
COMPUTATIONAL FLUID DYNAMICS
IN AN EQUATION-BASED, ACAUSAL

MODELING ENVIRONMENT

A Dissertation
Presented to

The Academic Faculty

by

Jason Brown

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
College of Architecture

Georgia Institute of Technology
December, 2010

COMPUTATIONAL FLUID DYNAMICS
IN AN EQUATION-BASED, ACAUSAL

MODELING ENVIRONMENT

Approved by:

Godfried Augenbroe, Advisor
School of Architecture
Georgia Institute of Technology

Dr. Ruchi Choudhary
Civil and Environmental Engineering
Division
University of Cambridge

Dr. Russell Gentry
School of Architecture
Georgia Institute of Technology

Dr. Christiaan Paredis
George W. Woodruff School of Me-
chanical Engineering
Georgia Institute of Technology

Dr. Michael Wetter
Simulation Research Group
Lawrence Berkeley National Laboratory

Date Approved: November 12, 2010

PREFACE

This work seeks to combine topics which are traditionally separate into one frame-

work. In the course of this, two uses of the word ‘domain’ are encountered which have

different meanings depending on the topic. One refers to areas of technical inquiry

or analysis techniques; for example heat transfer is a domain separate from controls,

or cfd simulations constitute a domain separate from multizone simulations. Within

the topic of cfd, another use of the word domain appears: in this it refers to a region

of space within which the cfd simulation is being conducted. While it should be

clear from the context which meaning applies, this note is given to the reader as a

pre-emptive clarification.

iv

ACKNOWLEDGEMENTS

This work would not have been possible without the unconditional support and pa-

tience of my wonderful wife Rebeccah. I am constantly reminding myself how lucky

I am to have found such an incredible person to share my life with.

I also wish to acknowledge the rich and rewarding encounters I have had while at the

College of Architecture. Fried Augenbroe and John Peponis in particular struck me

for the depth of their thinking, always considering the ‘whys’ as well as the ‘whats’.

Russell Gentry’s kindness and nuts and bolts outlook have also helped to keep me

grounded during my time here. I also wish to thank Ruchi Choudhary, Chris Paredis,

and Michael Wetter, the remaining members of my thesis committee, for their support

of my work and engaging conversations.

To my fellow students I wish to thank for their support. Huafen Hu, Jeannie Kim, and

Matt Erwin saved me with their immense service during my teaching responsibilities.

I could not have taught those classes without the many hours of work they put in.

Thank you also to all the building technology graduate students for your kindness.

Finally I wish to thank the staff and faculty of the College of Architecture, who have

supported me through these years.

v

TABLE OF CONTENTS

PREFACE . 1

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABBREVIATIONS . x

LIST OF SYMBOLS . xi
Roman Symbols . xi
Greek Symbols . xii
Subscripts . xiii

SUMMARY . xiv

CHAPTER 1: INTRODUCTION . 1
1.1 Multi-Domain Modeling in Building Performance Simulation 1
1.2 From Tools to Platforms for Tools . 5
1.3 Modelica, Briefly . 10
1.4 Claims and Goals . 24
1.5 Scope of Work and Methodology . 25
1.6 Thesis Structure . 26

CHAPTER 2: COUPLING cfd TO NON-CONVECTIVE HEAT
TRANSFER PROCESSES . 27

2.1 Previous Work in Connecting cfd to Other Domains 29
2.1.1 Conjugate Approaches: cfd to Non-convective Heat

Transfer . 29

2.1.2 Non-Conjugate Approaches: cfd to Building

Performance Simulation, via Heat Transfer 30

2.2 Towards An Alternate cfd Approach Based on Kinetic
Theory: A Review . 36
2.2.1 Introduction to the Lattice Boltzmann Method 38

2.2.2 Early Lattice Boltzmann Thermal Models 43

2.2.3 Multispeed/Expanded Lattice Thermal Models 43

2.2.4 Double Distribution Thermal Models . 45

2.2.5 Boundary Conditions . 47

2.2.6 Conjugate Heat Transfer with Lattice Boltzmann 51

2.2.7 A Note on Turbulence Modeling . 52

2.3 Discussion . 54

vi

CHAPTER 3: IMPLEMENTATION . 57
3.1 Description of the Lattice Boltzmann Model Used 57
3.2 Manifestation in Modelica . 61

CHAPTER 4: STUDIES, EVALUATIONS, AND RESULTS 65
4.1 Test Cases: Fluid Flow Only . 66

4.1.1 Thermal Planar Couette . 66

4.1.2 Rayleigh-Bénard Convection . 80

4.2 Test Cases: Conjugate Models and Tangelo Coupling 85
4.2.1 Thermal Planar Couette Flow, Modeled as a

Laboratory Experiment . 86

4.2.2 Convection in a Square Cavity with Set Temperatures

on Side Walls and Adiabatic Top and Bottom Walls 90

4.2.3 Natural Convection in a Cavity: A Single Conjugated Wall 95

4.3 Summary . 100

CHAPTER 5: DISCUSSION . 102
5.1 Contribution . 102
5.2 Limitations and Directions for Future Work 107

CHAPTER 6: CONCLUSION . 112
6.1 Summary . 112
6.2 Recommendations . 115

APPENDIX A: THE BOLTZMANN EQUATION . 117
The Boltzmann Equation . 117
Macroscopic Behavior: Some of the Moments of f 121
Macroscopic Behavior: Conservation equations 123
The Equilibrium Distribution and a Simplified Collision Term 125

APPENDIX B: SAMPLE MODELICA MODELS . 127
Sample node models . 127

Partial Node . 127

Partial Fluid Node . 128

Fluid Node . 129

Periodic Node . 129

Partial Wall Node . 130

Sample Dirichlet Node . 130

Robin Node . 131

Sample cfd domain models . 132
Generic Domain . 132

Planar Couette . 133

Sample Interface . 133
Sample heat transfer models . 133

REFERENCES . 135

VITA . 145

vii

LIST OF TABLES

Table 1.3.1 CastIronCylinder.T – Cylinder Temperature 17

Table 4.1.1 Planar Couette Steady State Heat Flux: Std.
Discretization of g . 73

Table 4.1.2 Planar Couette Grid Convergence of Steady State Heat
Flux: Std. Discretization of g . 73

Table 4.1.3 Planar Couette Grid Convergence of Steady State Heat
Flux: 2nd Order Discretization of g . 80

Table 4.1.4 Bénard Convection: Variations in Rayleigh Number 85

Table 4.1.5 Bénard Convection: Grid Convergence for Ra = 5000 85

Table 4.2.1 Parameters for the Conjugate Planar Couette Example 89

Table 4.2.2 Conjugated Planar Couette Heat Flows . 90

Table 4.2.3 Nusselt Numbers for Cavity Convection Case 95

Table 4.2.4 Key Scaled Velocities and Streamfunction Values for
Cavity Convection Case . 95

Table 4.2.5 Overall Nusselt Numbers for the Kaminski Problem 98

viii

LIST OF FIGURES

Figure 1.1.1 The Simulation Landscape with Associated Specific Tools 5

Figure 1.2.1 The Simulation Landscape with All Tool Types 9

Figure 1.3.1 Temperature of the Cooling Cylinder . 17

Figure 1.3.2 The HeatedCylinder Model . 21

Figure 1.3.3 Controlled HeatedCylinder Temperature . 22

Figure 2.1.1 Existing Coupling Paradigms . 32

Figure 2.1.2 Variables for es – cfd Coupling Methods . 33

Figure 2.1.3 The Six es – cfd Coupling Methods of (Zhai, 2003) 34

Figure 2.1.4 Dynamic Coupling Strategies . 35

Figure 2.2.1 The d2q9 Lattice . 41

Figure 2.2.2 Streaming Along Links of the d2q9 Lattice 42

Figure 2.2.3 Non-Standard Lattices for Higher Moments of the
Distribution Function . 45

Figure 2.2.4 Node at a Floor: Distributions 2, 6, and 5 Are Unknown 48

Figure 2.2.5 Conjugate Lattice Boltzmann Model for Wall Conduction
and Fluid Flow . 51

Figure 2.3.1 Tangelo Coupling . 55

Figure 3.2.1 Collection of Nodes into cfd Domains . 62

Figure 3.2.2 Abbreviated Package Structure . 64

Figure 4.1.1 The Planar Couette Problem . 66

Figure 4.1.2 The Planar Couette Problem: Modelica Scheme 69

Figure 4.1.3 Planar Couette Velocity Evolution: Std. Discretization of g 70

Figure 4.1.4 Planar Couette Temperature Evolution: Std.
Discretization of g . 71

ix

Figure 4.1.5 Planar Couette Upper Surface Heat Flux Evolution: Std.
Discretization of g . 72

Figure 4.1.6 Planar Couette Velocity Evolution: 2nd Order
Discretization of g . 76

Figure 4.1.7 Planar Couette Temperature Evolution: 2nd Order
Discretization of g . 77

Figure 4.1.8 Planar Couette Surface Heat Flux Evolution: 2nd Order
Discretization of g . 78

Figure 4.1.9 Planar Couette Surface Heat Flux Evolution: Conversion
to Thermal Conductivity of Air . 79

Figure 4.1.10 The Rayleigh-Bénard Convection Problem 81

Figure 4.1.11 Rayleigh-Bénard Streamlines . 83

Figure 4.1.12 Rayleigh-Bénard Isotherms . 84

Figure 4.2.1 The Conjugated Planar Couette Problem . 87

Figure 4.2.2 The Conjugated Planar Couette Problem: Temperature Profile . 89

Figure 4.2.3 The Cavity Convection Problem . 91

Figure 4.2.4 The Cavity Convection Problem in a Semi-Conjugate
Fashion: Modelica Scheme . 92

Figure 4.2.5 Cavity Convection, Ra = 104 . 93

Figure 4.2.6 Cavity Convection, Ra = 105 . 94

Figure 4.2.7 The “Kaminski” Problem . 96

Figure 4.2.8 The “Kaminski” Problem: Modelica Scheme 97

Figure 4.2.9 The “Kaminski” Problem: Simplified Modelica Scheme 98

Figure 4.2.10 Kaminski Problem, Gr = 103, κwL
κf t

=5 . 99

Figure 4.2.11 Kaminski Problem, Gr = 105, κwL
κf t

=50 . 100

Figure 5.1.1 Three Coupling Paradigms . 104

Figure 5.1.2 Tangelo Coupling . 106

Figure 6.1.1 This Work’s Contribution . 114

x

ABBREVIATIONS

cfd: Computational fluid dynamics
dae: Differential algebraic equations
es: Energy simulation
rans: Reynolds-averaged Navier-Stokes
les: Large-eddy simulation

xi

LIST OF SYMBOLS

Roman Symbols

c The peculiar velocity ξ − u

FN Probability density function for the microstate of a system of N particles, all
N particles inclusive

FR Reduced probability density function for the microstate of a system of N
particles, only R particles inclusive

f Scaled reduced probability density function, the single particle distribution f =
f1 = NmF1

g Internal energy distribution

gm Modified internal energy distribution

h Convective heat transfer coefficient

h̃ Total energy distribution

k Boltzmann’s constant

m Mass of a single particle

N Number of particles in a system

NA Avogadro’s number

n Number of replica systems in an ensemble, grid scaling factor

p Pressure

p Momentum vector

q Heat flux

q Heat flux vector

qα Heat flux in direction α

Q Heat flow rate

R Specific ideal gas constant

S A surface in phase space

T Temperature

xii

t Time or thickness

u Macroscopic velocity vector: (ux, uy, uz) = (u, v, w)

wi Weights of Gauss-Hermite quadrature

x Spatial coordinate: (x, y, z)

Greek Symbols

α General index, either for lattice directions or cartesian coordinate directions;
thermal diffusivity

β General index, generally for lattice directions

Γ 6N dimensional phase space

γ General index; used for component direction x, y, or z

γ Coordinate in the 6N dimensional phase space

δ Small change, e.g. δT is a change in temperature

δαβ Kronecker delta

η Number of spatial degrees of freedom of a particle

θ Relaxation time

κ Thermal conductivity

λ Second viscosity coefficient

µ Dynamic (or absolute) viscosity

ν Kinematic viscosity

ξ Molecular (or microscopic) velocity vector

ξ1 Velocity of particle (molecule) 1

ξi Molecular velocity vector of direction i

ξ̌ Lattice speed

ς Combination vector of particle position vector and momentum vector

Φαβ Stress tensor; components are α and β

ρ Macroscopic density

xiii

τ Time constant; dimensionless relaxation time

τe Dimensionless relaxation time for the internal energy distributions

Υ Order of grid convergence

ψ Streamfunction

ΩB The Boltzmann collision operator

ω Relaxation parameter in grid convergence computations

Subscripts

e Used in reference to energy

i Index of the molecular velocities in a discrete-molecular-velocity fluid system

k Index of the systems in an ensemble

N Number of particles in a system

r Number of particles considered in a reduced particle probability density function

α General index, either for lattice directions or cartesian coordinate directions

β General index, usually for lattice directions

xiv

SUMMARY

The practice of building simulation is split between domains such as energy, multizone

airflow, computational fluid dynamics (cfd) airflow, and controls analysis, as well as

between the tools which conduct these analyses. Previous work in the integration of

these analyses and tools have focused on linking existing tools, written in algorithmic

programming languages, together by interfacing them using coupling mechanisms

implemented in algorithmic programming languages. This thesis takes a different

approach, using the equation-based, object oriented modeling language Modelica to

create models in different domains and interfaces between those models within a single

framework which has benefits to the modeler/analyst in terms of both representation

of physical processes and flexibility in modeling systems composed of many interacting

components.

Specifically, the simulation of airflows within buildings has historically been compart-

mentalized into distinct domains such as nodal network (multizone) simulations and

cfd. Such airflow simulations are also often treated independently of building energy

simulations (via heat transfer) despite their interrelation. Recent work has reported

on combining these types of analyses by linking pre-existing simulation software to-

gether. Here a prototype cfd package of models is built in Modelica and coupled to

models of conductive heat transfer and controls. Comparisons of results of simulations

so constituted to analytical solutions and benchmark data available in the literature

show good agreement, indicating the technical viability of this approach. Limitations

include the absence of turbulence modeling and the lack of modeling features which

improve computational efficiency, such as non-uniform grids.

1

CHAPTER 1: INTRODUCTION

Simulation of the energy performance of buildings has contributed to numerous eco-

nomic and infrastructural benefits in the decades since the original doe-1 computer

program and its descendant doe-2 were released (Rosenfeld, 1999), and although

building simulation has since grown into its own art and science, much of what has

happened in the main is similar to what had already happened. However, what has

been thought – outside the main – is different and has only gradually been hap-

pening on a small scale. This thinking seeks to i) relieve humans of much of the

overhead of creating and using models, ii) synthesize domains which have historically

been treated separately, and iii) in the process integrate different subcultures of the

building simulation community such as energy and airflow simulation.

1.1 Multi-Domain Modeling in Building Performance Simulation

Buildings devote much of their energy budget towards the goal that the humans in

them can function unburdened with thoughts of their environment, and one aspect

of that environment is thermal comfort. The waste heat produced by a person needs

to be removed from their body at the same rate it is produced, which is done by

the three mechanisms of heat transfer: conduction, radiation, and convection. The

latter two are the most significant with respect to thermal comfort, with convection

being the mechanism most often employed to actively balance occupant heat transfer

and create a thermally comfortable environment. Air at conditions suitable for this

purpose is directed to occupants, exchanging energy and picking up contaminants

such as CO2. Air also contacts and exchanges energy with heat generators such as

lights and surfaces like walls and windows. Suitable replacement air is introduced,

either by passive or natural means or by mechanical conditioning.

2

Basic heat transfer and fluid mechanics, along with building systems such as

lights, hvac components, and control systems, are thus tightly coupled and all must

be treated in building performance simulation. Despite this, and with some justifi-

cation, there has traditionally been a split between tools whose primary function is

to simulate the energy performance of a building – energy simulation (es) programs

like doe-2 and EnergyPlus – and tools which focus on simulating the air flow within,

through, and perhaps also around the building envelope. This split can exist because

each tool makes assumptions about the domain which it does not focus on. In the

case of EnergyPlus, airflows are assumed to be such that temperatures are uniform

throughout the space – often a good assumption – and the convective heat transfer

coefficient h is estimated from models (DOE, 2008).

There are situations when this is not the case however, and situations where the

airflow needs to be quantified at a detail beyond what energy simulation programs

can provide. For this there are three simulation approaches. The first is known by a

variety of names – multizone, nodal, airflow network, et al. but referred to here as

multizone – assumes fully mixed conditions, and postulates that flow paths through a

building such as ducts or other mechanical systems, cracks in the facade, or open doors

between rooms are linked together at nodes which represent rooms or other spaces.

The flow along these flow paths is calculated from power law equations relating volume

flow rates to pressure differences between the nodes. Chemical concentrations can also

be tracked in addition to flow rates (Chen, 2009, Hensen, 2003 and Axley, 2007). In a

recent survey, Chen (2009) found such methods to be accepted among practitioners for

whole-building airflow analysis, although their market penetration may be hindered

by the user-unfriendly interfaces of the most popular multizone analysis programs,

contam (Walton and Dols, 2008) and comis (Feustel, 1998).

The second method, the zonal approach, partitions a space such as a room into

several – on the order of 10 – isothermal zones or cells, each with a possibly different

3

temperature. Conservation laws are applied in each cell to determine the flows of mass

and energy between the cells. This method is therefore able to coarsely treat spaces

with a nonuniform temperature distribution (Megri and Haghighat, 2007). Zonal

method are intended as a balance between computing time and spatial resolution,

although it has been argued (Chen, 2009) that their overall utility is comparable to

coarse computational fluid dynamics (cfd) methods, the third approach.

In contrast to the reduced or simplified conservation laws used by the multizone

and zonal approaches, cfd methods solve – or satisfy – the general mass, momen-

tum, and energy balance laws and are the most sophisticated, detailed, and resource-

intensive flow simulation techniques. As such they are reserved only for those cases

and locations where their use is warranted: natural ventilation including wind- and

buoyancy-driven flows, flows with high momentum, detailed studies on thermal com-

fort, etc. (Chen, 2009), as well as basic research (Addington, 2003). In professional

practice cfd simulations are run using commercial packages such as fluent (AN-

SYS, 2010) or FloVENT (Mentor Graphics, 2010).

Thus, in addition to the split between energy simulation and airflow simulation,

there is also this three-way split within airflow simulation. This latter split, however,

exists for the good reason that there is no one-technique-fits-all approach to airflow

simulation. Each technique has its niche. However, one simulation scenario may

have more than one niche, and therefore there has been work on coupling these

different airflow techniques. In some situations a multizone method may not give

accurate results (Wang and Chen, 2008), and if such a situation occurs in one zone

of an otherwise appropriate multizone model, then the use of a cfd model within

a larger multizone model can provide a unique solution (Wang and Chen, 2007a)

which improves the overall results (Wang and Chen, 2007b). Tan and Glicksman

(2005) also coupled a multizone model to a cfd model and investigated the effect of

choice of boundary between multizone and cfd volumes on the solution of a simulated

4

naturally ventilated space.

There has also been work in stitching the split between energy simulation (es)

and airflow modeling. Hensen (2003) gives a review, particularly in regard to cou-

pling multizone models with energy simulation. The simulation environment trn-

sys incorporates a variety of methods to incorporate comis and contam (Bradley

and Kummërt, 2005), and likewise EnergyPlus has facilities for interfacing to comis

(Crawley et al., 2001). Linking energy simulation to cfd has also received attention.

The convective heat transfer coefficient h, a bridge between the two domains, can vary

over several orders of magnitude (Lienhard(IV) and Lienhard(V), 2005) and is a large

source of uncertainty, as is the rate of air infiltration into a building. In a study to

determine the appropriateness of different energy/airflow simulation combinations,

Djunaedy et al. (2004) found that depending on the design variations of a space,

the uncertainty in h can cause up to a 66% deviation in the simulated maximum

heating load, a 20% deviation in the simulated heating energy demand, and up to

a 25% deviation in the simulated maximum cooling load. Corresponding deviations

due to the uncertainty in the infiltration rate are 25%, 60%, 13%, respectively. cfd

can be used to reduce these uncertainties since h can be computed as part of a cfd

simulation, e.g. (Zhai and Chen, 2004), and likewise investigate the fluid-mechanical

environment around a building to clarify the infiltration. The feasibility of coupling

energy simulation to cfd has been demonstrated theoretically (Zhai and Chen, 2003)

and in implementation (Zhai and Chen, 2005).

These efforts at stitching together separate domains of building performance sim-

ulation all seek to join otherwise independent simulation programs into a cooperative

federation of simulation programs. Termed co-simulation or external coupling, this

paradigm uses one of a variety of coupling methods (which physical variables manifest

the coupling) and coupling strategies (how tightly are the two programs are linked,

i.e. how consistent the two programs’ solutions are to each other). These topics will

5

Simu-
lation

Energy

Airflow

Controls

Multi-
zone

Zonal

cfd

Tools

Specific

doe-2
e+

comis
contam

Fluent
Flovent

Figure 1.1.1 The Simulation Landscape with Associated Specific Tools

be expanded on in Chapter 2.

1.2 From Tools to Platforms for Tools

doe-2 has been superseded by EnergyPlus, a significant evolutionary improvement

with a more modular architecture, more sophisticated techniques, expanded capabili-

ties, and provisions for the extension of the program including the creation of links to

tools in domains such as lighting or nodal network airflow analysis, which are relevant

but traditionally exist in their own self-contained realms (Crawley et al., 2001). One

can infer from this last characteristic that flexibility in building simulation tools is

a desired feature. Each building is almost always a unique artifact involving many

energy and mass transfer processes that span multiple domains and occur within and

across many different components of the building. It is unsurprising that flexibility

and multi-domain capability would be high on the wish list.

6

Despite this improvement in modularity and extensibility, EnergyPlus remains a

monolithic program: it is ‘hard-wired’ at its core to be application- and somewhat

domain-specific, i.e. specific to building energy performance simulation. A much

more fundamentally modular and extensible approach was taken by the developers

of the Transient System Simulation Tool (trnsys). Roughly contemporaneous with

the original doe-1 and doe-2 efforts and likewise growing out of a need to simulate

the energy performance of buildings, trnsys aimed at the outset to be general and

flexible by employing a component based modeling philosophy in which a model of a

system is composed of independent and reusable individual component models that

are connected together to form a larger model. The business of the program core is to

simulate any model thus constructed (Bradley and Kummërt, 2005). Thus, though

often used for buildings, trnsys may be used for the dynamic simulation of any

system provided that the appropriate component models are available or could be

developed. This flexibility and extensibility enables modelers to construct suitable

models themselves instead of resorting to ‘creative’ ad hoc modeling hacks to trick a

monolithic program into doing something that the program’s developers did not and

could not foresee being required. What makes trnsys flexible is that the developer’s

intent, if any, with respect to the program’s intended area of application is irrelevant.

The area of application is under the modeler’s aegis, not the developer’s. This flexi-

bility allows the simulation of a building’s thermal behavior simultaneously with the

simulation of its systems (e.g. hvac), something doe-2 could not do and thus was a

major impetus behind the EnergyPlus effort (Crawley et al., 2001).

The component based modeling approach embodied in trnsys has been advo-

cated and used in other implementations for over 20 years (Augenbroe, 1986), and it

might seem natural that the object-oriented computer programming paradigm, where

classes represent components and are connected to each other through well defined

interfaces (sometimes called ports), would be well-suited to the component-based

modeling paradigm. However it appears that using object-orientation to develop

7

flexible, multi-domain building simulation tools is difficult and that progress on this

front has been fitful (Augenbroe, 2003). Projects such as ida (Sahlin et al., 2004),

spark (Sowell et al., 2004), and Modelica (Fritzson, 2004) are aware of the distinc-

tions between modeling, computer programming, and simulation. Although trnsys

is component based (but not object-oriented), it implements its component models

as computer algorithms in the programming language fortran. This conflates the

creation of a description of a system – a modeling task – with instructions on how to

operate that system – a computer programming task. This is a critical distinction.

The developers of spark, in setting out to create an efficient solver for differential

algebraic equations (daes), realized that the instructions and data organization that

a computer needs does not in general correspond to how a human modeler thinks and

therefore provided a (largely) non-algortihmic component-based modeling language,

as opposed to a fully algorithmic programming language. The human modeler tells

the solver what to solve, but not how to solve it. This modeling language imple-

ments its component-based philosophy using the object-oriented paradigm applied to

model description, incorporating the instantiation of objects (specific components)

from classes (generic components) (Sowell et al., 2004 and LBNL and Ayers Sowell

Associates, 2003). In order to simulate the model, however, a computer must have

an algorithm to follow. Happily it turns out that this algorithm creation may be au-

tomated by processing the model, and spark provides a facility for this, specifically

converting the model into C++ source code (LBNL and Ayers Sowell Associates,

2003).

Components in spark are defined in “atomic classes” which are implemented as

descriptions using C++ syntax. These atomic classes represent the behavior of a

component via all possible forms of relevant assignment statements. For example, an

atomic class representing resistors may be described by the equation V = IR. Even

though the resistance R may be known, the computer in general does not know if it

needs to assign the product IR to the variable V or the quotient V
R

to the variable

8

I since this depends on the particulars of how this resistor is connected to other

components. Therefore, each atomic class must explicitly list all possible incarnations

of V = IR: V := IR and the inverses I := V

R
and R := V

I
, where the symbol

:= indicates an assignment statement in contrast to the symbol = which merely

expresses equality (LBNL and Ayers Sowell Associates, 2003). Note the distinction

made here between equations and assignments – an equation with n variables is

a general expression that may be manifested as n different assignment statements.

This feature is critical. This enables acausal modeling by leaving all options open

as to what variables need to be solved for, something which is determined when the

model is transformed into source code. Although the C++ syntax is used to define

classes, it is done in a non-algorithmic, declarative way, in contrast to trnsys. This

equation-based implementation is a feature common to the modern component-based,

object-oriented modeling tools and allows the modeler to focus on describing what

the model is rather than how to solve the problem, as well as enabling greater code

reuse and easier code maintenance.

The spark suite, with its component- and equation-based acausal approach cou-

pled with an efficient solver, would seem to be capable of being the hoped-for flexible

and multi-domain tool since it is capable of solving any continuous system problem –

possibly with discrete events, in a limited fashion – that can be represented by daes,

which includes buildings and their constituent parts and physical processes. How-

ever, spark is foremost a general dae solver which happens to include a modeling

language, and this language is relatively verbose and cumbersome. Atomic classes, in

C++, can be combined into macro classes and thus enable hierarchical modeling: the

organization of basic low-level classes into more complex higher-level classes. For ex-

ample two atomic classes of a resistor and capacitor could be combined into a lowpass

filter macro class. While hierarchical modeling is beneficial, these macro classes are

defined in separate files using a different syntax than C++. The model to be solved,

consisting of atomic and macro classes and the links between them, are defined in a

9

problem file using a syntax similar to that used to define marco classes. Furthermore,

another input file with its own format must be included to provide the initial inputs.

In addition, the equation inverses need to be explicitly written, although this task

can be automated using the symbolic processor packaged with spark or third-party

programs such as Maple (LBNL and Ayers Sowell Associates, 2003).

Modelica, on the other hand, is solely a model description language whose philos-

ophy is similar to that of spark, but is more expressive and is implemented with a

cleaner and more unified syntax. The Modelica specification is independent of solvers,

so the creation of tools to solve models described in Modelica are left to developers.

It has been developed by a group of workers associated with several other object-

oriented modeling languages such as Neutral Modeling Format (nmf), Omola, and

Smile, and tools such as ida in an attempt to learn from these past efforts and create

a well-designed language (Fritzson, 2004 and Sahlin et al., 2004). Today Modelica

has reached a level of maturation and stability sufficient to be employed in a variety

of industries and could become a de facto standard modeling language.

Simu-
lation

Energy

Airflow

Controls

Multi-
zone

Zonal

cfd

Tools

Specific

doe-2
e+

comis
contam

Fluent
Flovent

Generic

Algo-
rithmictrnsys

Declar-
ative

Modelica

spark

ida

Figure 1.2.1 The Simulation Landscape with All Tool Types

10

1.3 Modelica, Briefly

Modelica describes physical models in a component-based way, using object-orientation

as an organizing method to describe what a model is rather than as a paradigm for

specifying how to solve a model. A component is an instance of a class, which repre-

sents a generic description of a given model. A class contains both data and expres-

sions describing how that data is related. Being an equation-based language, these

expressions are typically declarative equations rather than assignments or sequences

of assignments – i.e. algorithms – on that data, which permit acausal modeling and

rendering the specification of data flow directions and sequences unnecessary. Being

object-oriented, inheritance is supported, so that a subclass can be defined from a

superclass and inherit the data and relations of that superclass. The relations be-

tween components in particular and model classes in general are described by a special

type of class, the connector class which define interfaces, a.k.a. ports or connectors.

