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SUMMARY

The current world rely mainly on fossil fuels and face impending danger of their

depletion. Overexploitation of fossil fuels also puts increasing pressure on the envi-

ronment. There is an urgent research need for alternative energy strategies that are

both sustainable and clean. Hydrogen (as a synthetic fuel) is believed to be able to

provide such a scheme due to its unique physical and chemical advantages in car-

rying energy. Researchers and engineers must solve various scientific and technical

problems encountered in the production, storage, and utilization of hydrogen before

turning this vision into a practical hydrogen economy.

In particular, the study for onboard hydrogen storage application has attracted

significant interest in the past decade. Compared with stationary storage, storing

hydrogen onboard vehicle puts far more stringent requirements on the material. A

hydrogen-driven automobile should have driving range and refueling time similar to

a conventional one. The total storage volume and weight per unit energy should

be comparable to gasoline. Hydrogenation/dehydrogenation should happen around

ambient pressure and temperature, and with decent kinetics. In addition, onboard

application also requires reversible hydrogen storage.

We present a first principle investigation in Chapter 3 to study the possible alloy

phases of sodium and lithium alanates. In 1997 Bogdanovic et al. discovered that hy-

drogen can be reversibly stored inside the solid-state sodium alanate NaAlH4 in pres-

ence of Ti-related catalysts[22] with a theoretical 5.6% hydrogen capacity by weight.

Here we consider partial substitution of sodium with lithium in this compound, which

is expected to result in alloyed phases with better hydrogen capacity than the original

xi



system while hopefully keeping its reversibility. Structural and energetic properties

of alloy systems Na1−xLixAlH4 and Na3(1−x)Li3xAlH6 are studied via phase interpola-

tion and ab initio calculations within density functional theory. Initial structures are

constructed by interpolation based on the knowledge of sodium and lithium alanates,

and the natural connection between these two structures. Ultrasoft pseudopotentials

and generalized gradient approximation are used. Total energy and force/stress are

calculated in momentum space using plane waves, with all forces/stresses minimized.

Alloy system Na1−xLixAlH4 is found to be meta-stable with small mixing energy < 5

KJ/mol which is comparable to room temperature thermal energy. The equilibrium

structure undergoes transition from tetragonal structure to monoclinic structure be-

tween x= 0.25 and 0.5. Within each structure volume decreases with increasing x,

which can be explained by the smaller ion size of Li than Na. Our results show that

phase-separated state of sodium and lithium alanates is preferred, although at higher

temperature the mixed phase can be stabilized by thermal energy. Alloy system

Na3(1−x)Li3xAlH6 is also studied, and Na2LiAlH6 is found to be stable in agreement

with experimental findings.

The Li-Mg-N-H system has been identified as a promising hydrogen storage mate-

rial due to its moderate operation conditions as well as high capacity and reversibility[48,

38, 50]. The ternary system of Li-N-H[34] can be distabilized by partial substitu-

tion of lithium with elements of greater electronegativity such as magnesium. The

(de)hydrogenation reaction of the new system proceeds with plateau pressure of 30 bar

at 200◦C with a reversible storage capacity of about 5% by weight. By altering Mg:Li

molar ratio, this system can be further optimized over properties such as capacity,

kinetics, and reaction enthalpy, etc. Recently Rijssenbeek et al[55] reported that the

mixed imide, Li2Mg(NH)2, has disordered cation or cation-vacancy arrangements at

room temperature and above, where the compound undergoes progressive disordering

of the cations and vacancies as temperature raises, and the exact positions of lithium
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and magnesium cations are not determined. In Chapter 4, We investigate the crys-

tal structure of Li2Mg(NH)2 using first-principles total-energy calculations within the

density functional theory. The possible cation arrangement in α-Li2Mg(NH)2 is stud-

ied systematically. A series of low-energy ordered configurations is found with similar

total energies indicating possible cation-disordered arrangement, in agreement with

the experimental finding. Specific local orderings are found in the cation-vacancy

arrangement, where Mg atoms prefer face-diagonal arrangements on “cubes” formed

by tetrahedral interstitial sites of an fcc lattice, and arrange themselves in alternating

face-diagonal directions on opposite faces of two adjacent cubes. These energetically

preferable local orderings shed light on the experimental disordered structure mod-

els. Based on our calculations, a possible ordered structure at lower temperature is

proposed for Li2Mg(NH)2. In addition, the reaction energetics is calculated which

confirms the phase stability observed in experiment.

Hydrogenation-induced metal-nonmetal transition is recently found in the quater-

nary system LaMg2Ni-H. The transition happens without major rearrangement of the

metal host structure (atom shifts<0.7 Å) in contrast to the usual case in simple sys-

tems based on rare earths or magnesium. The metal-nonmetal transition is induced

by charge transfer of conduction electrons into tetrahedral [NiH4]
4− complexes with

a closed-shell electron configuration. The other hydrogen atoms are not associated

with the complex, and remain to be simple saline-like hydride anions surrounded by

magnesium and lanthanum atoms (which act as electron donors). The LaMg2Ni-H

system is a first example with the coexistence of two types of hydrogen atoms in the

same system. Recently a similar metal-nonmetal transition is reported in a palla-

dium system LaMg2Pd-H, where the intermetallic LaMg2Pd absorbs hydrogen under

mild conditions to form nonmetallic hydride LaMg2PdH7. The hydrogenation takes

place in two steps through the intermediate low concentration hydride LaMg2PdH3,

which has partially disordered structure with either of the two Wyckoff positions H1

xiii



or H2 occupied by hydrogen atoms. Unlike the nickel system, the hydrogenation of

this system is partially reversible and therefore presents greater interest for appli-

cations. In Chapter 5 we perform a first-principles investigation within the density

functional theory to study the structural, energetics, and bonding properties of the

LaMg2Pd-H system. Projector augmented wave method and generalized gradient ap-

proximation are used. The energetics of the LaMg2Pd-H system is examined through

total energy calculations. Band structure and density of states are calculated for in-

termetallic LaMg2Pd, low concentration hydride LaMg2PdH3, and full hydrogenated

LaMg2PdH7. Partial charge density for certain bands is calculated and compared

for configurations of LaMg2PdH3 with a full H1 or H2 occupancy. Calculations on

band structure reveal no band gap for LaMg2Pd and LaMg2PdH3, and a fundamen-

tal direct gap of 0.7 eV at Γ (GGA) for LaMg2PdH7. The real gap is estimated to

be more than 1.0 eV. Our calculation shows that metal-nonmetal transition happens

from low concentration LaMg2PdH3 to terminal LaMg2PdH7. For LaMg2PdH3, the

configuration with a full H2 occupancy is 0.026 eV/f.u lower in energy than that with

a full H1 occupancy, which can be explained by the ligand interaction of H2 with the

nearest Pd. In terminal LaMg2PdH7, this interaction of Pd d and ligand H s within

PdH4 complex is further strengthened leading to even more dispersed Pd d spectrum

toward lower energy range in PDOS plot, which eventually results in an energy gap,

in agreement with the 18-el’ full shell model of the [PdH4]
4− complex.
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CHAPTER I

INTRODUCTION

Today, the lifestyles of mobility, prosperity, and daily comfort in modern society de-

pend on a steady and reliable energy supply, most of which currently sources from

fossil fuels. By no means should people take this energy security for granted. Scien-

tists must waste no time to assess and find out alternative sources of energy that are

both scientifically possible and technologically promising, i.e., new forms of energy

source that are sustainable in time, environmentally acceptable, and economically

competitive compared with the traditional forms of energy source.

1.1 Current Situation Of Energy Sources

In general, there are three categories of energy sources. The first is chemical energy

from oxidizing a reduced substance such as a hydrocarbon (where the energy comes

from breaking of chemical bonds), or photophysical energy from absorbing sunlight

and generating heat or electricity (where the energy comes from part of an electronic

volt). The second is nuclear reaction from fission of heavy nuclei or fusion of light

nuclei where the energy is of order MeV per reaction. The third is thermomechanical

energy including wind, water, and geological steam or hot water where the energy

involved is of order meV.

Fossil fuels are hydrocarbons such as coal, oil and natural gas sourced from the

organic remains of prehistoric organisms. As the world’s main energy supply (Table

1), these traditional energy sources can be used straightforwardly in combustion pro-

cess. They are relatively inexpensive and can be easily transported. However, fossil

fuels are essentially non-renewable energy sources in the long-term. The geological

processes which create fossil fuels take millions of years, so they cannot be regenerated

1



Table 1: World Total Energy Demand (Mtoe*)

Energy Source/Type 1971 2002 Change 1971-2002 (%)
Coal 1,407 2,389 1.7
Oil 2,413 3,676 1.4
Gas 892 2,190 2.9
Nuclear 29 892 11.6
Hydro 104 224 2.5
Biomass and waste 687 1,119 1.6
Other renewables 4 55 8.8
Total 5,536 10,345 2.0
(*toe: the amount of energy released by burning one tonne of crude oil(∼42 GJ).)

Source: Data from IEA, World Energy Outlook, International Energy Agency,
Paris, France, 2004.

within the timescales of human race once they have been exhausted.

Global energy consumption has doubled over the past 30 years or so (Table 1).

The consumption is mainly accounted for by fossil fuels due to industrialization in

North America, Europe, and Japan. The world’s energy need is expected to (at least)

double within the next half century. Rapid increase in energy consumption will be

seen in China and India (Table 2), where about one third of the world’s population

resides. Essentially, the current world depends solely on oil resources, which are

expected to deplete in the very near future. By then the cost of finding and extracting

new deposits will render them too expensive for everyday use. Overexploitation of

fossil fuels is also believed to be responsible for signs of significant change in global

climate shown in recent years. Extensive use of fossil fuels is the major cause of

global warming and acid rain, and the extraction process can be very damaging to

the landscape.

Demands for cleaner, sustainable new energy sources other than fossil fuels there-

fore pose urgency research needs toward a secure energy future.
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Table 2: World Total Energy Demand (Mtoe, see Table 1): (1) North America
including U.S.A.; (2) U.S.A.; (3) South and Central America; (4) Europe and Euro-
Asia; (5) Middle East; (6) Africa; (7) Asia Pacific.

Region 2001 2002 2003 2004 Average Increase/ 2004 Change
Year (%) Over 2003 (%)

(1) 2,681.5 2,721.1 2,741.3 2,784.4 1.3 1.6
(2) 2,256.3 2,289.1 2,298.7 2,331.6 1.1 1.4
(3) 452. 454.4 460.2 483.1 2.2 5.
(4) 2,855.5 2,851.5 2,908. 2,964. 1.3 1.9
(5) 413.2 438.7 454.2 481.9 5.3 6.1
(6) 280. 287.2 300.1 312.1 3.7 4.
(7) 2,497. 2,734.9 2,937. 3,198.8 8.6 8.9
World 9,179.3 9,487.9 9,800.8 10,224.4 3.7 4.3
Biomass not included. Source from BP Statistical Review of World Energy, 2006.

1.2 Hydrogen As Clean, Efficient, Renewable Energy Car-

rier

Energy can be stored in various forms such as mechanical energy of a flywheel, electric

or magnetic field energy of capacitors or coils, chemical energy of fossil fuels, or

nuclear energy in uranium or deuterium. The energy contained in chemical bonds

comes from unpaired outer electrons (i.e., valence electrons) of an atom, which tend

to be stabilized by electrons from other atoms.

The hydrogen atom, in which the electron is accompanied by only one proton,

has the best ratio of valence electrons to protons (neutrons) in the periodic table.

The energy gain per electron is therefore very high, rendering the hydrogen atom an

ideal energy carrier. In addition, hydrogen is the most abundant element on Earth,

although the majority of which is chemically bound in water.

Molecular hydrogen gas H2 can be generated in different ways. For example, it can

be produced using sunlight combined with photovoltaic cells and water electrolysis.

The majority of hydrogen consumed nowadays (about 5 × 1010 kg per year world-

wide) is however transformed from fossil fuels by reaction of -CH2- chains with H2O

producing H2 and CO2. Hydrogen has especially high chemical energy per mass (142
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MJ.kg−1) compared with other fuels (47 MJ.kg−1 for liquid hydrocarbons, for exam-

ple). When burnt with oxygen, the only product is water vapour, making hydrogen

gas an environment-friendly fuel. Due to these physical and chemical advantages,

and the successful use of hydrogen fuel in space technology, scientists in general as

well as some companies, governmental agencies, and financial institutions believe that

hydrogen will be a globally important synthetic fuel in the near future.

In particular, many people consider hydrogen as the ideal fuel to replace petrol in

automobiles because it is lightweight and abundant, and oxidizes into environmentally

benign H2O. There are basically two ways to run a vehicle on hydrogen. One is to

burn a mixture of hydrogen with air in an internal combustion engine in which the

energy transformation efficiency is limited by the thermal Carnot efficiency (∼25%,

slightly higher than that of a petrol-air mixture). The other is to burn hydrogen with

oxygen electrochemically in a fuel cell and use the produced electricity to drive an

electric engine. The efficiency of this process can reach up to 50%. As a matter of

fact, automobile companies like BMW have already started to develop and test cars

that run on hydrogen.

Along with the promising nature and exciting scenarios, there are many technical

challenges that people face in order to put hydrogen to use as an energy-carrying

medium. For one, there lacks an efficient way of hydrogen storage in practice. Tra-

ditional methods include compressed gaseous hydrogen storage (up to 200 bar with

steel tanks, and 450 bar with carbon-fibre-reinforced tanks) and low temperature

liquid hydrogen storage (below critical temperature of -241◦C). High pressure tanks

can contain only ∼4% hydrogen by mass when full, and 4 kg H2 (corresponding to

400 km coverage for an electric engine car) thus compressed still occupies about 60

gallons of volume. Considering the cost of the tank material and the compression

and pressure controlling (during release), this is obviously not very efficient. Besides,

there is the potential risk associated with operation of the high-pressure combustible
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gas. Economically, cost of cryotechniques used to condensate hydrogen into liquid

and keep it at the low temperature makes liquid hydrogen storage not very attractive

for everyday use, either.

1.3 Scientific Challenges And Fundamental Research Needs

Of On-board Hydrogen Storage

Hydrogen storage onboard vehicles presents great challenge in particular. Transporta-

tion applications require compact, lightweight, responsive hydrogen storage. Basic

research needs to identify new storage materials and answer a lot of performance and

system related questions. What are the ways to optimize the operating conditions

(release rate, temperature, and delivery pressure)? What are the requirements for

hydrogen purity, reversibility, refueling rate, and life cycle of the host material? How

to assess and address issues such as system stability, permeation hydrogen loss, safty,

toxicity, and efficiency, etc? Last but not least, can we make on-board hydrogen stor-

age cheap enough so that hydrogen fuel is affordable and competitive to conventional

gasoline fuel?

