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SUMMARY 

H. H. Rosenbrock's direct search algorithm for unconstrained 

nonlinear programming problems was examined and modified in an attempt 

to reduce the number of function evaluations, which is the major por-

tion of the total computer running time, needed to solve certain test 

problems. The original search logic was compared with a golden section 

and two Fibonacci schemes, which retained the other basic attributes 

of the Rosenbrock search method. These new methods did not produce 

better results for a majority of the test problems. A method which 

combined the Rosenbrock search and a Fibonacci style search in an 

alternating fashion did yield performance results equivalent to the 

Rosenbrock method alone. 

The Rosenbrock algorithm uses a counter on the number of func-

tion evaluations and stops when a specified maximum is reached. Two 

alternate signs of optimality were evaluated as an additional termina-

tion criterion, but neither produced consistently reliable results. 

The combined Rosenbrock and Fibonacci optimization method was 

evaluated for compatibility and effectiveness with several approaches 

to solving constrained nonlinear programming problems. Of these ap-

proaches, two proved to be generally successful. One was proposed by 

Rosenbrock and the other was Carroll's created response surface tech-

nique. Both are interior methods, but differ in the manner they treat 

constraints in the different parts of the feasible region. Rosenbrock's 

approach requires more manual preparation for its computer implementation. 
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Neither of these approaches could effectively solve a difficult 24 

variable problem with 44 linear and nonlinear, equality and inequality 

constraints. This failure was attributed to the difficulty of the 

problem and the limited amount of computer time devoted to its solution. 

In the solution of both constrained and unconstrained problems, 

it was noted that for any individual problem, one method might be far 

superior to other methods, even though it may not have been generally 

acceptable for all problems. The relationship between the solution 

procedure and the problem was not isolated, but this area appears to 

be suitable for further research into the efficiency of nonlinear 

optimization techniques. 



CHAPTER I 

INTRODUCTION 

The generalized nonlinear programming problem can be stated 

as follows: 

Minimize F(x) 	 (1) 

subject to: g i. (R) = 0, i=1, . 	, m 	 (2) 

ei (R) = 0, i=m+1, . 

• 

• , p 	 (3) 

where x

- 

 = (x1,  x2, • 
. . , xn

). Equations (1), (2), and (3) are 

nominally nonlinear, although special cases exist where some of them 

are linear. Equations (2) and (3) are called inequality and equality 

constraints, respectively, and a problem with either or both types is 

called a constrained nonlinear optimization problem. When equations 

(2) and (3) are both missing, the problem is said to be unconstrained. 

Procedures for solving the nonlinear programming problem fall 

into two general classes: (a) direct search methods, and (b) gradient 

methods. Direct search methods employ a logical, iterative approach 

to solving (1) by choosing a point x, comparing its function value to 

that of a previously known point, and using the results of the compari-

son to choose another point to generate a sequence of R's that con-

verge to a solution point. The only computations involved are those 

that choose the points and evaluate the function. Simplicity in both 
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theoretical concept and computer implementation is the chief advantage 

of a direct search, while greater computation time than required by 

gradient methods, is the main disadvantage. Gradient searches are also 

iterative in nature, but employ more properties of the function to be 

optimized. First- and/or second-order partial derivatives are computed 

at each x to indicate the next most profitable X. Since instructions 

to solve for these partial derivatives in either analytic or numerical 

methods form are required, the increase in preparation effort must be 

weighed against the additional speed of the computer solution. 

One of the more widely known direct search methods was intro-

duced by H. H. Rosenbrock in 1960. His method was referenced in many 

articles throughout the past decade and its performance has been com-

pared to other direct and gradient methods in several books and papers. 

The method is simple and easy to use. For an n dimensional problem, 

Rosenbrock uses n orthonormal directions, initially unit vectors along 

the coordinate axes, and makes a sample function evaluation along each 

direction in turn, increasing or decreasing the distance and changing 

the orientation from the previous best point based upon preceding 

evaluations. When a successful evaluation followed by an unsuccessful 

evaluation has been made in each direction, new directions are computed 

from the old and the aggregrate results of each successful evaluation. 

The first of these new directions is oriented toward the direction of 

steepest descent. This series of one-dimensional searches is continued 

until a specified maximum number of function evaluations has been 

reached. 
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The step size, which indicates the distance and orientation 

along each orthonormal direction to the next x, is modified after 

each trial. Following a successful evaluation,the step size is 

multiplied by a positive constant greater than one. After a failure, 

the current step size is multiplied by a negative fraction between 

zero and minus one. Thus, the next time this direction is chosen for 

evaluation, the step size is properly modified to reflect the previous 

results. 

Objectives  

Since the directions are changed from one trial to the next, 

the Rosenbrock method cannot truly be considered a series of one-

dimensional searches. However, the process of rewarding success and 

punishing failure as Rosenbrock does would be an acceptable, though 

inefficient, one-dimensional search procedure. There are methods for 

making more exact one-dimensional searches, particularly the golden 

section and Fibonacci methods. Therefore, during the first phase of 

this research, alternative methods of point selection using the golden 

section and Fibonacci techniques will be calculated. Performance of 

these methods will be compared by the number of function evaluations 

required to reduce the objective function of several test problems 

of specified values. 

The necessity to predict the required number of function eval-

uations invites inefficiency from two directions. Since the Rosen-

brock method, and presumably any modification to it, will continue to 

search even at an optimal point, predicting too large an iteration 

maximum results in wasted function evaluations after the optimum is 
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reached. Predicting too small a maximum delivers only a reduced function 

value which is not optimal. The program could be restarted from the last 

point of the partial solution, but the valuable information in the set of 

directions at the conclusion of the partial run would normally be lost. 

Results from a restarted solution would not be equivalent to a single 

solution from the first initial point. Rosenbrock made some suggestions 

about signals of either true optimality or problems that are too diffi-

cult for his method. By examining these signals for a variety of problems, 

it should be possible to develop an alternate termination criterion to 

complement the iteration counter. That development will be secondary 

goal for this first phase of this research. 

Both of the objectives of the first phase involve only the basic 

operation of Rosenbrock's direct search method. This phase will be 

characterized by attempted solutions to unconstrained nonlinear pro-

gramming problems exclusively. Unconstrained problems provide the 

most efficient means for comparison of solution methods, since computer 

time need not be devoted to solving constraint equations. 

Constrained problems offer the greatest challenge to optimization 

techniques since they add many conditions for a point to be a solution 

to (1). A point that satisfies (2) and (3) is said to be feasible. 

The feasible point which minimizes F(X) is optimal. Two cotillion 

approaches to solving constrained problems are: (a) formulate (1), 

(2), and (3) into a single unconstrained function whose minimum is at 

the same point which minimizes the generalized nonlinear programming 

problem, and (b) solve (2) and (3) for feasible points and then minimize 

F(x) for x feasible. Many approaches to these formulations have been 
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designed strictly for either (2) or (3), although much of the more 

recent work has been directed at solution forms for the general non-

linear programming problem. 

The second phase of this research will be devoted to solving 

sample constrained problems from the literature of nonlinear programming 

The goal will be an examination of several problem formulations for their 

compatibility with the best method found in the first phase and for their 

effectiveness in solving the test problems. Pre-programming a solution 

procedure to require a minimum of special instructions for individual 

problems will provide users with an easy to use optimization tool. 



CHAPTER II 

LITERATURE SURVEY 

Rosenbrock's Method for Unconstrained Problems  

In 1960 (14) and again in 1966 with C. Storey (15), H. H. Rosen-

brock presented his direct search algorithm for finding the minimum 

of a nonlinear function. The algorithm makes modified one-dimensional 

searches along n orthogonal directions, which are periodically changed 

to provide the most profitable set of directions. Rotation of the 

directions aligns one along the direction of steepest descent and uses 

the remaining directions to provide correction for imperfections in 

the alignment of the first. 

To describe the detail of Rosenbrock's method, the logic of its 

computer implementation will be developed, leading to a flow diagram 

in Figure 1. The computer program requires a function or subroutine 

to compute the function value for any x vector. 	A call to this 

function will be indicated by F(x). Although the instructions to com-

pute the function value will normally indicate the dimensionality of 

the problem, certain test problems offer variable dimensionality and 

make it appropriate to require the value of n to be read in. Along 

with n, other required inputs are the trial maximum and the n-component 

vector x, which is the point where the search is to be started. The 

method is characterized by trials and stages. A trial is a single 

function evaluation. A stage is a varying number of trials which meet 

requirements to be specified below. 

6 
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Within the program, there are two arrays the same size as x, 

which is at least as large as n elements. The first is e, which is an 

array of step sizes for each direction. The second is d, each element 

of which records the sum of the successful steps in the direction it 

represents. For a minimization problem, a success is defined as a 

function evaluation less than or equal to the best previous value. 

There is also a two-dimensional array v, which is at least n by n in 

size, for the n orthonormal directions each with n components. 

After the input variables are read, the directions are set to 

unit vectors along the coordinate axes and the value of F(X) is computed 

and stored in a location called Fbest
.  F

best 
always retains the current 

best function value. All the e. are set to 0.1, and the d. are set to 

zero. Success-failure status indicators for each direction are also 

initialized. The first trial, not counting the function evaluation 

during initialization, is computed at X + 
e1;1. 

The resulting value 

is compared to Fbest . If F(x + e lT7 1 ) is less than or equal to F
best' 

the value of 
Fbest 

is changed to this value, X is set equal to X + e
1
cr
1, 

e
1 
 is added to d

1 
and then e

1 
is replaced by 3e

1, 
and a success is 

recorded for the first direction. If F(X + e 1v1 ) is greater than F
best' 

x and 
Fbest 

retain their original values, d
1 
is unchanged , e is replaced 

by -0.5e
1' 

and a failure is recorded. 	Rosenbrock chose the multipliers 

3 and -0.5 after a comparison of several combinations on a moderately 

difficult problem. In his evaluation, Rosenbrock chose not to use the 

optimal combination, 5 and -0.5, because the values 3 and -0.5 offered 

better performance for general problems. Kowalik and Osborne (7) 

demonstrated the dependence of these multipliers on particular problems 
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when they presented results using 5 and -0.5, 3 and -0.5, 1.5 and 

-0.5, and 2 and -0.3. 

The second trial is made at the point x + e2v2 , where x is 

changed from its initial value if the first trial was a success. The 

results of the second trial are compared with the current value of 

and the values of x' e
2' d2' 

and 
 Fbest are adjusted as above, 

F
best'  

if necessary, and a success or failure is recorded. The following 

trials are made in the directions v3 , v4 , . . . , vn  and then the 

- 
sequence is started again with v. When at least one success followed 

by a failure has been made in each direction, the stage counter is 

incremented and new directions are computed via the Gram-Schmidt 

orthonormalization process. 

The d. now contain the sum of the progress made in the direction 

vi . Alpha vectors, are computed in the following manner: 

a
l 

= d
l
v
l 

+ d
2
v
2 

+ . . . + dnvn 

a
2 

= 	d
2
v
2 

+ • . . + d
n
v
n 

a
n 
	 d

n
v
n 

The norm of the first alpha vector indicates the total linear progress 

made in the n-space during the previous stage. S is defined as the 

ratio of the norm of the second alpha vector to the norm of the first 

and is a measure of how closely the initial 15 .1  is aligned with the 

- newlir mesenewilv whicharedesignatedare derived below: 
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S 1 = 1 

;* = 	/ ItS 1 	1 

E
2 

= Or
2 

- <cT2' 
 ;

*
1
> ;* 

1 
-* 	- 
v
2 

= b
2 
 /11b211 

n-1 -* -* 
E
n 	

ce" - 	<ce 	v.> v 'n 	n 	1 	i i=1 

""Tn = Sn / 

n 	 -* 
where <r, s> 	ri  s.. The vector v1 

becomes a unit vector in the 
i=1 

direction of the line connecting the first point of the previous stage 

with the last. Thus, if the program is following a ridge, the first 

direction is always roughly aligned with the ridge. Each succeeding 

direction is the best available direction normal to the previous. 

Following the computation of the new directions, the program 

returnstotheinitializationofthee
1
„(1.

1
, and the success-failure 

status indicators. The process continues until the iteration maximum 

is reached and the program is terminated. A computer flow diagram of 

the Rosenbrock algorithm is presented in Figure 1. Write statements 

have been omitted, but it is normally convenient to print the values of 

Fbest 	 a 1 11  and S at each stage along with the trial and stage 

counters. 

