
DIAGNOSING PERFORMANCE BOTTLENECKS IN
HPC APPLICATIONS

A Dissertation
Presented to

The Academic Faculty

by

Kenneth Czechowski

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computational Science & Engineering

Georgia Institute of Technology
May 2019

Copyright c© 2019 by Kenneth Czechowski

DIAGNOSING PERFORMANCE BOTTLENECKS IN
HPC APPLICATIONS

Approved by:

Professor Richard Vuduc, Advisor
School of Computational Science and
Engineering
Georgia Institute of Technology

Victor W. Lee
Parallel Computing Lab
Intel

Edmond Chow
School of Computational Science and
Engineering
Georgia Institute of Technology

Ümit V. Çatalyürek
School of Computational Science and
Engineering
Georgia Institute of Technology

Hyesoon Kim
School of Computer Science
Georgia Institute of Technology

Sudhakar Yalamanchili
(In Memoriam)
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: 9 May 2019

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Rich Vuduc for being such a supportive

advisor. He has always been a patient mentor and fervent champion for his students.

He believed in me and selflessly fought to give me many incredible opportunities. I

am sincerely grateful for all that he has done for me.

I also thank Victor Lee for taking the time to share his vast technical expertise

with me. I learned a lot from him during my time at Intel, and I have appreciated

getting to continue collaborating with him even after my return to Georgia Tech. His

encyclopedic knowledge of processors and creative problem solving skills still impress

me.

I would also like to thank all the close friends I made during my tenure at Georgia

Tech. I will always cherish the many fond memories working alongside David Noble,

Jee Choi, Casey Battaglino, Marat Dukhan, Xing Liu, Aparna Chandramowlish-

waran, and Chris McClanahan in the HPC lab. That crew supplied a healthy dose

of motivation and an unhealthy dose of entertainment.

I have been fortunate to collaborate with many thoughtful and talented people

which have helped shape the direction of my research. I am grateful to William B.

March, Edmond Chow, and Alexander G. Gray, Kartik Iyer, Hyesoon Kim, Yang You,

James Demmel, Le Song, Ed Grochowski, Ronny Ronen, Ronak Singhal, Pradeep

Dubey and the many other people I have had the pleasure to work with. I also want

to thank the CSE faculty and staff as well as my various committee members for

graceiously offering their time and attention.

I am grateful to have had Sudhakar Yalamanchili serve on my committee. He was

stern but warm and intensely wise. He will be missed.

iii

A special acknowledgment is necessary for Hiroko Kenner, my muse and dear

friend. Her limitless patience and constant words of encouragement have kept me

going. I could not have done this without her.

Finally, I owe my deepest gratitude to my family for their unwavering support of

my dreams. They have always set high expectations for me, pushed me to achieve

insurmountable goals, and persevered with me when I struggled. They are the solid

foundation upon which everything I have built rests. I would be lost without them.

I am especially grateful to my parents for their unconditional love and constant

encouragement. They selflessly provided for me in more ways than I can even recog-

nize. They have instilled in me both a sense of determination and appreciation for

the beauty found in life’s small mysteries. They enabled me to pursue my dreams.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . viii

LIST OF FIGURES . ix

SUMMARY . xi

I INTRODUCTION . 1

1.1 Scope and Outline . 4

II PROXY APPLICATIONS BENCHMARKS 5

2.1 Proxy Apps . 5

2.2 Motivation . 5

2.3 Workloads . 6

2.4 Evaluation Methodology . 9

2.4.1 Hierarchical Event-based Performance Analysis 10

2.5 Results . 12

2.5.1 Traditional metrics . 12

2.5.2 Loop analysis . 13

2.5.3 Instruction mix results . 16

2.5.4 HEPA results . 18

2.6 Discussion . 19

2.7 Related Work . 21

III PRESSURE POINT ANALYSIS OF PERFORMANCE 22

3.1 Hardware perturbations . 23

3.1.1 Throttling core and memory clock frequency 23

3.1.2 Throttling cache capacity . 25

3.1.3 Avoiding vector units . 27

3.1.4 Disabling hyperthreading . 27

3.2 Software perturbations . 28

v

3.2.1 Bank conflicts . 28

3.2.2 Instruction decode rate deficiencies 29

3.2.3 Cache utilization . 31

3.3 Automating software perturbations 34

3.3.1 Identifying hot loops . 34

3.3.2 Extracting loops . 38

3.3.3 Generating perturbations . 40

3.3.4 Performance experiments . 41

3.4 Related Work . 41

IV ASSESSING THE IMPACT OF THE MICROARCHITECTURE 43

4.1 Introduction . 43

4.2 Methodology . 44

4.2.1 Processors . 44

4.2.2 Architecture Features . 45

4.2.3 Kernels . 45

4.2.4 Experimental Platform . 47

4.2.5 Definition of Energy Efficiency 50

4.2.6 Register Scrambling . 51

4.3 Experimental Results . 51

4.3.1 SIMD Extensions . 54

4.3.2 Frontend Features . 56

4.3.3 Backend Features . 59

4.3.4 Process/Circuits Innovation 61

4.4 Discussion . 62

4.4.1 Energy per instruction (EPI) depends highly on IPC 63

4.4.2 Fixed costs dominate variable costs 64

4.4.3 Performance improvements exceed power increases 66

4.4.4 Frontend features reduce the tax of complex instructions . . 66

vi

4.4.5 SIMD extensions increase the productivity of each instruction
with minimal impact on power 67

4.4.6 High performance computing vs energy efficient computing . 67

4.5 Related Work . 68

4.6 Future Work and Conclusion . 69

V A THEORETICAL FRAMEWORK FOR ALGORITHM-ARCHITECTURE
CO-DESIGN . 72

5.1 Introduction . 72

5.2 Background and Related Work . 76

5.3 An Example of Instantiating a Model within the Framework 77

5.3.1 Technological and architectural parameters 78

5.3.2 A model of physical constraints 79

5.3.3 Algorithmic cost models . 81

5.4 Analysis . 85

5.4.1 Ideal architectures . 85

5.4.2 Architecture trade-offs: lightweight vs. heavyweight designs . 88

5.4.3 Algorithm trade-offs: computation v. communication 89

5.4.4 Algorithm trade-offs: space vs communication 89

5.4.5 Increasing the power budget 90

VI CONCLUSION . 92

BIBLIOGRAPHY . 109

vii

LIST OF TABLES

1 Performance events measured in the Top Level analysis 13

2 Loop characteristics of the proxy app workloads 15

3 Instruction mix of proxy app workloads 17

4 Instruction mix of NPB workloads . 17

5 Instruction mix of SpecInt workloads 18

6 The six processor models used in this study. 46

7 Architectural Features . 47

8 The 20 kernels evaluated in this study. 48

9 Fixed vs Variable cost analysis of CPU power. The power model is
based on a linear regression of the data shown in Figure 21. 66

10 Technology Constants: Projected values for 2018. 79

11 Hardware Characteristics (µ). 80

viii

LIST OF FIGURES

1 Hierarchy for the Ivy Bridge microarchitecture. 11

2 Top level flowchart. 12

3 Box plot of Instructions Per Second (IPC). 14

4 Box plot of memory bandwidth utilization. 15

5 Top level (left) and Backend level (right) analysis of the proxy app
workloads . 19

6 Top level (left) and Backend level (right) analysis of the NPB workloads 20

7 Top level (left) and Backend level (right) analysis of the SPECint work-
loads . 20

8 Core (left) and memory (right) clock frequency scaling. 25

9 Runtime performance as a function of core frequency on NPB.lu work-
load. The different series represent different DRAM clock frequencies. 26

10 The decode limit. 31

11 A diagram of the control flow through the basic blocks of the XSBench
loop (See Figure 3.6). 37

12 This figure shows Kernel 7 and a sample of the data collected for this
kernel. To conserve space, the assembly code listings contains the
AVX version (26 instructions) instead of the longer SSE version (51
instructions); however, the data table contains values collected from
the SSE version. 49

13 An example of two “scrambled” versions of Kernel 1. This figure also
includes sample data from HSW. 52

14 A regression of several scrambles of Kernel 1 on HSW. 53

15 Average improvement in energy efficiency across the Livermore Loops
kernels. 54

16 This figure demonstrates the results from manually unrolling Kernel
18 on HSW. Kernel 18 has 19 instructions, not counting the branch
instruction. When unrolls=10 the loop nest contains 190 instructions.
Performance remains constant until the instruction stream exceeds the
capacity of the L1 instruction cache at unrolls =300. 57

ix

17 Improvement in energy efficiency from the micro-op and loop caches.
Blue denotes the contribution of the loop caches and orange denotes
the contribution of the micro-op caches. 58

18 Improvement in energy efficiency attributed to 32nm process technol-
ogy step. 63

19 Improvement in energy efficiency attributed to 22nm process technol-
ogy step. 63

20 EPI as a function of IPC on HSW. Data samples come from ten “scram-
bles” of each of the Livermore Loops kernels. Data points are colored
according to the kernel. 64

21 Power as a function of IPC. Data samples come from ten “scrambles”
of each of the Livermore Loops kernels. 65

22 A notional power/transistor allocation problem. In our framework, a
fixed die area (allocated between cores and cache) and a fixed power
budget (allocated between core frequency and bandwidth), define a
space of possible machines. 73

23 Projected performance for a 3D FFT and matrix multiply at some
problem size (lighter is better). Different algorithms may perform dif-
ferently on these machines. The marker is the approximate “location”
within this space of the NVIDIA Echelon GPU-like architecture pro-
posed for the year 2017 [65]. In the 3D FFT example, the optimal
configuration is 2.6 times faster than Echelon. 74

24 Hardware configurations for the hypothetical machines. The subplots
break down the power and die area resource allocations. 86

25 Relative execution times for the hypothetical machines. The subplots
show execution time relative to the ieal FFT, Stencil, and MatMult
configurations. 86

26 Node Density Plots. 88

27 Plot of the time to compute a convolution using different stencil sizes.
The figure compares the Stencil method with an FFT based method
in the 3D case. 90

28 Performance of 2.5D Matrix Multiply variants. The 2.5D algorithm is
parameterized by a value C = pα where 0 ≤ α ≤ 1

3
. ’DRAM’ represents

the power consumed by the requisite memory capacity. 91

29 Plot of performance as a function of the power budget. Performance
values for the algorithms are scaled to their performance at a 20 MW
power budget. 91

x

SUMMARY

The software performance optimizations process is one of the most challenging

aspects of developing highly performant code because underlying performance limita-

tions are hard to diagnose. In many cases, identifying performance bottlenecks, such

as latency stalls, requires a combination of fidelity and usability that existing tools

do not provide: traditional performance models and runtime analysis lack the granu-

larity necessary to uncover low-level bottlenecks; while, architectural simulations are

too cumbersome and fragile to employ as a primary source of information. To address

this need, we propose a performance analysis technique, called Pressure Point Anal-

ysis (PPA), which delivers the accessibility of analytical models with the precision

of a simulator. The foundation of this approach is based on an autotuning-inspired

technique that dynamically perturbs binary code (e.g., inserting/deleting instructions

to affect utilization of functional units, altering memory access addresses to change

cache hit rate, or swapping registers to alter instruction level dependencies) to then

analyze the effects various perturbations have on the overall performance. When

systematically applied, a battery of carefully designed perturbations, which target

specific microarchitectural features, can glean valuable insight about pressure points

in the code. PPA provides actionable information about hardware-software interac-

tions that can be used by the software developer to manually tweak the application

code. In some circumstances the performance bottlenecks are unavoidable, in which

case this analysis can be used to establish a rigorous performance bound for the

application. In other cases, this information can identify the primary performance

limitations and project potential performance improvements if these bottlenecks are

mitigated.

xi

CHAPTER I

INTRODUCTION

“Computer architectures have become so complex that manually optimizing software

is difficult to the point of impracticality.” – M. Frigo and S. G. Johnson (Creators of

FFTW), 1998

Most scientific applications run at only a fraction of the theoretical peak through-

put of the system. Software performance optimizations can significantly improve the

performance of most of these applications; however, the prevalence of this unfulfilled

performance potential is a testament to the difficulty involved in diagnosing and fixing

performance bottlenecks. The optimization process is time consuming and requires

a significant amount of guesswork. Tools, such as performance counters and static

code analyzers, are available for collecting performance profiles, but these passive

observations are insufficient for identifying the root cause. Currently, this process is

more of an art form than a science: the programmer manually tweaks the code in a

guess-then-check fashion until suitable performance is achieved.

This dissertation addresses that problem by developing a better understanding

of the hardware-software interactions that drive application performance. To build

this intuition, we present a systematic approach for diagnosing performance limita-

tions, called Pressure Point Analysis, that actively perturbs code through a series of

automated experiments designed to illuminate performance bottlenecks. The results

provide high-fidelity insights that appeal to both the hardware and software perspec-

tives. Ultimately, this work contributes to the understanding of hardware-software

codesign and improves the productivity of the software optimization process.

1

The key to diagnosing performance limitations is being able to isolate the applica-

tion and architectural factors that are most important to performance. Currently, this

is done manually by the programmer, albeit guided by performance measurements

and profiling tools. Alternatively, our approach automates this processes through a

battery of off-line trial-and-error experiments that perturb the code until pressure

points are revealed.

Unlike the passive observations from performance-counter-based methods, Pres-

sure Point Analysis relies upon experimentation to actively test a hypothesis about

the behavior of the processor core. Instruction sequences from the “hot loops” of

the application are turned into a series of micro-benchmarks, each with a minor code

variation targeting a specific architectural feature. Comparing the performance of

these micro-benchmarks reveals critical information about that architectural features

that affect performance. It is important to note that these code perturbations do

not preserve the semantic correctness of the code. The code perturbations are not

intended to optimize the code but rather to identify the source of lost cycles.

This dissertation makes four primary contributions to the field of high performance

computing.

1. Analysis of proxy application workloads: We select, organize, and analyze

a set of emerging supercomputing workloads. We use this benchmark suite

to identify common computational bottlenecks using traditional performance

analysis techniques.

2. An active approach to performance analysis: We advocate for an active

approach toward performance analysis that experimentally tests potential bot-

tlenecks by manipulating specific elements of hardware and/or software in a

way that will prove or disprove a potential performance bottleneck.

3. Evolution of Energy Efficiency: Using a longitudinal study of the Intel R©

2

Core
TM

processor, we track the impact architectural innovations have had on

performance and energy efficiency. This motivates a discussion about the fu-

ture strategies for designing lean processors that eliminate architectural bloat

without sacrificing performance.

4. A theoretical framework for algorithm-architecture co-design: We pro-

pose a mathematical framework designed to analyze high-level performance im-

pacts of algorithmic and architectural design decisions. This analytical tool

provides a holistic view into the performance characteristics of hypothetical su-

percomputers by modeling the core hardware-software interactions that drive

performance. This approach can be used to inform the codesign process of

future supercomputers.

This dissertation also provides three tangible contributions in the form of publicly

available software:

1. Proxy app benchmark suite: The proxy app benchmark suite provides scripts

for downloading, compiling, building, and running the proxy app workloads. All

of the software dependencies, such as OpenBLAS and Eigen, are downloaded,

built, and managed by the benchmark suite. Chapter 2 includes a detailed de-

scription of the workloads and high-level analysis of the workload characteristics.

The software is available at https://bitbucket.org/kentcz/proxy_apps.

2. Pressure Point Analysis framework: The PPA Toolkit provides tools for

identifying, extracting, and analyzing loop kernels. Chapter 3 provides more

details about the Pressure Point Analysis as well as a description of the process

involved in conducting this type of analysis on the Intel Ivy Bridge microarchi-

tecture. The codebase is available at https://bitbucket.org/kentcz/code_

analysis_tool2.

3

https://bitbucket.org/kentcz/proxy_apps
https://bitbucket.org/kentcz/code_analysis_tool2
https://bitbucket.org/kentcz/code_analysis_tool2

3. Corpus of loop kernels: As part of the Pressure Point Analysis, 130 loop

kernels were extracted from the proxy app workloads and converted into stand-

alone microbenchmarks. The loop kernels are available at https://bitbucket.

org/kentcz/code_analysis_tool2.

1.1 Scope and Outline

Chapter 2 introduces the Proxy app workloads as a representative sample of emerging

HPC workloads then analyzes their performance characteristics. We observe the

instruction mix, instruction throughput, bandwidth utilization, and program control

of these workloads. For context, the results are compared with the NAS Parallel

Benchmark and SPECint workloads. We also use traditional performance diagnosis

techniques to identify bottlenecks in the applications.

Chapter 3 introduces the concept of passive vs active performance analysis. We

first demonstrate methods for using hardware perturbations to identify performance

bottlenecks. We also introduce the Pressure Point Analysis as a technique for per-

turbing software to identify performance bottlenecks.

Chapter 4 considers the hardware design perspective by studying the impact evo-

lutionary improvements in the microarchitecture of recent generations of the Intel

Core processor have had on both performance and energy efficiency.

Chapter 5 analyzes the inherent performance limitations of application by simul-

taneously abstracting both the computational requirements and the architectural de-

sign. Using an analytical framework, we study the algorithm-architecture trade-offs

in future supercomputer system architectures.

Chapter 6 summarizes the findings and offers insight into future research direc-

tions.

4

https://bitbucket.org/kentcz/code_analysis_tool2
https://bitbucket.org/kentcz/code_analysis_tool2

CHAPTER II

PROXY APPLICATIONS BENCHMARKS

In this chapter we present the Proxy app benchmark suite, a collection of workloads

for evaluating the performance of processor microarchitectures across common super-

computing workloads. This workload will be used throughout this dissertation as a

representation of HPC workloads relavant to supercomputing.

2.1 Proxy Apps

As part of the Exascale Supercomputing directive, the DOE has identified several

high priority applications which are targeted for execution on future exascale super-

computers. To make these workloads more accessible to researchers, several proxy

apps were commissioned as part of a co-design initiative tasked with enabling sci-

entific applications to harness the potential of exascale computing. The proxy apps

help hardware and software developers make coordinated design decisions.

The proxy apps provide a smaller full featured representation of particular su-

percomputing applications. Core computational kernels have been extracted into

self-contained proxy apps in such a way that they still preserve the workload char-

acteristics of the original application. Lessons learned from hardware or software

explorations of the proxy app can be applied to the full application.

2.2 Motivation

The proxy app benchmark suite was created to evaluate the performance of processor

microarchitectures across common supercomputing workloads. Full-scale supercom-

puting benchmarks are too cumbersome to run repeatedly and too unwieldy to analyze

5

at the level of single-core-performance. To analyze the lower-level performance char-

acteristics of the processors, this suite instead uses proxy apps that run on a standard

workstation – it provides the workload characteristics of the computational kernels

within a supercomputing application but has been scaled-down to the magnitude of

standard processor benchmark suites.

The proxy app benchmark suite fulfills the standard expectations of a meaningful

set of benchmarks:

1. Emerging Workloads: The workloads in this benchmark are all DOE sanc-

tioned proxy apps. They are based on applications that play a key role in solv-

ing many of today’s most pressing problems, including producing clean energy,

extending nuclear reactor lifetimes, and certifying the aging nuclear stockpile.

2. Diverse: The proxy apps in the suite represent a variety of supercomputing ap-

plications. They are collected from each of the three ASCR Co-design Centers:

ExMatEx, CESAR, and ExaCT.

3. Employ State-of-Art Techniques: Over time, both the hardware and the

software evolve – new algorithms, applications and techniques are always emerg-

ing. These proxy apps and the applications upon which they are based, have

been the test case for many new programming models, algorithms, performance

analytics, software development tools, and software optimizations techniques.

4. Support Research: The associated tools provided with the benchmark suite

extends beyond a simple performance scoring. Each of the benchmarks have

been augmented with profiling tools and parameterized for controlling compi-

lation configurations.

2.3 Workloads

The proxy app benchmark suite contains the eleven proxy apps.

6

1. LULESH: The Livermore Unstructured Lagrange Explicit Shock Hydro (LULESH)

is a based on the ALE3D hydrodynamics application, which consumes over 25%

of data center resources throughout the DOD. It is a mesh based physics simu-

lation on an unstructured grid. The most compute intensive part of the simu-

lation is calculating the nodal forces during each time-step [61]. LULESH has

been widely studied as a test case for various programming models and per-

formance analysis tools. Highly optimized versions have been implemented in

MPI, OpenMP, CUDA, OpenCL, OpenACC, Chapel, and Charm++. Related

work has demonstrated that effective use of loop fusion, array contraction, and

vectorization have significant impact on performance [62, 63].

2. MiniFE: MiniFE is an unstructured implicit finite-element application. It

solves a sparse linear system using an un-preconditioned conjugate-gradient.

Most of the computation is contained within level-1 BLAS operators such as

AXPY, DOT, and NORM as well as sparse matrix-vector products.

3. CoSP2: CoSP2 calculates the density matrix for electronic structure calcu-

lations in quantum molecular dynamics (QCD). The algorithm is based on a

Second Order Spectral Projection (SP2) method. Most of the computation

is contained inside a series of sparse matrix-matrix multiplies, which use the

ELLPACK-R (ELL) sparse matrix data format.

4. CoHMM: CoHMM is a multiscale simulation of elastodynamics based on

the Heterogeneous Multiscale Method (CoHMM). The application uses spa-

tial adaptive sampling to reduce the demand on fine-scale simulations. At

each macro-scale time step, it reconstructs the required constitutive data by

interpolating fine-scale simulations on the 3-dimensional simulation domain. A

predictive approach is used to determine the important sample points at the

beginning of each macro-scale, which provides an abundance of parallelism with

7

minimal synchronization [97].

5. CoMD: CoMD is a molecular dynamics (MD) simulation used for studying

dynamical properties of liquids and solids. The majority of the computational

is involved in N-body evaluations of the interatomic potentials and the corre-

sponding forces. OpenMP is used to parallelize the force loop; however, in order

to avoid race conditions and costly atomic operations, the application ignores

force symmetry. Each atom in the pair computes Fij separately and updates

only the individual force term [21].

6. CoEVP: Embedded Visco Plasticity (CoEVP) uses scale-bridging to solve a

Taylor cylinder impact test problem. The simulation uses a Lagrangian finite el-

ement model to calculate the deformations at a coarse scale and a viscoplasticity

model to measure the fine-scale details of the material microstructure [43, 88].

The application stores the results of fine-grain simulations in an embedded

database. The fine-grained simulations synchronize internally using OpenMP,

while the database serves as a synchronization point between simulations. The

computational kernels inside this application make extensive use of costly math-

ematical operations such as sqrt and pow [39].

7. XSBench: XSBench is a proxy for the key computational kernel of the Monte

Carlo neutronics application OpenMC. It uses the Hoogenboom-Martin model

to compute the macroscopic neutron cross sections, a kernel which accounts for

around 85% of the total runtime of OpenMC. There are 12 different materials

and 355 different nuclides present in the modeled reactor, totaling 5.6 GB of

input data [113].

8. RSBench: RSBench represents the multipole resonance representation lookup

cross section algorithm. It is identical to XSBench in functionality, but uti-

lizes an alternative algorithm. RSBench models the multipole cross section

8

lookup algorithm, which is more efficient at storing and moving data than XS-

Bench [112].

