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CHAPTER 1

INTRODUCT ION

In the process of solving D, Hilbert's fifth problem, mathematicians

were confronted with the question of the existence of an invariant inte-
gral on a topological group. In 1933, A. Haar [ 1 ] established the exis-
tence of such an integral for compact groups which are separable. Haar's
proof is both constructive and simple. One year later, J. von Neumann [2 ]
succeeded in proving that the integral discovered by Haar is unique up to
a positive factor. Although these results represented significant advances,
the restrictions imposed on the group were too severe,

A major breakthrough occurred in 1938 when A, Weil [ 3] proved the
existence and uniqueness of an invariant integral for an arbitrary locally

compact Hausdorff group. Weil's existence proof is not constructive; the

integral is obtained by an application of the Tychonoff product theorem.
The integral, if it is to be ungiue up to a positive factor, should be
established by an actual eonstruction.

In 1%40,H.Cartan [ 4] presented a constructive proof of the exis-
tence and uniqueness of an invariant integral for locally compact Hausdor f f
groups. Although Cartan succeeded in meeting the c¢riticism of Weil's
existence proof, his proof is unintuitive.

In 1963, E. Alfsen [ 5 ] succeeded in establishing the existence
and uniqueness of an invariant integral for locally compact Hausdorff

groups by an argument which is both constructive and intuitive. .




It is the purpose of this work to discuss Alfsen's proof in
detail.

In the brief outline of Alfsen's proof given below, the following
notation is used: G denotes a fixed locally compact Hausdorff group,
and L+ denotes the class of all continuous, non-negative functions
defined on G with compact supporis.

In the second chapter, for each pair of elements of L+, f
and g, with g # 0, two approximations, denoted by (f : g) and (ié_g),
both of which give the relative "size" of f and g, are described.

In Chapter III, a certain separation property is derived. This
property turns out to be the key to the uniqueness argument presented in
Chapter 1IV.

In Chapter IV several ideas are developed. After formally
def{ning an invariant integral J, a pre-ordering is associated with
J as follows: if f and g are members of L+, then f < g (mod J)
if, and only if, J(f) < J(g9). The following propositions are then proved.

(a) 1If S and J, are jinvariant integrals on G such that
f < g (mod J2) implies f < g (mod Jl), then there is a positive
constant a such that Jl(f) = an(f) for every f ¢ Lt

(b) If J 1is any invariant integral on G, then J(f) < J(qg)
implies (g:h) < (f:h) for every h e L+, h # 0.

Thus it suffices to show the existence of an invariant integral

I such that f < g (mod I) if, and only if, (f:h) < (g:h) for
' +

every helL, hj# O, This is achieved by defining two generalized
sequences in terms of the approximations defined in Chapter II, and then

using the separation property to obtain the desired construction.




CHAPTER 11

THE HAAR COVERING FUNCTIONS

Notation
The following notation shall be used in this study:
(a} G denotes a fixed locally compact Hausdorff topological

group.

+
(b} L denotes the class of all non-negative, real valued, contin-

ucus functions defined on G with compact supports; for each f ¢ L+,
the symbol N(f) denotes the set {x e G: f{x) > O}, and the symbol
supp (f) denotes the closure of N(f).

(c) For each ACG, L; denotes the elements of L' whose
supports are contained in A.

(d} ‘Y denotes the neighborhood filter of the identity e of G

{(e) For each f e ¥ and se G, the symbols f*, f, and f
denote the functions defined by f*(x) = f(x'l), fs(x) = f(s_lx), and
fs(x) = f(xs)}, respectively,

(f} For each f ¢ L+, |fll denotes the supremum of the set
{f(x) 1 X € G}.

(g) For f, ge L+, f < g shall mean f(x) < g(x) for all

. x e G,

(h) For each f ¢ L+, and fixed real number r > 0, (f - r)+

denotes the function defined by (f - r)+(x) = sup {f(x) - r, O}.

S




The LowerAHaar Covering Function

+ .
Proposition 2.1. Let f, @ e L , ¢ # O. Then there exist elements

SypeeesSy of G and positive real numbers Byseeesdy such that

n
(1) f < E: a
i=1

Proof. Let u be an element of G such that ¢{u) > 0. Choose ¢

so that 0 < ¢ < ¢(u). For each t ¢ G, (t) = ¢(u) > 0. The

¢tu-1
{xeGzp, -1(x)> e} is a neighborhood of t. Let

open set U,

ay = inf.{¢tu_1 (x): x e U£} Then > £. Choose ay such that

3, pd l[£f]l. Then
(2) a£¢

for every x e th
Now the collection of sets {Ut tte G} is an open covering of
G, and hence of supp (f). Since supp (f) is compact, a finite sub-

collection U, ,...,U covers supp (f}). For each t,

1 t

1 n

there is an a, > 0 such that a; Py 1
iv”

Since. f vanishes off supp (f), it follows that

n
Z: ®4Pei *

i;i=1,...,n?°

(x) > f(x) for every x E,Ut .
i

-1
where s, = t.u i =1,0004N
i i 4 4 i

Definition 2.2, Let f, ¢ e L+, ® # 0. The lower Haar covering

function of f relative to ¢, denoted by (f:¢), is defined as follows:




n
(3) (f:o) = inf Z:u ta, >0, i=1,...,n, and there

[~1>=
o]

[Ty
B=]

Lit]

exist elements Syse0eyS, of G such that f <
1

i

Proposition 2.3. If f and ¢ are non-zero members of L+, then

(f:9) > 0.

Proof. Let x and x, be elements of G such that f(xl) = || £l|

and m(xz) = |lp]l. Then f(xl) and @(xz) are both positive. Let

SyrecesS, be elements of G and @ygooesd be positive real numbers

such that
n
f< Zaﬁ&°
. : 1
i=1
Then
n n
e < Yao, )< Yo, lol.
i=1 i=1
Whence

Yas 2 el Allel
i=1

which implies that (f:¢) > 0. p

+
Proposition 2.4, If f, g and @ are members of L , ¢ # 0, then

f < g implies (f:0) < (g:9).




Proof. Let s °sS, be elements of G and P ERRETL be positive

l’-n

n n
real numbers such that g < Z:u.w . Then f< E:u.m which implies
= i"sy = i%sy
i=1 i=1

that (f:9) <

i

a;. Hence (fF:9) < (g :¢)..

1

n~—1a

Proposition 2.5. If f, ¢ and ¢ are members of L+, where ¢ and ¢

are non-zero, then

(4) (f:o) < (F:9)( :9) .