Palmer Modification  

In 1969, J. R. Palmer (9) presented an alternative procedure for 

calculating new directions. The Gram-Schmidt procedure requires that all 

of the idi  be nonzero. This is no problem with Rosenbrock's method, but 



READ n, x, itrmax 

itry = 0 

istg = 0 

= F(X) F
best 

v.. = 13 	0 otherwise 

i = 1,n; j=1,n 

1 i=j 

START 

= 2. 

e. = .1 j=1,n 

d.= O. 

- 
= x + e.v. 1^ 

itry = itry + 1 

= F(X) 
test 

yes no 	no yes 

a.=0 
1 

V  
Nt  

> 
itry = itrmax 

no 

yes 

yes 

STOP 

Compute new 
directions 

istg = istg + 1 

(a. 1.5 	) 

yes 

- 
x = x - e.v. 

1 1 

ei  = -.5e i  

. = 3e. 

best 
= F

test 

= d. +e 
1 	i 

10 

F 
test -5 best 

Rosenbrock's Algorithm Figure 1. 
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certain modifications to the basic method may generate d i  that are 

exactly zero. Palmer's derivation is too lengthy to reproduce here, 

but it has been tested and works satisfactorily. The modification 

also has an efficiency advantage over the Gram-Schmidt procedure. 

Palmer's method reduces the number of additions, subtractions, replace-

ments, and storage requirements by a factor of n, and reduces the number 

of multiplications by approximately n/2. 

One-Dimensional Searches  

The logic for determining the value of each e. in the basic Rosen-

brock method brings to mind one-dimensional search procedures. The opti-

mal one-dimensional search is a Fibonacci search, which reduces the final 

interval of uncertainty (the interval in which the minimum is known to 

exist) to a minimum for a previously specified number of function 

evaluations (16). If it is of no value to specify the number of function 

evaluations in advance, or the experimenter wishes to specify the final 

interval of uncertainty, the golden section search approaches the per-

formance of the Fibonacci search. The disadvantages of these methods 

are that they do not easily extend to n dimensions (12) and they require 

a finite interval to be searched. Rosenbrock's search is open-ended for 

each direction and could detect unbounded solutions during any stage. 

The Fibonacci and golden section searches could not detect unbounded 

solutions because the independent variable must be bounded. 

Constrained Problems  

Practical applications of nonlinear programming force the consi-

deration of constrained functions. The techniques for solving constrained 
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problems are varied, but most either attempt to combine the constraints 

with the objective function so that the solution to the combined function 

will be the optimal feasible solution to the original function or solve 

for feasible points and then minimize F(x) for these points. 

Rosenbrock's Approach  

Rosenbrock proposed a method for solving an inequality constrained 

problem which is compatible with his method (14)(15). The method is an 

interior type (that is, it considers only feasible points). If an initial 

feasible point is not available, an auxiliary function based on the con-

straints can be solved to generate such a point. The objective function 

for Rosenbrock's approach is not modified when the point X is not near an 

active constraint. As an active constraint is approached and a narrow 

boundary near the constraint is entered, the objective function is 

penalized by a nonlinear function of the distance to the constraint. No 

function evaluations are allowed outside the feasible region. The program 

logic is modified to transfer control directly to the failure path of the 

flow diagram when a constraint violation is detected. 

Step Function Approach 

A unit step function approach to constrained optimization was 

first proposed in 1943 (7). One of these methods uses the Heaviside 

unit step function: 

1 for z < 0 

H(Z) = 

0 tor z =0 

and solves a series of problems of the form: 

T.(x)=(F00-f.) 2 H(f.-F6.0) 	2: 
g2. 	H (gi 	) 	E e2.  

3 	 i 	1 	1  
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where f l  is chosen less than the initial Fbest' The f. are a monoton-

ically decreasing sequence. When the solution to any Tj (X) is zero, 

F(x) is known to be less than f. and the constraints are satisfied. 

When the minimum T,(x) is greater than zero, the optimal value of F(x) 

isboundedbyfi_landf,Further investigations could be made in 

that interval for more accuracy. 

Created Response Surface Technique  

C.W. Carroll presented the created response surface technique 

in 1961 (3). His techniques were later validated and extended by 

Fiacco and McCormick (4)(5). This technique is also an interior method 

which solves the transformation function: 

T6:,0=. 	
J 

) = F(X) + r 	
1 

g . -1 60 + r 
i  

where lim r. = O. As the solution progresses, the values of r
j  become j-P cP 

smaller, which permits the point x to approach inequality constraints 

with a small penalty, but provides a large penalty for loosely satisfied 

equality constraints. Inthelimit,T(x,r.)= F(x

- 

) if a solution exists. 

Otherwise, T(x,

- 

r j  ) is unbounded. 

Penalty Functions  

W. I. Zangwill presents a discussion of a general penalty function 

approach, which is an exterior method (18). Since it is an exterior 

method, penalty functions allow evaluations at infeasible points, but 

attach a penalty for doing so. A sequence of functions, in the above 

manner, is formulated so that the penalty becomes increasingly larger 

and forces the solution to the optimal feasible point. The transforma-

tion function has a form similar to: 
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T 	r 	 + 1 -. 1 	[min(g. (x), 0) ] 11-z  
3 1 

where lim r 4  = 0 and z >0. Equality constraints could be added in a 
}4do 

form similar to that for the created response surface technique. In the 

limit, the summation in the transformation function must be zero to 

cancel the effect of the r. factor, and allow T(x, r.) = F(x). There 

are no restrictions on the selection of an initial point. 

Paviani and Himmelblau Approach  

The last approach for constrained problem formulation which will 

be presented here is due to Paviani and Himmelblau,(10). Their paper 

presents a solution method for constrained problems based on the 

sequential simplex algorithm. The objective function is unchanged, but 

a criterion function is evaluated at each trial. If the criterion is 

satisfied, the minimization is allowed to proceed. If it is violated, 

the minimization is interrupted to return the selected point to the 

near feasible region. A point in the near feasible region satisfies 

the criterion function, but may or may not satisfy the constraint 

equations. The criterion function is: 

Cj 
 - [ Y,.) [min(gi (3:),0)] 2  + 	e.2  (x)] 2-  > 0 

• 

where C. is positive and non-increasing. Paviani and Himmelblau chose 

to make C. a function of the simplex points, which is not applicable to 

solution with the Rosenbrock algorithm. This method is not strictly an 

interior method, but approximates one to the extent that the criterion 

function must be satisfied. 
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Comparative Performance Results  

Rosenbrock, 1960 and 1966  

Several authors, including Rosenbrock, have presented comparisons 

of the performance of Rosenbrock's algorithm with others. In his original 

paper, Rosenbrock concluded that his method was only slightly inferior in 

comparison to other methods on simple problems, but that it was probably 

superior on difficult problems (14). He developed a difficult problem 

to support the last claim. In 1966, Rosenbrock presented more detail 

in the comparison of his method with others. He reached essentially 

the same conclusions, adding that his method was "relatively difficult 

to defeat" (15). 

Wilde, 1964, and Wilde and Beightler, 1967  

D. J. Wilde, in 1964, presented results favorable to Rosenbrock's 

method on the Rosenbrock problem when compared to several other methods (16). 

In 1967, he presented the same results, but added another method using 

gradients which solved the problem with one-tenth the effort required 

by Rosenbrock's method (17). 

Fletcher, 1965  

In 1965, Fletcher reported a comparison of three algorithms for 

several problems (6). None of the three was Rosenbrock's, which was 

mentioned in Fletcher's introduction as being one of the more efficient 

early algorithms. Fletcher did compare the performance of a method by 

Davies, Swann, and Campey, which is considered to be an improvement of 

Rosenbrock's method. Their technique involved linear minimization along 

each of the search directions. The linear minimization was accomplished 

by approximating the function with a quadratic along each direction over 
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an interval that bracketed the minimum value, and then solving for the 

minimum of the quadratic. When no progress was made in a given direction, 

that direction was eliminated from the next orthonormalization process to 

insure future orthogonality. Fletcher concluded that another method, due 

to Powell, was more efficient than the Davies, Swann, and Campey method. 

Box, 1965  

Also in 1965, M. J. Box compared the performance of Rosenbrock's 

constrained formulation to a new method he developed (1). Box's study 

began when he found that Rosenbrock's method did not effectively solve 

an applied problem after attaining 98 per cent of the true optimal value. 

In addition to his new method, Box discovered that if inequality con-

straints are in the proper form, some improvement can be made in the 

performance of Rosenbrock's method by setting components of X to their 

bounding value when they enter the boundary zone. In doing this to 

his applied problem, Box eventually set all of the component values 

but one and then found what a comparatively poor one-dimensional search 

procedure Rosenbrock's method is. 

Box, 1966  

In 1966, Box compared the performance of eight optimization 

procedures, including both the Rosenbrock algorithm and the Davies, 

Swann, and Campey modification (2). These results show that there are 

more powerful methods than Rosenbrock's, but that his does have the 

reliability he claimed. Several of the methods, including Davies, Swann, 

and Campey's, failed to solve some of the problems, but Rosenbrock's 

method always achieved the desired accuracy, usually in a few more trials 

than the others. For constrained problems, Rosenbrock's formulation did 
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not compare favorably, but Box's modification to it did very well. 

Kowalik and Osborne, 1968  

Kowalik and Osborne discovered a combination of a problem and 

success-failure multipliers for which Rosenbrock's method failed (7). 

Box, however, reported a solution to the identical problem, probably 

with different multipliers (2). Other Kowalik and Osborne data compared 

Rosenbrock's method to other direct search methods for unconstrained 

problems. Their results indicate that Rosenbrock's procedure is better 

than Hooke and Jeeves pattern search, but not as effective as the Nelder 

and Mead version of the sequential simplex. No results for solution to 

constrained problems were presented for direct search methods. 



CHAPTER III 

FIRST PHASE - UNCONSTRAINED PROBLEMS 

Objectives  

The main objective of the First Phase was to refine the Rosen-

brock algorithm within its basic nature to produce a reduction in the 

total number of function evaluations to solve standard test problems. 

The term "basic nature" is intended to mean a search procedure using n 

orthonormal directions, characterized by trials and stages. The primary 

difference between Rosenbrock's basic method and the proposed method was 

the manner in which the points were selected for evaluation. 

An intuitive disadvantage to Rosenbrock's constant multipliers 

for point selection is that more precision can be made. To get this 

precision, more instructions are needed and bounds must be added to 

the region of search. The benefit of added precision was not known 

at the beginning of the study, but it was felt that it would hasten 

convergence in the later stages of a solution. Precision during the 

initial stages seemed unnecessary, since only a general indication of 

the direction toward optimality is desirable. 

A secondary objective for the First Phase was the development 

of an automatic stopping criterion suitable for either Rosenbrock's 

algorithm or the modification to it. The trial counter maximum was 

undesirable for reasons specified in Chapter I. In the author's previous 

work, a stage counter with its own maximum was used, but this proved 

18 
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useful only if the purpose of the computer run was to demonstrate the 

program's operation for a few stages. Predicting the required number 

of stages is no less difficult than predicting the number of trials. 

Rosenbrock developed two parameters to aid the termination 

- n 
process. One is lIce

1 
which measures the total progress in n-space 

during the previous stage. Clearly, a series of small 114 indicates 

that little progress is being made and that optimality may be near. 

The second parameter is 	,which is a measure of how closely two con- 

secutive - .
1
's are aligned with each other. Both of these parameters 

are computed when new directions are developed at the end of a stage. 

Rosenbrock suggested that when six consecutive stages have small 11( .1 1 II 

and have g nearly equal to one, "then the [optimum] has been reached 

or the problem is so difficult that it has defeated the method" (15). 

Test Problems  

The First Phase was best accomplished using only unconstrained 

minimization problems, since constraints only add computation time and 

do not affect the basic nature of the method. Several standard test 

problems were chosen from the literature. Initially eight problems 

were selected, but this number was later reduced to four representative 

problems. 

Problem 1  

x/  + x2  - 10 2  
F(x) = (x1  - x2 )

2 
+ ( 	  

3 

Initial Point: 	 x = (0,-1) 
	

F(x) = 14.4 

Solution Point: 	 x = (5,5) 
	

F(;i) = 0 
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Problem 1 was a two-dimensional simple elliptical function from 

Rosenbrock and Storey (15). Rosenbrock used this problem to demonstrate 

the ease with which certain gradient methods solve well-shaped functions, 

while his method experienced comparatively more difficulty. A steepest 

descent method solved the problem in 25 trials (where a trial was a 

function evaluation and two partial derivative computations; this 

"trial" is comparable to three function evaluations). Rosenbrock 

reported that his method took 94 trials to reach the same solution, 

with relatively slow progress during the last 60 trials. 

