\qquad
PROJECT ADMINISTRATION DATA SHEET
eject no． $637-630$
ensor：National Ac duct 7 cumulation \qquad
ye Agreement：Grant No．MBS 8103444 ward Period：From $7-1-8 \mid$ To $|2-3|-83$（Performance） \qquad $3-3 /-84$（Res sponsor amount：茷 21.8 .52

\qquad

DMINISTRATIVE DATA

Sponsor Admin．／Contractual
efense Prior
ee Attached \qquad NS Supplemental Information Sheet for Additional Requirements
ravel：Foreign travel must have prior approval－Contact OCA in each case．Domestic travel requires sponsor approval where total will exceed greater of $\$ 500$ or 125% of approved proposal funget category．
quipnent：Title vests with $N / A=7$ inc fripocsel

OMMENTS： \qquad
\qquad
\qquad

PIES TO：
administrative Coordinator search Property Management counting office rocurement／EES Supply Services

Research Security Services
Fricerternordinator（ $O C A$ ）
Legal Scribes（OCA）
：ilrayy，Technical Reports

EES Research Public Relations Project File（OCA） Other： \qquad
\qquad Math
Project No. \qquad \cdots Includes Subproject No.(s). \qquad .

Project Directoris) \qquad M. C. Spruill GTFIM/ $\overline{\mathrm{XXX}}$

Sponsor \qquad

Title \qquad Optimal Experimental Designs
\qquad (Performance) \qquad (Reports) \because
Gramt/Contract Closeout Actions Remaining:

None

Final Invoice or Final Fiscal Report
\square Closing Documents

Final Report of Inventions Patent Questionnaire

\square Classified Material Certificate
\square Other \qquad
ontinues Project No. \qquad Continued by Project No. \qquad

OPIES TO:
roject Director
esearch Administrative Network
esearch Property Management
ccounting
ocurement/EES Supply Services
esearch Security Services
eports Coordinator lOCAD
ral Services

Lib:ary GTRC
Research Communications (2)
Project File
Other \qquad Heyser

Jones
I. Summary of Frogreas to Date.

Several areas of research were suggested an the proposal for Grant No. MCSBl-03444. Much of our effort was devoted to robust optimal designs for the estimation of a linear functional. We employed a robust linear estimator due to Speckman [65] and utilized the similarities between the form of its maximum mean square error and that of the usual best linear unbiased estimator to provide a basic framework of theorems which enable the calculation of optimal desjgris. These theorems were successfully applied to the following problem.

Consider the problem of the extrapolation of a function to a point outside the interval on which observations may be taken. We suppose that for every collection of points
($x_{1} \ldots . . x_{n}$) $1 r$ la, bj we may observe with error the values of an unknown function θ and that we are to provide on the basis of observed values $\left\{y\left(x_{I}\right), \ldots y\left(x_{N}\right)\right\}, y\left(x_{j}\right)=\theta\left(x_{j}\right)+\epsilon_{j}$. $E\left(\epsilon_{7}\right)=0, E\left(\epsilon_{1} \epsilon_{j}\right)=\delta_{i j}$, an estimate of the value $\theta(c)$ where c c b. We prove that if we allow for an error in our assumed 10rm

$$
\theta(x)=\beta_{0}+\beta_{1} x+\ldots+\beta_{m-1} x^{m-1}
$$

of the mean function of the type $\int_{a}^{c}\left(e^{(m)}(t)\right)^{2} d t \leq \varepsilon^{2}$ then the optimal design concentrates on moints in [a.b] as it would if nc contamination were present, the weights at the points are calculated from the same formula as for Hoel-Levine [30] designs, and the optimal lanear estimator is the usual least squares estimator. In adaition, for the case $m=2$ we show that when $N \varepsilon^{2}$ is sufficiently small the optimal design coincides with the Hoel-Levine design. Thus the Hoel-Levine design ls robust. "Sufficiently small" afpears to be reasonably large indicating that in many cases the Hoel-ievine design can be used without fear that reasonable deviations from the assumed model will give large mean square errors. We also have obtained preliminary numerical evidence of this behavior for m 2 .

