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Abstract 

Digital 3D models of the human body can be used to measure anthropometric features to 

diagnose diseases. Circumference measurements of body parts can only be obtained from 

360-degree spin 3D models. These type of models are created using a combination of scanning 

hardware and stitching software. Current stitching techniques use an Iterative Closest Point 

algorithm on manually or automatically generated registration landmarks, provided that there is a 

rotation angle difference of 60 degrees or less between adjacent frames for sufficiently matching 

features. This paper proposes a method to stitch four orthogonal (90-degree) views captured 

using one Kinect camera by iteratively translating and rotating adjacent frames to minimize the 

Root Mean Square Error between the contours of the torso in 2D planes. Future work will 

involve mending holes in the stitched models and solving the shear transformation to improve 

results on non-rigid bodies.   
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List of Abbreviations 

 

2D, 3D Two-dimensional, Three-dimensional 

ICP Iterative Closest Point 

IR Infrared 

RGB-D Camera Camera capable of capturing color and depth. 

SCAPE Shape Completion and Animation of People 

GPU Graphics Processing Unit 

RMSE Root Mean Square Error 
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Introduction 

Digital 3D models of the human body have been shown to be accurate in obtaining 

anthropometric features, such as lengths, diameters and circumferences of body parts, compared 

to traditional anthropometric devices, such as tape measures, callipers and pelvimeters.[1, 2] These 

anthropometric features can be used to diagnose diseases such as Cephalopelvic Disproportion.[2] 

While the front-view scan can be used to measure 2D metrics such as height, a complete 

360-degree spin model is needed to measure circumferences around the body parts, such as the 

torso, legs or arms. Both scanning hardware, such as a depth camera or laser scanner, and 

stitching software are required to create a digital 360-degree spin 3D model of a person.[1, 3] 

A full-body laser scanner is a device that a human can stand inside. The device emits 

laser rays around the circumference of the body to provide very accurate 3D models with 2mm 

accuracy.[3] Full-body laser scanners can cost between $20,000-$50,000 and take up a large 

amount of space, equivalent at least to the volume of the model being scanned.[4] 

Depth cameras are less expensive than laser scanners, costing anywhere between 

$150-$10,000, and only need 2-3m of space to acquire a scan.[1] The reduction in cost comes at 

the expense of resolution. Many low-end depth cameras have a resolution of only 640x480 

pixels, meaning that the data points captured per frame are very sparse, leading to loss of 

information of the model being captured.[1] Moreover, captured models can be noisy due to light 

occlusion or IR reflection.[4] Pre-processing algorithms that separate the body from the 

background, remove noise from the image, fill holes and rotate the scan to the optimal 

orientation can be used to improve the quality of scans captured by depth cameras.[4] To obtain 
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3D models from a depth camera, pre-processing, stitching and meshing steps are needed to 

combine captured frames.  

Common stitching techniques used today require manual human input to identify 

landmarks to guide the stitching or an automated algorithm to find registration landmarks. 

Moreover, consecutive frames must have a rotation angle difference of 60 degrees or less, 

normal to a common plane, in order to have matching features between frames. The most 

common algorithm used to stitch frames is the Iterative Closest Point (ICP) algorithm, which 

solves for a transformation matrix that minimizes the distance between registered landmarks on 

adjacent frames.[3, 5] Other stitching techniques try to fit the acquired scans to statistical human 

models, such as the Shape Completion and Animation of People (SCAPE) model. The SCAPE 

model is computationally expensive and training data must be available to use this stitching 

technique.[6] 

Cui et al. and Fernando et al. demonstrate two different ways to a obtain real-time 3D 

model using a single Microsoft Kinect, while Alexiadis et al. demonstrate real-time 3D model 

acquisition using six Microsoft Kinect cameras [4,7]. Each proposed method aims to capture 3D 

scans from different angles so that there are enough overlapping features to stitch multiple 

images using the Iterative Closest Point (ICP) algorithm.[4,7,9] Cui et al. obtain 10 frames at 30 

degree rotation intervals, then use ICP to stitch them together into one 3D mesh. Alexiadis et al. 

obtain six images from each Kinect camera at 60 degree rotation intervals and fuse them together 

using ICP. Both methods yield good results. However the biggest issue is that the person must 
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remain in a fixed position during acquisition so that the computer software can easily find 

matching features in the multiple images scanned.[4.9] 

Cui et al. also report that a lot of processing is needed on the images obtained from the 

Kinect to remove noise and unwanted features.[4] They explain that noisy scans are obtained due 

to the low resolution of the depth camera and due to reflective materials on the subject, such as 

hair and clothes.[4] The Kinect camera’s infrared sensors produce a lot of noise and holes in the 

image data when the infrared beams scatter upon hitting hair or black clothing, which is a current 

limitation of the Kinect camera. Unwanted features are generated by accessories the person is 

wearing or by objects in the background during the scan, such as lamps or chairs or the floor or 

the walls, if the subject is standing indoors. All the noise and holes in the data must be cleaned 

and filled in before stitching can happen. Also background features must be separated from the 

body in order to generate a 3D model of the body devoid of unwanted elements.[1,4] 

Reeda et al. suggest that 3D scans from hand-held devices can be stitched by a method 

other than ICP.[6] They use a Machine Learning techniques to train the computer to recognize 

body shapes and generate statistical body models that they can use to fit any new scans onto.[6] 

An example of a statistical body model is the Shape Completion and Animation of People 

(SCAPE) model. This type of modelling is very advanced and computationally complex; 

however, its results are very promising. SCAPE models have pre-identified landmarks such as 

joints of the wrists, arms, thigh and legs. Therefore, they can be used to animate pose and 

gestures. This allows for very elaborate animations to be produced. It is not possible to generate 
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SCAPE models without the training data. Hence, the computation for these models is quite 

extensive. 