Problem 2  

F(X) = 100 (xi  - x2 )
2 
+ (1 - x 1 )

2 

Initial Point: 	 x = (-1.2,1) 
	F(X) = 24.2 

Solution Point: 	 x = (1,1) 
	

F(x) = 0 

Problem 2 was constructed by Rosenbrock to confound many of the 

then available optimization techniques, and it is not coincidental that 

his method solves the problem effectively (14)(15). The function repre-

sents a highly asymaletric parabolic valley in which the direction of 

- 
steepest descent changes constantly for small changes in the point x. 

Rosenbrock reported a solution in 248 trials with his method, while 

other methods did not achieve similar accuracy in 2800, 1800, or 1400 

equivalent trials. 

Problem 3  

xi  = sin (x1  + x2 ) 

x2  = cos (x1  - x2 ) 



21 

Initial Point: 	 x = (.5, .5) 

Desired Solution Point: x = (.93508,.99802) 

Problem 4  

4 
 xl + x2
4  
 = 67 

2 
x
3 

- 3 x
1 

x
2 

= -35 

Initial Point: 	 x = (2,3) 

Solution Point: 	 x = (1.8836,2.7159) 

Problem 5  

xl  = sin (x1 ) cosh (x2 ) 

x2  = cos (x 1 ) sinh (x2 ) 

Initial Point: 	 x = (7,3) 

Desired Solution Point: 	x = (7.4977,2.7687) 

In his book with C. Storey, which is directed at computational 

applications for chemical engineers, Rosenbrock devotes some attention 

to the use of nonlinear programming algorithms for solving systems of 

nonlinear equations (15). Problems 3,4, and 5 are from Schaum's Outline 

on Numerical Analysis by Francis Scheid, and are the only test problems 

which do not appear in the literature of nonlinear programming. They 

are solved by forming the sum of the square of the residual for each 

equation and minimizing this sum. Problems 3 and 5 challenge the 

solution techniques to determine the nearest local optimum when several 

exist due to the nature of the trigonometric functions. 

Problem 6  

10 	-ix /10 -ix,/10 	-i/l0 
F (x) = 	[ (e 	

1 	4 	) 	(e  
- e 	

n2 
 

i= 1 



6a. Initial Point: 

6b. Initial Point: 

6c. Initial Point: 

6d. Initial Point: 

6e. Initial Point: 

Solution Point: 

x = (0,0) 

x = (0,20) 

x = (5,0) 

x = (5,20) 

x = (2.5,10) 

x = (1,10) 

F(X) = 3.064 

F(X) = 2.087 

F(X) = 19.59 

F(X) = 1.808 

F(X) = .8081 

F(X) = 0 
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M. J. Box presented Problem 6 in 1966 (2). It arises from chemical 

engineering problems concerning reaction rate estimation. This also is a 

highly asymmetric curved valley, similar to Rosenbrock's Problem 2. Box 

compared eight optimization methods on this problem, and although Rosen-

brock's method did not rate highly, it never experienced a failure to 

converge as some other methods did. 

Problem 7  

F(x) = (x 1  + 10x2 )
2 
+ 5(x3  - x4 )

2 
+ (x2  -2x3 )

4 
+ 10(x 1  -x4 )

4 

Initial Point: 	 x = (3,-1,0,1) 	F(x) = 215 

Solution Point: 	 x = (0,0,0,0) 	F(x) = 0 

Problem 7 was introduced by Powell in 1962 when he presented his 

procedure for finding the optimum of a function (11). This problem was 

reported by Fletcher as being a particularly stringent test for optimi-

zation algorithms (6). Note that as the components of x become small, 

the fourth order terms become less significant and a result of the 

form xl  = -10x2  and x3  = x4  can be expected. 

Problem 8  

Chebyquad Function 

- 	1 	2 
x 	̀n+1 ' n+1' • • 	• ' n+1)' Initial Point: 
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Solution Point: 	 Varies with n 

F(x) = 0 for n = 2-7,9 

The Chebyquad function was introduced by R. Fletcher (who credits 

it to Dr. C. M. Reeves) as a problem which is typical of the type that 

might be encountered in normal applications (6). 	A desirable attribute 

of the problem is that the dimensionality is variable. It was formed 

by making a Chebyshev n-point quadrature over the interval (0,1). The 

problem is suitable for minimization for all n, but results in F(X) = 0 

only for n = 2,3,4,5,6,7, and 9 (8). The solution points are the roots 

of n degree polynomials. The existence of imaginary roots causes the 

final result to be greater than O. During various stages of the current 

work, Chebyquad was solved for n = 2, 4, 6, 7, 8, 9,and 10. For the 

purposes of evaluation, only n = 9 was used since the increased number 

of variables provided the major difference from the previous problems. 

Test Procedures  

During the first stages of the search for a modified procedure, 

all of the test problems were used to compare the proposed methods. 

It is significant that the fastest method for solving Problems 1 and 3, 

which were comparatively easy, had to be discarded because of its 

failure to solve the more difficult problems. Once trends were established, 

it became necessary to make subtle, more minute changes in the methods. 

This greatly increased the number of computer runs which dictated a 

reduction in the number of problems for evaluation. Problems 2, 6d, 7, 

and 8(n=9) were chosen. These were more difficult and best demonstrated 

differences in problem solving ability. 
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The methods for solving these problems were evaluated in two ways. 

First, it was important to consider whether or not a method could obtain 

a solution to all of the attempted problems. Second, the number of function 

evaluations to reach specified values of the function was compared for 

each problem. Any acceptable solution method first had to solve all the 

problems that Rosenbrock's method could solve, and then had to do it in 

as many or fewer function evaluations. The rate of progress toward the 

solution was also important. If two methods obtained roughly the same 

solution in a thousand trials, but one obtained a function value of 10
-9 

in 300 trials while the other was closer to 10
-3 at 300 trials, the first 

might be more advantageous for getting near-optimality in a small number 

of trials. 

During the First Phase, all eight digits of the solution point 

and the function value were printed and compared. This is definitely 

not typical of the literature comparing these methods, but was done to 

provide the greatest amount of information and to demonstrate whether 

or not true minimums, within the accuracy to which a computer can 

represent numbers in single precision format, could be obtained. To 

show this significance, Rosenbrock's method solved Problem 1 in 22 stages 

(584 trials) yielding X = (5.0000000, 5.0000000) and F( -c) = .00000000 

(a true computer zero). 	The values at the twenty-first stage (537 

trials) were X = (4.9999999, 4.9999999) and F(X) = 1.5789839 x 10 -15 . 

In his book, Rosenbrock reported only four place data, which, in this 

research, was obtained after ten stages (134 trials) with X = (5.0003321, 

5.0001953) and F(X) = 4.9615750 x 10 -8 . Within a few trials, this is 

equivalent to the performance reported by Rosenbrock. The differences are 

attributed to the use of different computers. 
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Rosenbrock's Method  

The first task of this phase was to establish baseline performance 

data. This involved programming Rosenbrock's algorithm and running it 

with the test problems. A subroutine approach was taken. All of the 

actual search logic was written into a special subroutine. The main 

program contained the read statements, initialization instructions, the 

direction rotation commands, printing statements, and tests for termi-

nation. A separate function, which contained all of the test functions 

and logic to indicate which one was being used, was subject to call by 

the main program during initialization and by the search subroutine 

during the minimization process. This approach permitted replacement 

of only the search subroutine by the other methods and reduced the 

probability that errors in the programming process confused the actual 

results. Later it was necessary to re-write the part of the main pro-

gram for direction rotation to incorporate Palmer's method. 

The basic Rosenbrock method solved all of the test problems 

successfully. True minimums were obtained for Problems 1, 2, 3, 6a, 6b, 

and 6c. Final function values for the remaining problems ranged between 

3.64 x 10
-12 

and 1.39 x 10
-17 

when the desired value was 0. This resulted 

in 6-place or greater accuracy for the components of x, except for Powell's 

function of four variables (Problem 7). The best solution to Problem 7 

came after 80 stages (6430 trials) and was F(x) = 4.8405 x 10 -14 where 

- 
x = (.0003782, -.0000378, .0002034, .0002034). This is exactly the 

form predicted for X. This relationship became evident after 300 trials. 

More than 9000 trials were attempted, but no significant improvement was 

made after the 6430th. 
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Palmer Modification  

Two other methods involving the basic Rosenbrock search subroutine 

were tested. The first was using the Palmer method of changing directions. 

This method changed the results slightly, sometimes arriving at the solu-

tion more quickly while at other times not getting the same degree of 

accuracy or being slower. With this set of problems, it appears that 

the Gram-Schmidt orthonormalization process is preferable to the Palmer 

method, even though the latter was more than adequate in comparison for 

all but Problems 6c and 7. 

Gradient Approximation  

A second modification to the main program computed a gradient 

approximation at the initial point to determine the first set of 

directions to be searched, instead of using the coordinate axes. It 

was felt that these directions would provide more progress in the 

first stage, thus reducing the total number of trials. Recall that 

the Rosenbrock method tries to align the first direction, .1.;
l' 

along 

the direction of greatest progress during the previous stage. Thus, 

for a cost of n trials instead of a minimum of 2n and probably more, 

an approximation to the direction of steepest descent could be obtained. 

This was done with only the addition of a few instructions and did not 

add any new variables. The results of this effort are mixed, as could 

be expected from the variety and difficulty of the problems. Greater 

initial progress was not a general trait. 

A tabulation of the results for the basic Rosenbrock method, the 

Palmer modification, and the Rosenbrock search with initial gradient 

directions is presented in Table 1. The trial numbers were chosen to 



Table 1. Function Value After i Trials 

Legend: 	R = Rosenbrock's Method 
RP = R with Palmer's Method for Computing Directions 
GR = R with Initial Gradient Approximations 

Notation: 3-07 = 3. x 10
-7 

Problem 1 	 . Problem 2 	 . Problem 3  

R 	RP 	GR 	i 	R 	RP 	GR . i 	R 	RP 	GR 
0 14.4 14.4 14.4 • 0 24.2 24.2 24.2 . 0 .367 .367 .367 

50 .006 .001 2-03 • 50 3.24 3.16 4.38 • 10 .002 .002 .072 
100 2-06 9-08 1-06 • 100 .878 1.16 1.79 • 20 3-05 3-05 .002 
150 5-08 6-09 3-08 . 200 5-04 .078 .006 • 50 7-06 7-06 7-07 
200 2-09 2-10 4-09 • 300 5-07 3-06 1-06 • 100 3-08 3-08 3-09 
300 1-11 4-13 5-13 • 400 5-10 8-11 1-06 • 200 3-10 1-13 2-12 
400 2-13 2-14 6-15 • 600 8-11 4-13 7-11 • 300 2-13 4-15 2-14 
500 6-15 2-15 0 • 800 3-13 8-14 2-15 • 400 5-16 6-17 0 
600 0 2-15 • 900 0 8-14 2-15 • 450 0 6-17 

Problem 4 . Problem 5 • Problem 6a 

i R RP GR • i R RP GR • i R RP GR 
0 1021 1021 1021 • 0 20.9 20.9 20.9 • 0 3.06 3.06 3.06 

25 .593 1.88 12.2 . 25 7-04 7-04 .118 • 50 .122 .004 .054 
50 .542 1.69 .474 • 50 4-05 4-05 .001 • 100 2-06 6-05 1-04 

100 .178 .013 .012 • 75 2-08 2-08 1-05 • 200 1-08 2-10 2-05 
200 2-05 5-05 1-06 • 100 4-09 7-09 1-05 • 300 2-10 8-13 8-11 
300 5-10 1-05 8-08 • 150 7-11 2-09 3-09 • 400 6-12 3-14 2-11 
400 9-12 8-06 2-10 • 200 1-12 2-11 2-10 • 500 4-13 5-16 3-12 
500 5-12 3-06 2-11 • 250 2-13 4-14 5-13 • 600 4-14 1-16 2-12 
800 4-12 9-11 2-11 • 325 4-14 • 700 0 0 2-12 

27 
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Table 1 - continued 

Problem 6b 

RP GR 

. 	Problem be 

RP GR 

. 

• 

Problem 6d 

RP GR i R • i R i R 

0 2.09 2.09 2.09 . 	0 19.6 19.6 19.6 . 0 1.81 1.81 1.81 

50 .015 .014 .036 . 	50 .145 .145 .127 . )0 .106 .090 .020 

100 5-05 2-05 2-05 . 	100 .015 .144 1-04 . 100 3-03 8-06 7-04 

200 4-10 1-08 1-08 . 	150 2-08 4-04 1-06 • 150 8-09 8-06 2-07 

300 2-11 1-09 4-12 . 	200 2-09 9-05 2-07 200 3-12 5-09 2-07 

400 6-12 9-11 8-13 . 	250 9-11 2-06 2-07 • 250 2-13 5-10 5-08 

500 4-12 2-11 2-14 . 	300 2-13 2-06 6-08 . 300 4-14 2-10 8-09 

600 9-15 4-13 5-16 . 	350 2-lb 1-06 8-10 . 350 3-14 1-10 6-13 

700 0 6-16 2-16 . 	400 0 1-07 2-10 400 4-13 6-13 

Problem 6e 

RP GR 

• 

. 