Traditionally, hydrogen is stored in its pure form as compressed gas or cryogenic

liquid in tanks. Gaseous and liguid forms of hydrogen storage are far from meeting

the Department of Energy (DOE) targets of transportation storage for 2015. On the

other hand storage in solid state compounds appears to offer more possibilities to meet

these requirements. For example, many metal hydrides can be synthesized by direct

solid-gas reaction. Under high hydrogen pressure, new metal hydride phases with high

coordination numbers or high oxidation states of the metals (such as Sr2MgH6, FeH,

and K2PtH6) can be stabilized. Some compounds of hydrogen with light elements

such as lithium, sodium, magnesium, boron, aluminum, and nitrogen are found to

contain a high percentage of hydrogen by mass/weight. However the performance

of these compounds in practice is seriously limited by either their high temperatures

needed to release hydrogen, limited reversibility or kinetics, or issues like impurity.
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For example, LiBH4 contains 18 mass% of hydrogen, but recharging requires special

treatment which can not be easily carried out onboard vehicle. Usage of dopants

such as TiCl3 improves the hydrogen release rate of NaAlH4, but at the expense

of dramatic reduction of hydrogen capacity (from 7.5 to 3.7 weight% at 80◦C). The

detailed mechanism of the catalysis in this process is not clear. Some physical methods

such as ball milling (which decreases particle size and increases surface area) can be

used to enhance hydrogen release rate, the detailed mechanism of which again needs

further clarification. New materials need to be “invented” since no single material

available to date is found to meet all the requirements for practical hydrogen storage

onboard vehicle.

Innovative basic research is required to look beyond the storage material currently

known in order to find effective hydrogen storage materials with breakthrough perfor-

mance. Fundamental factors that determine bond strength, desorption kinetics, and

cycling degradation need to be sorted out. Exact evaluation of demands on storage

(capacity, charge and discharge conditions, recycling lifetime, and cost, etc.) needs

efforts from all disciplines of chemistry, physics, and materials science. Theory and

modeling of chemical bonding and kinetics are able to reveal key factors controlling

material performance, and provide important guidance in search of new materials and

in modification of their performance. The search for viable hydrogen storage materi-

als requires high-risk and high-payoff basic research, which incorporates a search for

new materials, sophisticated probing techniques, and advanced theory and modeling

of chemical/physical bonding and kinetics changing with composition and particle

size.

For on-board hydrogen storage, the ideal bond strength is between covalent bond-

ing and physisorption. Typical bonds formed by light elements with hydrogen are too

strong to break down, and need to be weakened with suitable methods to improve

both absorption and desorption kinetics. Surface barriers to hydrogen transport can
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be decreased by alloying or the formation of surface phases. The details of the mobile

species and the mechanism of diffusion process need to be studied. Nanostructuring

is another useful tool for tuning bond strength, kinetics, and reaction temperatures

and pressures. The role of nanosize and nanostructure in bonding and kinetics needs

to be understood. Small amounts of transition metal elements are usually able to

tune the lattice spacing, or alter chemical/physical properties of hydrogen storage

compounds. Dopants can also tune the reversibility of storage materials in the range

of temperature and pressure of interest, the mechanism of which again needs to be

understood. Of the 2,000 hydrogen storage materials known, most have not been

examined in doped or nano state.

Basic research in hydrogen storage needs to focus on understanding the fundamen-

tal principles governing bond strength, kinetics, absorption and desorption processes,

and degradation caused by cycling. It is further required to apply these principles to

tailor the performance of known storage materials, and to identify (or even design)

new (class of) materials with properties modified to suit the transportation (or other)

demands of hydrogen economy.

For on-board hydrogen storage in transportation application, special research ef-

forts should be made to understand the structural, thermodynamic, physical, and

chemical properties of light-metal hydrides such as NaAlH4, LiAlH4, NaBH4, LiBH4,

LiH, BeH2, Li-N-H, etc. Solvent-free synthetic approaches need to be developed and

proper experimental techniques need to be explored. A good understanding is needed

for problems like lifetime degradation, fundamental atomic processes in hydrogen ab-

sorption/desorption, role of surface and surface catalysts, role of hydrogen-induced

mass transport on phase transformations, and thermophysical properties of potential

hydrogen storage materials, etc.
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1.3.1 Synthesis and measurement

Many methods can be used to synthesize various hydrides, including solid-gas reac-

tion, solution methods, ball-milling, ion implantation, and electrochemical methods.

Solid-gas reaction between hydrogen and metals, intermetallics, or mixture of binary

hydrides and metals are used to synthesize many metal hydrides. Solution methods

are traditionally used to synthesize complex metal hydrides. They often introduces

impurities that are hard to get rid of, and in many cases the resulting hydride system

does not have reversibility. It is however in some cases the only way of successful syn-

thesis (for example the first complex transition metal hydride K2ReH9). Ball-milling

in a hydrogen atmosphere is currently used to synthesize many hydrogen storage

materials.

Usually to determine the hydrogen content, gravimetric or volumetric methods

are used upon hydrogen absorption or desorption or water production during oxi-

dization. Ball-milling yields samples in fine powders. The growth of single crystal

is usually not practical. Techniques like electrical transport are not feasible due to

low sample quality of multiphase powder. Neither do high-temperature methods

apply due to low thermodynamical stability of hydrogen storage materials. These

difficulties make X-ray absorption near-edge structure spectroscopy (XANES) and

photoelectron spectroscopy (PES) hard to apply. The position of hydrogen atoms

is hard to identify using X-ray diffraction due to small mass ratio of H relative to

other elements in the periodic table. Hydrogen shows the most significant isotope

effect of all elements. Therefore deuterides (with better coherent scattering) can be

exploited to make the location of the hydrogen atoms easier. Neutron powder diffrac-

tion in combination with high resolution X-ray diffraction (synchrotron) is used in

the structure determination. Inelastic neutron scattering (INS) is used to study in-

teratomic interactions and locate hydrogen positions in low concentration hydrides.

Nuclear magnetic resonance (NMR), infrared (IR), Raman, Mössbauer, and muon
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spin rotation spectroscopy (µSR) are used to give information on local structures and

coordinated hydrogen dynamics in materials.

1.3.2 Ionic, covalent, and interstitial metal hydrides

Depending on the relative electronegativities χ, hydrogen reacts with main group

metals to form different kinds of hydrides. Hydrogen takes on an extra electron from

alkaline metals to form hydride anion H−. The resulting ionic hydrides have low

mobility and fixed content of hydrogen due to electron localization around H− and

strong polarizability. They often have similar structures as (hydride fluoride analogy)

or even form solid solution with the fluorides. Ionic hydrides are thermodynamically

too stable for reversible hydrogen storage. Hydrogen reacts with group 4a/5a metals

forming covalent hydrides MH2/MH3. Many 5a hydrides exist in molecular forms. In

ternary hydrides of main group metals such as NaAlH4/Na3AlH6, hydrogen covalently

bonds with Al to form complex anions [AlH4]
−/[AlH6]

3− which then interact ionically

with Na+. They are therefore called complex hydrides and will be discussed in the

next subsection. The first report of hydrogen reaction with a metal appeared in 1866

when palladium was observed to absorb hydrogen up to 935 times of its own volume.

Metal hydrides with transition metal components form so called interstitial hydrides

where hydrogen atoms occupy tetrahedral or octahedral interstitial sites. Interstitial

hydrides consist of relatively heavy elements and therefore have low hydrogen capacity

by weight.

1.3.3 Complex hydrides

Different from simple metal/intermetallic hydrides where hydrogen atoms are encap-

sulated in metallic interstitial sites, complex hydrides are characteristic of complexes

formed by several (1, 2, 4, or 6) hydrogen atoms surrounding some other atom (such

as Al, B, or N). Light-elements complex hydrides have higher hydrogen coordination

number than simple metal hydrides and lower metal mass weight than transition
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metal hydrides, and therefore of high hydrogen capacity by weight. Co-existence of

both covalent and ionic types of bonding adds flexibility in adjusting their thermal

stability. Potentially it is possible to make complex, multicomponent hydrides by mix-

ing of existing hydrides, which allows the synthesis of tailored materials with desired

properties. Complex hydrides are among the most viable candidates for the onboard

hydrogen storage application to provide both high hydrogen capacity and desirable

release/absorption thermodynamics/kinetics. Fundamental research is required for

understanding of various properties and hydrogenation-dehydrogenation mechanisms

of stoichiometric complex hydrides and multicomponent complex hydrides, their syn-

thesis and processing, and role of dopants and catalysts. Further research is required

to find possible ways of improvement, including the effect of nanoscale crystaline on

their properties.

1.3.4 Hydrides in nanophase structures

Many hydrides based on intermetallic compounds form nanophase granular structures

upon charging and discharging of hydrogen. Hydrogen storage properties are strongly

influenced as material size is reduced to the nanoscale (1∼100 nm). Nano scale

materials can have unique properties that are different from their bulk counterparts.

New synthesis techniques are able to make nanoscaled hydrogen storage materials with

improved thermodynamics and kinetics during hydrogen take-up and release. Specific

architectures are designed to yield desired properties. At the nanoscale, hydrogen

diffusion rate is increased as the required diffusion length is minimized. The transport

rate can also be influenced by change in the phonon modes. At the nanoscale, it is

also possible to control various property parameters more independently. On the

other hand, formation of nanostructures may increase the susceptibility to corrosion,

and reduce system stability.

According to the way hydrogen is stored, nanoscale hydrogen storage materials
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can be classified into two general categories. The first is atomic/dissociative hydrogen

storage materials such as complex hydrides, where molecular hydrgogens dissociate

into hydrogen atoms and bond with lattice of the storage medium. The second

includes various nanostructured materials (nanotubes, nanohorns, etc.) with high

surface area or microporosity that store hydrogen in molecular state via physisorption.

Nanostructured materials with increased surface area and surface curvature exhibit

increased ability of hydrogen absorption.

Nanoscale techiques provide the possibility of removing some of the current lim-

itations in bulk complex hydrides, therefore rendering these materials attractive for

hydrogen storage applications. For example, nanotechniques might provide reduced

heats of adsorption/desorption, faster kinetics, and new surface states with better

hydrogen mobility in presence of proper catalysts. Experimental methods need to be

explored for manipulation of particle size by thermal management during charging-

discharging cycles. Theory and modeling of manophase and particle-size effects may

lead to fruitful research directions exploiting this degree of freedom to enhance hy-

drogen storage performance.

1.3.5 Dopants

A class of transition metal dopants can have significant catalytic effects on light-

metal complex hydrides. They can change the thermal and kinetic properties of the

storage system, increasing the reaction rate, lowering reaction temperature, altering

equilibrium hydrogen pressure, or even enabling reversibility. For nondissociative

materials, binding strength of hydrogen molecules to the surface can also be enhanced

by adding proper dopants. Proper research efforts are needed to give fundamental

understanding of the role of dopants/catalysts in these systems.
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1.4 Role Of Computer Simulation In Research Effort To-

ward The Hydrogen Economy

Development of new materials for hydrogen storage poses many scientific and tech-

nical challenges. Fundamental research is needed to understand the atomic level

interaction of hydrogen in these materials in order to tailor and improve material

properties that will lead to efficient hydrogen storage. This requires integrated efforts

from physics, chemistry, material science, and engineering, and close collaboration

between experiment and theory. This collaboration should aim at understanding ex-

perimental data of structural, thermodynamic, physical, and chemical properties of

hydrogen storage systems, and at design and synthesis of novel storage materials.

The absorption energy, hence the thermodynamics, of the material can be tailored

by manipulating the electronic and physical structures (i.e. lattice parameters and

strains, grain structure, Fermi level, polarization, and charge distribution, etc.) of

the material.

More and more quantum mechanical calculations are used to assess the nature of

the chemical bonding and the site preferences of hydrogen atoms in hydrogen storage

materials, and the energy barriers, diffusion paths, and catalyzing mechanisms during

hydrogen takeup and release. Modeling and simulation can help in understanding the

experimental data and easier identification of factors key to major improvements of

hydrogen storage, and help guide further experiments. Computer simulation can

be a powerful tool in characterizing the structure and hydrgoen storage/diffusion

properties, and in understanding various structure-properties relationships.
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CHAPTER II

THEORETICAL METHODS

In this chapter, we outline the main method employed in calculation of hydrogen

storage materials.

Generally, all theories of material are derived from quantum mechanics. Suppose

a system is composed of N electrons and M nuclei, where each nucleus has a positive

charge Zαe (α=1, 2,...,M). The Schrödinger equation is

i~
∂

∂t
Ψ = ĤΨ, (1)

with Ψ(x1, x2,...,xN ; X1, X2,...,XM) being the wave function of the many-body sys-

tem, and

Ĥ =

M
∑

α=1

(

−
1

2mα
∇2

α

)

+

M
∑

α<β

ZαZβ

rα,β
+

N
∑

j=1

(

−
1

2
∇2

j

)

+

N
∑

j<k

1

rj,k
+

N,M
∑

j,α

(

−
Zα

rj,α

)

(2)

the Hamiltonian operator (atomic units used). mα is the mass of the nucleus α, and

r is the distance between two particles in the system. (~=1, e2=1, me=1)

Since the mass of a nucleus is much larger than the mass of an electron, the

motion of the nuclei is much slower than the motion of electrons. In many cases,

especially when we focus on the electronic structure of the material in its condensed

(liquid/crystalline) states, the motion of nuclei can be separated adiabatically from

the motion of electrons. This is the essential idea of the Born-Oppenheimer/adiabatic

approximation. After the separation, the remaining time-independent Hamiltonian

for the electrons is

Ĥ =
N
∑

j=1

(

−
1

2
∇2

j

)

+
N
∑

j<k

1

rj,k

+

N,M
∑

j,α

(

−
Zα

rj,α

)

, (3)
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and the (reduced) electronic wave function is just a function of the electrons’ positions

(and spins), assuming “frozen” nuclear degrees of freedom.

Usually the Hamiltonian in Equation (3) is still complicated. To obtain a rea-

sonable solution to Equation (3), further simplification is necessary. One of the im-

portant simplifications comes from statistical mechanics. At room temperature the

number density of electrons in materials of condensed matter is in the order of 1022

electrons/cm3. This high density guarantees that the electrons are highly degenerated

fermions, and the properties of the material pertaining to its electronic structure are

mainly determined by the ground state of the electrons.

Another simplification comes from the ingenious idea of Hohenberg and Kohn [5].

In 1964, they proposed to use the density of electrons, instead of the many-body

wave function, as the basic variable. They also proved that the external field v(r)

is a unique functional of the electron density n(r) within an additive constant, and

that there is a universal functional of the electron density F [n], which makes the

minimum of the functional E[n] =
∫

drv(r)n(r) + F [n(r)] equal to the ground state

energy of the electrons for an arbitrary external field v(r), provided that the number

of electrons is conserved. These results, now known as the Hohenberg-Kohn theorem,

constitute the first milestone of the modern density functional theory of electrons.