Due to the limitations of ICP when there are not enough features between adjacent 

frames, there are no known ways to automatically stitch scans with orthogonal views that have 

not been manually landmarked.[3] This paper aims to use a low-cost depth camera to 

automatically stitch together a torso of a human model using only four perpendicular 3D scans, 

and without any previous manual landmarking or automated/trained feature detection. This 

proposed method relies on the bilateral symmetry and curvature of the torso of the human body 

and uses a Root-Mean-Square Error (RMSE) approximation to find the correct fit of the scans 

onto each other. The purpose of this method is to eliminate the need for manual user input to 

identify stitching landmarks and to provide a low-cost and computationally-efficient method of 

obtaining a 3D model of the human body. 
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Methods and Materials 

A Kinect V2 RBG-D camera was used to capture four orthogonal views of a person, as 

shown in Figure 1. Although a human body is a non-rigid body, the torso’s shape stays relatively 

the same throughout the different views, hence only the torso currently works with this 

application. The curvature of the edge boundaries of the torso is mostly symmetrical and 

consistent across views, as shown in Figure 2. This proposed method is computationally 

inexpensive when compared to the SCAPE or Kinect Fusion techniques and should work on any 

3D Point Cloud that has uniform and symmetric contour across the four orthogonal views. 

 

Figure 1. Four orthogonal views (right, back, front, left) captured from a stationary 

Kinect depth camera. 
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Figure 2. Back view (blue) and Right view (green) shown in the Y-Z plane, with blue 

and red dots showing the contour of the torso. 

A pre-processing script removes noise and background information from the scans, using 

a density-based K-Nearest Neighbor filter algorithm. Afterwards, an automated landmarking 

script is used to identify the legs and arms, and those are removed from the scan, leaving the 

torso and head for stitching. 

The main feature used for stitching is the contour of the torso. The contour is extracted by 

clustering data points using a voxel grid filter, then finding the minimum and maximum points in 

small slices along the y-plane. The result is a low-density 2D silhouette of the torso, as shown by 

the blue and red dots in Figure 2. Sixteen contours are extracted in total, four for each view, 
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normal to the x and z planes. These contours are used to bring each view closer to the adjacent 

view. 

Predefined step sizes of 0.01m and 2 degree rotation are used to iteratively transform one 

of the four contours of one view over a fixed contour of another view in the same plane. After 

each transformation takes place, the Root Mean Square Error (RMSE) is calculated using 

Euclidean distance and stored in an array.  

RMSE =  √ n

(||V −V ||)∑
n

i=0
1,i 2,i

2

 

Where V is a vertex in the point cloud and n is the total number of vertices 

After all of the transformations are completed at the desired step sizes, the minimum RMSE 

index is found in the array using a search function, and the transformation rotation and 

translation matching that RMSE value is used to transform the point cloud before continuing the 

process with the next set of contours. A simplified diagram of the process is shown in Figure 3. 

 

Figure 3. a) A block diagram showing the process to find the transformation needed to 

minimize the distance between two contours. b) A simplified example of the transformations 

taking place to minimize the distance between two contours.  
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Results and Future Work 

The matching contours method provides a computationally inexpensive method to 

reconstruct a 360-degree spin 3D model of the human torso from four orthogonal views. This 

proposed method overcomes a great obstacle in standard ICP stitching methods, which require at 

least eight captured views yielding a rotation angle of less that 60 degrees between frames. 

Moreover, no training data or a GPU is needed to perform this proposed method. When 

performed on completely rigid models, such as prisms or boxes, the algorithm has almost 100% 

accuracy. However, when performed on a non-rigid model such as the human torso, there are a 

lot of areas where the model has incomplete overlap between the adjacent frames, as shown by 

the white seams in Figure 4. These seams are created where the views are not completely 

symmetrical due to slouching or the person not being completely parallel to the camera during 

scanning. 

 

Figure 4. Shows the result from stitching four orthogonal views of the human torso. 
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Future work would involve developing the algorithm to perform shear transformations in 

small voxel steps to transform pieces of the non-rigid body onto itself, to overcome the obstacle 

of slouching or changing posture. Moreover, more work needs to be done to validate the 

accuracy of this stitching model when compared to a different 360-degree hand-held scanning or 

stitching method. Lastly, because there are a lot of holes in the model due to the lack of depth 

information from the orthogonal views, a marching cubes algorithm could be used to average 

neighboring vertices and fill-in holes to generate a smoother model. 
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