• 
• 

Problem 7 

RP GR 

• 

• Problem 8(n=9) 

GR i. R 
.808 0 

R • i R RP 

0 .808 .808 215. 215. 215. 0 .029 .029 .029 

50 .050 2-05 2-04 100 .871 .474 .837 • 100 .010 .010 .011 

100 1-05 2-07 2-06 200 .003 1-05 .001 • 200 .006 .010 .009 

150 7-09 9-11 7-07 500 7-07 3-07 2-05 • 500 2-04 9-05 1-04 

200 6-11 1-12 1-11 800 1-07 2-07 1-08 • 800 9-06 2-06 1-05 

250 2-11 4-13 7-12 • 1500 4-09 1-10 2-09 1500 1-07 3-07 2-06 

300 4-13 6-14 1-15 • 3000 6-10 1-10 4-13 . 2500 1-09 9-10 2-07 

350 8-14 2-14 1-15 • 5000 5-10 1-10 1-17 . 3500 1-11 1-13_ 1-08 

400 7-15 2-14 1-15 • 6400 5-14 1-10 1-17 5000 1-13 3-12 
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best depict the progress of the Rosenbrock method and therefore might 

tend to favor that method. As a general summary of the data in Table 1, 

it can be concluded that the Rosenbrock-Palmer method most frequently 

had the minimum function value for the first half of the trials, while 

the Gradient-Rosenbrock approach performed as well as or better than 

the others most frequently at intermediate trials, contrary to the 

purpose of attempting the gradient approximation. The basic Rosenbrock 

method was equivalent to the others at intermediate trials and was 

superior most frequently at the end of the trials shown. 

The Rosenbrock-Palmer method did solve problem 6c to a function 

value of 1.67 x 10
-16 in 976 trials, compared with less than half as 

many for the basic Rosenbrock method. The same method converged very 

slowly toward a solution to Problem 7, making reductions in the seventh 

significant digit of the function value from trial 1993 to 9999. The 

final function value was 1.2536764 x 10-10, not significantly different 

from the four values reported in Table 1, with X = (-.0027, 00027, -.0014, 

-.0014). The Gradient-Rosenbrock method solved the same problem to an 

x vector of (.000046, -.0000046, .000012, .000012) in 3908 trials, 

which was the best solution to this problem. 

Approximate computation times for solving the problems in Table 1 

were 33, 40, and 35 seconds for the Rosenbrock, Rosenbrock-Palmer, and 

Gradient-Rosenbrock methods, respectively. The number of trials for 

each method varied, depending on the type of termination, with the 

Rosenbrock-Palmer method generally attempting more trials. These times 

were taken from "real time clock interrogations" on the Univac 1108 

computer, and are not as reliable as the charge time reported on the 



30 

summary at the end of a run. Because of the multi-processing capability 

of the computer, real time can be interrupted during a run. Problems 1-5 

can be solved in less than a second each. 

Secondary Objective  

During this initial part of the First Phase, it became apparent 

that there would be no effective way to develop an alternate stopping 

criteria. Solving these problems to eight digit accuracy necessarily 

forced U llk to a small value, but the reinforcement from the Zc 

parameter did not appear by the time an optimum was reached. Listed 

below are the final six stages to the Rosenbrock solution of Problem 2: 

Stage 	Trial 	F(x) 	 115'
1
11 	X 

35 
36 
37 
38 
39 
40 

666 
712 
760 
808 
858 
908 

1.58 x 10-12 
1.27 x 10 -13 
3.01 x 10-14 
1.35 x 10-15 
2.00 x 10 

0 

11  
6.1 x 10 -6

6 
 

7.2 x 10-6 
1.8 x 10 -7 
7.6 x 10-8 

 9.6 x 10
-8 

9.6 x 10
-8 

.031 

.007 

.013 

.124 

.124 

Since these methods will continue to function although optimality has 

been reached, the proper correlation could eventually appear. In 

Problem 8(n=10), the Gradient-Rosenbrock method produced six consecu-

tive stages with no change in F(x), all 115 111 less than 10-7 , and ‘Ps 

.95, .97, .90, .99, .70, and .90, but these stages consumed 1636-trials. 

It is not worthwhile to permit these useless trials for an automatic 

stopping criterion that may or may not develop and will always require 

time consuming tests at each stage. 

Successive stages with identical function values do not provide 

an adequate criterion, either. This case appeared infrequently, but it 
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can happen that no progress will be made during one or more stages 

followed by progress toward a solution during later trials. 

The only useful approach to the automatic termination problem 

turned out to be a test on the function value itself. This requires 

previous knowledge of the solution, which is available in an experiment 

involving several runs of the same problems, but certainly is not nor-

mally known. By inserting this test and increasing the trial maximum, 

the program stopped when a true and/or acceptable minimum was reached, 

but did not stop prematurely on a trial maximum developed from the 

basic Rosenbrock data. In one special class of problems, solving a 

system of nonlinear equations, the minimum is known (since the function 

value is the sum of the squares of the residuals), and termination by 

this test is appropriate. It was a simple matter to negate the purpose 

of this test if the minimum were not specified by the user. 

Alternate Methods  

Three separate methods for changing the Rosenbrock search logic 

within its basic nature were attempted. The first was called the 

Sequential Golden Section. For convenience, the subroutine deck was 

labelled SG1, and reference to that label will be used here. The 

second approach was called Sequential Fibonacci Search, labelled SF1. 

The last was the Simultaneous Fibonacci Search, or SF2. 

Sequential Golden Section Search  

The SG1 method conducted a golden section search along a pre-

defined portion of the line through X in the ir 1  direction. When a 

minimum along vl  was obtained, it was defined as the new x and a 

search was made along v2. 
After a single search had been made along 
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each direction, new directions were computed trom the old and factors 

for each direction representing the net progress made in that direction. 

- +- 
Theintervalofsearchwasdefinedtobex-ay.for direction i, 

- 
where a = max( V ia, .001). Ra i l' was set to 10 for the first stage. 

Choosing this initial value allowed the search to expand rapidly should 

the initial value of x be a poor approximation of the optimum. The .001 

minimum value kept the length ot the line to be searched long enough as 

not to be wasteful. Had this approach been more successful, these para-

meters could have been further studied and possibly improved. 

The tolerance criterion for the golden section search (the final 

length of the interval of uncertainty) was made a decreasing function 

of increasing stage numbers. For the first stage, the golden section 

searches stopped when the length of uncertainty reached one-tenth. At 

subsequent stages, the tolerance value became 10
-2

, 10
-3

, 10
-4

, 10
-5

, 

and finally 10
-6 for all further stages. This last value would have 

been inadequate for eight digit accuracy for most of the test problems, 

but proved too restrictive for continued progress on some ot the problems. 

The SG1 subroutine required 436 memory locations compared to 218, 

exactly half as many, for the basic Rosenbrock subroutine. The arrays 

in each program allowed only ten components in X and each v i . The 

Rosenbrock method requires two arrays not in common with the rest of 

the program. SG1 was programmed with five such arrays. Both the 

number of required locations and possibly the number of arrays in SG1 

could be reduced, but the relative size comparison remains valid. 

The main difficulty with SG1 arose when it failed to continue 

progressing toward optimality after some initial success. In an 
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attempt to solve Problem 2, it reached a function value of .005 in 

85 trials (compared with .878 for the Rosenbrock method in 100 trials), 

but made only minute progress through trial 909 (the iteration maximum) 

with no staging after trial 132. The choice of ItoT R = 10 for the 

first stage influenced the rapid initial progress since Problem 2 is 

bimodal along the x
1 
coordinate axis and the program chose the more 

fortunate minima. Solutions to other problems produced a similar lack 

of intermediate and final progress. 

Sequential Fibonacci Search  

The second alternative to the basic Rosenbrock method was SF1, 

the sequential Fibonacci search. The method was identical to SG1, 

except that the points along the orthonormal directions were selected 

in the manner of a Fibonacci one-dimensional search. One cycle through 

the directions constituted a stage. 

The length of the line to be searched was also 2( U 	but 

in SF1 the point X was selected to be one of the initial points for 

function evaluation, not the midpoint of the line. This saves one 

function evaluation for each direction per stage, since F(x) is F best 

at the beginning of each search. The penalty for this approach is 

biasing the region of search in the positive direction of each of the 

orthonormal directions. To illustrate, assume that X = 1 
= (1,0), 

 
11 a 1

. 
 = 1, and the Fibonacci constant is 144 (the eleventh Fibonacci 

number). The first search would be along the x/  axis from 17/72 (.236) 

to 161/72 (2.236). The first experiment would be placed at (106/72 ,0) 

((1.47((. At the conclusion of this search, the interval of uncertainty 

would be 
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2( lIcT kt ) 	2(1) 1 	 = .0139 
F
11. 	144 

As the 11 a ll decreases, decreases, as it will as optimality is approached, the 

interval of uncertainty will decrease. 

There is obviously a second parameter, besides the initial and 

minimum values allowed for 11 111 in regard to defining the search, 

for investigation in SF1. It is the choice of the Fibonacci constant. 

As stated above, the eleventh Fibonacci number will reduce the interval 

of uncertainty to 1/144 of the original. The sixth through the 16th 

Fibonacci numbers (13, 21, 34, 55, 89, 144, 233, 377, 610, 987, and 

1597) were attempted on Problem 1. The ninth (55) in the sequence 

produced the best result (F(X) = 4.46 in 300 trials, compared with 

F(x)= 2 x 10
-11  

for Rosenbrock's method). The next best solution 

came from the 13th Fibonacci number (377) followed by 15, 16, 10, 14, 

12, 11, 8, 7, and 6. 

With the SF1 method, the number of trials per stage is fixed 

at n times the ordinality of the Fibonacci number used. This may have 

a bearing on the results presented in the preceding paragraph, since 

smaller Fibonacci numbers will be tested with more sets of directions. 

The three smallest numbers produced the poorest solutions, although the 

fourth was the best. The lack of ordering above was not investigated 

further with SF1. 

SF1 had a computer storage advantage over SG1, but did not 

require as few locations as the basic Rosenbrock method. The subroutine 

needed 313 locations, some of which were instructions to compute the 

numbers of the Fibonacci sequence, which were variable for testing 
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purposes. SF1 required one more array than the basic Rosenbrock 

routine. 

SF1 suffered from the same problem as SG1. The method made 

progress toward the solution points, but it was very slow and was 

never allowed to consume the excessive number of trials to reach 

desired solution points. The problem of slow progress perpetuated 

itself when n ce 1
11 became small and tended to remain small. 

Simultaneous Fibonacci Search  

SF2 was more successful than either SG1 or SF1 during its first 

tests and for that reason received much more attention, examination, 

and modification. SF2 is more closely related to the logic of 

Rosenbrock's method, but copied the Fibonacci search scheme of SF1. 

SF2 was called a simultaneous Fibonacci search because the direction 

of search was changed after each trial. The first two experiments 

were placed exactly the same as in SF1, using the given X as one of 

the points. Then, taking the better of these two points as the new x, 

the second trial of the stage was placed along direction v2 
the same 

distance from the current X as the first was from the original X. 

All of the regions of search contained the same positive bias that 

appeared in SF1. This bias is logical in the long run, since the 

first of the directions tended to align itself along the direction of 

steepest descent. 

Figure 2 is a functional tlow diagram of SF2. Some of the 

details are omitted (such as saving the cumulative progress in each 

direction) to aid clarity. Note that the T array contains all the 

information necessary to keep track of the point selection in each 
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direction. It is properly modified after each trial to reject that 

portion of the region of search known not to contain the optimum of the 

(assumed) unimodal function. The figure assumes that the 16th Fibonacci 

number was selected and the length of the line was defined to be 2( 1k« 1  ) 
The SF2 subroutine had the same variables as SF1. The particular 

Fibonacci number could be varied. The initial value of 11;
1

11 affected 

the progress made during the first stage. A minimum value for the length 

of the search region had to be specified to insure that the region was 

not too small. It was also discovered that the Fibonacci number could 

be changed from stage to stage, making possible the evaluation of 

sequences of Fibonacci numbers. Although many sequences were tried, 

they generally began with smaller numbers and increased with each 

stage to a maximum value. 