Classes can be grouped together into packages, forming libraries which along with

object-orientation and equation-based, declarative, acausal modeling facilitates the

distribution, use, re-use, and maintenance of those classes. The public-domain Mod-

elica Standard Library includes hundreds of models for use in modeling electrical,

mechanical, thermal, etc. systems.

Because model behavior is described using mathematical equations, any phenom-

ena which can be described mathematically can in principle be described with Mod-

elica. The language features sufficient expressiveness that continuous, discrete-event,

and hybrid (containing both continuous and discrete-event) processes can be modeled.

All of these features together mean that models incorporating multiple domains can

be constructed. For example a voltage source, resistor, inductor, electrical ground,

and electromotive force can be combined to form a motor model. This motor can be

a submodel of a vehicle model which connects the motor via a shaft connector to a

wheel submodel which propels the vehicle over a rough road. An active suspension

11

model consisting of a control subsystem, springs, and active dampers can be included

in this vehicle model to control ride quality. Once this larger model – combining

electrical, mechanical, and control components – has been simulated by a Modelica

compiler, one can inspect variables such as motor current and torque, spring response,

and vehicle speed.

Although equations are the primary means of describing behavior, Modelica sup-

ports the use of algorithms within the language for those times when an assignment

or sequence of assignments are more appropriate. Functions may be declared, making

general purpose relations such as trigonometric functions available to be called from

within classes and models. In addition, external functions written in fortran or C

may be called (Fritzson, 2004).

Almost everything in Modelica is a class, and in order to give the language a

semantic richness, there are different kinds of classes used for different purposes. The

most basic kind of class is a class which contains data and equations (and possibly

algorithms). There are other kinds of restricted classes as well:

1. model – general purpose, similar to class but cannot be used in connec-

tions

2. block – has fixed causality, i.e. member variables are identified as input

or output; cannot be used in connections

3. record – has no equations/algroithms and is similar to a struct in C;

cannot be used in connections

4. type – used to define user-defined types

5. connector – has no equations/algroithms and is used to define connec-

tions between objects

6. function – similar to a function in C or Matlab; quite restricted compared

to a basic class

7. package – manages namespaces and creates libraries

12

Predefined types are Real, Integer, Boolean, and String. Arrays may con-

structed of these basic types or out of user-defined types.

To illustrate some of these features, consider the case of a metal cylinder being

heated through its base. We wish to control the heater so that the cylinder remains

between 315K and 317K (107◦F/41.9◦C and 112◦F/43.9◦C). We will build a Model-

ica model of this system and illustrate the key points of the preceding description of

Modelica. This example could be created entirely with existing models in the Model-

ica Standard Library, but for present purposes the models will be made from scratch.

This simple example’s sole purpose is to illustrate Modelica, not build general or

highly reusable models.

First use is made of the si unit definitions in the Modelica Standard Library and

a heat-transfer interface between objects is defined:

import SIu = Modelica.SIunits;

connector HeatConnector

SIu.Temperature T "Temperature";

SIu.Area A "Area through which heat moves";

flow SIu.HeatFlowRate Q "Heat flow rate";

end HeatConnector;

The line which imports the si unit definitions makes available specialized types

that contain information on units; for example they type SIu.Temperature is a Real

that is forbidden from being negative and is identified, through the use of a string

annotation, as having the unit of Kelvin. An instance of HeatConnector may be

created with the line HeatConnector Foo, and the member variables accessed using

the dot notation, e.g. Foo.A. The flow qualifier indicates to a Modelica compliler

that at each node which is an instance of HeatConnector, all occurances the variable

Q will sum to zero in the manner of Krichhoff’s current law. The equations required

for this are generated by the Modelica complier.

13

The strings between the double quotes are optional comments for the benefit of

the user of this connector and may be used by Modelica implementations in user

interfaces. Modelica also supports C style comments for the benefit of the programmer

which do not appear in user interfaces.

It is noted in passing that modeling convention encourages that connectors should

only contain variables that flow or create the potential for flow. The presence of

area in this connector is applied here as flows will be associated with different areas

in the models to follow; convention is thus violated, and furthermore this area can

in principle change during a simulation, although areas will be defined such that this

will not be the case.

The cylinder will be created from scratch in a simple way based on the First

Law of Thermodynamics; it could be modeled with more detail using ‘off the shelf’

models involving conduction as well as convection and thermal storage in the Modelica

Standard Library. We take the cylinder to be simply a mass with density ρ, volume

V , and a specific heat (at constant pressure) cp and temperature T . The First Law

of Thermodynamics states that the sum of the energy entering a system minus the

sum of the energy going out equals the change of energy in the system. We adopt

the sign convention used in Modelica that a quantity flowing into a system is taken

to be positive. In rate form, this is:

�
∆Ėsys =

�
Ėin +

�
Ėout (1.1)

Here, the system is the cylinder. Thus we know
�

∆Ėsys and can write

ρV cp
dT

dt
=
�
Ėin +

�
Ėout (1.2)

To make the Modelica model, first we make an assumption about how many ‘path-

ways’ there are for power to flow in or out: two. This is restrictive, and is only

adopted for current illustrative purposes.

14

model ThermalCylinder

HeatConnector BasePort;

HeatConnector TopNSidesPort;

SIu.Area A "Surface area of the cup";

SIu.Temperature T "Temperature";

SIu.Height h "Height of cylinder";

parameter Real r2h = 0.75 "Ratio of cylinder radius to cylinder height";

parameter SIu.Volume V "Volume";

parameter SIu.Density rho = 7272 "Density";

parameter SIu.SpecificHeatCapacity cp = 420 "Specific heat, constant pressure";

constant Real PI = 3.142;

equation

/* assume that the Biot number is « 1,

/* therefore temperature is uniform throughout the cylinder */

BasePort.T = TopNSidesPort.T;

T = BasePort.T;

// some geometry

V = PI*h*(r2h*h)^2;

A = 2*PI*(r2h*h)^2 + 2*PI*(r2h*h)*h;

// assign the appropriate areas to the ports

BasePort.A = PI*(r2h*h)^2;

TopNSidesPort.A = A - BasePort.A;

// first law of thermodynamics

rho*V*cp*der(T) = BasePort.Q + TopNSidesPort.Q;

end ThermalCylinder;

Several of the variables are qualified by parameter, indicating that they may

change between simulations but not during a simulation. A similar qualifier constant

can be used for true constants, such as the gravitational constant of the universe, or

in this case, π = PI. Most of the parameters have default values given for them, in

this case for cast iron, but these can be changed elsewhere. The volume V is not

explicitly given a value, but will default to zero. A more appropriate value will be

15

given later. The other variables are truly variable and can change during a simulation

as appropriate.

Note that in the equation V = PI*h*(r2h*h)ˆ2 and given that the cylinder vol-

ume V will be specified, it is the cylinder height h that is unknown. Because this is an

equation and not an assignment statement, Modelica will figure out that h needs to be

solved for and will not see this line as a command to put the product PI*h*(r2h*h)ˆ2

into V.

The core behavior of this model is expressed in the equation rho*V*cp*der(T) =

BasePort.Q + TopNSidesPort.Q, the First Law as applied to this model. The time

derivative of temperature dT/dt is expressed as der(T).

As an initial test of this model, consider the case of a warm cylinder suspended

in cool air, thus simply cooling by convection. In order to model convection using

Newton’s law of cooling Q = hA(T − T∞), the following model may be used...

model Convection

HeatConnector Port;

parameter SIu.Temperature AmbientT = 295 "Ambient temperature";

parameter SIu.CoefficientOfHeatTransfer h = 30 "Convection coefficient";

equation

Port.Q = h*Port.A*(Port.T - AmbientT);

end Convection;

...and connected to the cylinder as follows:

model CoolingCylinder

ThermalCylinder CastIronCylinder(V=0.0003, T(start=316));

Convection ConvAtBase;

Convection ConvAtTopNSides;

equation

connect(CastIronCylinder.BasePort, ConvAtBase.Port);

16

connect(CastIronCylinder.TopNSidesPort, ConvAtTopNSides.Port);

end CoolingCylinder;

Here a cylinder is instantiated with a volume of 0.0003 m3 and with an initial

temperature of 316K. Convection models intended for the base of the cylinder and

the sides and top are instantiated, and are connected to the cylinder in the equation

section using the connect function which generates the appropriate equations for

the ports: sum to zero equations at the nodes for the flow variables and equations

expressing the equality of the non-flow connection variables.

This situation is valid, and has an exact solution, provided that the Biot number

Bi = hL

k
� 1. For this case, with h = 30 W

m2K , using the ratio of volume to surface

area as the characteristic length L = 0.012 m, and the thermal conductivity k =

52 W

mK
, then Bi = 0.0068; thus conduction within the cylinder is sufficiently high

relative to convection off the surface of the cylinder that surface temperature and

interior temperature may be taken to be equal and therefore using ThermalCylinder

is appropriate. The exact solution is then (Lienhard(IV) and Lienhard(V), 2005)

T = e−t/τ (Ti − T∞) + T∞ (1.3)

where t is time, τ is the time constant τ = ρcpV

hA
, Ti is the initial temperature, and

T∞ is the ambient air temperature.

The CoolingCylinder model was simulated using OpenModelica v.1.4.4 (PELAB,

2008) which converts the Modelica models down to C++ source code which is itself

built and executed. The time evolution of the temperature of the cylinder is given at

selected points in the following table:

17

Table 1.3.1 CastIronCylinder.T – Cylinder
Temperature

time, s Modelica, K Exact solution, K

0 316.00000 316.00000
120 314.01405 314.01406
360 310.58783 310.58784
600 307.77899 307.77900
840 305.47628 305.47630
1080 303.58851 303.58853
1320 302.04091 302.04093
1560 300.77218 300.77219
1800 299.73206 299.73208
2040 298.87937 298.87939
2280 298.18033 298.18034
2520 297.60725 297.60726
2760 297.13744 297.13745
3000 296.75229 296.75229
3240 296.43653 296.43654
3480 296.17768 296.17768

0 1000 2000 3000 4000
Time (seconds)

295

300

305

310

315

320

Ca
st

Iro
nC

yl
in

de
r.T

(K
)

Figure 1.3.1 Temperature of the Cooling
Cylinder

This example will now be extended to include an electrical heater with discrete

events to form a hybrid model in which the cylinder is maintained between 315K

and 317K. This model will be built from generic models using some of Modelica’s

inheritance features. The models to follow are extended from a simple circuit example

18

found in the Modelica 3.0 specification (The Modelica Association, 2007) and in

Fritzson (2004).

First a few basic classes are defined:

connector Pin "An electrical pin"

SIu.Voltage v "Voltage";

flow SIu.ElectricCurrent i "Current";

end Pin;

/*==================================*/

class Ground

Pin p;

equation

p.v = 0;

end Ground;

/*==================================*/

partial class TwoPin

Pin p, n;

SIu.Voltage deltav "Voltage between the pins";

SIu.ElectricCurrent i "Current";

equation

deltav = p.v - n.v;

0 = p.i + n.i;

i = p.i;

end TwoPin;

The Modelica class is used here for illustrative purposes, but model could just as

easily be used. The TwoPin class prefixed with the keyword partial, which indicates

that this class is incomplete: there is no constitutive relation which defines the voltage.

This partial class is used to form useful models:

class DCVoltage

extends TwoPin;

parameter SIu.Voltage va = 50 "DC voltage";

19

equation

deltav = va;

end DCVoltage;

/*==================================*/

class ThermalResistor

extends TwoPin;

HeatConnector HeatPort;

parameter SIu.Resistance R = 50 "Electrical resistance";

equation

deltav = R*i;

HeatPort.Q = -R*i^2; // outgoing power (as heat) < 0

end ThermalResistor;

The extends prefix indicates that both DCVoltage and ThermalResistor inherit

TwoPin’s member variables and equations and extends them with new relations. Some

connections are defined, specifying them as either input or output:

connector TportIn = input Real;

connector TportOut = output Real;

One of these connectors is used to extend the ThermalCylinder model:

model CntrlThermCyl

extends ThermalCylinder;

TportOut Tcon "Temperature";

equation

Tcon = T;

end CntrlThermCyl;

And now the temperature of the cylinder can be sensed in order to command a

switch for the heater:

class ControlSwitch

extends TwoPin;

20

TportIn Tcon "Temperature";

Boolean On(start=false);

Boolean Off(start=true);

parameter SIu.Temperature LowTthresh = 315 "Lower threshold temperature";

parameter SIu.Temperature UpTthresh = 317 "Upper threshold temperature";

parameter SIu.Resistance Ron = 0.00001 "Electrical resistance when on";

parameter SIu.Resistance Roff = 100000 "Electrical resistance when off";

equation

On = Tcon <= LowTthresh;

Off = Tcon > UpTthresh;

deltav=i*(if On then Ron else if Off then Roff else Roff);

end ControlSwitch;

To avoid numerical difficulties, this switch is modeled as a discretely variable

resistor which follows the practice used in a similar model from the Modelica Standard

Library where the on condition is modeled by a low resistance and the off condition by

a high resistance. The Boolean variable On changes its states at discrete events, and

the two different operating regimes of the switch are encoded in the if expression.

This introduces events – which are considered to take no ‘wall clock’ time – into the

following, otherwise continuous-time model:

model HeatedCylinder

DCVoltage DC;

ControlSwitch Switch;

ThermalResistor Heater;

Ground GND;

CntrlThermCyl CastIronCylinder(V=0.0003, T(start=316));

Convection ConvAtTopNSides;

equation

connect(DC.p, Switch.p);

connect(Switch.n, Heater.p);

connect(Heater.n, GND.p);

connect(GND.p, DC.n);

21

// the area of the heater = area of the base of the cylinder:

connect(Heater.HeatPort, CastIronCylinder.BasePort);

connect(CastIronCylinder.TopNSidesPort, ConvAtTopNSides.Port);

connect(CastIronCylinder.Tcon, Switch.Tcon);

end HeatedCylinder;

Textually determining the topology between components (submodels) of larger

models can be difficult, and for this reason most Modelica implementations use a

graphical representation for the depiction and creation of model topology:

Figure 1.3.2 The HeatedCylinder Model

One of the benefits of Modelica is that model topologies easily match that of the

physical artifact.

When this is simulated for 200 seconds in OpenModelica v.1.4.4, we see that the

cylinder temperature is maintained between 315K and 317K:

22

0 100 200
Time (seconds)

313

314

315

316

317

318

Ca
st

Iro
nC

yl
in

de
r.T

(K
)

Figure 1.3.3 Controlled HeatedCylinder Temperature

Much of the depth of Modelica was left out of this example: it does not display

acausality and leaves this aspect of Modelica unexplored; algorithms and functions,

both internal and external, were not treated; the inheritance features were only

skimmed despite being a rich and central part of the language; the use of packages and

subpackages to create reusable libraries was ignored; the use of annotations, units,

and quantities to store model metadata and enrich the functionality of a Modelica tool

was unmentioned; and the capabilities to handle events was briefly introduced with-

out substantive explanation. These omissions, made in the name of brevity, conspire

with the ad hoc nature of the (sub)models to prevent their having high reusability.

However, this simple example demonstrates the breadth of Modelica: object-

orientation, equation-based modeling, the integration of multiple domains – electrical

and thermal in this case, and the mixing of continuous dynamics with events. Object-

orientation allowed the creation of many models simply by extending more general,

pre-existing models. Being equation-based, Modelica allows the modeler to focus only

on the model rather than on both the model and the steps needed to solve the model.

The component-based outlook with well-defined interfaces between them is concor-

23

dant with how humans think of systems, allowing the rapid – and relatively easy –

creation of models from smaller parts as well as the linking of models from different

domains. The ability to handle events brings domains with discontinuous dynamics,

such as controls, within Modelica’s compass.

Modelica is most often used for lumped-parameter modeling, in which the nature

of any spatial variations are assumed and only time derivatives explicitly appear. The

example given above is a lumped parameter model: spatial variations are assumed

to be nonexistent which is reasonable only for a Biot number much less than one.

For situations in which there is a spatial variation, lumped parameter models may

still be used by assuming a specific form of the spatial variation. For example, if

the cylinder was replaced by a flat plate, infinite in extent (the y and z directions)

but finite in thickness (the x direction), a model could be defined which implicitly

assumes a linear temperature profile across the plate by taking the heat flux qx =

−kdT/dx = −k∆T/∆x, ∆T being the temperature difference between the faces

of the plate. In fact this is what the one-dimensional ThermalConductor model

in the Modelica Standard Library does. However, in unsteady-state conditions the

temperature profile may not be linear, yet this can still be approximated in lumped

parameter modeling if the family or package of models is well thought out: the

ThermalConductor model does not include storage effects and must be coupled with

a HeatCapacitor model, also from the Modelica Standard Library. Separating these

two phenomena into different models allows a modeler to link many such models

together to approximate the actual, possibly nonlinear, temperature distribution.

Another alternative is to create models using integral analysis as described by Batteh

(2006). More fundamentally, work has recently been done to enable the solution of

partial differential equations in Modelica at the language level, allowing problems

with spatial derivatives to be handled in ways similar to what is done with time

derivatives (Saldamli et al., 2005).

24

Wetter and Haugstetter (2006) have compared the development time of similar

building energy models expressed in C++ and Modelica, and examined the simulation

of similar models in trnsys and Dymola (Brück et al., 2002), a commercial Modelica

implementation. The time to develop models was decreased by up to an order of

magnitude by using Modelica rather than C++; simulation time in Dymola was up

to four times slower than in trnsys, although it was judged, based on similar studies

using spark and ida that this simulation time should not be viewed as an inherent

feature of equation-based modeling. As a further example, Wetter (2006a) was able to

quickly create a Modelica multizone airflow library which compared well to contam.

1.4 Claims and Goals

With the aim of integrating the disparate building simulation subcultures, this work

proposes to build a cfd package for Modelica to bridge cfd airflow simulations with

energy simulation and controls.

It is claimed that equation-based acausal modeling can be used to create models

which when connected will couple cfd and heat transfer into a (quasi) conjugate

model of conductive and convective heat flow which can also interact with other

domains, for example controls. These models can co-exist at different levels of spa-

tial resolution, for example lumped conduction in the wall can be coupled to high-

resolution cfd models. Furthermore this coupling can be achieved without the need

to explicitly code iterative procedures to ensure consistency between conductive heat

transfer and cfd solutions, or without the need for one model, cfd for example, to

be concerned with the representation of the coupled physics in another model, for

example how conduction is modeled in a wall. In addition a particular method of

cfd based on the Boltzmann equation is a suitable technique which facilitates this

coupling.

25

One point should perhaps be addressed. Djunaedy et al. (2005) has argued that

linking energy simulation capabilities with airflow simulation capabilities should be

done by interfacing pre-existing programs together, a.k.a. external coupling, since

this avoids the rewrite of code and allows each individual program to advance at its

own pace and under its own mechanisms. There is some merit to these points, and it

may appear that what is proposed here goes against them. It does in the first case, it

does not in the second. First, although this work would be a from-scratch capability,

the effort is worthwhile because of the modeling possibilities and modeler benefits

that Modelica can provide. Rewriting – or expressing anew – a model in Modelica

is fundamentally different than rewriting a cfd algorithm within the EnergyPlus

simulation kernel. Second, it is important to bear in mind that Modelica is not a

solution, but a platform for solutions. Packages of Modelica models can evolve in their

own domains so long as the interfaces between models remain synchronized, which is

also necessary for integrating separate programs written in programming languages.

That such packages can evolve independently forms a secondary hypothesis.

The goals of this work are to provide an initial capability at linking cfd to the dif-

ferent domains in building performance simulation – fluid flow, heat transfer (energy),

controls, etc. within one flexible modeling and simulation paradigm and identify av-

enues of future research.

1.5 Scope of Work and Methodology

This work will use largely existing cfd techniques to develop an initial capability

completely within the Modelica language. Comparisons will be made to flow situ-

ations for which there are analytical solutions or benchmark data in the literature.

Only laminar flows are considered despite the importance of turbulence; however

turbulence is discussed at points in this thesis.

26

1.6 Thesis Structure

• Chapter 1 provides background on and motivation for multi-domain simulation

and introduces equation-based modeling. The Modelica language is also intro-

duced.

• Chapter 2 reviews work on coupling cfd to energy simulation es and to other

modes of heat transfer. The basics of the lattice Boltzmann technique are de-

scribed, along with various lattice Boltzmann models, boundary conditions, and

previous couplings of lattice Boltzmann simulations to non-convective heat trans-

fer simulations.

• Chapter 3 gives an overview of the cfd model as implemented in Modelica.

• Chapter 4 reports on the results of simulations using this model, both for purely

fluid-mechanical problems and for problems coupling cfd to conduction heat

transfer.

• Chapter 5 discusses these results and the contribution they represent, as well as

illuminating the limitations of this work and pointing out directions for future

research.

• Chapter 6 summarizes the work and makes specific recommendations.

27

CHAPTER 2: COUPLING cfd TO NON-CONVECTIVE

HEAT TRANSFER PROCESSES

The macroscopic equations expressing the conservation of mass, momentum, and

energy in terms of the velocity vector u, pressure p and temperature T in a fluid

have no general solution and only a few analytic ones. Analytic solutions for some

flow situations can be found if the problem permits simplifications of the governing

equations. For generality and resolution of the field variables, numerical solutions of

the field equations are sought. In the case of a time-varying non-isothermal flow of

an incompressible Newtonian ideal fluid where the Boussinesq approximation applies,

these equations are respectively:

∇ · u = 0 (2.1)

ρ

�
∂u

∂t
+ (u ·∇)u

�
= −∇p+ µ∇2u+ F (2.2)

ρcp

�
∂T

∂t
+ (u ·∇)T

�
= ∂p
∂t

+ (u ·∇)p+∇ · (k∇T) + Φ (2.3)

Here F is a buoyancy force term Φ is a dissipation function. The first equation,

expressing the conservation of mass, is also called the continuity equation; the set of

equations represented by the second vector expression are collectively referred to as

the Navier-Stokes equations; the final equations is the conservation of thermal energy,

which in fluid mechanics is referred to simply as the energy equation (Currie, 1993

and Tritton, 1997). Several techniques exist for numerically solving these equations

(Tannehill et al., 1997), but regardless of the technique, this general approach is a

‘top-down’ one: the governing equations as expressed at the macroscopic level are

solved.

There is a framework for solving partial differential equations in Modelica (Sal-

damli et al., 2005) that in principle could be used to solve the equations above.

28

However, this framework currently only has support for finite differences and finite

elements, whereas the preferred paradigm for ‘top-down’ cfd is finite volumes. Fur-

thermore this framework relies on code external to Modelica.

There is, however, a ‘bottom-up’ cfd approach (Kadanoff, 1986) which postulates

a model of a microworld whose rules, during the course of their operation, mimic the

interactions of fluid molecules and recreates at the macro level the behavior expressed

by the continuity, Navier-Stokes, and energy equations. This approach is derived from

the Boltzmann equation describing microscopic particle interactions which like the

macroscopic equations above is difficult to solve analytically. The approach does not

solve the exact microscopic dynamics as this would require unimaginable computing

resources (Cercignani, 1988), but only simulates a reduced version of these dynamics

sufficient to be macroscopically accurate, typically over a regular lattice. This ap-

proach is therefore called the lattice Boltzmann method (Wolf-Gladrow, 2000, Chen

and Doolen, 1998 and Yu et al., 2003).

It is here proposed to use the lattice Boltzmann method to implement the cfd

capability for the building airflow suite in Modelica as it is simple and is easy to

program, this being a proof of concept study, and because it is naturally suited for

unsteady flows which fits well with Modelica’s emphasis on time domain analysis

of systems. The lattice Boltzmann method does have several advantages: inherent

suitability to parallel computing (Chen and Doolen, 1998); specific implementations of

this method can have the heat flux at a boundary be an inherent part of the solution,

opening up options for the coupling of cfd simulations to heat transfer models such

as conduction through walls; and can be used for situations involving mixing (Yu,

2004) as well as multi-component fluids and flows with particulate suspensions (for

example see Chen and Doolen (1998) and Yu et al. (2003) and the references therein).

A disadvantage is a high memory demand, particularly for three-dimensional flows.

The lattice Boltzmann method has been applied to the building simulation realm

29

before: Crouse et al. (2002) and Kuhner et al. (2004) simulated the turbulent,

thermal flow around and through a house, as well as within an office. Further work

incorporated this lattice Boltzmann based method into a collaborative design envi-

ronment for hvac system layout (Borrmann et al., 2006). These authors have one

similar goal as the present work, coupling cfd to other domains, although they focus

on the incorporation of cfd into workflows and on integration with building product

models – specifically, the Industry Foundation Classes – and do not use Modelica.

Kuznik and Rusaouen (2007) applied a thermal implementation to situations model-

ing double skin facades and spaces with localized heating elements. On a larger scale,

de la Fuente et al. (2003) used the lattice Boltzmann method to investigate simple

problems representative of urban airflows.

2.1 Previous Work in Connecting cfd to Other Domains

2.1.1 Conjugate Approaches: cfd to Non-convective Heat Transfer

The most direct coupling between cfd and the conductive heat transfer in a wall is

to form a conjugate solution in which the equations of fluid motion and conductive

(and/or radiative) heat transfer are solved simultaneously in one greater model. Such

an approach involves solving these equations at similar or the same level of spatial

resolution and amounts to what is in effect – if not necessarily in actual execution –

the combination of a cfd model with, e.g., a finite-element model of the heat diffusion

equation with identical dimensionality and similar grid spacing.

Conjugate methods have applications in many fields, and have been applied to

building spaces. Chen et al. (1995) conducted a 3d unsteady conjugate study on a

room with one window and one radiator, solving the equations of fluid flow (continuity,

Navier-Stokes, and energy), conduction through the walls, and radiation exchange

30

between the walls with results showing good comparison with experimental data.

Similarly Potter and Underwood (2004) developed a conjugate modeling method for

a room and simulated cases of forced and natural convection with conduction and

radiation heat transfer. Ben-Nakhi and Mahmoud (2007) used a conjugate method

to simulate the flow and heat transfer processes in a realistic model of a roof cavity

in summer, following up this work with a similar case for winter (Ben-Nakhi and

Mahmou, 2008).

All of the previously mentioned studies solved the fluid flow and conduction equa-

tions at the same dimensionality and similar spatial resolution levels. Kaminski and

Prakash (1986), in contrast, investigated conjugate heat transfer in which different

levels of dimensionality and spatial resolution were used in the models of conduction

in a vertical wall of a square two dimensional cavity. Results show that in many cases

solving the conduction problem at a lower dimensionality and lower resolution levels

can lead to results with only a small error compared to higher dimensionality and

resolution simulations of wall conduction.

2.1.2 Non-Conjugate Approaches: cfd to Building Performance Simulation, via

Heat Transfer

The conjugate approaches mentioned above all solve the fluid flow and heat transfer

aspects of a problem at the same dimensionality and the same or similar levels of spa-

tial (and temporal) resolution. While there are situations when such approaches may

be appropriate, there are also cases when this is unnecessary or unwanted. Whole-

building simulation programs deal with entire buildings, and simulating the heat and

fluid flow processes within them at the fine resolution levels alluded to in the conjugate

approaches above is computationally expensive and most often unnecessary (see, e.g.

Kaminski and Prakash (1986) as previously mentioned for simulation results which

lead to this conclusion). However there are cases when a combined simulation may

31

benefit from having two different levels of resolution, such as natural/hybrid ven-

tilation situations or questions of thermal comfort where details provided by cfd

simulations are relevant, but the associated heat transfer through walls need not be

treated so finely except insofar as the wall conduction affects the flow. Similarly,

uncertainties associated with the convective heat transfer through a wall may be re-

duced via cfd simulations, but the actual heat transfer through the wall itself can

for practical purposes be modeled as a lumped one dimensional conduction element.

Furthermore, even in a whole building simulation which, for example, natural or hy-

brid ventilation is present, it is unlikely that cfd is required in every space: perhaps

only one space, say an atrium, would need to be modeled using cfd, while the rest

are adequately modeled using lower resolution approaches.

Most of the effort at combining cfd simulations to the lower-spatial-resolution

heat transfer models such as those used in building simulation tools have been toward

conflating two separate programs together. Negrao (1995) developed a cfd module

for use in the esp-r building simulation program in what is essentially the internal

coupling paradigm, in which a cfd module is developed to be used by a particular

building simulation program, forming more or less a unified greater package. In

contrast, Zhai (2003) developed a cfd program specifically for incorporation with

EnergyPlus, although in a manner that it could be used independently and could

evolve independently with a minimum of overhead in the infrastructure to couple

to EnergyPlus. Similarly, Djunaedy (2005) and Mirsadeghi et al. (2009) coupled

pre-existing and independently developed (sometimes commercial) cfd and building

simulation tools together, for example esp-r and fluent. This paradigm is called

external coupling.