Proof. Let SprceesSy be elements of G and S IEREEFLN be positive

real numbers such that
n ..
(5) f < Z a,

Similarly, let tl’°°°’tm be elements of G and pl,...,ﬁm be posi-

tive real numbers such that

m

(6) b < I: PPy, -
=1 J

Combining (5) and (6),

-
[Fa
W ~js
—
a2
[N
/_"\
Hn
H 3
F_P"G
sl
.
R=]
w
(]
[ 8]
\_/

1
n~1os
~—s
o]
HI
™
[ a7
=
o+
w
O




Consequently,

Y hence

(feo) < (Feb) (bro) . "

Proposition 2.6. If f, ¢ ¢ L+, ¢ £0, and if s € G, then

(7) (f :0) = (fr1o) .

Proof. Let SysecesSy be elements of G and LEEREEFL

numbers such that

Then

Hence (fs 1) <

i

ay which implies
1

v ~15

(8) (F 7o) < (Fro).

be positive real

Now let tiseoest be elements of G and ﬂl,...,ﬂm be positive real

numbers such that




Then
h
f<z I
- BJq)s'lt.
j=1 )

m
This last inequality implies (f:9) < E:Bj. Hence
j=1

(9) {(fro) < (f_:9)

S

The desired conclusion follows from (8) and (9).

Proposition 2.7. let f, @€ L+, p #0, and let a > 0O be a con-

stant. Then

(10) (af:9) ~a(f:g) .

Proof. If a = 0, then for any positive number B, af < Beo. Thus
(af :9) =0 =a(f:¢). Suppose that a > 0. Let SyseeesS, be ele~

ments of G and Aysovssd, be positive real numbers such that

n
f < z uimsi.'
i=1

Then




Thus

which implies

(11)

Now let

tl,onu,tm be elements of G and Bl""’pm be posi-

tive real numbers such that

Since o > 0 ,
Hence (f:9) <
(12)

af

IA

m
Z PP, -
=1

Bj tptj a

n e~

m
1 : s :
a Z: bj which implies

j=1

a(f:9) < {(af s9).

.

(11) and (12) together imply (af:9) =a(f:a). g

Proposition 2.8.

Then

(13)

+

. +
Let f, eLl’, i=1,...,n, and let 9elL’, o £ O,
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Proof. The proof is by inductien on n. For n =1, there is nothing

to prove. Consider the case n = 2. Let SyseeesS, be elements of G

and Aypece,d be positive real numbers such that

n

o fe ] e,
. i
i=1

Similarly, let tl,...,tm be elements of G and pl,...,Bm be posi-

tive real numbers such that

n
09 S RN
j=l ]

Adding (14) and (15),

n m
i< Z“iq’s + Zpaq’t .
. i
i=1 j=1
Then
n m
(F+i, 79 < ya + ) By -
i=l j=1
Hence
(16) (fl + f2 : @) < (fl : @) + (f2 Q).

Now suppose the assertion holds for k, where 2< k < n. Then

by (16) and the inductive hypothesis,




Fal
1=
h
(W
a
\—/
+
~~
H’
=
+
—
<
ot

i=1
k
< ) E e+ (G, 9
i=l
k+1
= (f:.L:q)).l
i=1

+

11

n
Proposition 2.9. Let f, €L, i=1l,.00,n, and write f = z:fi'
i=l

Then for every \ > 1, - there is a VeV  such that

n
(17) ' X: (fi :p) <A(f : 9)
i=l

+
for every 9 €L, o # 0.

Proof. If f 4is identically zero, there is nothing to prove.

that f # 0. Let f0 € L+ be such that fo(x) =1 for every

Assume

X 1in

supp (f), and let xo be a real number such that 1 < ko < x. Choose

3 >0 so0 that

(18) s(f, :+ £) <A - 1.

Let h=1f+ bfo. For each i = 1,...,n, define hi on G as follows:
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f,(x)

) Y] if h(x) # 0,

hi(X) =
0 if hi{x) = 0.

Then for each i = l,...,n0, hi is continuous on N(h), which contains
supp (f). Also, h, is continuous on the open set G- supp (f) since
h, is identically zero on G- supp (f). Since G = (G- supp(f)) U supp(f) &
(G- supp {f))|JN(h), it follows that h, € L+, i=1,.0.,n.

Now for each i =:1,...,n, fi(x) =0 implies hi(x) = 03 if

fi(x) F 0, then fi(x) = hi(x) h(x). Hence
(19) fi(x) = hi(x) h(x)

for all x€ G, i = 1l,...,n. Suppose h(x) £ 0. Then

n

nof,{x)
Z hi(x) = Z fl‘?ix)
- i=l

i=1

n
1
= ¥(x) + 5F_(x) ‘EI £3(x)

i=1
- f(x)
f(x) +3f (x)
o]
S- 1.
But if h(x) = 0, then hl(x) = .. = hn(x) = 0, so that
n
(20) }: by (x) < 1
i=1

for all xe G,

For each fixed i = 1,...,n, corresponding to the positive nqmber
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£ = 2 s, there is a Vi eV such that

(21) I (x) - h ()] e

whenever x™ly e V.. Let V=V ...V Then, if x'ye V, (21)
holds for every i = l,...,n. Let 9 € L; , ® £ 0. Let SpseessSy be

elements of G and Qypeeerdy be positive real numbers such that

jits
j=1 J
Then for each i = 1,...,n,
¢ 1
h({x) hi(x)‘g X:ﬂj m(sj x) hi(x)
j=1

-1
J
x & V, then from (21}, hi(x) <e + hi(sj) s

for every x €& G. For each j = l,...,m, if s,° x ¢ V, then

-1 -1
5. x) =03 if s,
o 3 ) H 3

i=1,...,n. Whence

m

(22) h(x) h, (x) < Zajcps_(x)(hi(sj) +e),

=1 7

for all xe G and for each i = 1,...,n. By (19),
m
(fi 1) € X:uj(hi(sj) +€e), i=l,...4n.

j=1

Now summing this last inequality over i,
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n m
z E a,(hy(s)) +a)
1 i=1 j=1

m n
T os( L oyte )
j=1 VNi=l

n~1os
_—~
-
a
-
(PaN

n
but from (20) E:hi(sj) <1, so that
i=1
n m
Z(fi:qa)g(l+ne:) ay .
i=1 =1
Therefore,
n
(23) Y (7o) < (L+ne)(Rro) .
i=1

But by propositions 28, 27 and 25,

(1 +ne)(hso)

1]

(1 + re)(f + f : o)

[ FaN

(1 +ne) {(Fro) +3(F_ o)}

< (1 +pe){(Fro) 148(F 30}
Now applying (18) and substituting the value of €,
(24) (L+re)(h:9) <A (f:o) .