2.1 Density Functional Theory

The fundamental postulate of density functional theory [5] is that any property, F(r),

of a system of many interaction particles is actually a functional, F [n(r)], of the

ground state density n(r). A functional is a real-valued function on a vector space,

usually of functions. In this case, the functional F is a function of the scalar function

of position n(r). The charge density function n(r) itself carries all the information

we need to know for the ground and excited states of the many-body system.
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2.1.1 Hohenberg-Kohn theorem

The proof of the theorems is reproduced as follows. Consider a system of inhomo-

geneous interacting electron gas under the influence of external potential v(r), with

Hamiltonian H = T + V + U (Equation (3)), with

T ≡
1

2

∫

∇ψ∗(r)∇ψ(r)dr (4)

V ≡

∫

v(r)ψ∗(r)ψ(r)dr (5)

U =
1

2

∫

1

|r − r′|
ψ∗(r)ψ∗(r′)ψ(r′)ψ(r)drdr′, (6)

where T̂ is the kinetic energy, Û is the interaction energy between electrons, and V̂

is the potential energy of the electrons in an external field v(r) (due to positively

charged nuclei, for example). The electronic density in the ground state Ψ is denoted

by

n(r) ≡ (Ψ, ψ∗(r)ψ(r)Ψ), (7)

which is a functional of v(r). Conversely it can be shown by reductio ad absurdum

that v(r) is a unique functional of n(r) apart from a trivial constant. Suppose |Φ〉 and

|Φ′〉 are the ground states for different external potentials v(r) and v′(r), respectively,

and both |Φ〉 and |Φ′〉 yield the same n0(r), with ground state energies E = 〈Φ|H |Φ〉

and E ′ = 〈Φ′|H ′ |Φ′〉. It follows from the minimal property of the ground state that

E < 〈Φ′|H |Φ′〉 = 〈Φ′|H ′ + V − V ′ |Φ′〉 < E′ +

∫

dr [v(r) − v′(r)]n0(r), (8)

and

E ′ < 〈Φ|H ′ |Φ〉 = 〈Φ|H + V ′ − V |Φ〉 < E +

∫

dr [v′(r) − v(r)]n0(r). (9)

Adding Equation (8) and (9) leads to E + E ′ < E′ + E. The apparent inconsistency

suggests that v(r) is a unique functional of n(r) within an additive constant.

Since v(r) fixes H , the full many-particle ground state Ψ, and therefore the ki-

netic and interaction energy, is a unique functional of n(r). By defining a universal
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functional

F [n(r)] ≡ (Ψ, (T + U)Ψ) (10)

the energy functional

Ev[n] ≡ (Ψ, HΨ) =

∫

v(r)n(r)dr + F [n] (11)

equals the ground-state energy for the correct n(r), and has a minimum, given that

the number of particles of the system N [n] ≡
∫

n(r)dr is kept constant.

2.1.2 Kohn-Sham equation

Although simplifying the problem dramatically, the Hohenberg-Kohn theorem itself

is still not an implementable scheme. If F [n] were a known and simple function of

n, solving for the ground state of interaction electrons in a given external potential

field v(r) would be easy, since it just requires the minimization of a functional of

the three-dimensional density function. However the form of the universal functional

F [n] remains undetermined. A simple localized form of F [n] was proposed soon by

Kohn and Sham in 1965. They argued that F [n] is composed of three parts as

F [n] =
1

2

∫ ∫

drdr′
n(r)n(r′)

|r− r′|
+ Ts[n] + Exc[n], (12)

where the first term is the coulomb interaction; Ts[n] = 1
2

∫

∇r∇r′n1(r, r
′)|r=r′dr is

the kinetic energy of a system of noninteracting particles with the same ground-state

density; and Exc[n] is the exchange and correlation energy:

Exc[n] =
1

2

∫

n2(r, r
′; r, r′) − n1(r, r)n1(r

′, r′)

|r − r′|
drdr′, (13)

where, analogous to the defination of density (Equation (7)), we have

n1(r1, r2) ≡ (Ψ, ψ∗(r1)ψ(r2)Ψ) (14)

n2(r1, r2; r3, r4) ≡ (Ψ, ψ∗(r1)ψ
∗(r2)ψ(r3)ψ(r4)Ψ) (15)
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If n(r) varies sufficiently slowly or is of high density, it can be shown that

Exc[n] ≈

∫

drn(r)ǫxc(n(r)) (16)

where ǫxc(n) is the exchange and correlation energy density of a homogeneous electron

gas of density n. Equation (16) is called the local-density approximation (LDA).

The ground state of the electron system is the minimum of the functional E[n]

subject to the condition of a conserved total number of electrons δN =
∫

drδn(r) = 0.

Using variational principle this is expressed as

δE =

∫

drδn(r)

{

δTs[n]

δn
+ v(r) +

∫

dr′
n(r′)

|r − r′|
+ µxc(n(r))

}

= 0, (17)

where

µxc(n) =
d(n ǫxc(n))

dn
(18)

is the exchange and correlation part of the chemical potential of a homogeneous

electron gas of density n.

Equation (17) can be interpreted as the ground state of a fictitious non-interacting

electron gas in an effective external potential veff(r) = v(r) +
∫

dr′ n(r′)
|r−r′|

+ µxc(n(r)).

Thus the original many-particle problem of interacting inhomogeneous electron gas in

an external field v(n) can be replaced by solving the equivalent Schödinger equation

of independent particles in an effective potential veff (r):

{

−
1

2
∇2 + veff(r)

}

ψi(r) = ǫiψi(r), (19)

with the corresponding number density of electrons given by n(r) =
∑N

i=1 |ψi(r)|
2,

where N is the total number of electrons in the system. Equation (19), known as the

Kohn-Sham equation, can be solved in a self-consistent manner. Starting from a trial

density nin(r), one first constructs the effective one-particle potential veff(r), then

solves Equation (19) to obtain the eigen energies ǫi and eigen states ψi(r), from which

a new density nout(r) is obtained. Through a proper mixing procedure, a new input
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density is constructed, and the process is repeated until self-consistency is achieved.

Since the kinetic energy can now be solved from Equation (19), the total energy of

the system is then expressed as

E =

N
∑

i=1

ǫi −
1

2

∫ ∫

drdr′
n(r)n(r′)

|r− r′|
+

∫

drn(r) [ǫxc(n(r)) − µxc(n(r))] . (20)

The function ǫxc(n) can be further divided into the exchange and the correlation

terms as

ǫxc(n) = ǫx(n) + ǫc(n), (21)

where the exchange contribution ǫx(n) is calculated from the Dirac exchange-energy

functional

ǫx(n) = −
3

4

(

3

π

)1/3

n1/3, (22)

or is obtained from a Hartee-Fork style calculation; while the correlation contribution

now often comes from fitting the results of Monte Carlo simulations.

In the frame of the Kohn-Sham equation, there are other ways to estimate the

exchange-correlation functional Exc. A common way is the so called generalized gra-

dient approximation (GGA). In this method, Exc is a functional of the local electron

density and its gradient. Formally, it is expressed as

Exc = Exc[n;∇n], (23)

and in practice there are various forms of GGA for different requirements, such as the

Perdew-Becke form, the Perdew-Wang 86 form, and the Langreth-Mehl-Hu form, etc.

By taking into account the generalized gradient corrections, the strong overbinding

of isolated molecules by LDA is removed.

Despite the fictitious nature of the independent particle problem, people find

Kohn-Sham scheme works surprisingly well for many real systems of interacting elec-

trons. Structural properties of materials such as the lattice constant, the bulk mod-

ulus, and the cohesive energy can generally be determined to within a few percent
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of the experimental values. Band gap values are systematically underestimated by

Kohn-Sham methods, however, since the eigenvalues in the Kohn-Sham equation are

not designed to be quasiparticle energies.

2.2 Solving Kohn-Sham Equation Numerically

There are two kinds of methods in calculation of the KS ground state: (1) Direct

methods: direct determining the minimum of the KS total energy functional. The

direct methods are based on the fact that the KS energy functional is minimal at the

electronic ground state. (2) Self-consistency methods: iterative diagonalization of the

KS Hamiltonian in combination with the charge density/potential mixing scheme.

Mathematically the plane-wave-basis formalism is one of the most convenient choices

for solving the KS equation in a periodic system. However, it is extremely inefficient

to expand core states or the oscillatory core region of the valence states in terms of

plane waves. In practice, the plane-wave basis is always used in combination with the

pseodopotential approximation.

2.2.1 Pseudopotential formalism

The electron wavefunctions have complicated nodal structures near the ion cores.

In the plane wave method, this means that in order to describe the wavefunctions

to an acceptable accuracy, the necessary energy cutoff in the k space will be very

high. Since on most occasions, only the electron wavefunctions outside the core area

vary according to different chemical environments, and contribute to the physical

and chemical properties of material, it is desirable to smoothen the nodes near the

inert core area. Various pseudopotentials are formulated with the same general goal

to replace the true atomic potential and reproduce the effects of the core electrons

outside the core region in different chemical environments, while being adequately

efficient for computational purposes.

In general, pseudopotentials can be divided into two categories. One is empirical
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and the other is ab initio. The difference between these two kinds of pseudopotentials

is in how the potential parameters are obtained. The parameters of empirical pseu-

dopotentials are fitted from experimental data for particular materials. Its accuracy

depends on the fitting process and its usage is therefore limited to the material the

parameters come from. The ab initio pseudopotentials (employed in this thesis) on

the other hand are constructed from the inner electronic states of atoms of a cer-

tain element, and are independent of any other information of a specific chemical

system. The ab initio pseudopotentials are therefore more universal and with better

transferability compared with the empirical ones.

The basic idea of the ab initio pseudopotential method is illustrated by the

orthogonalized-plane-wave (OPW) concept [8, 9, 10, 11]. It can be shown that the

energy levels of valence electrons in solids can be calculated from a weak net effec-

tive pseudopotential Vp, in which a major part of the large negative potential energy

inside the atomic core region is canceled by the large positive kinetic energy of the

valence electrons in the same region. The large positive kinetic energy comes from

the strong oscillation of the valence electron wavefunctions in the core region enforced

by the constraint that a valence state must be orthogonal to each state inside (Pauli

principle). The original “nodal” wave equation

H |ψv〉 = (T + V) |ψv〉 = Ev |ψv〉 (24)

is transformed into an equivalent pseudo wave equation

(H + VR) |φv〉 = (T + V + VR) |φv〉 ≡ (T + Vps) |φv〉 = Ev |φv〉 . (25)

The weak/smooth net potential (V + VR), referred to as the pseudopotential Vps, in

the Phillips-Kleinman (PK) form, for example, is defined as

VPK
ps = V +

∑

c

(Ev - Ec) |ψc〉 〈ψc| , (26)

where the cancellation is realized by adding to the original negative V the second

repulsive term that comes from the orthogonal constraint. For the OPW form of
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pseudopotentials, the pseudo wave function is still quite “hard core”, and is propor-

tional, but not equal, to the real wave function outside the core region.

Since in the pseudopotential model, the core is a “black box” from which the va-

lence wave functions emanate with some logarithmic derivative, any core pseudopo-

tential yielding that logarithmic derivative is a valid pseudopotential. Improvement

therefore can be achieved by imposing the following conditions: (1) All-electron and

pseudopotential valence eigenvalues must be equal; (2) All-electron and pseudopo-

tential atomic wave functions are equal beyond a cutoff radius; (3) Charge enclosed

within the sphere of cutoff radius for the all-electron atom and the pseudoatom must

be equal; (4) Smooth pseudopotential valence wave functions. Through a Friedel Sum

Rule, the charge-conserving feature is mapped into another important feature: the

logarithmic derivatives of the real and pseudo wave functions and their first energy

derivatives agree beyond the cutoff radius

−
1

2

∂

∂ε

∂

∂r
lnR(r, ε)

∣

∣

∣

∣

ε=εl

r=rcl

=
1

r2
clR

2(rcl, εl)

∫ rcl

0

R2(r, εl)r
2dr. (27)

Pseudopotentials constructed in such a way are referred to as norm-conserving pseu-

dopotentials. They are relatively soft-core and almost energy-independent, and the

resulting ionic pseudopotentials can be transferred to different atomic environments.

In practice, the Hamann-Schluter-Chiang scheme [12] starts with modeling the va-

lence potentials, while the Troullier-Martin scheme [13] directly models the pseudo

wave functions. Inside the cutoff radius, the radial part of the wave function is con-

structed as

Rps
l (r) = rlep(r), with p(r) =

6
∑

n=0

c2nr
2n. (28)

The coefficients are then determined by equating the mth derivatives of pseudo and

all-electron wave functions at the cutoff radius up to m=4.

Following the above procedure, each angular momentum component of the pseudo
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wave function experiences a different pseudopotential

V̂ ion
l (r) = V̂ ion

local(r) +
∑

l

V̂ semilocall(r)P̂l. (29)

The semilocal part of the potential can be transformed into a completely nonlocal

form [14]

∑

l

V̂ semilocall(r)P̂l ⇒
∑

l

∣

∣

∣
V̂ nonlocall(r)Φ0

l (r)
〉〈

V̂ nonlocall(r)Φ0
l (r)

∣

∣

∣

〈Φ0
l (r)| V̂

nonlocall(r) |Φ0
l (r)〉

(30)

such that in band calculations the number of integrals required by each angular

momentum and each point in the Brillouin zone is reduced from n(n+1) to n, where

n is the number of G vectors used in the calculation.

2.2.2 Ultra-soft pseudopotentials

Although the norm-conserving pseudopotentials can be used in many general solid-

state calculations, their aplication is limited for systems containing first-row and

transition-metal elements. The difficulty lies in the inefficiency to represent the highly

localized p and d orbitals which are already nodeless. The pseudo wave function can

be made more soft by pushing the cutoff radius outward, but the norm-conserving

constraint leaves little room for any significant improvement in the procedure.

The ultrasoft pseudopotential is first proposed by Vanderbilt in 1990 [15, 16]. It

has the form of a sum of a few separable terms, and becomes local and vanishes out-

side the core. The scattering properties and their energy derivatives are constructed

to be correct at several energies spanning the range of occupied statas. The trans-

ferability can be improved systematically by increasing the number of such energies.

The pseudopotential does not follow the norm-conservation constraint. Instead it is

charge-state dependent and is involved in the self-consistent screening process. These

features allow the cutoff radius to be increased without compromising transferability

even for 2p and d orbitals.
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The pseudopotential is constructed by introducing a generalized eigenvalue prob-

lem at an arbitrary energy εi. Consider an all-electron wavefunction ψi(r) of certain

angular momentum lm which satisfies the equation

(T + VAE(r) − εi) |ψi(r)〉 = 0 (31)

where i={εilm}, T=−1
2
∇2, and VAE is the original reference screened all-electron

potential. Suppose |φi(r)〉 is the desired pseudo wave function. Cutoff radii rcl and

rloc
c are chosen for the wave functions and local pseudopotentials, respectively, and

a diagnostic radius R is chosen so that all pseudo- and all-electron quantities agree

beyond R. A local wave function |χi〉 can be defined as

|χi〉 = (εi − T − Vloc) |φi〉 , (32)

which vanishes beyond R where VAE=Vloc and φi=ψi. The nonlocal pseudopotential

operator is defined as

VNL =
|χi〉 〈χi|

〈χi|φi〉
. (33)

It can be verified that

(T + Vloc + VNL) |φi〉 = εi |φi〉 . (34)

Next, a generalized VNL is constructed involving several (usually from 1 to 3) energy

levels. The set of pseudo wave functions φi are constructed from the all-electron

wave functions ψi as before, except now they have to satisfy the generalized norm-

conserving condition

Qij ≡ 〈ψi |ψj〉R − 〈φi |φj〉R = 0. (35)

A set of local wave functions are defined as

|βi〉 =
∑

j

(B−1)ji |χj〉 , where Bij ≡ 〈φi|χj〉 . (36)

The |βi〉 are dual to the |φi〉, and the new nonlocal pseudopotential operator can be

chosen as

VNL =
∑

i,j

Bij |βi〉 〈βj| . (37)
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It can be verified that

(T + Vloc + VNL − εi) |φi〉 = 0 (38)

and that Bij and VNL are Hermitian when Qij=0. It is further shown that the gener-

alized norm-conserving constraint Qij=0 is not necessary if a generalized eigenvalue

formalism is adopted, where a nonlocal overlap operator is defined:

S = 1 +
∑

i,j

Qij |βi〉 〈βj | (39)

and the nonlocal pseudopotential is redefined as

VNL =
∑

i,j

Dij |βi〉 〈βj| , where Dij = Bij + εjQij . (40)

With the above defination it can be shown that

〈φi|S |φj〉R = 〈ψi |ψj〉R (41)

and the pseudo wavefunction |φi〉 is the solution of the gerenalized eigenvalue problem

(H − εiS) |φi〉 = 0, (42)

where H = T + Vloc + VNL and S are Hermitian. Taking ε derivative of the above

equation, it can be shown that the logarithmic derivatives of the all-electron and

pseudo wave functions match each other in the usual way. The deficit of valence

charge in the core region associated with a pseudo wave function needs to be restored.