In all of these works, whether the conflation is internal or external, the separate

programs overlap in the building air spaces: the cfd program handles thermal air

flows and hence convective heat transfer through nonisothermal air spaces, while

32

the building (energy) simulation program handles not just conductive heat transfer

through walls, but also convective transfer through the air spaces using Newton’s law

of convective heat transfer assuming mixed, spatially isothermal conditions. Thus,

these approaches are not conjugate in the sense described in the previous section, in

which there is no overlap. For these overlapping simulation configurations in which

the separate programs each model convective heat transfer in air spaces, the challenge

is in coupling the two programs together in a physically consistent fashion.

es

Conduction

Convection

cfd

es

Conduction

Convection

cfd

Internal External
Figure 2.1.1 Existing Coupling Paradigms

It is useful for the sake of context to repeat here the coupling methods and coupling

strategies as reported by Zhai (2003). Here, coupling methods refers to which vari-

ables are exchanged between cfd and the whole building energy simulation (here

referred to as es, in the manner of Zhai). Coupling strategies refers to the manner in

which cfd and es exchange these variables as a simulation progresses in time. Note

that this terminology is separate from the notion of coupling paradigm, which here

refers internal or external coupling.

For the coupling methods, the choices of the variables is explained with the help of

figure 2.1.2; h is the convective heat transfer coefficient, found by cfd, between the

wall temperature Twall and a temperature close to the wall Twall+ also found by cfd;

hnom is a nominal convective heat transfer coefficient, also found by cfd, defined

33

by the temperature difference between Twall and the mixed room air temperature as

used by es.

Twall

Twall+

Troom

Q

h

hnom

Figure 2.1.2 Variables for
es – cfd Coupling Methods

The objective of using these coupling variables is ultimately to have a consistent

solution in temperature and heat flux/heat flow rate between the two overlapping

programs. However the methods specific to each program prevent directly coupling

temperature and heat, as explained shortly.

The six coupling methods are explained in figure 2.1.3.

The first 5 methods are studied extensively (Zhai and Chen, 2003, 2004, 2005),

however the sixth is dismissed due to the cfd scheme being capable of only Dirichlet

(specified temperature) or Neumann (specified heat flux) boundary conditions; a

Robin-type boundary condition which relates wall conduction to air convection is

absent and so method 6 is effectively out of scope. It is this method that is the focus

of the current work, however.

The coupling strategies are grouped into static, dynamic, and bin coupling processes.

Static processes exchange variables between es and cfd only for certain times when

34

1 es cfd

Twall

h, (Twall+ − Troom)

2 es cfd

Twall

hnom

3 es cfd

Twall

Q

4 es cfd

Q

h, (Twall+ − Troom)

5 es cfd

Q

hnom

6 es cfd

Q

Q

Figure 2.1.3 The Six es – cfd Cou-
pling Methods of (Zhai, 2003)

judged necessary to improve the solution of es, cfd, or both; this coupling may be

one step (es→ cfd or cfd→ es) or two step (es→ cfd→ es or cfd→ es→ cfd).

Bin coupling seeks to precompute coupled es and cfd results for use in an exclusively

es run and can be of a static type (coupled es and cfd simulations are run for a

35

variety of situations and the binned results are used in an es run) or a dynamic type

(es and cfd coupled simulations produce binned results for a limited-time es run,

after which es and cfd coupled simulations are run anew for a fresh set of binned

results for another limited-time es run).

The dynamic coupling processes are the ones of interest when working with an

equation based modeling language such as Modelica. These are depicted in figure

2.1.4, with the exception of the “one time step dynamic coupling”, which is a subset

of one of the pictured dynamic coupling processes.

Quasi-Dynamic or Ping-Pong

t0 es cfd

t1 es cfd

t2 es cfd

t3 es cfd

t4 es cfd

t5 es cfd

Full Dynamic or Onion

es cfd

es cfd

es cfd

es cfd

es cfd

es cfd

Figure 2.1.4 Dynamic Coupling Strategies

As indicated in the figure, the quasi-dynamic coupling and the full dynamic coupling

36

are the ‘ping-pong’ and ‘onion’ techniques, respectively, used to couple nodal network

models to es (Hensen, 2003); in other work the the ping-pong style approach is re-

ferred to as loose coupling (e.g. (Mirsadeghi et al., 2009)). In the quasi-dynamic/ping-

pong case, accuracy is a secondary concern and no iteration is done between es and

cfd to achieve a consistent solution in T and Q. However the ping-pong has been

shown to result in instabilities when used to couple heat transfer with multizone

(nodal) airflow network problems in practical situations (Sahlin, 2003). In the full

dynamic/onion case, iteration is performed to ensure that T and Q in es is the same

as T and Q in cfd. In both cases, the results of one program are fed forward to the

other program at the next time step.

2.2 Towards An Alternate cfd Approach Based on Kinetic Theory: A

Review

It will be argued here that the lattice Boltzmann method has some advantages for use

in coupling cfd to building heat transfer, and to make these points some background

on this method will be given. Historically the lattice Boltzmann technique is an

outgrowth of cellular automata (Frisch et al., 1986 and Wolf-Gladrow, 2000), although

the most physically fundamental view is that lattice-Boltzmann is a numerical scheme

for the solution of a simplified version of the continuous Boltzmann equation (Sterling

and Chen, 1996 and Cao et al., 1997), which describes the evolution of the single

particle distribution function f for a (ideal) gas.

Appendix A gives a brief overview of kinetic theory but is summarized here. The

Boltzmann equation of interest is:

∂f

∂t
+ ξ · ∂f

∂x1
= 1
θ

(fEQ − f) (2.4)

Here f = f(x, ξ, t) is the expected mass density at a point in space x having a

molecular velocity ξ at time t; in essence it is the probability of finding a ‘particle’

37

moving with velocity ξ at location x and time t. The term on the right hand side is a

simplified model of a complex integral ΩB which describes the collisions of molecules;

θ is the rate at which the system ‘relaxes’ to local thermodynamic equilibrium, and

is the parameter through which material properties such as viscosity are expressed.

Equation 2.4 is termed, among other things, the Boltzmann bgk equation, after the

originators of the simplified bgk collision term 1
θ
(fEQ − f) (Bhatnagar et al., 1954).

The term fEQ is the Maxwell-Boltzmann distribution function

fEQ = ρ

(2πRT)(η/2) e
−(ξ−u)2

2RT (2.5)

where η is the degrees of freedom available to the gas molecules given the problem of

interest. Given the definition of f , we can see that the macroscopic density of a gas

is given by the zeroth moment of f

ρ(x, t) =
�
f(x, ξ, t)dξ (2.6)

and that the momentum is given by the first moment

ρ(x, t)u(x, t) =
�
ξf(x, ξ, t)dξ (2.7)

Working with some terms in this first moment, the pressure can be shown to be given

by the ideal gas equation of state

p = ρRT (2.8)

The second moment is

1
2

�
ξ2fdξ = 1

2ρu
2 + 1

2

�
c2fdξ (2.9)

where c = ξ − u is the peculiar velocity, which is the random molecular motion

relative to the bulk macroscopic flow u. Intuitively, the second term above would

seem to relate to temperature; indeed it can be shown that

38

1
2

�
c2fdξ = 1

2ρηRT (2.10)

The heat flux q in direction α ∈ {x, y} is a part of the third moment; its form in

tensor notation is

qα = 1
2

�
cαc

2fdξ (2.11)

There are many other such moments, all of which are physically descriptive if not

usually relevant (see, e.g. (Grad, 1949a)). Thus there is a large amount of information

just in the single particle distribution function f , if it can be found; particularly

attractive is that the heat flux is an inherent part of the solution. The solution to

the (continuous) Boltzmann equation is difficult however, in part due to the need to

not only solve in time and in physical or ‘spatial’ space, but also in the large and

continuous velocity space given by all possible values of the molecular velocity ξ.

The lattice Boltzmann method attempts to tap into the large amount of information

in f by solving the Boltzmann bgk equation in discretized temporal, physical, and

velocity spaces.

2.2.1 Introduction to the Lattice Boltzmann Method

Discrete approaches to solving the Boltzmann equation also go back at least to Broad-

well’s investigations of shock waves (Broadwell, 1964b) and to Couette and Rayleigh

flow (Broadwell, 1964a). Modern approaches view the lattice Boltzmann equation as

a specific finite-difference approximation of a Boltzmann bgk equation with discrete

velocities ξi (Sterling and Chen, 1996 and Cao et al., 1997); or perhaps more com-

pletely as the fully-continuous Boltzmann bgk equation integrated in time over the

interval δt. Such an integration assuming a small enough δt yields

39

f(x+ ξδt, ξ, t+ δt) = f(x, ξ, t)− 1
τ

(f(x, ξ, t)− fEQ(x, ξ, t)) (2.12)

when terms of O(δt2) are neglected. Here, τ = θ/δt is the non-dimensional relaxation

time.

The discretization of physical space – x – and velocity space – ξ – arises via the

requirement that the discretization still leads to the Navier-Stokes equations (only

athermal schemes are considered for the moment). Expanding fEQ in a Taylor series

in which terms of O(u3) are neglected yields an approximation of fEQ, namely feq;

an integral involving feq that is required for this consistency with Navier-Stokes is

of a form for which 3rd order Gauss-Hermite quadrature is the ideal solution proce-

dure. For two-dimensional problems, the abscissae of this quadrature define 9 discrete

velocities ξi

ξ0 = (0, 0)

ξ1,3 = (±ξ̌, 0)

ξ2,4 = (0,±ξ̌)

ξ5,6,7,8 = (±ξ̌,±ξ̌)

(2.13)

where ξ̌ =
√

3RT , thus discretizing velocity space. Physical space is discretized

congruently with this velocity space discretization, i.e. the nodes of the spatial grid

(where the solution f is determined) are spaced a distance δx = ξ̌δt. For the athermal

model considered here, temperature has no meaning and so ξ̌ is taken to be arbitrary

while still satisfying ξ̌ = δx

δt
for convenience.

This discretization of the velocity and physical spaces also leads to the discretized

form of feq

feq
i

(x, t) = ρwi
�
1 + 3
ξ̌2
ξi · u+ 9

2ξ̌4
(ξi · u)2 − 3

2ξ̌2
(u · u)

�
(2.14)

40

where wi are the weights of the 3rd order Gauss-Hermite quadrature:

wi =

4
9 , i = 0
1
9 , i = 1, 2, 3, 4
1
36 , i = 5, 6, 7, 8

(2.15)

Thus the continuous Boltzmann bgk equation has been converted to

fi(x+ ξiδt, t+ δt) = fi(x, t)−
1
τ

�
fi(x, t)− feqi (x, t)

�
(2.16)

The moments of f for this athermal model are likewise evaluated by quadrature (He

and Luo, 1997a, 1997b):

ρ =
8�

i=0
fi

ρu =
8�

i=1
ξifi

(2.17)

and the pressure can be determined simply from

p = ρ ξ̌√
3

(2.18)

The dimensionless relaxation time τ is related to the kinematic viscosity by

τ = 1
2

�
6ν δt
δx2 + 1

�
(2.19)

the form of this relation is dictated by stability requirements and has the effect of

making what is a first order spatial discretization effectively second order (see, e.g.

(Sterling and Chen, 1996)).

This is the standard d2q9 (2-dimension, 9 speeds) model. To summarize, and as

shown in figure 2.2.1, at each node location x on a regular lattice, there are 9 non-

equilibrium particle distribution functions fi(x, t), 9 equilibrium particle distribution

functions feq
i

(x, t), and 9 molecular or ‘lattice’ velocities ξi, indicated by the subscript

i ∈ [0, 1, 2, 3, 4, 5, 6, 7, 8].

41

0 1

2

3

4

56

7 8

0 1

2

3

4

56

7 8

0 1

2

3

4

56

7 8

0 1

2

3

4

56

7 8

0 1

2

3

4

56

7 8

0 1

2

3

4

56

7 8

0 1

2

3

4

56

7 8

0 1

2

3

4

56

7 8

0 1

2

3

4

56

7 8

Figure 2.2.1 The d2q9 Lattice

The operation of the lattice Boltzmann method begins with the first calculation

of feq
i

(x, t) and the application of initial conditions which for this first timestep is

often, due to convenience despite not being physically correct (Skordos, 1993), taken

to also equal feq
i

(x, t). At each timestep the distributions (or ‘particles’) move along

the links of the lattice as defined by the discrete lattice velocities ξi as shown in figure

2.2.2.

After this streaming operation the particles collide according to f̃i(x, t) = fi(x, t)−
1
τ

�
fi(x, t)− feqi (x, t)

�
.

Boundary conditions, in the form of manipulations to the particle distributions

which correspond to the macroscopic variables such as u, are applied and the distribu-

tions are streamed to new locations and the next time according to fi(x+ξiδt, t+δt) =

f̃i(x, t). The density and velocity fields are calculated according to equation 2.17.

At this point the algorithm continues to the next timestep, repeating from cal-

culation of updated equilibrium distributions (without setting feqα (x, t) = fα(x, t)),

terminating at the user’s discretion (Wolf-Gladrow, 2000, Yu et al., 2003 and Yu,

42

0 1

2

3

4

56

7 8

0 1

2

3

4

56

7 8

0 1

2

3

4

56

7 8

0 1

2

3

4

56

7 8

0 1

2

3

4

56

7 8

0 1

2

3

4

56

7 8

0 1

2

3

4

56

7 8

0 1

2

3

4

56

7 8

0 1

2

3

4

56

7 8

Figure 2.2.2 Streaming Along Links of the

d2q9 Lattice

2004).

In contrast to solving the continuity and Navier-Stokes equations, in this athermal

lattice Boltzmann technique there are no nonlinear terms such as (u ·∇)u, mass is

inherently conserved, and pressure is simply determined using a state equation and

without recourse to solving a Poisson equation. Despite its simplicity, this method is

inherently appropriate for unsteady flows.

It is noted in passing that lattice Boltzmann models can be constructed in which

there is more than on relaxation time τ . These models have advantages such as

improvement of stability characteristics and the ability to choose transport charac-

teristics – e.g. viscosity ν, conductivity κ, specific heat cp, etc. – completely inde-

pendently of one another (D’Humières, 1994 and D’Humières et al., 2002), something

which cannot be done in all lattice Boltzmann models. However it is possible to mimic

specific fluids such as air with a single relaxation time model, as will be demonstrated

in Chapter 4.

43

2.2.2 Early Lattice Boltzmann Thermal Models

The introductory model given in the previous section was the common or ‘standard’

two dimensional athermal model. Stable thermal models have been more difficult

to construct. Early attempts involved treating the temperature as a scalar whose

evolution is described by a separate, traditionally-macroscopic-style transport equa-

tion that is coupled to the lattice Boltzmann scheme. Eggels and Somers (1995) used

such an approach for free convective flows in a square cavity and obtained results that

compared well to benchmark data. Similarly, Shan (1997) simulated Rayleigh-Bénard

convection in two and three dimensions by treating temperature outside the lattice

Boltzmann scheme by considering it to be a passive scalar which evolves according

to an advection-diffusion equation.

The hybrid approach is similar in that a separate equation is used to solve for

the evolution of the temperature field, however the temperature is not treated as a

scalar but is modeled in accordance with an energy equation similar to equation 2.3,

for example by running a finite-difference simulation of the energy equation in con-

junction with a lattice Boltzmann model for the momentum (Filippova and Hanel,

2000). Crouse et al. (2002) used this approach in three-dimensional simulations

of flow around and through a realistic house model, and an identical approach was

used by Mezrhab et al. (2004) to simulate various benchmark problems. The hy-

brid approach has also been applied with multiple relaxation time lattice Boltzmann

techniques (Lallemand and Luo, 2003).

2.2.3 Multispeed/Expanded Lattice Thermal Models

The scalar and hybrid approaches have been successful in accounting for the temper-

ature field, but they do not tap into the information, e.g. of the heat flux in addition

to the temperature, that may be had with an approach more closely tied to the

44

Boltzmann equation. Perhaps the simplest thermal model that is based completely

on kinetic theory is the d2q9 model of Prasianakis et al. (2006). Here the discrete

equilibrium distribution feq
i

is developed not from the Taylor-series expansion of the

continuous equilibrium distribution function fEQ followed by Gaussian quadrature,

but by following a discretized analogue of the origin of fEQ itself: specifically, a dis-

crete form of the H function (see Appendix A) is minimized given the constraints of

the conservation of mass, momentum, and energy. Such an entropic model (Karlin et

al., 1999 and Ansumali and V. Karlin, 2002) yields a version of feq
i

which incorpo-

rates temperature and in fact reduces to the athermal form of feq
i

when the reference

temperature of the model is specified. As a result the standard athermal d2q9 model

can be retrofitted to a thermal model merely by swapping the athermal feq
i

for the

thermal feq
i

, given the use of common lattice units.

This model, however, contains a fixed Prandtl number of 4, which given air’s

Prandtl number of 0.71 renders this model inapplicable for present practical purposes.

Furthermore, the heat flux is in error, and although both of these problems were

remedied in later work by applying correction terms, these corrections involve the

calculation of derivatives (Prasianakis and Karlin, 2007).

Use of a “standard lattice” such as the d2q9 is adequate for the creation of lattice

Boltzmann models which accurately describe macroscopic quantities that are second

or lower moments of the distribution function f , such as temperature. However the

the near-simultaneous work of Philippi et al. (2006) and Shan et al. (2006) has shown

that quantities found via higher moments of the distribution function such as the heat

flux require lattices with a greater number of lattice speeds ξ̌. Figure 2.2.3 depicts a

two such non-standard lattice nodes. In the d2q13 example, distributions such as 9

jump not to the next lattice node, but to the node after the next node. It might be

anticipated that the implementation of boundary conditions for such lattices would

be a complex affair, as will become clear in a later section.

45

:1

0 1
2

3
4

56

7 8
9

10

11

12

0 1
2

3
4

56

7 8

910

11 12

13

14

15

16

D2Q13 D2V17
Figure 2.2.3 Non-Standard Lattices for Higher Moments of the Distribution Func-
tion

Based on this work, Shan and Chen (2007) proposed an expansion into multiple relax-

ation time models so that the transport properties can be determined independently.

2.2.4 Double Distribution Thermal Models

He et al. (1998) originated an alternate approach to constructing thermal lattice

Bolzmann models which is also rooted in kinetic theory. Their insight was that the

internal energy density ρ� = ρηRT/2 = 1
2
�

(ξ − u)2fdξ could be used to define a

new distribution function g representing the internal energy:

g = (ξ − u)2

2 f (2.20)

and thus

46

ρ� = ρηRT2 =
�
gdξ (2.21)

is the zeroth moment and

q =
�
cgdξ (2.22)

gives the heat flux as the first moment. Using the Boltzmann equation with the full

collision operator ∂f
∂t

+ ξ · ∂f
∂x = ΩB along with 2.20 and introducing a bgk-style

collision operator

(ξ − u)2

2 ΩB = 1
θe

(gEQ − g) (2.23)

where θe is an ‘energetic’ or thermal relaxation time which is manifested macroscop-

ically as the thermal conductivity and diffusivity, and

gEQ = (ξ − u)2

2 fEQ = ρ(ξ − u)2

2(2πRT)η/2
e
−(ξ−u)2

2RT (2.24)

it can be shown that g evolves according to a Boltzmann-like equation

∂g

∂t
+ ξ · ∂g

∂x
= 1
θe

(gEQ − g)− Λ (2.25)

where Λ is a term representing effects on conduction, compression work, and viscous

dissipation. The modeling philosophy represented by equations 2.20 through 2.25

form the basis from which many lattice Boltzmann thermal models can be derived.

All of these models have in common that on a single lattice, one distribution function

fi is used to model momentum while the distribution function, gi in the original case,

models thermal physics. Advantages of this approach are the simplicity of the lattice

and the ability to tune the Prandtl number Pr = ν

α
by setting θ and θe (or their

non-dimensional equivalents τ and τe) appropriately. A disadvantage is the doubling

of the memory requirement, although a similar increase in computational overhead is

common to all thermal models over their athermal counterparts.

47

Examples of the many double-distribution models, in addition to the original (He

et al., 1998), include the model of Shi et al. (2004), in which viscous heating is handled

in a simpler manner that that represented by Λ and in which the energy distribution

function is guaranteed to be non-negative as is required by physics. Guo et al. (2007)

developed a double distribution model which instead of using an internal energy

distribution function, uses a total energy distribution function h̃ = ξ2

2 f which allows

for polyatomic gasses to be modeled, in contrast to the monatomic gasses treated

thus far. This enables the more realistic modeling of both the constant volume and

constant pressure specific heats cv and cp, respectively. Many practical situations

are well described by the Boussinesq approximation, in which all fluid properties are

assumed constant with temperature, as is density except for the influence of variable

density on a buoyancy force. Guo et al. (2002) developed a double distribution

function approach incorporating the Boussinesq approximation for incompressible

flows using a temperature distribution function.

For many applications the viscous heating and compression work (incompressible

flows) are negligible. A simplified model proposed by Peng et al. (2003) for such

cases was developed by merely dropping Λ in the model of He et al. (1998) which

represent these effects. Li et al. (2008) investigated the consequences of such an

omission and constructed an improved simplification of He et al. (1998) which avoids

these consequences.

2.2.5 Boundary Conditions

In contrast to cfd approaches based on the macroscopic conservation equations in

which boundary conditions are given in terms of the thermohydrodynamic variables

being modeled (e.g. velocity u, temperature T , heat flux q, etc.), boundary con-

ditions in lattice Boltzmann methods must be stated ultimately in the form of the

distributions fi and gi as appropriate. These boundary distributions are only partially

48

functions of the macroscopic variables, and the main challenge in forming boundary

conditions for lattice Boltzmann methods is determining the distributions in a manner

consistent with the physics being described.

For illustrative purposes, consider a d2q9 node on a lower bounding wall as shown

in figure 2.2.4. During the operation of the lattice Boltzmann process, populations

stream in from neighboring nodes in the fluid and the lower boundary. For example,

distribution 7 streams in from the neighboring upper right node in the fluid and

(possibly, depending on the specific implementation) collides. Thus in this situation

nodes 0, 1, 3, 7, 4, and 8 are known at this boundary node, but distributions 2, 5,

and 6 are unknown as there are no nodes inside the wall in this example.

0 1
2

3
4

56

7 8
1 3

4 78

Figure 2.2.4 Node at a Floor: Distri-
butions 2, 6, and 5 Are Unknown

The simplest method of determining these unknown (momentum) distributions (f)

is the bounceback condition for no slip at a boundary. A holdover from lattice gas

automata (D’Humières and Lallemand, 1987), this condition merely states that the

incoming distributions are reflected back in the direction they come from, hence f2 =

f4 and thus f4 streams back into the fluid, etc. This essentially Dirichlet condition is

very simple to implement and is one reason for the popularity of lattice Boltzmann

methods in recent years: complex boundaries such as those in porous or granular

media can be easily modeled. In studying flows in particulate suspensions, Ladd

(1994b, 1994a) considered bounceback with the boundary not on nodes themselves

but on the intersecting links between nodes, allowing for higher resolution in the

representation of the boundary geometry. A systematic study of the bounceback

49

condition was conducted by He et al. (1997), finding this to be a first order method

due to the presence of a slip velocity at the wall, in contrast to the effective second

order nature of the lattice Boltzmann model in the fluid. The ‘halfway bounceback’

with the boundary considered to be on links halfway between nodes was studied

as well and was shown to be second order accurate. Bounceback conditions were

likewise investigated by Noble et al. (1995a), who proposed an alternative second

order accurate scheme which uses nodes placed within the wall in addition to those on

the boundary between the wall and fluid; these interior wall nodes supply distributions

to the boundary/fluid interface.

Given that the bounceback condition leads to a slip velocity at a boundary which

is fictitious in the macroscopic limit (Knudsen number Kn� 1, i.e. the microscopic

length scale � the length scale of the flow), Inamuro et al. (1995) offered a slip-

canceling boundary condition in which the unknown distributions are assumed to be

equilibrium distributions which incorporate ‘counter slip’ velocity and density terms.

These slip terms are found by enforcing constraints formed using the equations for

the macroscopic moments (e.g. u) of the distribution functions.

Chen et al. (1996), noting that the lattice Boltzmann method is a finite-difference

discretization of the Boltzmann equation, developed an extrapolation boundary con-

dition similar to those used in traditional finite difference methods. Here, like Noble

et al. (1995a), nodes are defined within the wall in addition to on the boundary,

except that the distributions at these interior nodes are found by extrapolating from

the nodes on the boundary and one lattice link into the fluid. All distributions then

stream and collision happens everywhere except the boundary where the equilibrium

distributions are used to enforce velocity conditions.

By incorporating the equations for the moments of the particle distribution func-

tion and assuming that the non-equilibrium portion fneq = f − feq of the particle

distribution normal to a boundary bounces back, Zou and He (1997) developed a

50

second order method. The idea of the non-equilibrium distribution bouncing back

was subsequently explained in greater detail and put on a more fundamental theo-

retical basis for both athermal and thermal (double-distribution) models by He et

al. (1998). Continuing with the use of the non-equilibrium distribution, Guo et al.

(2002a, 2002b) proposed a second order condition by extrapolating fneq from nodes

in the fluid (rather than from any nodes placed within the wall in the manner of Chen

et al. (1996)), and applied this to athermal and (double-distribution) thermal models

(Guo et al., 2002, 2007)

Starting from a more fundamental basis in kinetic theory (e.g. (Cercignani, 1988)),

Ansumali and V. Karlin (2002) developed a “kinetic” boundary condition, which was

subsequently used in thermal and rarefied flow (Kn ≈ O(1) or greater) regimes

(Prasianakis, 2008)

All of these conditions so far have been of the Dirichlet type. D’Orazio et al. (2004)

presented both Dirichlet and Neumann types using the original double distribution

model of He et al. (1998). For momentum the non-equilibrium bounceback method

was used while the conditions for internal energy, both in the form of a specified

temperature (Dirichlet type) or specified heat flux (Neumann type), were found using

a method derived from the counter-slip idea of Inamuro et al. (1995). In this thermal

case, the counter slip quantity is a ‘counter slip energy density’ incorporated into geq;

specific conditions are constructed using this geq and constraints formed from the

discrete equivalents of equations 2.21 and 2.22.

All of these conditions were originally applied onto standard lattices such as d2q9.

Non-standard lattices such as those in figure 2.2.3 will require complex boundary

condition implementation, as not only does a boundary node contain unknown distri-

butions, but nodes at least one lattice link away from the boundary will also contain

unknown distributions.

Boundary conditions can also be applied to fluid nodes that are boundaries of the

51

lattice Boltzmann domain, for example periodic, inlet, or outlet boundary conditions

in velocity or pressure as appropriate. Many of the boundary condition references

listed above contain their own implementations of these conditions. However with

the exception of periodic conditions, these types of boundaries are not used in this

work and will not be mentioned in any detail here.

2.2.6 Conjugate Heat Transfer with Lattice Boltzmann

In addition to solving problems of purely fluid flow, the lattice Boltzmann technique

has also been employed in conjugate simulations involving multiple heat transfer

processes in multiple media, solid and fluid. The work of Wang et al. (2007) and Meng

et al. (2008) used double-distribution lattice Boltzmann models to simulate transient

flow and heat transfer in both thick conducting walls and in the flow domain bounded

by those walls as shown in figure 2.2.5. For the solid walls, the problem being solved

is implicitly one of fluid conduction as the boundary conditions for the walls and

the lack of a buoyancy force in the lattice Boltzmann model for the ‘fluid’ which

constitutes the walls leads to a null velocity field. In the former work (Wang et al.,

2007), comparisons with simulations of the same transient conjugate problem done

in the commercial code fluent show that the lattice Boltzmann technique yields

grid-converged solutions with coarser grids and in less than half the computational

time.

Lattice Boltzmann Solid

Lattice Boltzmann Fluid

Figure 2.2.5 Conjugate Lattice Boltzmann
Model for Wall Conduction and Fluid Flow

52

Radiation and convection across a divided enclosure was considered by Mezrhab et

al. (2007) in which a finite difference solution to radiation from walls was coupled to

a lattice Boltzmann model of convective flow. More recent investigations have used

lattice Boltzmann models for a statically conductive and radiatively participating

medium with a finite volume model of radiation from the walls bounding a cavity

(Mondal and Mishra, 2009).