The applicability of our theorems does not end here. We can with time and effort utilize them
for the estamation of, derivatives at points. The course is clear though the specific details are probably, as in the extrapolation problem, quite difficult. For example, if our method of proof is to carry over with minimal changes then we would be required to uriderstand the oscillation properties of the minimax approximant to our arbitrary continuous function from the set of furictions spanned by $\left\{1, x^{2}, x^{3}, \ldots, x^{m-1}\right\}$ on an interval containing zero. Thas is not everi a weak Chebychev system, see [32], so the properties of the error are, as far as I know, unknown. We can answer these questions at present for an endpoint but the detalle of finding the design are far from complete. The theorems are not model specific so other forms of mean functions and contamination can be studied. The theorems also apply to data whict are stociastic process valued. In addition the proof of the extrapolation results uncovered a very mathematically interesting set of functions which are spliries possessing Chebychev-like oscillation properties. Finally, when $m=2$ these functions are shown to be the trajectories of the solutions to the following non-standard control problems.

A particle of unit mass travels in the $x-y$ plane. Its coordinates at time t are $(x(t), y(t))$ where $x^{\prime}(t) \equiv-1$, and $(x(0), y(0))=(c, 1)$. The y coordinate may be controlled. For those controls which have the property that the particle hits
 the corridor $\{(x, y): x \in[a, b\},|y| \leq \gamma\}$ by $C(\gamma)$, where $b \in(a, c)$. Given that $E \leq E_{O}$ is to be spent, what is the minimum $\gamma \geq 0$ for which the particle may be made to pass entirely through the corridor $C(\gamma)$ and its trajectory?

Although there are many papers on robust optimal designs. for example [13], [28],[31],[37],\{39],[43],[44],[46],[47],[51]. [60],[74],[76].[78], the model we employed and the criterion of interest do not match any of them. The closest is Huber's paper [31] which treats minimax extrapolation on a half-line with contamination measured in the sup norm rather than the
L_{2} norm. The results appear to be somewhat different aithough
they share the property that both are supported on the same
and that as far as we know are the only ones which potentially have a direct bearing on showing that the usual Hoel-Levine designs are robust.
II. Proposed Kesearch

For several years the principal investigator has been working toward the accumulation of a body of facts which would be useful to experimenters whose data are "time recordings", or more properly speaking, second order stochastic processes. Our intent is to continue our investigations in the optimal design of experiments focusing on this aspect. However, much of our effort will be directed toward obtaining solutions to problems involving scalar observatins. Of immediate interest is the set up described in the summary of our progress to date on MCS-8103444. In that problem the mear function θ is assumed to be a member of the Sobolev space
$W_{m}^{2}[a, c]$ of functions with $m-1$ absolutely continuous derivatives on [a.c] and the nth in $L_{2}[a, c]$. Speckman's linear estimator $\ell_{0}^{\prime} y$ minimizes the maximum mean square error

$$
\| \theta^{(m)} \sup _{2} \leq e^{E_{\theta}(\ell ' y-\theta(c))^{2}}
$$

It was shown that that in contrast to the case of best linear unbiased estimation one must specify beforehand the number of observations to be employed. Setting $\eta^{-1}=N \epsilon^{2}$ we prove that the optimal design can be characterized as follows. Define for each collection of points $a \leq t_{1}<t_{2}<\ldots<t_{m} \leq b$ the functions on $[a, c]$.
$(1) \delta(x)=\left(s^{2}+\eta z^{2}\right)^{-1}\left[\eta z \sum_{i=1}^{m}(-1)^{i-m} \varphi_{t_{i}}(x)+\int_{a}^{c} h_{x}(s) h_{c}(s) d s\right]$,
where $h_{x}(s)=\frac{(x-s)_{+}^{m-1}}{(m-1)!}-\sum_{i=1}^{m} \varphi_{t_{i}}(x) \frac{\left(t_{i}-s\right)^{m-1}}{(m-1)!}$,