The solutions of Euquation (42) therefore must be normalized according to

〈φnk|S |φn′k〉 = δnn′, (43)

and the valence charge density is defined as

nv(r) =
∑

n,k

φ∗
nk

(r)φnk(r) +
∑

i,j

ρijQij(r) (44)

with

ρij =
∑

n,k

〈βi|φnk 〉〈φnk |βj〉 , (45)

24



Qij(r) = ψ∗
i (r)ψj(r) − φ∗

i (r)φj(r). (46)

With definition (44) it can be shown that
∫

d3rnv(r) = Nv where Nv is the number

of valence electrons in the unit cell.

2.2.3 Projector-augmented-plane-wave method

As mentioned above, the efficiency of the pseudopotential method is limited when

applied to first-row elements or elements with d or f electrons. What’s more, there

are times when it is necessary to treat some semicore states as valence states, in

which case the pseudopotentials become hard and less transferable. The projector-

augmented-plane-wave method [17] generalizes both the pseudopotential method and

the linear augmented-plane-wave (LAPW) method. It allows an easier treatment of

first-row and transition-metal elements, and provides access to the full wave function.

In real materials, the wave function is fairly smooth in the bonding region, whereas

it oscillates rapidly in the core region due to the large attractive potential of the

nucleus. This is the main difficulty for electronic structure methods to describe the

bonding region with accuracy as well as account for the large variations in the atomic

core. The augmented -wave methods deal with this problem by dividing the wave

function into two parts, i.e., a partial-wave expansion within an atom-centered sphere

and envelope functions outside the spheres. The value and derivative of the two parts

are then matched at the sphere radius.

Consider a transformation T that connects the Hilbert space of the real/oscillating

valence wave functions |Ψ〉 and that of a set of smooth pseudo wave functions ˜|Ψ〉

which is similar to the change of a Schrödinger picture to a Heisenberg one:

|Ψ〉 = T ˜|Ψ〉 =

(

1 +
∑

R

T̂R

)

˜|Ψ〉. (47)

Each T̂R acts only within some augmentation region ΩR enclosing one atom. All-

electron and pseudo wave functions coincide outside the augmentation regions. Within
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ΩR,

|φi〉 =
(

1 + T̂R

)

˜|φi〉, (48)

where |φi〉 and ˜|φi〉 are the all-electron and pseudo partial wave functions, respectively,

and i = {R, nlm}. The pseudo partial wave functions are smooth and complete inside

ΩR, and identical to the all-electron partial wave functions outside ΩR. Inside ΩR,

the pseudo (therefore the all-electron) wave functions can be expanded in terms of

the pseudo partial waves

˜|Ψ〉 =
∑

i

˜|φi〉ci, |Ψ〉 = T ˜|Ψ〉 =
∑

i

|φi〉 ci (49)

since |φi〉 = T ˜|φi〉. Therefore

|Ψ〉 = ˜|Ψ〉 −
∑

i

˜|φi〉ci +
∑

i

|φi〉 ci. (50)

Because of the linear nature of T the coefficients have the form

ci = ˜〈pi
˜|Ψ〉, (51)

where the fixed function ˜〈pi| (localized in ΩR) is called projector function correspond-

ing to the pseudo partial wave function ˜|φi〉, with

∑

i

˜|φi〉 ˜〈pi| = 1, or ˜〈pi
˜|φj〉 = δij . (52)

Now the transformation is written as

|Ψ〉 = T ˜|Ψ〉 =

(

1 +
∑

i

(

|φi〉 − ˜|φi〉
)

˜〈pi|

)

˜|Ψ〉. (53)

For the all-electron partial wave functions, a natural choice is the solution of the

radial Schrödinger equation for the isolated atom (that are orthogonalized to the core

states). They are obtained by radially integrateing the atomic Schrödinger equations.

Both the partial waves and the projectors are functions on a radial grid multiplied by

spherical harmonics. The projectors are also transformed into the same representation
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as the pseudo wave functions, i.e., the plane waves. The core states are decomposed

in a similar way

|Ψc〉 = ˜|Ψc〉 + |φc〉 − ˜|φc〉, (54)

where compared with the valence states case, the projector function is simplified into

the unity operator. With Equation (53), the transformation of local operators are

straightforward:

Ã = T †AT = A+
∑

i,j

˜|pi〉
(

〈φi|A |φj〉 − ˜〈φi|A ˜|φj〉
)

˜〈pj |. (55)

For nonlocal operators the following term needs to be added

∆A =
∑

i

˜|pi〉
(

〈φi| − ˜〈φi|
)

A

(

1 −
∑

j

˜|φj〉 ˜〈pj|

)

+
(

1 − ˜|pj〉 ˜〈φj|
)

A
(

|φi〉 − ˜|φi〉
)

˜〈pi|. (56)

When A cannot be easily evaluated (for example the Coulomb potential is singular

at the nuclear site), a term of the following form can be added to Equation (55),

B −
∑

i,j

˜|pi〉 ˜〈φi|B ˜|φj〉 ˜〈pj|, (57)

where B is an arbitrary operator localized in ΩR. (For the Coulomb potential this

is equivalent to constructing a new potential that is identical to the real potential

outside and smooth inside ΩR; and B is the difference between the two.) Now the

expectation value of an operator is

〈A〉 =
∑

n

fn 〈Ψn|A |Ψn〉 =
∑

n

fn
˜〈Ψn|Ã ˜|Ψn〉. (58)

The charge density n(r) at a point r in space is the expectation value of the real-space

projection operator |r〉 〈r|. Hence

n(r) = ñ(r) + n1(r) − ñ1(r), (59)

where

ñ(r) =
∑

n

fn
˜〈Ψn |r〉 〈 ˜r |Ψn〉,
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n1(r) =
∑

n,(i,j)

fn
˜〈Ψn

˜|pi〉 〈φi |r〉 〈r |φj〉 ˜〈pj
˜|Ψn〉,

and

ñ1(r) =
∑

n,(i,j)

fn
˜〈Ψn

˜|pi〉 ˜〈φi |r〉 〈r ˜|φj〉 ˜〈pj
˜|Ψn〉.

Similarly the total energy functional is

E =
∑

n

fn 〈Ψn| −
1

2
∇2 |Ψn〉

+
1

2

∫

dr

∫

dr′
(

n+ nZ
) (

n+ nZ
)

|r − r′|
+

∫

drnǫxc(n)

= Ẽ + E1 − Ẽ1, (60)

where

Ẽ =
∑

n

fn
˜〈Ψn| −

1

2
∇2 ˜|Ψn〉

+
1

2

∫

dr

∫

dr′
(ñ+ n̂) (ñ+ n̂)

|r − r′|
+

∫

drñv̄

+

∫

drñǫxc(ñ),

E1 =
∑

n,(i,j)

fn
˜〈Ψn

˜|pi〉 〈φi| −
1

2
∇2 |φj〉 ˜〈pj

˜|Φn〉

+
1

2

∫

dr

∫

dr′
(

n1 + nZ
) (

n1 + nZ
)

|r − r′|

+

∫

drn1ǫxc

(

n1
)

,

Ẽ1 =
∑

n,(i,j)

fn
˜〈Ψn

˜|pi〉 ˜〈φi| −
1

2
∇2 ˜|φj〉 ˜〈pj

˜|Φn〉

+
1

2

∫

dr

∫

dr′
(ñ1 + n̂) (ñ1 + n̂)

|r − r′|
+

∫

drñ1v̄

+

∫

drñ1ǫxc

(

ñ1
)

,

where v̄ is an arbitrary potential localized in ΩR which is used to minimize truncation

errors, and n̂ is referred to as compensation charge density.
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2.3 Momentum-space Formalism For Total-energy Calcu-

lations

For material systems with translational symmetry, solving the Kohn-Sham equation

in the momentum space is a convenient choice. The invention of the fast Fourier

transform (FFT) makes this process more efficient numerically. Following the density

functional formalism in pseudopotential framework, the total crystal energy, defined

as total energy difference between the solids and isolated atoms, is

Etotal = T + V +

∫

Exc(r)dr (61)

where T =
∑

i ψ
∗
i (r)(−∇2)ψi(r)dr is the total kinetic energy,

∫

Exc(r)dr is the density

functional exchange-correlation contribution to the total energy, and

V =
∑

i,µ,l

∫

ψ∗
i (r)Ups,l(r− Rµ)P̂lψi(r)dr +

1

2

∫ ∫

ρ(r)ρ(r′)

|r − r′|
drdr′ +

1

2

∑

µ,ν

µ6=ν

Z2

|Rµ − Rν|

(62)

is the electrostatic potential energy (Rydberg units used). ψi(r) is the pseudo wave-

function of the valence electron. Index i denotes both wavevector ki and band index

n, and runs over all occupied valence states. ρ(r) ≡
∑

i ψ
∗
i (r)ψi(r) is the pseudo

valence electron density. Rµ is the lattice vector, and Z valence of the ion (one kind

of ion assumed for notational simplicity). The terms in Equation (62) represent the

core-valence interaction energy, the valence electron-electron Coulomb energy, and

the ion-ion lattice energy, respectively. From the minimal property of the ground

state total energy, the corresponding independent electron Schödinger equation can

be derived variationally:
(

−
∇2

2
+
∑

µ,l

Ups,l(r −Rµ)P̂l +

∫

ρ(r′)

|r − r′|
dr′ + µxc(r)

)

ψi(r) = ǫiψi(r) (63)

where the exchange-correlation potential µxc(r) ≡ ∂Exc(r)/∂ρ(r) can be formulated

from knowledge of homogeneous electron gas using local density approximation, for

example.
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Calculating the total energy of Equation (61) requires evaluation of a large num-

ber of six-dimensional integrals for electron-electron interaction term. To avoid this

difficulty, plane wave basis is used to expand each quantity in Equation (61). The

usage of smooth Pseudopotentials permits rapid convergence of the plane-wave ex-

pansion. Given a wavevector k in the first Brillouin zone and a reciprocal lattice

vector G, the corresponding plane-wave component is

|k + G〉 =
1

Ω
ei(k+G)·r (64)

where Ω denotes the total volume of the material. Let the momentum-space represen-

tations of the wavefucntion, the charge density, the interelectronic Coulomb potential,

and the exchange-correlation potential be denoted by ψ(ki +G), ρ(G), VCoul(G), and

µxc(G), respectively. From the Poisson equation the Coulomb repulsion energy be-

comes

1

2

∫ ∫

ρ(r)ρ(r′)

|r − r′|
drdr′ =

1

4
Ω
∑

G

VCoul(G)ρ(G), VCoul(G) =
8πρ(G)

G2
. (65)

By decomposing plane waves into spherical harmonics and Bessel functions and using

the translational invariance, the pseudopotential energy is written as

∑

i,µ,l

∫

ψ∗
i (r)Ups,l(r − Rµ)P̂lψi(r)dr

= Ω
∑

i,l,G,G′

ψ∗(ki + G)ψ(ki + G′)
∑

µ

ei(G′−G)·Rµ

N

×
1

Ωat

∫

e−i(ki+G)·rUps,l(r)P̂l e
i(ki+G′)·rdr

= Ω
∑

i,l,G,G′

ψ∗(ki + G)ψ(ki + G′)S(G′ − G)Ups,l,ki+G,ki+G′ , (66)

where Ωat = Ω
N

. S(G′ − G) is the structure factor. Assuming spherical symmetry of

the ionic pseudopotenetial of the isolated atom, the generalised non-local form factor
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is

Ups,l,ki+G,ki+G′ ≡
1

Ωat

∫

e−i(ki+G)·rUps,l(r)P̂l e
i(ki+G′)·rdr

=
(2l + 1)4π

Ωat

∫

Ups,l(r)jl(|ki + G|r)jl(|ki + G′|r)

× r2drPl(cosγ) (67)

where jl and Pl are spherical Bessel functions and Legengre polynomials, respectively,

with cosγ = (ki+G)·(ki+G
′)

|ki+G|·|ki+G′|
. It is always convenient to decompose the pseudopotentials

into pure local part and non-local parts,
∑

l Ups,l(r)P̂l = Ups(r) +
∑∞

l U ′
ps,l(r)P̂l so

that long-range interaction∼ −2z
r

will be taken care of by the local part, and the non-

local parts will be of short range. For local pseudopotential, Equation (66) reduces

to
∑

i,µ

∫

ψ∗
i (r)Ups(r −Rµ)ψi(r)dr = Ω

∑

G

S(G)Ups(G)ρ(G). (68)

After this separation Equation (66) becomes

∑

i,µ,l

∫

ψ∗
i (r)Ups,l(r− Rµ)P̂lψi(r)dr = Ω

(

∑

G

S(G))Ups(G)ρ(G)

+
∑

i,l,G,G′

ψ∗(ki + G)ψ(ki + G′)S(G′ − G)U ′
ps,l,ki+G,ki+G′

)

(69)

The decomposition of Kohn-Sham equation (Equation (63)) in the plane-wave basis

is

∑

G′

1

2
[(k + G′)2δGG′ +

1

2
Vcoul(G

′ −G) + µxc(G
′ − G) + S(G′ − G)

× [Ups(G
′ − G) +

∑

l

U ′
ps,l,ki+G,ki+G′]]ψ(ki + G′) = ǫiψ(ki + G). (70)

To further simplify the total energy expression, multiply the left side of Equation (63)

by ψ∗
i (r) and integrate over r and sum over i, and substitute the result into Equation
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(61). We have

Etotal =
∑

i

ǫi −
1

2

∫

ρ(r)ρ(r′)

|r − r′|
drdr′ −

1

4

∫

µxc(r)ρ(r)dr +
1

2

∑

µ,ν

µ6=ν

Z2

|Rµ −Rν |

=
∑

i

ǫi − Ω

[

1

4

∑

G

VCoul(G)ρ(G) +
1

8

∑

G

µxc(G)ρ(G)

]

+
1

2

∑

µ,ν

µ6=ν

Z2

|Rµ −Rν |
(71)

2.4 The Vienna Ab-initio Simulation Package

The Vienna ab-initio simulation package (VASP) [20] is used for performing first-

principles total-energy calculations within the density functional theory. It uses ultra-

soft pseudopotentials or the projector-augmented wave method and a plane wave basis

set. The corrected linear tetrahedron method is used to interpolate linearly between

k points defining the corners of the tetrahedra when evaluating the band-structure

energy. Partial occupancies are introduced at zero temperature as a tool to reduce

the number of k points required to sample the Brillouin zone, especially for metallic

systems. Smearing methods are introduced as a mathematical tool to improve the

convergence with respect to the number of k points. The problem of solving for

the Kohn-Sham ground state is split into two independent sub-problems: (1) The

determination of the eigenfunctions and eigenvalues for a fixed charge density or

potential; (2) Calculation of the self-consistent charge density or potential by proper

mixing procedure and repeat of step (1). VASP uses efficient diagonalization, mixing,

and force-prediction schemes to accelerate the solution process.
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CHAPTER III

FIRST-PRINCIPLES INVESTIGATION OF SODIUM

AND LITHIUM ALLOYED ALANATES

3.1 Alkali Alanates As Novel Hydrogen Storage Materials

Complex hydrides Mx(AHn)y consist of a family of compounds, where M is one of

the alkali or alkaline earth elements, A is Al or B, and n=4 or 6 corresponding to

different degree of hydrogenation. NaAlH4 and LiAlH4 have attracted much interest

in the past decade as promising on-board hydrogen storage materials [3]. The de-

hydrogenation/rehydrogenation chemical reaction proceeds in two steps, through the

intermediate compound M3AlH6:

MAlH4 ↔
1

3
M3AlH6 +

2

3
Al + H2 (72)

↔ MH + Al +
3

2
H2, (73)

where M stands for Na or Li. First the fully hydrogenated compound MAlH4 decom-

poses into the partially hydrogenated compound M3AlH6 and the Al metal, releasing

H2; then the intermediated compound M3AlH6 furthur decomposes into alkali hydride

MH and the Al metal, releasing more H2. The reversibility, kinetics, temperature and

pressure of this process can be improved by means such as doping or mechanical pre-

processing. LiAlH4 has 7.9 w% hydrogen capacity. The overall decomposition goes

easily, but with poor reversibility for step (72). NaAlH4 has total hydrogen capacity

of 5.6% by weight. On the other hand, adding proper Ti-based catalysts can make

decomposition of NaAlH4 reversible.