9. Nekbone: Nekbone is an abridged version of the Nek5000 thermal hydraulic

code designed for large eddy simulation and direct numerical simulation of tur-

bulence. Nekbone embeds a matrix-vector product in a conjugate gradient

iteration to solve the 3D Poisson equation [66].

10. Lassen: Lassen is a front-tracking application used to calculate the propagation

of wave-fronts. It is a highly irregular application with dynamic load balancing.

11. UMT: UMT is a 3D, deterministic, multigroup, photon transport code for

unstructured meshes. The kernel has a high compute intensity, but tasks are

entangled with dependencies between upstream and downstream cells in the

sweep directions [87].

2.4 Evaluation Methodology

Our goal is to analyze the workload characteristics of real-world supercomputing ap-

plications. We evaluate workloads from the proxy app benchmark suite, NAS Parallel

Benchmarks (NPB) OpenMP 3.3 [59], and the SPECint benchmarks from the SPEC

CPU2006. All of the experiments were preformed on a an Intel Core i7 3770K Ivy

Bridge processor running a stock Ubuntu 14.04 Server installation. For comparisons,

we also tested an Intel Core i7 4770K Haswell processor with an identical setup.

The processors were configured to run at factory prescribed 3.5 GHz frequency with

Intel R© Turbo Boost Technology and Hyperthreading features disabled. The bench-

marks were compiled using the Intel R© Composer XE version 15.0.0 tool chain [54],

with the exception of a few proxy app which were compiled with GCC 4.8.4 because

of entrenched compiler dependencies.

9

2.4.1 Hierarchical Event-based Performance Analysis

Beyond high-level workload characteristics, we also conduct a Hierarchical Event-

based Performance Analysis (HEPA) on each workload to identify low-level bottle-

necks. This analysis consists of a systematic method for using architectural per-

formance counters to diagnose performance limitations, formalized by engineers at

Intel [118]. It is implemented in several of the most popular performance analysis

tools, including VTune and the Linux Perf utility [29].

The HEPA methodology uses a hierarchical approach to identify bottlenecks. It

starts with a high-level classification of CPU execution time, then drills down into

categories that need further investigation. The drill-down continues recursively until

a specific stall has been identified. Figure 1 is an abbreviation of the hierarchy used

to analyze the Ivy Bridge microarchitecture, which is based on the methodology

presented by Ahmad Yasim [118]. Root causes become leaf nodes in the hierarchy

tree. Unfortunately, since performance counter events track different pipeline stages,

many of the events are not directly comparable, preventing a single flat break-down of

performance bottlenecks. In the hierarchical approach, the hierarchy is intentionally

constructed in such a way that all sibling nodes measure the same pipeline stage and

can be measured simultaneously, so that all sibling node are comparable.

On the Ivy Bridge microarchitecture, the top level breakdown classifies each

pipeline slot as either Retiring, Frontend-Bound, Backend-Bound, or Bad Specu-

lation. The flowchart in Figure 2 depicts the logic used to classify the pipeline slots.

The Retiring label indicates that the pipeline slot was used to retire a uop successfully

without stalls. The percentage of Retiring pipeline slots represents the percentage of

maximum uop throughput achieved, it is highly correlated with the Instructions Per

Cycle (IPC) metric. The other labels identify parts of the microarchitecture respon-

sible for the stall. Table 1 lists the performance counter events measured during the

top level analysis. Equation 1 is used for the top level analysis.

10

Hierarchical Top-Down Analysis

Retired
Bad

Speculation
Frontend

Bound
Backend
Bound

Fetch
Bandwidth

Fetch
Latency

Base
Micro

Sequencer
Branch
Misp

Machine
Clears

iTLB
Miss

iCache
Miss

Core
Bound

Mem
Bound

L1 L2 L3 ExtStoreDiv
Exp Port
Utilization

P0 P1 P2 P3
Mem

Latency
Mem

Bandwidth

Figure 1: Hierarchy for the Ivy Bridge microarchitecture.

SLOTS = 4× CPU CLK UNHALTED.THREAD (1)

RETIRED = UOPS RETIRED.RETIRE SLOTS / SLOTS (2)

BAD SPECULATION = (UOPS ISSUED.ANY (3)

−UOPS RETIRED.RETIRE SLOTS

+4× INT MISC.RECOV ERY CY CLES) / SLOTS

FRONTEND BOUND = IDQ UOPS NOT DELIV ERED.CORE/SLOTS (4)

BACKEND BOUND = 1− (FRONTEND BOUND (5)

+RETIRED +BAD SPECULATION)

11

Top-Level Classification

Uop
Allocated?

Frontend
Stalled?

Uop
Retires?

RETIRED BAD_SPECULATON BACKEND_BOUNDFRONTEND_BOUND

Yes No

Yes Yes NoNo

Pipeline Slot

Figure 2: Top level flowchart.

2.5 Results

This section examines the workload characteristics of the proxy app benchmark suite.

For context, resulting workload characteristics of the proxy app workloads are com-

pared with the NPB and SPECint workloads.

2.5.1 Traditional metrics

Performance counters were used to measure several common performance metrics.

Figure 3 lists the Instructions Per Second (IPC). The Ivy Bridge microarchitecure

core is capable of sustaining up to four uops per cycle, which roughly translates to an

ideal throughput of four instruction per cycle. Overall, the average IPC is a consistent

1.3 instructions per cycle across the proxy app, NPB, and SPECint benchmark suites.

Compared to NPB and SPECint, the proxy app workloads has more variability, with

MiniFE averaging 0.8 IPC and Nekbone averaging 3.4 IPC.

Figure 4 lists the effective memory bandwidth utilization. The test system has

a dual channel 1600MHz DDR3 memory with a peak memory throughput of 25.6

12

Table 1: Performance events measured in the Top Level analysis

Event Description

CPU CLK UNHALTED.THREAD Core cycles when the core is not in halt
state

IDQ UOPS NOT DELIVERED.CORE Uops not delivered to resources Alloca-
tion Table (RAT) per THREAD when
backend of the machine is not stalled

UOPS ISSUED.ANY Uops that Resource Allocation Table
(RAT) issues to Reservation Station
(RS)

UOPS RETIRED.RETIRE SLOTS Retirement slots used
INT MISC.RECOVERY CYCLES Number of cycles waiting for the check-

points in Resource Allocation Table
(RAT) to be recovered after Nuke due
to all other cases except JEClear

GB/s. Only five of the twenty-nine (proxy app.MiniFE, NPB.cg, NPB.lu, NPB.mg,

and NPB.sp) utilize more than half of the available memory throughput. The NPB

workloads average 12 GB/s whereas the proxy app workloads average only 4 GB/s,

which is only 15% of the peak throughput.

2.5.2 Loop analysis

The program control flow and the underlying loop structure of a workload have a sig-

nificant impact the runtime behavior of the application. Many architectural features

such as the branch predictors, loop buffer, and instruction decode unit, are sensitive

to the size and complexity of loop structure.

To compare the program control flow of different workloads, we measure several

high-level loop characteristics: number of loop nests, execution time spent in loop

nests, average number of instructions per loop nest, and the average stack depth of a

loop nest.

For this data to be relevant, we only analyze “hot” loop nests and filter out

auxiliary loop nests that have negligible impact on the runtime of the application.

Optimizing compilers often create multiple binary loops from a single source loop

13

Benchmark Comparisons

SPECint NPB ProxyApps

1

1.5

2

2.5

3

3.5

4

CPU Utilization

U
ti

li
z
a
ti

o
n

SPECint

NPB

ProxyApps

SPECint NPB ProxyApps

0.5

1

1.5

2

2.5

3

3.5

IPC

IP
C

SPECint

NPB

ProxyApps

Figure 3: Box plot of Instructions Per Second (IPC).

to deal with the corner case of optimizations. For example, unrolling a loop often

requires a tail loop to handle left-over iterations. Applications also contain a variety

of initialization code that does not have material impact on the performance of the

application. For the purposes of this study we chose 1% of execution time as our

threshold and ignore all loop nests that do not consume enough execution time,

which is consistent with the similar studies [64, 82]. Execution time of the loop nest

is estimated by aggregating profile time across each of the instructions in the basic

block.

14

Benchmark Comparisons

SPECint NPB ProxyApps

0

5

10

15

20

E�ective Memory Bandwidth

M
e
m

o
ry

 B
a
n

d
w

id
th

 (
G

B
/s

)
SPECint

NPB

ProxyApps

Figure 4: Box plot of memory bandwidth utilization.

Table 2 lists the loop characteristics of the proxy app workloads. The “LN Count”

column lists the number of hot loop nests and the “LN Time” lists percentage of

execution time in the hot loop nests. Exception for CoEVP, Lassen, and UMT, the

vast majority of execution time is spent inside loop nests. There is an average of

eight hot loop nests across the proxy app workloads, which is lower than NPB (17)

and much lower than SPECint (49).

Table 2: Loop characteristics of the proxy app workloads

LN Count LN Time

LULESH 11 73.7%
MiniFE 12 83.3%
CoSP2 8 91.0%
CoHMM 5 94.6%
CoMD 5 93.3%
CoEVP 11 17.2%
XSBench 3 93.1%
RSBench 3 90.5%
Nekbone 10 93.1%
Lassen 4 07.1%
UMT 12 47.6%

15

2.5.3 Instruction mix results

Pin was used to dynamically count the instructions executed in the proxy apps work-

loads [81]. The frequencies are shown in Table 3. The percentages are based on the

frequency of executed instructions based on the application simulation, and does not

necessarily represent the number of instructions in the compiled binary or the faction

of time spent executing the instructions. Each instruction is categorized as

1. AVX: part of either the AVX or SSE instruction set

2. Vec: a vectorized (non-scalar) instruction,

3. FP: a floating-point arithmetic instruction,

4. Mem: a memory load or store instruction,

5. Rds: a memory read instruction,

6. Rds16: a vectorized read instruction that load 16-bytes or more,

7. Brnch: a branch instruction,

8. Stck: a stack instruction.

A single instruction can qualify for multiple labels. For example, “vmulpd ymm5,

ymm4, YMMWORD PTR [r14+r8*8]” loads a 32-byte value then computes a vec-

torized double-precision multiply. It is counted as AVX, Vec, FP, Mem, Rds, and

Rds16.

Memory operations are extremely common. Across the proxy app workloads, 30-

50% of instructions executed include a memory access, except for XSBench. The vast

majority of the memory accesses are loads. Only RSBench and UMT utilize vectorized

loads effectively. Branch instructions range from 3.7-19.9% with an average of 12.7%.

Stack instructions are slightly more common with a range of 3.1-28.4% and an average

of 13.7%.

16

The instruction mix of the NPB and SPECint workloads are listed in Table 4 and

Table 5. As expected, the SPECint workloads do not contain floating-point instruc-

tion or utilize the AVX instruction unit. Instead, the Specint workloads have more

memory operations, branch instructions, and stack instructions. The NPB workloads

are more similar to the proxy app workloads. Both the NPB and proxy app workloads

have similar distributions of memory operations and floating-point operations.

Table 3: Instruction mix of proxy app workloads

AVX Vec FP Mem Rds Rds16 Brnch Stack

LULESH 78.1% 11.2% 42.0% 50.1% 36.6% 03.9% 03.7% 28.4%
MiniFE 34.7% 12.8% 16.1% 38.2% 34.1% 02.6% 11.4% 08.0%
CoSP2 26.3% 01.6% 11.7% 46.0% 36.8% 00.0% 15.9% 03.1%
CoHMM 09.1% 01.2% 04.1% 39.9% 35.7% 00.8% 17.3% 07.2%
CoMD 58.3% 01.1% 30.3% 48.5% 38.1% 00.0% 06.5% 19.9%
CoEVP 18.7% 02.0% 07.7% 33.4% 22.1% 00.7% 14.2% 18.6%
XSBench 45.6% 09.9% 10.6% 15.0% 13.1% 01.2% 13.6% 03.1%
RSBench 68.8% 55.4% 36.3% 43.3% 34.3% 20.5% 05.7% 19.1%
Nekbone 00.0% 00.0% 00.0% 33.0% 24.1% 00.2% 19.8% 12.3%
Lassen 00.0% 00.0% 00.0% 31.4% 21.0% 02.7% 17.4% 13.4%
UMT 35.7% 18.8% 15.4% 42.4% 31.1% 08.7% 09.4% 18.7%

Table 4: Instruction mix of NPB workloads

AVX Vec FP Mem Rds Rds16 Brnch Stack

bt 43.3% 00.1% 43.3% 51.6% 33.6% 00.1% 00.3% 28.9%
cg 25.0% 00.1% 25.0% 39.9% 39.0% 00.0% 15.8% 00.1%
dc 00.0% 00.0% 00.0% 34.6% 26.0% 00.0% 20.1% 12.3%
ep 46.3% 09.4% 23.6% 24.6% 18.2% 01.3% 11.6% 09.6%
ft 30.6% 00.2% 30.1% 31.6% 16.0% 00.0% 05.2% 00.7%
is 14.5% 00.0% 14.5% 36.3% 25.6% 00.0% 08.2% 06.5%
lu 51.3% 00.1% 51.3% 46.4% 33.9% 00.0% 00.7% 15.2%
mg 23.0% 19.3% 23.0% 46.8% 40.2% 02.1% 03.7% 05.5%
sp 41.3% 00.2% 41.3% 43.5% 29.3% 00.0% 02.4% 05.8%
ua 31.8% 03.8% 29.3% 55.9% 39.3% 00.2% 07.0% 21.8%

17

Table 5: Instruction mix of SpecInt workloads

AVX Vec FP Mem Rds Rds16 Brnch Stack

perlbench 00.0% 00.0% 00.0% 43.0% 29.0% 00.2% 14.4% 22.4%
bzip2 00.0% 00.0% 00.0% 35.8% 25.4% 00.4% 08.8% 23.5%
gcc 00.0% 00.0% 00.0% 42.2% 28.4% 00.2% 15.2% 21.5%
mcf 00.0% 00.0% 00.0% 44.3% 29.4% 00.2% 17.6% 20.6%
hmmer 00.0% 00.0% 00.0% 38.8% 26.8% 00.3% 11.8% 22.5%
sjeng 00.0% 00.0% 00.0% 44.8% 29.7% 00.2% 18.0% 20.5%
libquantum 00.0% 00.0% 00.0% 44.6% 29.6% 00.2% 17.9% 20.5%
astar 00.0% 00.0% 00.0% 44.2% 29.4% 00.2% 17.3% 20.7%

2.5.4 HEPA results

Figure 5 shows the results from the HEPA analysis (see Section 2.4.1) on the proxy app

workloads. For comparisons, Figure 6 and Figure 7 shows the results for the NPB

and SPECint workloads.

Instruction throughput ranges dramatically across the proxy app workloads. Nek-

bone utilizes over 85% of pipeline slots whereas XSBench uses only 15%. The average

pipeline utilization across the proxy app workloads is 43% which is higher than the

average across the NPB (32%) and SPECint (35%) workloads.

Scientific applications typically avoid the penalty of incorrect speculation because

the regular program control flow is effectively managed by the branch predictor. In

the proxy app workloads speculation costs are only significant in the XSBench and

CoMD, of which it only accounts for 13% of pipeline slots. The NBP workloads

are similarly unimpacted by speculation. The more irregular branching patterns of

the SPECint workloads account for an average of 10% of pipeline slots lost to bad

speculation.

Overall, most the workloads are Backend Bound. Across the proxy app workloads

an average of 47% of pipeline slots are consumed by execution stalls in the Backend.

The average jumps to 58% across the NPB workloads. The average is only 36%

across the SPECint workloads because they are more susceptible to speculation and

18

Frontend issues.

The MicroOp Cache and Loop Cache have dramatically reduced the number of

frontend bottlenecks in the Ivy Bridge microarchitecture. Of the proxy app work-

loads, only CoSP2, CoEVP, and Lassen have significant bottlenecks in the Frontend.

The SPECint workloads are more sensitive to Frontend issues because they tend

to have larger code footprints. Frontend issues dominate the Perlbench and Sjeng

workloads.

The Backend Level plots classify Backend Bound workloads as either Core or

Memory bound by accounting for execution stalls in the backend. Seven of the eleven

proxy apps are Core Bound – only MiniFE, CoSP2, XSBench, and RSBench have

more stalls attributed to the memory subsystem than the execution core. This is

indicative of loops with tight data-dependent arithmetic instructions. The NPB and

SPECint workloads are more Memory Bound.

 LU
LE

S
H

M
in
iF
E

C
oS

P
2

C
oH

M
M

C
oM

D

C
oE

V
P

X
S
B
en
ch

R
S
B
en
ch

N
ek
bo
ne

La
ss
en

U
M
T

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

RETIRING BAD_SPECULATION FRONTEND_BOUND BACKEND_BOUND

LU
LE

S
H

M
in
iF
E

C
oS

P
2

C
oH

M
M

C
oM

D

C
oE

V
P

X
S
B
en
ch

R
S
B
en
ch

N
ek
bo
ne

La
ss
en

U
M
T

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

MEM_BOUND CORE_BOUND

Figure 5: Top level (left) and Backend level (right) analysis of the proxy app work-
loads

2.6 Discussion

Overall, the consistently low instruction throughput scores indicates a severe mis-

match between the software demands and the hardware capabilities. On average, the

proxy app workloads only utilize 43% of the capabilities of the processor. The vector

units are also under utilized, most floating-point operations and memory accesses did

not take advantage of the SIMD capabilities. Most of the inefficiencies arise from

19

 bt cg dc ep ft is lu

m
g sp ua

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

RETIRING BAD_SPECULATION FRONTEND_BOUND BACKEND_BOUND

bt cg dc ep ft is lu

m
g sp ua

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

MEM_BOUND CORE_BOUND

Figure 6: Top level (left) and Backend level (right) analysis of the NPB workloads

 pe
rlb
en
ch

bz
ip
2

gc
c

m
cf

hm
m
er

sj
en
g

lib
qu
an
tu
m

as
ta
r

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

RETIRING BAD_SPECULATION FRONTEND_BOUND BACKEND_BOUND

pe
rlb
en
ch

bz
ip
2

gc
c

m
cf

hm
m
er

sj
en
g

lib
qu
an
tu
m

as
ta
r

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

MEM_BOUND CORE_BOUND

Figure 7: Top level (left) and Backend level (right) analysis of the SPECint workloads

issues in the backend of the processor, which consists of stalls in the core as well as

the memory hierarchy.

The low memory bandwidth utilization in the proxy app, NPB, and SPECint

workloads suggest some degree of “memory bandwidth headroom”. In particular,

the emerging HPC workloads of the proxy app suite are not as sensitive to memory

bandwidth and latency as traditional performance evaluations might indicate.

Despite the reputation for being floating-point heavy, the HPC workloads in the

proxy app benchmark suite contained a lot of non-floating-point operations. A similar

study of proxy app workloads by Vetter et al. found that integer and memory oper-

ations are more common that float-point operations in most HPC applications [115],

which is consistent with the findings in this study. Almost a third of the instructions

involved memory accesses. Branch and stack instructions are also common.

20

2.7 Related Work

Several performance-counter-based tools have been developed to diagnose bottlenecks

and visualize profiling data. Tau [104], HPCToolkit [3], and PerfSuite [72] are among

some of the most powerful. Each of these tools provides a variety of metrics to eval-

uate the profile information along with heuristics for identifying bottlenecks based

on these metrics. Unfortunately, performance counters only provide a limited view

of the internal state of the processor, limiting direct access to several critical archi-

tectural factors. Also, since these techniques only observe performance effects, more

information is needed pinpoint the underlying cause.

Some of these tools also incorporate trace-based simulations. Cache simulators,

such as SLO [12], can use memory traces to identify potential bottlenecks due to

cache hit rates. Tools for distributed systems, such as Tau [104], can instrument MPI

functions to trace potential communication bottlenecks. Of course, the accuracy

of the trace-based simulations are limited by the ability to properly simulate the

underlying hardware. For example, the eviction policy of the caches in the Intel Core

i7 microarchitectures are considered proprietary information, making cache simulators

of these microarchitectures purely speculative.

Static code analysis can supplement run-time performance analysis. The Intel

Architecture Code Analyzer (IACA) [2] evaluates instruction mix and instruction-

level dependencies to predict port pressure and estimate computational latencies.

Beyond diagnosing performance limitations, more sophisticated tools focus on the

performance optimization task. AutoSCOPE [108] uses diagnostic information col-

lected from performance-counter-based data, trace-based simulations, and static an-

alyzers to select source-code transformations and compiler flags to optimize program

performance. The PERI Autotuner uses performance-counter-based information for

performance analysis to inform the autotuner and similarly uses the autotuner history

to inform the performance analysis [8].

21

CHAPTER III

PRESSURE POINT ANALYSIS OF PERFORMANCE

Diagnosing performance limitations in HPC applications can be difficult. Complex

interactions between the hardware and software of large-scale parallel systems make

performance diagnosis difficult. For example, if a turbulence simulations is run on a

Craxy XE6 supercomputer and it takes four hours to complete, how do we evaluate

its performance? How do we know if investing more time in software optimizations

are likely to yield significant performance improvements? How do we identify the

performance limitations so that we can improve either the software or the hardware

to get better performance?

The key to diagnosing performance limitations is being able to isolate application

and architectural factors that impact performance. Unfortunately, due to the com-

plexity of low-level interactions, existing performance analysis tools —which analyze

data collected from analytical models, performance models, and profiling tools— do

not have enough information to isolate all relevant interactions to make a conclusive

assessment.

Instead, this chapter advocates for an active approach toward performance anal-

ysis. Traditional performance analysis techniques are passive: they infer potential

bottlenecks from observations of performance characteristics. Instead, an active ap-

proach experimentally tests potential bottlenecks by manipulating specific elements of

hardware and/or software in a way that will prove or disprove a potential performance

bottleneck. For example, if we believe that a given application is memory-bandwidth

bound, we can test this hypothesis by generating a version of the application with all

memory accesses removed then compare its performance with the original application.

22

3.1 Hardware perturbations

Incremental changes in the underlying execution hardware can be used to experimen-

tally test potential performance bottlenecks. This works by analyzing the change in

the runtime performance of an application when a specific hardware feature is dis-

abled. A common example of hardware defeaturing is disabling hardware prefetching.

If disabling the hardware prefetchers has a significant impact on the runtime perfor-

mance, we know that the application is highly sensitive to cache access latencies.

Unfortunately, there are only a limited number of hardware modifications available,

not enough to defeature pipeline depth, branch prediction, reorder buffer size, or

cache latency.

3.1.1 Throttling core and memory clock frequency

Throttling the memory clock frequency can be used to quantify the impact memory

bandwidth has on the runtime performance of an application. If throttling memory

bandwidth does not have a significant impact on performance, we can conclude that

the memory bandwidth is not the primary performance bottleneck.

Previous work by Malladi et al. has suggested that many so called “memory

bandwidth bound” applications are actually mischaracterized [83]. These character-

izations are refuted by measuring performance penalties incurred by executing the

application with the DRAM channel frequency throttled down. Applications that

are not sensitive to degradation in the memory bandwidth are therefore not memory

bandwidth bound. For example MemcacheD, a common data center workload, intu-

itively should be either memory or network bound, but close inspection has revealed

it to be limited by the instruction fetch rate [77].