The conclusion then follows from (23) and (24)'I

Proposition 2.10. Let {fi} be a generalized sequence of functions in
L+ which converges uniformly to f, f #£ 0, and for which there is

some fixed compact set K outside of which fi vanishes for each index i.
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Then

(25) lim, — =1,

+ . . .
when o L, o % 03 moreover, the convergence is uniform in o,

Proof. Let € > 0 be given. Choose f ¢ 1t such that fo(x) =1 for

every x € K. From the hypothesis, there exists an index j such that

— -1

|f—fi|<e(f°=f)

for every i > j. Now noting that f(x) = fi(x) = 0 for all x ¢ K, ard

for each index i, it follows that

—_— -1
(26) £ -1 <e (F, : D £,

for every 1 2> j. Writing (26) as two inequalities one obtains

_— =1
: +f,
F<e(f 107 £ 41,

and

— -1

f, <e{(f sf) " f +f
1 Q 0

for every i 2> j. Applying propositions 2.4, 2.8 and 2.7 to these

inequalities, one obtains

(Tro) <e(F, e D)7 (30 + (T 7o)

o

and

(Fro) <e(@ 0 N (T w0 + (F 00,
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+
for each o L, o #0, and for every i > j. There two inequalities

can be combined to obtain

(27) |(F79) - (Fig)| < (T3 (F79)

+ ——
for each pe L', ¢ #0, and for every i > j. Dividing (27) by (f:9o),

(f, : o) —n
2 e 7B T (e,
(f : ) ° °

for each o ¢ L+, 9 # 0, and for every i > j. But (fo : ) 5.(f0: £f)(f:0),

50

1

(f; = @)
==

for each o & L+, 9 # 0, and for every 1i > j. g

Proposition 2,11. If {fi} is a generalized sequence of functions in L+

+
such that f, ¢+ f, where fe L, f# 0, then

(f. : @)
(28) : —,l-——cp— t
(f : 9)

uniformly in @, where ¢ € L+, @ £ 0.

Proof. From Dini's lemma, {fi} converges unifeormly to f. Since fi T f,
it follows that supp (fi) C supp (f), for each index 1i. Letting

K = supp (f), the conclusion follows from proposition 2.10.

The Upper Haar Covering Function

Let f, o ¢ L+, ¢ # O, There exist non-negative real numbers
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ﬂl""’ﬁm and element? tl,...,tm of G such that
m

(29) ZBj(pt.if.
j=1 Y

Let A > 1 be given., By proposition 2.9, there is a V eV  such that

m m
Z(ﬁjq’tj“”)i’( Bjmt.w)

5=1 =L

for every v € L; , % £ 0. But (ﬂj¢t. th) = ﬁj(mt. :P) = Bj(w ),

J J
for each j =1,...,my and

s0 that

V2N

But (f : ¢) (F: o) (o : ), and (¢7E ¢) > 0 for every 1V € L; s
y # 0. Thus

Since X\ 1is arbitrary, one has

m
(30) Y B < (Fro .




18

Therefore, the collection of all sums of the form P.s B-
=1

j=1,...,my for which (29) holds for some tiseeest  in G s

W ~1=
[N}
L8
IV
‘-O

bounded above., One has the following definition:

Definitién 2.12. Let f, e L+, P f 0. The upper Haar covering

function of f relative to ¢, denoted by the symbol (f : @), is

defined to be the supremum of all sums of the form

m
) B C B2 3= lyem
j=1
m
for which there exist elements tl,...,tm of G such that Z:Bjmt <f.
. J
j=1

From (30), the following proposition is true.

Proposition 2.13. If f, p'& L', ¢ #0, then (f:0)< (F: o).

Proposition 2.14. Let ¥ g L+, f £ 0. Then there exists a VeV such

that (f_: @) > O, for every ¢ ¢ L$ , © # 0.

Proof. Let ue G be such that f(u) > O. Choose € so that

0<e < f(u)., The set U = {x e G: f(x) > e} is an open neighborhood

of U, Let V=utU e . For each o € L;, ¢ £ 0, choose B >0

such that Bllejl < e. Then

B @u(x) <8 HmuH = pllpll < & < f(x)

for every x e U, But since o vanishes off U,

B o,(x) < fx)




19

for all x e G. Consequently, (fig) > O,

Proposition 2.1%. If f, g ¢ L+, then f < g implies (f : @) < (g:9)

for every o ¢ L+, e £ O,

Proof. Let tl,...,tm be elements of G and ﬁl,...,ﬁm be non-negative

real numbers such that

where ¢ ¢ L+, ® # 0. Then

which implies

Hence
(f:9) < (g :9). 5

Proposition 2.16. Let f, ¢ and ¥ be members of LT, with o £ O

and ¥ £ 0, then

(31) (f:9) (b _:9) < (f:9).

Proof. The assertion is obvious if (f_: %) = 0. Assume that (f:1) > O.

Let tl,oae,tm be elements of G and Bl,...,ﬁm be positive real numbers
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such that
m
(32) ) By, <f.
j=1 ]

Let ul’.Il,u

n be elements of G and ASEEREFA N be non-negative

real numbers such that

n
(33) ZY.tP <H .,

Combining (32) and (33)

which implies

(; ﬁj) (i Yi> S(Eie).

Thus

Proposition 2,17. If f, p e L', 9 £ 0, then

(34) (f: @)

I
—~
Ly
"
.
a
St

for every s € G.

Proof. Let tl,...,tm be eleménts of G and pl,...,Bm be non-negative




Then

which implies

m
E: Bj < (fs : Q) .
j=1

Whence

{35) (f:9) < (f_ 2 ?) .

Now let ul”“"un be elements of G and YyseeesY, be non-

negative real numbers such that

Then

which implies

oo = mrs L T
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Thus

(36) ' (f5=¢)§(f:9),

(36) and (35) give the desired equality (34).I

Proposition 2.18. Let f, ¢ ¢ L+, 9 #0, and let a be a non-negative

constant. Then

(37) (af : @) =a(f:9).