In search of materials with optimal properties for transportation applications,

current candidates need to be modified to have high hydrogen weight percentage (>
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6.5%), high reversibility, moderate reaction temperature and pressure (preferably not

too far from ambient condition), and good absorption/desorption kinetics [23, 6]. For

NaAlH4, partial substitution of Na with the lighter element Li is expected to result

in alloyed phases with higher H w% than the pure sodium alanate while maintaining

good reversibility.

In this work, we examine the possibility of finding alloyed complex hydrides of the

form Na1−xLixAlH4 and Na3(1−x)Li3xAlH6 via first-principles calculations. Section 4.2

gives details of the calculation. Results and discussions are presented in Section 3.3

and 3.4, respectively. In Section 3.3 we construct the initial geometry of the alloyed

system from the known structures of the sodium and lithium alanates and compare

the inital and the equilibrium structure for various compositions in Section 3.4. A

transition from the tetragonal to the monoclinic structure is seen between x= 0.25 and

x= 0.5. Alloying energy is estimated, and the phase stability of the alloyed systems

is discussed. Section 3.5 summarizes our results.

3.2 Computational Details

The method we employ is a first-principles calculation within the density functional

theory (DFT) [5], where the total energy and force/stress are calculated in momentum

space with a plane-wave basis [58]. Calculations are done with the Vienna ab-initio

simulation package (VASP) [20] using ultrasoft pseudopotentials [15]. The general-

ized gradient approximation (GGA) [18] is used for the exchange-correlation energy

functional. A kinetic energy cutoff of 525 eV for the plane waves and a k-grid interval

of ∼ 0.2 Å−1 for the reciprocal space sampling are used so that total energy conver-

gence is achieved. Our general procedure is to relax the forces and stresses under the

constant-volume constraint, then let the system volume also evolve to minimize the

force and stress. The force is considered minimized if any component on any atom is

smaller than 0.02 eV/Å. We construct initial geometries of the Na-Li alloyed systems
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Table 3: Calculated lattice parameters for several complex hydrides. Calculations
are in good agreement with the experimental data (in parentheses) [26, 27, 28, 29,
30, 31]. Also listed is the volume per AlHn (n=4 or 6) complex for each compound.
Mg(AlH4)2 is included to show similar volume/AlH4 to that of NaAlH4 and LiAlH4.
Notice for LiAlH4, calculation in tetragonal I41/a structure shows big volume collapse
compared with the monoclinic phase. Notice angle γ in Li3AlH6 corresponds to angle
β in Na3AlH6. Z is the number of chemical units per unit cell.

Comp- Space Unit cell parameters vol./AlHn

-ound group Z a (Å) b (Å) c (Å) α(◦) β(◦) γ(◦) (Å3)
NaAlH4 I41/a 4 4.984 = a 11.157 90. 90. 90. 69.3

(4.9802) (11.1482) (69.1)

LiAlH4 I41/a 4 4.585 = a 10.127 90. 90. 90. 53.2
P21/c 4 4.812 7.742 7.795 90. 111.95 90. 67.3

(4.8174) (7.8020) (7.8214) (112.228) (68.0)

Mg(AlH4)2 P
−

3m1 1 5.211 = a 6.000 90. 90. 120. 70.6
(5.2084) (5.8392) (68.6)

Na3AlH6 P21/n 2 5.342 5.515 7.693 90. 90.16 90. 113.3
(5.390) (5.514) (7.725) (90.14) (114.8)

Na2LiAlH6Fm
−

3m 2 5.170 = a 7.312 90. 90. 90. 97.7
(5.22187) (7.38484) (100.7)

Li3AlH6 R
−

3 2 5.564 = a = a 88.63 = α 91.37 86.0
(5.6365) (88.55) (91.45) (89.4)

based on the known structures of the pure sodium and lithium alanates and search for

equilibrium structures of the alloy systems starting from these initial constructions.

3.3 Structures Of The Alloy Systems Na1−xLixAlH4 And

Na3(1−x)Li3xAlH6

Figures 1 (a)-(e) show the ball-and-stick models for experimentally observed tetrahy-

drides NaAlH4, LiAlH4 and octahydrides Na3AlH6, Na2LiAlH6, and Li3AlH6. Al

atoms (grey) are surrounded by ligand H atoms (white) forming complexes. Large

(green) atoms are Na, and smaller (red) ones are Li. The common structural features
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Figure 1: (Color online) Ball-and-stick model of structures of sodium and lithium
alanates: (a) NaAlH4 (tetragonal); (b) LiAlH4 (monoclinic); (c) Na3AlH6 (mono-
clinic); (d) Na2LiAlH6 (cubic); (e) Li3AlH6 (trigonal). The large green spheres stand
for Na atoms. The small red spheres stand for Li atoms. The grey sphere at the
center of a complex stands for the Al atom, surrounded by 4 or 6 white spheres rep-
resenting H atoms. Presented are four formula units per unit cell for tetrahydrides
(two primitive cells for NaAlH4) and two formula units per unit cell for octahydrides
(two primitive cells for Na2LiAlH6).
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of these complex hydrides are the negatively charged tetrahedral complex AlH4 or

the octahedral complex AlH6 and the positively charged Na/Li ions. Al and H ions

are covalently bonded but of strong ionic nature (with most of valence charge near

H); AlHn complexes and Na/Li cations are ionicly bonded [24]. Conventional cells

are shown for NaAlH4 and Na2LiAlH6. Unit cells are presented in such a way that

the atom-by-atom mapping relation between different structures can be seen. Table 3

lists the calculated lattice parameters for these alkali alanates. The calculated values

are in good agreement with available experimental data.

The ground state of NaAlH4 crystalizes in a tetragonal structure (space group

I41/a) with a lattice constant ratio c/a ∼2.24. The ground state of LiAlH4 crystal-

izes in a monoclinic structure (space group P21/c) with a similar lattice constant a to

that of NaAlH4, and lattice constant ratios b/a ∼ c/a ∼1.62 and β=112.228◦. LiAlH4

is predicted to experience a phase transition under a 2.6 GPa pressure, changing from

the monoclinic P21/c structure to a tetragonal I41/a structure with a big volume col-

lapse (∼20%) [25]. Our calculation shows that the energy difference of the two phases

is only about 60 meV/formula unit. Notice that the point group associated with space

group P21/c is the subgroup of that associated with I41/a with the monoclinic
→

b axis

corresponding to the tetragonal
→
c axis. It is also seen in Table 3 that for the ground

state of complex hydrides in the form of Mx(AlH4)y, the volume per AlH4 (which

shows how closely the complexes are packed together) is about the same. In search of

possible Na-Li mixed alanates, it is natural to wonder what happens in the transition

process between these two structures mentioned above.

Reasonable initial geometry construction is essential for accelerating the search of

possible Na-Li alloyed alanates. A good starting point should be based on all relevant

structures and at the same time general enough to lead to potential energy-minima.

Previous efforts in this search are either restricted to the NaAlH4 structure [32], or

based on a few presumed model structures [33]. Due to the structural connection
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→
a

→
c (tetra)

→
c (mono)

Figure 2: Path for the transition in Na1−xLixAlH4 system. The figure shows the
change in the unit cell shape in the a-c basal plane as x varies from 0 (tetragonal) to
1 (monoclinic).

between pure sodium and lithium alanates discussed above, we construct the alloyed

system Na1−xLixAlH4 by assuming a “phase transition” path from tetragonal NaAlH4

to monoclinic LiAlH4. The same volume per AlH4 complex (as in NaAlH4) is assumed.

Figure 2 shows the transition of the unit cell shape as a linear function of lithium

composition x. Lattice constants b, c, and angle β differ greatly in pure Na and Li

alanates and are therefore made to change with x linearly. Lattice constant a is then

determined by the constant-volume constraint. Initial atomic coordinates for Na/Li,

Al, and H can also be determined by linear interpolation with x. Alternatively, for

each AlH4 complex, just the position of the Al atom is linearly interpolated; the

complex itself is positioned as a whole. In addition, Na and Li atoms can be arranged
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on a set of alkali coordinates in different configurations. The starting construction

for a certain composition is therefore not unique and can be varied. Initial geometry

of the alloy system Na3(1−x)Li3xAl6 is constructed similarly. Unlike the tetrahydrides,

Na3AlH6, Li3AlH6, and Na2LiAlH6 have quite different volume per AlH6. All three

lattice constants and three angles are interpolated linearly with x, discarding the

constant volume assumption.

3.4 Energy Of Formation And Equilibrium Structures

The process of forming alloyed Na-Li alanates can be expressed as the following

reactions:

(1 - x)NaAlH4 + xLiAlH4 = Na1−xLixAlH4 (74)

(1 - x)Na3AlH6 + xLi3AlH6 = Na3(1−x)Li3xAlH6 (75)

The energy of formation Ef
x (with respect to pure sodium and lithium alanates) is

defined as

Ef
x = Ex

tot - [(1 - x)E0
tot + xE1

tot] (76)

where Ex
tot is the total energy per formula unit of Na1−xLixAlH4 or Na3(1−x)Li3xAl6.

Negative energy of formation is necessary for such alloyed systems to exist. Results

for the calculated formation energy of these two alloyed systems are shown in Figure

3. Calculation is done at x= 0.25, 0.5, and 0.75 for Na1−xLixAlH4; and 1
3
, 0.5, and

2
3

for Na3(1−x)Li3xAl6. For each x, the atomic positions, cell size, and cell shape are

fully relaxed.

In Figure 3 (a), the positive energy of formation indicates that the alloy system

Na1−xLixAlH4 is not stable, and prefers a phase-separated state of pure NaAlH4

and LiAlH4. The energy difference between the alloyed and phase-separated state

is however very small (< 5 kJ/mol), comparable to the room temperature thermal

energy (blue dash line in Figure 3 (a)). This means that the meta-stable alloyed

system might be stablized at high enough temperature.
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Figure 3: (Color online) Calculated formation energy for (a) Na1−xLixAlH4, where
blue dash line shows thermal energy level at room temperature; (b) Na3(1−x)Li3xAl6,
where for x=1

3
, calculation is also done at experimental Na2LiAlH6 structure (upper

point).
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(a) (b)

(c) (d) (e)

Figure 4: (Color online) Equilibrium structure of Na1−xLixAlH4 with x equal to (a)
0.0, (b) 0.25, (c) 0.5, (d) 0.75, and (e) 1.0. For reference, structures of pure Na and
Li alanates are also included: (a) NaAlH4 and (e) LiAlH4. A noticeable structural
change is found between 0.25 and 0.5 for the tetrahydride.

For the alloy system Na3(1−x)Li3xAl6 (Figure 3 (b)), a stable structure is found

at x=1
3

(i.e., Na2LiAlH6) in agreement with the experimental findings [30]. The

calculated formation energy is -11.26 kJ/mol. Formation energy also is calculated

with the experimental structure. Relaxation of the linear construction leads to slightly

deviated structure from the experimental one, with the number of symmetry lowered

from 16 to 1. Total energy is lowered by the amount of 4.08 kJ/mol due to symmetry-

breaking in this process. Positive energy of formation is found at the other two lithium

compositions.

Figures 4 and 6 show the equilibrium structures of the two alloy systems. For

each x, the structure with the lowest formation energy is presented. x=0 and 1 are
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Figure 5: (Color online) Structural parameters of the AlH4 complex as a function
of lithium composition in the equilibrium alloy phases for Na1−xLixAlH4.

included as references.

For Na1−xLixAlH4, the common feature of the AlH4 tetrahedral complex is always

present, with similar Al-H and H-H bond lengths and H-Al-H bond angles, as shown

in Figure 5. Cation substitution has little effect on the internal geometry of AlH4, and

the complexes are packed together with each of them basically intact. For x=0.25,

partial substitution of Na by Li does not result in much structural change. Relaxation

leads to the same tetragonal symmetry as NaAlH4, as shown in Figure 4 (a) and (b).

In fact, symmetry is increased compared with the initial construction.

For Na3(1−x)Li3xAl6, the lowest-energy structure at x=1
3

is orthorhombic and is

close to the experimental fcc structure [30] with similar Al-H bondlengths of 1.75

and 1.76 Å, and a small difference in the H-Al-H angle (less than 0.4◦), as shown

in Figures 6 (a) and (b). The AlH6 complexes are slightly tilted and rotated (in
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(a) (b)

(c) (d) (e)

Figure 6: (Color online) Equilibrium structure of Na3(1−x)Li3xAl6 with x equal to
(a) 0.0, (b) 1

3
, (c) 0.5, (d) 2

3
, and (e) 1.0. A noticeable structural change is found

between 1
3

and 0.5 for the hexahydride.
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Figure 7: (Color online) Structural parameters of Na1−xLixAlH4 as a function of
lithium composition x in equilibrium alloy phases: (a) Al-Al distance; (b) lattice
constants b and c; (c) monoclinic angle β; and (d) unit cell volume. Data for structures
with energies above the lowest energy are also included. Lines are used to connect
points corresponding to the lowest energy configurations.

different direction for the corner and body-center complexes) compared with the fcc

case. Lattice constants are also similar, with a difference of ∼0.01 Å.