The proliferation of the overclocking community, which consists of hardware enthu-

siasts interested in maximizing the performance of their desktop machines by boosting

CPU clock frequency, has motivated hardware manufacturer to provide mechanisms

23

for manually controlling the voltage and frequency of various hardware components.

The “unlocked” line of Intel desktop processors provide knobs for controlling the clock

frequencies of the cores, bus, uncore, and DRAM. Our Haswell test system has dual-

channel 32GB overclocked DDR3-2133 memory. Using the motherboard overclocking

settings, we are able to manually throttle the DRAM clock frequency from 2133 MHz

down to 800 MHz, which throttles the system memory bandwidth from 34.1 GB/s to

12.8 GB/s. Experiments with the GUPS and Stream benchmarks have shown that

clock frequency throttling does in fact scale both memory access latency and memory

bandwidth appropriately. The test system is also capable of scaling the core clock

frequency from 800 MHz to 3.5 GHz.

Our experiments with the proxy app workloads show that these applications are

highly sensitive to clock frequency scaling, but only the MiniFE workload is sensitive

to memory frequency scaling. Figure 8 shows the performance speedup attributed

to clock frequency throttling. The Core frequency scaling plot on the left shows

the performance improvement when throttling the clock frequency from 800 MHz to

3.5 GHz, a 4.375x increase. The different series represent different memory clock

frequencies: blue is when the DRAM frequency was set to 800 MHz, orange is when

the DRAM clock frequency was set to 1600 MHz, and yellow is when the DRAM

frequency was set to 2133 MHz. The CoHMM, CoEVP, and Nekbone workloads had

nearly perfect 4.375x speedup to match the 4.375x increase in clock frequency and had

virtually no performance degradation with the lower DRAM frequency, which clearly

rules out performance bottlenecks related to the memory bandwidth. A couple of

the workloads, for example RSBench, had higher performance improvements when

the DRAM frequency was higher, but the impact of the memory clock frequency is

overshadowed by the impact of the core clock frequency. The MiniFE workload is the

exception, although it is sensitive core frequency, it is more sensitive to the DRAM

frequency. The Memory Frequency Scaling plot on the right shows the performance

24

improvement when throttling the memory clock frequency from 800 MHz to 2133

MHz, a 2.667x increase. The different series represent different core clock frequencies:

blue is when the core frequency was set to 800 MHz, orange is when the core clock

frequency was set to 2.1 GHz, and yellow is when the core clock frequency was set to

3.5 GHz.

 LU
LE

S
H

M
in

iF
E

C
oS

P
2

C
oH

M
M

C
oM

D

C
oE

V
P

X
S

B
en

ch

R
S

B
en

ch

N
ek

bo
ne

La
ss

en

U
M

T

1

1.5

2

2.5

3

3.5

4

Core Frequency Scaling

800 MHz

1600 MHz

2133 MHz

S
p

e
e

d
u

p

LU
LE

S
H

M
in

iF
E

C
oS

P
2

C
oH

M
M

C
oM

D

C
oE

V
P

X
S

B
en

ch

R
S

B
en

ch

N
ek

bo
ne

La
ss

en

U
M

T

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Memory Frequency Scaling

800 MHz

2.1 GHz

3.5 GHz

S
p

e
e

d
u

p
Figure 8: Core (left) and memory (right) clock frequency scaling.

Most applications have a balance point, a ratio between the core frequency and

the memory frequency where the core and memory are both saturated. Figure 9

shows the performance of the NPB.lu workload across various combinations of core

and memory clock frequencies. The balance point for NPU.lu is when the core and

memory frequency are at a 3:1 ratio. When the memory clock frequency is 800 MHz,

the performance scales linearly with the core clock until the core frequency reaches 2.4

GHz, at which point the memory bandwidth has been saturated and the performance

can no longer scale with the core clock frequency. When the memory frequency is

1066 MHz, the memory bandwidth become saturated at 3.0 GHz, as seen in Figure 9.

When the memory frequency is 2133 MHz, the core frequency would need to reach

6.4 GHz to saturate the memory bandwidth.

3.1.2 Throttling cache capacity

Data caches are crucial for hiding the long latencies associated with fetching data from

memory. Effectively managing temporal locality, spacial locality, and cache pollution

25

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

Core and Memroy Frequency Scaling

NPB.lu

800 MHz

1066 MHz

1800 MHz

2133 MHz

Relative CPU Frequency (Relative to 800 MHz)

S
p

e
e

d
u

p

Figure 9: Runtime performance as a function of core frequency on NPB.lu workload.
The different series represent different DRAM clock frequencies.

can have a significant impact on the performance of memory-intensive workloads.

Satish et al. have found that optimizing the memory access patterns is one of the

most productive software optimization techniques for improving runtime performance.

Traditionally, cache utilization is studied with either trace-driven or execution-

driven simulations which feed memory accesses into a cache simulator. Unfortunately,

simulation based methods are extremely slow, require substantial resources to develop

an accurate simulator, and depend on intimate knowledge of the underlying hardware

to implement.

Hardware mechanisms for throttling cache capacity offer an alternative way for

measuring the relationship between cache capacity and runtime performance. Throt-

tling cache capacity, even to the extreme of disabling cache utilization entirely, can

be used to quantify the performance contributions of the cache. The next generation

of Intel server processors will include Cache Allocation Technology (CAT) which is

capable of throttling L3 cache capacity available to specific cores or processes [55].

This is implemented by controlling access to individual ways in the 16-way associate

L3 cache. For example, a user can simulate the performance with a half-sized cache

26

by restricting the application from caching data in eight of the sixteen ways in the

L3 cache.

3.1.3 Avoiding vector units

Vector processing units enable a single instruction to operate on multiple data ele-

ments simultaneously. Collapsing several scalar instructions into a single vector in-

struction can promote code compactness and improve performance as well as energy

efficiency by increasing execution parallelism.

The Ivy Bridge processor used in this study supports MMX, Intel Steaming SIMD

Extensions (SSE), and the Advanced Vector Extensions (AVX) instruction sets. The

SSE instructions operate on up to 128-bit wide data elements (either four single

precision or two double precision floating point numbers). The AVX data elements

are two times wider than the SSE data elements, operating on up to eight 32-bit

values or four 64-bit values at a time.

Although it is not possible to defeature Ivy Bridge’s vector processing units, it

is possible to quantify the performance benefits of the SIMD widths by limiting the

ISA extensions permitted by the compiler. For example, recompiling the proxy apps

with the “–xSSE4.2” compiler flag will prevent the compiler from generating code

with 256-bit wide SIMD instructions.

Under ideal conditions, doubling the SIMD width can double the runtime perfor-

mance of an application; however, the larger SIMD width has only a modest impact

on the performance on the prox app workloads.

3.1.4 Disabling hyperthreading

Simultaneous Multi-Threading (SMT) technology improves runtime performance by

filling pipeline bubbles with independent instructions from other hardware threads

resident on the same core. These instructions can come from the same application

(multi-threading) or from other applications (multi-processing). From a performance

27

perspective, SMT is beneficial because it can increase instruction throughput (IPC)

by using an extra thread context to expose additional instruction level parallelism

(ILP). In this case, over-provisioning the number of threads can increase utilization.

3.2 Software perturbations

Like hardware perturbation, small modifications to the software can be used to iden-

tify the source of performance limitations. In many cases, monitoring the change in

performance after applying minor perturbations can be used to prove or disprove the

existence of specific performance bottlenecks. We refer to this diagnostic technique

as Pressure Point Analysis (PPA).

PPA constructs a series of experiments to isolate the contribution of a specific

architectural feature through carefully designed code perturbations. Ideally, a battery

of PPA experiments could be used to exhaustively test every possible performance

bottleneck; however, the full battery of PPA tests are beyond the scope of this work.

Instead, we only provide a couple examples as a proof of concept.

Section 3.2.1 and Section 3.2.2 provide examples of how PPA is used to diagnose

common performance bottlenecks. Section 3.2.3 describes a strategy for studying the

bottlenecks caused by cache utilization. Details of the machinery used to perform

PPA are found in Section 3.3.

3.2.1 Bank conflicts

The Ivy Bridge microarchitecuture’s L1D cache was designed to sustain two 128-bit

loads and a 128-bit store every cycle. To achieve this throughput, each 64-byte line of

the data cache is organized into eight 8-byte banks1. A bank conflict happens when

two simultaneous load operations have addresses with the same 2-5 bits. When a

bank conflict occurs, one of the two load operations will be delayed until the conflict

1The organization details of the Ivy Bridge L1D cache organization are speculated based on
conclusions drawn from numerous performance experiments [37, 38, 55].

28

is resolved, which can degrade performance. In fact, the frequent occurrence of bank

conflicts make it difficult to maintain the maximum L1D cache throughput in real-

world applications. Furthermore, there are no penalties for reading and writing from

misaligned memory operands, however, misaligned accesses occupy more banks which

substantially increases the chances of bank conflicts.

The following example demonstrates a bank conflict. The instructions in List-

ing 3.1 load memory addresses that utilize the same bank because they have the same

cache line offset. If these two instructions are dispatched in the same cycle, there will

be a bank conflict. The instructions in Listing 3.2 can be processed simultaneously

because they use different banks.

Listing 3.1: Example with a bank conflict

mov r8 , [rsi] ; Uses bank 0

mov r9 , [rsi +64] ; Uses bank 0

Listing 3.2: Example without a bank conflict

mov r8 , [rsi] ; Uses bank 0

mov r9 , [rsi +96] ; Uses bank 4

The Sandy Bridge performance monitoring unit tracks bank conflicts with the

L1D BLOCKS.BANK CONFLICT CYCLES event, which counts dispatched loads

cancelled due to L1D bank conflicts with other load ports. However, the presence

of bank conflicts does not imply a performance degration – some bank conflicts have

no impact on performance because the stalled instruction is not part of the critical

path. A more intensive approach is necessary to measure the performance degradation

caused by bank conflicts.

3.2.2 Instruction decode rate deficiencies

The COSP2, CoEVP, and Lassen workloads have bottlenecks that originate in fron-

tend of the processor. These stalls arrise from the frontend’s inability to feed decoded

29

uops to the backend fast enough to keep the backend occupied. The frontend can

fetch up to 16 bytes and decode up to four2 instructions and produce a maximum

of four uops per cycle. Although, there are several hazards that inhibit maximum

throughput in the decode unit. For example, only one multi-uop instructions can be

decoded each cycle.

Using a software perturbation technique called register scrambling, we can exper-

imentally measure the instruction decode rate of code blocks to uncover potential

bottleneck in the decode units. The main idea is to throttle the rate at which the

backend of the core can process uops as a mechanism for revealing the rate at which

the frontend is capable of supplying uops to the backend. The register scrambling

transformation alters the instruction-level dependencies (ILP) of a kernel to affect the

instructions per cycle (IPC) of the code. As the name suggests, instruction dependen-

cies are artificially manipulated by changing the register numbers. The instruction

mix remains constant, but the performance changes as the instruction-level paral-

lelism changes.

Even the largest loop nests in the proxy app microbenchmarks are small enough for

the entire instruction sequence to fit comfortably within the uop cache and therefore

do not depend on the frontend to supply uops to the backend; although, this is

not necessarily the case when the basic block is executed within the context of full

application. Loop unrolling is used to increase the number of instructions enough to

exceed the capacity of the uop-cache, forcing each uop to flow through the frontend.

In many cases, when the IPC is low, there is no performance benefit from utilizing the

uop-cache because the uops are being supplied at a faster rate than the backend can

process them. The register scrambling transformation is used to vary the rate at which

the backend processes instructions. When the IPC of the scrambled kernel is less than

2In certain circumstances, the decoder can fuse an instruction with a subsequent branch instruc-
tion to produce a single compute-then-branch uop. This is known as Macro-op fusion. In this case,
the frontend might be capable of decoding up to five instructions in a single cycle.

30

the instruction decode rate, the performance of the unrolled version that is fed by the

L1-iCache is the same as the rolled version that utilizes the uop-cache. When the IPC

of the scrambled kernel exceeds the instruction decode rate, the rolled version will

outperform the unrolled version. Figure 10 shows the results from an experiment on

a kernel. Ten scrambled versions of the kernel were generated to vary the IPC of the

backend between 0.5 and 3 instructions per second. Rolled and Unrolled varient of

each kernel were tested to compare the performance benefit of the uop-cache. As the

plot shows, scrambled kernels with an IPC less than 2.4 had the same performance

between the rolled and unrolled variants of the kernel. However, the performance

between the rolled and unrolled variants diverged when the IPC exceeded 2.4. In the

case of the unrolled kernels, the performance plateaus at 2.4 instructions per second

because the instruction decode unit becomes the bottleneck.

0

1

2

3

4

0 1 2 3 4

Register Scrambling -- Kernel 1

IP
C

Uop-Cache IPC

Instruction Decode
Limit: 2.4 Ins / cycle

Uop-Cache L1-ICache

Figure 10: The decode limit.

3.2.3 Cache utilization

Over 30% of the instructions in the proxy app workloads involve memory accesses.

This level of throughput places enormous load on the memory hierarchy. High cache

hit rates in the L1, L2, and L3 data caches as well as the L1-TLB and the L2-

TLB are crucial to the performance of any application. To diagnose performance

31

limitations in the memory hierarchy, we rely on a set of experiments that use memory

access rewriting to selectively control the cache hit rates of each individual memory

operation.

The memory access rewriting exploits cache associativity to ensure that the mem-

ory operations of a specific instruction will always hit in a prescribed level of the

cache hierarchy. The L1 data cache in the Ivy Bridge architecture is an 8-way set as-

sociative 32 KB cache with a 64-byte line size. The six least significant bits (bits 0-5)

of a memory address specify the line offset. The next six bits (bits 6-11) determine

which of the 64 L1 sets the memory address will be mapped into. Since the cache is

8-way set associate, only nine unique addresses are necessary to overflow the cache,

if all nine of the memory addresses are mapped to the same cache set. For example,

the memory accesses in the microbenchmark in Listing 3.3 will all hit in the L1 cache

because there are only four unique addresses: 12+r9+8 in instruction 1, r13+r9+8

in instruction 2, r12+r9+16 in instruction 3, and r13+r9+16 in instruction 5. We

can overflow the L1 cache sets by unrolling the loop nine times and increasing the

offset value by an additional 4096 (212) bytes in each instance of the original loop.

The memory accesses in the modified microbenchmark in Listing 3.4 will hit in the

L2 data cache.

Listing 3.3: Microbenchmark for Kernel 11. All memory accesses will hit in the L1

cache.

0 loop:

1 inc r10

2 vaddsd xmm0 , xmm0 , QWORD PTR [r12+r9+8]

3 vmovsd QWORD PTR [r13+r9+8], xmm0

4 vaddsd xmm0 , xmm0 , QWORD PTR [r12+r9+16]

5 vmovsd QWORD PTR [r13+r9+16], xmm0

6 add r9, 0

7 cmp r10 , rbx

8 jb loop

32

Listing 3.4: Modified microbenchmark for Kernel 11. Memory accesses will hit in the

L2 cache.

0 loop:

1 vaddsd xmm0 , xmm0 , QWORD PTR [r12+r9+8]

2 vmovsd QWORD PTR [r13+r9+8], xmm0

3 vaddsd xmm0 , xmm0 , QWORD PTR [r12+r9+16]

4 vmovsd QWORD PTR [r13+r9+16], xmm0

5 add r9 , 0

6 vaddsd xmm0 , xmm0 , QWORD PTR [r12+r9 +4104]

7 vmovsd QWORD PTR [r13+r9+4104] , xmm0

8 vaddsd xmm0 , xmm0 , QWORD PTR [r12+r9 +4112]

9 vmovsd QWORD PTR [r13+r9+4112] , xmm0

10 add r9 , 0

...

41 vaddsd xmm0 , xmm0 , QWORD PTR [r12+r9 +32776]

42 vmovsd QWORD PTR [r13+r9+32776] , xmm0

43 vaddsd xmm0 , xmm0 , QWORD PTR [r12+r9 +32784]

44 vmovsd QWORD PTR [r13+r9+32784] , xmm0

45 add r9 , 0

46 add r10 , 9

47 cmp r10 , rbx

48 jb loop

The ability to control cache utilization enables experiments to isolate the perfor-

mance impact of each individual memory access operations. Unfortunately, interfer-

ence from the Load Store Buffer in the Ivy Bridge microarchitecture have complicated

the address rewriting process. So far, our attempts to rewrite the memory addresses

have failed to produce the intended cache utilization behavior.

33

3.3 Automating software perturbations

The PPA Toolkit was developed to programmatically discover performance bottle-

necks. It is an automated tool which uses PPA to detect different performance bot-

tlenecks in a given application. It takes an x86 64 binary executable as input then

runs various experiments on the application to find potential bottlenecks. Since the

toolkit operates on binary x86 64 code, it is both language and compiler agnostic.

PPA Toolkit is an extensive Java application built with the Dropwizard framework

and the maven package manager. The toolkit leverages several external tools including

Gnu Binutils, Intel C Compiler (ICC), Intel Architecture Code Analyzer (IACA), X86

Encoder Decoded (Xed), Pin, and VTune. The source code is publicly available on

bitbucket.

The PPA process can be broken into several steps: (1) identifying the hot loops

from the target application, (2) extracting these loops into stand-alone microbench-

marks in assembly language, (3) generating a battery of microbenchmark variants

that target specific architectural features, (4) running them in isolation while collect-

ing various performance metrics, and (5) interpreting results to identify performance

limitations.

3.3.1 Identifying hot loops

The analysis begins with two executions of the application. The first pass gathers

profiling information about the application. The toolkit uses Intel’s VTune Amplifier

XE commandline tools to collect thousands of event samples per second, using the

CPU CLK UNHALTED event as the trigger. The distribution of the samples are

used to approximate the percent of runtime spent executing each specific instruction,

although, because of “event skid” this attribution is only accurate at the granularity

of code blocks [86]. In addition to collecting the instruction pointer (IP) of each event

sample, the tool also collects the stack trace of each sample for tracking hot functions

34

and control flow.

The second pass leverages the instrumentation-driven simulation capabilities of

Pin to investigate the dynamic control flow of the application. A custom-built Pin

plug-in was developed to statically dissect the basic block structure of the code, collect

control flow statistics, and gather the execution count for each basic block. The Pin

plug-in collects three types of data.

1. Identification of basic blocks: Rather than relying on a purely static dis-

section of the application assembly to reconstruction the control-flow graph,

which has difficulty handling dynamically generated addresses (e.g. indirect

jump instructions), the Pin plug-in leverages Pin’s data flow apparatus to dy-

namically track control flow during execution. The dynamic analysis also has

the advantage of ignoring dead and unexercised code.

2. Execution count of each basic block: Pin is used to dynamically insert a

hook into each basic block so that during runtime an execution-count of the

basic block is incremented each time a basic block is executed. The execution-

count can be combined with the profiling data to calculate the IPC of the basic

block. The execution count of the basic blocks can also be used to infer the

execution count of individual instructions within the block.

3. Tracking ingress and egress of each basic block: The Pin plug-in uses

global state within Pin to maintain a pointer to the previously executed basic

block. Each time a new basic block is entered, the ingress statistics of the

current basic block and the egress statistics of the previous basic block are

updated.

Listing 3.5 shows a hot loop from the XSBench workload that consumes 78.5%

of the execution time. The loop implements a binary search over an ordered set of

energies to find the index of array A that matches the “quarry” value. The compiled

35

assembly of that loop is shown in Listing 3.6. The loop is composed of five basic blocks:

404072-4040ac, 4040ae-4040b1, 4040b3-4040b7, 4040b9-4040b9, 4040bc-4040be. We

define basic blocks as a continuous sequence of instructions that are guaranteed to

execute if any other instruction in the basic block is executed. Branch, jump, function

call, and function return instructions terminate the continuity of the basic block.

The 4040b7-4040be block might look like a basic block, although, since the jump

instruction at 4040b1 jumps into the middle of that block, 4040b9-4040b9 and 4040bc-

4040be are separate basic blocks. The control flow graph of this loop is depicted in

Figure 11.

Listing 3.5: Hot Loop in XSBench

while(max >= min)

{

mid = min + floor((max -min) / 2.0);

if(A[mid]. energy < quarry)

min = mid +1;

else if(A[mid]. energy > quarry)

max = mid -1;

else

return mid;

}

Listing 3.6: Hot Loop in XSBench

404072: 89 c1 mov ecx ,eax

404074: c5 e9 57 d2 vxorpd xmm2 ,xmm2 ,xmm2

404078: 2b ca sub ecx ,edx

40407a: c5 d1 57 ed vxorpd xmm5 ,xmm5 ,xmm5

40407e: c5 eb 2a d1 vcvtsi2sd xmm2 ,xmm2 ,ecx

404082: c5 d3 2a ea vcvtsi2sd xmm5 ,xmm5 ,edx

404086: c5 fb 59 da vmulsd xmm3 ,xmm0 ,xmm2

40408a: c4 e3 61 0b e3 01 vroundsd xmm4 ,xmm3 ,xmm3 ,0x1

36

404090: c5 db 58 f5 vaddsd xmm6 ,xmm4 ,xmm5

404094: c5 fb 2c ce vcvttsd2si ecx ,xmm6

404098: 48 63 c9 movsxd rcx ,ecx

40409b: 48 8d 34 49 lea rsi ,[rcx+rcx*2]

40409f: 48 c1 e6 04 shl rsi ,0x4

4040a3: c5 fb 10 14 3e vmovsd xmm2 ,QWORD PTR [rsi+rdi *1]

4040a8: c5 f9 2f ca vcomisd xmm1 ,xmm2

4040ac: 76 05 jbe 4040b3 <binary_search +0x73 >

4040ae: 8d 51 01 lea edx ,[rcx+0x1]

4040b1: eb 09 jmp 4040bc <binary_search +0x7c >

4040b3: c5 f9 2f d1 vcomisd xmm2 ,xmm1

4040b7: 76 11 jbe 4040ca <binary_search +0x8a >

4040b9: 8d 41 ff lea eax ,[rcx -0x1]

4040bc: 3b c2 cmp eax ,edx

4040be: 7d b2 jge 404072 <binary_search >

404072-4040AC

4040B9-4040B9

4040AE-4040B1

4040BC-4040BE

4040B3-4040B7

4040CA

Figure 11: A diagram of the control flow through the basic blocks of the XSBench
loop (See Figure 3.6).

37

3.3.2 Extracting loops

GNU’s objdump tool is used to parse the binary object file into a sequence of instruc-

tion. This process involves identifying instruction boundaries —the x86 64 instruction

set uses variable length encoding, each instruction is 1-15 bytes in size— and dissas-

sembling the machine code into assembly instructions. The instructions are then

decoded using a custom-built x86 instruction decoder built on Intel’s Xed library.

The Xed-based tool produces a data structure describing the opcode and operands,

and flags, which form the instruction IR.

Listing 3.7 has an example of a the internal representation of the MOV RCX,QWORD

PTR [rip+0x2ae41a] instruction. This IR contains information about the size, oper-

ation class, the type of the operands, the word size of the operands, the access mode

(read versus write) of the operands, the data type of the operands, the visibility of

the operands, the flag registers modified, the number of memory bytes accessed, as

well as the base, index, offset, and scale of the memory operands.