The variety of conditions for evaluating SF2 forced the consi-

deration of only four problems to keep the total computer time within 

the limits for research of this type. These problems were 2, 6d, 7 

and 8(n=9). The difficulty of these problems dictated that prime 

consideration be given to whether or not the methods could effectively 

solve them within a prescribed trial maximum, not comparing intermediate 

progress. The trials were limited to 1500, 500, 4200, and 3000, respec-

tively. These limitations did not bias the results toward any method 

since they were determined after testing several methods with more 

liberal maximums. 

In this search philosophy, it frequently occurs that no progress 

is made in one or more of the n directions. This situation creates 

havoc with the Gram-Schmidt orthonormalization process. 	The result 



values of Ii& 	were chosen to be 2.5, 1.25, 1., .5, .1, and .05. 
1 

The minimum length of the search region was restricted to 10
-3

, 10
-4

, 
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is directions which are not orthogonal and have zero components for 

all successive stages. Division by zero or errors in the square root 

routine may also occur. A solution to this problem is the Palmer method 

of direction rotation, which can accept some zero progress multipliers, 

causing only a slight loss of orthogonality, but without permanent reper-

cussions. However, the sum of these multipliers squared must be nonzero, 

which cannot always be guaranteed. This forced the programmer to set 

these zero multipliers to small, non-zero values. This process destroys 

the relationship of the information intended for orthonormalization, but 

no other solution was found. The extent of the harm could not be 

measured, but the successful solution of the problems indicates that 

it was not severe. 

One hundred and nine distinct versions of SF2 were tested on 

these four problems. Another was tested on three of them and abandoned. 

All but four of the 109 were designated PSF2, implying that the Palmer 

coordinate rotation was used. Fibonacci numbers from 13 through 28,657 

(the sixth through the 22nd) and 121,393 (the 25th) were used. Initial 

10-5 , and 10 -b . Multiplication will reveal that all of the possibilities 

were not tried, but it is believed that enough were attempted to bracket 

the most successful. 

Presentation of all the results would require several pages of 

tables, which will be omitted. To summarize, the best method tried 

. - 
was PSF2 with the eleventh Fibonacci number (144), 	gilt initially 

equal to 1, and the minimum search length greater than 10 -5 , but this 
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combination was not better than any of the three versions of the basic 

Rosenbrock method. At termination, the combination reached function 

values less than 10-14 , 10-10 , 10
-7

, and 10
-12

, respectively, compared 

with 0, 10
-13

, 10
-9

, and 10-9 for Rosenbrock's method. The conclusion 

that one method was better than another was reached by adding the 

exponents of the final function values (considering zero to be 10 -16
) 

and comparing the sum. 

It was interesting to watch the performance of the different 

Fibonacci numbers with the other variables held constant. Considering 

the above combination, the 13th, 14th, and 21st Fibonacci numbers 

(377, 610, 17,711) almost solved the problems as well as the eleventh. 

Problem 6d proved to be the strictest test. The 21st solved it to only 

F(x) = .0538 after 500 trials, although it solved the remaining problems 

better than the eleventh. For other variable values, the performance 

of the Fibonacci numbers was not identical, but the eleventh was most 

frequently the best. 

Twenty-four of the problems involved sequences of Fibonacci 

numbers. In some cases, they were repeating sequences of two, four, or 

eight numbers. In other cases, the first eight stages were different 

and the eighth was retained for the remaining stages. The better per-

forming sequences, in terms of Fibonacci ordinality, were (10, 11, 12, 

13, 14, 15, 16, 17, 10, 11, 12, . . .), (21, 17, 17, 14, 14, 13, 13, 11, 

11, 11, 11, . . .), and (10, 11, 12, 13, 14, 15, 16, 17, 17, 17, . . .). 

These did nearly as well as the eleventh, above. One of the sequences 

was tried with initial gradient directions, but the results were far less 

fortunate than those obtained with Rosenbrock's basic method. 
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• 

One of the sequences, (7, 8, 9, 10, 12, 14, 16, 18, 18, . . .), 

solved Problems 1 and 3 to F(x) = 0 in 223 and 134 trials. While this 

performance was rather remarkable, the same method did very poorly on 

Problems 2, 6d, and 6e. Performance like this helped indicate which 

four problems should be chosen for the final evaluation. Only one 

sequence found an undesirable local optimum in Problem 3, when it 

. - 
began with an initial 	= 2.5, apparently too large a value when 

used in combination with that sequence. This is a characteristic of 

the problem as much as the method, and even Rosenbrock's initial step 

of .1 could be too large for certain problems. 

The storage requirement for SF2 was about 275 locations, 57 more 

than the Rosenbrock routine. The saving by using Palmer's method is 

not counted since it is not included in the search subroutine. 

Rosenbrock-Fibonacci-Palmer Combination  

Within the previously established framework of this study, 

there was only one additional method to attempt. That was to combine 

the Rosenbrock and Fibonacci (SF2) methods with the Palmer method of 

coordinate rotation, allowing the Rosenbrock and SF2 methods to alternate 

stages. There is one significant advantage to this approach. If the 

Rosenbrock method is used for the first stage, an initial value for 

co-it need not be specified. In fact, the first value for SF2 will 

be computed from the first Rosenbrock stage and will be indicative of 

the amount of progress that can be made with the given objective function. 

Each subsequent value will continue to be indicative of the progress made 

during the previous Rosenbrock stage. 

Combining the two methods is not as dreadful as might be imagined. 
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By sharing certain array locations, since SF2 requires no more arrays 

than the basic Rosenbrock method, and other programming tricks, the 

storage requirement for both instructions and variable storage was 

held to 352 memory locations, just over half again as large as Rosen-

brock's requirement. Further reduction is possible by removing diag- 

nostic statements included for testing purposes. This requirement will 

not expand any faster for the combination than it would for Rosenbrock's 

method when solving larger problems. 

The combination experienced much better success than expected. 

It was attempted with the eleventh and 13th through 18th Fibonacci 

numbers. Fourteen, 15, 16, and 17 solved the four problems to a 

slightly better combined degree of accuracy than the basic Rosenbrock 

methods, with 16 being the best of the group. Table 2 lists the 

results for RFP16, the best method, for all the problems presented 

in Table 1. 	At nearly half the comparison points in the table, 

RFP16 performed as well as or better than the Rosenbrock method. In 

the final four problems, the Rosenbrock method did better on Problems 

2 and 6d, while RFP16 held a larger comparative lead on Problems 7 

and 8. Not shown in the table are the results at the maximum number 

of trials allowed, 1500, 500, 4200, and 3000, respectively. It was 

at these points where the final comparison was made and reported above. 

The approximate time for RFP16 to solve these problems was 29 seconds, 

which is about the same as for the basic Rosenbrock method. The 

difference can be attributed to improved termination criteria and 

quick solutions to four of the problems. 



Table 2. Function Values for RFP16 

Notation: 3-07 = 3 x 10
-7 

* Performed better than Rosenbrock's basic method. 

Problem 1 	Problem 2 	 Problem 3 	 Problem 4 

Trial F(X) Trial F(X) Trial F(X) Trial F(X) 

0 14.4 0 24.2 0 .367 0 1021 
50 .136 50 4.16 10 .015 25 .009* 

100 1-06* 100 3.45 20 1-04 50 3-05 
150 1-08* 200 .867 50 3-08* 100 1-08* 

200 9-13* 300 .076 100 2-14* 200 9-09* 
300 2-14* 400 .034 200 0 	* 300 8-10 

400 0 	* 600 8-09 300 - 	* 400 4-12* 

500 - 	* 800 2-16* 400 - 	* 500 - 	* 

600 900 2-16 450 800 - 

Problem 5 Problem 6a Problem 6b Problem 6c 

Trial F(X) Trial F(X) Trial F(X) Trial F(X) 

0 20.9 0 3.06 0 2.09 0 19.6 
25 8-04 50 .957 50 .014* 50 .149 

50 1-08* 100 .007 100 .002 100 .149 

75 3-10* 200 4-09* 200 1-04 150 .149 

100 1-13* 300 3-13* 300 1-05 200 .149 
150 8-14* 400 2-14* 400 8-12 250 4-05 
200 4-14* 500 2-14* 500 2-12* 300 3-07 
250 - 	* 600 2-14* 600 0 	* 350 1-12 

325 - 700 2-14 700 400 4-13 

Problem 6d Problem 6e Problem 7 Problem 8(n=9) 

Trial F(X) Trial F(X) Trial F(X) Trial F(X) 

0 1.81 0 .808 0 215. 0 .029 
50 .108 50 .054 100 9.53 100 .009* 
100 .006 100 .038 200 .076 200 .009 
150 1-05 150 9-04 500 2-06 500 7-05* 
200 7-08 200 6-06 800 9-07 800 3-05_ 
250 2-09 250 9-11 1500 1-07 1500 4-10* 
300 2-10 300 6-12 3000 1-09 2500 4-12* 
350 2-10 350 7-14* 5000 9-14* 3500 3-13* 
400 2-10 400 7-14 6400 9-14. 5000 

42 
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Summary  

During the First Phase, two modifications were tried with the 

basic Rosenbrock search logic and three alternate searches were examined. 

The two modifications, Palmer's method of orthogonalization and initial 

gradient approximations, did not provide any increased capability for 

general problem solving, although each did experience better success 

with some individual problems. The three alternate methods, the Sequen-

tial Golden Section, the Sequential Fibonacci Search, and the Simultaneous 

Fibonacci Search, did not produce an acceptable problem solving method. 

The Simultaneous Fibonacci Search, with its parameters set to optimal 

values, did exhibit an ability to solve some problems much faster than 

the Rosenbrock method. No way was found to predict this performance 

and capitalize on its benefits. 

The combination method, RFP16, which involved alternating stages 

of the Rosenbrock search and the Simultaneous Fibonacci Search with 

Palmer's orthonormalization process, proved to be equally as effective 

as Rosenbrock's method alone at solving these test problems. Each of 

these two methods solves some problems more accurately and/or quickly 

than the other. Neither was stopped by any of these problems. The 

Rosenbrock method has an efficiency advantage if extra variables (not 

arrays) and instructions are considered, but with the computer capability 

of today, these few extra storage requirements will never hinder the 

program. Since RFP16 was the creation of this research, it will be 

used as the basic optimization technique for the next phase. 



CHAPTER IV 

SECOND PHASE - CONSTRAINED PROBLEMS 

Objectives  

The objective of the second phase was to take the resulting 

method from the first phase, which was the Rosenbrock-Fibonacci-

Palmer combination, and to examine it for compatibility and effective-

ness at solving constrained nonlinear programming problems. The final 

goal was a pre-programmed solution procedure to provide users with an 

effective optimization tool. 

The five techniques which were presented in Chapter II formed 

the basis of the present examination. The Rosenbrock approach required 

that a method for considering equality constraints be developed, while 

the other methods were sufficiently general to permit both types of 

constraints. The greatest challenge to making these approaches com-

patible with the combined unconstrained program was the method of 

introducing the iterative nature of the constraint techniques, except 

for Rosenbrock's, into the trials and stages of the solution method. 

Success or failure in meeting this challenge largely determined the 

effectiveness of the method for dealing with constraints. 

Test Problems  

There are not as many constrained problems in the literature as 

there are unconstrained problems. This is especially true of two-,three-, 

and four-dimensional problems. Since constrained problems involve many 

44 
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more calculations than unconstrained problems, three relatively small 

constrained problems were chosen for initial comparisons and a fourth 

problem with 24 components of X was chosen for comparison of those 

methods that successfully conquered the first three. 

Problem C-1  

Maximize F(x) = x 1x
2
x
3 

subject to: 0 	xi 	42, i=1,2,3 

xi  + 2x2  + 2x3  = 72 

	

Initial Point: X = (6,6,6) 
	

F(X) = 216 

Solution Point: X = (24,12,12) 
	

F(X) = 3456 

This is the Post Otfice Parcel problem presented by Rosenbrock 

in 1960 (14) and used by Box (1)(2). The object is to maximize the 

volume of a rectangular carton subject to length and girth restrictions. 

The indicated initial point is slightly different from those suggested 

by Rosenbrock, but Box reported little or no initial point dependence 

for Rosenbrock t s procedure or his modification to it. At the optimal 

point, only the last constraint is active. 