2.2.7 A Note on Turbulence Modeling

Although the modeling of turbulence is out of scope for this work, any realistic cfd

model of the flows within or around buildings must include some representation of

turbulence. One of the characteristic features of turbulent flows is the large spectrum

of length scales (eddy sizes) present, with the largest scale being given, for example, by

the geometry of the boundaries enclosing the flow, down to the very small Kolmogorov

scale representing the length over which energy is viscously dissipated. In principle

any cfd method could be used to simulate all scales of the flow by using a grid spacing

small enough to capture the Kolmogorov scale. Such a direct numerical simulation

(dns) technique has been used with lattice Boltzmann models, e.g. see references in

(Chen and Doolen, 1998 and Yu et al., 2003), however the computational overhead

required for dns is so overwhelming that this technique is limited to simulations of

model flows supporting fundamental research in turbulence.

Practical problems of engineering interest employ turbulence models to capture

essential features of turbulent flows without having to represent all length scales. In

the context of Navier-Stokes modeling of fluid flows, the two dominant techniques

are Reynolds averaged Navier-Stokes (rans) and large-eddy-simulation (les). In

the former the velocity field is decomposed into a mean and fluctuating part, which

when substituted back into the Navier-Stokes equations, leads to a term called the

Reynolds stress which represents stresses due to the fluctuating component. This

53

extra stress term gives rise to the closure problem, in which there are more unknowns

than equations. Various relatively ad hoc models then provide closure by modeling

this stress in terms of the macroscopic flow. les is similar in spirit, however the

largest scales of the turbulent fluctuations are explicitly modeled, while a subgrid-

scale model represents the flow physics at length scales smaller than the ‘filter width’;

hence les represents a middle ground between rans and dns (Pope, 2000).

In the context of lattice Boltzmann models incorporating turbulence, most at-

tempts have been based on les techniques incorporating multiple relaxation times,

for example simulations of jets (Yu and Girimaji, 2005) and combustion processes

(Yu, 2004), flows in a building atrium with staircases (van Treeck et al., 2006), and

lid-driven cavity flow (Chen, 2009).

There are some early indications that the kinetic approach to fluid flow can pro-

vide greater insight into turbulence and perhaps have some advantages in turbulence

modeling. The entropic lattice Boltzmann technique (Karlin et al., 1999 and An-

sumali and V. Karlin, 2002) was examined by Ansumali (2004) and shown to have a

(perhaps very basic) implicitly built-in subgrid scale model; simulations of flow past

a square cylinder showed good agreement with experiment for flow features associ-

ated with turbulence. Double-distribution thermal lattice Boltzmann simulations of

natural convection in a square cavity by Dixit and Babu (2006) also compared well to

benchmark results of turbulent convection despite not having any turbulence model

explicitly built in.

Such results are surprising, and although theoretical investigations are incomplete

and ongoing (Chen et al., 2004, Ansumali et al., 2004, Succi et al., 2006 and Girimaji,

2007), early indications give hope that the kinetic approach may provide improved

models of turbulence.

54

2.3 Discussion

In this chapter, techniques for coupling cfd and heat transfer/es simulation ap-

proaches have been discussed. It is here proposed to offer another method in which

separate models of cfd and heat transfer are coupled under the umbrella of a common

modeling language (Modelica) instead of coupling separate programs. The manner

of this coupling will allow for the conflation of multidimensional cfd with lower di-

mensional processes, for example one dimensional heat conduction, given that high-

resolution and multidimensional approaches for heat transfer through walls is not

always necessary.

Given that the coupling is between separate models using well defined interfaces

enabled by the design of the modeling language itself and not between separate pro-

grams leads to the possibility that the separate models can be constructed without

the overlap seen in the coupling of separate programs, and without the need for the

explicit coding of iteration between different models to achieve a consistent solution.

The coupling paradigm is thus conjugate in a sense; the terms internal and external

are not helpful when using a hierarchical modeling language instead of programs.

This leads to the coupling method being the use of T and Q as the coupling vari-

ables, and the coupling strategy being full dynamic. In the context of the previous

coupling paradigms, this overall approach is something of a middle road or hybrid

one, being a coupling between two dimensional cfd and one-dimensional conduction

yet is nevertheless conjugate in spirit because there exist simultaneous equations for

all processes in one greater model. Hence it is referred to as semi-conjugate, or in the

whimsical spirit of the ping-pong and onion nomenclature, as “tangelo”.

Furthermore, an alternative cfd approach based on kinetic theory – lattice Boltz-

mann – has been introduced. This approach offers the benefits of a fairly simple

computational scheme for unsteady flows and includes as an inherent part of the so-

lution not only the velocity vector and temperature fields, but also the heat flux (and

55

Tangelo Coupling

t0 es cfd

t1 es cfd

t2 es cfd

t3 es cfd

t4 es cfd

t5 es cfd
Figure 2.3.1 Tangelo Coupling

thus heat flow rate). Heat flux is just another moment of the distribution function and

not a derived quantity: there is no need to compute the derivative of the temperature

field and the calculation of heat flux is local to a node. Indeed, although the term

“Neumann” has been used above to refer to the application of a specified heat flux

in lattice Boltzmann models, this term does not truly apply here because a gradient

is not being specified. In the context of Boltzmann based approaches, the heat flux

is of a similar character to velocity – both are moments of a distribution function,

and in the context of double distribution models they are the same order moment –

and the application of a heat flux at a boundary is conceptually no different than the

application of a velocity at a boundary.

56

The combination of the coupling approach outlined above with the lattice Boltz-

mann method suggest that a simple, straightforward approach is possible, using as

the coupling variables the actual ones of interest, Q and T , without the need for any

intermediate variables such as h.

57

CHAPTER 3: IMPLEMENTATION

3.1 Description of the Lattice Boltzmann Model Used

The specific lattice Boltzmann model used in this work is the two dimensional, nine

molecular velocity double distribution model of Li et al. (2008) which is a simplifi-

cation of the original double distribution model of He et al. (1998). This simplified

model excludes viscous dissipation and compression work, both of which are negligi-

ble in the low Brinkmann and Mach number airflows associated with buildings; hence

the term Λ, along with the requirement to compute temporal and spatial derivatives

of the velocity field, is unnecessary. However Λ is not simply dropped in the manner

of Peng et al. (2003); rather a modified model is created for both fi and gi. A brief

description of the model follows.

For momentum the incompressible scheme of Guo et al. (2000) is used, along with

the Boussinesq approximation of fluid properties being constant with temperature

with the exception of density, and even then only in the context of a buoyancy force.

Here the buoyancy force is expressed as G = ρ0g − ρ0gβ(T − Tm); ρ0 is a reference

density, in this work taken to be the density of air at standard temperature T0 and

pressure p0, 293.15 K and 101.325 kPa, respectively; Tm is a ‘reference’ temperature,

often taken to be the average of the temperature field; g is the gravity vector; β is

the coefficient of thermal expansion, taken here to be that of an ideal gas which is

to say that β = 1/T0. This form can be simplified by absorbing the static term ρ0g

into the pressure so that hereafter G = −ρ0gβ(T − T0). The evolution equation is

the standard one with the inclusion of the buoyancy force

fi(x+ ξiδt, t+ δt) = fi(x, t)−
1
τ

�
fi(x, t)− feqi (x, t)

�
+ δtG · ξ̌i − u

p
feq
i

(3.1)

whereas the equilibrium distributions feq are given by

58

feq
i

=

ρ0 − 20
12
p

ξ̌2
+ ρ0f̃eqi , i = 0

1
3
p

ξ̌2
+ ρ0f̃eqi , i = 1, 2, 3, 4

1
12
p

ξ̌2
+ ρ0f̃eqi , i = 5, 6, 7, 8

(3.2)

f̃eq
i

is

f̃eq
i

= ρ0wi
�

3
ξ̌2

(ξi · u) + 9
2

(ξi · u)2

ξ̌4
− 3

2
(u · u)
ξ̌2

�
(3.3)

and the weights wi are the same as before

wi =

4
9 , i = 0
1
9 , i = 1, 2, 3, 4
1
36 , i = 5, 6, 7, 8

(3.4)

In contrast to more typical lattice Boltzmann models, the pressure rather than the

density is the (modified) zeroth moment of fi.

p = 12ξ̌2
20

� 8�

i=1
fi + ρ0f̃eq0

�
(3.5)

The velocity remains the familiar first moment

u = 1
ρ0

8�

i=0
ξifi (3.6)

For the internal energy distributions gi, a new equilibrium form geq
i

is determined

which allows for the proper exclusion of viscous heating and compression work terms.

In the context of the Boussinesq approximation this is

geq
i

= wiρ0
η

2RT
�
1 + 3(ξi · u)

ξ̌2
+ 9

2
(ξi · u)2

ξ̌4
− 3

2
(u · u)
ξ̌2

�
(3.7)

The evolution of gi is given as

gi(x+ ξiδt, t+ δt) = gi(x, t)−
1
τe

�
gi(x, t)− geqi (x, t)

�
(3.8)

59

however it will be shown in the next chapter that this discretization is insufficient to

recover the heat flux at a greater than O(1) rate of grid convergence. For this the

discretization of the original double distribution scheme will be necessary (He et al.,

1998) and will be detailed in Chapter 4.

A Chapman-Enskog expansion reveals that this scheme recovers the correct macro-

scopic equations for the velocity and temperature fields and that the kinematic vis-

cosity ν and thermal diffusivity α are given by

ν =
�
τ − 1

2

�
ξ̌2δt

3

α =
�
τe −

1
2

�
ξ̌2δt

3

(3.9)

as shown in (Guo et al., 2000 and Li et al., 2008). It can be easily shown that while

the viscosity and thermal diffusivity for air can be correctly specified – and hence so

can the Prandtl number Pr = ν/α – the thermal conductivity κ and specific heat

cp as given by this model cannot be. While lattice Boltzmann models exist which

can overcome this deficiency, they are more complex and are mainly relevant for the

modeling of acoustic physics, which is not of interest here. Furthermore, results in

the next chapter will demonstrate that the correct heat flux can be had by re-scaling

by the ratio of the thermal conductivity of the model to that of air.

For many double distribution thermal models, it is essential that the lattice veloc-

ity ξ̌i = δx/δt also be equal to the mean molecular speed
√

3RT for correct physics.

Fortunately this is not the case in this model (Li et al., 2008) as this would dictate

very small timesteps.

The moments of gi then give the temperature and heat flux

T = 1
ρ0R

8�

i=0
gi (3.10)

q =
8�

i=0
cigi (3.11)

60

with ci = ξi − u being the peculiar velocity.

The boundary condition used for the momentum distributions fi was the non-

equilibrium extrapolation scheme since it works well the moving boundaries seen

in the planar Couette cases considered in Chapter 4 and is second-order accurate

(Guo et al., 2002a). The basic idea of this condition is that the distributions at a

wall can be decomposed into equilibrium and non-equilibrium parts fi(xwall, t) =

feq
i

(xwall,u, p, t) + fneq
i

(xwall, t) and that these two components can be determined

by extrapolation from the known distributions at nodes neighboring the wall. The

equilibrium component is partially known as the velocity at the wall is typically

known, however the pressure is not; in the manner of Li et al. (2008)

feq
i

(xwall,u, p, t) ≈

1
3
p(xf ,t)
ξ̌2

+ ρ0f̃eqi (xwall, t), i = 1, 2, 3, 4
1
12
p(xf ,t)
ξ̌2

+ ρ0f̃eqi (xwall, t), i = 5, 6, 7, 8
(3.12)

where xf denotes the nearest node in the fluid, away from the wall. The non-

equilibrium component is estimated as

fneq
i

(xwall, t) ≈ fi(xf , t)− feqi xf , t (3.13)

The boundary condition for the internal energy distributions gi was taken either as

the counter-slip approach of Inamuro et al. (1995) as modified by D’Orazio et al.

(2004), or as the non-equilibrium bounceback condition of Zou and He (1997), as

described by He et al. (1998). The counter-slip condition assumes that the unknown

gi are the equilibrium distributions with a ‘counter-slip’ internal energy density �́, the

non-slip internal energy density being � = η

2RT

gunknowni = ρ0(�wall + �́)wi
�
1 + 3(ξi · u)

ξ̌2
+ 9

2
(ξi · u)2

ξ̌4
− 3

2
(u · u)
ξ̌2

�
(3.14)

For a specified temperature at the wall Twall, the constraint is

61

8�

i=0
gi = ρ0�wall = ρ0

η

2RTwall (3.15)

Substituting equation 3.14 into equation 3.15 yields an equation for ρ0(�wall + �́)

which is then used back in equation 3.14 for the gunknown
i

.

During the course of this work it was found that the non-equilibrium bounceback

scheme for gi is more easily implemented than the counter-slip condition while giving

essentially the same results, and also led to the simple creation of Robin type bound-

ary nodes in addition to the Dirichlet types discussed until now. This condition can

be compactly given as

(gα − geqα)− ξα(fα − feqα) = ξβ(fβ − feqβ)− (gβ − geqβ) (3.16)

Here, α and β indicate opposite molecular velocities, for example if α = 6, then

β = 8 (He et al., 1998). This type of condition can easily handle Dirichlet (specified

temperature) conditions via the equilibrium distributions geq
i

. Robin type boundary

conditions can be defined with the same non-equilibrium bounceback scheme given

connectors at these nodes for temperature and heat flow rate as a flow variable as

it and not the heat flux is the conserved quantity in the general case; a solution can

be found if this Robin node is connected to another model with sufficient equations

relating temperature and heat flow rate. The heat flow rate at a node – in W/m in

this two-dimensional model – is calculated from the heat flux at a node by multiplying

the heat flux by the grid spacing.

3.2 Manifestation in Modelica

The model described in the previous section was implemented in Modelica as a dis-

crete model with the timesteps being events as created using the built-in function

sample(). The lattice Boltzmann evolution equations written here are in terms of

62

the new distribution, e.g. fi(x + ξiδt, t + δt) = F (fi(x, t)), however when using

Modelica it is more convenient to transform this so that the current distribution is

described in terms of the previous distribution fi(x) = F(pre(fi(x - ξiδt))

).

Modelica being a language for hierarchical model creation, the lattice Boltzmann

model is built up from constituent submodels, the foundation of which are the node

models. These models contain the evolution equations, equilibrium distributions

equations, boundary condition equations as appropriate, and access the shared field

variables u, p, and T and distributions fi, geqi , etc., using implicit connections en-

abled by the inner/outer construct. Nodes are collected to form (cfd) domains,

can exist in the core or on the edge of a such a cfd domain, and can represent a

fluid or a wall. Nodes on the edge can be fluid or wall nodes, but always implement

boundary conditions. Figure 3.2.1) gives a schematic example of a generic domain,

and a more specific example with fluid nodes (unfilled) and edge nodes (squares)

implementing Dirichlet (D) or Robin (R) conditions on a wall (shaded) or periodic

boundary conditions in a fluid (P).

E

E

E

E

E

E

E

EE E

E E

C

C

C

C

P

P

P

P

D D D D

R R R R

C

C

C

C

Edge vs. Core Nodes Fluid and
Boundary Nodes

Figure 3.2.1 Collection
of Nodes into cfd Domains

Domains are further incorporated into models of specific flow situations as will be

shown in the next chapter. An important class of models are the boundary interfaces,

63

which are intermediary between the cfd domain and other models, such as conduction

through a wall. In this work some of the walls are considered to be isothermal, and for

these cases the interfaces are simple ‘pass-throughs’ which equate temperatures and

sum heat flows between the nodes of a cfd domain and the bounding wall. Figure

3.2.2 gives an overview of the package structure containing relevant models, and

Appendix B gives examples of the models as implemented in Modelica.

64

BldgPhysics Connectors

T

T, Q̇

...

Heat

Transfer

Convection

...

Conduction

Examples

Fluids

cfd2d

For
Conju-
gation

Examples

Functions

Boundary
Inter-
faces

Nodes PartialNode

FluidCore

Dirichlet

Robin

...

Figure 3.2.2 Abbreviated Package Structure

65

CHAPTER 4: STUDIES, EVALUATIONS, AND RESULTS

In this chapter the lattice Boltzmann model described in the previous chapter is

used on a number of test problems which either have analytical solutions or bench-

marked data in the literature. The first section deals with problems of a purely

fluid-mechanical nature, while the second section considers problems to test the cou-

pling of cfd to conductive heat transfer; some of these latter problems are typically

considered to be pure fluid-mechanical ones but here been modeled here in a semi-

conjugate manner.

The semantic distinctions between verification and validation here follow those of

Roache (1998). Verification refers to the idea that the implementation of a model

actually represents that model, i.e. the implementation is mathematically correct. In

practical terms, that the computational (discretized) solution approaches the contin-

uum solution as the grid spacing goes to zero. The rate at which this occurs implies a

level of practical usefulness with respect to computational efficiency. Validation refers

to the idea that the model that has been implemented is appropriate to the practi-

cal question being asked, i.e. that the (verified) equations are the correct equations

to use. In practical terms, that the computational (discretized) solution describes a

physical situation – that it agrees with experiment, for example. The closeness of

this agreement implies a practical usefulness of a sort subtly different from that of

verification in that the validation can be used as a prediction of the outcome of a

physical experiment, or that the computational solution can be used as a tool for the

understanding of a physical experiment.

All cases were run using version 7.4 of Dymola (Dassault Systemes, 2010), either

on a Macintosh laptop running Windows xp in a virtual machine or on a desktop pc

running Windows xp. Initialization was done by setting all distributions fi and gi

66

to their equilibrium values, a typical technique yet one which nevertheless introduces

error in the early timesteps (Skordos, 1993).

4.1 Test Cases: Fluid Flow Only

The following cases represent situations modeled strictly as fluid-mechanics problems;

none of the multi-domian capabilities of Modelica are exploited and thus represent

cfd solutions only.

4.1.1 Thermal Planar Couette

As a first test of the implementation of a lattice Boltzmann model in Modelica,

the planar Couette problem is considered for its simplicity and the availability of

analytical solutions. This problem consists of two infinite parallel plates bounding

a fluid of viscosity ν and thermal diffusivity α = κ/ρcp. At time t < 0 the fluid

is uniformly at rest and at temperature Tbottom, and at t >= 0 the upper plate is

impulsively set into motion to the right at velocity uupper while its temperature is

instantaneously set to Tupper > Tbottom. The geometry is shown in figure 4.1.1

Tupper

Tbottom

y

x
y = 0

y = H

Uupper

Figure 4.1.1 The Planar Couette Problem

67

In this situation the Navier-Stokes equations reduce to:

∂u

∂t
= ν ∂

2u
∂y2

(4.1)

with boundary conditions, using the coordinate system with the origin on the bottom

surface:

t < 0 : u(y, t) = 0

t ≥ 0 : u(H, t) = Uupper

u(0, t) = 0

(4.2)

t < 0 : T (y, t) = Tbottom

t ≥ 0 : T (H, t) = Tupper

T (0, t) = Tbottom

(4.3)

Because Tupper > Tbottom the fluid is stably stratified and there is no vertical com-

ponent of velocity, thus the thermal aspect of this problem reduces to one of fluid

conduction in the y direction. Thus the heat diffusion equation reduces to a form

analogous to equation 4.1:

∂T

∂t
= α∂

2T
∂y2

(4.4)

with boundary conditions:

t < 0 : T (y, t) = Tbottom

t ≥ 0 : T (H, t) = Tupper

T (0, t) = Tbottom

(4.5)

Solutions to these equations can be found in many textbooks. Schlichting (1979) gives

the solution to equation 4.1 as:

68

u(y ⇒ H − y, t)
Uupper

=
∞�

n=0
erfc

�
2n H

2
√
νt

+ y

2
√
νt

�
−
∞�

n=0
erfc

�
2(n+ 1) H

2
√
νt
− y

2
√
νt

�

(4.6)

where erfc is the complimentary error function, and the transformation y ⇒ H−y is

necessary as the boundary conditions in Schlichting (1979) are flipped up–down from

those given here.

An alternate solution to equation 4.1 is given by White (2006), and is adapted

here as the solution for equation 4.4:

T (y ⇒ H − y, t∗)− Tbottom
Tupper − Tbottom

=
�

1− y
h

�
− 2
π

∞�

n=1

1
n
e−n

2
π

2
t
∗
sin

�
nπy

h

�
(4.7)

Where t∗ = (νt)
H2 is a dimensionless time. From this it is simple to show that the heat

flux is

q(y ⇒ H − y, T, t∗) = κ∂T
∂y

= κ
�
−∆T
h
− 2(∆T)
π

∞�

n=1

1
n
e−n

2
π

2
t
∗
�
nπ

h

�
cos

�
nπy

h

��

(4.8)

where ∆T = Tupper − Tbottom. Note that both equations 4.6 and 4.7 give linear

profiles of velocity and temperature at t→∞.

The initial cases were run with the standard lattice Boltzmann discretization

scheme for both the momentum and internal energy distributions, as described in the

previous chapter. The boundary conditions for the momentum distributions fi on the

top and bottom walls were implemented using non-equilibrium extrapolation (Guo

et al., 2002a, 2002b). The counterslip approach was taken for the implementation of

Dirichlet boundary conditions for the internal energy distributions gi on the top and

69

bottom walls (D’Orazio et al., 2004). Periodic boundary conditions were applied for

unknown fi and gi on the sides. Figure 4.1.2 depicts the cfd domain used.

P

P

P

P

D D D D

D D D D

F

F

F

F

Figure 4.1.2 The Planar Couette
Problem: Modelica Scheme

Criteria for momentum to considered at steady-state was that given by He et al.

(1996):
�
i,j
� u(xi,j , t)− u(xi,j , t− δt) ��
i,j
� u(xi,j , t− δt) �

< 10−6 (4.9)

where δt is the timestep and � • � denotes the L2 norm. Criteria for temperature to

be considered at steady state was

max

�
T (x, t)− T (x, t− δt)

T (x, t)

�
< 10−10 (4.10)

Both criteria had to be satisfied for a simulation to be considered to have reached a

steady state condition.

Using the properties of air with a temperature difference of 3 K, the lattice Boltz-

mann model gives unsteady results which compare very well to the analytical solu-

tions. The evolution in normalized coordinates is given in figure 4.1.3 for the velocity

and figure 4.1.4 for the temperature. For convenience and consistency, the nondi-

mensional time is taken to be that of Schlichting (1979) for the depiction of both

results.

70

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0

0.2

0.4

0.6

0.8

1 4
�

(νt)/H = 0.25

0.5

1.0

1.4

5.9

Normalized Horizontal Velocity: u/U

N
or

m
al

iz
ed

H
ei

gh
t:

y/
H

Simulated
Exact Solution

Figure 4.1.3 Planar Couette Velocity Evolution: Std. Discretization of g

71

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0

0.2

0.4

0.6

0.8

1 4
�

(αt)/H = 0.25

0.5

1.0

1.4

5.9

Normalized Temperature: (T-Tbottom)/(Tupper-Tbottom)

N
or

m
al

iz
ed

H
ei

gh
t:

y/
H

Simulated
Exact Solution

Figure 4.1.4 Planar Couette Temperature
Evolution: Std. Discretization of g

Despite the fact that the temperature evolves correctly, the heat flux is does not, as

shown in figure 4.1.5 for the upper surface. Furthermore, the steady state values of

the heat flux do not assume the values of the exact solution. Table 4.1.1 compares

the exact and simulated steady state heat fluxes for a variety of grid spacings and

cfd domain heights.

It can be seen in table 4.1.1 that the simulated heat flux nevertheless approaches

the exact solution as the grid spacing is reduced, suggesting some degree of verifica-

tion. An assessment of the rate of spatial convergence (grid refinement study) for the

heat flux was conducted using the following equation (Roache, 1998)

72

6 · 10−2 7 · 10−2 8 · 10−2 9 · 10−2 0.1 0.11 0.12 0.13
−22

−20

−18

−16

−14

−12

−10

−8

Time (s)

H
ea

t
Fl

ux
(W
/m

2)

Simulated
Exact Solution

Figure 4.1.5 Planar Couette Upper Surface Heat Flux Evolution: Std. Discretiza-
tion of g

Υ =
ln

�
q|grid3−q|grid2
q|grid2−q|grid1

�

ln(n) (4.11)

where Υ is the order of spatial convergence and n is the scaling factor between grid

sizes, i.e. if the grid spacing is δx, then

n =
δx|grid3
δx|grid2

=
δx|grid2
δx|grid1

(4.12)

Table 4.1.2 gives the results, indicating that this model, while showing good results

in the velocity and temperature fields, only has first order grid convergence in the

heat flux – the contracted second moment of the internal energy density distribution

– this is a slow and impractical rate. Extrapolation from the results in table 4.1.1

shows that the exact solution is only approached linearly and hence the grid spacing

must be very small.

73

Table 4.1.1 Planar Couette Steady State Heat Flux:
Std. Discretization of g

Rows Height q, simulated q, exact
(m) W/m2 W/m2

0.008 -24.48 -2.88
0.004 -27.36 -5.75

9 0.002 -33.11 -11.51
0.001 -44.62 -23.02
0.0005 -67.64 -46.04

0.008 -13.68 -2.88
0.004 -16.56 -5.75

17 0.002 -22.31 -11.51
0.001 -33.82 -23.02
0.0005 -56.84 -46.04

0.008 -10.08 -2.88
0.004 -12.96 -5.75

25 0.002 -18.71 -11.51
0.001 -30.22 -23.02
0.0005 -53.24 -46.04

0.008 -8.28 -2.88
0.004 -11.16 -5.75

33 0.002 -16.91 -11.51
0.001 -28.42 -23.02
0.0005 -51.44 -46.04

Table 4.1.2 Planar Couette Grid Convergence of Steady State Heat Flux: Std.
Discretization of g

Height # Rows q, simulated q, exact log(δx) log(qsim - qexact) Υ
(m) W/m2 W/m2

9 -33.11 -3.60 1.33
0.002 17 -22.31 -11.51 -3.90 1.03 1.00

33 -16.9105 -4.20 0.7324

In order to improve this situation, the standard discretization scheme of Li et

74

al. (2008) is abandoned in favor of the scheme of He et al. (1998) in the original

double distribution model. In this original model a true second order discretization

was employed to reconcile the conflict between the viscous dissipation’s dependance

on the viscosity as expressed by purely kinetic theory considerations, θRT , and the

requirement that the viscosity must be expressed in modified form as (θ−1/2δt)RT in

order to eliminate a truncation error (the original double distribution model requires

that ξ̌ =
√

3RT , hence the equation relating viscosity to the relaxation time being

different from that in Chapter 3). The model of Li et al. (2008) used here does not

include viscous heating, and so this inconsistency does not arise and the standard

discretization can be used, except, as shown above, when the heat flux is to be

computed not as a derivative of the temperature field but as a byproduct of the

distributions gi.

The second order scheme introduced by He et al. (1998) converts the Boltzmann

equation for the internal energy distribution – equation 2.25 without the term Λ –

into an implicit evolution equation

g(x+ ξδt, ξ, t+ δt)− g(x, ξ, t) =− 1
2τe
�
g(x+ ξδt, ξ, t+ δt)− geq(x+ ξδt, ξ, t+ δt)

�

− 1
2τe
�
g(x, ξ, t)− geq(x, ξ, t)

�

(4.13)

This equation can be made explicit by the substitution

gm = g + 1
2τe

(g − geq) (4.14)

so that equation 4.13 becomes

gm(x+ ξδt, ξ, t+ δt)− gm(x, ξ, t) = − 1
τe + 1/2

�
gm(x, ξ, t)− geq(x, ξ, t)

�
(4.15)

As the same lattice can be used for both the momentum distributions and the internal

energy distributions, equation 4.15 is fully discretized in temporal, physical, and

75

velocity spaces by substituting ξi for ξ. The temperature can be shown to be the

same as before:

T = 1
ρ0R

8�

i=0
gmi (4.16)

However the equation for the heat flux must be modified in light of of equation 4.14:

q = τe
τe + 1/2

� 8�

i=0
cigmi − ρ0�u

�
(4.17)

Once this modification is made and the model of planar Couette flow is run again,

the evolution of velocity and temperature still tracks the exact solution as shown in

figures 4.1.6 and 4.1.7

76

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0

0.2

0.4

0.6

0.8

1 4
�

(νt)/H = 0.25

0.5

1.0

1.5

6.2

Normalized Horizontal Velocity: u/U

N
or

m
al

iz
ed

H
ei

gh
t:

y/
H

Simulated
Exact Solution

Figure 4.1.6 Planar Couette Velocity
Evolution: 2nd Order Discretization of g

77

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0

0.2

0.4

0.6

0.8

1 4
�

(αt)/H = 0.25

0.5

1.0

1.5
6.2

Normalized Temperature: (T-Tbottom)/(Tupper-Tbottom)

N
or

m
al

iz
ed

H
ei

gh
t:

y/
H

Simulated
Exact Solution

Figure 4.1.7 Planar Couette Temperature Evolution: 2nd Order Discretization of
g

However now the simulated heat flux’s evolution tracks much more closely to the

exact solution as shown in figure 4.1.8.