Listing 3.7: Decoded representation of MOV RCX,QWORD PTR [rip+0x2ae41a]

{

"Decode ": "48 8b 0d 1a e4 2a 00 ",

"Class ":"MOV",

"Category ":" DATAXFER",

"ISAExt ":" BASE",

"ISASet ":"I86",

"Operands ": [

{

"OpNum ":0," Type ":" REG0","Details ":"RCX","VIS":" EXPLICIT",

"RW":"W","Bits ":64," NumElem ":1," ElemSize ":0," ElemType ":"INT"

},

{

"OpNum ":1," Type ":" MEM0","Details ":"MEM","VIS":" EXPLICIT",

"RW":"R","Bits ":64," NumElem ":1," ElemSize ":64," ElemType ":"INT"

38

}

],

"MemoryOps ":[

{

"MemOpNum ":0,"RW":"R","Base ":"RIP",

"Displacement ":2810906 ," AWidth ":64

}

],

"MemopBytes ":8

}

Common register operands, flag operands, and memory accesses are used to infer

dependencies between instructions. These dependencies are then used to construct a

dependency graph of the instructions in a basic block.

After decoding the stream of instructions, the basic block must is passed through

several instruction transformations to turn it into a stand-alone microbenchmark.

1. Overwrite jump instruction: The microbenchmark wraps the basic block in-

side a “jb” loop with a counter register that tracks the iteration count. All other

jump instruction are removed. Instruction dependency graphs are consulted to

identify and remove obsolete CMP/TEST instructions as well INC/DEC in-

structions that were associated with the jump instruction that was removed.

2. Overwrite memory addresses: Most of the basic blocks contain memory

load and store operations, most of which calculate the memory address based

on a base register, an index register, a scale value, and an offset. To keep the

microbenchmark from accessing illegal memory addresses, (1) the base register

needs to be initialized to a preallocated block of memory, (2) the index register

needs to be initialized to zero, and (3) the base register value needs to be

updated to negate the offset and scale values. To keep the memory address

39

stationary across each iteration, any other instructions in the basic block that

write to the index register must be modified and consequently all instructions

that indirecly impact the base register or index register must be modified. In

the case of aligned load instructions (e.g. VMOVAPD), the base address, scale,

and offset values must be checked to ensure the generated address is still 32-byte

aligned.

3. Recalculate RIP addresses: Some memory addresses are listed using instruc-

tion pointer relative addressing. These instruction addresses must be rewritten

so that the instruction will access a preallocated block of memory instead.

4. Register initialization: In most cases, data registers and memory blocks are

cleared (initialized to zero), although, in some situations specific values are

necessary to avoid illegal operations. For example, dividing by zero will result

in a floating-point exception, to avoid this situation the divisor should be set

to one instead of zero.

The mustache templating language is used to generate a C source code file with

the inline assembly and initialization embedded into a “void kernel(int iterations)”

function. The C code can be compiled with the Intel C Compiler (ICC), linked with

a test harness, then executed.

3.3.3 Generating perturbations

The PPA Toolkit is an extensible framework capable of implementing various types of

bottleneck experiments. A new set of experiments can be implemented by extending

the Experiment Java class. The Toolkit API provides access to the instruction IR,

the instruction dependency graph, and tools for exporting a set of instructions into a

C source file.

40

3.3.4 Performance experiments

The toolkit generates microbenchmarks for each of the basic blocks as well as each

perturbation of the associated basic block. The microbenchmarks are run within a

test harness which runs the basic block loop for a billion iterations. Most of the

microbenchmarks take less than a second to execute. The cycle count is measured

then divided by the number of iterations to calculate the average number of cycles

per iteration of the basic block. The number of cycles per iteration is used to compare

the performance of the microbenchmark against each of the perturbations.

3.4 Related Work

The notion of code perturbations used by Pressure Point Analysis is inspired by

stochastic optimization techniques. Seminal work by Schkufza et al. showed that

by relaxing the constraint that compiler transformations must preserve semantic cor-

rectness, random code mutations enabled their superoptimizing compiler to discover

radically new implementations of targeted computations [99]. Schulte et al. also use

random code mutations to discover optimizations that improve energy efficiency [100].

Knights et al. pioneered the concept of Blind Optimizations by improving ap-

plication performance simply by inserting random sequences of nop instructions into

the code stream. They found that the Pentium 4 was highly sensitive to code align-

ment and that the nops shifted the code alignment enough to expose performance

cliffs caused by alignment hazards. Hundt incorporated the concept of blind op-

timization into their Extensible Micro-Architectural Optimizer (MAO) project to

semi-automatically discover microarchitectural hazards in the Intel Core-2 processor.

The GREMLINS project by the ExMatEx group employs various techniques to

degrade processor resources in an effort to understand how future machine designs

will impact application performance. Interference processes, called gremlins, steal

compute resources from the target application. The gremlins can consume parts of

41

the available power budget, memory bandwidth, cache capacity, or network band-

width resources [101]. Eklov et al. developed a similar concept, called the Bandwidth

Bandit, which uses an interference process to steal memory bandwidth from a tar-

get application. They use the bandit process to model application performance as a

function of available memory bandwidth [31]. The PPA methodology uses a similar

approach of experimentally testing the impact of resource degradation, but PPA oper-

ates on lower-level resources and depends on more precise mechanisms for restricting

resource usage.

The Camino compiler infrastructure project by Hu et al. uses sophisticated pro-

filing and static analysis techniques, similar to the PPA Toolkit, to suggest a set of

possible code placement optimizations. However, rather than directly identifying the

performance bottlenecks, Camino relies on “behavior characterizations” to enumer-

ate a set of transformation that might improve performance. Overall, the goal of

the Camino is to serve as a testbed for various low-level optimizations, rather than a

diagnostic tool for identifying performance issues.

42

CHAPTER IV

ASSESSING THE IMPACT OF THE

MICROARCHITECTURE

4.1 Introduction

Power and Energy have always had a significant impact on processor design. Yet, as

the demand for energy efficient computing increases and rate of improvement from

process technology slows, energy efficiency has become a first-class design constraint.

Prior work has shown that increasing single-threaded performance through microar-

chitectural advances tends to increase power [6, 46]. This increase is due to the

increased complexity of the core such as a larger instruction window and more ag-

gressive use of speculation. However, this increase can be countered by reductions

in energy due to improvements in process technology, architecture, and microarchi-

tecture. This paper examines the improvements in each of these areas. We use

measurements from six generations of Intel R© Core
TM

processors running a variety of

vectorizable workloads. We show that through the combination of these techniques,

both the time and the energy required to run the workloads has been reduced.

This paper makes three contributions to the understanding of energy efficiency.

1. Methodology: We present a methodology for empirically measuring instruction-

level energy efficiency on a modern processor. This includes techniques for

isolating architectural features as well as a novel technique for studying the

relationship between performance and power.

The material in this chapter has appeared in a separate refereed publication [24].

43

2. Attribution: By isolating key architectural features, we account for many of

the variable costs which impact energy efficiency. This provides valuable insight

into the driving forces behind energy efficiency on a real-world processor.

3. Evolution of Energy Efficiency: Using a longitudinal study of the Intel R©

Core
TM

processor, we track the impact architectural innovations have had on

energy efficiency. This motivates a discussion about the future strategies for

improving energy efficiency on a Big Core.

4.2 Methodology

Our goal is to understand the impact architectural features have on performance and

energy efficiency of real-world processors. Ideally, a properly controlled experiment

would involve designing and manufacturing processors, with different permutations of

features, across several process technology nodes; however, this approach is infeasible.

Instead, we rely on comparisons of existing processors. To control the variables we

focus on successive generations of a single architecture family, where each processor

has a similar base architecture with modest incremental changes in architecture fea-

tures each generation. With the proper setup, these cross-generational comparisons

provides a unique before-and-after evaluation of newly added architectural features.

This section provides more detailed descriptions of our experimental methodology

and setup.

4.2.1 Processors

Table 6 lists the processors used in the study: Penryn (PNY), Nehalem (NHM),

Westmere (WSM), Sandy Bridge (SNB), Ivy Bridge (IVB), and Haswell (HSW). In

total, our data spans six years, six generations, four major microarchitecture revisions,

and three process technology nodes.

We selected flagship processor models from the high-end enthusiast segment rather

44

than trying to match features exactly. Fortunately, the clock speed, core count, and

last level cache capacity are relatively similar. The L1 data cache is a constant 32 KB

across all processors. The largest discrepancy is WSM, which, for business reasons,

was designed with two extra cores. For consistency, we disabled those cores and

treated WSM as a four-core processor. To account for the minor clock frequency

difference, performance is measured in cycles rather than time. Finally, since all

memory accesses in these experiments are confined to the L1 cache, slight differences

in the rest of the cache hierarchy, mid-level cache (MLC), last-level cache (LLC),

memory controller, and the rest of the uncore should not have a significant impact

on results.

4.2.2 Architecture Features

The core features we studied include (i) the frontend caches, which include the loop

cache and the micro-op cache (ii) the out-of-order resources, which include the exe-

cution units, issue port, and the number of reorder buffer entries and (iii) the SIMD

execution unit and ISA extension. Details of these features are listed in Table 7.

4.2.3 Kernels

We use the Livermore Loops benchmark suite [90] (see Table 8), a collection of com-

pute intensive kernels extracted from scientific applications used by the Lawrence

Livermore National Laboratory, to evaluate the processors.1 The Livermore Loops

derive from actual high-performance computing applications, yet are small enough

to instrument, study, and control manually. We also acknowledge that the ker-

nels are not necessarily the optimal C code implementation of the computation, but

are instead canonical examples of typical scientific code. Note, the original Liver-

more Loops benchmark set contains 24 kernels, however, we had to omit five kernels

1Note, all floating-point calculations within these kernels are based on double-precision, not
single-precision, floating-point types.

45

Table 6: The six processor models used in this study.

Model Core
X9650

Core i7
975

Core i7
980X

Core i7
2700K

Core i7
3770K

Core i7
4770K

Code
Name

Penryn
(PNY)

Nehalem
(NHM)

Westmere
(WSM)

Sandy
Bridge
(SNB)

Ivy
Bridge
(IVB)

Haswell
(HSW)

Release
Cycle

Tick Tock Tick Tock Tick Tock

Core Mi-
croarchi-
tecture

Core Nehalem Nehalem Sandy
Bridge

Sandy
Bridge

Haswell

Process
Node

45 nm 45 nm 32 nm 32 nm 22 nm 22 nm

Frequency 3.00 GHz 3.33 GHz 3.33 GHz 3.5 GHz 3.5 GHz 3.5 GHz
Cores 4 4 6 4 4 4
LLC 12 MB 8 MB 12 MB 8 MB 8 MB 8 MB
TDP 130 W 130 W 130 W 95 W 77 W 84 W
Release
Date

Q4’07 Q2’09 Q1’10 Q1’11 Q2’12 Q2’13

because they do not fit basic loop structure used in our experimental framework.

For our experiments, we compiled each of the loops with the Intel R© C Compiler

13.0.0.079, extracted the assembly instructions from each loop nest, then made minor

modifications to remove any dependence of the loop body on any explicit loop iteration

variables. These modifications provide additional control over execution by ensuring

all memory accesses hit in the L1 cache, allowing us to run the loop for an unlimited

number of iterations, and controlling the input values of all operations. Figure 12

shows the original Livermore Loops C code, the compiled assembly, and the modified

version of the assembly for Kernel 7. The lines in red highlight the modifications to

the compiled assembly, which confine the memory access pattern to a smaller working

set by keeping register rdi constant. Although it is not shown in the figure, we also

initialize all of the registers and memory locations that are touched by the kernel

to ensure that dynamic behavior remains constant each iteration. Figure 12 also

contains a table with a sample of the performance, power, and energy data collected

46

Table 7: Architectural Features

Core Nehalem Sandy Bridge Haswell
L1 Bandwidth
(load, store)

16, 16 Bytes
per cycle

16, 16 Bytes
per cycle

32, 16 Bytes
per cycle

64, 32 Bytes
per cycle

Instruction
Cache

32KB L1
Icache

32KB L1
Icache

32KB L1
Icache, 1.5K
uop cache

32KB L1
Icache, 1.5K
uop cache

Reorder
Buffer

96 entries 128 entries 168 entries 192 entries

Ins/Uop
Queue

32 ins 28 uops 28 uops (56 on
IVB)

56 uops

SIMD Exten-
sions

SSE SSE AVX AVX2

for Kernel 7.

The resulting kernels have between 12 and 183 instructions inside a single for

loop, which we run for several billion iterations. This enables us to make very precise

measurements of performance and power. We also use performance counters and

simulators to analyze runtime behavior.

For illustration purposes, we also added an additional kernel to the original nine-

teen kernels: Kernel 20 – Peak floating-point throughput. This kernel is designed to

attain the theoretical peak floating-point throughput. Both a vector multiply (mulpd)

and vector add instruction (addpd) are issued each cycle. There are no memory ac-

cesses or auxiliary instructions in this kernel. We do not include Kernel 20 when

calculating averages in the results section.

4.2.4 Experimental Platform

Our results are based on empirical measurements of CPU power, which are measured

by instrumenting the 12 volt rail that feeds the voltage regulator which in turn feeds

the processor. To account for minor voltage fluctuations, both voltage and current

are measured to calculate power. A National Instruments R© cDAQ-9174 with a 9229

module is used to sample power at a rate of 2KHz. This device is managed by a

47

Table 8: The 20 kernels evaluated in this study.

Kernel Description

1 Hydro fragment
2 Incomplete Cholesky Conjugate Gradient
3 Inner product
4 Banded linear equations
5 Tri-diagonal elimination, below diagonal
6 General linear recurrence equations
7 Equation of state fragment
8 Integrate predictors
9 Difference predictors
10 First sum
11 First difference
12 2-D PIC (Particle In Cell)
13 1-D PIC (Particle In Cell)
14 ADI integration
15 2-D explicit hydrodynamics fragment
16 General linear recurrence equations
17 Discrete ordinates transport
18 Matrix-matrix product
19 2-D implicit hydrodynamics fragment

20 Peak floating-point throughput

48

for (k=0 ; k<n ; k++) {
 x[k] = u[k] + r*(z[k] + r*y[k]) +
 t*(u[k+3] + r*(u[k+2] + r*u[k+1]) +
 t*(u[k+6] + r*(u[k+5] + r*u[k+4])));
}

Kernel #7 (Equation of State)

innerloop:
vmulpd ymm15, ymm2, [32+r15+rdi*8]
vmovupd xmm7, [8+r15+rdi*8]
vmovupd xmm13, [40+r15+rdi*8]
vmulpd ymm3, ymm2, [r12+rdi*8]
vmovupd xmm6, [24+r15+rdi*8]
vaddpd ymm4, ymm3, [r10+rdi*8]
vmulpd ymm5, ymm2, ymm4
vaddpd ymm0, ymm5, [r15+rdi*8]
vinsertf128 ymm8, ymm7, [24+r15+rdi*8], 1
vinsertf128 ymm14, ymm13, [56+r15+rdi*8], 1
vmulpd ymm9, ymm2, ymm8
vaddpd ymm13, ymm14, ymm15
vaddpd ymm10, ymm9, [16+r15+rdi*8]
vmulpd ymm14, ymm2, ymm13
vmulpd ymm12, ymm2, ymm10
vaddpd ymm15, ymm14, [48+r15+rdi*8]
vmulpd ymm4, ymm1, ymm15
vinsertf128 ymm11, ymm6, [40+r15+rdi*8], 1
vaddpd ymm3, ymm11, ymm12
vaddpd ymm5, ymm3, ymm4
vmulpd ymm6, ymm1, ymm5
vaddpd ymm0, ymm0, ymm6
vmovupd [r13+rdi*8], ymm0
add rdi, 1
cmp rdi, r9
jb innerloop

innerloop:
vmulpd ymm15, ymm2, [32+r15+rdi*8]
vmovupd xmm7, [8+r15+rdi*8]
vmovupd xmm13, [40+r15+rdi*8]
vmulpd ymm3, ymm2, [r12+rdi*8]
vmovupd xmm6, [24+r15+rdi*8]
vaddpd ymm4, ymm3, [r10+rdi*8]
vmulpd ymm5, ymm2, ymm4
vaddpd ymm0, ymm5, [r15+rdi*8]
vinsertf128 ymm8, ymm7, [24+r15+rdi*8], 1
vinsertf128 ymm14, ymm13, [56+r15+rdi*8], 1
vmulpd ymm9, ymm2, ymm8
vaddpd ymm13, ymm14, ymm15
vaddpd ymm10, ymm9, [16+r15+rdi*8]
vmulpd ymm14, ymm2, ymm13
vmulpd ymm12, ymm2, ymm10
vaddpd ymm15, ymm14, [48+r15+rdi*8]
vmulpd ymm4, ymm1, ymm15
vinsertf128 ymm11, ymm6, [40+r15+rdi*8], 1
vaddpd ymm3, ymm11, ymm12
vaddpd ymm5, ymm3, ymm4
vmulpd ymm6, ymm1, ymm5
vaddpd ymm0, ymm0, ymm6
vmovupd [r13+rdi*8], ymm0
add r8, 1
cmp r8, r9
jb innerloop

Livermore Loops C Code: Compiled Assembly: Modified Assembly:

Cycles
Per
Iteration

CPU
Power
(Watts)

Energy
Per
Iteration

PNY 23.0 60.5 116 nJ

NHM 22.5 73.2 124 nJ

WSM 22.5 50.5 85 nJ

SNB 18.3 69.0 90 nJ

IVB 18.3 34.3 45 nJ

HSW 17.3 40.1 50 nJ

Figure 12: This figure shows Kernel 7 and a sample of the data collected for this
kernel. To conserve space, the assembly code listings contains the AVX version (26
instructions) instead of the longer SSE version (51 instructions); however, the data
table contains values collected from the SSE version.

second workstation to ensure that data acquisition does not affect the target machine.

Each system runs a stock Ubuntu 12.04 Server installation – no additional at-

tempts were made to optimize the operating system. The processors are set to run at

factory prescribed frequency with Intel R© Turbo Boost Technology and Hyperthread-

ing features disabled. The benchmarks were compiled using the Intel R© Composer XE

version 2013.0.079 tool chain [54].2

Preliminary experiments have shown that a rise in processor temperature can in-

crease power by as much as five watts. To minimize this impact, benchmarks are run

2Intels compilers may or may not optimize to the same degree for non-Intel processors for op-
timizations that are not unique to Intel processors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, function-
ality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Processor-
dependent optimizations in this product are intended for use with Intel processors. Certain opti-
mizations not specific to Intel microarchitecture are reserved for Intel processors. Please refer to the
applicable product User Reference Guides for more information regarding the specific instruction
sets covered by this notice. Notice revision #20110804.

49

continuously for a five minute warmup period to allow the temperature to stabilize be-

fore starting the experiment. Tests are conducted by running the benchmark contin-

uously for five minutes, immediately following the five minute warmup period. Power

and performance values are averaged across the entire five minute trial. Repeated

runs of the same experiment show the experimental precision of power measurements

to be within 0.05 watts.

When measuring power, we run an instance of the kernel on each core to amplify

the dynamic power consumption. Therefore, the measured power values presented in

this paper represent the total power of the processor when each of the four cores are

running an instance of the kernel. However, when we refer to IPC we are referring to

statistics of an individual core.

4.2.5 Definition of Energy Efficiency

This paper is primarily focused on energy efficiency. Broadly speaking, the objective is

to minimize the total amount of energy consumed by the processor to complete a par-

ticular computation. We calculate energy consumption (measured in joules) by mea-

suring the average power of the processor (measured in watts; note, 1 watt = 1 joule
sec

)

and multiplying by the duration of the computation (measured in seconds but re-

ported in clock cycles). For example, the average energy consumed per iteration of

Kernel 7 (see Figure 12) on HSW is3

(17.3 cycles)(
1sec

3.5× 109 cycles
)(10.0 W) = 50 nJ. (6)

Energy efficiency is inversely proportional to energy consumption. It is generally

expressed as performance over power,

1

energy
=

1

duration× power
=

performance

power
. (7)

3To get the cost of a single iteration, we must also divide processor power by four since the
benchmark is running simultaneously on each of the four cores (see Section 4.2.4).

50

If performance is constant then the change in energy efficiency is proportional to the

change in power. For example, based on the data in Figure 1, SNB and IVB have

identical performance on Kernel 7. The ratio of average power shows that IVB is 2.0x

more efficient than SNB.

In many situations, performance and energy efficiency are treated as competing

goals since it is generally possible to improve performance at the expense of energy

efficiency and vice versa. Occasionally, an artificial metric that incorporates both

performance and energy efficiency, such as the energy delay product [45], is used to

determine whether a trade-off between the two is beneficial. Fortunately, this paper

does not explicitly encounter this trade-off and therefore does not resort to alternative

metrics.

4.2.6 Register Scrambling

The analysis in this paper includes a novel technique, called register scrambling, to

artificially alter the instruction-level dependencies of a kernel. As the name suggests,

it involves randomly assigning new SSE/AVX register numbers to each instruction.

For example, Figure 13 shows two examples of Kernel 1 with the registers scrambled.

The instruction mix remains constant, but the performance and power change as the

instruction-level parallelism changes. By generating several different “scrambles” of

the kernel we are able to generate a regression that relates performance to power.

Figure 14 shows the relationship between performance and power of Kernel 1 on

HSW. This regression can be used to evaluate improvements in the core architecture

by estimating how much a change in performance will affect the energy efficiency.

4.3 Experimental Results

Figure 15 presents the main results of this paper. Averaging across all of the Liv-

ermore Loop kernels, there is a 2.9x improvement in energy efficiency from PNY to

HSW.