In contrast to the initial linear construction, a drastic structural change is seen as

x passes 0.5 for both alloy systems. The equilibrium structures are close to sodium

alanates for x <0.5 (Figure 4 (a) and (b), and Figure 6 (a) and (b)); and to lithium

alanates for x ≥0.5 (Figure 4 (c) and (d), and Figure 6 (c) and (d)). To show this more

clearly, we plot in Figures 7 and 8 the variations of different structural parameters as

the lithium composition of the system changes.

The alloyed system Na1−xLixAlH4 undergoes a structural transition at x=0.5.

Lattice constants b, c, and angle β are close to those of tetragonal NaAlH4 for x <0.5,
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Figure 8: (Color online) Structural parameters of Na3(1−x)Li3xAl6 as a function of
lithium composition x in equilibrium alloy phases: lattice constant c and unit cell
volume. Data for structures with energies above the lowest energy are included, too.
Lines are used to connect points corresponding to the lowest energy configurations.

and to those of monoclinic LiAlH4 for x ≥0.5, as shown in Figures 7 (b) and (c).

The bond length for nearest-neighbor Al atoms bifurcates at 0.5 (Figure 7 (a)) again

showing the structural transition between 0.25 and 0.5. Within each structure, the

volume per AlH4 complex drops as x increases (Figure 7 (d)), which can be explained

by the smaller size of lithium ion with respect to the sodium ion. The slightly positive

energy of formation therefore may be due to packing volume deviating from the

experimental value (Table 3, data in red) considering that both sodium and lithium

have the same valence. If the constant-volume condition shall hold for Na1−xLixAlH4,

it will probably be in a structure different from either NaAlH4 or LiAlH4.

For the alloy system of Na3(1−x)Li3xAl6, as x goes from 0 to 1, the largest change

is in the lattice constant c and volume per AlH6 complex, as shown in Figure 8. Like
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in the previous case, a structure transition is noted between x=1
3

and x=0.5. The

structure of the alloy is close to Na3AlH6 for x <0.5 and to Li3AlH6 for x ≥0.5.

Similarly, within each structure, volume decreases as lithium composition increases

(again as a result of a smaller ion size of lithium than sodium).

3.5 Summary

Based on the structures of pure sodium and lithium analates, we construct the Na-Li

alloyed alanates Na1−xLixAlH4 and Na3(1−x)Li3xAlH6 through structural interpola-

tion. We also examine their energetics and structural properties by means of first

principles calculations.

A small positive energy of formation (<5 kJ/mol) is found for Na1−xLixAlH4 with

x=0.25, 0.5, and 0.75. In other words, no stable phases are found. The equilib-

rium structure experiences a transition from the tetragonal NaAlH4 structure to the

monoclinic LiAlH4 structure between x=0.25 and 0.5. Within each structure volume

decreases with increasing x, which can be explained by the smaller ion size of Li than

Na. Besides these two no other structure is reached, which shall be necessary if the

condition of a constant-volume per AlH4 is to be satisfied considering that Na and Li

have the same valence.

Negative energy of formation is found for Na2LiAlH6 consistent with the experi-

mental finding. The calculated structure is slightly deviated from the experimental

one, with lowered symmetry and slightly lowered energy. No stable structure is found

for Na3(1−x)Li3xAlH6 at x=0.5 and 2
3
. The equilibrium structure experiences a tran-

sition from the monoclinic Na3AlH6 to the trigonal Li3AlH6 structure between x=1
3

and 0.5. Within each structure, volume decreases with increasing x, which again can

be explained by the smaller ion size of Li than Na.
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CHAPTER IV

FIRST-PRINCIPLES INVESTIGATION OF THE

LI-MG-N-H SYSTEM

4.1 Introduction

A few years ago, Chen et al. [34] reported a hydrogen storage system based on

the interaction of H2 with lithium imide, Li2NH, forming lithium amide, LiNH2,

and lithium hydride. About 6.5% of H2 by weight can be reversibly stored in this

Li-N-H system, with a plateau pressure of 1 bar at a relatively high temperature

of 285◦C. In order to use this system for mobile hydrogen storage, H2 needs to be

absorbed/desorbed at higher pressure and a lower temperature [34, 35, 36, 37, 38, 39,

48]. One possible way to achieve this is to reduce the reaction enthalpy by means of

cation substitution with elements of greater electronegativity (such as Ca, Al, and B)

than Li [38, 39, 40, 41, 42, 43, 44, 45, 46, 47]. Luo et al. reported such a new Li-Mg-

N-H system, by substituting lithium hydride with magnesium hydride [38, 48, 49, 50]:

2LiNH2 + MgH2 → Mg(NH2)2 + 2LiH (77)

Mg(NH2)2 + 2LiH ↔ Li2Mg(NH)2 + 2H2 (78)

The starting material, 2LiNH2+MgH2, undergoes reaction (77) and changes into mag-

nesium amide and lithium hydride at 220◦C and under 100 bar of H2 [50]. The re-

versible reaction follows Equation (78) with the Mg(NH2)2:LiH molar ratio of 1:2.

By introducing Mg into the original Li-N-H system, the plateau pressure is raised to

∼30 bar at a lower temperature of 200◦C, while maintaining an acceptable hydrogen

capacity of ∼5% by weight. Cycling tests of this system also show good reversibility.

The Li-Mg-N-H systems with the Mg:Li molar ratios of 3:8 and 1:4 also are reported
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[45, 46, 47, 51, 52, 53] where altering the molar composition modifies the hydrogen

capacity, thermodynamics, kinetics, and even reaction path of the hydrogen storage

system [41]. In addition, Alapati et al. proposed a reaction with a Mg:Li molar ratio

of 1:1 [54] where a product of the mixed nitride LiMgN is suggested.

As shown above, the Li-Mg-N-H system, as a promising hydrogen storage mate-

rial, has much potential of further optimization. In order to understand the phase

stability and energetics of the above reactions, it is necessary to first understand all

the ground state crystal structures involved. The crystal structure of the mixed imide

Li2Mg(NH)2, which appears for the Mg:Li ratio of 1:2 as in Equation (78), is not de-

termined until recently. Rijssenbeek et al. [55] investigated the component structures

in the hydrogen desorption/absorption process in the Li-Mg-N-H system with in-situ

X-ray diffraction (XRD). Their study shows that Li2Mg(NH)2 undergoes progressive

disordering of the cations and the cation vacancies as temperature is increased, re-

sulting in two structural transitions at elevated temperatures. The corresponding

three high temperature structural variants of Li2Mg(NH)2 are determined, via a com-

bination of X-ray and neutron powder diffraction, to be orthorhombic (α) phase,

primitive cubic (β) phase, and face-centered cubic (γ) phase, as shown in Figure 9.

In all three phases, nitrogen atoms form an fcc lattice (although slightly distorted),

similar to the arrangement in lithium imide/amide and magnesium amide [56]. The

cations are located at the tetrahedral interstitial sites of this fcc lattice. Not all of the

tetrahedral interstitial sites are occupied. In the room temperature α phase, 25% of

the tetrahedral sites are ordered vacancies, and lithium and magnesium occupy the

remaining 75% of the tetrahedral sites in a disordered fasion (Figure 9(b)).

As temperature is raised above 350◦C, the α phase converts into the β phase

(Figure 9 (c)), where some of the tetrahedral sites (3c) are disorderly occupied by

Li and Mg, and some others (3d) are partially occupied by Li, leading to disordered

arrangement of both cation and cation-vacancy. The β phase disorder is still partial
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since a fraction of the tetrahedral sites are orderly occupied by either Li or vacancy.

When temperature is raised above 500◦C, the β phase converts into the γ phase, where

all the tetrahedral sites are disorderly occupied by Li, Mg, and vacancies (Figure 9

(d)). In β-Li2Mg(NH)2, the experimental Li:Mg:vacancy occupancy ratio for Wyckoff

positions 3d and 3c are 59:8:33 and 41:59:0, respectively. In γ-Li2Mg(NH)2, this ratio

for Wyckoff position 8c is 11:4:5.

In this work, we concentrate on the ground-state structure of this system. Starting

from the experimental α-disordered structure, we search systematically for the low-

energy configurations of Li2Mg(NH)2 via ab initio total energy calculations. A series

of such configurations is found. By observing features commonly present in these

low energy configurations, specific local orderings are found in the cation-vacancy

arrangement, and their relation with the experimental disordered models is discussed.

Possible low-energy ordered structures are proposed for Li2Mg(NH)2. In addition, the

reaction energetics for the Li-Mg-N-H systems are calculated, and the phase stability

is discussed.

4.2 Computational Details

Here we outline the methods and calculational details involved in this work. The main

method we employ is first-principles calculation within the density functional theory

(DFT) [5]. The calculation is based on total energy and force/stress calculations in

momentum space with plane-wave basis and is done with the Vienna ab-initio simu-

lation package (VASP) [20] using the projector augmented wave (PAW) method [17],

with the generalized gradient approximation (GGA) [18] for the exchange-correlation

energy functional. The kinetic energy cutoff of the plane-wave basis is chosen to be

850 eV, and a k-grid interval of ∼ 0.3 Å−1 is used for reciprocal space sampling, so

that the total energy convergence is achieved under these conditions. For structural

relaxations, all forces and stresses are relaxed simultaneously. The force is considered
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to be minimized if the magnitude on any atom is smaller than 0.01 eV/Å. In order

to compare directly our low-energy structures with the experimental data, we also

calculated total energies for various configurations with the unit cell parameters fixed

at the room-temperature experimental values (Table 4). For the energetics study, the

reaction enthalpy is approximated as the difference between the total energies of the

products and the reactants, omitting the zero point energy and the PV term.

4.3 Results and Discussions

4.3.1 Low-energy structures of Li2Mg(NH)2

At room temperature α-Li2Mg(NH)2 is reported to have an orthorhombic crystal

structure with space group Iba2. As shown in Figure 9 (b), the nitrogen atoms

approximately form an fcc lattice, where 3/4 of the tetrahedral interstitial sites can

be labeled by two kinds of crystallographically distinct cation sites with Wyckoff

notations of 8c and 4b, respectively, while the other 1/4 are cation vacancies. The

cation vacancies are ordered, and form linear chains along lattice vector
→
c , so that

each N-H unit can point toward a midpoint between two adjacent cation vacancy sites

in an orderly manner. The 8c and 4b sites are randomly occupied by both kinds of

cations, with an experimentally reported Li:Mg occupancy of 75.2%:24.8% on 8c and

62.6%:37.4% on 4b sites, respectively, as determined by XRD data [55].

We have searched systematically the possible low-temperature Li-Mg arrange-

ments in Wyckoff positions of 8c and 4b for space group Iba2, with the overall con-

straint of Li:Mg equal to 2:1. Table 4 lists the calculated total energies and lattice

parameters of various configurations after full minimization of forces and stresses.

Low-energy configurations are labeled by A, B, C, etc. For comparison, the total

energy with lattice parameters fixed at experimental values is also calculated and

listed. A few selected low-energy configurations are shown in Figure 10.

For configurations C, E, F, G, and GG, an occupancy of Li:Mg equal to 3:1 on 8c
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Figure 9: (Color online) Ball-and-stick models for (a) LiNH2, (b) α-Li2Mg(NH)2, (c)
β-Li2Mg(NH)2, and (d) γ-Li2Mg(NH)2. The origin is set at a N atom. The large light
spheres in (a)-(c) represent (cation-)vacancies. (b)-(d) show the specific cation (and
cation-vacancy) disordered features of the Li-Mg mixed imide [55]. Li amide is also
shown in (a) to demonstrate the structural features of fcc (NH2)

−/(NH)2− network
common to these imides/amides.
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Table 4: List of calculated total energies (per formula unit) Etot and lattice pa-
rameters for various Li2Mg(NH)2 ordered configurations. Data in parentheses are
calculated by fixing the lattice parameters at the experimental values. Configura-
tions of low energies are labeled A, B, C, etc. Also listed are the calculated volume
(per N atom) ṽ and the number of symmetry operations Z. Experimental data are
listed for comparison.

Configu- Etot Unit cell parameters ṽ Z
-rations (eV/f.u.) a (Å) b (Å) c (Å) α(◦) β(◦) γ(◦) (Å3)

A -33.09 9.60 5.14 5.36 90. 89.97 90. 33.04 2
B -33.17(-33.12) 10.02 4.80 5.33 90. 90. 90. 32.03 4
C -33.14(-33.14) 9.76 4.98 5.22 90. 90. 89.98 31.73 2
D -33.15(-33.14) 9.73 5.08 5.25 90.46 89.97 89.97 32.40 1
E -33.16(-33.16) 9.77 4.99 5.22 90. 89.86 90. 31.82 2
H′ -33.18(-33.17) 9.68 5.10 5.21 90. 90. 90.11 32.27 2
F -33.19(-33.18) 9.84 4.99 5.25 90. 90. 89.98 32.22 2
G -33.20(-33.20) 9.83 5.00 5.25 89.43 90.01 89.96 32.26 1
H -33.22(-33.21) 9.70 5.10 5.21 90. 90. 90. 32.26 4

supercell calculations in direction
→

b :
DD(4b) -33.15(-33.14) 9.78 5.05 5.25 90. 89.98 90. 32.39 2
GH(4b) -33.20(-33.20) 9.76 5.05 5.23 90. 89.97 90. 32.22 2
GG(2b) -33.23(-33.22) 9.84 4.97 5.24 90. 89.97 90. 32.04 2

Experiment [55]: 9.7880 4.9931 5.2023 90. 90. 90. 31.78 4

(and 1:1 on 4b) sites are assumed, in accordance with the experimental conclusion.

In this case, the calculated lattice parameters differ little from experimental values,

and the difference of the total energy is also very small between the fully relaxed

structure and that with lattice parameters fixed at the experiment values.

It is noticed that the inconsistency in experimental 8c/4b cation occupancies ren-

ders a total Li:Mg ratio of 2.45:1, in contradiction with the overall 2:1 ratio [55]. With

the possible uncertainties of the experimental data in mind, we also consider 8c-site

occupancies beyond 3:1. For configuration A, B, D, DD, H, and GH, the Li:Mg

occupancy ratios at the 8c/4b sites are 1:1/1:0, 1:0/0:1, 5:3/3:1, 5:3/3:1, 1:1/1:0,

and 5:3/3:1, respectively. Because of the deviation from the experimental ratios, the

calculated lattice parameters slightly differ from experiment values.
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Figure 10: (Color online) Some of the low-energy configurations in Table 4.
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In all cases, the change in cell volume due to the difference in the Li/Mg arrange-

ment is rather small (<4%), which is expected because of the similar ionic radii of Li

and Mg [59]. The change in angles is also small (≤0.5◦), and does not affect much

the total energy (configurations D and G).

Our calculation shows that for configurations with different cation arrangements

on the 8c and 4b sites, the differences in the total energy are rather small, generally

in the order of 10 meV per formula unit Li2Mg(NH)2. (such as C, D, E, I, II, III,

and IV). Multi-configurations of cation arrangements with small energy differences

indeed suggest possible Li/Mg disordered arrangements in the crystal structure of

α-Li2Mg(NH)2, as reported in experiment.

