 
and pension 
benefits are 
an important 
part of my 
compensation 

! ! ! ! ! 

 
 

(End of Page 12) 
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Please indicate the degree to which you agree or disagree with the following statement about 
your job. 
 
 Strongly 

disagree 
Disagree Neither agree 

nor disagree 
Agree Strongly 

agree 
I love my 
work and I 
feel fortunate 
to get paid for 
doing it. 

! ! ! ! ! 

 
 

(End of Page 13) 
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Please select the currency in which you are paid. 
   ! Afghan afghani 
   ! Albanian lek 
   ! Algerian dinar 
   ! Angolan kwanza 
   ! Argentine peso 
   ! Armenian dram 
   ! Aruban florin 
   ! Australian dollar 
   ! Azerbaijani manat 
   ! Bahamian dollar 
   ! Bahraini dinar 
   ! Bangladeshi taka 
   ! Barbadian dollar 
   ! Belarusian ruble 
   ! Belize dollar 
   ! Bermudian dollar 
   ! Bhutanese ngultrum 
   ! Bolivian boliviano 
   ! Bosnia and Herzegovina convertible mark 
   ! Botswana pula 
   ! Brazilian real 
   ! British pound 
   ! Brunei dollar 
   ! Bulgarian lev 
   ! Burmese kyat 
   ! Burundian franc 
   ! Cambodian riel 
   ! Canadian dollar 
   ! Cape Verdean escudo 
   ! Cayman Islands dollar 
   ! Central African CFA franc 
   ! CFP franc 
   ! Chilean peso 
   ! Chinese yuan 
   ! Colombian peso 
   ! Comorian franc 
   ! Congolese franc 
   ! Costa Rican colón 
   ! Croatian kuna 
   ! Cuban convertible peso 
   ! Cuban peso 
   ! Czech koruna 
   ! Danish krone 
   ! Djiboutian franc 
   ! Dominican peso 
   ! East Caribbean dollar 
   ! Egyptian pound 
   ! Eritrean nakfa 
   ! Ethiopian birr 
   ! Euro 
   ! Falkland Islands pound 
   ! Fijian dollar 
   ! Gambian dalasi 
   ! Georgian lari 
   ! Ghana cedi 
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   ! Gibraltar pound 
   ! Guatemalan quetzal 
   ! Guinean franc 
   ! Guyanese dollar 
   ! Haitian gourde 
   ! Honduran lempira 
   ! Hong Kong dollar 
   ! Hungarian forint 
   ! Icelandic króna 
   ! Indian rupee 
   ! Indonesian rupiah 
   ! Iranian rial 
   ! Iraqi dinar 
   ! Israeli new shekel 
   ! Jamaican dollar 
   ! Japanese yen 
   ! Jordanian dinar 
   ! Kazakhstani tenge 
   ! Kenyan shilling 
   ! Kuwaiti dinar 
   ! Kyrgyzstani som 
   ! Lao kip 
   ! Latvian lats 
   ! Lebanese pound 
   ! Lesotho loti 
   ! Liberian dollar 
   ! Libyan dinar 
   ! Lithuanian litas 
   ! Macanese pataca 
   ! Macedonian denar 
   ! Malagasy ariary 
   ! Malawian kwacha 
   ! Malaysian ringgit 
   ! Maldivian rufiyaa 
   ! Mauritanian ouguiya 
   ! Mauritian rupee 
   ! Mexican peso 
   ! Moldovan leu 
   ! Mongolian tögrög 
   ! Moroccan dirham 
   ! Mozambican metical 
   ! Namibian dollar 
   ! Nepalese rupee 
   ! Netherlands Antillean guilder 
   ! New Zealand dollar 
   ! Nicaraguan córdoba 
   ! Nigerian naira 
   ! North Korean won 
   ! Norwegian krone 
   ! Omani rial 
   ! Pakistani rupee 
   ! Panamanian balboa 
   ! Papua New Guinean kina 
   ! Paraguayan guaraní 
   ! Peruvian nuevo sol 
   ! Philippine peso 
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   ! Polish złoty 
   ! Qatari riyal 
   ! Romanian leu 
   ! Russian ruble 
   ! Rwandan franc 
   ! Saint Helena pound 
   ! Salvadoran colón 
   ! Samoan tālā 
   ! São Tomé and Príncipe dobra 
   ! Saudi riyal 
   ! Serbian dinar 
   ! Seychellois rupee 
   ! Sierra Leonean leone 
   ! Singapore dollar 
   ! Solomon Islands dollar 
   ! Somali shilling 
   ! South African rand 
   ! South Korean won 
   ! Sri Lankan rupee 
   ! Sudanese pound 
   ! Surinamese dollar 
   ! Swazi lilangeni 
   ! Swedish krona 
   ! Swiss franc 
   ! Syrian pound 
   ! Taiwan new dollar 
   ! Tajikistani somoni 
   ! Tanzanian shilling 
   ! Thai baht 
   ! Tongan paʻanga 
   ! Trinidad and Tobago dollar 
   ! Tunisian dinar 
   ! Turkish lira 
   ! Turkmenistani manat 
   ! Ugandan shilling 
   ! Ukrainian hryvnia 
   ! United Arab Emirates dirham 
   ! United States dollar 
   ! Uruguayan peso 
   ! Uzbekistani som 
   ! Vanuatu vatu 
   ! Venezuelan bolívar 
   ! Vietnamese đồng 
   ! West African CFA franc 
   ! Yemeni rial 
   ! Zambian kwacha 
   ! Zimbabwean dollar 
 

 
 
What was your total 2011 annual pre-tax earnings at your current job*, including all salary and 
bonuses?  
 
Please enter the amount in the currency in which you are paid and do not enter any symbols. 
Example: 12000 
   Total 2011 pre-tax earnings: ___________________________________ 
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*SPIE realizes that different countries' tax rates affect net pay, and that differences exist 
regarding vacation time and other benefits, but for the purposes of this survey, please enter your 
pre-tax earnings for 2011 including salary and bonuses. 

(End of Page 14) 
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You have indicated that your total 2011 pre-tax pay and bonuses was %[Pre-tax 
earnings]Q13_1% %[Please select the currency in which you are paid.]Q2LBL%.  
 
If that information is correct, click Next below.  
 
If that information is not correct, please click the back arrow of your browser to revise the 
information on the previous page. 

(End of Page 15) 
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Do you have any other thoughts that you would like to share with the SPIE staff? (Optional) 
   ______________________________________________________________ 
   ______________________________________________________________ 
   ______________________________________________________________ 
 
If you would like a pre-release copy of the SPIE Global Salary Survey Report and to be entered 
into the drawing for a free iPad2, please enter your email address below.  
 
Answering this question is optional. SPIE does not share email addresses. Any identifying 
information is kept strictly confidential. Duplicate entries will be deleted. 
   Email address: _________________________________ 
 
 
 
 

 
 
 
 
Please click on the Submit button below to complete the survey. 
 
The SPIE Team thanks you for your participation. 

(End of Page 16) 
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