51

Scramble #1 Scramble #2

0 inloop:
1 movsd xmm1, [88+r12+r9*8]
2 movsd xmm1, [104+r12+r9*8]
3 movsd xmm2, [120+r12+r9*8]
4 movsd xmm2, [136+r12+r9*8]
5 movaps xmm0, [80+r12+r9*8]
6 movhpd xmm1, [96+r12+r9*8]
7 movaps xmm2, [96+r12+r9*8]
8 movhpd xmm3, [112+r12+r9*8]
9 movaps xmm1, [112+r12+r9*8]
10 movhpd xmm0, [128+r12+r9*8]
11 movaps xmm0, [128+r12+r9*8]
12 movhpd xmm3, [144+r12+r9*8]
13 mulpd xmm1, xmm1
14 mulpd xmm0, xmm0
15 mulpd xmm1, xmm3
16 mulpd xmm3, xmm3
17 mulpd xmm2, xmm2
18 mulpd xmm3, xmm2
19 mulpd xmm1, xmm3
20 mulpd xmm3, xmm1
21 addpd xmm2, xmm1
22 addpd xmm0, xmm3
23 addpd xmm3, xmm3
24 addpd xmm2, xmm3
25 mulpd xmm0, [r15+r9*8]
26 mulpd xmm0, [16+r15+r9*8]
27 mulpd xmm3, [32+r15+r9*8]
28 mulpd xmm1, [48+r15+r9*8]
29 addpd xmm0, xmm3
30 addpd xmm0, xmm1
31 addpd xmm1, xmm0
32 addpd xmm1, xmm2
33 movaps [r11+r9*8], xmm3
34 movaps [16+r11+r9*8], xmm0
35 movaps [32+r11+r9*8], xmm1
36 movaps [48+r11+r9*8], xmm1
37 add r8, 1
38 cmp r8, rbx
39 jb inloop

0 inloop:
1 movsd xmm2, [88+r12+r9*8]
2 movsd xmm0, [104+r12+r9*8]
3 movsd xmm0, [120+r12+r9*8]
4 movsd xmm3, [136+r12+r9*8]
5 movaps xmm0, [80+r12+r9*8]
6 movhpd xmm3, [96+r12+r9*8]
7 movaps xmm0, [96+r12+r9*8]
8 movhpd xmm2, [112+r12+r9*8]
9 movaps xmm1, [112+r12+r9*8]
10 movhpd xmm0, [128+r12+r9*8]
11 movaps xmm1, [128+r12+r9*8]
12 movhpd xmm0, [144+r12+r9*8]
13 mulpd xmm3, xmm3
14 mulpd xmm3, xmm3
15 mulpd xmm3, xmm2
16 mulpd xmm0, xmm3
17 mulpd xmm2, xmm0
18 mulpd xmm0, xmm3
19 mulpd xmm0, xmm1
20 mulpd xmm1, xmm3
21 addpd xmm1, xmm2
22 addpd xmm1, xmm3
23 addpd xmm3, xmm1
24 addpd xmm2, xmm3
25 mulpd xmm0, [r15+r9*8]
26 mulpd xmm2, [16+r15+r9*8]
27 mulpd xmm1, [32+r15+r9*8]
28 mulpd xmm1, [48+r15+r9*8]
29 addpd xmm3, xmm2
30 addpd xmm1, xmm2
31 addpd xmm2, xmm1
32 addpd xmm2, xmm1
33 movaps [r11+r9*8], xmm3
34 movaps [16+r11+r9*8], xmm2
35 movaps [32+r11+r9*8], xmm1
36 movaps [48+r11+r9*8], xmm1
37 add r8, 1
39 cmp r8, rbx
39 jb inloop

Cycles per Iteration: 31.51 (IPC=1.24)
Average Power: 37.32 watts
Energy per Iteration: 84.0 nJ

Cycles per Iteration: 19.65 (IPC=1.98)
Average Power: 42.02 watts
Energy per Iteration: 59.0 nJ

Figure 13: An example of two “scrambled” versions of Kernel 1. This figure also
includes sample data from HSW.

Furthermore, this section drills-down on the source of the improvements in energy

efficiency by progressively removing the benefit of recent architectural features. This

is completed as a five step process:

1. SIMD Extensions: we restrict the use of relevant ISA extensions that have

been added since PNY: the AVX and AVX2 SIMD extensions.

2. Frontend Innovations: we prevent the processor from utilizing new frontend

features. The primary innovations since PNY are the addition of a micro-op

cache and improvements to the loop caches.

3. Backend Innovations: we estimate the impact performance improvements

due to backend innovations —such as additional execution units and larger

instruction windows— have on power and energy efficiency.

4. 22nm Process Technology Node: we rollback the advantage of the 22nm

process technology to estimate power and energy efficiency on the 32nm process

technology node.

52

y = 5.59x + 30.79
R² = 0.99

0.00

10.00

20.00

30.00

40.00

50.00

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

P
ow

er
 (W

at
ts

)

IPC

Kernel 1 Scrambling on HSW

Figure 14: A regression of several scrambles of Kernel 1 on HSW.

5. 32nm Process Technology Node: we rollback the advantage of the 32nm

process technology to estimate power and energy efficiency on the 45nm process

technology node.

Figure 15 shows the improvement in energy efficiency after each step. For example,

the HSW plot shows that the improvement in energy efficiency drops from 2.9x to 2.1x

after removing the use of SIMD extensions (step 1). Similarly, after also removing

the impact of frontend innovations (step 2), the improvement drops from 2.1x to 1.8x.

After, removing the benefits of the SIMD Extensions, frontend, and backend as well

as the process technology, we are left with the “base” energy efficiency. The “base”

value represents the efficiency of HSW if it pays the overhead cost of implementing

all of its architectural features —such as the micro-op cache and additional execution

units— but does not benefit from any of them.

It is important to note that this process is conducted in an additive process –

the changes made in previous steps are retained in the following steps. This method-

ological decision was made out of necessity since each processor needs to be running

identical code in order to properly compare the frontends. Similarly, we need to

53

neutralize changes in the frontend and ISA before comparing the backends.

The details of each step are described in the following subsections.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

PNY NHM WSM SNB IVB HSW

E
ffi

ci
en

cy
 R

el
at

iv
e

to
 P

N
Y

Improvement in Energy Efficiency
Livermore Loops

SIMD Ext
Frontend
Backend
22nm-Process
32nm-Process
Base

Figure 15: Average improvement in energy efficiency across the Livermore Loops
kernels.

4.3.1 SIMD Extensions

The AVX extensions introduce three important features to the ISA that are relevant

to the Livermore Loops: (1) four-wide SIMD vector instructions (double the SIMD

width of SSE instructions) (2) non-destructive instructions, and (3) 256-bit load and

store instructions (double the width of SSE instructions) [36]. In addition, the AVX2

extensions also provide fused multiply-add (FMA) instructions which double the peak

floating-point throughput and gather instructions (e.g., vgatherdpd) for vectorizing

non-adjacent memory accesses.

To evaluate the impact of the AVX and AVX2 extensions, we create multiple

versions of each kernel. The SSE version —the baseline version— is created by con-

straining the compiler to only generate code that is supported by SSE4.1 machines,

then extracting the resulting loop body. The AVX and AVX2 versions are generated

by allowing the compiler to take advantage of the additional AVX instructions. We

54

gauge the effectiveness of the extensions by comparing the performance and energy

efficiency of the resulting versions.

Results from Kernel 20 (the peak floating-point throughput kernel) on HSW

demonstrate the potential benefits of SIMD extensions. Doubling the SIMD width

with AVX instructions doubles performance and only increases total power by 4.3%,

which results in a 1.9x improvement in energy efficiency. Similarly, the use of the

FMA instructions can double the performance and only increase power by 5.0%,

which also nearly doubles energy efficiency. By fully exploiting both the FMA in-

structions and the wide SIMD width of the AVX instructions, HSW can achieve up

to 6.3 GFlops/watt, a 7x improvement over the 0.9 GFlops/watt on PNY.

Unlike the ideal conditions, the AVX and AVX2 extensions have only a moderate

impact on the Livermore Loops kernels. Eleven of the nineteen kernels (1, 2, 3, 4, 7,

8, 10, 12, 13, 14, and 18) benefit from the additional SIMD instructions – the other

kernels have structural dependencies which make vectorization difficult. Of the kernels

that do benefit, energy efficiency improves 4-56% and performance improves 7-83%. In

each of these cases the improvement in performance is greater than the improvement

in energy efficiency primarily because utilizing SIMD instructions often requires a

little extra work to shuffle data into and out of the proper SIMD lanes. Interestingly,

in two of the kernels (Kernel 4 and Kernel 9), the use of AVX instructions had a

negative impact on both performance and energy efficiency even though the AVX

version of the kernel uses fewer instructions. Averaging across all kernels, the AVX

extensions delivers a 21% improvement in performance and a 16% improvement in

energy efficiency. Utilizing both AVX and AVX2 instruction on HSW provide a 26%

improvement in performance and a 21% improvement in energy efficiency over the

SSE version.

55

4.3.2 Frontend Features

The frontend is responsible for fetching and decoding instructions to feed the execu-

tion engines in the backend. In an out-of-order architecture, the frontend is integrated

with a branch prediction unit so it can fetch and decode instructions down speculative

paths in order to keep the backend busy. In addition, modern processors are equipped

with loop detectors and instruction caches to reduce the number of instructions that

must be fetched and decoded, which improves both performance and energy effi-

ciency. This section examines how the evolution of the frontend has impacted energy

efficiency.

4.3.2.1 Loop Caches

The loop cache exploits the temporal locality of instructions to reduce the burden on

the frontend [10, 74]. When used, instructions from inside a loop nest are streamed

directly from the Instruction Queue (IQ) or Micro-op Queue (MQ), skipping earlier

stages of the pipeline. In PNY, the cache is located between the instruction pre-

decode and the instruction decoders. In subsequent generations the cache is located

after the decode units, allowing the frontend to power-down the instruction fetch and

decode units when streaming from the MQ [105].4 Ultimately, the loop cache im-

proves performance by eliminating potential frontend bottlenecks and reduces power

by eliminating redundant work.

4.3.2.2 Mico-op Cache

In addition to the loop cache, SNB, IVB, and HSW also include a micro-op cache in

the frontend, between the loop cache and the L1 instruction cache. It provides many

of the benefits of the loop cache but has a higher capacity (1500 micro-ops versus the

4Since the loop cache is located before the decoders in PNY, it caches instructions in the In-
struction Queue (IQ); whereas later generations cache decoded micro-ops in the Micro-op Queue
(MQ).

56

43.00

45.00

47.00

49.00

51.00

53.00

55.00

1 10 100 1000

P
ow

er
 (W

at
ts

)

Number of Unrolls

Impact of Frontend Caches
Kernel 18 on HSW

Loop
Cache

Micro-op
Cache

L1
Cache

Figure 16: This figure demonstrates the results from manually unrolling Kernel 18
on HSW. Kernel 18 has 19 instructions, not counting the branch instruction. When
unrolls=10 the loop nest contains 190 instructions. Performance remains constant
until the instruction stream exceeds the capacity of the L1 instruction cache at un-
rolls =300.

56 micro-ops in the loop cache). Like the loop cache, the micro-op cache can reduce

the number of instruction decodes by caching decoded instructions. However, unlike

the loop cache, the micro-op cache exists earlier in the pipeline and therefore does

not bypass the branch prediction unit. The results in Figure 16 and Figure 17 show

that utilizing the loop or micro-op cache can reduce the power by several watts but

the power saving advantage of the loop cache over the micro-op cache is relatively

low.

We measure the impact of the loop cache and the micro-op cache by comparing the

original kernel with a version that has been manually unrolled to the point that the

instruction stream exceeds the capacity of the caches. In most cases the kernel only

needed to be unrolled two to four times before the loop nest exceeded the capacity of

the loop cache; however, some of the kernels are too large to fit in the loop cache even

without unrolling. Table 7 lists IQ capacity of the different processors. Performance

counters are used to verify the utilization of the loop cache.

57

1.00
1.10
1.20
1.30
1.40
1.50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
el

at
iv

e
Im

p

1.00
1.10
1.20
1.30
1.40
1.50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
el

at
iv

e
Im

p

1.00
1.10
1.20
1.30
1.40
1.50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
el

at
iv

e
Im

p

1.00
1.10
1.20
1.30
1.40
1.50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
el

at
iv

e
Im

p

1.00
1.10
1.20
1.30
1.40
1.50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
el

at
iv

e
Im

p

1.00
1.10
1.20
1.30
1.40
1.50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
el

at
iv

e
Im

p

Loop cache Micro-op cache

P
N
Y

N
H
M

W
S
M

S
N
B

I
V
B

H
S
W

Kernel

Figure 17: Improvement in energy efficiency from the micro-op and loop caches. Blue
denotes the contribution of the loop caches and orange denotes the contribution of
the micro-op caches.

Figure 17 shows the results from the loop unrolling. In the case of PNY, only

one kernel (Kernel 11) fits into the loop cache because of the size of most kernels

exceeds the limited capacity of the cache. The additional capacity in NHM and

WSM increases the number of kernels that can utilize the loop cache to six. We also

notice that locating the loop cache after the decode stage of the pipeline has increased

58

the energy savings from 5% in PNY to 15% in NHM and WSM. Similarly, the larger

MQ in SNB, IVB, and HSW further increases the number of kernels that utilize the

loop cache; however, in this case the improvement in energy efficiency is relatively

small because the unrolled kernels only fall back to the micro-op cache, still avoiding

the fetch and decode phases of the frontend.

4.3.3 Backend Features

Comparing HSW to PNY with the SSE version of the Livermore Loops, there has been

a 1.4x improvement in per-cycle performance which can be attributed to architectural

improvements to the backend. While increasing performance is beneficial on its own,

it also affects energy efficiency by reducing execution time and increasing power (recall

Equation 7). In this section, we analyze the source of improvements in performance

and energy efficiency of the backend.

4.3.3.1 Additional Execution Units

Superscalar processors exploit instruction-level parallelism by issuing multiple in-

structions per cycle. It improves performance and also improves energy efficiency by

reducing the execution time. Since PNY, several additional execution units have been

added to the core microarchitecture. The most relevant additions are the second load

unit added to SNB, which doubles the L1 load bandwidth, and several redundant

execution units added to HSW.

4.3.3.2 Additional Out-of-order Scheduling Resources

To take advantage of additional execution units, the out-of-order scheduling resources

must be increased to augment the discovery and scheduling of independent instruc-

tions. Among these resources, the number of reorder buffer (ROB) entries directly

affects the number of parallel instructions in flight. The ROB holds the operands

necessary for the instructions’ operations and hold the results before they are written

59

back to the architectural registers. More ROB entries allow more concurrent instruc-

tions in the pipeline. The instruction window controls the number of instructions in

the execution flow that the processor can analyze for parallel execution. A larger in-

struction window allows the processors to examine more instructions, which increases

the chances of finding independent instructions to be executed concurrently. Table 7

shows the increase in the size of the reorder buffer and the instruction window from

PNY to HSW.

4.3.3.3 Backend Experiments and Results

Ideally, the proper approach to quantifying the benefit of the backend improvements

is to defeature a processor to make its backend behave like the previous generation’s

backend. Unfortunately, we do not have the type of controls in modern processors

to make this work. Instead, we approximate this approach by manually isolating

changes in the backend. For these experiments we use the SSE version of the kernels

and unroll them enough so the instruction streams do not fit into the micro-op caches,

thereby eliminating affects from the SIMD extensions and frontend. Furthermore, to

remove the impact of the manufacturing process, we compare processors from the

same process node (i.e., NHM to PNY, SNB to WSM, and HSW to IVB).

Overall, backend features improved performance more than energy efficiency.

From PNY to NHM, five of the 19 kernels improved performance, but only three

improved energy efficiency. From WSM to SNB, 13 of the 19 kernels improved per-

formance and only three improved energy efficiency. From IVB to HSW, 12 of the 19

kernels improved performance and only two improved energy efficiency. The reason

behind these results is that backend improvements require a substantial increase in

transistor count which leads to a significant increase in capacitance and power to

toggle them.

60

Using performance counters and architecture simulators [56, 57], we study the re-

duction in pipeline stalls from one generation to the next. Based on this information,

we can discern what feature is responsible for the change in performance. From PNY

to NHM, we found that the performance benefits mainly come from increased schedul-

ing resources. From WSM to SNB, we found that the majority of the performance

benefits come from the addition of a second load port. Many of the kernels are L1

bandwidth limited on NHM, therefore the additional port alleviates this performance

bottleneck. From IVB to HSW, we found that several of the kernels that benefited

from the additional load port in SNB now benefit from the additional scheduling

resources as the L1 bandwidth is no longer a significant performance bottleneck.

Finally, we use Equation 7 to calculate the effect these performance improvements

have on energy efficiency. Since these performance improvements will increase power

due to the increase in utilization, we use the Register Scrambling technique (see

Section 4.2.6) to map changes in performance to changes in power. For example,

Kernel 1 has an IPC of 2.37 for PNY and 2.79 for HSW. Using the regression model

for Kernel 1 on HSW (see Figure 14), we can determine that this 1.18x improvement

in performance equates to a 1.05x increase in power (from 44.0 watts to 46.4 watts).

Overall, this increase in power is countered with a more significant decrease in runtime

which translates to a net 1.11x improvement in energy efficiency.

4.3.4 Process/Circuits Innovation

Process technology innovations have been the primary driver of improvements in en-

ergy efficiency over the past several decades. These advances enable manufacturers

to produce smaller transistors that can operate a lower supply voltages and reduced

capacitance, both of which reduce dynamic switching energy. Although, smaller tran-

sistors also have a higher leakage ratio, which contribute to higher overall static power

dissipation.

61

We evaluate the impact of process technology improvements by comparing mi-

croarchitectures across process technology nodes: NHM with WSM and SNB with

IVB. Since the core microarchitecture is largely unchanged, the change in power can

be primarily attributed to improvements in circuits and process technology. Figure 18

shows a scatter plot comparing the average power of a kernel on NHM with the av-

erage power of the same kernel on WSM. The regression model suggests that moving

from the 45nm to the 32nm process technology node has increased static power by

7.55 watts but reduced dynamic power by a factor of 0.57. The increase in the static

power is partially due to higher leakage and partially due to a bigger die with two

more cores in WSM – we believe the increase in static power would be lower if In-

tel had produced an equivalent processor with four rather than six cores. Figure 19

shows a similar trend for the progression from 32nm to 22nm process technology

nodes. In this case, both the dynamic and static power reduced by a factor of 0.68

and by 10.48 watts respectively. The reduction in static power has been discussed as

a benefit of the transition from planar transistors in the 32nm process node to the 3D

Tri-Gate transistors which debuted in the 22nm process node [5]. The 40% reduction

in dynamic power in both cases is in line with ITRS Roadmap projections [7].

4.4 Discussion

Taking out the impact of process technology changes, micro-architecture changes

have increased per-cycle performance 1.9x and energy efficiency by 1.2x. Ignoring

the overhead cost of implementing these features, 40% of the energy efficiency can be

attributed to SIMD width, 35% to frontend features, and 25% to backend features.

This section section makes several additional observations about the evolution of

energy efficiency in these processors.

62

y = 0.57x + 7.55
R² = 0.97

0.00

10.00

20.00

30.00

40.00

50.00

60.00

45.00 55.00 65.00 75.00 85.00 95.00

W
SM

 P
ow

er
 (W

at
ts

)

NHM Power (Watts)

Impact of 32nm process technology step

Figure 18: Improvement in energy efficiency attributed to 32nm process technology
step.

y = 0.68x - 10.48
R² = 0.87

0.00

10.00

20.00

30.00

40.00

50.00

50.00 55.00 60.00 65.00 70.00 75.00 80.00

IV
B

 P
ow

er
 W

at
ts

)

SNB Power (Watts)

Impact of 22nm process technology step

Figure 19: Improvement in energy efficiency attributed to 22nm process technology
step.

4.4.1 Energy per instruction (EPI) depends highly on IPC

Efficiency is often gauged by calculating the effective energy per instruction (EPI).

EPI makes the most sense as a metric when it remains constant, independent of IPC.

However, because real machines expend energy at a certain minimum rate even when

idle, actual EPI becomes a function of IPC. Figure 20 demonstrates the effective EPI

63

of HSW as a function of IPC. The effective cost of an instruction drops from 4.1 nJ at

IPC=0.5 to 0.8 nJ when IPC=4. The plot also shows that IPC has a more dramatic

impact on EPI than the actual instruction mix.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

 E
P

I (
nJ

)

IPC

EPI as a function of IPC on HSW

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19

Figure 20: EPI as a function of IPC on HSW. Data samples come from ten “scram-
bles” of each of the Livermore Loops kernels. Data points are colored according to
the kernel.

4.4.2 Fixed costs dominate variable costs

The relationship between IPC and EPI is the result of high static power which is

independent of core utilization. We can approximate this overhead by modeling

power as a function of IPC (see Figure 21). Table 9 lists a linear regression relating

power to IPC on each of the processors. As the table shows, when IPC=2, HSW

consumes 11.05 nJ per cycle. Of that cost, 8.31 nJ comes from a fixed overhead cost

and 2.74 nJ comes from the variable cost of the instructions. As this data implies,

the actual operation cost of an instruction (e.g., the floating-point arithmetic implied

by a floating-point instruction) is only a small fraction of the total power of the CPU.

This is a typical consequence of general purpose processors [102]. Looking at the

trend from PNY to HSW, the variable costs drops with each processor generation,

with substantial drops corresponding to the changes in the process technology node.

The fixed costs drop during process technology node steps (NHM → WSM, SNB

64

→ IVB), but increase when subsequent microarchitectures are introduced (PNY →

NHM, WSM → SNB, IVB → HSW).

Comparing HSW to PNY, a larger fraction of the total energy is spent on fixed

costs. Two reasons contribute to this trend. First, as modern processors integrate

more cores together on a single chip, the size of the uncore grows [79]. In our experi-

ment, the uncore is not exercised, but it is not clock gated either. Second, increasing

core performance has a cost in area and power. However, the transfer from variable

costs to fixed costs is not necessarily bad. For example, the introduction of the micro-

op cache increases the fixed cost of the core by adding a cache, but it also reduces

the variable cost by reducing the number of instruction decodes and fetches.

Furthermore, comparing HSW to IVB reveals how the new features in HSW affect

both the fixed and variable costs. The microarchitectural evolution from IVB to HSW

has increased the fixed cost by 22%. Unless HSW is able to exploit these features

to improve performance, at IPC=2.0 IVB will be 14% more efficient than HSW.

To overcome this deficit, HSW must sustain an IPC of 2.38 to match the energy

efficiency of IVB at IPC=2.0 or rely on SIMD extensions to make each instruction

more productive.

Figure 21: Power as a function of IPC. Data samples come from ten “scrambles” of
each of the Livermore Loops kernels.

65

Table 9: Fixed vs Variable cost analysis of CPU power. The power model is based
on a linear regression of the data shown in Figure 21.

Energy Fixed Cost Variable Cost Fixed /
Power Model Per Cycle Per Cycle Per Cycle Total

(IPC=2) (IPC=2) (IPC=2) (IPC=2)
HSW 4.79(IPC) + 29.08 11.05 nJ 8.31 nJ 2.74 nJ 75%
IVB 5.14(IPC) + 23.74 9.72 nJ 6.78 nJ 2.94 nJ 70%
SNB 7.81(IPC) + 49.63 18.64 nJ 14.81 nJ 4.46 nJ 76%
WSM 8.14(IPC) + 30.89 13.97 nJ 9.14 nJ 4.82 nJ 65%
NHM 13.79(IPC) + 41.30 20.39 nJ 12.23 nJ 8.16 nJ 60%
PNY 13.63 (IPC) + 34.54 20.60 nJ 11.51 nJ 9.09 nJ 56%

4.4.3 Performance improvements exceed power increases

According to the “base” value in Figure 15, the increased complexity of the HSW core

has increased the overhead cost by nearly 80% when compared to PNY. To avoid a

net increase in energy consumption, improvements in performance should be greater

than 80%. In the case of the Livermore Loops, the average performance increases

90%.

4.4.4 Frontend features reduce the tax of complex instructions

As mentioned earlier, as the complexity of the core increases, more energy is devoted

to the fixed costs. However, the increase in fixed cost does not necessarily reduce

energy efficiency. For example, the frontend caches increase the fixed cost, but ulti-

mately improve energy efficiency by dramatically reducing amount of energy spent

fetching and decoding instructions.