Proof. If a =0, the assertion follows immediately. Suppose that

a > 0. Let tl,.nn,tm be elements of G and pl,...,ﬁm be non-negative

real numbers such that

Then

which implies

Consequently,

(38) a (f:9) < (af 2 9),




23

Now let Upseessly be elements of G and A CEREETE be non-

negative real numbers such that

n

) Yy Py Lot
. 1

i=1

Then

Therefore,

which implies
(39) (af : @) <a(f:q) .

The desired conclusion follows from (38) and (39). 5 '

+
Proposition 2.19. If f, e L', i =1,...,n, and if gel’, 9 #0,

then

n n
(40) lZ(fi'ztp)S(Z fi:qa.
i=1 i=1

Proof. The proof is by induction on n. Equality holds for n = 1.
Consider the case n = 2. Let tl,.ao,tm be elements of G and

Bl’°°°’Bm be non-negative real numbers such that
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m
=1

Let EERREELN be elements of G and Yl,...,Yn be non-negative real

numbers such that

Then

which implies

Hence |

(fl : p) + (f2 : ?) < (fl +.f2 1 ).

Now suppose the assertion were true for k, where 2 < k< n.

Then
k+1 k
Z (f, : ) = z (£, 1 @) + (f +o)
i=1 i=1
k
< (Z fi :q) + (fk+l:cp)
ji=]
k+1 ,
< <: fi : %) o
i=1
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CHAPTER III
THE SEPARATION PROPERTY

The purpose of this chapter is to prove the following separation
property: If f and g are non-zero members of L+ such that
f(x) < g(x) for all x e supp (f), then there exists a V&V such
that, for every o e L; s ® #0, there exist elements Siseeess, Of

G and positive real numbers Qysoes,l such that

n

fg Zuiqjs.sg“
. i
i=1

To this end, several preliminary results are required.

+ .
Definition 3.9. let f, ge&e L . For each ¢ € L+, 9 # 0, the convo-

lution of f and g relative to @ 1is defined by

(1) [ *a), (0) = (£(g"), : 0) .

Remark, Note that (f _; g%) (s) = £ 1 (x's) g* (x1s) = £(s) (™) (s) =
x X X X

(f(g*)x)(s}, hence, by proposition 2.6, one has
(2) [f*g] (x) =(f _19%:9),
_ ? x

Proposition 3.2. lLet f and g be non-zero members of L+. For each

> L+, P f 0, define hcp on G as follows:

frg]  (x)
(3) h(g=ETﬂLl.

? (f : o)




26

Then the family of all functions defined by (3) is equicontinuous.

Proof. Let € > 0 be given, and let x denote a fixed element of G.
The proof is given in severalusiepsa

(i} Let # denote the neighborhood filter of x, and let 1
denote the set {(U,y) : Ue?, and ye U}, For two elements (U,y),
(vyz) of I define {(U,y) < (V,z) 1if, and only if, V< U. Then
(I, <) 1is a directed sef° For eaéh (U,y) € I, define +(U,y) on G

as follows:
¥ (s) = a(st y) .
(Usy)

+ %
Note that e L and that ¥ = f h U e I.
ote that Y(y,y) & L, endthat Ty = (7)) forcach (0y)
Let &' be an arbitrary positive real number. There exists a

W eY such that

lglu) - g(v)| < €

whenever u L ve W. let U=xWeF. Note that (s-lx)-l(s-ly) =

X! ye W for all se G and ye U; hence,

o™ = vy (9] = le(s™hn -g(s7la) | <

for all (V,z) e I such that (U, x) < (V, z). Consequently, the gen-
eralized sequence {Y(V,y)} converges uniformly to (g*)%.
(ii) By (i), the generalized sequence {fY } converges uni-
(U,g)
formly to f(g*)xo Note that fY(U yj vanishes off the compact set
]
supp (f) for each (U, y) ¢ I.

Suppose that [f * g]CP (x) > 0 for every o & L+, @ # 0. Since
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/. S + .
[f*g]cp (x) <[f*g) (x) (f:9) forevery 9e L, 9 £0, it
follows that [f * g]f(x) > 0. By proposition 2.10, there is a (U, y) ¢ I

such that

_ (fy _(U,’.z) ”?) < €
(£(g%) : 0) [£*o]g(x)

.
for every ze U, o€ L, ¢ # O3 whence

\1 [f*g]g? (z) ]

(4) - <
[£2g] (%) [£*g](a)

for every z€e U, p e L+, @ # 0. Multiplying (4) by the inequality

[f* g]¢(a) < [f* g]f(x) (f : 9}, and then dividing by (f : @), one
obtains
'[f * g]m (z) [f*» 9]l (2)

(5) - <e
(f s 9) (f : o)

for every z e U, o & L+, o f 0. This completes the proof in the
case [f * g]w(x) = 0 for every g ¢ L, o # 0.

Now suppose that [f # g]¢ (x) = 0 for some ¢ € L+, $ = 0. Then
by proposition 2.3, f(s) g(s-lx) = 0 for every s £ G. There exists a

neighborhood W of x such that
-1 -1
(6) lg(s "x) - g(s "z)| < ¢
for every s &€ G and z & W. Since f(s) g(s*lx) = 0, by (6), one has

£(s) g(s™'z) < e £(s)
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for every se¢ G and z & W, which implies

f

[f * Q]Q(z)'s e(f : )

+
for every z e W, o€ L, o9 # 0. Consequently, {5) ‘holds

for every z e W, ¢ € L+, @ F O.l

Proposition 3.3. Let fl"““’fn and g be non-zero members of L+,

: n
and write f = E:fi' For each ¢ ¢ L+, 9 # 0, define k¢ on G as
i=l

follows:

n
Y UE %), (%)

i=1

k (x} =
v (f : 9)

Then the family {k¢}'.is equicontinuous.

Proof. Let € > O be given, and let x be a fixed element of G. By
proposition 302; for each i = 1l,...,n, there exists a neighborhood Vi

of x such that

(£ * gyl [f; * gly (¥)

(f; » ) (£, + o)

(7)

<&
= n

n
+
for all ye V., pelL, ¢ FO. Let V=) V;- Then by the triangle
i=1
inequality, proposition 2.4, and (7), one has
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) . n
(0 = 1 < ), s 108y *aly 0 -5 *5l, 0]
i=1 '
o 1
< ), ==t *a) (%) - [£; *q] (V)]
:El (Fre) & ° P
n
<Li
i=1
= &

for all ye V, and ¢ ¢ L+, 9 £ 0. B

Proposition 3.4. Let f. ,...,f and g be non-zero members of L+,
1 n

n
and write f==§:fia Then given & > O, there exists a V ¢V such that
i=l

n
Z:[fi * g]m(x) - [f*® g]w(x) < e(f:q)
i=1

for every xe G, and ¢ ¢ L; , @ £ 0.