Problem C-2  

2 	2 	2 	 2 
Minimize F(x)= x i

2 
 + x2  + x3  + x4  -5x1  -5x2  -21x3  + 7x4  +2x3 

subject to: 

2 	2 
-x1 -x2 -x3 -x4  -x1  + x2  -x3  + x4  + 8 > 0 

-x1  2 	2 	2 	2 

	

-2x2 	-2x4  + x1 	+ x4  + 10 > 0 

2 	2 	2 

	

-2x1  -x2  -x3 	-2x1  + x2  + x4  + 5 > 0 
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Initial Point: x = (0,0,0,0 ) 
	

F(X) = 0 

Solution Point: X = (0,1,2,-1) 
	

F(X) = -44 

Problem C-2 was introduced by Rosen and Suzuki (13), although this 

particular version was taken from Kowalik and Osborne (7). At the 

solution point, the last constraint is active. 

Problem C-3  

2 	 2 
Minimize F(x) = 9 - Sx 1  - 6x2  - 4x3  + 2xl

2 
 + x3  + 2x 1x2  + 2x1x3 +2x2 

 subject to: xi  = 0, i=1,2,3 

x i  + x2  + 2x3 	3 

Initial Point: x = (.1, .1, .1) 	 F(x) = 7.29 

Solution Point: X = (4/3, 7/9, 4/9) 	 F(x) = 1/9 

Problem C-3 is due to E. M. L. Beale, but was also taken from 

Kowalik and Osborne (7). As in the previous problems, only the final 

constraint is active. 

Problem C-4  
24 

Minimize F(x) = 23 c.x 
j=1 

subject to: 

(xi+12 /Mi+12 ) / Sv 	11 
(V./P)(x./M

i 
 )/SL 

 = 0, i=1,...,12 

xi  + x2 	• • • 1-x24 = 1  

12 x 
23 	i  + [(.7302)(14.7)T/PJS - 1.671 = 0 

Ai 	
v 

 

x. 	0, i=1,...,24 

.1 - (x i  + x13 )/Sx = 0 

.3  - (x2 x14)/Sx= 0 
 

.4 - (x3  + x15)/Sx= 
> 
 0 

.3 - (x 7  + x19 )/Sx  = 0 
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. 6  - (x8 + x20)/Sx = 0 

.3 - (x
9 
+ x21

)/Sx 	
0 

	

24 	 12 	 24 
where S = E x., s = 	x./14. s = 2, x./Mj , and the values of the 

x L 	3 3' v 	 j' 

	

i=1 	 j=1 	 j=13 

c, M, A, and V arrays and the constants T and P are specified. 

Initial Point: x = (.04, .04, .04, ..., .04) 	F(x) = .14696 

Solution Point: x = (.013, .091, .115, 10-7 
	7 , 10 , 10 -x ,.069, 10

-4 , 

10
-5

, 10
-8 , .017, .029, .079, .146, .266, 10

-7 , 

10
-7

, 10
-8

, .173, 10
-4

, 10
-6

, 10
-6

,.001,.001) 

F(x) = .058106 

The objective function to this problem from Paviani and Himmelblau 

is linear, which is an allowable diversion from true nonlinearity (10). 

Due to its 24 variables and 44 constraints, the problem is described by 

Paviani and Hiumielblau as being difficult enough to challenge any non- 

linear programming solution procedure. The solution point given above 

was obtained from a modification to the sequential simplex algorithm 

for constrained problems in 13.2 minutes on a CDC 6600 computer. This 

amount of time is a luxury not available to this research. Therefore, 

Problem C-4 was chosen only to be an additional test for the most suc-

cessful approaches, and even then, time in excess of one minute could 

not be allowed. The results indicate that this time was sufficient to 

signify only if the problem was too difficult to prohibit progress. 

Test Procedures  

Each of the transformations for solving constrained problems was 

entirely programmed within the function computing F(x), except for a 

small number of instructions in the main program and search subroutine 
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which required modification due to the nature of the transformation. For 

example, Rosenbrock's approach required a special entry into the function 

for the initialization of Fbest' 
and provision for direct return to the 

failure path of the flow diagram if the point x were infeasible. Once 

the peculiarities for each approach were identified, these instructions 

were inserted and required no further attention. 

The components of X and the function value were only printed to 

seven digits to allow the insertion of a new parameter in the same line 

of print. This new parameter was the value of the transformation func-

tion, which is the value to be minimized. Printing the true function 

value and the transformed value adds clarity to a maximization problem, 

since the negative need not be the only value to appear, and allows 

comparison of these two values to determine the effect of the con-

straints at any given stage. 

The five transformations (Rosenbrock's approach, the Heaviside 

unit step function, the created response surface technique, penalty 

functions, and Paviani and Himmelblau's criterion function) were each 

tried with the three smaller problems. The more successful of these 

methods attempted to solve the Paviani and Hiuunelblau problem (C-4). 

Effective solution, rather than efficient, was the most important 

consideration, since the solution itself was far more important than 

differences of a few trials. 

Results  

Rosenbrock's Approach  

The Rosenbrock formulation was the most difficult to program and 

would require the most preparation for solving an individual problem. 
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The approach, as described in Chapter II, is an interior method which 

leaves the function value unchanged until a boundary zone near con-

straining values is entered. Inside the zone, the objective function 

is penalized by a cubic function of the distance into the zone. The 

constraints are put in the form 

Li  (x) L  gi  (x) C  Ui  (x) 

where the lower and upper limits may be functions of x, but normally are 

constant. The boundary zone width is defined by 

b. = [U. (x)- Li (X)] 10-4  

for the initial values of x, and because of this computation, both the 

upper and lower limits must be specified, even though one may not be 

meaningful. For a standard inequality constraint, the upper limit 

must be intelligently chosen to prevent the boundary width from being 

too excessive. This was not a great problem for any of the test pro-

blems, but it did increase the manual preparation time. 

The 10
-4 multiplier in the boundary width equation was the optimal 

value for eight digit computers, according to Rosenbrock (15). There 

may be a considerable amount of dependence on the particular problem 

because several values were tested on Problem C-1, with 10
-8 

being 

superior to 10
-6

, 10
-5

, 10
-4 , and 10

-3 . The ranges for the constraints, 

U. - Li , for Problem C-1 are 42 and 72. Problems with ranges either 

much larger or much smaller probably would require a different multiplier. 

Rosenbrock took the first n constraints to be restrictions on the 

value of each component of X. 	For most constrained problems, this is not 
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wasteful and was appropriate for three of the four test problems. However, 

for a general problem solving technique, which might be called on to solve 

unconstrained problems, this is a nuisance and should be avoided. 

Rosenbrock's approach was programmed to require a second set of 

input data for each problem. 	This data was for the upper and lower limits 

on each constraint, an integer specifying the total number of constraints, 

and the multiplier for the boundary zone width. This information could 

have been programmed in to the function, but with several problems in 

the test function, this approach simplifies the amount of manual work. 

With the border zone multiplier of 10
-8 , the Rosenbrock approach 

with the Rosenbrock-Fibonacci-Palmer optimization method reached a 

function value of 3455.984 in four stages (133 trials) for Problem C-1. 

This value improved to 3455.999 in 16 more stages (up to 1000 trials). 

The final x vector was (24.00515, 12.00512, 11.99231), which is very 

close to the true value. Problem C-2 was solved to a function value 

of -43.95000 in 2000 trials and was still making slow progress. The 

x vector was (.008250994, .7631167, 2.030796, -1.072993), which doesn't 
■■. 

yet have one digit accuracy even though the function value is close to 

optimal. In 1000 trials, the Rosenbrock approach solved Problem C-3 

to F(x) = .1111860, x = (1.330870, .7730718, .4480286). Comparing the 

above results to presentations in the literature, it appears that the 

solutions to Problems C-1 and C-3 are quite satisfactory and that the 

solution to Problem C-2 might eventually become acceptable after an 

excessive number of trials. 

There were two reasons for attempting to solve Problem C-4 with 

Rosenbrock's approach. First, it solved the first three problems to an 
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apparently satisfactory degree. Second, since Rosenbrock did not discuss 

equality constraints, the method had to be examined for compatibility 

with equality constraints. 

There seemed to be two logical approaches to adapting Rosenbrock's 

formulation for equality constraints. The first choice was to artifically 

set upper and lower bounds (0 - r, where r is set to a prescribed value 

and then made to decrease as a function of stage number). The other 

choice was to add the sum of the squares of the equality constraint 

equations, multiplied by an increasing function of the stage counter, 

to the objective function. Both approaches were tried, but due to the 

difficulty of Problem C-4, they can only be evaluated in terms of their 

effect on the equality constraints. For the first approach, changing 

the value of r at any stage makes it possible for a previously accept-

able point to become unacceptably infeasible. This then requires that 

a direction exist to point back to the feasible region and that the initial 

step size be long enough to enter the region. The chance of this occur-

rence are very slim, so that the first method reached a point of infeasi-

bility that could not be escaped. 	When this occurs, an auxiliary problem 

which minimizes the sum of the squares of the violated constraints can 

be solved for an acceptably feasible point. Then the original problem 

can be re-started from this new point. The best F(x) produced by this 

method was .07115096 after 14,400 trials of finding a good feasible 

point with the auxiliary problem and then 2400 trials of Problem C-4 

(only two stages were accomplished because the value of r became too 

restrictive). The X vector did not bear any relationship to the desired 

result. 
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The - second approach, combining the sum of the squares of the 

equality constraints with the objective function, had no better success 

at solving Problem C-4, but did reduce the absolute value of the equality 

constraints equations to smaller values. The actual form of the new 

objective function was 

F*(x) = F(x) + 2 ist g 2: e(;) 
i 

and since this is a function of the stage counter, F best 
had to be 

re-initialized each time the stage counter was incremented. This 

re-initialization resulted in a loss of monotonicity in the sequence 

of function values. After 18,400 trials, 3600 of which were used to 

solve the auxiliary feasibility problem to generate a better point, 

F(x) was reduced to .07049412. The components of x still did not bear 

any resemblance to the desired solution. These 18,400 trials consumed 

about 50 seconds of computer time. 

Heaviside Unit Step Function  

The Heaviside unit step function was judged to be not very com-

patible with the Rosenbrock-Fibonacci-Palmer combination method because 

of its dependence on the function value. The logic required to check 

T.00=Owasnotimplemented,butjandf.were changed every two 

stages, which made it very difficult to bracket the minimum with two 

successivef.values. Although it may be possible to arrange the 

necessary compatibility between this approach and the optimization 

method, the interruption requires major revision of the basic search 

routine and the main program. This destruction of the combination 

method was considered undesirable in the present effort. 	Choosing a 
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sequence of f. in an optimal manner also appeared to be more challenging 

than could be attempted within the scope of this study. 

Created Response Surface Technique  

The created response surface technique solved Problems C-I, C-2, 

and C-3 as effectively as Rosenbrock's approach, solving Problem C-3 to 

much better accuracy. The particular torm of the transformed function was: 

T(X,r.) = F(x) + r 3 
 . 1; g 1 0-0 	2istg 	e26-0  

-1 - 16 
where r was a previously defined sequence of values and gi 

(x) = 10 
 

when 
gi

(X) = 0. The best general sequence of is was 10 0 , 10-2 , 10
-4  , 

10
-6 , . . , 10

-22 , 0, in which the value of r was changed before every 

stage solved by Rosenbrock's method. 	This particular combination solved 

Problem C-1 to X = (24.07326, 11.97545, 11.98792), F(x) = 3455.975 in 464 

trials (11 stages), making no further progress through 2000 trials (38 

stages). Problem C-2 was solved to only X = (-.02875676, .9022216, 

2.044782, -.9629524), F(x) = -43.94405 in 3343 trials (46 stages). 

At 2000 trials, the number reported for Rosenbrock's approach, F(x) 

was-043.93735. The created response surface technique continued making 

slow progress through 4000 trials. Problem C-3 was solved to x = 

(1.333542, .7780167, .4442205) and F(x) = .1111112 in 695 trials 

(17 stages), which was the most accurate solution to this problem. 

The same sequence of r values was changed every fourth stage, 

yielding F(X) values of 3455.940 and .1111119 for Problemc C-1 and C-3, 

respectively. Changing the value of r at each stage (r istg 
= -istg  10) 

produced an improved value of F(x) for Problem C-1 (3455.993) in 508 

trials, but the F(x) for Problem C-3 was .1117549. In both of these 
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modifications, no results were obtained for Problem C-2 because of an 

error in the function computation instructions. 

The created response surface technique was tried on Problem C-4, 

with r changed after every other stage. The minimum true function value 

obtained was .1122559 (about twice the desired value) after seven stages 

(1983 trials) in a run of 17,500 trials. Toward the end of the run, the 

transformed function value was on the order of 10
9 , indicating that the 

equality constraints were poorly satisfied. The components of the X 

vector did not resemble the desired values. 