When compared to the Reduced Instruction Set Computing (RISC), Complex

Instruction Set Computing (CISC) is generally considered less efficient. CISC does not

have uniform instruction length, which adds significant complexity to the instruction

fetch and decode logic. Based on the results in section 4.3.2 we can approximate the

power of the fetch and decode units by comparing the power when instructions are

streamed from the micro-op cache —which caches decoded micro-ops and therefore

66

can bypass the fetch and decode stages— with the power when the instruction are

streamed from the L1 instruction cache. Figure 16 shows that on HSW, the fetch

and decode overhead consumes about five watts of power which is roughly 12.5% of

the average 40 watts of power consumed by HSW when running the Livermore Loops

kernels. Our results also show that 16 of the 19 kernels fit into the loop cache on

HSW and all of the kernels fit in the micro-op cache, which suggest that most of

the inefficiencies associated with the CISC decode tax can be eliminated with a well

designed frontend.

4.4.5 SIMD extensions increase the productivity of each instruction with
minimal impact on power

It is a well known that SIMD computing is energy efficient. Our results show that

under the ideal conditions vector instruction can increase performance with only a

nominal increase in dynamic energy consumption. However, as SIMD width increases,

its applicability diminishes (see Section 4.3.1). Even when there is sufficient data

parallelism, the additional work necessary to shuffle data into the proper SIMD lanes

can limit the advantage of wide SIMD instructions. For example, algorithms with

indirect accesses or random accesses require separate scalar operations to load and

pack data into these SIMD lanes, which could take away most of the performance

and energy efficiency benefit offered by SIMD. Auxiliary instructions —such as the

gather instruction, which loads non-continuous data into SIMD registers— are crucial

to attaining the full potential of vectorization. Just like the frontend caches which

provide the benefit of reducing complex instructions overhead, the gather instructions

help make wider SIMD useful for a broader pool of applications.

4.4.6 High performance computing vs energy efficient computing

Modern semiconductor manufacturing technology enables processors to operate over

a wide range of frequency and supply voltages. The processor can operate at a high

67

voltage to support a high clock frequency or a low voltage to reduce power. In

our experiments the voltage and frequency used are near the top end of the supply

voltage range, which sacrifices energy efficiency for high single-threaded performance.

In this regard, our results may not capture the most energy efficiency way of using

the processors; it is possible for these processors to be more efficient operating at

a lower frequency and voltage. We therefore caution readers to consider the supply

voltage of the processor before comparing the energy efficiency across different classes

of processors.

4.5 Related Work

Traditionally, research has focused on the power consumption of individual functional

units, yet there has been a growing demand for processor-level analysis of energy

efficiency.

At the application level, there have been several studies comparing the energy ef-

ficiency of different processors. This has included long-term historical trends [46, 70]

as well as comparisons of competing platforms [20, 33, 34]. The demand for en-

ergy efficient computing has even motivated the Green500 list, which has become

an industry benchmark for comparing the energy efficiency of supercomputers [35].

Of course, the vast differences between these systems (performance levels, ISA, pro-

cess and manufacturing technology, code quality, etc) makes it difficult to draw any

definitive conclusions about the true impact of the underlying microarchitecture.

Bottom-up models and cycle-accurate simulators have been used to evaluate ar-

chitectural design decisions that affect power [16, 49, 60, 110]. Unfortunately, it is

often difficult to validate the relative contribution of the individual components in

the underlying model when only the total power of the physical processor can be

observed. Furthermore, as the complexity of modern processors swells, it is becoming

increasingly difficult to construct a bottom-up model that can accurately capture all

68

relavent processor features.

Alternatively, several groups have studied power consumption by developing instruction-

based power models [11, 75, 89]. This approach focuses on correlating hardware per-

formance counters with observed power measurements. A regression analysis is used

to assign energy costs to each architectural event. This can then be used to predict

power consumption of an arbitrary application based solely on performance counter

values. The primary weakness of this approach is its inability to directly account for

the full context within which an instruction is executed. For example, as our paper

shows, the energy consumed by an instruction that is streamed from a loop cache

can be significantly different from one that instead exercises the instruction fetch

and decode units, yet the performance counter events only give a limited view of the

internal state of the processor core.

4.6 Future Work and Conclusion

Due to the complexity of modern processors, we had to limit the scope of this project

to deliver meaningful insights. We identify several limitations that can be addressed

further in future work:

• Beyond the core: Our study focuses on the core architecture and thereby

tries to minimize the impact of the memory hierarchy, uncore, and system-level

components. We acknowledge that these components are an important factor

in the overall efficiency of a modern application. Studying the core in isolation

provides a foundation for tackling the broader problem.

• Representative workloads: The Livermore Loops benchmark suite provides

a number of floating-point heavy computations with a variety of instruction-

level dependencies. It is well suited for the experiments in our study, but it

is not necessarily representative of modern or future workloads. In particular,

we want to draw attention to two important characteristics that are absent in

69

our benchmarks: first, the single-loop structure of our benchmarks eliminates

any performance advantage of a sophisticated branch predictor because nearly

all branches are taken; second, by design all memory accesses hit the L1 cache,

neglecting the uncore and higher levels of the memory hierarchy and thereby

eliminate dynamic variation in instruction latency. Studying more representa-

tive workloads is a natural next step.

• Scaling voltage and frequency: Core voltage and clock frequency can have

a tremendous impact on energy efficiency. In our experiments, the processors

were configured to run at the default voltage and frequency without dynamic

scaling. With a specific application in mind, it would be interesting to study how

voltage and frequency scaling impact energy efficiency on a fixed architecture.

• Comparing competing processors: The quantitative results of this study

are specific to the Intel R© Core
TM

processor, yet the conclusions can be applied

in general. For a more general purpose study, this approach can also be ex-

tended to compare among different processor families involving more dramatic

microarchitectural differences, such as a comparison with the Intel R© Atom
TM

or

Xeon Phi
TM

or even comparing processors with different ISAs.

• Optimizing software for energy efficiency: Beyond the quantitative num-

bers presented in this study, this work also demonstrates how carefully con-

trolled experiments can be used to isolate individual architectural features for

the purposes of empirically measuring energy consumption. In many cases,

key architectural features, such as the loop cache, are transparent from a per-

formance perspective and are thus overlooked. We believe this methodology

provides the level of precision necessary for exploring the impact software im-

plementation decisions have on energy efficiency. For example, an evaluation of

compiler heuristics can lead to compile time optimizations tailored specifically

70

for reducing energy consumption.

Following the hackneyed business adage, “if you can’t measure it, you can’t man-

age it”, we firmly believe that long-term improvements in energy efficiency within

the field of high performance computing depend on rigorous evaluations of progress.

In this spirit, our paper provides an in-depth assessment of energy efficiency on re-

cent generations of the Intel R© Core
TM

processor. Our results indicate that advances

in manufacturing and circuits have been the dominate contributor to the improve-

ments in energy efficiency, but architectural innovations have had a positive impact

on energy efficiency as well.

71

CHAPTER V

A THEORETICAL FRAMEWORK FOR

ALGORITHM-ARCHITECTURE CO-DESIGN

5.1 Introduction

We seek a formal framework that explicitly relates characteristics of an algorithm,

such as its inherent parallelism or memory behavior, with parameters of an archi-

tecture, such as the number of cores, structure of the memory hierarchy, or network

topology. Our ultimate goal is to say precisely and analytically how high-level changes

to the architecture might affect the execution time, scalability, accuracy, and power-

efficiency of a computation; and, conversely, identify what classes of computation

might best match a given architecture. Our approach marries abstract algorithmic

complexity analysis with key physical constraints, such as caps on power and die area,

that will be critical in the extreme scale systems of 2018 and beyond [1, 68]. We refer

to our approach as one of algorithm-architecture co-design.

We say “algorithm-architecture” rather than “hardware-software,” so as to evoke a

high-level mathematical process that precedes and complements traditional methods

based on detailed architecture simulation of concrete benchmark code artifacts and

traces [18, 44, 51, 58, 96, 106]. Our approach takes inspiration from prior work on

high-level performance analysis and modeling [9, 50–52, 92], as well as the classical

theory of circuit models and the area-time trade-offs studied in models based on

very large-scale integration (VLSI) [73, 98]. Our analysis is in many ways most

The material in this chapter has appeared in a separate refereed publication [26].

72

similar to several recent theoretical exascale modeling studies [42, 95], combined with

trends analysis [69]. However, our specific methods return to higher-level I/O-centric

complexity analysis [13, 14, 19, 23, 41, 111], pushing it further by trying to resolve

analytical constants, which is necessary to connect abstract complexity measures with

the physical constraints imposed by power and die area. This approach necessarily

will not yield cycle-accurate performance estimates, and that is not our aim. Rather,

our hope is that a principled algorithmic analysis that accounts for major architectural

parameters will still yield interesting insights and suggest new directions for improving

performance and scalability in the long run.

Power

Area

More
bandwidth

Higher
frequency

More
cores

More
cache

$

C C C C C C

C C C C C C

C C C C C C

C C C C C C

DRAM

$

C C C C C C

C C C C C C

C C C C C C

C C C C C C

$

C C C C C C

DRAM

$

C C C C C C

DRAM

DRAM

Figure 22: A notional power/transistor allocation problem. In our framework, a fixed
die area (allocated between cores and cache) and a fixed power budget (allocated
between core frequency and bandwidth), define a space of possible machines.

A formal framework. We pose the formal co-design problem as follows. Let a be

an algorithm from a set A of algorithms that all perform the same computation within

the same desired level of accuracy. The set A might contain different algorithms,

73

Echelon

Cache Size (MB)

M
em

o
ry

 B
a

n
d

w
id

th
 (

T
B

/s
)

Performance on FFT

0 183.5 367
0

2.3588

4.7175

Echelon

Cache Size (MB)

M
em

o
ry

 B
a

n
d

w
id

th
 (

T
B

/s
)

Performance on Matrix Multiply

0 183.5 367
0

2.3588

4.7175

Figure 23: Projected performance for a 3D FFT and matrix multiply at some prob-
lem size (lighter is better). Different algorithms may perform differently on these ma-
chines. The marker is the approximate “location” within this space of the NVIDIA
Echelon GPU-like architecture proposed for the year 2017 [65]. In the 3D FFT ex-
ample, the optimal configuration is 2.6 times faster than Echelon.

such as “A = {fast Fourier transform, F-cycle multigrid},” for the Poisson model

problem [30, 84]. Or, A may be a set of tuning parameters for one algorithm, such

as the set of tile sizes for matrix multiply. Next, let µ be a machine architecture

from a set M , and suppose that each processor of µ has an area of χ(µ). Lastly,

let T (n; a, µ) be the time to execute a on µ for a problem of size n, while using a

maximum instantaneous power of Φ(µ). Then, our goal is to determine the algorithm

a and architecture µ that minimize time subject to constraints on total power and

processor die area, e.g.,

(a∗, µ∗) = argmin
(a∈A, µ∈M)

T (n; a, µ) (8)

subject to

Φ(µ∗) = Φmax (9)

χ(µ∗) = χmax, (10)

where Φmax and χmax are caps on power and die area, respectively. The central re-

search problem is to determine the form of T (n; a, µ), Φ(µ), and χ(µ). The signifi-

cance and novelty of this analysis framework is that it explicitly binds characteristics

74

of algorithms and architectures, Equation (8), with physical hardware constraints,

Equations (9)–(10).

A demonstration. Suppose we wish to design a manycore processor µ, which we

represent by the four-tuple (βmem, q, f, Z): βmem is the processor-memory bandwidth

(words per unit time), q is the number of cores per processor, f is the clock frequency

of each core (cycles per unit time), and Z is the total size of the aggregate on-chip

cache (in words), assuming just a two-level hierarchy (cache and main memory). Fur-

ther suppose that the χmax = 141 mm2 of die area can be divided between on-chip

cache (Z) and cores (q). Lastly, suppose the node power budget is constrained to

Φmax = 173 Watts, which can be used to increase cycle-frequency (f) or boost off-die

memory bandwidth (βmem). Figure 22 is a cartoon that suggests how these parame-

ters and constraints imply a space of possible designs. Figure 23 shows how, given a

specific model of different algorithms on this space of machines, we might then solve

the optimization problem of Equations 8–10 to identify optimal systems. Unsurpris-

ingly, a processor tuned for a communication-intensive 3D fast Fourier transform will

devote more of a fixed power budget (y-axis) to memory bandwidth, compared to

matrix multiply.

However, Figure 23 also suggests an intriguing possibility. Observe that a die area

configuration (x-axis) that is good for matrix multiply will also be good for an FFT;

to make a system that can perform “optimally” on both workloads, we would need

the ability to dynamically shift power from the processor to memory bandwidth,

by a large factor of roughly 7×. That is, reconfigurability of processor transistors

may be relatively less important than extreme power reconfigurability with respect

to bandwidth. Whether one can build such a system is a separate question; this

demonstration suggests and attempts to quantify the possibility.

The remainder of this paper formalizes this analysis. As a demonstration, we

75

develop an analytical model of these constraints, Φ(µ) and χ(µ), as well as perfor-

mance models, T (n; a, µ). To suggest the possibilities of the framework, we develop

models for a full-system configuration, consisting of a distributed memory machine

comprising any number of manycore processors connected by a network, in the case of

distributed matrix multiply, distributed 3D FFTs, and distributed stencil algorithms.

We do not view any specific models and projections as the main contribution of our

work. Rather, we wish to emphasize the basic framework, with the large variety of

potential detailed modeling strategies, analyses, and projections as possibilities based

on it.

5.2 Background and Related Work

The principal challenge is how to connect power (and implicitly, energy) and area

constraints with a complexity analysis. There are numerous approaches. The most

widely-cited come from the computer architecture community [20, 33, 48, 50, 80, 117].

In such approaches, the application or algorithm is typically abstracted away through

an Amdahl’s Law style analysis, which means it can be difficult to relate high-level

algorithmic characteristics to architectures precisely. Theorists have also considered a

variety of new complexity models that incorporate energy as an explicit cost [71, 85].

However, this body of work is very abstract and focused purely on asymptotics, mak-

ing these models difficult to operationalize, in our view. Lastly, there is a considerable

body of work from the embedded hardware/software community, emphasizing anal-

ysis suitable for compiler- and run-time systems [27, 67, 109]. However, this work

necessarily focuses on specific concrete code and architecture implementations, and

therefore do not explicitly illuminate constraints due to fundamental algorithmic and

physical limits. It is these limits that we seek to understand to make forecasts about

future algorithm and system behavior.

Regarding area constraints, note that our framework treats die area, χ(µ), as a

76

function of architecture µ only. Thus, to construct this function we need to consider

what architectural components we will put on chip (e.g., cores, caches, on-chip net-

works) and derive cost estimates for the size of each component. Effectively, this

choice implies that we are most interested in still building architectures that can exe-

cute general-purpose computations; however, the power and area allocations are tuned

to specific workloads. Thus, our approach stands in contrast to the classical work on

models of computation under very large-scale integration (VLSI) [98, Chap. 12]. That

body of work also considers physical area-time trade-offs [73, 93], with connections to

energy [4, 114], but does so for specific circuit structures that correspond to specific

computations. We imagine a bridging between these two approaches but are for the

moment agnostic on the specific analytical form of that bridge.

To develop cost models for both power and area, we are mining the vast lit-

erature on models and technology trends for everything from low-level processor

device physics, functional units, cores, caches and memory systems, and on-chip

and off-chip networks [15, 16, 28, 47, 60, 68, 76, 103]. Since our ultimate goal is

to consider potential long-term outcomes, we focus on recent projections of scaling

trends [15, 65, 68, 69, 103].

5.3 An Example of Instantiating a Model within the Frame-
work

This section explains how one might go about constructing meaningful cost and con-

straint models within the framework. In particular, we instantiate specific forms for

T (n; a, µ), Φ(µ), and χ(µ). These forms are meant to be illustrative, not necessarily

definitive. Armed with such a model, Section 5.4 then considers a variety of what-if

scenarios at exascale (roughly 1 exaflop/s capable systems) expected in the 2017–2020

timeframe, to illustrate the kinds of insights possible within the framework.

77

5.3.1 Technological and architectural parameters

To guide parameter selection and model calibration, we start with the basic technology

trend assumptions laid out in a recent description of the proposed NVIDIA Echelon

processor, scheduled for release in approximately the year 2017 [65].

For our subsequent analysis and projections, we will assume the technology con-

stants that appear in Table 10. These values depend on specific assumptions about

technological capabilities in the 2017–2020 time frame, for which we borrow the ex-

pectations used to design Echelon. We take those projections as-is; debates about

the accuracy of these values are beyond the scope and intention of this paper.

Our target system is a supercomputer. We parameterize the high-level architec-

ture µ by the following: the number of cores per processor (q), cycle-frequency of

each core (f), the aggregate on-chip cache capacity (Z), memory bandwidth (βmem),

on-chip network bandwidth (βnoc), off-chip network link bandwidth (βnet), and total

number of nodes (p). By “node” we really mean a single unit of distributed mem-

ory processing consisting of a (manycore) processor, local memory, persistent storage

(disk). This definition constitutes a simplification of how a real “node” might look

in a future system; however, we do model the power required by such a node (see

εnode in Table 10). We use the term “core” to represent the basic unit of processing

in the system. We endow a core with general-purpose processing capabilities, e.g.,

ALU, address generation, branch unit, register file; however, because the sample al-

gorithms we analyze are floating-point intensive, we characterize the core essentially

by its peak rate of floating-point instructions completed per cycle. The caches are

core-private but the value Z is aggregate over all cores on a chip. We connect cores

via a
√
q ×√q 2D Mesh with an on-chip link bandwidth of βnoc. The on-chip cache

is evenly distributed to all cores so that each cores has a private cache of size Z
q
. We

connect nodes by a p
1
3×p 1

3×p 1
3 3D torus with a link bandwidth of βnet. As a reference

point, the values of these parameters as proposed for the Echelon design appear in

78

column 2 of Table 11. (Columns 3 and 4 will be discussed in Section 5.4.)

Our specific algorithmic analyses will also assume an abundance of parallelism.

Though this assumption seems strong, it is also a necessary condition for any ap-

plication that can hope to scale to very large numbers of nodes relative to today’s

standards.

Table 10: Technology Constants: Projected values for 2018.

Parameters 2018 (10 nm)
Value

System Power Cap: Φmax 20 MW
Chip Die Area: χmax 141.7 mm2

Cache Density: σcache .386 mm2/MB
Core Density: σcore .0105 mm2/MB

Memory BW Power: λmem 36 mW/GB
s

Network BW Power: λnet 36 mW/GB
s

On-Chip Network BW Energy: λnoc .75 pJ/mm Byte
Dynamic Power Coefficient: cdynamic 0.00129704

Short-Circuit Coefficient: cshort 0.0032426
Leakage Coefficient: cleakage 0.002026625

Node Overhead: εnode 2 W

5.3.2 A model of physical constraints

We use the following models of power and area, based on the parameters shown in

Tables 10 and 11.

The total system power comprises the power of the cores (Pcomp), memory (Pmem),

on-chip interconnect (Pnoc), and the system network (Pnet). There is also a nominal

per node power cost (εnode) that represents the inherent overhead cost of maintaining

a node, e.g., power supply, chipset, disk.

Φ(µ) = p (Pcomp + Pmem + Pnoc + εnode) + Pnet (11)

Power consumption of CMOS circuits are frequently modeled with a three term equa-

tion of the form, P = ACV 2f + τAV If + V Ileakage, which accounts for the dynamic

79

Table 11: Hardware Characteristics (µ).

Parameters Ideal Ideal Ideal
Echelon Matrix Multiply FFT Stencil
Value Value Value Value

Cores: q 4,096 11,491 11,295 9,494
Frequency: f 2.0 GHz .275 GHz 3.0 GHz .280
Aggregate

On-chip Cache: Z 256 MB 54.5 MB 59.8 MB 109 MB
Memory

Bandwidth: βmem 1.6 TB/s .034 TB/s 29.5 TB/s .787 TB/s
On-chip Network

Bandwidth: βnoc 4.0 GB/s .11 GB/s 38.2 GB/s .19 GB/s
Network

Bandwidth: βnet 67 GB/s 11.4 GB/s 18,100 GB/s 12.5 GB/s
Number of

nodes: p 102,500 1,280,000 3,400 480,000

Peak: 2qfp 1.7 EF/s 8.1 EF/s 230 PF/s 2.5 EF/s

power consumption, short-circuit current, and leakage current [91]. The key variables

from our perspective are voltage V and frequency f . Since the maximum operating

frequency f is roughly linearly related to the voltage V , we can simplify the expression

for the power consumption of each core to be a function that is cubic in f :

Pcomp = q
(
cdynamicf

3 + cshortf
2 + cleakagef

)
. (12)

We can obtain suitable coefficients by fitting this equation to the different voltage,

frequency, and energy settings provided in the Echelon paper [65].

Bandwidth power (Joules/sec or Watts) is bandwidth (Bytes / sec) times energy

cost per byte (Joules/Byte):

Pmem = βmem · λmem (13)

Pnet = βnet · Links(p) · λnet (14)

The die area dedicated to each core is Z
q
σcache +σcore. Assuming each core is square

in shape, the distance between the center of two neighboring cores is
√

Z
q
σcache + σcore,

80

which we will use to approximate the length of the on-chip interconnect links. As-

suming a 2D mesh topology, which is the most natural considering the current planar

manufacturing process of modern processors—there are a total of 4q−4
√
q links. The

power of the on-chip network is therefore

Pnoc = (4q − 4
√
q)

(√
Z

q
σcache + σcore

)
βnocλnoc. (15)

The limited processor die area constrains the number of cores and cache that can

be placed on a single node. A larger cache capacity means there is less space for cores

and vice-versa. Thus, given a total die area of Ωdie, we constrain total core and cache

capacity by requiring that

Ωdie = (q · σcore) + (Z · σcache) . (16)

5.3.3 Algorithmic cost models

Given the basic architectural model and parameters, the next step is to analyze an

algorithm or class of algorithms, so that we can compute T (n; a, µ). We specifically

consider the total execution time to be the maximum of four component times:

T = max {Tcomp, Tnet, Tmem, Tnoc} (17)

where Tcomp is the time performing compute (flops), Tnet is the time spent in network

communication, Tmem is the time spent performing processor-memory communica-

tion, and Tnoc is the time spent in on-chip network communication. Below, we give

sample analyses for 2.5D matrix multiply, a three-dimensional FFT, and a stencil

computation.

5.3.3.1 Example: Distributed 2.5D matrix multiply

The 2.5D matrix multiply algorithm of Solominik and Demmel [107] is a particularly

interesting case for our framework. In particular, it contains a tuning parameter that

81

can be used to reduce communication at the cost of increasing memory capacity, a

trade-off that we subsequently analyze.

The 2.5D matrix multiplication algorithm decomposes a n × n matrix multiply,

distributed across p nodes, into a sequence of (p/C)3/2 matrix multiplies, each of size

(n
√
C/p) × (n

√
C/p). The value C is the tuning parameter that, when increased,

decreases communication at the cost of increased (replicated) storage.