In Chapter 3 it was pointed out that the thermal diffusivity α may be correctly

specified for air, but that the thermal conductivity cannot be. Hence the results given

thus far are for the thermal conductivity of the model, which in this case is κmodel =

0.00767 W

mK
in contrast to that of air at κair = 0.02572 W

mK
at standard temperature

and pressure. However this can be overcome by rescaling qair = (κair/κmodel)qmodel.

Figure 4.1.9 shows the evolution of the simulated heat flux compared to the exact

78

6 · 10−2 7 · 10−2 8 · 10−2 9 · 10−2 0.1 0.11 0.12 0.13

−11

−10

−9

−8

Time (s)

H
ea

t
Fl

ux
(W
/m

2)

Simulated
Exact Solution

Upper Surface

6 · 10−2 7 · 10−2 8 · 10−2 9 · 10−2 0.1 0.11 0.12 0.13

−3.5

−3

−2.5

−2

−1.5

−1

Time (s)

H
ea

t
Fl

ux
(W
/m

2)

Simulated
Exact Solution

Bottom Surface
Figure 4.1.8 Planar Couette Surface Heat Flux Evolution: 2nd Order Discretiza-
tion of g

solution found using κair; it it believed that the discrepancy early in the plots are a

reflection of the initialization of the distributions with their equilibrium values.

79

6 · 10−2 7 · 10−2 8 · 10−2 9 · 10−2 0.1 0.11 0.12 0.13
−38

−36

−34

−32

−30

−28

−26

Time (s)

H
ea

t
Fl

ux
(W
/m

2)

Simulated
Exact Solution

Upper Surface

6 · 10−2 7 · 10−2 8 · 10−2 9 · 10−2 0.1 0.11 0.12 0.13

−12

−10

−8

−6

−4

−2

Time (s)

H
ea

t
Fl

ux
(W
/m

2)

Simulated
Exact Solution

Bottom Surface
Figure 4.1.9 Planar Couette Surface Heat Flux Evolution: Conversion to Thermal
Conductivity of Air

80

Table 4.1.3 lists some results for the steady-state values of the heat flux, with the

unscaled and scaled heat fluxes. The simulated results were too close to allow the

computation of the order of spatial convergence for the heat flux, however this will

be done in the next problem.

Table 4.1.3 Planar Couette Grid Convergence of Steady State Heat Flux: 2nd

Order Discretization of g
Height # Rows ∆T q, simulated q, exact, κmodel qsim, rescaled κair q, exact κair % error

(m) (K) W/m2 W/m2 W/m2 W/m2

0.008 5 3 -2.88 -2.877 -9.65 -9.6455 0.0879%

0.008 -2.88 -2.877 -9.65 -9.6455 0.0879%
0.004 -5.75 -5.755 -19.27 -19.291 0.0859%
0.002 9 3 -11.51 -11.509 -38.58 -38.582 0.0010%
0.001 -23.02 -23.0198 -77.16 -77.164 0.0010%
0.0005 -46.04 -46.0395 -154.33 -154.327 0.0010%

0.008 -2.88 -2.877 -9.65 -9.6455 0.0879%
0.004 -5.75 -5.755 -19.27 -19.291 0.0859%
0.002 17 3 -11.51 -11.509 -38.58 -38.582 0.0010%
0.001 -23.02 -23.0198 -77.16 -77.164 0.0010%
0.0005 -46.04 -46.0395 -154.33 -154.327 0.0010%

0.008 -2.88 -2.877 -9.65 -9.6455 0.0879%
0.004 -5.75 -5.755 -19.27 -19.291 0.0859%
0.002 33 3 -11.51 -11.509 -38.58 -38.582 0.0010%
0.001 -23.02 -23.0198 -77.16 -77.164 0.0010%
0.0005 -46.04 -46.0395 -154.33 -154.327 0.0010%

0.008 -0.959 -0.9592 -3.21 -3.22 0.0164%
0.004 17 1 -1.92 -1.918 -6.44 -6.43 0.0879%
0.002 -3.84 -3.837 -12.87 -12.86 0.0879%
0.001 -7.67 -7.673 -25.71 -25.72 0.0424%

0.008 -4.8 -4.7958 -16.09 -16.08 0.0879%
0.004 17 5 -9.59 -9.592 -32.15 -32.151 0.0164%
0.002 -19.18 -19.183 -64.29 -64.30 0.0164%
0.001 -38.37 -38.366 -128.62 -128.61 0.0097%

4.1.2 Rayleigh-Bénard Convection

Thermally, planar Couette flow is simply a conduction problem. To examine the

model’s convective aspect, Rayleigh-Bénard convection, a problem geometrically sim-

81

ilar to the planar Couette case but different in the boundary conditions, was sim-

ulated. As before, two infinite parallel plates bound a fluid. However both plates

are stationary, and in contrast to the stable temperature field that occurs in planar

Couette flow, here the bottom plate is at a higher temperature than the the upper

plate, and any perturbation to the experiment will lead to hot fluid rising to the cold

upper surface where it cools and then flows back down to the hot surface.

Tupper

Tbottom

y

x
y = 0

y = H

Figure 4.1.10 The
Rayleigh-Bénard Convection Problem

The problem geometry is shown in figure 4.1.10. Mathematically the boundary

conditions are expressed as

t < 0 : u(y, t) = 0

t ≥ 0 : u(H, t) = 0

u(0, t) = 0

(4.18)

t < 0 : T (y, t) = Tbottom

t ≥ 0 : T (H, t) = Tupper

T (0, t) = Tbottom

(4.19)

with Tbottom > Tupper. The cfd domain is conceptually the same as in figure 4.1.2,

with set temperatures on the upper and bottom surfaces and periodic conditions

82

on the sides. Following the results of Clever and Busse (1974), from whence the

benchmark data for comparison is taken, the cfd domain is taken to be twice as wide

as its height. In contrast to some computational studies of this problem which rely

on numerical noise to provide a perturbation to initiate convective flow, a technique

which can require around 104 timesteps for flow to just for slow motion to start

(Zhou et al., 2004), this study applied a small and transient thermal perturbation

to one node at the middle of the bottom plate. For this convective flow case, the

dimensionless parameter of interest is the Rayleigh number

Ra = |g|β∆TH
3

να
(4.20)

with ∆T = Tbottom − Tupper. Use of the convergence (to steady-state) criteria given

in the section on planar Couette flow led to excessively long simulation times in this

situation, apparently due to memory limitations associated with Dymola. Thus for

these simulations, and all simulations in this work other than planar Couette cases,

the solution was considered to be steady-state if the Nusselt number, described below,

was constant to 5 decimal places for several seconds of simulated time. Figures 4.1.11

and 4.1.12 depict contours of constant streamfunction – streamlines – and isotherms

for three Rayleigh numbers. These plots compare qualitatively well to similar results

in the literature.

In examining convective heat transfer, the Nusselt number Nu = q/qconduction is

an important figure of interest: being the ratio of actual heat transfer across the fluid

domain to the heat transfer that would occur if conduction across the fluid domain

were the only available transfer mechanism, Nu gauges the ‘strength’ of convective

heat transfer and serves as a nondimensional measure of the heat transfer itself. Table

4.1.4 gives steady-state Nusselt numbers at the upper and bottom plates for various

83

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8
Ra = 5,000

N
on

di
m

en
sio

na
ly

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8
Ra = 10,000

N
on

di
m

en
sio

na
ly

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1
Ra = 20,000

Nondimensional x

N
on

di
m

en
sio

na
ly

Figure 4.1.11 Rayleigh-Bénard Streamlines

configurations and Rayleigh numbers and compares them to benchmark data from

Clever and Busse (1974).

During this work it was found that grids whose total number of nodes was above

approximately 2700 would fail to simulate in Dymola, with the practical consequence

that a grid convergence study could not be carried out to the error levels reported for

84

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.5

1 Ra = 5,000

N
on

di
m

en
sio

na
ly

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.5

1 Ra = 10,000

N
on

di
m

en
sio

na
ly

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.5

1 Ra = 20,000

Nondimensional x

N
on

di
m

en
sio

na
ly

Figure 4.1.12 Rayleigh-Bénard Isotherms

planar Couette flow. Additionally the grid was not doubled as in the planar Couette

case and the grid ratio used for determining the order of grid convergence Υ was not

constant. For this case Υ can still be calculated by

Υ = ω(Υprev) + (1− ω)
� ln
�

(nΥprev
12 −1)(Nu3−Nu2)

(nΥprev
23 −1)(Nu2−Nu1)

�

ln(n12)

�
(4.21)

where ω ∼ 0.5 is a relaxation parameter and the numerical subscripts indicate the

85

Table 4.1.4 Bénard Convection: Variations in Rayleigh Number

Height # Rows Ra ∆ T Nuu Nub Nubnchmk % error
(m) (K)
0.02 35 5000 6.1 2.034 2.034 2.116 -3.878%

0.0125 35 5000 25 2.081 2.081 2.116 -1.64%

0.02 35 10000 12.2 2.518 2.518 2.661 -5.38%
0.013 38 10000 44.4 2.609 2.609 2.661 -1.95%

0.03 35 20000 7.23 2.655 2.655 3.258 -18.25%
0.016 40 20000 47.7 3.135 3.135 3.258 -3.78%

coarseness/fineness of grids, with lower numbers representing finer grids. Obviously

equation 4.21 must be iterated to come to a solution (Roache, 1998). Results of this

iteration are given in table 4.1.4, which shows that the order of grid convergence for

the Nusselt number is 1.89.

Table 4.1.5 Bénard Convection: Grid Convergence for Ra = 5000

Grid H Nu (this work) Nu (benchmark) % error Υ
(m)

21 × 41 1.899 -10.26%
31 × 61 0.02 2.013 2.116 -4.87% 1.89
35 × 69 2.034 -3.88%

One inference that can be drawn from the results in table 4.1.4 is that the grid must

become finer as the Rayleigh number increases. With the limitations imposed by

Dymola, this resulted in the inability to explore larger Rayleigh numbers.

4.2 Test Cases: Conjugate Models and Tangelo Coupling

Whereas the two situations considered above were treated as purely fluid mechanical

86

problems simulated by cfd and provide some measure of verification of the lattice

Boltzmann method as implemented here, the following problems demonstrate semi-

conjugate or ‘tangelo’ coupling as well as exemplify some simple multi-(discipline or

subject) domain capabilities.

4.2.1 Thermal Planar Couette Flow, Modeled as a Laboratory Experiment

On its own, cfd is typically only concerned with what happens inside a fluid do-

main and is unconcerned with anything outside this realm: the only connection to

the larger universe is the boundary conditions. For example, bounding no slip/no

penetration surfaces are conceptually viewed as infinitesimally thin sheets which pre-

vents mass flow, have a specified temperature or heat flux, and otherwise have no

computational life. This is the attitude taken in the first two cases above, and for

many problems of interest this is an appropriate choice. However for investigations of

systems composed of other interacting subsystems, which include fluid subsystems,

the system boundaries must be expanded beyond the traditional cfd realm.

In this subsection the planar Couette case is simulated with these boundaries

expanded to represent this situation as might be implemented as a physical laboratory

experiment, albeit in a simple way. Consider an apparatus with a stationary wall and a

moving wall, both of which are of finite thickness and have material properties such as

thermal conductivity, specific heat, and density. In a physical experiment, the infinite

extent of the plates might be approximated by using a circular Couette apparatus –

two concentric cylinders with fluid being sheared in the space between the cylinders

– whose average radius is much larger than the gap between the cylinders. For the

Couette flow, the temperatures of the surfaces in contact with the sheared fluid are

to be set to given values. Consider however that the experimental apparatus heats or

cools the plates from the outside surfaces by means of a water bath, i.e. the surfaces

not in contact with the sheared fluid are in contact with a circulating thermal control

87

fluid. Although one could fairly easily determine the required temperatures of the

outside surfaces as well as the temperature of the bath if a convective heat transfer

coefficient h is known, consider for illustrative purposes that the outside surfaces’

temperatures are to be actively monitored and controlled in an active feedback loop

by controlling the temperature of the baths. Conceptually this situation is represented

in figure 4.2.1.

ρu, κu, cp,u 1-D fd Heat Diffusion

Tu,o

Tu,i

Uupper

ρf , κf , cp,f cfd Domain

ρb, κb, cp,b 1-D fd Heat Diffusion

Tb,o

Tb,i

y

x

Sensed Temperature

Convection

PID Controller TUpper Setpoint
Uupper Setpoint

Sensed Temperature

Convection

PID Controller TBottom Setpoint

Figure 4.2.1 The Conjugated Planar Couette Problem

Figure 4.2.1 is also, not incidentally, a representation of the Modelica model for

this situation. For the water baths, convection models were created representing

Newton’s law of convective heat transfer; models of the walls were created using a

one-dimensional finite difference scheme for the (conductive) heat diffusion equation.

These models are given in Appendix B. The proportional-integral-derivative (pid)

88

controller used was from the Modelica Standard Library, and the setpoint models

simply fed a number into the models they are connected to.

The links in figure 4.2.1 indicate certain modeling protocols: the open triangular

arrows indicate connections with a directionality, i.e. using input or output Mod-

elica keywords; the open circles terminating the other connectors indicate acausal

connectors linking temperatures and heat fluxes, the latter being a flow variable in

this case involving a isothermal surfaces of infinite extent.

A general unsteady solution is unknown due to the presence of the pid controller,

however in steady state the problem is once again simply one of conduction. Because

Tu,o and Tb,o are known, the unknown temperatures Tu,i and Tb,i are easily found to

be

Tu,i = ∆yu
κu

Tb,o − Tu,o
Rtot
val

+ Tu,o

Tb,i = Tb,o −
∆yb
κb

Tb,o − Tu,o
Rtot
val

(4.22)

where ∆yu and ∆yb are the thicknesses of the upper and lower plates, respectively,

and Rtot
val

is the total R-value of the two plate and fluid combination:

Rtot
val

=
�

i

∆yi
κi

(4.23)

with i = {u, f, b}. Being steady-state, the temperature profile within each material

is linear. The convection models, being expressions of Newton’s law of cooling, leads

to

Tu,amb = 1
h

Tb,o − Tu,o
Rtot
val

+ Tu,o

Tb,amb = −
�

1
h

Tb,o − Tu,o
Rtot
val

− Tb,o
� (4.24)

Material parameters used are given in table 4.2.1. For both of the the convection

models, the convection coefficient h was taken to be 4 W/(m2 K). Taking Tu,o and

89

Tb,o to be 298.15 K and 293.15 K, respectively, the results of the exact solution in

from equations 4.22, 4.23, and 4.24 as well as a conjugated simulation are given in

figure 4.2.2 and table 4.2.2.

Table 4.2.1 Parameters for the Conjugate Planar Cou-
ette Example

Part ρ κ cp

(kg/m3) W/(m K) J/(kg K)
Upper Plate 100 0.05 100

Fluid 1.20 0.0074 287
Bottom Plate 50.0 0.025 50

292 293 294 295 296 297 298 299
−0.5

0

0.5

1

1.5

·10−2

1-D fd Heat Diffusion

cfd Domain

1-D fd Heat Diffusion

Upper ambient temperature

Bottom ambient temperature

Temperature (K)

H
ei

gh
t

(m
)

Simulated
Exact Solution

Figure 4.2.2 The Conjugated Planar
Couette Problem: Temperature Profile

90

Table 4.2.2 Conjugated Planar Couette Heat Flows

Location
Heat Flux

(W/m2) % Error
Heat Flux/δx

(W/m) % Error
Exact Simulated Exact Simulated

Tu,amb

3.934927

– –

0.007869853

0.007869856 -0.00003%
Tu,i 3.934923 0.00009% 0.007869856 -0.00003%
Tb,i 3.934924 0.00005% 0.007869849 0.00005%
Tb,amb – – 0.007869855 0.00002%

This case demonstrates the expansion of the boundaries of a cfd simulation through

the combination of a cfd model with conductive heat transfer as well as a simple

control scheme.

4.2.2 Convection in a Square Cavity with Set Temperatures on Side Walls and

Adiabatic Top and Bottom Walls

The previous problems used cfd domains that were of infinite extent in one direc-

tion. To examine solutions using a more realistic geometry, the problem of natural

convection in a square cavity is simulated. Here the two vertical surfaces of a cavity

have set temperatures while the horizontal floor and ceiling surfaces are adiabatic as

shown in figure 4.2.3. Here the left vertical wall is the hot surface while the right

vertical surface is the cold one.

91

Th Tc

adiabatic

adiabatic

W=L

H=L

Figure 4.2.3 The Cavity
Convection Problem

In the interest of exploring multi-domain modeling which includes cfd, however, this

problem is modeled in a semi-conjugate or ‘tangelo’ fashion by connecting each node

on the horizontal surfaces to a conduction model and a convection model. These fea-

tures approximate the use of insulation on these surfaces and also allow the horizontal

surfaces to be non-isothermal. Figure 4.2.4 visually depicts the Modelica model of

this problem.

92

D

D

D

D

Se
t
T

=
T
h

D

D

D

D

Set
T

=
T
c

R R

C
on

du
ct

io
n

C
on

ve
ct

io
n

C
on

du
ct

io
n

C
on

ve
ct

io
n

R R

C
onduction

C
onvection

C
onduction

C
onvection

F

F

F

F

Figure 4.2.4 The Cavity Convection Problem
in a Semi-Conjugate Fashion: Modelica Scheme

The results to be given were computed using a grid size of 52 × 52 lattice nodes.

Figure 4.2.5 depicts streamlines and isotherms for a Rayleigh number of 10,000, and

Figure 4.2.6 gives streamlines and istotherms for Ra = 100,000. Both patterns are

in qualitative agreement with corresponding figures published in the literature, for

example that of the benchmark data of Davis (1983). Most of the isotherm lines are

normal to the floor and ceiling surfaces, in line with adiabatic conditions, although

93

some isotherms are not: this model does not use true adiabatic conditions, rather

it only models an adiabatic surface as it might be approximated in a laboratory

experiment.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Ra = 10,000

N
on

di
m

en
sio

na
ly

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
Ra = 10,000

Nondimensional x

N
on

di
m

en
sio

na
ly

Figure 4.2.5 Cavity Convection, Ra = 104

94

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 Ra = 100,000

N
on

di
m

en
sio

na
ly

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
Ra = 100,000

Nondimensional x

N
on

di
m

en
sio

na
ly

Figure 4.2.6 Cavity Convection, Ra = 105

More quantitative comparisons are given in tables 4.2.3 (for Nusselt numbers) and

4.2.4 (for velocities/streamfunction). For the latter table, the data are scaled fol-

lowing Davis (1983): the length scale is taken to be L, the scale for streamfunction

ψ is taken to be the thermal diffusivity α, and time is scaled with L
2
α

. The Nusselt

numbers Nul and Nur are the average Nusselt numbers for the left and right sides,

respectively; Numax and Numin are the maximum and minimum Nusselt numbers on

95

the left vertical wall. The velocity umax is the maximum horizontal velocity on the

vertical midplane of the cavity, and vmax is the maximum vertical velocity on the

horizontal midplane. |ψ|mid is the scaled value of the streamfunction at the center of

the cavity, and |ψ|max is the maximum value of streamfunction in the cfd domain.
Benchmark results are from (Davis, 1983)

Table 4.2.3 Nusselt Numbers for Cavity Convection Case
Ra = 104 Ra = 105

Present Work Benchmark % Error Present Work Benchmark % Error

Nul 2.194 2.238 -1.97% 4.385 4.509 -2.75%
Nur 2.193 – – 4.385 – –

Numax 3.957 3.528 12.16% 7.405 7.717 -4.04%
Numin -0.054 0.586 -109% 0.0172 0.729 -97.6%

Table 4.2.4 Key Scaled Velocities and Streamfunction Values for Cavity Convec-
tion Case

Ra = 104 Ra = 105

Present Work Benchmark % Error Present Work Benchmark % Error

umax 15.645 16.178 -3.29% 35.64 34.73 2.62%
vmax 19.649 19.617 0.16% 68.84 68.59 0.36%
|ψ|mid 4.591 5.071 -9.47% 8.932 9.111 -1.96%
|ψ|max – – – 9.726 9.612 1.19%

Most of the results show % errors less than 4%, acceptable for engineering accuracy.

However some of the point measurements of the Nusselt number show large errors.

These values occurred near the corners, although not at the corners. Their effect

seems to be minimal on the overall results however, yet these discrepancies remain a

topic for investigation.

4.2.3 Natural Convection in a Cavity: A Single Conjugated Wall

The final case to be considered is the problem of natural convection in a square cavity

with a single conjugated wall, a configuration studied by Kaminski and Prakash

96

(1986). This situation is similar to the previous one with the exception that the hot

left wall is now considered to have a finite thickness t with properties density ρw,

thermal conductivity κw, and specific heat cp,w as shown in figure 4.2.7.

ρf
κf
cp,f

W=L

H=L
ρw
κw
cp,w

Th Ti

t

Tc

adiabatic

adiabatic

Figure 4.2.7 The “Kaminski” Problem

The approach to this problem taken here is to model it like a laboratory apparatus,

as in the previous two cases. In particular the finite thickness wall is heated as was

done in the planar Couette as a laboratory experiment problem, only now the inner

rather than the outer wall temperature is sensed by the pid controller, as shown in

figure 4.2.8.

97

R

R

R

R

In
te

rfa
ce

Sensed Temperature

C
on

ve
ct

io
n

PID Controller

Ti Setpoint

D

D

D

D

Set
T

=
T
c

R R

C
on

du
ct

io
n

C
on

ve
ct

io
n

C
on

du
ct

io
n

C
on

ve
ct

io
n

R R

C
onduction

C
onvection

C
onduction

C
onvection

F

F

F

F

Figure 4.2.8 The “Kaminski” Problem: Modelica Scheme

However, it was found that using a grid size of 52× 52 was beyond what Dymola could

simulate in this case. In order to simulate this problem at the highest possible grid

size, the Robin boundary nodes on the top and bottom were replaced with adiabatic

nodes, eliminating the conduction and convection elements approximating laboratory

insulation, as shown in figure 4.2.9.

98

R

R

R

R

In
te

rfa
ce

Sensed Temperature
C

on
ve

ct
io

n

PID Controller

Ti Setpoint

D

D

D

D

Set
T

=
T
c

A A

A A

F

F

F

F

Figure 4.2.9 The “Kaminski”
Problem: Simplified Modelica Scheme

For this problem the results are presented in terms of the Grashof number

Gr = |g|β∆TL
3

ν2 (4.25)

where ∆T = Ti − Tc, in conjunction with the ratio κwL
κf t

. Table 4.2.5 gives values

of the overall Nusselt numbers for two configurations, and figures 4.2.10 and 4.2.11

give streamlines and isotherms for these cases. Results compare favorably to those of

Kaminski and Prakash (1986).

Table 4.2.5 Overall Nusselt Numbers for the Kamin-
ski Problem

Gr κwL
κf t

Nusim Nubenchmark % Error

103 5 0.88 0.84 4.76%
105 50 3.71 3.67 1.09%

99

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
Gr = 1,000

N
on

di
m

en
sio

na
ly

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1
Gr = 1,000

Nondimensional x

N
on

di
m

en
sio

na
ly

Figure 4.2.10 Kaminski Problem, Gr = 103, κwL
κf t

=5

100

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 Gr = 100,000

N
on

di
m

en
sio

na
ly

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
Gr = 100,000

Nondimensional x

N
on

di
m

en
sio

na
ly

Figure 4.2.11 Kaminski Problem, Gr = 105, κwL
κf t

=50

4.3 Summary

In this chapter the Modelica implementation of a lattice Boltzmann cfd scheme has

been used to simulate several test cases which have been compared to analytic solu-

tions and benchmark data, both for pure cfd simulations and cfd simulations cou-

pled to conductive heat transfer and simple controls. Comparisons to planar Couette

101

flow solutions show verification; considering benchmark data to be experiments, the

conjugated solutions show some measure of validation, although software limitations

prevented fuller explorations.

102

CHAPTER 5: DISCUSSION

5.1 Contribution

Equation based modeling languages such as Modelica have been developed i) to enable

the modeling of physical systems without the labor of programming those models in

an algorithmic language, and ii) to enable models from separate domains to be mod-

eled together with their interactions as they exist in real systems. Buildings, being

complex assemblages of many different interacting subsystems spanning multiple do-

mains, represent one type of system that can benefit from such an approach. Of

particular interest in this context is the intersection of air flows, heat transfer, and

controls, domains which in the past have been treated either separately or with only

cursory attention. In this work it has been demonstrated that one type of airflow

modeling method, cfd, can be integrated with models of heat transfer and controls

within the context of equation based modeling. Although Modelica models are typi-

cally of the lumped parameter and one-dimensional type, and although previous work

has explored the solution of partial differential equations enabling multidimensional

problems to be solved (Saldamli et al., 2005), the work presented in this thesis rep-

resents the first time to the author’s knowledge that such models, and in particular

cfd models, have been implemented in a pure Modelica framework with the inclusion

of models from different domains.

In particular, while the coupling of cfd to heat transfer processes (through es)

remains a topic of research, many of the approaches followed thus far are all of a similar

type: internal/external coupling paradigm, the use of coupling variables which are

intermediate to the actual physical quantities that are manifest in the ‘real’ coupling,

quasi-dynamic/ping-pong/loose coupling vs. full dynamic/onion/tight coupling. This

work represents a new way in which the paradigm is neither internal nor external

103

but offers the benefits of both, the coupling variables more directly represent the

physical mechanisms of the coupling, and the coupling strategy, while tight in its

effect, requires no explicit coding of iteration between separate programs to achieve

consistency between models.

External coupling is touted as leading to a more maintainable (federated) simu-

lation infrastructure than internal coupling since each program in the coupled feder-

ation of programs is allowed to evolve on its own; the only thing to be maintained

by those wishing to couple programs together is the interface between the programs

(Djunaedy et al., 2005). This is a worthwhile goal, however in the context of a

hierarchical modeling language such as Modelica, the semantic distinction between

external and internal coupling applies less than in the context of hard-wired pro-

grams. Given that the creation of interfaces between models and the organization

of models into packages are fundamental features of the language, it is reasonable to

expect that models and packages of models can likewise evolve independently yet still

come together in a greater model so long as the interfaces are similarly maintained if

necessary, in effect as the federated programs do in external coupling. This is indeed

what happened during the evolution of the lattice Boltzmann models in this work:

the model of heat conduction in solids was never altered – only new models with

sensor ports were extended from more basic models – yet the lattice Boltzmann mod-

els underwent many different revisions independently of other models, in particular

with respect to boundary conditions/edge nodes and the scheme for the evolution of

the internal energy distributions gi → gmi, yet these changes had no effect on the

infrastructure needed to combine the models. In this practical respect the paradigm

might be considered external, however in a formal respect the coupling is internal

in the sense that all models are expressed in a common language of physical system

description.

104

es

Conduction

Convection

cfd

Internal

es

Conduction

Convection

cfd

External

Modelica

Conduction Controls

cfd

Modelica
Figure 5.1.1 Three
Coupling Paradigms

105

The ability to combine models is one of the key reasons for the existence of modeling

languages like Modelica, and this ability arises due to the features for creating links

between models at the language level. Previous work in coupling cfd to es has dealt

with at least one pre-existing simulation program, e.g. EnergyPlus or esp-r, with the

underlying premise that no similar linking mechanism exists as a fundamental given.

This, combined with the overlap between cfd and es (in its heat transfer elements)

requires that any coupling between the two programs must be knowledgeable of and

consistent with the internal representation of heat transfer in each program. In the

current case, given the boundary condition strictures of traditional cfd, this requires

that either the coupling be done using the intermediate variable h which is determined

by cfd, or by iterating temperatures T and Q between cfd and es. In this traditional

coupling it is considered preferable to use the intermediate varible h, although it is

possible for h to have a negative value in certain flow cases which can cause the

direction of heat flow to be incorrect (Zhai, 2003). Modelica’s connector construct

together with the flow (and stream) prefixes enables the creation of links between

models which are acausal and represent the actual physics without needing to be

concerned with how the physics are represented in the constituent models.

From a modeler’s perspective, the benefits of such an equation based approach

are most clearly seen in the connection between cfd and wall conduction. All that

is required is that each model describes the temperatures and heat fluxes/heat flow

rates at their boundaries. In fact, the conversion from a Dirichlet edge node in the

cfd package to a Robin-type node only required changes to a few lines to define

the heat flux/heat flow rate appropriately and link that equation to an appropriate

connector in the model. The coupling variables are now the physical ones of interest,

and no explicit coding is required for the linked models to have a consistent solution

as depicted in figure 5.1.2.