4.3.2 Local orderings in Li2Mg(NH)2

By examining the low-energy configurations, we find that certain local Li-Mg-vacancy

arrangements are preferable. Table 5 lists the fractional occurrence of various local

orderings for each configuration listed in Table 4. The local orderings are illustrated

in Figures 11 and 12, where one N-H unit is surrounded by eight adjacent tetrahedral

sites associated with an fcc lattice. In Figure 12, the neighboring “cube” encasing an

octahedral interstitial site is also shown. From Table 5, it is obvious that the total

energy and local orderings exhibit correlations.

The energetically preferable local orderings can be described as the following: two

Mg atoms order in a face-diagonal arrangement on the NH-enclosing cube, where two

cation-vacancy sites line up on one side, with the N-H unit pointing in between. The

vacancy chain is either (a) off (and parallel to) the plane containing Mg atoms, with

the N-H unit pointing away from the Mg-containing plane, as shown in Figure 11

(a); or (b) perpendicular to the Mg-containing plane, with the N-H unit being almost

parallel to (yet still pointing slightly away from) the Mg-containing plane, as shown

in Figure 11 (b).
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Figure 11: (Color online) Local orderings for the Li-Mg-vacancy arrangement, where
a N-H unit is surrounded by eight adjacent tetrahedral sites associated with an fcc

lattice. Two of the eight surrounding tetrahedral sites are (cation-)vacancy sites,
which form a linear chain. The N-H unit points toward a midpoint in between. The
other six sites are occupied by either Li or Mg. (a) Two Mg atoms in a face-diagonal
arrangement, with the hydrogen pointing away from the plane containing Mg atoms;
(b) Same as (a), but with the Mg atoms on a different plane; (c) Two Mg atoms in a
body-diagonal arrangement; (d) Three Mg atoms surrounding one N-H unit; (d′) One
Mg atom around one N-H unit; and (e) Two Mg atoms in a neighboring arrangement.
Configurations (c)-(e) are not energetically preferred.
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The other local orderings in Figure 11 are not as favorable as the two mentioned

above. For (d) and (d′), the distribution of Mg atoms on the cube is uneven, with

either one or three Mg atoms per cube, rather than the average number of two. For

(e), the Mg-Mg distance is too small when two Mg atoms order on the same side of

the cube. For (c), since the N-H unit is already at the center of the body-diagonal

plane, there is not much degree of freedom in the arrangement of the hydrogen for it

to avoid Mg atoms as in (b). When being “wedged” into a specific configuration, these

local orderings in Figure 11 can present themselves in each possible lattice direction,

and have basically similar effect in terms of the total energy.

In addition, local orderings at a larger scale can also make a difference in the total

energy of a configuration. Within two adjacent cubes (where one of them encases

one N-H unit and the other one does not), the preferable local ordering (aa) can be

described as (Figure 12): the vacancy chain is in the common face of the cubes, and

the four Mg atoms follow two different face-diagonals on the two faces above and

below, respectively. The N-H unit (sitting at the center of one of the cubes) points

towards the vacancy chain as usual.

As can be seen in Table 5, correlations can be found between the occurrence of

local orderings and the total energy. For example, both configurations C and E have

50% face-diagonal (a) and 50% body-diagonal (c) Mg orderings, presenting the same

local ordering within the scale of one NH-encasing cube. Along lattice vector
→
a ,

configuration C exhibits a pattern of (a)-(a)-(c)-(c), whereas configuration E exhibits

a pattern of (a)-(c)-(a)-(c) resulting in a more balanced Mg distribution among lattice

layers, and (therefore) a lower total energy.

It is also noticed that, although both have 100% face-diagonal (a) Mg ordering,

configuration H has relatively a lower energy than H′. Within the range of two

adjacent cubes, Mg atoms order along the same face-diagonal direction on the opposite

faces (parallel to each other) in H′; while in H, they order along different face-diagonal
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Figure 12: (Color online) Local ordering (aa), where the lower cube encases one N-H
unit, but the upper one does not. Mg atoms follow different face-diagonal directions
on the two faces above and below the common face of the two cubes, and the N-H
unit points toward the vacancy chain in the common face, and away from the Mg-
containing faces. When placed into the lattice, this local ordering can be along either
direction of lattice vector ~a or ~b.

directions (perpendicular to each other) on the opposite faces. This leads to higher

symmetry and (therefore) a lower total energy in H than in H′, as shown in Figure

10, Table 4, and Table 5.

The same stacking variation can be applied to find other low-energy configurations

with such similar orderings. Notice that for each configuration there are equivalent

ways (in terms of energy) to define the unit cell. By putting two such equivalents

side by side, we get supercell configurations with a larger-scale ordering of Mg atoms

along alternating face-diagonal directions (Figure 12). Supercell configuration GG

thus constructed has doubled lattice constant along ~b, a higher symmetry, and a

lower total energy compared with the original single-cell configuration G. It has in

fact the lowest energy in Table 4. Note that in GG, the alternation is along
→

b , while
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Table 5: Fractional occurrence of various local orderings for configurations listed
in Table 4. Configurations are arranged from left to right with a descending total
energy. Local orderings, as shown in Figures 11 and 12, are listed from top to bottom
beginning with the most preferable ones. All local orderings are within one cube
(Figure 11) except for (aa), which involves two adjacent cubes (Figure 12).

Mg local ordering fraction in each configuration:
A B C DD D E H′ F G GH H GG

(aa) 1
4

1 1
2

(a) 1
2

1
4

1
2

1
2

1 1
2

1
2

1
2

1 1
2

(b) 1
2

1
2

1
8

1
4

(c) 1
2

1
2

1
8

1
4

(d) 3
4

1
2

1
4

(e) 1 1

in H it is along
→
a . Since vacancies (therefore N-H units) order differently along

→
a and

→

b , this shows that the local ordering (aa), when placed into the lattice along different

directions (
→
a or

→

b ), differs somehow in terms of lattice symmetry and total energy.

In H, this leads to cation occupancies rather different from experimental values, and

local ordering (aa) alone does not guarantee lower energy of H than GG. In supercell

configuration GH, energy does not drop since unfavorable local orderings also occur.

The concept of local orderings can explain what happens in higher-temperature

phases of Li2Mg(NH)2. The structure of β-Li2Mg(NH)2 is similar to that of the α

phase, except that now the cation-vacancy chains are no longer fixed to be along
→
c but

can orient along any of the three lattice-vector directions (Wyckoff position 3d) with

equal probability. As shown in Figure 9 (c), the Mg atoms still occupy face-diagonal

(3c) sites, and the N-H units point toward the definite vacancy sites and away from

the Mg-containing planes, presenting similar local orderings as in α phase. Notice

that the face-diagonal arrangement of Mg atoms on the cube formed by tetrahedral
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Figure 13: (Color online) A low energy crystal structure (configuration GG in Table
4) proposed for Li2Mg(NH)2 at lower temperature.

interstitial sites is also found in the structure of Mg(NH2)2. As temperature is further

raised, the β phase transforms into an even more disordered γ phase (Figure 9 (d)),

where all tetrahedral interstitial sites are occupied evenly by Li, Mg, and vacancies

with a ratio of about 2:1:1.

At lower temperature, the α phase is expected to undergo disorder-order transi-

tion, and transform into a low-temperature ordered phase. Based on our calculation

of various Li-Mg configurations on the 8c and 4b sites, an ordered crystal structure

at lower temperature is proposed, as shown in Figure 13. It is composed of the ener-

getically preferable local orderings and has the lowest total energy of configurations

considered so far.

The enthalpy of reaction (calculated as the difference in total energy between

products and reactants at 0 K temperature) is listed in Table 6. The zero point

energy is not included, which is expected not to change the relative feature in these

energies. Our calculation shows that the starting material of LiNH2 + MgH2 does
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Table 6: Calculated enthalpy of reaction (in unit of KJ/mol-H2) for the Li-Mg-N-H
system. Data in parentheses are from experiments.

Reaction
Enthalpy ∆H
(KJ/mol H2)

(1) 2LiNH2 + MgH2 → Mg(NH2)2 + 2LiH -39.62
(2) Mg(NH2)2 + 2LiH ↔ Li2Mg(NH)2 + 2H2 60.89(41.6 [57])

(1)+(2) 2LiNH2 + MgH2 → Li2Mg(NH)2 + 2H2 21.67(34 [48])

undergo reaction (77) and transforms into Mg(NH2)2 + 2LiH in the first place, and

the following cycle reaction proceeds as (78), in agreement with the experimental

observations [48, 51].

4.4 Summary

Recently the Li-Mg-N-H system has attracted much attention as a promising solid-

state hydrogen storage material [48]. It has the advantage of moderate reaction

conditions in addition to the high capacity and reversibility compared with the Li-N-H

system. The crystal structure of the mixed imide Li2Mg(NH)2 involved in this system

is not known until quite recently. At room temperature and above, it is reported to

have progressive disorder of the cations and vacancies, where the exact arrangement

of Li and Mg atoms is not known. Various Li-Mg-N-H systems with different ratios

of starting materials (and different products) also raise questions about the phase

stability, thermodynamics, and reaction path of this system.

In this chapter, we investigate the crystal structure of Li2Mg(NH)2 using first-

principles total-energy calculations within the density functional theory. The pos-

sible cation arrangement in α-Li2Mg(NH)2 is studied systematically. A series of

low-energy ordered configurations are found with similar total energies, indicating

possible cation-disordered arrangements, in agreement with the experimental finding.

However, energetically preferable local orderings are found, where Mg atoms prefer

face-diagonal arrangements on the “cubes” formed by tetrahedral interstitial sites of
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an fcc lattice, and arrange themselves in alternating face-diagonal directions on op-

posite faces of two adjacent cubes. Based on our calculation, an ordered structure

at lower temperature is proposed for Li2Mg(NH)2. In addition, reaction energetics is

calculated, which confirms the phase stability observed in experiment [41, 48, 51].
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CHAPTER V

FIRST-PRINCIPLES INVESTIGATION OF THE

LA-MG-PD-H SYSTEM

5.1 Introduction

Recently Yvon et al. [61, 60] reported on a new nickel based ternary metal-hydrogen

system LaMg2Ni-H in which hydrogenation induces a metal-nonmetal transition:

2LaMg2Ni + 7H2 → 2LaMg2NiH7 (79)

The intermetallic LaMg2Ni (orthorhombic, space group Cmcm) absorbs hydrogen

around ambient conditions (<8 bar, 150∼200◦C) to form nonmetallic hydride LaMg2NiH7.

This hydride crystalizes in monoclinic symmetry (space group P21/c) and has a nearly

unchanged metal host structure with atom shifts <0.7 Å. This is in contrast to the

usual case of simple systems based on rare earths or magnesium where hydrogenation

induced a metal-nonmetal transition accompanied by a major structural rearrange-

ment of the metal host. The metal-nonmetal transition is induced by charge transfer of

conduction electrons into tetrahedral [NiH4]
4− complexes with a closed-shell electron

configuration. The other hydrogen atoms not associated with the complex remain to

be simple saline-like hydride anions surrounded by magnesium and lanthanum atoms

(as electron donors). The coexistence of two types of hydrogen atoms in the same sys-

tem makes LaMg2NiH7 a unique example system. Unfortunately, the hydrogenation

reaction is not reversible under practical conditions.

Recently a similar metal-nonmetal transition is also reported in the palladium

system LaMg2Pd-H [63]. The intermetallic LaMg2Pd absorbs hydrogen under mild

conditions (100∼200◦C, 10 bar), forming nonmetallic hydride LaMg2PdH7. Full hy-

drogenation leads to the formation of tetrahedral [PdH4]
4− complexes, and the metal
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host structure is nearly unchanged (metal atom shifts∼0.7 Å) after hydrogenation.

In contrast to the one-step hydrogenation of the nickel system, the hydrogenation of

the palladium system LaMg2Pd-H takes place in two steps:

2LaMg2Pd + 3H2 → 2LaMg2PdH3 (80)

LaMg2PdH3 + 2H2 ↔ LaMg2PdH7 (81)

The intermetallic LaMg2Pd first absorbs hydrogen to form low concentration hy-

dride LaMg2PdH3, which further absorbs hydrogen to form full concentration hydride

LaMg2PdH7. Unlike the nickel system, the hydrogenation of this system is partially

reversible (step (81)), and therefore presents greater interest for applications.

5.2 Computational Details

Theoretical calculations are carried out using the Vienna ab-initio simulation package

(VASP) [20] based on density functional theory [5] and the projector augmented

wave method (PAW) [17] with plane waves. The generalized gradient approximation

(GGA) [18] is used. The energy cutoff is 600 eV, and the k-point sampling grid is

chosen so that the grid interval <0.2 Å−1 for the total-energy calculation and <0.1

Å−1 for the density of states calculations. The outer core shells (5s and 5p) of La are

included as valence states.

5.3 Crystal Structures

Both hydrogen-free LaMg2Pd and low concentration hydride LaMg2PdH3 crystal-

ize in orthorhombic space group Cmcm (No. 63), as shown in Figures 14 and 15.

LaMg2Pd is in fact isostructural with its nickel analogue LaMg2Ni. Interestingly,

their fully hydrogenated compounds crystalize differently. While the nickel hydride

LaMg2NiH7 crystallizes in centrosymmetric monoclinic symmetry, the full palladium

hydride LaMg2PdH7 crystalizes in orthorhombic space group P212121 (No. 19) (Fig-

ure 16). Of the seven hydrogen atoms, four are bonded to the palladium atom in a
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Figure 14: (Color online) Crystal structure of LaMg2Pd. The large white spheres at
the corner and semi-face-center positions stand for palladium atoms; the pink spheres
stand for lanthanum atoms; and the blue spheres stand for magnesium atoms.
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tetrahedral configuration forming the [PdH4]
4− complex, and three occupy La2Mg2-

type tetrahedral interstices. The Pd-H bond distances are consistent with those in

similar PdH4-containing compounds such as M2PdH4, where M = Sr or Ba [64], and

the H-Pd-H bond angles are comparable to those in the nickel analogue LaMg2NiH7.

The nearest La-H and Mg-H distances are slightly shorter than those in the corre-

sponding saline binary hydrides (LaH3 and MgH2). The metal-hydrogen bonds in

LaMg2PdH7 are therefore expected to have a covalent (i.e., directional) character

for palladium (presumably of sp3-type) and an ionic (i.e., non-directional) charac-

ter for lanthanum and magnesium. The hydride structure can be rationalized in

terms of a palladium centered tetrahedral [PdH4]
4− complex having terminal hydro-

gen ligands (“complex” hydrogens), and hydrogen anions H− surrounded by Mg2+ and

La3+ cations only (“interstitial” hydrogens). This type of tetrahedral [PdH4]
4− com-

plexes appear only in LaMg2PdH7 and M2PdH4, M = Sr or Ba. All other solid-state

palladium-hydrogen complexes known are either linear complexes such as [PdH2]
2−

in M2PdH2, M = Li or Na [65]; triangular complexes such as [PdH3]
3− in NaBaPdH3

[66]; or square planar complexes such as [PdH4]
2− in Na2PdH4 [67, 68].

For the intermediate hydride LaMg2PdH3, three kinds of Wyckoff positions for

H atoms are found, designated by H1, H2, and H3 (Figure 15). The experiment

gives partial hydrogen occupancy on H1 and H2 sites, implying partially disordered

structure with either H1 or H2 sites occupied. H1 and H3 sites are interstitial sites.