+
Proof. For each ¢ ¢ L', ¢ £ 0, define T, on G as follows:

n
[f, * ] (x)
igl A A

r (x) = p—
? (f : o) (f : @)

Note that from proposition 2.8, rcp 2 0. By proposition 2.9, for each

x £ G corresponding to

- - £
(®) T el 0+ 1)
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there exists a V_ eV such that

n

Y (g, s @) <A (g, ¢ o)
i=1
for every o¢¢ L¢ , ® £ 0. Therefore,
X
£*g] (x)
(9) r (x) < G -1) SR
?  (f:o)

+
for every pe L, , o # 0. But (f(g*)x : @) < (f(g*)x : @) (f 1 9)3
X :

whence from (8) and (9), one has

(10) ro (%) <5

for every ¢ ¢ L; , ® F 0.

X .

Now by the two previous propositions, the family .{ré} is equi~
continuous; thus for each x e G, there exists a neighborhood Ux of

x such that
£
11 X)) - r <=
(11) EROEENCIRS

for every vy ¢ Ux’ and let o ¢ L+, ¢ # 0. Both (10) and (11) hold

simultaneously if vy & Ux and ¢ & LJ , @ # 0; hence, from the tri-

X
angle inequality, one obtains

(12) r¢(y) <e

' +
if yeU, and 9gel, ¢ £ 0.

Now suppose rw(z) > 0. Then there exists an s e G such that
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f(s) g(s-lz) > 0, which implies that s € supp (f), and s_1 z € supp (g).
Hence =z & supp (f) * supp (g). Consequently, T vanishes of the set
K = supp (f) ¢ supp (g) for every ¢ ¢ L+, 9 # 0. Since K is compact,

a finite subcollection Ux ’°"°’Ux of {Ux : X E G} covers K. Let
m

1
n
V=) V.. Then from (12), r (x) < ¢ for every x¢ G, and ¢ ¢ L¢ s
: X. o
i=l "1
o F 09!

Proposition 3.5. Let g ¢ L+, and let € >0 be given. Then there

exists a u e such that

(i) [Iln = g]¢ - (h: o) gtH < (n : Pp) €

+ + :
whenever t e G, he L and p€ L, ¢ #0. Similarly, there exists

tu ?
a VeY such that

(11) l[g*ldQ-(k*=w)9WIS(f'=¢)e

whenever ue G ke Lc X and ¢ € L+, o £ 0.

u

Proof. (i) By right uniform continuity, there exists a U &Y such that
(13) [a(x) - a(y)| < ¢

whenever x y-l e U. Let te G and he L:U. If s 4 tU, then
h{s) = 0, or equivalently, if (1:-l><)(s-l><)-1 - ¢4 $ U, where x is
any element of G, then h{s) = 0. From this argument and (14), it

follows that

Ih(s) g(s™ %) - n(s) g™ x)] < € n(s)




32

for every x € G. By an argument similar to the one used in the proof

of proposition 2.10, this last inequality implies
(14) [[h * g]cp(X) - (hig)g (x)] < e(hzg)
. + +
for every x and t in G, he L,, and gel, o # 0. Thus
ITh * 9], - (F@la,ll < e (Beo)

whenever t e G, he L+ and o € L+, o # 0.

tU?
(ii) By left uniform continuity, there exists a V eY such

that

(15) lg(x) - g(y)| < ¢

+

whenever x . yeV. Let ue G, andlet kel, . If s $V _q,

-1 u
- u o
then k™ (s) = 0, or equivalently, if (xs) 1 (xu) = s 1y $ V, where

x € G, then k*(s) = 0. Hence, from (15) one has
lg(xs)k*(s) - g(xu)k™(s)| < e k™(s)

for every x € G. Now by the remark following definition 3.1, and by an

argument similar to the one used to obtain (14), it follows that

k*

Lo * K] () - (F & g% < e(k* + ¢)

for every x and u of G, k¢ L; and ¢ & L+, 9 £ 0. Conseguently,

u
—— ———
o * kJQ - (k" :9) g¥l < (k : @)

for every ue G, k& L; , and o ¢ L+, o A Oog

u
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Proposition 3.6. Let f, g.e L+, f #£0, and let & > 0 be given. Then

there exists a VeV such that, for every ‘¢ 3 L;, o # 0, there

exist elements 5.,...,5 of the support of f and positive real numbers
1 n
CSEREERL such that
]
* - T : o
I0s *aly - ), oyo )l < (Fe)

i=1

Proof. From proposition 3.5, there exists an open set U &V such that

(16) ITh %6l - (W @l < 3 (e o)

whenever s € G, he L: and ¢ € L+, » # 0. The collection of open

U,
sets {sU : se supp (f)} is an open covering of supp (f). By the com-

pactness of supp (f), a finite subcollection s$;Us...,5 U covers supp (f).

n
By a partition of unity, f can be written as f = z:fi’ where
' i=1

+

fielogs £ #£0, i=1,...,n. By propositions 2.9 and 3.4, there
i

exists a V e such that

n
(17) Y (F 1 o) < 2F T 9,
i=1
and
n
(18) IEf*al, - )£ *alfl <5 (Fro
i=1
+

whenever o € L 9 # 0. Substituting fi for h in (16), one has

v’




(19) Lg% 0), - (0 o )l <5 (¢ 0)

whenever o € L+, p #0, and i =1,...,n. Therefore, combining (19)

and (17),

n n n
l .E[fi i&‘g]cp -°Z (£, + 9) gsi” < Zl@[fi*g]q,* (f; :qJ)gs.”>

i=1 j=1 i= 1

1

n
Fy E: (£, : o)
i=1

< 5 (f s o)

(] L

for every o ¢ L; s ® #£0. Let ‘@ denote a fixed member of L; , and

let o, = (fi : 9), i =1,...,n. This last inequality and (19) together

with the triangle inequality, imply

~—1>

a, g 1 <& (f : 9)

It = g, -

i=1
By proposition 2.3, o@. >0, 1 =1,...,n
i i

- < + e
Proposition_3.7. For every non-zero member f of L  and positive

number &, there exists a VeV such that, for every g ¢ L+, g # o0,
there exist elements SyseeesSy in the support of f and positive

real numbers Ursoessl, such that

n
e - ), ago ll<e
i=1
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Procf. By the second part of proposition 3.5, there exists a V e,

such that

*

(20) il *.g]q, - (g ol <2 (g t o)

+
V’

+
member of LV, and let W denote the member of ¥ guaranteed to exist

whenever g e L and @ € L+, o £ 0. Let g be a fixed non-zero

for f, g and % (f s g."*.)"1 in proposition 3.6, Then for a fixed
® € L;; ® # 0, there exists elements S{sveesS, of the support of f
and positive real numbers Tl,.,o,Yn such that

n

(21) Iie*al, - ) Yo, <5 (Fro (£,
i=1 !