106

Tangelo Coupling

t0 es cfd
Q, T

t1 es cfd
Q, T

t2 es cfd
Q, T

t3 es cfd
Q, T

t4 es cfd
Q, T

t5 es cfd
Q, T

Figure 5.1.2 Tangelo Coupling

The lattice Boltzmann approach to cfd used here is well-suited as a fluid-mechanical

description in the context of Modelica. It describes the time-evolution of flows which

is in line with Modelica’s aim to enable descriptions of physical dynamics. Further-

more it does so in a relatively simple fashion, without iteration, yet nevertheless is

capable of providing a large amount of information: in particular the heat flux is a

natural product of the model, although a true second order scheme is required for the

internal energy distributions gi, and is not a quantity derived from another macro-

scopic variable. In fact it is curious that this aspect of the lattice Boltzmann method

has been used as little as it has – for example Guo et al. (2002), Guo et al. (2007),

and Li et al. (2008), among others, resort to the calculation of the derivative of the

107

temperature field for the specification of heat flux (typically only for adiabatic cases)

at a boundary in traditional Neumann style. In addition to this work, only D’Orazio

et al. (2004) seems to have used heat flux as a moment of a distribution function,

q =
�
gdξ as the basis of a boundary condition. In addition, the possibility of im-

proved turbulence models is a potential benefit, although such a hope is conjectural

at this point.

All of these features combine to yield a framework for the combination of many

types of models beyond cfd and heat transfer; the simple examples given in this

thesis also incorporate (simple) pid controls and mimic benchmark fluid mechanics

problems not as abstract, tightly delineated problems divorced from the rest of the

universe as they would be treated in commercial cfd programs, but as how those

problems might actually be run in a laboratory experiment.

5.2 Limitations and Directions for Future Work

Although this work represents a new way of coupling cfd with other modes of heat

transfer, and with other domains as well, it is nevertheless quite limited as a practical

tool. First, any applications are limited to laminar flows and to cases where the

flow region does not require the number of nodes to go beyond Dymola’s – or any

other tool which implements Modelica models – apparent capabilities, as was seen

in Chapter 4. Furthermore, the current approach is a discrete time integration with

a fixed step size which links the grid spacing and the timestep through the lattice

velocity ξ̌. Increasing the grid count/decreasing grid spacing as may be needed for

higher Rayleigh/Grashof number flows, simultaneously decreases the timestep size,

which in application can lead to excessively long simulation times. In addition, the

timescales associated with these different processes can differ by orders of magnitude

(Zhai, 2003) which can lead to stiffness, a common problem in the conflated simulation

of heat and airflow using dae based methods such as in the present work (Sahlin,

108

2003). Some of the causes of stiffness and short timesteps are inherent to the physics

being described or simulated, but short timesteps should be avoided to the extent

possible at the model creation and computational execution levels.

With respect to model creation, the lattice Boltzmann method is but one nu-

merical scheme for solving the Boltzmann equation. The congruent discretization

of physical and (molecular) velocity spaces is simply a convenient choice, one that

is historically rooted in the lattice Boltzmann method’s origins in cellular automata.

However it is not necessary to discretize these spaces in this manner, as was described

early in the realization that lattice Boltzmann can be viewed as a finite-difference

scheme for the continuous Boltzmann equation. Indeed, in one of the first papers

pointing this out, He and Luo (1997a) developed a finite difference Boltzmann scheme

in which the discretization of physical space and velocity space were decoupled and

used this to simulate flow over a backward-facing step using nonuniform grids. Since

then many workers have constructed discretized Boltzmann schemes which can use

nonuniform grids, thereby speeding up simulation, as well as in some cases represent

curved boundaries using, for example, body-fitted coordinate systems, for example

Mei and Shyy (1998) and Guo and Zhao (2003) for athermal flows, Li et al. (2008)

for a double-distribution thermal model, and Surmas et al. (2009) for multispeed

thermal models.

The discretization scheme is not limited to finite differences, however. Efficient

finite element schemes have been proposed (Lee and Lin, 2001), as well as finite

volume (Stiebler et al., 2006). Methods such as these have the advantage that the

grids can conform to geometries not easily described by the mathematical mappings

characteristic of body-fitted coordinate systems.

Much research nevertheless still goes into ways to make the traditional lattice

Boltzmann scheme, with it’s congruent physical and velocity space discretizations

(leading to what are sometimes called ‘space filling’ lattices), more efficient. These

109

traditional schemes remain popular due to their relative ease of implementation and

their natural affinity for parallelization (Chen and Doolen, 1998). Filippova and Hänel

(1998) initiated this branch of development with their method for the treatment of

curved boundaries not coincident with lattice nodes and for their multi-block method

of local lattice refinement, all within the context of the original lattice Boltzmann

discretization of physical and velocity spaces. This work has since been refined, for

example see the review article of Yu et al. (2003).

These issues will become much more pronounced as three-dimensional models are

developed, where the number of molecular velocities for the fi and gi distributions

increases from 9 to 15 or greater.

Further approaches for the speedup of these simulations include the fast evalua-

tion of equilibria (Chikatamarla et al., 2006), and execution of the Modelica models

in a parallel computing environment such as graphics processors, perhaps taking ad-

vantage of the recent additions to the Modelica language allowing for the “mapping

of models to execution environments” (The Modelica Association, 2010).

Another approach tried during the course of this thesis was the method of lines

(Cellier and Kofman, 2006). This technique converts partial differential equations not

into algebraic systems of equations but rather into ordinary differential equations. In

the context of a time-domain simulation such as implied by Modelica, this entails

converting spatial derivatives into, e.g., finite-difference approximations, while leaving

the temporal derivatives to be solved by the ode integrator, for example the default

solver in Dymola, dassl. In fact the model of wall conduction used in the semi-

conjugate ‘tangelo’ cases of Chapter 4 can be considered to be a method of lines model

of the one-dimensional heat diffusion equation (Appendix B gives this model). The

conceptual advantage of this approach is that by not using a fully discrete approach,

the ode integrator can, if capable, apply variable time steps and thereby speed up the

simulation times compared to models with fixed time steps such as those used in this

110

work. Preliminary trials simulating athermal planar Couette and lid-driven cavity

flow using the method of lines, however showed severe instabilities at low Reynolds

numbers. The cause of this instability was not investigated to conclusion, however

a potential culprit could be that the ode integrator used a step size so large that
δt

τ
< 2 which can lead to instability (Mei and Shyy, 1998).

A further issue relates to the necessity – or lack thereof – of simulating fluid flows

and convective heat transfer by cfd at every time step during a simulation run. An

advantage of the overlap present in traditional coupling paradigms and methods is

that the cfd simulation can simply be turned off when not needed or desired, allowing

the convective models in an es program to continue on their own. The ability to do

this has traditionally not been an explicit feature of the Modelica language. The

single assignment principle requires all variables to be computed at every time step

or event and there appears to be no language level construct for the activation or

inactivation of equations, families of equations, or models. Note that this concept is

distinct from using when equations to have equations become active at certain events.

Among other possibilities, recent extensions to the language might be used mimic such

an effect, namely the use of the Subtask package and associated mapping annotation

(The Modelica Association, 2010). Even if such a thing could be done, when using

an unsteady technique such as lattice Boltzmann, the re-activation of the cfd model

would require that the velocity, temperature, and heat fluxes be brought up to a state

consistent with the current boundary conditions, which may have changed during the

interregnum. The built-in function reinit may be used to achieve this however.

While turbulent flows have been simulated using Boltzmann based approaches

before, usually in an les framework, the effect of turbulence on heat transfer appears

to have received little attention thus far from a practical kinetic or lattice Boltzmann

viewpoint. From the macroscopic viewpoint, it has been known for some time that

turbulence adds terms to the macroscopic heat flux equation, e.g. the heat flux in

111

direction α is given by

qα = −κ ∂T
∂xα

+ ρcpu�iT � (5.1)

Here, the overbar represents a mean value and � denotes a turbulent fluctuation.

Equation 5.1 shows that in addition to the laminar heat flux term (the first term

on the right hand side) there is also a turbulent contribution (the second term on

the right hand side) (White, 2006). Derivations of the macroscopic transport and

conservations equations from the Boltzmann equation have traditionally revealed the

macroscopic heat flux to only have the laminar term, implying that for turbulent flow

the turbulent thermal boundary layer would need to be fully resolved in a dns type

approach. Clearly this would be impractical. Future work requires investigation of

this issue, which is particularly critical in light of the coupling of cfd to conduction

in walls.

112

CHAPTER 6: CONCLUSION

6.1 Summary

Buildings are collections of many different types of systems interacting with each

other; furthermore, with a few exceptions particularly in the residential sector, each

building is a fairly unique design even though it may consist of standard parts. The

ability to capture this uniqueness, and especially the interactions between these sys-

tems in unique configurations, is greatly facilitated by the use of physical system

modeling languages. The sole purpose of a programming language is to tell a com-

puter what to do and thus the mathematical and topological description of a system

is conflated with the computational implementation of that description. Modeling

languages focus on the mathematical and topological description of a system only,

and in a manner more comprehendible to human modelers, leaving the computational

implementation to be determined automatically by established algorithms and tech-

niques. The mathematical description is facilitated by the use of acausal modeling in

which equations, as relations among parameters and variables, are employed rather

than assignment statements. The topological description is facilitated by the use of

physically relevant interface constructs which are a fundamental feature of the lan-

guage. Neither of these features are present in programming languages. While the

hierarchical, component based paradigm of Modelica is shared with object oriented

programming languages, its marriage to acausal and topological description features

results in a flexible language capable of capturing unique systems configurations eas-

ily.

Because a modeling language like Modelica relies on mathematical relations to de-

scribe behavior, any behavior so describable can in principle fall under the umbrella

of that language, which leads naturally to the ability to create models consisting of

113

many different subject domains. The presence of many subject domains in modern

buildings coupled to their uniqueness suggest modeling languages to be excellent can-

didates for building system description. The separation between the modeling and

simulation tasks has productivity benefits for those whose main concern is modeling –

mathematical description of physics and topological configuration of components – re-

lieving them of the burden of translating a model into a simulation. Furthermore the

developers of Modelica tools, free from the need to have domain-specific knowledge,

can focus their efforts on methods to convert models into efficient simulation executa-

bles. Modelers can remain modelers and computer scientists can remain computer

scientists, a natural division of labor which permits the flexible description of systems

by domain experts while leaving the problem of generating efficient simulation code

to computational experts.

This study sought to demonstrate that three interacting domains present in build-

ings, heat transfer through conduction and convection, fluid flow, and simple controls,

can be represented by the modeling language Modelica and simulated by a tool which

implements Modelica models, with the goal of enabling modeling flexibility. In par-

ticular, convection and fluid flow as determined by computational fluid dynamics

techniques, specifically lattice Boltzmann. The coupling between cfd and other do-

mains has been achieved before in the context of pre-existing, monolithic building

energy performance simulation tools and more traditional cfd programs based on

the macroscopic equations of fluid motion, namely the continuity, Navier-Stokes, and

energy equations. This study differs not only in the cfd technique employed, but

also in the use of a generic modeling language and the coupling mechanism that this

language implies. The use of the lattice Boltzmann method provides a relatively

simple yet fully unsteady description of fluid motion and convective heat transfer, in

contrast to the quasi-unsteady approaches previously studied. Furthermore lattice

Boltzmann enables the simple coupling of convective heat transfer in the fluid to the

conductive heat transfer in a wall since heat flux is inherently included in the model

114

and is a quantity determined entirely local to a node at a given timestep.

Simu-
lation

Energy

Airflow

Controls

Multi-
zone

Zonal

cfd

Tools

Specific

doe-2
e+

comis
contam

Fluent
Flovent

Generic

Algo-
rithmictrnsys

Declar-
ative

Modelica

spark

ida

Figure 6.1.1 This Work’s Contribution

These claims have been demonstrated through the initial verifications, validations,

and demonstrations in Chapter 4. Models incorporating these multiple subject do-

mains can be flexibly defined and be simulated, but whether or not the simulation is

efficient is a matter of context. If the time horizon of a simulation is small and the

models reflect the (small) physical situation being simulated then the models devel-

oped here are appropriate. However for larger problems with longer time horizons

the appropriateness is questionable given not only the fundamental large differences

in timescales between the different physical processes involved, but also given the

differences in the minimum timesteps required by the models. In such cases the

quasi-unsteady and overlapping aspects of previous couplings between cfd and en-

ergy simulation have immediate practical advantages over the present work, namely

the ability to turn off the cfd computations during quasi-steady periods of time.

However there may be ways to effect this in Modelica models as briefly mentioned in

115

the previous chapter. In addition Dymola, the current premiere tool for implementing

Modelica models, has difficulties with cfd models of a size that hand coded programs

can easily handle.

6.2 Recommendations

The recommendations given here fall under the categories of improving the efficiency

of the simulations and expanding the capabilities of the models. Improving the effi-

ciency (for example speeding up the computations) and expanding capabilities (mod-

eling more physics and increasing the sizes of simulatable problems) can be attacked

through computer science or modeling approaches. Here the modeling approaches are

enumerated:

1. Improving efficiency: capture the relevant physics using the minimum

number of variables/equations

The lattice Boltzmann models used in this work all employ uniform lattices,

while the phenomena most important to coupling to heat conduction occurs in

the boundary layer. For more energetic flows, more lattice sites are required in

the boundary layer although the current approaches add lattice sites throughout

the cfd domain where they may not be necessary. Local grid refinement should

be incorporated, in the context of either the current traditional discretization or

alternative discretizations of the Boltzmann equation.

2. Improving efficiency: create models which allow larger timesteps

Differences in timescales between processes may be a fundamental feature, but

the difficulties that this leads to should not be compounded by the models.

Decoupling the timestep from the grid size should be investigated, including the

use of the method of lines to enable continuous system modeling (‘continuous’

in the context of the Modelica language), and alternative discretizations of both

space and time for fully discrete models.

116

3. Improving efficiency: take advantage of computational advances and

improved language features

In a sense these are computer science approaches, but they should be investigated

to the extent that they have been incorporated into the Modelica language or

executors thereof. For example, the use of Modelica task and subtask (The

Modelica Association, 2010).

4. Improving efficiency: is cfd necessary at all times?

cfd may not be needed for the entire time that a model is to be simulated.

Approaches to effectively turn cfd off can improve simulation efficiency during

these times.

5. Expanding the capabilities: incorporate turbulence modeling

Most problems of interest in buildings involve turbulent flow and any tool or

model to simulate flows must at some level account for turbulence. The effect

of turbulent flow on heat flux at walls should be investigated in the context of

kinetic theory and Boltzmann-based cfd techniques.

6. Expanding the capabilities: handling non-isothermal walls

Although non-isothermal walls have been handled in this study, an improved way

to handle them is of interest. One approach that is immediately available is to

group nodes together into bins and assume all nodes in a bin are at the same

temperature, allowing a variable resolution capability for non-isothermal walls.

However the ability to handle such situations in a more elegant and physical way

through interfaces between cfd and wall conduction is a topic of interest to this

author.

Together these recommendations define a large trade space and suggest many

interrelated projects for the future.

117

APPENDIX A: THE BOLTZMANN EQUATION

Historically the lattice Boltzmann method arose as an extension and improvement of

lattice gas cellular automata models of fluid flow. However it is more profitable to

consider lattice Boltzmann as a child of classical statistical physics (Wolf-Gladrow,

2000) . Some fundamentals of this field are necessary background for the material in

this thesis, and as this subject is unfamiliar to most engineers, a brief overview will

be given in this Appendix. The discussion to follow is derived from Harris (1971),

Cercignani (1988) and Liboff (1998), with supplementary citations given as noted.

The Boltzmann Equation

Consider a fluid system made up of N molecules, where N is of order 1023. For

simplicity, we take the case where there are no external forces such as magnetic fields

acting on this system. Take these molecules to be monatomic, that is, featureless and

‘rigid’; thus the notion of molecule orientation is inapplicable and a molecule cannot

vibrate about its own center of mass. Any molecule i ∈ {1, 2, · · · , N} is then fully

specified in space by 3 positional coordinates xi(t) = (xi(t), yi(t), zi(t)), has η = 3

spatial degrees of freedom, and will be referred to in the abstract as a particle. Each

particle has 3 components of momentum pi(t) = (pxi(t), pyi(t), pzi(t)) and so the par-

ticle’s state is specified by the 6-component combination vector ςi(t) = (xi(t),pi(t)).

The bulk fluid thus has 6N degrees of freedom at the system level and it’s microstate

is fully specified by a single coordinate point γ(t) = (ς1(t), ς2(t), · · · , ςi(t), · · · , ςN (t))

in the 6N dimensional phase space Γ.

Statistical physics operates under the claim that the intensive macroscopic prop-

erties of a system such as temperature T (t), velocity field u(t), viscosity, specific heat,

etc. (the macrostate), is derivable from knowledge of the microstate γ(t). With N

118

being of order 1023, this is both unknowable and intractable even if knowable, but

progress is possible with recourse to statistics. A fluid system can have n replicas

which are each in identical macrostates but different microstates; indeed it would be

remarkable if all replicas have the same microstate. Thus any macrostate corresponds

to a large number of microstates, so perfect knowledge of the microstate is unnec-

essary. Indeed this is fortunate as we can use low-resolution (statistical) microstate

information and still gain physical insight from the microstate approach.

Each of the n replicas in the ensemble is represented by one phase space coordi-

nate point γk(t) with k ∈ [1, 2, · · · , n]. With a large number of replicas, e.g. n→∞,

these coordinate points form a dense cloud which can be characterized by a probabil-

ity density function FN (γ, t) so that function nFN (γ, t)dxdp = nFN (γ, t)dγ is the

number of replica systems in a differential volume dγ =
�
N

i=1 dxidpi about the phase

point γ. FN thus refers to a single system whereas nFN refers to the ensemble.

Each replica system γk(t) traces out a path, or trajectory, in phase space as time

evolves. These trajectories do not cross: such a crossing means identical microstates;

systems with identical microstates must evolve identically since the microstate deter-

ministically – in classical statistical physics – evolves from initial conditions; therefore

system trajectories in phase space are either coincident for all time or do not cross.

The differential phase space volume dγ contains phase space points (i.e. ensemble

members) and is bounded by a surface S(γ) that is made up of phase space points.

As time evolves, each point traces out its own unique trajectory, therefore dγ and

S(γ) change shape. Because trajectories do not cross, the points inside dγ cannot

cross S(γ) and thus remain inside dγ. Thus nFN (γ, t)dγ is constant, or

dFN
dt

= 0 = ∂FN
∂t

+
N�

i=1

�
∂FN
∂xi
· ẋi +

∂FN
∂pi
· ṗi
�

(1)

where the overhead dot denotes the partial derivative with respect to time. The

derivative dFN/dt can be thought of as a material (a.k.a. substantive) derivative for

119

phase space in a Lagrangian reference frame which travels with the ‘flow’ of phase

space points; the terms on the right hand side are in an Eulerian reference frame which

is fixed in phase space, i.e. a fixed ‘laboratory’ frame. Equation 1 is the Liouville

equation. It still can be rather intractable, however the situation can be improved

using the reduced particle distribution functions

Fr(γ1,γ2, · · · ,γr, t) =
�
FN (γ1,γ2, · · · ,γN , t)dγr+1 · · · dγN (2)

If FNdγ is the joint probability that in a system, particle 1 is in the volume dγ1 about

γ1, particle 2 is in the volume dγ2 about γ2, etc., up to the N th particle, then Fr is

the same quantity except it is valid only up to particle r. It turns out that the single

or double particle density distribution functions F1 and F2 are the most important

for most purposes.

Using the Liouville equation and some labor, the evolution of the reduced particle

distribution functions can be expressed as the bbgky hierarchy of equations:

∂Fr
∂t

+
r�

i=1
ẋi ·
∂Fr
∂xi
−
�

i,j=1

∂φij
∂xi
· ∂Fr
∂pi

= (N − r)
�
dγr+1

r�

i=1

∂φir+1
∂xi

· ∂Fr+1
∂pi

(3)

where m is the mass of a particle and φij is a potential for a force on the ith particle

by the jth particle, such that the total force acting on particle i by all particles is

−
�
N

j=1�=i ∂φij/∂xi.

The equations in the hierarchy are coupled, however the first equation – for r = 1 –

can be closed under certain mathematical limits and physical assumptions, including

that the system involves only binary collisions between particles (sufficiently low

density) and that particles are uncorrelated upon initiation of a collision (molecular

chaos or Stosszahlansatz: any correlation that exists after a collision is short lived

and dies away before another collision (Succi et al., 2002)). Together these conditions

describe a perfect gas, for which the closed R = 1 bbgky equation is then

120

∂F1
∂t

+ ẋ1 ·
∂F1
∂x1

= ΩB (4)

This is the Boltzmann equation, where ΩB is the Boltzmann collision term, an inte-

gral encoding the details of binary collisions. This integral is complex and contains

nonlinear terms, and is ultimately unimportant for present purposes as a simplified

version will be introduced later. This equation can be made more relatable to the

macrostate by introducing the probability density function

F̌1(γ1, t) = F̌1(x1,p1, t) = NmF1(γ1, t) (5)

so that the quantity F̌1(γ1, t)dγ1 is the expected mass in the differential volume

dγ1 about γ1 at time t. Similarly, using ℵ is the number density (density of the N

particles), then

f1(γ1, t) = f1(x1,p1, t) = ℵmF1(γ1, t) (6)

and f1 is the expected mass density in the differential volume dγ1 about γ1 at time

t.

Writing ξ1 = ẋ1 = p1
m

for the particle velocity (i.e. the ‘microscopic’ velocity;

note that we can often simply replace p with ξ) and dropping the subscript such that

� = �1, since we will be dealing exclusively with the single particle distribution, we

then have:

∂f

∂t
+ ξ · ∂f

∂x
= ΩB (7)

In the laboratory (Eulerian) reference frame in which differential control volumes in

phase space are fixed and through which the phase space points ‘flow’, this equation

means that the time rate of change of f , ∂f/∂t, is due to particles being ‘knocked’ into

the control volume – represented in terms of f by ΩB – minus the advection of particles

121

into/out of the control volume – represented in terms of f by ξ · ∂f/∂x1 = ξ · ∇f

(Reichl, 1998).

Macroscopic Behavior: Some of the Moments of f

Given the definition of f , it is apparent that the macroscopic density ρ of the fluid

system is

ρ(x, t) =
�
f(x, ξ, t)dξ (8)

The density is sometimes referred to as the zeroth moment of f . Averaging the mol-

ecular velocities ξ yields the first moment of f , the macroscopic momentum density

ρu

ρ(x, t)u(x, t) =
�
ξf(x, ξ, t)dξ (9)

where u is the macroscopic fluid velocity. To consider the flux of this momentum

density, we switch to tensor notation and note that the general expression for flux

is given by
�
vα(vβf)dv, where α, β = x, y, z indicate component directions. Using

the macroscopic relations above and introducing the ‘intrinsic’ or ‘peculiar’ velocity

c = ξ − u, which refers to random motions of the molecules relative to the macro-

scopic flow, the flux of momentum density can easily be split into macroscopic and

microscopic components

�
ξα(ξβf)dξ = ρuαuβ +

�
cαcβdξ (10)

The microscopic term
�
cαcβdv constitutes the stress tensor Φαβ for a perfect gas,

where the diagonal terms constitute normal stresses and the off-diagonal terms rep-

resent shear stresses. For other fluids
�
cαcβdv is one contributor to Φαβ (Schlichting

(1979) has a good discussion of Φαβ from a macroscopic perspective).

122

Similarly considering what might be termed the second moment of f , and antici-

pating this moment to be an expression of kinetic energy, we can write

1
2

�
ξ2fdξ = 1

2ρu
2 + 1

2

�
c2fdξ (11)

Here 1
2ρu

2 represents the kinetic energy density of the macroscopic flow while the

peculiar microscopic kinetic energy 1
2
�
c2fdξ can intuitively be seen as the internal

energy density per unit volume ρ�. Incorporating the equipartition theorem (Sturge,

2003), which states that the internal energy � for a system of ≈ 1023 particles is
1
2η
NAk

mmol
T , where NA is Avogadro’s number, k is Boltzmann’s constant, and mmol is

the molar mass, then we can write equation 11 as

1
2

�
ξ2fdξ = 1

2ρu
2 + 1

2ρηRT (12)

where R = NAk

mmol
is the specific gas constant.

The term 1
2
�
c2fdξ also bears a resemblance to the trace of the stress tensor. If we

consider the case of a system in static equilibrium – the fluid is macroscopically at rest

– then the normal stresses are all equal and thus the trace of the stress tensor 1
3Φαβ

can be identified as the hydrostatic pressure p. Once again using the equipartition

theorem,

p = 1
3Φαα = 2

3

�
ρ

1
2

�
c2fdv

�
(13)

= 2
3

�
ρ

1
2ηNAkT

�
(14)

= ρRT (15)

where η = 3 for a monatomic gas. Thus through theoretical reasoning we have derived

the ideal (perfect) gas equation of state.

123

Again using the general expression for flux, applied now to energy (the second

moment), and using the relations given thus far along with some supplementary

relations regarding the peculiar velocity, the flux of energy can be written

�
ξα

�
1
2ξ

2f

�
dξ = ξα

�
1
2ρu

2 + 1
2ρ

�
c2fdξ

�
+ ξβΦαβ + 1

2

�
cαc

2fdξ (16)

The terms here represent the convection of macro- and microscopic energy by the

macroscopic velocity, a mechanical work term, and the transport of microscopic energy

by microscopic motion; this last term can be seen as the microscopic flux of internal

energy and thus is manifested on the macroscopic scale as thermal conduction (heat

flux) and is therefore labeled as qα = 1
2
�
cαc2fdξ.

Macroscopic Behavior: Conservation equations

The basic forms of the macroscopic hydrodynamic conservation equations can be

derived from the Boltzmann equation or a modified form thereof using the preceding

macroscopic relations, and a few other basic relations which for purposes of brevity

are neglected here. The raw Boltzmann equation can be worked into the general

continuity equation for a compressible fluid

∂ρ

∂t
+ ∂

∂xα
(ρuα) = 0 (17)

which should not be surprising since the Boltzmann equation is derived starting from

an expression for the conservation of the ‘fluid’ of phase space points. Multiplying

the Boltzmann equation by u and applying some labor yields the elementary form of

the conservation of momentum where body forces are neglected

∂

∂t
(ρuβ) + ∂

∂xα
(ρuαuβ + Φαβ) = 0 (18)

124

Multiplying the Boltzmann equation by 1
2v

2 and working again without body forces

gives an energy equation

∂

∂t

�
ρ

�
1
2u

2 + 1
2ρ

�
c2fdv

��
+ ∂

∂xα

�
ρuα

�
1
2u

2 + 1
2ρ

�
c2fdv

�
+ Φαβuβ + qα

�
= 0

(19)

The preceding two equations can be closed using constitutive equations. For an

isotropic Newtonian, conducting fluid these are :

Φαβ = pδαβ − λ
�
∂xγ
∂uγ

�
δαβ − µ

�
∂uα
∂xβ

+
∂uβ
∂xα

�
(20)

qα = κ ∂T
∂xα

(21)

where δαβ is the Kronecker delta, λ is the second viscosity coefficient, µ is the dynamic

viscosity, and κ is the thermal conductivity. Notice that for a any fluid in global equi-

librium (macroscopically at rest or free of velocity gradients), the trace of the stress

tensor indeed is the thermodynamic pressure, as previously noted. For an inviscid

fluid this is also the case under nonequilibrium conditions, while for viscous fluids

the trace of the stress tensor contains the pressure as one contributor. Under Stokes’

hypothesis, one takes λ = −2
3µ and the bulk viscosity µ� = λ− 2

3µ vanishes; this is the

case gasses, and is likewise applicable for liquids in chemical equilibrium (incompress-

ibility renders the question moot) (Schlichting, 1979). For an incompressible fluid,
∂xγ
∂uγ

= 0 and the term involving λ disappears. When these constitutive equations ap-

plied to the general momentum and energy conservation equations, the Navier-Stokes

and a version of the macroscopic energy equation are produced.

The progression from a microscopic description to the macroscopic continuity,

Navier-Stokes, and energy equations is given here only to show the correctness of the

microscopic approach to those more familiar with the macroscopic approach. The

microscopic approach in fact does not require constitutive equations or experimentally

125

determined transport coefficients such as µ and κ, as all necessary information for any

macroscopic property or phenomena, at least for a perfect gas, is available through f

and the Boltzmann equation.

Up to this point much has been gained without any knowledge of the form of f

or any actual solution to the Boltzmann equation, but further progress requires the

examination of both.