Each H3 atom is surrounded by two Mg (Mg-H3∼2.0 Å) and two La (La-H3∼2.4

Å) atoms in a semi-tetrahedral configuration, and two neighboring H atoms on H3

chains along lattice vector
→
a (H3-H3∼2.3 and 2.4 Å). Each H1 atom is surrounded

by two Mg (Mg-H1∼2.1 Å) and two La (La-H1∼2.5 Å) atoms in a semi-tetrahedral

configuration, and four in-plane H3 atoms (H1-H3∼2.3 Å). (Hydrogen atoms on H1

and H3 sites form layers perpendicular to lattice vector
→

b , the longest lattice vector.)

H2 sites are ligand sites. Each H2 atom is close to one Pd atom (Pd-H2∼1.8 Å), and
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Figure 15: (Color online) Crystal structure of LaMg2PdH3, where partially disor-
dered hydrogen arrangement is found with either Wyckoff position H1 (small dark-
green spheres) or H2 (small white spheres) occupied. The large white spheres at the
corner and semi-face-center positions stand for palladium atoms; the pink spheres
stand for lanthanum atoms; the blue spheres stand for magnesium atoms; the small
yellow-greenish spheres stand for hydrogen atoms at Wyckoff position H3.
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Figure 16: (Color online) Crystal structure of LaMg2PdH7. The large white spheres
at the corner and semi-face-center positions stand for palladium atoms; the pink
spheres stand for lanthanum atoms; the blue spheres stand for magnesium atoms;
and the small white spheres stand for hydrogen atoms. The hydride structure can be
described as consisting of palladium-centered tetrahedral [PdH4]

4− complexes each
having 4 terminal hydrogen ligands (“complex” hydrogens) and hydrogen anions H−

surrounded by Mg2+ and La3+ cations only (“interstitial” hydrogens).
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Table 7: Experimental lattice parameters of LaMg2PdHx, x=0, 3, 7. All 3 com-
pounds crystalize in orthorhombic lattices.

symmetry experimental lattice volume
group constants (Å) (Å3/f.u.)

LaMg2Pd Cmcm 4.3228 8.3095 10.5289 94.55
LaMg2PdH3 Cmcm 4.7526 7.9765 10.6451 100.89
LaMg2PdH7 P212121 4.7745 8.1036 11.7160 113.32

is surrounded by two La (La-H1∼2.4 Å) and two Mg (Mg-H1∼2.5 Å) atoms in an

almost “flat” tetragonal configuration. One H2 and four H3 (H2-H3∼2.5 Å) atoms

form a flat pyramid (with the H2 atom as the vertex).

A close connection exists [62] between the structures of the low concentration hy-

dride LaMg2PdH3 and the full hydrogenated LaMg2PdH7, as shown in Figures 15 and

16. Wyckoff positions H1/H3 in LaMg2PdH3 correspond to interstitial hydrogen sites

Hi2/(Hi1+Hi3) in LaMg2PdH7 with a shorter Pd-H distance; Wyckoff positions H2

in LaMg2PdH3 correspond to ligand hydrogen sites Hl1 in LaMg2PdH7 (Pd-Hl1∼1.7

Å) with a longer Pd-H distance. The difference between ligand and interstitial Pd-H

distances is not as big in LaMg2PdH3 as in LaMg2PdH7. In LaMg2PdH3, due to the

partial occupancy of either H1 or H2 sites, the corresponding distance between these

two sites is much closer (∼1.15 Å) than in LaMg2PdH7 (Hi2-Hl1∼2.1 Å) where both

sites are occupied simultaneously. Part of Hi2 and of Hl1, together with the other

three ligand hydrogen atoms Hl2-Hl4, are lost during dehydrogenation of LaMg2PdH7

to form LaMg2PdH3.

Table 7 lists lattice parameters of the LaMg2PdHx system. Hydrogenation induces

a decrease in symmetry, i.e., from centrosymmetric to non-centrosymmetric. The cell

volume expands with increasing hydrogen content. The increase in cell volume is

∼20% from the intermetallic to the fully hydrogenated state and ∼12% from the low

hydrogen concentration state to the fully hydrogenated state. From LaMg2PdH3 to

LaMg2PdH7, the biggest change (∼10%) in cell dimension is in the longest lattice
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constant due to the insertion of ligand hydrogen atoms (and the formation of the

PdH4 complex).

5.4 Energetics and Electronic Structures

The full occupancy of H1 or H2 sites is considered separately for LaMg2PdH3. Total

energy calculations give the configuration with an H2 occupancy as the lowest energy

configuration. Calculated total energy for the configuration with an H2 occupancy

is 0.026 eV (per formula unit) lower than that with an H1 occupancy. The reaction

enthalpy (approximated as the difference in total energy of products and reactants) is

-41 kJ/mol-H2 according to Equation (81), comparable with the desorption enthalpy

estimated from the PCT data [63].

Calculations on the band structure (not shown) reveal no band gap for LaMg2Pd

and LaMg2PdH3, and a fundamental direct gap of 0.7 eV at Γ (GGA result) for

LaMg2PdH7. The real gap is estimated to be more than 1.0 eV. Metal-nonmetal tran-

sition does not happen immediately upon hydrogenation of intermetallic LaMg2Pd;

rather it happens from the low concentration hydride LaMg2PdH3 to the full concen-

tration hydride LaMg2PdH7.

This can be confirmed in the projected density of states (PDOS) plots for LaMg2Pd,

LaMg2PdH3, and LaMg2PdH7, as shown in Figures 17, 18, 19, and 20. Energy zero

is set at the Fermi level. The projection radii used were 1.5 Å for La, 1 Å for Mg,

1.2 Å for Pd, and 0.8 Å for H. These PDOS plots represent a sum over the various

atomic sites for a single element (or a single kind of Wyckoff position in the case of

H1 or H2 occupancy in LaMg2PdH3). There is no contribution from orbitals of Mg,

La spd, and Pd spf in the energy range of interest. An examination of the charge

density (not shown) concludes that magnesium behaves like an electron donor with

very little valence charge in its vicinity. Hydrogen attracts charge as expected from

its relatively large electronegativity.
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Figure 17: (Color online) Density of states of LaMg2Pd: Total density of states,
and projected density of states for Pd d and La f .
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Figure 18: (Color online) Density of states of LaMg2PdH3 with an H1 occupancy:
(a) Total density of states, and projected density of states for Pd d and La f ; (b)
Projected density of states for H1 and H3.
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In all cases the La f bands form a peak around +2 eV in the conduction band

(unoccupied), while the Pd d bands form a main peak around -3 eV in the valence

band. In the intermetallic LaMg2Pd (and LaMg2PdH3 with an H1 occupancy), this

is the only Pd d peak, indicating no significant local electronic interaction of Pd with

other atoms. In LaMg2PdH3 with an H2 occupancy, this main peak starts to have

small satellite peaks on both sides. Positions of these Pd d side peaks coincide with

some of the H s peaks, indicating onset of local electronic interaction between Pd and

H. A check of the band-projected partial charge density shows that the peak on the

low (high) energy side corresponds to the bonding (anti-bonding) interaction between

Pd and ligand H.

In LaMg2PdH7, the projected density of states for Pd d further spreads out over

the whole range of -8 to 0 eV and overlaps with that of H s in the low energy

range of -6 to -4.5 eV. Almost all the Pd d states are below the gap, indicating an

approximately closed d shell. One can identify three broad groups of peaks in the

projected density of states associated with hydrogen. They can be associated with

states (in the order of rising energy) from H s in the complex, H s interstitial, and

(a small peak from) H s in the complex, respectively. The first group corresponds

to Pd-H bonding states (-7 to -5 eV), which is higher in intensity than the third

group that corresponds to the Pd-H anti-bonding states (-2 to 0 eV), resulting in

overall stable PdH4 complex configuration (in agreement with the 18-electron full

shell model given by sp3 hybridization scheme). There is little overlap between the

spectra of these two kinds of hydrogen atoms (except the peak around -4.7 eV). As

mentioned above, the structure of the fully hydrogenated compound can be described

in terms of palladium centered tetrahedral [PdH4]
4− complexes each having four ligand

complex hydrogens, and interstitial hydrogen anions H− surrounded only by Mg2+

and La3+ cations. The chemical formula then can be written in the limiting ionic

form of LaMg2PdH7=La3+2Mg2+[PdH4]
4−·3H−. The [PdH4]

4− complex conforms to
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Figure 19: (Color online) Density of states of LaMg2PdH3 with an H2 occupancy:
(a) Total density of states, and projected density of states for Pd d and La f ; (b)
Projected density of states for H2 and H3; and (c) Projected density of states for Pd
d and H2 (to show the detailed overlap between the two).
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Figure 20: (Color online) Density of states of LaMg2PdH7: (a) Total density of
states, and projected density of states for Pd d and La f ; (b) Projected density of
states for interstitial and complex hydrogen; and (c) Projected density of states for
Pd d and complex hydrogen. The positions of the three peaks marked by arrows in
(b) and (c) are at -5.58, -5.14, and -4.70 eV, respectively. As shown in (c), the two
peaks in the lower energy range are uniquely for Pd d and complex H s, and represent
electronic interaction within the PdH4 complex.
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the 18-electron rule. In other words, the Pd atom is zero-valent and has an electronic

configuration of d10. This implies a charge transfer from La and Mg atoms to both

the complex and the intersitial hydrogen atoms, so that the Pd d bands are nearly

filled and all valence electrons are localized in metal-hydrogen bonds, rendering the

hydride non-metallic.

In the projected density of states plots for LaMg2PdH3 with an H1 or H2 oc-

cupancy, the broad peaks associated with H1 or H3 span the whole energy range

of -8 to 0 eV, exhibiting the same characteristics as that of interstitial hydrogen in

LaMg2PdH7. In the projected density of states plot for LaMg2PdH3 with an H2

occupancy, the H2 spectrum below zero is made up by two groups of peaks in the

range of -8 to -4 eV and -2 to 0 eV, respectively, exhibiting the same characteristics

as that of complex hydrogen in LaMg2PdH7. Overall the projected density of states

of “complex” hydrogen is located at a lower energy range than that of “interstitial”

hydrogen. This explains the decrease in the total energy for LaMg2PdH3 with an H2

occupancy.

Compared with the fully hydrogenated state, there is a single common peak

(around -6.1 eV) associated with H1 and H3 in the low energy range (-8∼-5.4 eV)

for LaMg2PdH3 with an H1 occupancy. For LaMg2PdH3 with an H2 occupancy, this

peak contains states associated with H2, H3, and Pd d, with a narrowed range (-8∼-

5.8 eV) and an increased peak intensity. There is also a second common peak (at -4.9

eV) associated with H2, H3, and Pd d. As discussed before, the H1 and H2 sites are

just 1.15 Å apart, and H2 is ligand to one palladium atom.

In order to compare the detailed nature of the Pd-H bonding in these two cases, we

calculated the band projected partial charge density at the Γ point. The calculation

is done for bands with energies ranging from -8.00 to -4.04, and -2.76 to -0.25 eV

for LaMg2PdH3 with an H1 occupancy; and from -8.00 to -4.00, and -2.93 to 0.65

eV for LaMg2PdH3 with an H2 occupancy. Figure 21 shows contour plots of partial
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Figure 21: (Color online) Band projected partial charge density plot at Γ. The plot
is for a plane (8×8, in Å) containing Pd (×), H1 (or H2) (•), and H3 (+) atoms. H2
occupancy (right) shows significant interaction between Pd and ligand H2, while H1
occupancy (left) shows no such interaction.
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charge density for a couple of selected bands. The plots are for a plane (8 Å by 8 Å

in dimension) containing one Pd, one H1 (or H2), and one H3 atoms. Plots on the

left side are for LaMg2PdH3 with an H1 occupancy, where the top and bottom plots

are for band number 10 (with a band energy of -5.68 eV) and band number 12 (with

a band energy of -4.08 eV), respectively. Plots on the right side are for LaMg2PdH3

with an H2 occupancy, where the top and bottom plots are for band number 10 (with

a band energy of -6.27 eV) and band number 12 (with a band energy of -5.05 eV),

respectively. From these plots, it is clear that in LaMg2PdH3 with an H2 occupancy,

there is a significant sharing of electrons between Pd and H2 atoms, indicating direct

bonding of Pd-H2. On the other hand, this Pd-H bonding is absent between Pd and

H1 atoms in LaMg2PdH3 with an H1 occupancy.

5.5 Summary

To summarize, analogous to the LaMg2Ni-H system, hydrogenation-induced metal-

nonmetal transition occurs in the quaternary transition-metal-hydrogen system LaMg2Pd-

H. In contrast to the nickel system, the hydrogenation takes place in two steps, and

is partially reversible under technically useful conditions. For the low concentration

hydride LaMg2PdH3, experiment gives a disordered occupancy of certain hydrogen

sites, and the exact position of the hydrogen atoms in this intermediate phase is not

determined.

Theoretical calculations were carried out based on density functional theory and

the projector augmented wave method (PAW) with plane waves. The energetics of

the LaMg2Pd-H system is examined through total energy calculations. The band

structure and density of states are calculated for the intermetallic LaMg2Pd, low

concentration hydride LaMg2PdH3, and full hydrogenated compound LaMg2PdH7.

The partial charge density for certain bands is calculated and compared in configura-

tions of LaMg2PdH3 with a full H1 or H2 occupancy. Our first-principles calculation
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shows the metal-nonmetal transition happens from the low concentration hydride

LaMg2PdH3 to the terminal hydride LaMg2PdH7. For LaMg2PdH3, the configura-

tion with a full occupancy of H2 sites is 0.026 eV (per formula unit) lower in energy

than that with a full occupancy of H1 sites, which can be explained by the ligand

interaction of the H2 atom with the nearest palladium atom. In terminal hydride

LaMg2PdH7, this interaction of the Pd d and ligand H s orbitals within the PdH4

complex is further strengthened, leading to an even more dispersed Pd d spectrum

toward the lower energy range in the projected density of states plot, which eventually

results in an energy gap. This is in agreement with the 18-electron full shell model

of the [PdH4]
4− complex.
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[67] W. Bronger and G. Auffermann, J. Alloys Compd. 228, 119(1995).

[68] K. Yvon and G. Renaudin, in: R. B. King(Ed.), Hydrides: Solid State Transition

Metal Complexes, 2nd ed., John Wiley & Sons Ltd., 2005, ISBN 0-470-86078-2,

pp. 1814-1846.

83



VITA

Zhu Ma was born on November 30th, 1974 in Guanyu town, city of Deyang, Sichuan

Province, China. She has a mother who teaches maths, a father who teaches English.

Both retired now, her father still loves fishing, and her mother has Hyperlipidemia.

She has an elder brother, a sister-in-law, and an 8-year nephew. Now with her husband

she has her own lovely child, James.

She was enrolled in the department of Physics at Beijing Normal University in

1994 and received her B.S. in 1998. Graduated with honor, she was recommended

to enter the graduate program there. She worked on analytical study of surface and

interface and received her M.S. in 2001. In the same year, she came to U.S.A. to

continue her graduate study at School of Physics, Georgia Institute of Technology.

Since then she has concentrated her Phd work on the first-principles study of hydrogen

storage materials.

84