We take computation time to be that of the conventional (non-Strassen) algorithm:

Tcomp =
2n3

pqf
. (18)

Network communication costs are based on the asymptotically optimal bandwidth

costs of the 2.5D algorithm [107]:

Tnet =
2n2

√
Cpβnet

. (19)

Each node will compute (p1/2/C3/2) local matrix multiplies of size
(
n
√

C
p

)
×(

n
√

C
p

)
during the computation. From this fact, we can calculate the time spent

locally transferring data between the processor and memory, given the aggregate

cache of size Z. Assuming an asymptotically I/O-optimal blocked algorithm with

block size b =
√

Z
3
, we obtain

Tmem =

(√
p

C
3
2

)(
n
√
C
√
p

)3(
2
√

3√
Zβmem

)
(20)

=
2
√

3n3

p
√
Zβmem

. (21)

Since we assume private caches and a 2D mesh network, we can treat the local

matrix multiply as a distributed computation across the cores. We estimate the

on-chip network communication time assuming the communication-optimal Cannon

algorithm [17],

Tnoc =

(√
p

C
3
2

)(
2n2C

p
√
qβnoc

)
=

2n2

√
Cpqβnoc

, (22)

82

where the constants reflect the additional assumption of the matrix operands being

distributed in “skew” order across the private caches.

5.3.3.2 Example: Distributed 3D FFTs

Our second example is the 3D FFT. We assume a problem of size N = n3 using

the pencil decomposition [78]. The algorithm consists of three computation phases

separated by two communication phases. Each computation phase computes n2 1D

FFTs of size n in parallel. Each communication phase involves
√
P independent

P -node personalized all-to-all exchanges.

Each 1D FFT of size n is computed locally on a node using Θ (n log n) float-

ing point operations. We assume the classic Cooley-Tukey radix-2 algorithm, which

requires approximately 5n log2 n flops; thus,

Tcomp = 3× 5n3 log2 n

fpq
. (23)

During each of the two communication phases, approximately n3 data points are

transferred across the network. Assuming a 3D torus network with a bisection band-

width of O
(
p

2
3βnet

)
, the communication cost is approximately

Tnet = 2× n3

p
2
3βnet

. (24)

During each of the three computation phases, each node must compute n2

p
1D

FFTs. The number of processor-memory transactions necessary to compute each

local 1D FFT depends on the total cache capacity Z of the node. If the entire 1D

FFT can fit within the on-chip caches (n ≤ Z), then memory transfers are limited

to just O (n) compulsory cache misses. Otherwise, the computation will incur an

additional Θ (n logZ n) capacity misses [53]. We have previously estimated a lower-

bound on this constant to be 2.5 [25], using hardware counters measurements of

83

last-level cache misses incurred by the highly-tuned FFTW [40]. Thus,

Tmem = 3× n2

p
× 2.5nmax(logZ n, 1)

βmem

(25)

=
7.5n3 max(logZ n, 1)

pβmem

, (26)

where the max function ensures that the transfers include at least the compulsory

misses.

If an entire 1D FFT can fit in the private cache of a single core (n < Z
q
), then no

on-chip communication is necessary beyond the compulsory cache misses to DRAM.

Otherwise, the 1D FFT must be distributed across q̂ = nq
Z

cores, which requires

O
(

n√
q̂βnoc

)
time assuming a 2D mesh topology. In total, each group must compute

at least n3

pZ
of these distributed FFTs. Additionally, we only consider large problems

sizes (q � n) in this paper, so that load balance should not be a significant factor.

Thus,

Tnoc = 3×
(
n3

pZ

)(
n
√
Z

βnoc

√
q
√
n

)
(27)

=
3n3
√
n

p
√
q
√
Zβnoc

. (28)

5.3.3.3 Example: Distributed 3D Stencil

Our final example is a 3D stencil. For simplicity of demonstration, we will only

consider a 3D cross-shaped stencil of width w and total of 6w+ 1 points, and we will

ignore the possibility of algorithms that tile in time. We assume a problem of size

N = n3.

The most direct method consists of 12w+1 floating point operations per element;

thus,

Tcomp =
n3(12w + 1)

fpq
. (29)

Assuming each node owns a n
3
√
p
× n

3
√
p
× n

3
√
p

block of the dataset, each node will

need a n
3
√
p
× n

3
√
p
× w sub-block from each of the six adjacent nodes on the 3D torus

84

network. Therefore, the communication cost is approximately

Tnet =
6wn2

p
2
3βnet

. (30)

Without reuse, the number of processor-memory transactions necessary to com-

pute each element is 6w+2. A cache of size Z can be used to reduce the total number

of reads by a factor of O
(
Z

1
3

)
. Thus,

Tmem =

(
n3

p

)(
6w

Z
1
3

+ 2

)(
1

βmem

)
, (31)

where n3

p
is the number of elements processed on each node.

We can approximate the amount of on-chip communication by comparing the

cache misses incurred by a core with a private cache of size Z
q

with the number of

cache misses incurred by a processor with an aggregate cache of size Z. Thus,

Tnoc =

(
n3

p

)[(
6w

(Z
q)

1
3

+ 2

)
−
(

6w

Z
1
3

+ 2
)]

qβnoc

(32)

=
6wn3

(
q

1
3 − 1

)
Z

1
3 qpβnoc

. (33)

5.4 Analysis

Given the models and architectural parameters of Section 5.3, we can now carry out

a series of what-if analyses to gain some insight into possible futures and high-level

architectural designs, and even compute solutions to Equation 8.

5.4.1 Ideal architectures

We solved the optimization problem of Equation 8 for the 3D FFT, matrix multiply,

and stencil algorithms. For this first analysis, we fixed the matrix multiply algorithm

to be the Cannon (2D) algorithm, rather than the 2.5D algorithm considered in the

next section, and fix the stencil width (w = 10). The ideal configuration for each

appears in columns 3-5 of Table 11. Think of these configurations as being the ones

85

0

35

71

106

141

Die Area (mm^2)

Die Area Budget

Core Area
Cache Area

0

44.75

89.50

134.25

179.00

Node Power (W)

Node Power Budget

Cores
Mem Bandwith
Noc Bandwidth

0

5

10

15

20

System Power (MW)

System Power

Computation
Memory Bandwidth
On-Chip Network
Node Overhead
Network

0

35

71

106

141

Die Area (mm^2)

Die Area Budget

Core Area
Cache Area

0

2.8

5.6

8.3

11.1

Node Power (W)

Node Power Budget

Cores
Mem Bandwith
Noc Bandwidth

0

5

10

15

20

System Power (MW)

System Power

Computation
Memory Bandwidth
On-Chip Network
Node Overhead
Network

Ideal MatMult Configuration

0

35

71

106

141

Die Area (mm^2)

Die Area Budget

Core Area
Cache Area

0

491

982

1472

1963

Node Power (W)

Node Power Budget

Cores
Mem Bandwith
Noc Bandwidth

0

5

10

15

20

System Power (MW)

System Power

Computation
Memory Bandwidth
On-Chip Network
Node Overhead
Network

Ideal FFT Configuration Echelon Configuration

Ideal Stencil Configuration

0

35

71

106

141

Die Area (mm^2)

Die Area Budget

Core Area
Cache Area

0

9

19

28

37

Node Power (W)

Node Power Budget

Cores
Mem Bandwith
Noc Bandwidth

0

5

10

15

20

System Power (MW)

System Power

Computation
Memory Bandwidth
On-Chip Network
Node Overhead
Network

Figure 24: Hardware configurations for the hypothetical machines. The subplots
break down the power and die area resource allocations.

0

15

30

45

60

FFT MatMult Stencil

Ideal FFT Configuration

FFT MatMult Stencil

Ideal MatMult Configuration

FFT MatMult Stencil

Ideal Stencil Configuration

FFT MatMult Stencil

Echelon

Figure 25: Relative execution times for the hypothetical machines. The subplots
show execution time relative to the ieal FFT, Stencil, and MatMult configurations.

optimally tuned for the corresponding algorithm, though recall that the model is for a

general-purpose system. Figure 24 shows how resources are allocated in each of these

tuned configurations, as well as in the proposed Echelon configuration. Figure 25

shows execution times for each of the hypothetical machines on the 3D FFT, stencil,

and matrix multiply workloads. We can make a number of observations about these

86

results.

Even under optimistic assumptions and an optimal machine configuration, the

ideal FFT machine has a peak of only 230 petaflop/s (PF/s) with 20 MW of power,

which is just 1/36 of the 8 exaflop/s (EF/s) possible on the ideal matrix multiply

system. This means that relative to a matrix multiplication, the FFT computation

requires 36×more energy per floating-point operation. However, tuning for a 3D FFT

means we will necessarily divert power resources (and, therefore, energy efficiency)

elsewhere in the system.

The Echelon design calls for 256 MB of on-chip cache which is over four times

more than the ideal FFT and ideal MatMult. This is interesting because relative to

NVIDIA’s current GPU, the core count increased by a factor of 16 (the scaling factor

from a 40nm to 10nm process technology) but the cache capacity by 64 (4x more

than the scaling factor).

It is interesting to further consider these configurations in light of our motivating

demonstration of Section 5.1. There, we observed that a single-processor system with

extreme reconfigurability of power—rather than die area—might lead to designs ca-

pable of performing both a compute-intensive matrix multiply and a communication-

intensive 3D FFT. The three ideal configurations, depicted in Figure 24 and enumer-

ated in Table 11, are similarly suggestive. From Figure 24, observe that the processor

configurations for the three ideal systems are not too dissimilar. Rather, the dramatic

differences come from shifting power allocations to processors (Ideal MatMult), mem-

ory bandwidth (Ideal Stencil), or network (Ideal FFT). The node counts also different

significantly (Table 11). Thus, an intriguing question is whether there is any way to

engineer a single system having the same processors but a mechanism to perform

dramatic power reconfigurations (drawing down or shutting off nodes as needed, and

diverting power to bandwidth).

87

5.4.2 Architecture trade-offs: lightweight vs. heavyweight designs

Recent discussions surrounding the direction of high-end systems often characterize

design strategies as either “lightweight” or “heavyweight.” The key distinction be-

tween these two strategies is node density. Lightweight designs, exemplified by the

Blue Gene-style processors, consist of many lower power processors. Alternatively,

heavyweight designs, exemplified by Jaguar-class machines, consists of fewer but more

powerful processors, each operating at high clock frequencies.

Interestingly, these characterizations apply to the ideal machine configurations

in Figure 24. The ideal matrix multiply configuration, “Ideal MatMult,” reflects

a lightweight strategy, whereas the ideal 3D FFT configuration, “Ideal FFT,” re-

sembles a heavyweight strategy. The difference is extreme: Ideal FFT has only

3,400 nodes, which is 376× fewer nodes than Ideal MatMult. Essentially, an FFT

is communication-bound and is therefore highly sensitive to the decreased energy-

efficiency of a large network — on a 3D torus, the energy-efficiency will decrease at

a rate of O
(
(p2/3)/p

)
as p increases. Unlike the FFT, matrix multiply benefits from

large node counts because it can exploit the increased core count to make the compu-

tation more efficient with a lower clock frequency. Figure 26 shows the stark contrast

in performance between the two computations as a function of system density.

0

0.25

0.50

0.75

1.00

1000 10000 100000 1000000 10000000

Performance as a Function of Node Density

Pe
rfo

rm
an

ce
 re

la
tiv

e
to

 b
es

t

Number of nodes

FFT
MatMult
Stencil

Figure 26: Node Density Plots.

88

5.4.3 Algorithm trade-offs: computation v. communication

A convolution is an algorithmic pattern that can capture the characteristics of many

scientific computing problems. We may interpret a convolution as the application of

a “filter” to a “signal.” Computationally, a convolution may be implemented as a

stencil computation, when the filter is compact, or alternatively by an FFT. A small

value of the stencil width w in our model (Section 5.3.3.3) corresponds to our mea-

sure of compactness. In a stencil-based approach, the computational complexity of

convolution will be O (wn). When the filter is not compact, an FFT-based method

may be more suitable as it reduces computational complexity to O (n log n). How-

ever, the FFT-based methods have a higher communication cost. For moderate sized

stencils this results in a computation versus communication trade-off: the FFT-based

method requires fewer floating point operations but more data movement than the

stencil method [22, 32].

In the case of a large 3D convolution (n = 217), the FFT-based method will in our

model become more efficient when w ≥ 22. Figure 27 compares the execute time of

the stencil and FFT-based methods over various stencil sizes. The results show that

an ideal stencil machine is actually much faster than the ideal FFT machine until

the stencil size is significantly larger (w ≈ 600) than expected. The reason for the

discrepancy is the relative cost of a floating-point operation versus data movement.

As expected trading communication for computation is beneficial until the trade-offs

become extreme.

5.4.4 Algorithm trade-offs: space vs communication

In Section 5.4.1, we found the ideal architecture for Cannon’s matrix multiply algo-

rithm (the “2D” approach). While this algorithm is asymptotically optimal when

all of the available system memory is utilized, the class of “2.5D” algorithms can

further reduce network communication by a factor of
√
C by making an additional

89

0

1

2

3

4

0 200 400 600 800

Algorithms for Computing a Convolution

Ti
m

e
(s

ec
)

Stencil Width (w)

Stencil
FFT

Figure 27: Plot of the time to compute a convolution using different stencil sizes.
The figure compares the Stencil method with an FFT based method in the 3D case.

C copies of the data. Based on historical trends, we estimate that in 2018 increasing

the system memory capacity could require an extra watt of power for every eight GB

of additional DRAM [94, 116]. Thus, the power consumed by the requisite memory

capacity, 3Cn2 nanowatts, increases as C increases. This introduces a trade-off be-

tween memory utilization and network communication. An interesting question is to

what extent replication can be used to improve performance without increasing the

total power and energy costs.

To find the optimal balance, we solve Equation 8 for the optimal algorithm, a∗, and

the corresponding architecture, µ∗, considering the set of all 2.5D implementations

(i.e., values of the replication factor, C). Figure 28 shows the performance and

resource allocation of these algorithms. The results show that indeed, replication

can slightly improve upon Cannon’s algorithm under these conditions. However, the

optimal balance is not at one of the extremes, but rather somewhere in-between.

5.4.5 Increasing the power budget

The U.S. Department of Energy, one of the primary customers of top-tier supercom-

puters, has instituted a strict 20 MW power cap for future supercomputers. This

power constraint is one of the dominant challenges to reaching exascale.

We can consider how much performance improves if the power cap is relaxed a

little by changing the power constraint, Φmax, in Equation 8. Figure 29 compares

90

0

5

10

15

20

0.00 0.11 0.22 0.33

2.5D Power Allocation

Po
w

er
 (M

W
)

C Value

Compute
Memory Bandwidth
NOC Bandwidth
Node Overhead
Network Bandwidth
DRAM

5.00

6.25

7.50

8.75

10.00

0 0.11 0.22 0.33

2.5D Performance

Pe
rfo

rm
an

ce
 (E

flo
p/

s)

C Value

Figure 28: Performance of 2.5D Matrix Multiply variants. The 2.5D algorithm is
parameterized by a value C = pα where 0 ≤ α ≤ 1

3
. ’DRAM’ represents the power

consumed by the requisite memory capacity.

the performance of an ’ideal’ machine, designed for a 20 MW power budget, with

a similar machine that is designed for a larger power budget. As the figure shows,

communication-heavy applications like the FFT will improve at a slower rate than

applications that are less dependent on communication. This is because the most

efficient way to scale the machine is to increase the number of nodes, which in turn

increases the communication overheads.

1.00

1.75

2.50

3.25

4.00

20 35 50 65 80

Performance as a Function of System Power

No
rm

al
ize

d
Pe

rfo
rm

an
ce

Power (MW)
Stencil FFT MatMult

Figure 29: Plot of performance as a function of the power budget. Performance values
for the algorithms are scaled to their performance at a 20 MW power budget.

91

CHAPTER VI

CONCLUSION

Over the past several decades, the prosperity of Moore’s Law has ushered in a golden

age in the field of High Performance Computing. The exponential increase in tran-

sistor budgets has brought about monstrously powerful processors which are faster

and more sophisticated than previous generations. This has enabled supercomputers

with immense computational horsepower to tackle large-scale science problems that

were previously intractable. The explosion of processor technology has also made

computing ubiquitous, touching nearly every aspect of daily life.

Unfortunately, as the pace of hardware performance improvements —provided

by the increasing supply of transistors driven by Moore’s Law— slows, the demand

for performance improvements has not waned. This insatiable demand has focused

attention on the efficiency of software as source of performance improvements.

Towards that end, this dissertation has taken a detailed look at the efficiency

of modern HPC software and studied the bottlenecks that limit performance. We

have shown that core HPC software applications are inefficient. Our analysis of key

metrics of performance efficiency —such as instruction throughput (IPC), memory

bandwidth utilization, and FLOPS— on the HPC proxy apps achieve only a small

fraction of the theoretical throughput of the hardware.

In most cases, the complexity of the hardware and software applications hide

the underlying performance bottlenecks, which reduce the efficiency of applications.

Without a clear understanding of limiting factors, optimizing software to improve

efficiency can be prohibitively difficult.

We formalized and address this problem with a technique called Pressure Point

92

Analysis (PPA). This new approach for diagnosing performance limitations has been

shown to systematically identify pressure points in software. While this research

does not solve the diagnostic problem, we believe that further refinements of this ap-

proach can bring about an entirely automated process for diagnosing and potentially

optimizing software.

Taking this analysis of computation performance one step further, we introduced

a formal mathematical framework for reasoning about algorithmic and architectural

tradeoffs necessary for designing the next generation of supercomputers. Our ap-

proach to algorithm-architecture co-design clearly demonstrates the impact architec-

tural design decisions have on the efficiency of algorithms which run on the resulting

hardware. This framework also gives us an anlytical tool to align the development of

algorithms with the architectural trends destined for future supercomputers.

93

Bibliography

[1] The potential impact of high-end capability computing on four illustrative fields

of science and engineering. Washington, DC, USA: The National Academies

Press, 2008.

[2] “Intel architecture core analyzer,” 2012.

[3] Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G.,

Mellor-Crummey, J., and Tallent, N. R., “HPCToolkit: Tools for per-

formance analysis of optimized parallel programs,” Concurrency and Computa-

tion: Practice and Experience, vol. 22, no. 6, pp. 685–701, 2010.

[4] Aggarwal, A., Chandra, A., and Raghavan, P., “Energy consumption

in VLSI circuits,” in Proceedings of the twentieth annual ACM symposium on

Theory of computing - STOC ’88, (New York, New York, USA), pp. 205–216,

ACM Press, 1988.

[5] Ahmed, K. and Schuegraf, K., “Transistor wars,” Spectrum, IEEE, vol. 48,

no. 11, pp. 50–66, 2011.

[6] Aragón, J. L., González, J., and González, A., “Power-aware control

speculation through selective throttling,” in High-Performance Computer Ar-

chitecture, 2003. HPCA-9 2003. Proceedings. The Ninth International Sympo-

sium on, pp. 103–112, IEEE, 2003.

[7] Association, S. and others, “International technology roadmap for semi-

conductors,” Semiconductor Industry Association, Tech. Rep, 2010.

[8] Bailey, D. H., Chame, J., Chen, C., Dongarra, J., Hall, M.,

Hollingsworth, J. K., Hovland, P., Moore, S., Seymour, K., Shin,

94

J., and others, “PERI auto-tuning,” in Journal of Physics: Conference Series,

vol. 125, p. 012089, IOP Publishing, 2008.

[9] Barker, K. J., Hoisie, A., and Kerbyson, D. J., “An early performance

analysis of POWER7-IH HPC systems,” in Proceedings of 2011 International

Conference for High Performance Computing, Networking, Storage and Analy-

sis on - SC ’11, (New York, New York, USA), p. 1, ACM Press, 2011.

[10] Bellas, N., Hajj, I., Polychronopoulos, C., and Stamoulis, G., “En-

ergy and performance improvements in microprocessor design using a loop

cache,” in Computer Design, 1999.(ICCD’99) International Conference on,

pp. 378–383, IEEE, 1999.

[11] Bertran, R., Gonzàlez, M., Martorell, X., Navarro, N., and

Ayguadé, E., “Counter-based power modeling methods: Top-down vs.

bottom-up,” The Computer Journal, 2012.

[12] Beyls, K. and D’Hollander, E. H., “Refactoring for data locality,” Com-

puter, vol. 42, no. 2, pp. 62–71, 2009.

[13] Blelloch, G. E., “Programming parallel algorithms,” Communications of

the ACM, vol. 39, pp. 85–97, March 1996.

[14] Blelloch, G. E., Gibbons, P. B., and Simhadri, H. V., “Low depth

cache-oblivious algorithms,” in Proc. ACM Symp. Parallel Algorithms and Ar-

chitectures (SPAA), (Santorini, Greece), June 2010.

[15] Borkar, S. and Chien, A. A., “The future of microprocessors,” Communi-

cations of the ACM, vol. 54, p. 67, May 2011.

[16] Brooks, D., Tiwari, V., and Martonosi, M., “Wattch: A

framework for architectural-level power analysis and optimizations,” in

95

Proc. Int’l. Symp. Computer Architecture (ISCA), (Vancouver, British

Columbia, Canada), pp. 83–94, June 2000.

[17] Cannon, L. E., A cellular computer to implement the Kalman filter algorithm.

PhD thesis, Montana State University, 1969.

[18] Casas, M., Badia, R. M., and Labarta, J., “Prediction of behavior of MPI

applications,” in 2008 IEEE International Conference on Cluster Computing,

pp. 242–251, IEEE, Sept. 2008.

[19] Chowdhury, R. A., Silvestri, F., Blakeley, B., and Ramachandran,

V., “Oblivious algorithms for multicores and network of processors,” in 2010

IEEE International Symposium on Parallel & Distributed Processing (IPDPS),

pp. 1–12, IEEE, 2010.

[20] Chung, E. S., Milder, P. A., Hoe, J. C., and Mai, K., “Single-chip hetero-

geneous computing: Does the future include custom logic, FPGAs, and GPG-

PUs?,” in IEEE/ACM International Symposium on Microarchitecture (MI-

CRO), (Atlanta, GA, USA), pp. 225–236, 2010.

[21] Cicotti, P., Mniszewski, S. M., and Carrington, L., “An evaluation of

threaded models for a classical MD proxy application,” in Hardware-Software

Co-Design for High Performance Computing (Co-HPC), 2014, pp. 41–48, IEEE,

2014.

[22] Clapp, R., Fu, H., and Lindtjorn, O., “Selecting the right hardware for

reverse time migration,” The leading edge, vol. 29, no. 1, pp. 48–58, 2010.

[23] Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K. E.,

Santos, E., Subramonian, R., and von Eicken, T., “LogP: Towards

a realistic model of parallel computation,” ACM SIGPLAN Notices, vol. 28,

pp. 1–12, July 1993.

96

[24] Czechowski, K., Lee, V. W., Grochowski, E., Ronen, R., Singhal, R.,

Vuduc, R., and Dubey, P., “Improving the energy efficiency of big cores,”

ACM SIGARCH Computer Architecture News, vol. 42, no. 3, pp. 493–504, 2014.

[25] Czechowski, K., McClanahan, C., Battaglino, C., Iyer, K., Yeung,

P.-K., and Vuduc, R., “On the communication complexity of 3D FFTs and

its implications for exascale,” in Proc. ACM Int’l. Conf. Supercomputing (ICS),

(San Servolo Island, Venice, Italy), June 2012. (to appear).

[26] Czechowski, K. and Vuduc, R., “A theoretical framework for algorithm-

architecture co-design,” in 2013 IEEE 27th International Symposium on Par-

allel and Distributed Processing, pp. 791–802, IEEE, 2013.