The Equilibrium Distribution and a Simplified Collision Term

Solutions to the Boltzmann equation yield values or expressions for f , however the

solution of the full Boltzmann equation is difficult. Nevertheless, the form of f for

an equilibrium state, fEQ, can be determined by considering the manner in which a

system of particles approaches equilibrium. The H theorem states that the quantity

H =
�
flnfdξ (22)

decreases as a system evolves toward an equilibrium state, and that this decrease in

H is bounded. Further ∂H/∂t = 0 at equilibrium. An argument, omitted here as it

deals with the full collision integral ΩB and other details likewise omitted, yields for

the for the equilibrium distribution

fEQ = ρ

(2πRT)(η/2) e
−(ξ−u)2

2RT (23)

which is termed the Maxwell-Boltzmann, or Maxwellian, distribution.

The complexity of the collision term ΩB precludes the use of the Boltzmann equa-

tion in many practical problems, but a vastly simplified form which retains essential

physics appropriate for many cases was developed by Bhatnagar et al. (1954), which

leads to a simplified Boltzmann equation

126

∂f

∂t
+ ξ · ∂f

∂x1
= 1
θ

(fEQ − f) (24)

where θ is the time to relax to equilibrium. Equations 23 and 24 form the basis of

the lattice-Boltzmann method.

127

APPENDIX B: SAMPLE MODELICA MODELS

Some representative examples of the models used in this work are given here. The

text here has been edited for brevity and to fit on the page: repetitive sections and

non-essential commentary, etc., are removed.

Sample node models

Partial Node

partial model PrtlNode
public
// parameters and constants
outer DomainParameters DmPa;
//
// hydrodynamic variables
// these are initialized in an initial equation section of a CFD model (e.g. see "PlanarCouette")
outer discrete SIu.Pressure p[DmPa.Num_ry, DmPa.Num_cx] "Pressure; Pa";
outer discrete SIu.Velocity u[DmPa.Num_ry, DmPa.Num_cx] "Velocity, x-direction; m/s";
outer discrete SIu.Velocity v[DmPa.Num_ry, DmPa.Num_cx] "Velocity, y-direction; m/s";
outer discrete SIu.Temperature T[DmPa.Num_ry, DmPa.Num_cx] "Temperature; K";
//
// x-location is DmPa.x[cx]; cx = column; y-location is DmPa.y[cx]; ry = row
// cx and ry are assigned when nodes are assembeled into domain (see the domain models, e.g. "GenericDomain")
parameter Integer cx ;//annotation(HideResult=true);
parameter Integer ry ;//annotation(HideResult=true);
//
Boolean clock annotation(HideResult=true);
//

protected
// single particle distributions
outer discrete lbMassDistro f[DmPa.Num_ry, DmPa.Num_cx,8] annotation(HideResult=true);
outer discrete lbMassDistro feq[DmPa.Num_ry, DmPa.Num_cx,8] annotation(HideResult=true);
outer discrete lbMassDistro f0[DmPa.Num_ry, DmPa.Num_cx] annotation(HideResult=true);
outer discrete lbMassDistro feq0[DmPa.Num_ry, DmPa.Num_cx] annotation(HideResult=true);
//
// internal energy distributions
outer discrete lbEnergyDistro gm[DmPa.Num_ry, DmPa.Num_cx,8] annotation(HideResult=true);
outer discrete lbEnergyDistro geq[DmPa.Num_ry, DmPa.Num_cx,8] annotation(HideResult=true);
outer discrete lbEnergyDistro g0m[DmPa.Num_ry, DmPa.Num_cx] annotation(HideResult=true);
outer discrete lbEnergyDistro geq0[DmPa.Num_ry, DmPa.Num_cx] annotation(HideResult=true);
//
// molecular velocities
parameter SIu.Velocity xix[8] = {DmPa.c, 0, -DmPa.c, 0, DmPa.c, -DmPa.c, -DmPa.c, DmPa.c};
parameter SIu.Velocity xiy[8] = { 0, DmPa.c, 0, -DmPa.c, DmPa.c, DmPa.c, -DmPa.c, -DmPa.c};
//
// normailized molecular velocities: for use in array indexing
constant Integer xinx[8] = {1, 0, -1, 0, 1, -1, -1, 1} annotation(HideResult=true);
constant Integer xiny[8] = {0, 1, 0, -1, 1, 1, -1, -1} annotation(HideResult=true);

initial equation
// the single particle equilibrium distributions
feq0[ry,cx] = DmPa.rho0 - (20/12)*p[ry,cx]/DmPa.c^2 - DmPa.rho0*((2/3)*(u[ry,cx]^2 + v[ry,cx]^2)/DmPa.c^2);
feq[ry,cx,1] = (1/3)*p[ry,cx]/DmPa.c^2 + DmPa.rho0*((1/3)*(xix[1]*u[ry,cx] + xiy[1]*v[ry,cx])/DmPa.c^2 + ...;
feq[ry,cx,2] = (1/3)*p[ry,cx]/DmPa.c^2 + DmPa.rho0*((1/3)*(xix[2]*u[ry,cx] + xiy[2]*v[ry,cx])/DmPa.c^2 + ...;
feq[ry,cx,3] = (1/3)*p[ry,cx]/DmPa.c^2 + DmPa.rho0*((1/3)*(xix[3]*u[ry,cx] + xiy[3]*v[ry,cx])/DmPa.c^2 + ...;
feq[ry,cx,4] = (1/3)*p[ry,cx]/DmPa.c^2 + DmPa.rho0*((1/3)*(xix[4]*u[ry,cx] + xiy[4]*v[ry,cx])/DmPa.c^2 + ...;
feq[ry,cx,5] = (1/12)*p[ry,cx]/DmPa.c^2 + DmPa.rho0*((1/12)*(xix[5]*u[ry,cx] + xiy[5]*v[ry,cx])/DmPa.c^2 + ...;
...
//
// the internal energy equilibrium distributions

128

geq0[ry,cx] = DmPa.rho0*DmPa.R*T[ry,cx]*((4/9) - (2/3)*(u[ry,cx]^2 + v[ry,cx]^2)/DmPa.c^2);
geq[ry,cx,1] = DmPa.rho0*DmPa.R*T[ry,cx]*((1/9) + (1/3)*(xix[1]*u[ry,cx] + xiy[1]*v[ry,cx])/DmPa.c^2 + ...;
geq[ry,cx,2] = DmPa.rho0*DmPa.R*T[ry,cx]*((1/9) + (1/3)*(xix[2]*u[ry,cx] + xiy[2]*v[ry,cx])/DmPa.c^2 + ...;
geq[ry,cx,3] = DmPa.rho0*DmPa.R*T[ry,cx]*((1/9) + (1/3)*(xix[3]*u[ry,cx] + xiy[3]*v[ry,cx])/DmPa.c^2 + ...;
geq[ry,cx,4] = DmPa.rho0*DmPa.R*T[ry,cx]*((1/9) + (1/3)*(xix[4]*u[ry,cx] + xiy[4]*v[ry,cx])/DmPa.c^2 + ...;
geq[ry,cx,5] = DmPa.rho0*DmPa.R*T[ry,cx]*((1/36) + (1/12)*(xix[5]*u[ry,cx] + xiy[5]*v[ry,cx])/DmPa.c^2 + ...;
...
//
// initialize f and g with feq and geq
f0[ry,cx] = feq0[ry,cx];
g0m[ry,cx] = geq0[ry,cx];
for k in 1:8 loop
f[ry,cx,k] = feq[ry,cx,k];
gm[ry,cx,k] = geq[ry,cx,k];

end for;
//

equation
clock = sample(0, DmPa.delt);
when {clock} then
// the single particle equilibrium distributions
feq0[ry,cx] = DmPa.rho0 - (20/12)*p[ry,cx]/DmPa.c^2 - DmPa.rho0*((2/3)*(u[ry,cx]^2 + v[ry,cx]^2)/DmPa.c^2

);
feq[ry,cx,1] = (1/3)*p[ry,cx]/DmPa.c^2 + DmPa.rho0*((1/3)*(xix[1]*u[ry,cx] + xiy[1]*v[ry,cx])/DmPa.c^2 +

...;
feq[ry,cx,2] = (1/3)*p[ry,cx]/DmPa.c^2 + DmPa.rho0*((1/3)*(xix[2]*u[ry,cx] + xiy[2]*v[ry,cx])/DmPa.c^2 +

...;
feq[ry,cx,3] = (1/3)*p[ry,cx]/DmPa.c^2 + DmPa.rho0*((1/3)*(xix[3]*u[ry,cx] + xiy[3]*v[ry,cx])/DmPa.c^2 +

...;
feq[ry,cx,4] = (1/3)*p[ry,cx]/DmPa.c^2 + DmPa.rho0*((1/3)*(xix[4]*u[ry,cx] + xiy[4]*v[ry,cx])/DmPa.c^2 +

...;
feq[ry,cx,5] = (1/12)*p[ry,cx]/DmPa.c^2 + DmPa.rho0*((1/12)*(xix[5]*u[ry,cx] + xiy[5]*v[ry,cx])/DmPa.c^2 +

...;
...
//
// the internal energy equilibrium distributions
geq0[ry,cx] = DmPa.rho0*DmPa.R*T[ry,cx]*((4/9) - (2/3)*(u[ry,cx]^2 + v[ry,cx]^2)/DmPa.c^2);
geq[ry,cx,1] = DmPa.rho0*DmPa.R*T[ry,cx]*((1/9) + (1/3)*(xix[1]*u[ry,cx] + xiy[1]*v[ry,cx])/DmPa.c^2 + ...;
geq[ry,cx,2] = DmPa.rho0*DmPa.R*T[ry,cx]*((1/9) + (1/3)*(xix[2]*u[ry,cx] + xiy[2]*v[ry,cx])/DmPa.c^2 + ...;
geq[ry,cx,3] = DmPa.rho0*DmPa.R*T[ry,cx]*((1/9) + (1/3)*(xix[3]*u[ry,cx] + xiy[3]*v[ry,cx])/DmPa.c^2 + ...;
geq[ry,cx,4] = DmPa.rho0*DmPa.R*T[ry,cx]*((1/9) + (1/3)*(xix[4]*u[ry,cx] + xiy[4]*v[ry,cx])/DmPa.c^2 + ...;
geq[ry,cx,5] = DmPa.rho0*DmPa.R*T[ry,cx]*((1/36) + (1/12)*(xix[5]*u[ry,cx] + xiy[5]*v[ry,cx])/DmPa.c^2 + ...;
...

uot; end when;
end PrtlNode;

Partial Fluid Node

partial model PrtlNodeFluid
extends PrtlNode;
// adds the following:
// 1. streaming + collision for the rest distributions f0 and g0
// 2. computes the moments of f (velocity and pressure) and gm (internal energy density/temperature)

equation
when {clock} then
//
// streaming + collision for the rest distributions (are the same for all nodes);
// non-rest distros handled in specialized node models
f0[ry,cx] = pre(f0[ry,cx]) - (1/DmPa.tau_u)*(pre(f0[ry,cx]) - pre(feq0[ry,cx]))

- DmPa.delt*DmPa.rho0*(DmPa.beta)*
(pre(T[ry,cx]) - DmPa.T0)*
pre(feq0[ry,cx])*
(DmPa.grav[1]*(-1)*pre(u[ry,cx]) + DmPa.grav[2]*(-1)*pre(v[ry,cx]))/
pre(p[ry,cx]);

//
g0m[ry,cx] = pre(g0m[ry,cx]) - (1/(DmPa.tau_e+0.5))*(pre(g0m[ry,cx]) - pre(geq0[ry,cx]));

uot; //
// the moments of f and g
u[ry,cx] = (1/DmPa.rho0)*(xix[1]*f[ry,cx,1] + xix[2]*f[ry,cx,2] + xix[3]*f[ry,cx,3] + xix[4]*f[ry,cx,4]

+ xix[5]*f[ry,cx,5] + xix[6]*f[ry,cx,6] + xix[7]*f[ry,cx,7] + xix[8]*f[ry,cx,8]
);

v[ry,cx] = (1/DmPa.rho0)*(xiy[1]*f[ry,cx,1] + xiy[2]*f[ry,cx,2] + xiy[3]*f[ry,cx,3] + xiy[4]*f[ry,cx,4]
+ xiy[5]*f[ry,cx,5] + xiy[6]*f[ry,cx,6] + xiy[7]*f[ry,cx,7] + xiy[8]*f[ry,cx,8]

129

);
p[ry,cx] = (12/20)*(DmPa.c^2)*(f[ry,cx,1] + f[ry,cx,2] + f[ry,cx,3] + f[ry,cx,4]

+ f[ry,cx,5] + f[ry,cx,6] + f[ry,cx,7] + f[ry,cx,8]
- DmPa.rho0*(2/3)*((u[ry,cx]^2 + v[ry,cx]^2)/DmPa.c^2)

);
T[ry,cx] = 1/(DmPa.rho0*DmPa.R)*(g0m[ry,cx] + gm[ry,cx,1] + gm[ry,cx,2] + gm[ry,cx,3] + gm[ry,cx,4]

+ gm[ry,cx,5] + gm[ry,cx,6] + gm[ry,cx,7] + gm[ry,cx,8]
);

end when;
end PrtlNodeFluid;

Fluid Node

model NodeFluidCore
extends PrtlNodeFluid;

equation
when {clock} then
// collision + streaming in one equation
for k in 1:8 loop
gm[ry,cx,k] = pre(gm[ry+xiny[k], cx-xinx[k], k]) +

(1/(DmPa.tau_e+0.5))*(pre(geq[ry+xiny[k], cx-xinx[k], k]) - pre(gm[ry+xiny[k], cx-xinx[k], k]));
f[ry,cx,k] = pre(f[ry+xiny[k],cx-xinx[k],k]) + (1/DmPa.tau_u)*(pre(feq[ry+xiny[k],cx-xinx[k],k])-
pre(f[ry+xiny[k],cx-xinx[k], k])) -

DmPa.delt*DmPa.rho0*(DmPa.beta)*(pre(T[ry,cx]) - DmPa.T0)*pre(feq[ry,cx,k])*(DmPa.grav[1]*(xix[k]-
pre(u[ry,cx])) +

DmPa.grav[2]*(xiy[k]-pre(v[ry,cx])))/pre(p[ry,cx]);
end for;

end when;
end NodeFluidCore;

Periodic Node

model NodeFluidEdgePeriodic "Not inclucing corner nodes"
extends PrtlNodeFluid;

equation
when {clock} then
// collision + streaming: needs to be a special kind for a given location
//
// if this node is on the left
if cx==1 then
// normal streaming for these
f[ry,cx,2] = pre(f[ry+xiny[2], cx-xinx[2], 2]) + ...;
f[ry,cx,6] = pre(f[ry+xiny[6], cx-xinx[6], 6]) + ...;
f[ry,cx,3] = pre(f[ry+xiny[3], cx-xinx[3], 3]) + ...;
f[ry,cx,7] = pre(f[ry+xiny[7], cx-xinx[7], 7]) + ...;
f[ry,cx,4] = pre(f[ry+xiny[4], cx-xinx[4], 4]) + ...;
//
gm[ry,cx,2] = pre(gm[ry+xiny[2], cx-xinx[2], 2]) + ...;
gm[ry,cx,6] = pre(gm[ry+xiny[6], cx-xinx[6], 6]) + ...;
gm[ry,cx,3] = pre(gm[ry+xiny[3], cx-xinx[3], 3]) + ...;
gm[ry,cx,7] = pre(gm[ry+xiny[7], cx-xinx[7], 7]) + ...;
gm[ry,cx,4] = pre(gm[ry+xiny[4], cx-xinx[4], 4]) + ...;
//
// these need to reach around to the other side
f[ry,cx,5] = f[ry, DmPa.Num_cx, 5];
f[ry,cx,1] = f[ry, DmPa.Num_cx, 1];
f[ry,cx,8] = f[ry, DmPa.Num_cx, 8];
//
gm[ry,cx,5] = gm[ry, DmPa.Num_cx, 5];
gm[ry,cx,1] = gm[ry, DmPa.Num_cx, 1];
gm[ry,cx,8] = gm[ry, DmPa.Num_cx, 8];

//
//
// if this node is on the right
elseif cx==DmPa.Num_cx then
// normal streaming for these
...
//
// these need to reach around to the other side
...

//
// other locations

130

elseif ...
...
//
// this node is probably not placed correctly
else
//
f[ry,cx,1] = 0;
f[ry,cx,2] = 0;
f[ry,cx,3] = 0;
f[ry,cx,4] = 0;
f[ry,cx,5] = 0;
f[ry,cx,6] = 0;
f[ry,cx,7] = 0;
f[ry,cx,8] = 0;
//
gm[ry,cx,1] = 0;
gm[ry,cx,2] = 0;
gm[ry,cx,3] = 0;
gm[ry,cx,4] = 0;
gm[ry,cx,5] = 0;
gm[ry,cx,6] = 0;
gm[ry,cx,7] = 0;
gm[ry,cx,8] = 0;
//
terminate("One or more periodic node(s) is probably not placed correctly");

end if;
end when;

end NodeFluidEdgePeriodic;

Partial Wall Node

model PrtlNodeEdgeWall
extends PrtlNode;
parameter SIu.Acceleration wallGrav[2] = {0, -9.81} "...; m/s^2";
parameter Integer UnitNormVec[2] "Unit normal vector, pointing inward toward the fluid using (x,y) coord.

system";
parameter String PositionAndCondition = Functions.SetPosAndCond(UnitNormVec, ry, cx, DmPa.Num_ry, DmPa.Num_cx)

"..."; annotation(HideResult=true);
annotation (Documentation(info="...));

equation
when {clock} then
// streaming + collision for the rest distributions (are the same for all nodes);
// non-rest distros handled in specialized node models
f0[ry,cx] = pre(f0[ry,cx]) - (1/DmPa.tau_u)*(pre(f0[ry,cx]) - pre(feq0[ry,cx])) -

DmPa.delt*DmPa.rho0*(DmPa.beta)*(pre(T[ry,cx]) - DmPa.T0)*pre(feq0[ry,cx])*(wallGrav[1]*(-1)*pre(u[ry,cx])
+

wallGrav[2]*(-1)*pre(v[ry,cx]))/pre(p[ry,cx]);
//
g0m[ry,cx] = pre(g0m[ry,cx]) - (1/(DmPa.tau_e+0.5))*(pre(g0m[ry,cx]) - pre(geq0[ry,cx]));

end when;
end PrtlNodeEdgeWall;

Sample Dirichlet Node

model NodeEdgeWallDirichletUnmoving "For temperature specified on a fixed boundary"
extends PrtlNodeEdgeWall;
public
BldgPhysics.Connectors.connectorTemperature connTemp;
discrete SIu.HeatFlux q "Heat flux rate normal to the wall; W/m^2 using cartesian (x,y) sign conventions";
discrete Heat2D Q2D "2D (conserved) heat per unit depth; W/m in cartesian (x,y) sign conventions";
annotation (Documentation(info="..."));

equation
when clock then
// this is an unmoving wall
u[ry,cx] = 0;
v[ry,cx] = 0;
T[ry,cx] = connTemp.T;
//
// run though the different nodes:
// nodes on walls U, B, L, R
// MidWall domain corners ULmw, URmw, BLmw, BRmw
// TrueCorner domain corners ULrc, URrc, BLrc, BRrc

131

//
// nodes on the walls in the middle of a domain edge: U, B, L, R
if PositionAndCondition == "U" then
assert(UnitNormVec[1]==0 and UnitNormVec[2]==-1, "NodeEdgeWallDirichletUnmoving: UnitNormVec improperly defined

at ...");
// the unknown populations are 4, 7, and 8
for k in 1:8 loop
if k==4 then

f[ry,cx,4] = [...non-equilibruium extrapolation...]
gm[ry,cx,4] = [...non-equilibruium bounceback...]

elseif k==7 then
f[ry,cx,7] = [...non-equilibruium extrapolation...]

gm[ry,cx,7] = [...non-equilibruium bounceback...]
elseif k==8 then

f[ry,cx,8] = [...non-equilibruium extrapolation...]
gm[ry,cx,8] = [...non-equilibruium bounceback...]

else
// these stream and collide as usual and are thus ’known’
f[ry,cx,k] = [...stream and collide...]

gm[ry,cx,k] = [...stream and collide...]
end if;

end for;
p[ry,cx] = (12/20)*(DmPa.c^2)*(f[ry,cx,1] + f[ry,cx,2] + f[ry,cx,3] + f[ry,cx,4] + f[ry,cx,5] + f[ry,cx,6]

+ f[ry,cx,7] + f[ry,cx,8]);
// heat flux is in the y-direction
q=(DmPa.tau_e/(DmPa.tau_e+0.5))*((-v[ry,cx])*g0m[ry,cx]+(xiy[1]-v[ry,cx])*gm[ry,cx,1]
+(xiy[2]-v[ry,cx])*gm[ry,cx,2] + (xiy[3]-v[ry,cx])*gm[ry,cx,3] + (xiy[4]-v[ry,cx])*gm[ry,cx,4]
+ (xiy[5]-v[ry,cx])*gm[ry,cx,5] + (xiy[6]-v[ry,cx])*gm[ry,cx,6] + (xiy[7]-v[ry,cx])*gm[ry,cx,7]
+ (xiy[8]-v[ry,cx])*gm[ry,cx,8] - DmPa.rho0*DmPa.R*T[ry,cx]*v[ry,cx]);
Q2D = q*(DmPa.DomainBreadth/(DmPa.Num_cx-1));

//
//
elseif PositionAndCondition == "B" then
...

//
[...other positions...]
...
// something’s wrong
else
for k in 1:8 loop
gm[ry,cx,k] = 0;
f[ry,cx,k] = 0;

end for;
p[ry,cx] = DmPa.rho0*(2-(T[ry,cx]/DmPa.T0))*DmPa.R*DmPa.T0;
q = 0;
Q2D = 0;
terminate("oops: something’s wrong with NodeEdgeWallDirichletUnmoving");

end if;
//
end when;

end NodeEdgeWallDirichletUnmoving;

Robin Node

model NodeEdgeWallRobinUnmoving "For ’conjugation’ to other models; boundary conditions are ’further out’"
extends PrtlNodeEdgeWall;
public
BldgPhysics.Connectors.connectorHeat2DTemperature connThermo;
discrete SIu.HeatFlux q "Heat flux rate normal to the wall; W/m^2";
annotation (Documentation(info="..."));

equation
when clock then
// this is an unmoving wall
// P2T: can simplify the equations below to eliminate u and v
u[ry,cx] = 0;
v[ry,cx] = 0;
T[ry,cx] = connThermo.T;
// connThermo.Q2D connections are made in the code below
//
// run though the different nodes:
// nodes on walls U, B, L, R
// MidWall domain corners ULmw, URmw, BLmw, BRmw
// TrueCorner domain corners ULrc, URrc, BLrc, BRrc
//

132

// nodes on the walls in the middle of a domain edge: U, B, L, R
if PositionAndCondition == "U" then
assert(UnitNormVec[1]==0 and UnitNormVec[2]==-1, "NodeEdgeWallRobinUnmoving: UnitNormVec improperly defined

at ...");
// the unknown populations are 4, 7, and 8
for k in 1:8 loop
if k==4 then

f[ry,cx,4] = [...non-equilibruium extrapolation...]
gm[ry,cx,4] = [...non-equilibruium bounceback...]

elseif k==7 then
f[ry,cx,7] = [...non-equilibruium extrapolation...]

gm[ry,cx,7] = [...non-equilibruium bounceback...]
elseif k==8 then

f[ry,cx,8] = [...non-equilibruium extrapolation...]
gm[ry,cx,8] = [...non-equilibruium bounceback...]

else
// these stream and collide as usual and are thus ’known’
f[ry,cx,k] = [...stream and collide...]

gm[ry,cx,k] = [...stream and collide...]
end if;

end for;
//
p[ry,cx] = (12/20)*(DmPa.c^2)*(f[ry,cx,1] + f[ry,cx,2] + f[ry,cx,3] + f[ry,cx,4] + f[ry,cx,5] + f[ry,cx,6]

+ f[ry,cx,7] + f[ry,cx,8]);
// heat flux is in the y-direction
q = (DmPa.tau_e/(DmPa.tau_e+0.5))*((-v[ry,cx])*g0m[ry,cx] + ...;
connThermo.Q2D = -q*(DmPa.DomainBreadth/(DmPa.Num_cx-1));

//
elseif PositionAndCondition == "B" then
...
// something’s wrong
else
for k in 1:8 loop
gm[ry,cx,k] = 0;
f[ry,cx,k] = 0;

end for;
p[ry,cx] = 0;
q = 0;
connThermo.Q2D = q*0;
terminate("oops: something’s wrong with NodeEdgeWallRobinUnmoving");

end if;
end when;

end NodeEdgeWallRobinUnmoving;

Sample cfd domain models

Generic Domain

model DomainGeneric
public
// parameters and constants
inner DomainParameters DmPa;
//
// hydrodynamic variables
// these are initialized in an initial equation section of a CFD model (e.g. see "PlanarCouette")
inner discrete SIu.Pressure p[DmPa.Num_ry, DmPa.Num_cx] "Pressure; Pa";
inner discrete SIu.Velocity u[DmPa.Num_ry, DmPa.Num_cx] "Velocity, x-direction; m/s";
inner discrete SIu.Velocity v[DmPa.Num_ry, DmPa.Num_cx] "Velocity, y-direction; m/s";
inner discrete SIu.Temperature T[DmPa.Num_ry, DmPa.Num_cx] "Temperature; K";
//

protected
// single particle distributions
inner discrete lbMassDistro f[DmPa.Num_ry, DmPa.Num_cx,8] ;//annotation(HideResult=true);
inner discrete lbMassDistro feq[DmPa.Num_ry, DmPa.Num_cx,8] ;//annotation(HideResult=true);
inner discrete lbMassDistro f0[DmPa.Num_ry, DmPa.Num_cx] ;//annotation(HideResult=true);
inner discrete lbMassDistro feq0[DmPa.Num_ry, DmPa.Num_cx] ;//annotation(HideResult=true);
//
// internal energy distributions
inner discrete lbEnergyDistro gm[DmPa.Num_ry, DmPa.Num_cx,8] ;//annotation(HideResult=true);
inner discrete lbEnergyDistro geq[DmPa.Num_ry, DmPa.Num_cx,8] ;//annotation(HideResult=true);
inner discrete lbEnergyDistro g0m[DmPa.Num_ry, DmPa.Num_cx] ;//annotation(HideResult=true);
inner discrete lbEnergyDistro geq0[DmPa.Num_ry, DmPa.Num_cx] ;//annotation(HideResult=true);

133

//
// arrays to locate the nodes
parameter Integer CXarray[DmPa.Num_ry-2, DmPa.Num_cx-2] = Functions.FormCXarray(DmPa.Num_ry, DmPa.Num_cx);
parameter Integer RYarray[DmPa.Num_ry-2, DmPa.Num_cx-2] = Functions.FormRYarray(DmPa.Num_ry, DmPa.Num_cx);
//
// core nodes; initialize the ry/cx members of the nodes so they ’know where they are’
NodeFluidCore CoreNodes[DmPa.Num_ry-2, DmPa.Num_cx-2](ry=RYarray, cx=CXarray);
//

end DomainGeneric;

Planar Couette

model DomainDirichletPlanarCouette
extends DomainGeneric;
public
// boundary nodes: upper, including corners
NodeEdgeWallDirichletMovingUpper ULCornerNode(ry=1, cx=1, UnitNormVec={0,-1});
NodeEdgeWallDirichletMovingUpper UpperNodes[DmPa.Num_cx-2](each ry=1, cx=CXarray[1,:], each UnitNormVec={0,-

1});
NodeEdgeWallDirichletMovingUpper URCornerNode(ry=1, cx=DmPa.Num_cx, UnitNormVec={0,-1});
//
// boundary nodes: bottom, including corners
NodeEdgeWallDirichletUnmoving BLCornerNode(ry=DmPa.Num_ry, cx=1, UnitNormVec={0,1});
NodeEdgeWallDirichletUnmoving BottomNodes[DmPa.Num_cx-2](each ry=DmPa.Num_ry, cx=CXarray[1,:],
each UnitNormVec={0,1});

NodeEdgeWallDirichletUnmoving BRCornerNode(ry=DmPa.Num_ry, cx=DmPa.Num_cx, UnitNormVec={0,1});
//
// boundary nodes: the (periodic) sides
NodeFluidEdgePeriodic LeftNodes[DmPa.Num_ry-2](ry=2:DmPa.Num_ry-1, each cx=1);
NodeFluidEdgePeriodic RightNodes[DmPa.Num_ry-2](ry=2:DmPa.Num_ry-1, each cx=DmPa.Num_cx);

end DomainDirichletPlanarCouette;

Sample Interface

This model interfaces between a cfd domain and other models, such as conduction.
model ConjugateInterfaceIsothermal
parameter Integer Num_nodes;
BldgPhysics.Connectors.connectorHeat2DTemperature connWallSideThermo;
BldgPhysics.Connectors.connectorHeat2DTemperature connFluidSideThermo[Num_nodes];

equation
for j in 1:Num_nodes loop
connect(connWallSideThermo, connFluidSideThermo[j]);

end for;
end ConjugateInterfaceIsothermal;

Sample heat transfer models
model Conduction1D_HomoIsoWall "One dimensional conduction for homogeneous isotropic wall"
BldgPhysics.Connectors.connectorHeat2DTemperature connThermoA;
BldgPhysics.Connectors.connectorHeat2DTemperature connThermoB;
//
parameter SIu.Length L "Length of the wall, m";
parameter SIu.ThermalConductivity k = 0.1 "(Constant) Thermal conductivity, W/(m K)";
parameter SIu.Density rho = 500 "(Constant) Density, kg/m^3";
parameter SIu.SpecificHeatCapacity cp = 1200 "(Constant) Specific heat at constant pressure, J/(kg K)";
parameter SIu.Temperature Ti = 293.15 "Initial temperatuere, K";
parameter SIu.Thickness thickness = 0.05 "Thickness of wall, m";
parameter Integer num_sL = 3 "Number of subLayers";
parameter Integer num_nodes = num_sL + 1 "Number of nodes";
parameter SIu.Thickness delx = thickness/num_sL "Thickness of a subLayer";
SIu.Temperature T[num_nodes] "Temperature at the nodes, K" annotation(HideResult=true);
parameter SIu.Position x[num_nodes] = {r-(thickness/2) for r in 0:delx:thickness};

initial equation
T[:] = Ti*ones(num_nodes);

equation
// ..
// define some things at end nodes/connectors A and B
connThermoA.T = T[1];

134

connThermoB.T = T[end];
// ..
// heat diffusion equation (consv. of energy)
// boundary node/connector A
rho*cp*(delx/2)*L*der(T[1]) = connThermoA.Q2D + k*L*((T[2] - T[1])/delx);
// nodes in the interior
for i in 2:num_nodes-1 loop
rho*cp*(delx)*L*der(T[i]) = k*L*((T[i-1] - T[i])/delx) + k*L*((T[i+1] - T[i])/delx);

end for;
// boundary node/connector B
rho*cp*(delx/2)*L*der(T[end]) = k*L*((T[end-1] - T[end])/delx) + connThermoB.Q2D;
//

end Conduction1D_HomoIsoWall;

model Convection
BldgPhysics.Connectors.connectorHeat2DTemperature connThermo;
parameter SIu.Length L "Length of the wall, m";
parameter SIu.CoefficientOfHeatTransfer h = 10 "(Constant) Convection coefficient, W/(m^2 K)";
SIu.Temperature Tambient "Ambient temperature in K";

equation
connThermo.Q2D = h*L*(connThermo.T - Tambient);

end Convection;

135

REFERENCES

Addington, D. M. (2003). Advanced Building Simulation, chapter 6, pages 141–158.
Spon Press.