Using (20) and (21), and the triangle inequality one obtains

n
(22) Ig* + @)f - ) M9l <5 (¥ o) ¥ (5 9 (£:09) 7
i=l

=
1]
o+
=]
0

(a* ¢)_l Yi’ i=1,...,n. By proposition 2.5,

(f : 9) < (f g') (53 : ¢)3 whence from (22),

+
Proposition 3.8. let f and g be non-zero members of L such that

f(x) < g(x) for every x ¢ supp (f). Then there exists a V eV  such

+ .
that; for every ¢ ¢ LV , ® £ 0, there exist elements SEEREEEN in
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the support of f and positive real numbers such that

Proof. (i) Let € = % inf {g(x) - f(x) + x € supp (ff}. Since
supp (f) is compact, € 1is a positive real number. Let U = xeG:g(x)>2s
If xe supp (f), then g(x) >4¢e + f(x) > 2e ;3 hence, supp (f) C U.

Since U is open, there exists a V, eV’ such that supp (f) - Vl'E U,

Let A denote the set supp (f) - Vi

Now suppose k is a non-zero number of L: such that

fl % (f +g) - k|l <e. Then

(F(x) +a(x)) - & <k(x) <& +3 (F(x) +g(x))

ST

for every x & G, 1t will be shown that
(23) £(x) <k(x) € g(x)

for every x & G, Two main possibilities occur: (i) x ¢ supp (f), and
(i1) x & supp (f). ,

Suppose x ¢4 (f). Certainly f(x) < k(x}). If xe U - supp (f),
then k(x) < +% (£(x) +9(x)) = ¢+ % g(x) < -é-‘g(X) +% a(x) = g(x); if
x4 U, then k(x) = 0< g(x). Thus (23) holds for all x § supp (f).

If xe¢ éupp (f), then

F(x) < (3F(x) +-9(x) < 3(£(x) + g(x) = ¢ <k(x),

and
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K(x) e+ 380+ 9(x)) <7 (a(x) +E(x) <g(x) .

Consequently, {23) holds for .all- x € G. Therefore, k¢ L:, k £ 0,

and || i {(f +g) - k|| <e imply that f(x) < k(x) < g(x) for all
2 _— -_— —_—

x e G,

(ii) By proposition 3.7, there is a v, eV such that, for every

Y e L; , ¥ # 0, there exist elements tl’°'°’tm in the support of f
2

and positive real numbers Brovesby such that

W
13 +a) - ) biv, <o
j=1 ’

Let V = Vlrw V2. If ope L;, 9 # O, then there exist elements

SyseeesSy in the support of f and positive real numbers Qpyeeesdp

such that

n

1
I13(G+9) -) a0 llse .

i=1 :

Since supp (tp_SiQ = s, supp () C 5¢ V'C supp (f) - V) = A, it follows

that ®, € Lt i =1,.c.yn. The desired conclusion then follows from

g P
part one of the proof. B
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CHAPTER 1V
THE EXISTENCE AND UNIQUENESS OF THE HAAR INTEGRAL

Invariant Integrals

Definition 4.1. A non-negative functional J on L+ is said to

be an invariant integral provided J satisfies the following:
(i) JF£0;

(i1) if f, ge LT, then f< g implies J(f) < J(q);

(iii) if a > 0, then J(af) = aJ(f) for every fe¢ L+;
(3v) if f, ge LY, then J(f+q) = J(f) + J(g) ;

(v) if fe L+, then J(fs) = J(f) for every s e G.

+
Proposition 4.2. Let J be an invariant integral on L . If f is

a non-zero member of L+, then J(f) > 0.

Proof. Let ¢ ¢ L+, ® £ 0, be such that J(@) > 0. By proposition
2.1, there exist elements SyseceySy of - G and positive real numbers

Qyrecey@ such that

Then
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But

whence

n -1
() z(Z ai> Ja) >0 . g
i=1

Definition 4.3. Let A Dbe an arbitrary non-empty set. A subset

R of A x A is said to be a pre-ordering of A if R is reflexive

and transitive. If R and § are pre-orderings of A such that

(x, y) £ S implies (x, y) € R, then R is said to be coarser

than S,

Proposition 4.4. Let J be an invariant integral on L+. Then the

relation defined by
f < g(mod J) if, and only if, J(f) < J(g)},
+ . . +
where f, ge& L , 1is a pre-ordering of L .

Proof. Certainly f < f (mod J) . for every f ¢ L+. Suppose that
£f< f (mod J) and that g < h (mod J). Then J(f) < J(g) and

J(g) < J(h). Hence J(f) < J(h) which implies that f < h (mod

J)ol

Definition 4.5. For every invariant integral J on L+, the pre-

+
ordering of L  associated with J 1is defined to be the one given

in proposition 4.4.
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Proposition 4.6, Let Jl and J2 be two invariant and integrals

+ :
on L such that the pre-ordering associated with J2 is coarser than

the one associated with Jl. Then there is a positive real number a

such that Jl(f) = qu(f) for every f ¢ L+°

Proof. Let g denote a fixed non-zero member of L+. By proposi-

tion 4.2, there exists a positive real number a such that

(1) J(g) = a Jy(g) -

+
For each fe L ; there isa p 2 0 such that

(2) J, () =p 3 (g) .
Whence

I8} <B Ig(9)
and

p J,(a) < I, (1)

Thus

(3) 308 = B I(9) -

Combining (1), (2) and (3), one has
3,8) = p I (9) = apIyle) = aTy(f) .