Penalty Functions  

For the penalty function solution procedure, the following trans-

formation was used: 

T(x,r.) = F(x) + 	E buin(gi (X),0)] 2  + 2istg  21, e(X) i 

The value of r was incremented at every other stage from the following 

sequence: 10 0 , 10
-2 , 10

-4 , . . ., 10
-22

, 10
-30

. 

The penalty function was not severe enough for Problem C-1. 	Both 

the true function value and the transformation value blew up to 10
38 (the 

largest number that can be represented in the computer in single pre-

cision format) during the first stage and remained at that value. There 

may be a sufficiently strict sequence of r values, but no attempt was 

made to find one because problem dependent solution techniques were not 

desirable for this research. This approach did solve Problem C-2 to 

F(x) = -43.93340 and Problem C-3 to F(x) = .1111211, the latter of which 

is very good. Because of the performance on Problem C-1, penalty functions 

were ruled to be not acceptable. 
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Paviani and Himmelblau Approach  

For the Paviani and Himmelblau approach, the value of C i  was 

chosen to be 2
-istg

CO3  where C o  = max( 	Guin(gi (X),0)J
2
, 1) for the 

initial X. This approach was not strictly followed concerning attempted. 

function evaluations outside the near feasible region. When such a 

trial was attempted, it was aborted back through the failure path of 

the flow diagram, letting the search procedure find a subsequent near 

feasible point. Relocating this point in the Paviani and Himmelblau 

tashion would destroy the logic of the search routine. The method did 

not work well. It started each problem in an acceptable manner, but 

quit making progress after two stages because the criterion became too 

strict. The reason for this failure is also the compatibility of the 

iterative nature of the solution procedure and the iterative nature of 

the approach for solving constrained problems. 

Summary  

0± the five approaches to solving the constrained nonlinear pro-

gramming problems presented in this chapter, only two exhibited any 

general capability for the three easier problems. These were Rosenbrock's 

approach and the created response surface technique, both of which dis-

played natural compatibility with the Rosenbrock-Fibonacci-Palmer combi-

nation method. Of the two, the Rosenbrock approach provided slightly 

better results on Problems C-1 and C-2, at the expense of preparing more 

instructions for the solution of a given problem and a loss of generality 

when called upon to solve an unconstrained problem. The created response 

surface technique solved Problem C-3 to the finest degree of accuracy and 

seems the easier to implement. 
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Neither of the two approaches could obtain the exacting accuracy 

presented for unconstrained problems in Chapter III. This is because of 

the special behavior of these techniques as inequality constraints 

approach equality. Since both of these methods treat the equalities 

as barriers, evaluations exactly on the boundary, where the optimum 

must occur if at least one of the constraints is meaningful, cannot 

be permitted during the early stages, and never without penalty in the 

Rosenbrock approach. The accuracy presented in this chapter is probably 

the best that can be expected, and certainly indicates what the true 

values might be. 

Choosing between Rosenbrock's approach and the created response 

surface technique is largely a matter of personal choice. Both are 

acceptably efficient and one cannot predict which might be better for 

a given problem. The failure of both methods to solve Problem C-4 

should be attributed more to the difficulty of the problem than to 

deficiencies in the methods. Since Problem C-4 was solved by its 

authors in over 13 minutes, and neither of these methods was allowed 

more than one minute, there is room for modification of the attack on 

this problem that might eventually lead to a solution. For demonstration 

purposes, the Rosenbrock approach is presented in the appendix, along 

with instructions for making both the Rosenbrock and the Rosenbrock-

Fibonacci-Palmer combination searches on unconstrained or constrained 

problems. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

During the First Phase of this research, alternative methods for 

making improvements in the Rosenbrock direct search algorithm were 

investigated. None ot the alternatives was found to be more generally 

effective than Rosenbrock's method, although one of the approaches fre-

quently solved some individual problems faster than Rosenbrock's method. 

A combination method making alternating stages of Rosenbrock's search 

and the simultaneous Fibonacci search performed about equally as well 

as the Rosenbrock method alone. This method was chosen as the basic 

-pptimization method for the Second Phase. 

Also during the First Phase, an investigation of alternate 

termination criteria produced no reliable improvements to the inef-

ficient trial counter. False signs of optimality appeared frequently, 

while the true signs did not appear rapidly enough. Only when the 

optimal function value is known can an alternate termination criterion 

be implemented. 

Five approaches to solving constrained nonlinear programming 

problems were evaluated with the Rosenbrock-Fibonacci-Palmer combination 

method in the Second Phase. Two of these approaches, one suggested by 

Rosenbrock and the created response surface technique, had the necessary 

compatibility with the combination method and displayed nearly equivalent 

performance on three relatively easy constrained problems. Both of the 

successful methods failed to make significant progress within one minute 
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• 
of computing time on a 24-dimensional problem with 44 constraints. The 

other methods were rejected mainly for incompatibility with the iterative 

nature of the combination solution procedure. 

There is only one recommendation to be made based upon the results 

of this study. 	During both phases, different solution methods solved 

some problems much more quickly than other methods. In many cases, the 

best solution method for an individual problem was not the best general 

method, since it may not have been able to solve other problems. It 

this relationship between the problem and the variables of a solution 

technique like the simultaneous Fibonacci search could be identified, 

users of direct search algorithms could capitalize on that relationship 

to decrease their computing time and increase their efficiency. The 

investigation of this relationship is appropriate for follow-on research. 



APPENDIX 

The following is a listing of the Rosenbrock-Fibonacci-Palmer 

computer program, written in Fortran V for the Univac 1108 at the Rich 

Electronic Computer Center, with appropriate comments and data cards 

for an unconstrained and a constrained problem. After the listing, 

modifications for running a strictly Rosenbrock search are discussed. 

No attempt has been made to provide an exhaustive diagnostic routine. 

The program requires valid input and can only produce garbage, which 

may appear meaningful, from invalid input. 
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@ FOR, IS MAIN 
C 
C 
C LIST OF 
C 

	
ALPHAl 

ROSENBROCK-FIBONACCI-PALMER OPTIMIZATION METHOD 

VARIABLES - MAIN PROGRAM 
= THE NORM OF THE FIRST ALPHA VECTOR. INDICATES 

TOTAL PROGRESS OF THE PREVIOUS STAGE IN THE SPACE. 
= A BLANK FOR OUTPUT PURPOSES. 
= AN ARRAY FOR STORING PROGRESS SUMS FOR EACH 

DIRECTION. 
= THE BEST VALUE OF THE OBJECTIVE FUNCTION. 
= TERMINATION VALUE FOR THE OBJECTIVE FUNCTION. 

REQUIRES MINIMIZATION PROBLEM. 
= RUNGTION ENTRY TO COMPUTE INITIAL F(X). 
= NORMAL FUNCTION ENTRY FOR SUBSEQUENT F(X). 
= TRUE FUNCTION VALUE, NOT MODIFIED FOR MAXIMIZA-

TION OR CONSTRAINTS. 
= PARAMETER MEASURING RELATIVE ALIGNMENT OF 

SUCCESSIVE DIRECTIONS. 
= DESIGNATES PROBLEM BEING SOLVED. 
= STAGE COUNTER. 
= TRIAL MAXIMUM. 
= TRIAL COUNTER. 
= EIGHT WORD ARRAY FOR OUTPUT MESSAGE. 
= DIMENSIONALITY OF THE PROBLEM. 
= NAMELIST FOR FIRST DATA CARD PER PROBLEM. 
= DIRECTION VECTORS. 
= POINT VECTOR. 

@ma 
@MO2 
@m03 
@M04 
@M05 
@M06 
@mo7 
@M08 
@M09 
@mio 
@mil 
@M12 
@M13 
@M14 
@m15 
@m16 
@m17 
@M18 
@m19 
@m2o 
@m21 
@m22 
@m23 
@M24 
@m25 
@M26 
cdm2 7 
@M28 

C 	BLANK 
C 	D 

C 	FBEST 
C 	FEND 

C 
	

FONLY 
C 
	

FOFX 
C 
	

FTRUE 

C 
	

GAMMA 

C 
	

IPROB 
C 
	

ISTG 
C 
	

ITRMAX 
C 
	

ITRY 
C 
	

MSG 
C 
	

N 
C 
	

NML 
C 
	

V 
C 
	

X 
C 

HAS NO NOMINAL VALUE. 
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C 'MAIN PROGRAM INITIALIZES, READS, WRITES, AND DRIVES 	 @la 9 

C 	REMAINDER OF THE PROGRAM . 	 @1430 

C 	 @1431 

C 	COMMON /ONE/ FTRUE,IPROB,ISTG,N 	 @m32 

COON /TWO/ ALPHA1,D(25),FBEST,GAKMA,ITRMAX, 	 @1433 

1 ITRY,V(25,25),X(25)._ . 	 @M3.4 

DIMENSION MSG{8-Y,-- -_- 	 @1435 

-DATA-BLANK/6H_ 	/,MSG/24HROSENBROCK-FIBONACCI-PAL, -- 	@1436 

1 -241/MER-OPTIMIZATION METHOD .1 	 @m37 

_,, NAMELIST /NML/ IPROB,N,ITRMAX,FEND,X 	 @M8 

ITRMAX=1 	 @1439 

1 ITRY=0 	
@1440  

ISTG=0 	 @M41 
 

FEND=-1.E+35 	
@M42 

READ (5,NML,END=6) 	
@M43 

FBEST=FONLY(X,$1,2.E+35) 	 @m44 

WRITE (6-,8) IPROB,MSG,(BLANK,I,I=1,N) 	 @1445 

WRITE (6,10) ITRY,FTRUE,FBEST,(X(I),I=1,N) 	 @146 

DO 3 I=1,N 	
@1447 

DO 2 J=1,N 	
@148 

2 V(I,J)=0. 	
@M49 

3 V(I,I)=1. 	
@1450 

4 CALL SEARCH 	
@1451 

IF (ITRY .GE. ITRMAX) 	
@M52 

ISTG=ISTG+1 	
@M53 

CALL ROTATE 	
@154 

WRITE (6,9) ISTG,ITRY,FTRUE,FBEST,ALPHA1,GAMMA,(X(I), 	@1455 

1 I=1,N) 	 , 	 @1456 

IF (FTRUE .LE. FEND) GO TO 5 	 @M57 

FBEST=FOFX(X,$1,2.E+35) 	
@M58 

ITRY=ITRY+1 	
@M59 

WRITE (6,9) ISTG,ITRY,FTRUE,FBEST 

GO TO 4 	

@M60 
@M61 

5 WRITE (6,10) ITRY,FTRUE,FBEST,(X(I),I= 1 ,N)  

GO TO 1 
6 WRITE (6,7) MSG ' 	

::3 
@M64 

7 FORMAT (1H1, 8A6/////) @m65 

8 FORMAT (1H1,6(5H****),15H PROBLEM NUMBER,13,3H8A 6 , * 	 „  @m66 

1 6(5H**** 	11*)//10 STG, TRY,7X,4HF(R),(SX, &HMODF(X),6X  @M67 

2 6HALPHA1,5X,5HGA1MA,5(8X,A1,2HX(,I2,1H))/(57X, _ 	 @M68 

3 5(8X,A1,2HX(,I2,1H)))) 
@1469 

9 FORMAT (14,16,2G14.7,2G11.4,5G 14 . 7 /(60X, 5G14 . 7 ))  @M70 

10 FORMAT (1H0,19,2G14.7,22X,5G14.7/(60X,5G14.7)) 	 @1471 

END 	. 	
@1472 
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@FOR,IS ROTATE 	 @ROI. 

SUBROUTINE ROTATE 
C 	 @:.(()) 

C PALMER METHOD FOR GENERATING NEW DIRECTIONS. 	 @R04 

C @R05 

C LIST OF VARIABLES - SUBROUTINE ROTATE  @ROE,  

COMMON /ONE/ FTRUE,IPTROB,ISTG,N 	 @R07 

COMMON /TWO/ ALPHA1,D(25),FBEST,GAMMA,ITRMAX, 	 @R08 

1 ITRY,V(25,25),X(25) @R09 

C 	ALPHA = INTERMEDIATE DIRECTION ARRAY.  @R10 

C 	DUM 	= DUMMEY VARIABLE FOR INTERMEDIATE VALUES. 	 @R11 

C 	T 	= ARRAY FOR DEVELOPING NEW DIRECTIONS. 