Ansumali, S. (2004). Entropic lattice Boltzmann simulation of the flow past square
cylinder. International Journal of Modern Physics C, 15(3):435–445.

Ansumali, S., Karlin, I. and Succi, S. (2004). Kinetic theory of turbulence modeling:
smallness parameter, scaling and microscopic derivation of Smagorinsky model.
Physica A: Statistical Mechanics and its Applications, 338(3-4):379–394.

Ansumali, S. and V. Karlin, I. (2002). Kinetic boundary conditions in the lattice
Boltzmann method. Physical Review E, 66(2).

ANSYS (2010). FLUENT. Ansys, Inc., http://www.ansys.com/products/fluid-
dynamics/fluent/.

Augenbroe, G. (1986). Research-Oriented Tools for Temperature Calculations in
Buildings. In System Simulation in Buildings: Proceeings of the Second Interna-
tional Conference on System Simulation in Buildings, pages 234–255. Commis-
sion of the European Communities.

Augenbroe, G. (2003). Advanced Building Simulation, chapter 1, pages 4–24. Spon
Press.

Axley, J. (2007). Multizone Airflow Modeling in Buildings: History and Theory.
HVAC & R Research, 13(6):907–928.

Batteh, J. J. (2006). Integral Analysis for Thermo-Fluid Applications in Modelica.
In Modelica 2006 Proceedings, pages 661–667.

Ben-Nakhi, A. and Mahmou, M. (2008). Conjugate turbulent natural convection
in the roof enclosure of a heavy construction building during winter. Applied
Thermal Engineering, 28(11-12):1522–1535.

Ben-Nakhi, A. and Mahmoud, M. (2007). Conjugate natural convection in the roof
cavity of heavy construction building during summer. Applied Thermal Engi-
neering, 27(2-3):287–298.

Bhatnagar, P., Gross, E. and Krook, M. (1954). A Model for Collision Processes in
Gasses. I. Small Amplitude Processes in Charged and Neutral One-Component
Systems. Physical Review, 94(3):511—-525.

Borrmann, A., Wenisch, P., van Treeck, C. and Rank, E. (2006). Collaborative
computational steering: Principles and application in HVAC layout. Integrated
Computer-Aided Engineering, 13(4):361–376.

136

Bradley, D. and Kummërt, M. (2005). New Evolutions in TRNSYS - A Selection of
Version 16 Features. In Proceedings of Building Simulation 2005, pages 107–114,
Montréal, Canada. IBPSA.

Broadwell, J. E. (1964b). Shock Structure in a Simple Discrete Velocity Gas. Physics
of Fluids, 7(8):1243—-1247.

Broadwell, J. E. (1964a). Study of rarefied shear flow by discrete velocity method.
Journal of Fluid Mechanics, 19:401–414.

Brück, D., Elmqvist, H., Mattsson, S. E. and Olsson, H. (2002). Dymola for Multi-
Engineering Modeling and Simulation. In Proceedings of the Second International
Modelica Conference, pages 55–58. The Modelica Association.

Cao, N., Chen, S., Jin, S. and Mart\’inez, D. (1997). Physical Symmetry and Lattice
Symmetry in the Lattice Boltzmann Method. Physical Review E, 55(1):R21—-
R24.

Cellier, F. E. and Kofman, E. (2006). Continuous System Simulation. Springer.

Cercignani, C. (1988). The Boltzmann Equation and its Applications, volume 67
of Applied Mathematical Sciences. Springer-Verlag.

Chen, H., Orszag, S. A., Staroselsky, I. and Succi, S. (2004). Expanded analogy
between Boltzmann kinetic theory of fluids and turbulence. Journal of Fluid
Mechanics, 519:301–314.

Chen, Q. (2009). Ventilation Performance Prediction for Buildings: A Method
Overview and Recent Applications. Building and Environment, 44(4):848—-858.

Chen, Q., Peng, X. and van Paassen, A. (1995). Prediction of Room Thermal Re-
sponse by CFD Technique with Conjugate Heat Transfer and Radiation Models.
ASHRAE Transactions: Research, 101(2):50—-60.

Chen, S. and Doolen, G. D. (1998). Lattice Boltzmann Method for Fluid Flows.
Annual Review of Fluid Mechanics, 30:329–364.

Chen, S., Mart\’inez, D. and Mei, R. (1996). On Boundary Conditions in Lattice
Boltzmann Methods. Physics of Fluids, 8(9):2527–2536.

Chikatamarla, S., Ansumali, S. and Karlin, I. (2006). Entropic Lattice Boltzmann
Models for Hydrodynamics in Three Dimensions. Physical Review Letters, 97(1).

Clever, R. and Busse, F. (1974). Transition to Time-Dependent Convection. Journal
of Fluid Mechanics, 65(OCT2):625–645.

Crawley, D. B., Lawrie, L. K., Winkelmann, F. C. and Pedersen, C. O. (2001).
EnergyPlus: New Capabilities in a Whole-Building Energy Simulation Program.
In Proceedings of Building Simulation 2001, pages 51–58, Rio de Janeiro, Brazil.
IBPSA.

137

Crouse, B., Krafczyk, M., Kühner, S., Rank, E. and van Treeck, C. (2002). Indoor
Air Flow Analysis Based on Lattice Boltzmann Methods. Energy and Buildings,
34:941–949.

Currie, I. G. (1993). Fundamental Mechanics of Fluids. McGraw-Hill, Inc..

Dassault Systemes (2010). Dymola. http://www.3ds.com.

Davis, G. (1983). Natural Conveciton of Air in a Square Cavity: A Bench Mark
Numerical Solution. International Journal for Numerical Methods in Fluids,
3(3):249–264.

de la Fuente, L., Causon, D., Ingram, D., Mingham, C. and Raper, D. (2003). To-
wards simulating urban canyon circulations with a 2D lattice Boltzmann model.
Environmental Modelling & Software, 18(1):71–79.

D’Humières, D. (1994). Generalized Lattice Boltzmann Equations, pages 450—-458.
American Institute of Aeronautics and Astronautics.

D’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P. and Luo, L.-S. (2002).
Multiple-relaxation-time lattice Boltzmann models in three dimensions.. Philo-
sophical transactions. Series A, Mathematical, physical, and engineering sci-
ences, 360(1792):437–51.

D’Humières, D. and Lallemand, P. (1987). Numerical Simulations of Hydrodynamics
with Lattice Gas Automata in Two Dimensions. Complex Systems, 1:599—-632.

Dixit, H. and Babu, V. (2006). Simulation of high Rayleigh number natural con-
vection in a square cavity using the lattice Boltzmann method. International
Journal of Heat and Mass Transfer, 49(3-4):727–739.

Djunaedy, E. (2005). External Coupling Between Building Energy Simulation
and Computational Fluid Dynamics. PhD. Thesis, Technische Universiteit
Eindhoven.

Djunaedy, E., Hensen, J. L. M. and Loomans, M. (2004). Selecting an Appropriate
Tool for Airflow Simulation in Buildings. Building Services Engineering Research
and Technology, 25(3):269–278.

Djunaedy, E., Hensen, J. L. M. and Loomans, M. (2005). External Coupling Be-
tween CFD and Energy Simulation: Implementation and Validation. In ASHRAE
Transactions, pages 612–624. ASHRAE.

DOE (2008). EnergyPlus Engineering Reference. US Department of Energy.

D’Orazio, A., Corcione, M. and Celata, G. (2004). Application to natural convection
enclosed flows of a lattice Boltzmann BGK model coupled with a general pur-
pose thermal boundary condition. International Journal of Thermal Sciences,
43(6):575–586.

138

Eggels, J. and Somers, J. (1995). Numerical Simulation of Free Convective Flow
Using the Lattice-Boltzmann Scheme. International Journal of Heat and Fluid
Flow, 16(5):357–364.

Feustel, H. E. (1998). COMIS — An International Multizone Air-Flow and Contam-
inant COMIS — An International Multizone Air-Flow and Contaminant Trans-
port Model. Technical Report, Lawrence Berkeley National Laboratory.

Filippova, O. and Hänel, D. (1998). Grid Refinement for Lattice-BGK Models. Jour-
nal of Computational Physics, 147:219–228.

Filippova, O. and Hanel, D. (2000). A novel lattice BGK approach for low Mach
number combustion. Journal of Computational Physics, 158(2):139–160.

Frisch, U., Hasslacher, B. and Pomeau, Y. (1986). Lattice Gas Automata for the
Navier-Stokes Equation. Physical Review Letters, 56(14):1505—-1508.

Fritzson, P. (2004). Principles of Object-Oriented Modeling and Simulation with Mod-
elica 2.1 . IEEE Press.

Girimaji, S. (2007). Boltzmann Kinetic Equation for Filtered Fluid Turbulence. Phys-
ical Review Letters, 99(3).

Grad, H. (1949a). On the Kinetic Theory of Rarefied Gasses. Communications on
Pure and Applied Mathematics, 2(4):331–407.

Guo, Z., Shi, B. and Wang, N. (2000). Lattice BGK model for incompressible Navier-
Stokes equation. Journal of Computational Physics, 165(1):288–306.

Guo, Z., Shi, B. and Zheng, C. (2002). A coupled lattice BGK model for the
Boussinesq equations. International Journal for Numerical Methods in Fluids,
39(4):325–342.

Guo, Z. and Zhao, T. (2003). Explicit Finite-Difference Lattice Boltzmann Method
with Curvilinear Coordinates. Physical Review E, 67(6).

Guo, Z., Zheng, C. and Shi, B. (2002b). An Extrapolation Method for Boundary
Conditions in Lattice Boltzmann Method. Physics of Fluids, 14(6):2007—-2010.

Guo, Z., Zheng, C. and Shi, B. (2002a). Non-Equilibrium Extrapolation Method
for the Velocity and Pressure Boundary Conditions in the Lattice Boltzmann
Method. Chinese Physics, 11(4):366—-374.

Guo, Z., Zheng, C., Shi, B. and Zhao, T. (2007). Thermal lattice Boltzmann equation
for low Mach number flows: Decoupling model. Physical Review E, 75(3).

Harris, S. (1971). An Introduction to the Theory of the Boltzmann Equation. Holt,
Rinehart and Winston, Inc., New York.

139

He, X., Chen, S. and Doolen, G. D. (1998). A Novel Thermal Model for the Lattice
Boltzmann Method in Incompressible Limit. Journal of Computational Physics,
146:282–300.

He, X. and Luo, L.-S. (1997a). A priori derivation of the lattice Boltzmann equation.
Physical Review E, 55(6):R6333—-R6336.

He, X. and Luo, L.-S. (1997b). Theory of the lattice Boltzmann method: From
the Boltzmann equation to the lattice Boltzmann equation. Physical Review E,
56(6):6811–6817.

He, X., Luo, L.-S. and Dembo, M. (1996). Some progress in lattice Boltzmann method
.1. Nonuniform mesh grids. Journalof Computational Physics, 129(2):357–363.

He, X., Zou, Q., Luo, L.-S. and Dembo, M. (1997). Analytic Solutions of Simple
Flows and Analysis of Nonslip Boundary Conditions for the Lattice Boltzmann
BGK Model. Journal of Statistical Physics, 87(1–2):115–136.

Hensen, J. (2003). Advanced Building Simulation, chapter 4, pages 87–118. Spon
Press.

Inamuro, T., Yoshino, M. and Ogino, F. (1995). A Non-Slip Boundary Condition for
Lattice Boltzmann Simulations. Physics of Fluids, 7(12):2928–2930.

Kadanoff, L. P. (1986). On Two Levels.

Kaminski, D. and Prakash, C. (1986). Conjugate Natural Convection in a Square En-
closure: Effect of Conduction in one of the Vertical Walls. International Journal
of Heat and Mass Transfer, 29(12):1979—-1988.

Karlin, I., Ferrante, A. and Ottinger, H. (1999). Perfect entropy functions of the
Lattice Boltzmann method. Europhysics Letters, 47(2):182–188.

Kuhner, S., Crouse, B., Rank, E., T\"{o}lke, J. and Krafczyk, M. (2004). From
a product model to visualization: Simulation of indoor flows with Lattice-
Boltzmann methods. Computer-Aided Civil and Infrastructure Engineering,
19(6):411–420.

Kuznik, F. and Rusaouen, G. (2007). Numerical Prediction of Natural Convection
Occurring in Building Components: A Double-Population Lattice Boltzmann
Method. Numerical Heat Transfer, Part A: Applications, 52(4):315–335.

Ladd, A. J. (1994b). Numerical Simulations of Particulate Suspensions via a Dis-
cretized Boltzmann Equation. Part 1. Theoretical Foundation. Journal of Fluid
Mechanics, 271:285—-309.

Ladd, A. J. (1994a). Numerical Simulations of Particulate Suspensions via a Dis-
cretized Boltzmann Equation. Part 2. Numerical Results. Journal of Fluid
Mechanics, 271:311—-339.

140

Lallemand, P. and Luo, L.-S. (2003). Theory of the lattice Boltzmann method:
Acoustic and thermal properties in two and three dimensions. Physical Review
E, 68(3).

LBNL and Ayers Sowell Associates, I. (2003). SPARK 2.0 Reference Manual.
Lawrence Berkeley National Laboratory and Ayers Sowell Associates, Inc..

Lee, T. and Lin, C.-L. (2001). A characteristic Galerkin method for discrete Boltz-
mann equation. Journal of Computational Physics, 171(1):336–356.

Li, Q., He, Y. L., Wang, Y. and Tang, G. H. (2008). An improved thermal lattice
Boltzmann model for flows without viscous heat dissipation and compression
work. International Journal of Modern Physics C, 19(1):125–150.

Liboff, R. L. (1998). Kinetic Theory. John Wiley and Sons, Second edition.

Lienhard(IV), J. H. and Lienhard(V), J. H. (2005). A Heat Transfer Textbook. Phlo-
giston Press, Cambridge, Massachussets, 3 edition.

Megri, A. C. and Haghighat, F. (2007). Zonal Modeling for Simulating Indoor Envi-
ronment for Buildings: Review, Recent Developments, and Applications. HVAC
& R Research, 13(6):887–905.

Mei, R. and Shyy, W. (1998). On the Finite Difference-Based Lattice Boltzmann
Method in Curvilinear Coordinates. Journal of Computational Physics, 143:426–
448.

Meng, F., Wang, M. and Li, Z. (2008). Lattice Boltzmann simulations of conjugate
heat transfer in high-frequency oscillating flows. International Journal of Heat
and Fluid Flow, 29(4):1203–1210.

Mentor Graphics (2010). FloVENT. Mentor Graphics, Inc., http://www.mentor.com.

Mezrhab, A., Bouzidi, M. and Lallemand, P. (2004). Hybrid Lattice-Boltzmann
Finite-Difference Simulation of Convective Flows. Computers and Fluids, 33:623–
641.

Mezrhab, A., Jami, M., Bouzidi, M. and Lallemand, P. (2007). Analysis of radi-
ationâĂŞnatural convection in a divided enclosure using the lattice Boltzmann
method. Computers & Fluids, 36(2):423–434.

Mirsadeghi, M., Blocken, B. and Hensen (2009). Application of Externally-Coupled
BES-CFD in HAM Engineering of the Indoor Environment. In Proceedings of
the Eleventh International IBPSA Conference, pages 324—-331.

Mondal, B. and Mishra, S. C. (2009). The lattice Boltzmann method and the finite
volume method applied to conduction-radiation problems with heat flux bound-
ary conditions. International Journal for Numerical Methods in Engineering,
78(2):172–195.

141

Negrao, C. (1995). Conflation of Computational Fluid Dynamics and Building Ther-
mal Simulatin. Ph.D Thesis, University of Strathclyde.

Noble, D. R., Chen, S., Georgiadis, J. G. and Buckius, R. O. (1995a). A Consistent
Hydrodynamic Boundary Condition for the Lattice Boltzmann Method. Physics
of Fluids, 7(1):203–209.

PELAB (2008). OpenModelica System Documentation. Programming Environment
Laboratory, Department of Computer and Information Science, Linköping Uni-
versity, Sweden.

Peng, Y., Shu, C. and Chew, Y. (2003). Simplified thermal lattice Boltzmann model
for incompressible thermal flows. Physical Review E, 68(2).

Philippi, P., Hegele, L., dos Santos, L. and Surmas, R. (2006). From the continuous to
the lattice Boltzmann equation: The discretization problem and thermal models.
Physical Review E, 73(5).

Pope, S. B. (2000). Turbulent Flows. Cambridge University Press.

Potter, S. and Underwood, C. (2004). A modelling method for conjugate heat transfer
and fluid flow in building spaces. Building Services Engineering Research and
Technology, 25(2):111—-125.

Prasianakis, N. and Karlin, I. (2007). Lattice Boltzmann method for thermal flow
simulation on standard lattices. Physical Review E, 76(1).

Prasianakis, N. I. (2008). Lattice Boltzmann Method for Thermal Compressible Flows.
Ph.D Thesis, Swiss Federal Institute of Technology.

Prasianakis, N. I., Chikatamarla, S. S., Karlin, I. V., Ansumali, S. and Boulouchos,
K. (2006). Entropic lattice Boltzmann method for simulation of thermal flows.
Mathematics and Computers in Simulation, 72:179–183.

Reichl, L. E. (1998). A Modern Course in Statistical Physics. John Wiley and Sons,
Second edition.

Roache, P. J. (1998). Fundamentals of Computational Fluid Dynamics. Hermosa
Publishers, Albuquerque, NM.

Rosenfeld, A. H. (1999). The Art of Energy Efficiency: Protecting the Environment
with Better Technology. Annual Review of Energy and the Environment, 24:33–
82.

Sahlin, P. (2003). On the Effects of Decoupling Airflow and Heat Balance in Building
Simulation Models. ASHRAE Transactions, 109:788—-800.

142

Sahlin, P., Eriksson, L., Grozman, P., Johnsson, H. and Shapovalov, A.et al. (2004).
Whole-Building Simulation with Symbolic DAE Equations and General Purpose
Solvers. Building and Environment, 39:949–958.

Saldamli, L., Bachmann, B., Fritzson, P. and Wiesmann, H. (2005). A Framework for
Describing and Solving PDE Models in Modelica. In Proceedings of the Fourth
International Modelica Conference. The Modelica Association.

Schlichting, H. (1979). Boundary-Layer Theory. McGraw-Hill, Inc..

Shan, X. (1997). Simulation of Rayleigh-Bénard convection using a lattice Boltzmann
method. American Physical Society.

Shan, X. and Chen, H. (2007). A general multiple-relaxation-time Boltzmann collision
model. International Journal of Modern Physics C, 18(4):635–643.

Shan, X., Yuan, X.-F. and Chen, H. (2006). Kinetic theory representation of hy-
drodynamics: a way beyond the NavierâĂŞStokes equation. Journal of Fluid
Mechanics, 550(-1):413—-441.

Shi, Y., Zhao, T. and Guo, Z. (2004). Thermal lattice Bhatnagar-Gross-Krook model
for flows with viscous heat dissipation in the incompressible limit. Physical Re-
view E, 70(6).

Skordos, P. (1993). Initial and Boundary Conditions for the Lattice Boltzmann
Method. Physical Review E, 48(6):4823—-4842.

Sowell, E. F., Moshier, M. A., Haves, P. and Curtil, D. (2004). Graph–Theoretic
Methods in Simulation Using SPARK. In Proc. High Performance Computing
Symposium of the Advanced Simulation Technologies Conference. Society for
Modeling Simulation International.

Sterling, J. D. and Chen, S. (1996). Stability Analysis of Lattice Boltzmann Methods.
Journal of Computational Physics, 123:196–206.

Stiebler, M., Tolke, J. and Krafczyk, M. (2006). An upwind discretization scheme for
the finite volume lattice Boltzmann method. Computers & Fluids, 35(8-9):814–
819.

Sturge, M. D. (2003). Statistical and Thermal Physics. AK Peters.

Succi, S., Chen, H. and Orszag, S. (2006). Relaxation approximations and kinetic
models of fluid turbulence. Physica A: Statistical Mechanics and its Applications,
362(1):1–5.

Succi, S., Karlin, I. V. and Chen, H. (2002). Colloquium: Role of the H Theorem
in Lattice Boltzmann Hydrodynamic Simulations. Reviews of Modern Physics,
74:1203–1220.

143

Surmas, R., Pico Ortiz, C. E. and Philippi, P. C. (2009). Simulating thermohydrody-
namics by finite difference solutions of the Boltzmann equation. The European
Physical Journal Special Topics, 171(1):81–90.

Tan, G. and Glicksman, L. R. (2005). Application of Integrating Multi-zone Model
with CFD Simulation to Natural Ventilation Predicition. Energy and Buildings,
37:1049–1057.

Tannehill, J. C., Anderson, D. A. and Pletcher, R. H. (1997). Computational Fluid
Mechanics and Heat Transfer . Taylor & Francis, Washington, DC, Second
edition.

The Modelica Association (2007). Modelica - A Unified Object-Oriented Language for
Physical Systems Modeling; Language Specification Version 3.0 . The Modelica
Association, www.modelica.org.

The Modelica Association (2010). Modelica - A Unified Object-Oriented Language
for Physical Systems Modeling Language Specification Version 3.2. The Modelica
Association, www.modelica.org.

Tritton, D. J. (1997). Physical Fluid Dynamics. Oxford University Press.

van Treeck, C., Rank, E., Krafczyk, M., Tolke, J. and Nachtwey, B. (2006). Exten-
sion of a Hybrid Thermal LBE Scheme for Large-Eddy Simulations of Turbulent
Convective Flows. Computers and Fluids, 35:863–871.

Walton, G. N. and Dols, W. S. (2008). CONTAM 2.4c User Guide and Program
Documentation. National Institute of Standards and technology.

Wang, J., Wang, M. and Li, Z. (2007). A lattice Boltzmann algorithm for fluidâĂŞ-
solid conjugate heat transferâŸĘ. International Journal of Thermal Sciences,
46(3):228–234.

Wang, L. and Chen, Q. (2007a). Theoretical and Numerical Studies of Coupling
Multizone and CFD Models for Building Air Distribution Simulations. Indoor
Air, 17(5):348–361.

Wang, L. and Chen, Q. (2007b). Validation of a Coupled Multizone-CFD Program for
Building Airflow and Contaminant Transport Simulations. HVAC & R Research,
13(2):267–281.

Wang, L. and Chen, Q. (2008). Evaluation of Some Assumptions Used in Multizone
Airflow Network Models. Building and Environment, 43:1671–1677.

Wetter, M. (2006a). Multizone Airflow Model in Modelica. In Modelica 2006 Pro-
ceedings, pages 431–440.

144

Wetter, M. and Haugstetter, C. (2006). Modelica vs. TRNSYS - A Comparison
Between an Equation-Based and a Procedural Modeling Language for Building
Energy Simulation. In Proc. of the 2nd SimBuild Conference.

White, F. M. (2006). Viscous Fluid Flow. McGraw Hill, New York, 3rd edition.

Wolf-Gladrow, D. A. (2000). Lattice-Gas Cellular Automata and Lattice Boltzmann
Models: An Introduction. Springer, New York.

Yu, D., Mei, R., Luo, L.-S. and Shyy, W. (2003). Viscous Flow Computations with
the Method of Lattice Boltzmann Equation. Progress in Aerospace Sciences,
39:329–367.

Yu, H. (2004). Lattice Boltzmann Equation Simulations of Turbulence, Mixing, and
Combustion. PhD thesis, Texas A & M University.

Yu, H. and Girimaji, S. S. (2005). Near-Field Turbulent Simulations of Rectangular
Jets Using Lattice Boltzmann Method. Physics of Fluids, 17:125106–1—-125106–
17.

Zhai, Z. (2003). Developing an Integrated Building Design Tool by Coupling Building
Energy Simulation and Computational Fluid Dynamics Programs. Ph.D Thesis,
Massachusetts Institute of Technology.

Zhai, Z. and Chen, Q. (2003). Solution Characters of Iterative Coupling Between
Energy Simulation and CFD Programs. Energy and Buildings, 35(5):493–505.

Zhai, Z. and Chen, Q. (2004). Numerical Determination and Treatment of Convective
Heat Transfer Coefficient in the Coupled Building Energy and CFD Simulation.
Building and Environment, 39:1001–1009.

Zhai, Z. and Chen, Q. (2005). Performance of Coupled Building Energy and CFD
Simulations. Energy and Buildings, 37(4):333–344.

Zhou, Y., Zhang, R., Staroselsky, I. and Chen, H. (2004). Numerical Simulation
of Laminar and Turbulent Buoyancy-Driven Flows Using a Lattice Boltzmann
Based Algorithm. International Journal of Heat and Mass Transfer, 47:4869–
4879.

Zou, Q. and He, X. (1997). On Pressure and Velocity Boundary Conditions for the
Lattice Boltzmann BGK Model. Physics of Fluids, 9(6):1591–1598.

145

VITA

Jason Brown was born in 1972 in Arcadia, Florida. He received his Bachelors of

Science in Engineering from Baylor University in 1995 and a Masters of Science in

Mechanical Engineering from Georgia Tech in 1998. For four years he worked as a

research technician in the School of Biology at Georgia Tech, building experimental

apparatus and conducting experiments on the fluid-mechanical environment of marine

zooplankton in support of research in sensory ecology and oceanic carbon cycling.

Seeking to broaden his work, Jason came to the College of Architecture in 2004,

first as a M.Arch student, then transferring tot he Ph.D program with the interest of

applying engineering to architecture. He participated in Georgia Tech’s entry in the

2007 Solar Decathlon as a student leader, learning many practical things about the

design, construction, and operation of such houses. During his time as a student, he

also became the instructors of record for the two environmental systems classes, and

started the Building Physics class as part of the High Performance Buildings Masters

program. He is a member of the American Society of Mechanical Engineers and the

American Society of Heating, Refrigerating and Air-Conditioning Engineers.