The Haar Integral

+
Proposition 4.7. Let f and g be non-zero members of L . Then
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given € > O, there exists a Ue)V such that, for each ¢ ¢ L;,

¢ # 0, there exists a VeV and a real number c¢(p) > 0 such

that

E.__i_:_ﬂi)__c(tp) o : %) <e
(f ) (f s )

for every ¢ € LJ , b £ 0.

Proof. Let Ul be a fixed compact neighborhood of the identity C

of G. Choose f, ¢ LY cuch that £l <1 and £(x) =1 for all

x € supp (g) - U,. By propesition 3.7, corresponding to the positive
real number

E

(4) €' = ‘
1+(fl':f)

there exists a U e’V such that for each o ¢ L; , © £ 0, there
exist elements S)ses0s8y of supp (g) and positive real numbers

Qysevrsl such that

n
(5) lg(x) - z 0,0, (x) [ e
i=1 v

for all x & G. It may be assumed that UC U

1° Since Pg 30003,
. i n
and g each vanish off supp (g) - Ul’ it follows that
_ n
(6) lo(x) = ) a0, (x) | <
i
i=1

for all x & G. By an argument similar to the one used in the proof

of proposition 2.10, (6) implies




/'\

Dvﬂ
\_/
::

(7) : Sen_._._._
(f : (f :+ ¥)
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for every ¢ ¢ L+9 $ £ 0. By prbposition 2,5, (fl s ) < (fl: £y (f

so that (7) may be réplaced by

n
(Lo,
\i=1 1
(f: )

R =2
S

for every ¢ ¢ L+, b £ 0.
Now by proposition 2.9, corresponding to the positive real

number

there exists a V &¥  such that

i ] <(1+5<Zafp :)

for every ¢ & L$ , ¥ £ 0. Then by proposition 2.8,

ooy (o) (e

<
(F: b (f:9)

“1’)9
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+
for every ¢ ¢ LV , % # 0. From proposition 2.5 and the choice of &,

it follows that

n w8

Z (a0, = 9) Z“i% : q’)

i=1 ' \
- s [

(TP (F:9)

for every V¢ € L; , b £ 0.

1

n n
Now by propositions 2.7 and 2.8, z:(aiws ) = Z:a. (o :d)3
i
i=l =1

i
n
let c(p) = Z:ﬂio Then combining (8) and (9}, and using the triangle
i=1 '

inequality, one has

(o s %) _ c(o) 1%:55%1 <et' (1 4+ (fl : £))
(f = ¥) (f = ¥)

for every ¢ ¢ L$ , b # 0. The desired conclusion follows from (4).'

Proposition 4.8. lLet f and g be non-zero members of L+. Then

given € > 0, there exists a V &Y such that

CRERERCEER
(Fre) (F:9)

l<e

+
whenever wl and ¢2 are non-zero members of LV o

Proof. Let & be a real number such that:

(10) 0<8<1, and ———<

I -3 —

2((g = f) + 1)°
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In view of proposition 3.7, there exists a Ul eY such that for every

P € LE , ® # 0, there exists a Vl(¢) eV and c(p) > O such that

g =) _ _(2_111)_

(f s ) ( T 9)

for every ¢ ¢ + , ¥ # 0. Similarly, there exists a U. eV such
(o) vs 2

that for every ¢ ¢ + p £ 0, there exists a V (p) €V  and
2 ] H 2

d(p) > 0 such that

1gd¢p)£$__}!’_).

for every ¥ € L:I-z(tp)g b £ O,

Now let U =U (\Uy For each pe L', /40, define
Vi) = Vl(m)(\ V2(¢)5 and r(p) = c(9)/d{p). It follows from the

+
previous paragraph that for every o € LU s @ £ 0, the inequalities

(11) {9:39) _ e (p) (o :9)
(f : ) (f s 9)
and
(12) ‘ p——
f )

both hold for all ¢ ¢ L:I-(cp) s ¥ # 03 and therefore, combining (11)

and (12) and using the triangle inequality, the relation

[{g :9) _ r(p)
(f : )

(13) < 8(1 + r(o))
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holds for every ¢ ¢ L;(w)g v £ 0.

+

+
let ¢ denote a fixed non-zero member of LU" If de LV(¢)’

% £ 0, then inequalities (11) and (12) yield

(14) C((P) (93¢)£(9=¢)+6,
(f:49) (f :4)

and

(15) d(e) 28l 5 ) 5,

(f:9)

so that dividing (14) by (15), one has

-1
ro) ¢ BTN ¢

but (g : %) < (g: £)(f : $), so that

(16) r(e) ¢ L82B 21

Then by applying (16) to (13), one obtains

(17)

<+ d3({g : f) + 1)

- r(o) T =

bt

(f = %)

_ (2 -5+ (g : f)) 4

1 -3

((2+1-:&’f)){3

<

N[

+ .
for every % ¢ LV(¢) , b A0, If $, and ¢, are non-zero members

of V(e), then from (17), one has




46

Taking V to be V(p), the proposition is pro*«fed.,I

+
Let f0 denote a fixed non-zero member of L . By proposi-

tion 2.14, there exists a V(fo) ¢V such that (fo : ) >0 for

+
every o ¢ LV(f ys @ F 0. Let
o

S={i:i=(U, 9), where UeV, UCV(f), and qasL;,qJ)‘?O}o

Define a relation on S as follows: given 1, j € S, where
i=(U9), 3=1(V,%), i< j if, and only if, VE U. Clearly,
this relation is transitive. let i, je S, where i = (U, o),
j=(V, ¥); define k = (W, ¥) as follows: W =U(\V and ¥ is
any non-zero member of Ly. Then i<k and j < k. Therefore,
(S, <) is a directed set.
+ . .
Now let ge L , g f 0. For each i = (U, 9) € S, define

Bg(i) as follows:

o

Bg(i) = .(.9.:_‘21_
(f : o)

o]

Let £ > 0 be given. By the previous proposition, there exists a

veY such that V Eiv(fo) and

(g : tbl) (g : ¢2)

DS NENORER

+
whenever ¢1 and ¢2 are non-zero members of LV . Let ¢ be a
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+

v and let i = (V; ). Then

fixed non-~zerc member of L
Bg(j) - Bg(k)| <=

for every j, ke S such that 1< j and i < k. Therefore

{Bg(i{}ie g is a generalized Cauchy sequence; hence, the limit

1im Bg{i) exists for each g ¢ L+, g # 0O,
ieS

Proposition 4.9, The functional I defined on L+ by

lim Bg(i) if g £ 0,
I(g)= iesS

0 if g =20
is an invariant integral.