[27] D’Alberto, P., Püschel, M., and Franchetti, F., “Performance/energy

optimization of DSP transforms on the XScale processor,” in Proc. High Per-

formance Embedded Architectures and Compilers (HiPEAC), vol. LNCS 4367,

(Ghent, Belgium), pp. 201–214, January 2007.

[28] Dally, W. J., Balfour, J., Black-Shaffer, D., Chen, J., Harting,

R. C., Parikh, V., Park, J., and Sheffield, D., “Efficient Embedded

Computing,” Computer, vol. 41, no. 7, pp. 27–32, 2008.

[29] de Melo, A. C., “The new linux perf tools,” in Slides from Linux Kongress,

2010.

[30] Demmel, J. W., Applied Numerical Linear Algebra. SIAM, 1997.

[31] Eklov, D., Nikoleris, N., Black-Schaffer, D., and Hagersten, E.,

“Bandwidth bandit: Quantitative characterization of memory contention,” in

Code Generation and Optimization (CGO), 2013 IEEE/ACM International

Symposium on, pp. 1–10, IEEE, 2013.

97

[32] Ernst, M., “Serializing parallel programs by removing redundant computa-

tion,” Master’s thesis, Massachusetts Institute of Technology, Dept. of Electrical

Engineering and Computer Science, 1992.

[33] Esmaeilzadeh, H., Blem, E., St. Amant, R., Sankaralingam, K., and

Burger, D., “Dark Silicon and the End of Multicore Scaling,” in Proceedings of

the 28th International Symposiumn Computer Architecture (ISCA), (San Jose,

CA, USA), 2011.

[34] Esmaeilzadeh, H., Cao, T., Yang, X., Blackburn, S., and McKinley,

K., “What is happening to power, performance, and software?,” Micro, IEEE,

vol. 32, no. 3, pp. 110–121, 2012.

[35] Feng, W., Feng, X., and Ce, R., “Green supercomputing comes of age,” IT

professional, vol. 10, no. 1, pp. 17–23, 2008.

[36] Firasta, N., Buxton, M., Jinbo, P., Nasri, K., and Kuo, S., “Intel AVX:

New frontiers in performance improvements and energy efficiency,” Intel white

paper, 2008.

[37] Fog, A., “The microarchitecture of Intel, AMD and VIA CPUs/An optimiza-

tion guide for assembly programmers and compiler makers,” 2014.

[38] Fog, A., McCalpin, J. D., and Murky, T., “Test results for Intel’s Sandy

Bridge processor,” 2013.

[39] Fracis-Landau, M. D., Pemberton, N. T., and Schwermer, S., “Too

many cooks in the kitchen: Gang scheduling for predictable performance,” 2014.

[40] Frigo, M. and Johnson, S. G., “The design and implementation of

FFTW3,” Proc. IEEE: Special issue on “Program Generation, Optimization,

and Platform Adaptation”, vol. 93, no. 2, pp. 216–231, 2005.

98

[41] Frigo, M., Leiserson, C. E., Prokop, H., and Ramachandran, S.,

“Cache-oblivious algorithms,” in Proc. Symp. Foundations of Computer Science

(FOCS), (New York, NY, USA), pp. 285–297, October 1999.

[42] Gahvari, H., Baker, A. H., Schulz, M., Yang, U. M., Jordan, K. E.,

and Gropp, W., “Modeling the performance of an algebraic multigrid cycle on

HPC platforms,” in Proceedings of the international conference on Supercom-

puting - ICS ’11, (New York, New York, USA), p. 172, ACM Press, 2011.

[43] Germann, T. C., McPherson, A. L., Belak, J. F., and Richards, D. F.,

“Exascale co-design center for materials in extreme environments,” 2013.

[44] Gonzalez, J., Gimenez, J., Casas, M., Moreto, M., Ramirez, A.,

Labarta, J., and Valero, M., “Simulating whole supercomputer applica-

tions,” IEEE Micro, vol. 31, pp. 32–45, May 2011.

[45] Gonzalez, R. and Horowitz, M., “Energy dissipation in general pur-

pose microprocessors,” Solid-State Circuits, IEEE Journal of, vol. 31, no. 9,

pp. 1277–1284, 1996.

[46] Grochowski, E., Ronen, R., Shen, J., and Wang, H., “Best of both la-

tency and throughput,” in Computer Design: VLSI in Computers and Pro-

cessors, 2004. ICCD 2004. Proceedings. IEEE International Conference on,

pp. 236–243, IEEE, 2004.

[47] Hardavellas, N., Ferdman, M., Ailamaki, A., and Falsafi, B., “Power

scaling: the ultimate obstacle to 1K-core chips,” Northwestern University, Tech-

nical Report NWU-EECS-10-05, pp. 1–23, 2010.

[48] Hardavellas, N., Ferdman, M., Falsafi, B., and Ailamaki, A., “To-

ward dark silicon in servers,” IEEE Micro, vol. 31, pp. 6–15, July 2011.

99

[49] Herczeg, Z., Kiss, Á., Schmidt, D., Wehn, N., and Gyimóthy, T.,

“Xeemu: An improved XScale power simulator,” Integrated Circuit and System

Design. Power and Timing Modeling, Optimization and Simulation, pp. 300–

309, 2007.

[50] Hill, M. D. and Marty, M. R., “Amdahl’s Law in the multicore era,” IEEE

Computer, vol. 41, pp. 33–38, July 2008.

[51] Hoefler, T., Schneider, T., and Lumsdaine, A., “LogGOPSim: Simulat-

ing large-scale applications in the LoGOPS model,” in Proceedings of the 19th

ACM International Symposium on High Performance Distributed Computing -

HPDC ’10, (New York, New York, USA), p. 597, ACM Press, 2010.

[52] Hoisie, A., Johnson, G., Kerbyson, D. J., Lang, M., and Pakin, S., “A

performance comparison through benchmarking and modeling of three leading

supercomputers: Blue Gene/L, Red Storm, and Purple,” in Proc. ACM/IEEE

Conf. Supercomputing (SC), no. 74, (Tampa, FL, USA), November 2006.

[53] Hong, J.-W. and Kung, H., “I/O complexity: The red-blue pebble game,”

in Proc. ACM Symp. Theory of Computing (STOC), (Milwaukee, WI, USA),

pp. 326–333, May 1981.

[54] Intel, “Intel Composer XE 2013,” 2013.

[55] Intel, R., “Intel 64 and IA-32 architectures optimization reference manual,”

Intel Corporation, May, 2015.

[56] Intel Corp., Intel R© Architecture Code Analyzer, June 2012.

[57] Intel Corp., Intel R© 64 and IA-32 Architectures Software Developer’s Manuals,

September 2013.

100

[58] Jagode, H., Knupfer, A., Dongarra, J., Jurenz, M., Mueller, M. S.,

and Nagel, W. E., “Trace-based performance analysis for the petascale sim-

ulation code FLASH,” International Journal of High Performance Computing

Applications, Dec. 2010.

[59] Jin, H., Frumkin, M., and Yan, J., “The OpenMP implementation of NAS

parallel benchmarks and its performance,” tech. rep., Technical Report NAS-

99-011, NASA Ames Research Center, 1999.

[60] Kahng, A. B., Li, B., Peh, L.-S., and Samadi, K., “Orion 2.0: A fast and

accurate noc power and area model for early-stage design space exploration,” in

Proceedings of the Design, Automation, and Test in Europe (DATE) Conference

& Exhibition, vol. 29, pp. 1–6, IEEE, 2009.

[61] Karlin, I., Bhatele, A., Chamberlain, B. L., Cohen, J., Devito,

Z., Gokhale, M., Haque, R., Hornung, R., Keasler, J., Laney, D.,

and others, “LULESH programming model and performance ports overview,”

Lawrence Livermore National Laboratory (LLNL), Livermore, CA, Tech. Rep,

2012.

[62] Karlin, I., Bhatele, A., Keasler, J., Chamberlain, B. L., Cohen, J.,

DeVito, Z., Haque, R., Laney, D., Luke, E., Wang, F., and others,

“Exploring traditional and emerging parallel programming models using a proxy

application,” in Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th

International Symposium on, pp. 919–932, IEEE, 2013.

[63] Karlin, I., McGraw, J., Gallarado, E., Keasler, J., Leon, E., and

Still, B., “Memory and parallelism tuning exploration using the LULESH

proxy application,” 2012 SC Companion: High Performance Computing, Net-

working Storage and Analysis (SCC 2012), 2012.

101

[64] Kashnikov, Y., de Oliveira Castro, P., Oseret, E., and Jalby, W.,

“Evaluating architecture and compiler design through static loop analysis,”

in High Performance Computing and Simulation (HPCS), 2013 International

Conference on, pp. 535–544, IEEE, 2013.

[65] Keckler, S. W., Dally, W. J., Khailany, B., Garland, M., and

Glasco, D., “GPUs and the future of parallel computing,” IEEE Micro,

vol. 31, pp. 7–17, Sept. 2011.

[66] Kerbyson, D. J., Barker, K. J., Gallo, D. S., Chen, D., Brunheroto,

J. R., Ryu, K. D., Chiu, G. L., and Hoisie, A., “Tracking the performance

evolution of Blue Gene systems,” in Supercomputing, pp. 317–329, Springer,

2013.

[67] Kirschenmann, W. and Plagne, L., “Optimizing computing and energy

performances on GPU clusters: Experimentation on a PDE solver,” in Proceed-

ings of the COST Action IC0804 on Large Scale Distributed Systems (Pierson,

M. and Hlavacs, H., eds.), pp. 1–5, IRIT, 2010.

[68] Kogge, P. and others, “Exascale Computing Study: Technology challenges

in acheiving exascale systems,” September 2008.

[69] Kogge, P. and Dysart, T., “Using the TOP500 to trace and project technol-

ogy and architecture trends,” in Proceedings of 2011 International Conference

for High Performance Computing, Networking, Storage and Analysis, p. 28,

ACM, 2011.

[70] Koomey, J. G., Berard, S., Sanchez, M., and Wong, H., “Implications

of historical trends in the electrical efficiency of computing,” Annals of the

History of Computing, IEEE, vol. 33, no. 3, pp. 46–54, 2011.

102

[71] Korthikanti, V. A. R. and Agha, G., “Analysis of parallel algorithms for

energy conservation in scalable multicore architectures,” in Proc. Int’. Conf.

Parallel Processing (ICPP), (Vienna, Austria), September 2009.

[72] Kufrin, R., “Perfsuite: An accessible, open source performance analysis en-

vironment for linux,” in 6th International Conference on Linux Clusters: The

HPC Revolution, vol. 151, p. 05, Citeseer, 2005.

[73] Kung, H., “Let’s design algorithms for VLSI systems,” in Proceedings of the

Caltech Conference on VLSI: Architecture, Design, and Fabrication, pp. 65–90,

1979.

[74] Lee, L. H., Moyer, B., and Arends, J., “Instruction fetch energy reduc-

tion using loop caches for embedded applications with small tight loops,” in Low

Power Electronics and Design, 1999. Proceedings. 1999 International Sympo-

sium on, pp. 267–269, IEEE, 1999.

[75] Lewis, A., Tzeng, N., and Ghosh, S., “Runtime energy consumption esti-

mation for server workloads based on chaotic time-series approximation,” ACM

Transactions on Architecture and Code Optimization (TACO), vol. 9, no. 3,

p. 15, 2012.

[76] Li, S., Ahn, J. H., Strong, R. D., Brockman, J. B., Tullsen, D. M.,

and Jouppi, N. P., “McPAT: An integrated power, area, and timing mod-

eling framework for multicore and manycore architectures,” in Proceedings

of the 42nd Annual IEEE/ACM International Symposium on Microarchitec-

ture - Micro-42 (Albonesi, D. H., Martonosi, M., August, D. I., and

Mart’inez, J. F., eds.), no. c in MICRO 42, (New York, New York, USA),

p. 469, HP Laboratories, ACM Press, 2009.

[77] Lim, K., Meisner, D., Saidi, A. G., Ranganathan, P., and Wenisch,

103

T. F., “Thin servers with smart pipes: designing SoC accelerators for mem-

cached,” in Proceedings of the 40th Annual International Symposium on Com-

puter Architecture, pp. 36–47, ACM, 2013.

[78] Loan, C. V., Computational frameworks for the Fast Fourier Transform.

SIAM, 1992.

[79] Loh, G. H. and Xie, Y., “3D stacked microprocessor: Are we there yet?,”

IEEE Micro, vol. 30, pp. 60–64, May 2010.

[80] Loh, G., “The cost of uncore in throughput-oriented many-core processors,”

in Workshop on Architectures and Languages for Throughput Applications,

no. June, pp. 1–9, Citeseer, 2008.

[81] Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G.,

Wallace, S., Reddi, V. J., and Hazelwood, K., “Pin: building customized

program analysis tools with dynamic instrumentation,” in ACM Sigplan No-

tices, vol. 40, pp. 190–200, ACM, 2005.

[82] Maleki, S., Gao, Y., Garzaran, M. J., Wong, T., Padua, D., and

others, “An evaluation of vectorizing compilers,” in Parallel Architectures and

Compilation Techniques (PACT), 2011 International Conference on, pp. 372–

382, IEEE, 2011.

[83] Malladi, K. T., Lee, B. C., Nothaft, F. A., Kozyrakis, C., Periy-

athambi, K., and Horowitz, M., “Towards energy-proportional datacenter

memory with mobile DRAM,” ACM SIGARCH Computer Architecture News,

vol. 40, no. 3, pp. 37–48, 2012.

[84] Mandel, J. and Parter, S. V., “On the multigrid F-cycle,” Applied Mathe-

matics and Computation, vol. 37, pp. 19–36, May 1990.

104

[85] Martin, A. J., “Towards an energy complexity of computation,” Information

Processing Letters, vol. 77, pp. 181–187, February 2001.

[86] Marusarz, J., “Understanding how general exploration works in Intel VTune

Amplifier XE,” 2015.

[87] Mathis, M. M. and Kerbyson, D. J., “Performance modeling of unstruc-

tured mesh particle transport computations,” in Parallel and Distributed Pro-

cessing Symposium, 2004. Proceedings. 18th International, p. 245, IEEE, 2004.

[88] Maudlin, P., Bingert, J., House, J., and Chen, S., “On the modeling of

the taylor cylinder impact test for orthotropic textured materials: experiments

and simulations,” International Journal of Plasticity, vol. 15, no. 2, pp. 139–166,

1999.

[89] McCullough, J., Agarwal, Y., Chandrashekar, J., Kuppuswamy, S.,

Snoeren, A., and Gupta, R., “Evaluating the effectiveness of model-based

power characterization,” in USENIX Annual Technical Conf, 2011.

[90] McMahon, F. H., “The livermore fortran kernels: A computer test of the

numerical performance range,” tech. rep., Lawrence Livermore National Lab.,

CA (USA), 1986.

[91] Mudge, T., “Power: A first-class architectural design constraint,” Computer,

vol. 34, no. 4, pp. 52–58, 2001.

[92] Numrich, R. W. and Heroux, M. a., “Self-similarity of parallel machines,”

Parallel Computing, vol. 37, pp. 69–84, Feb. 2011.

[93] Omtzigt, E. T. L., Domain flow and streaming architectures: A paradigm for

efficient parallel computation. Phd dissertation, Yale University, 1993.

105

[94] Patterson, D., “Technology trends: The datacenter is the computer, the

cellphone/laptop is the computer,” October 2007. www.hpts.ws/papers/2007/

TechTrendsHPTSPatterson2007.ppt.

[95] Pennycook, S. J., Hammond, S. D., Jarvis, S. A., and Mudalige,

G. R., “Performance analysis of a hybrid MPI/CUDA implementation of the

NAS-LU benchmark,” in Proceedings of the International Workshop on Per-

formance Modeling, Benchmarking and Simulation, (New Orleans, LA, USA),

Nov. 2010.

[96] Rodrigues, A. F. and others, “The structural simulation toolkit,” ACM

SIGMETRICS Performance Evaluation Review, vol. 38, p. 37, Mar. 2011.

[97] Rouet-Leduc, B., Barros, K., Cieren, E., Elango, V., Junghans, C.,

Lookman, T., Mohd-Yusof, J., Pavel, R. S., Rivera, A. Y., Roehm,

D., and others, “Spatial adaptive sampling in multiscale simulation,” Com-

puter Physics Communications, vol. 185, no. 7, pp. 1857–1864, 2014.

[98] Savage, J. E., Models of Computation: Exploring the power of computing.

CC-3.0, BY-NC-ND, electronic ed., 2008.

[99] Schkufza, E., Sharma, R., and Aiken, A., “Stochastic superoptimiza-

tion,” in Proceedings of the eighteenth international conference on Architectural

support for programming languages and operating systems, pp. 305–316, ACM,

2013.

[100] Schulte, E., Dorn, J., Harding, S., Forrest, S., and Weimer, W.,

“Post-compiler software optimization for reducing energy,” in Proceedings of the

eighteenth international conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS, vol. 14.

106

www.hpts.ws/papers/2007/TechTrendsHPTSPatterson2007.ppt
www.hpts.ws/papers/2007/TechTrendsHPTSPatterson2007.ppt

[101] Schulz, M., Barry Rountree, B., Guix, M. C., and Bronevetsky,

Greg Laguna, I., “Gremlin: Emulating exascale conditions on today’s plat-

forms,” 2013.

[102] Shacham, O., Azizi, O., Wachs, M., Qadeer, W., Asgar, Z., Kelley,

K., Stevenson, J. P., Richardson, S., Horowitz, M., Lee, B., and

others, “Rethinking digital design: Why design must change,” Micro, IEEE,

vol. 30, no. 6, pp. 9–24, 2010.

[103] Shalf, J., Dosanjh, S., and Morrison, J., “Exascale computing tech-

nology challenges,” High Performance Computing for Computational Sci-

ence–VECPAR 2010, pp. 1–25, 2011.

[104] Shende, S. S. and Malony, A. D., “The TAU parallel performance system,”

International Journal of High Performance Computing Applications, vol. 20,

no. 2, pp. 287–311, 2006.

[105] Singhal, R., “Inside Intel next generation Nehalem microarchitecture,” in Hot

Chips, vol. 20, 2008.

[106] Snavely, A., Wolter, N., and Carrington, L., “Modeling application

performance by convolving machine signatures with application profiles,” in

Proceedings of the Fourth Annual IEEE International Workshop on Workload

Characterization. WWC-4 (Cat. No.01EX538), pp. 149–156, IEEE.

[107] Solomonik, E. and Demmel, J., “Communication-optimal parallel 2.5D ma-

trix multiplication and LU factorization algorithms,” tech. rep., University of

California, Berkeley, CA, USA, 2011.

[108] Sopeju, O. A., Burtscher, M., Rane, A., and Browne, J., “Auto-

SCOPE: Automatic suggestions for code optimizations using PerfExpert,” Eval-

uation, 2011.

107

[109] Takizawa, H., Sato, K., and Kobayashi, H., “SPRAT: Runtime proces-

sor selection for energy-aware computing,” in Proc. IEEE Int’l. Conf. Cluster

Computing (CLUSTER), (Tsukuba, Japan), pp. 386–393, October 2008.

[110] Thoziyoor, S., Muralimanohar, N., Ahn, J., and Jouppi, N., “Cacti

5.1,” HP Laboratories, April, vol. 2, 2008.

[111] Toledo, S., “Locality of reference in LU decomposition with partial pivoting,”

SIAM J. Matrix Anal. Appl., vol. 18, pp. 1065–1081, October 1997.

[112] Tramm, J. R., Siegel, A. R., Forget, B., and Josey, C., “Performance

analysis of a reduced data movement algorithm for neutron cross section data in

Monte Carlo simulations,” in Solving Software Challenges for Exascale, pp. 39–

56, Springer, 2014.

[113] Tramm, J. R., Siegel, A. R., Islam, T., and Schulz, M., “Xsbench-

the development and verification of a performance abstraction for Monte Carlo

reactor analysis,” The Role of Reactor Physics toward a Sustainable Future

(PHYSOR), 2014.

[114] Tyagi, A., “Energy-Time Trade-offs in VLSI Computations,” in Foundations

of Software Technology and Theoretical Computer Science, vol. LNCS 405,

pp. 301–311, 1989.

[115] Vetter, J. S., Lee, S., Li, D., Marin, G., McCurdy, C., Meredith, J.,

Roth, P. C., and Spafford, K., “Quantifying architectural requirements of

contemporary extreme-scale scientific applications,” in High Performance Com-

puting Systems. Performance Modeling, Benchmarking and Simulation, pp. 3–

24, Springer, 2014.

[116] Vogelsang, T., “Understanding the energy consumption of dynamic random

108

access memories,” in Proceedings of the 2010 43rd Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, pp. 363–374, IEEE Computer Society,

2010.

[117] Woo, D. H. and Lee, H.-H. S., “Extending Amdahl’s Law for energy-efficient

computing in the many-core era,” IEEE Computer, vol. 41, pp. 24–31, December

2008.

[118] Yasin, A., “A top-down method for performance analysis and counters ar-

chitecture,” in Performance Analysis of Systems and Software (ISPASS), 2014

IEEE International Symposium on, pp. 35–44, IEEE, 2014.

109

	Acknowledgements
	List of Tables
	List of Figures
	Summary
	Chapter 1 — Introduction
	Scope and Outline

	Chapter 2 — Proxy Applications Benchmarks
	Proxy Apps
	Motivation
	Workloads
	Evaluation Methodology
	Hierarchical Event-based Performance Analysis

	Results
	Traditional metrics
	Loop analysis
	Instruction mix results
	HEPA results

	Discussion
	Related Work

	Chapter 3 — Pressure point analysis of performance
	Hardware perturbations
	Throttling core and memory clock frequency
	Throttling cache capacity
	Avoiding vector units
	Disabling hyperthreading

	Software perturbations
	Bank conflicts
	Instruction decode rate deficiencies
	Cache utilization

	Automating software perturbations
	Identifying hot loops
	Extracting loops
	Generating perturbations
	Performance experiments

	Related Work

	Chapter 4 — Assessing the impact of the microarchitecture
	Introduction
	Methodology
	Processors
	Architecture Features
	Kernels
	Experimental Platform
	Definition of Energy Efficiency
	Register Scrambling

	Experimental Results
	SIMD Extensions
	Frontend Features
	Backend Features
	Process/Circuits Innovation

	Discussion
	Energy per instruction (EPI) depends highly on IPC
	Fixed costs dominate variable costs
	Performance improvements exceed power increases
	Frontend features reduce the tax of complex instructions
	SIMD extensions increase the productivity of each instruction with minimal impact on power
	High performance computing vs energy efficient computing

	Related Work
	Future Work and Conclusion

	Chapter 5 — A theoretical framework for algorithm-architecture co-design
	Introduction
	Background and Related Work
	An Example of Instantiating a Model within the Framework
	Technological and architectural parameters
	A model of physical constraints
	Algorithmic cost models

	Analysis
	Ideal architectures
	Architecture trade-offs: lightweight vs. heavyweight designs
	Algorithm trade-offs: computation v. communication
	Algorithm trade-offs: space vs communication
	Increasing the power budget

	Chapter 6 — Conclusion
	BIBLIOGRAPHY