C 
DIMENSION ALPHA(25,25),T(25) 	

:13 
@R14 

DO 1 J=1,N 	 @R15 

DO 1 K=1,N 	 @R16 

1 ALPHA(J,K)=0. 	 @R17 

DO 2 J=1,N 	 @R18 

DO 2 K=1,N 	 @R19 

DO 2 I=J,N 	 @R20 

2 ALPHA(J,K)=ALPHA(J,K)+D(I)*V(I,K) 	 @R21 

DUM=ALPHA(1,1)*ALPHA(1,1),. _ 	 @R22 

GAMMA=0. 	 @R23 

DO 3 I-2,N 	 @R24 

DUM=DUM+ALPHA(1,I)*ALPHA(1,I) @R25 

3 GAMMA=GAMMA+ALPHA(2,I)*ALPHA( 2 ,i)  @R26 
ALPHA1=SQRT(DUM) 	 @R27 

GAMMA=SQRT(GAMMA)/ALPHAl 	 @R28 

T (N)=D (N)*D (N) @R29 

I=N-1  @R30 
DO 4 K=I,1,-1 	 @R31 

4 T(K)=T(K+1)+D(K)*D(K) 	 @R32 

DO 6 K=N,2,-1 	 @R33 

DUM=SQRT(T(K-4)*T(K)) 	 @R34 

IF (DUM .LT. L.E-16) GO TO 6 	 @R35 
DO 5 I=1,N 	 @R36 

5 V(K,I)=(D(K-1)*ALPHA(K,I)-V(K-1,I)*T(K))/DUM 	 @R37 
6 CONTINUE @R38 

DUM=SQRT(T(1))  @R39 

DO 7 I=1,N 	 @R40 

7 V(1,I)=ALPHA(1,I)/DUM 	 @R41 

RETURN 	 @R42 

END 	 @R43 

@FOR,IS SEARCH 	 @SO1 
SUBROUTINE SEARCH 	 @S02 

C 	 @S03 

C ROSENBROCK AND FIBONACCI COMBINATION SEARCH 	 @SO4 

C 	 @S05 
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C LIST OF VARIABLES - SUBROUTINE SEARCH @SO6 

COMMON /ONE/ FTRUE,IPROB,ISTG,N  @SO7 
COMMON /TWO/ ALPHA1,D(25),FBEST,GAMMA,ITRMAX, @S08 
1 ITRY,V(25,25),X(25) @s09 

C 	A 	= SUCCESS-FAILURE STATUS INDICATOR FOR RISEN-  @S10 

C 	 BROCK SEARCH. 	 @S11 

C 	ALPHA2 = LENGTH OF SEARCH REGION FOR FIBONACCI SEARCH. @S12 

C 	E 	= STEP SIZE FOR ROSENBROCK SEARCH.  @S13 

C 	FNA 	= SMALLER OF THE TWO FIBONACCI NUMBERS. 	 @S14 

C 	FNB 	= LARGER OF THE TWO FIBONACCI NUMBERS. 	 @S15 

C 	FNR 	= RATIO OF THE TWO FIBONACCI NUMBERS. 	
:17 
@S16 

 C 	FTEMP = TEMPORARY LOCATION FOR THE VALUE OF kIRUE. 

C 	FTEST = FUNCTION VALUE FOR A NEW POINT. 	 @S18 

C 	FY 	= FUNCTION VALUE FOR A COMPARATIVE POINT. 	 @S19 

C 	TA 	= ARRAY OF STEP SIZES FOR FIBONACCI SEARCH. @S20 

C 	TFNRMO = TWICE FNR MINUS ONE.  @S21 

C 	WHICH = LOGICAL VARIABLE INDICATING WHICH SEARCH TO MAKE. @S22 

C 	Y 	= THE POINT FOR COMPARATIVE EVALUATION IN F. SCH. @S23 

C  @S24 

DIMENSION A(25),E(25),TA(25),Y(25)  @S25 

EQUIVALENCE (A(1),TA(1)),(E(1),Y(1)),(FTEST,FY),  @S26 

1 (ALPHA2,TFNRMO) 	 @S27 

LOGICAL WHICH 	 @S28 

IF (ISTG .NE. 0) GO TO 1 	 @S29 

WHICH=.TRUE. 	 @SIO 

1 WHICH=.NOT.WHICH @S31 

IF (WHICH) GO TO 13  @S32 

C ROSENBROCK SEARCH  @S33 

DO 2 J=1,N 	 @S34 

A(J)=2. 	 @S35 

D(J)=0. 	 @S36 

4 E(J)=.1 	 @S37 

3 I=1 @S38 

4 DO 5 J=1,N  @S39 

5 X(J)=X(J)+E(I)*V(I,J) 	 @S40 

FTEMP=FTRUE 	 @S41 
ITRY=ITRY+1 

:@:S:4:57 

FTEST=FOFX(X,$6,FBEST) 
IF (FTEST .LE. FBEST) GO TO 8 	 @S44 

6 DO 7 J=1,N 
7 X(J)=X(J)-E(I)*V(I,J) 

FTRUE=FTEMP 	

@S46 

E(I)=-.5*E(I) 	 @S48 
IF (A(I) .LT. 1.5) A(I)=0. 	 @S49 

GO TO 9 	 @S50 

8 D(I)=D(I)+E(I) 	 @S51 

E(I)=3.*E(I) 

E5554. 
FBEST=FTEST 
IF (A(I) .GT. 1.5) A(I)=1. 

9 IF (ITRY .GE. ITRMAX) RETURN 	 @S55 
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DO 10 J=1,N 	 @S56 

IF (A(J) ,GT. .5) GO TO 11 	 @S57 

10 CONTINUE 	 @S58 

RETURN 	 @S59 
11 IF (I-N) 12,3,3 	 @S60 

12 I=I+1 	' 	
@S61 

00 TO 4 	 @S62 

C SIMULTANEOUS FIBONACCI SEARCH 	 @S63 

13 FNA=987. 	 @S64 

FNB=1597. 	 @S65 
ALPHA=2.*AMAX1(ALPHA1,5.E-6) 	 @S66 

DO 14 I=1,N 	 @S67 

D(I)=0. 	 @S68 

14 TA(I)=ALPHA2 	 @S69 

DO 21 M-1,16 	 @S70 

FNR=FNA/FNB 	 @S71 

TFNRMO=2.*FNR-1. 	 @S72 

DO 20 I=1,N 	 @S73 

IF (M ,NE. 15) GO TO 15 	 @S74 

TA (I)=FNR*TA (I) 	 @S75 

GO TO 20 	 @S76 

DO 16 J-1,N 	 @S77 

16 Y(J)=X(J)+TA(I)TFNRMO*V(I,J) 	 @S78 

FTEMP=FTRUE 	 @S79 

ITRY=ITRY+1 	 @S80 

FY=FOFX(Y,$18,FBEST) 	 @S81 

IF (FBEST .LT. FY) GO TO 18 	 @S82 

FBEST=FY 	 @S83 

DO 17 J=1,N 	 @S84 

17 X(J)=Y(J) 	 @S85 

D(I)=D(I)+TA(I)*TFNRMO 	 @S86 

TA(I)=(FNR*TA(I) 	 @S87 

GO TO 19 	 @S88 

18 TA (I)= -FNR*TA(I) 	 @S89 

FTRUE=FTEMP 	 @S90 

19 IF (ITRY .GE. ITRMAX) RETURN 	 @S91 

20 CONTINUE 	 @S92 

FNA=FNB=FNA 	 @S93 

21 FNB=FNB-FNA 	 @S94 

DO 24 I=1,N 	 @S95 

IF (D(I)) 23,22,23 	 @S96 

22 D(I)=1.E=7 	 @S97 

GO TO 24 	 @S98 

23 IF (ABS(D(I) .GT. 1.E-7) GO TO 24 	 @S99 

D(I)=D(I)+SIGN(1.E -6,D(I)) 	 @SAO 

24 CONTINUE 	 @SA1 

RETURN 	 @SA2 

END 	 @SA3 
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@F01 
@F02 
@F03 
@F04 
@FOS 
@F06 
@FO7 
@FO8 
@FO9 
@FIO 
@F11 
@F12 
@F13 
@F 14 
@F15 
@F16 
@F17 
@F18 
@F19 
@F20 
@F21 
@F22 
@F23 
@F24 
@F25 
@F26 
@F27 
@F28 
@F29 
@F30 
@F31 
@F32 
@F33 
@F34 
@F35 
@F36 
@F37 
@F38 
@F39 
@F40 
@141 
@142 
@F43 
@F44 
@145 
@F46 
@F47 
@F48 
@F49 
@F50 

C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

@FOR,IS FOFX 
FUNCTION FOFX(X,$,FBEST) 

COMPUTES THE TRUE AND TRANSFORMED FUNCTION VALUES. 
ROSENBROCK FORMULATION FOR CONSTRAINED PROBLEM. 

VARIABLES - FUNCTION FOFX 
/ONE/ FTRUE,IPROB,ISTG,N 
= WIDTH OF THE BOUNDARY ZONE. 
=BOUNDARY ZONE MULTIPLIER. 
= NAMELIST INPUT FOR CONSTRAINT VALUES. SOME 

INPUT REQUIRED FOR UNCONSTRAINED PROBLEMS. 
= -1 FOR MAXIMIZATION, +1 OTHERWISE. 
= ARRAY FOR CONSTRAINT LOWER BOUNDS. 
= ARRAY FOR CONSTRAINT UPPER BOUNDS. 
= BEST PREVIOUS FEASIBLE FUNCTION VALUE FOR 

CONSTRAINT J. 
= TOTAL NUMBER OF CONSTRAINTS. 
= PENALTY FUNCTION IN THE BOUNDARY ZONE. 
= DISTANCE INTO THE BOUNDARY ZONE. 
= INPUT ARRAY FROM CALLING ROUTINE. 
= CONSTRAINT VALUES, FIRST N ARE X(I) 

DIMENSION AL(50),G(50),H(50),HJ(50),X(25),XJ(50 ) 
NAMELIST /CON/ NON,G,H,BORDER 
DATA BORDER,FMULT/1.E-8,1,/ 
IF (NCON .EQ. 0) GO TO 2 
DO 1 J-1,N 

1 XJ(J)=X(J) 
2 GO TO (1000,2000),IPROB 

1000 FTRUE=100.*(X(1)**2-X(2))**2+(1. -X(1 )) **2  
C UNCONSTRAINED PROBLEM 2 

FOFX=FTRUE 
RETURN 

2000 FTRUE=X(1)*X(2)*X(3) 
C CONSTRAINED PROBLEM C-1 

XJ(4)=X(1)+2.*X(2)+@.*X(3) 
F=FMULT*FTRUE 
IF (F .GT. FBEST) RETURN 2 
DO 5 J-1,NCON 
IF (XJ(J) .LT. G(J)) RETURN 2 
IF (XJ(J) .GT. H(J)) RETURN 2 
IF (XJ(J) .GE. G(J)+AL(J)) GO TO 3 
Ral-- (G(J)+AL(J)-XJ(J))/AL(J) 
PHI=1.-3.*RNU+4.*RNU*RNU-2.*RNU **3 
F=HJ(J)+(F-HJ(J))*FHI 
GO TO 5 

3 IF 00(J) .LE. H(J)-AL(J)) GO TO 4 
RNH-(XJ(J)-H(J)+AL(J))/AL(J) 
PHI=1.-3.*RNU+4.*RNU*RNU-2.*RNU**3 

LIST OF  
COMMON 
AL 
BORDER 
CON 

FMULT 
G 
H 
HJ 

NCON 
PHI 
RNU 
X 
XJ 
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F=HJ(J)±(F-HJ(J))*PHI 
GO TO 5 

@F51 
@F52 

4 HJ(J)=FBEST @F53 

5 CONTINUE @F54 

FOFX=F @F55 

RETURN @F56 
ENTRY FONLY(X,S,FBEST) @F57 

READ (5,CON) @F58 

IF (IPROB .EQ. 1) GO TO 1000 @F59 

DO 6 J=1,NCON @F60 

6 AL(J)=(H(J) -G(J))*BORDER @F61 

FMULT=-1 @F62 

FTRUE=X(1)*X(2)*X(3) @F63 

F=FMULT*FTRUE @F64 

DO 7 J=1,NCON @F65 

7 HJ(J)=F @F66 

FOFX=F @F67 

RETURN @F68 

END @F69 

@MAP,S 
@XQT 
$NML IPROB=1, N-2, 
SCON NCON=0 $END 
$NML IPROB=2, N=3, 
SCON NCON=4, G=4*0. 

@ FIN 

ITRMAX=1000, FEND=0., X=-1.2,1 $END 

ITRMAX=1000, X=3*6. $END 
, H=3*42.,72., BORDER=1.E-8 SEND 

To make a run with only the Rosenbrock search, the simplest change 

is to insert a card with the instruction WHICH=.TRUE. between cards @S28 

and @S29. Many other changes are possible, but some require complete 

revision of the subroutine, while others may produce bothersome diag-

nostic messages. 
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