Proof. (i) Certainly I /4 0, since I(fo) =1, (ii) Suppose

o, het', and g <h. If g =0, then I(g) < I(h). If g #£o0,
then h £ 03 by proposition 2.4, I{g) < I(h). (iii) Let g e L+,

and let ¢ > 0. If a =0, or if g =0, then I(dg) =0 = al(g).
Suppose that @& > O, and that g # 0. By proposition 2.4,

I(ag) = al(g). (iv) Let g, he L'. .If g+h=0, then g =0,
and h = 0. Hence I{g+h) =0 =1I{(g) +I{h). If g =0, then

I(g +h) = I(h} = I{(g) + I(h); similarly if h = Q. Suppose that

g # 0, and that h # 0. By proposition 2.8, I{g + h) < I{g) + I(h).
Let N > 1 be given. By proposition 2.9, there is a V e’Y such that

v V(fo) and (g :9) + (h:9) <A(g+h:¢) for every ¢ ¢ L¢ ,

® # 0. Whence, I(g) + I(h) <AI(g +h). Since A\ > 1 is arbitrary,

one has that I(g) + I(h) < I(g + h). Consequently, I(g + h) = I(g)+I(h).




(v} Let g L+, and let s & G. Note that g # 0 if, and only
if, g, F 0. Then I(gs) =I(g) =0 if g=0. If g # 0, then

I(gs) = I{g) by proposition 2.6. g

Definition 4.10. The Haar integral is defined to be the integral 1

as defined in proposition 4.9

The Uniqueness of the Haar Integral

Proposition 4.11. Let g be a non-zero member of L+, and define

a generalized sequence {Cg(i)}iesu as followss

Cg(i) = (fo° : @) ?

where i = (U, 9) € S. Then

lim Cg{i} = 1lim Bg(i) .
ie$s ie s

Proof. Let A > 1 be given. For each n = 1,2,..., define

+ +
) . For each n > 1, f el , and f_ 4 £, By

proposition 2.11, there is a positive integer m such that

(f : o)

- -y ¢ —m -1
(f, : o)
, + ‘
for every o e L , o9 # 0. Whence
. (f "+ o)
fIS) 'y 1 s L S
(f  : o)

o]
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for every ¢ ¢ L+y 9 F O.

Now applying proposition 3.8 to fm and f and in place of f
and g, .there exists a VeV, V S:V(fo), such that for every
P £ L+, 9 £ 0, there exist elements §1ss-+,5 1in the support of

fm and positive real numbers Qygroesty such that

k .
WS L e St
. i
i=1

From this last inequality, one obtains

(19) (fm 1 9) < (fo : Q)

for every o ¢ LJ, ® f 0. Now combining (18) and (19) with proposi-

tion 2.13, one obtains the relation

f
1 (fm : Q) ( 0 ° ?)
AT <L . < <1
(F, o) " (T, o)
+
for every o € LV , ® # 0. Whence
(f, o)
20 1 <\

2]

for every o & L; , ® F 0.

Now define a generalized sequence {Df(i)}ies as follows:

where i1 = (U, 9) ¢ S. From (20), one has the following limit:
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It

(21} 1im Df(i) 1.,

ieS
Now observe that,
Dg(i) = Bé(i) © Df (i)
for each i € S, The desired conclusion follows from the existence of

the limit 1lim Bg(i) and (21). g
ie S

Proposition 4.12. Let g be a non-zero member of L+u Then

inf {Cg(i)} = lim Cg(i) ,
ies ies .

where {Cg(i)} e 15 as defined in proposition 4.11.

Proof. Let A > 1 be given. By (21) of proposition 4.11, for each

Ve V(foj, ¢ # 0, there exists a VeV and VC V(fo) such that

(22) IR

(23) 3 :

for every o & L; , ® #0. Nowkeeping ¥ fixed in (23), one has
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lim Cg(i) < & %Q—Lfg%y .

iesS . 0

and whence

lim Cg(i) inf {Cg(l)}
ieS ig$s

But since A > 1 is arbitrary, it follows that

(24) lim Cg(i) < inf {Cg(l)}
ie S ig$S

Since inf {Cg(lj} < lim Cg(i); the conclusion follows from (29).
ied ies ‘ L

Proposition 4.13. Let g, he L+. Then if (g : @) < (h : o) for

every ¢ € L+9 9 £ 0, then I(g) < I(h)

Proof. If g = 0, there is nothing to prove. Assume that g # 0. By
proposition 2.14 there is a V(g) €V such that V(g) - V(fo) and

(g : 9) >0 for every o ¢ L;(g) , 9 £ 0. Let
o . +
T:{;».g].: (U, ), where UeY, UCvV(g), and g€ L, q;,éo}.

For each 1 ¢ T, define a generalized sequences {Eg(i)}ie.r and

{Pg(i)}ieT as follows:

and




where i = (U, 9). By propositions 4.11 and 4.12, one has

(25) 1im Eg(i) = inf Fg(i)} > 1,
ie T ieT

Now by the definition of I(h),
I(h) = 1lim Bh{i)
ie s

= lim Bh(i)
ieT

1im {Bg(i) - Eg(1) }

ieT

I(g) 1lim Eg(i)
ieT

Hence by (25), one has
I(g) < I{h) ‘u

Proposition 4.14, Let J be any invariant integral on L+. Then

J(g) < J(h) implies (g : ®) < (h : @) for every o ¢ L+, o £ O.

Proof. lLet g, he LY be such that J{g) < J(h). Let o9 ¢ L+,
o # 0. Let S1sce-58  be elements of G and q;,...,a  be non-

negative real numbers such that
n

(31) Z a; o, <9
. i
i=1

Let tyse..,t ~be elements of G and By,...,B  be positive real

numbers such that

52
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m
(32) h < Z aj o, -

j=1 ’
Combining (31) and (32), and using the properties of J, one has

(Z ai> 3 (o) s(z ﬁj> T(o)
i=1 j=1

By proposition 4.2, J(p) > O, hence

m m
Z“iﬂzﬁj’
i=] =1

which implies (g : @) < (h : @). 1

Proposition 4.15. Let J be any invariant integral on L+. Then

there is an a > 0 such that J(g) = aI(g) for every ge Lt

Proof. By propositions 4.14 and 4.13, the pre-ordering associated

with I 1is coarser than the one associated with J. From proposition

4.6, there is an a > O such that J(g) = aI (g} for every ge L+.l
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