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This paper presents a multi-UAV trajectory optimization and an imagery analysis tech-
nique based on Convolutional Neural Networks (CNN) for an inventory tracking solution
using a UAS platform in a large warehouse or manufacturing environment. The current in-
ventory tracking method is a manual and time-consuming process to scan all the inventory
items. Its accuracy is not consistent depending on the complexity of the scanning environ-
ment. To improve the scanning efficiency with respect to time and accuracy, this paper
discusses a UAS-based inventory solution. In particular, this paper addresses two primary
topics: multi-UAV trajectory optimization to scan inventory items and a multi-layer CNN
architecture to identify a tag attached on the inventory item. To demonstrate the proposed
multi-UAV trajectory optimization framework, numerical simulations are conducted in a
representative inventory space. The proposed CNN-based imagery analysis framework is
demonstrated on a flight experiment.

I. Introduction

In the last decade, the Unmanned Aerial System (UAS) has become more capable and advanced by new
emerging technologies such as novel battery technologies and new sensing technologies. The use of a UAS
can be beneficial because of its low-cost, highly agile platform and high-quality sensor system. Consequently,
a UAS has been extended its application areas: aerial imaging, parcel delivery, crop-monitoring, and disaster
monitoring. In particular, internal and external audits using a UAS platform in warehouse or manufacturing
environments have gained attention because of the necessity of the novel structure of an audit evidence with
respect to big data, and the improvement of the accuracy and speed of a traditional inventory audit process
[2].

There are many challenges related to the internal/external audits, such as the identification of inventory
items, their visual inspection, and counting them. Between the internal and external audits, this paper
focuses on the internal audit process because the external audit process may be more challenging by FAA
regulation. In particular, this paper deals with the inventory tracking problem to improve the current existing
process in warehouse or manufacturing environments.

A conventional approach for tracking inventory items is a manual scanning method using a barcode
reader. Each item in a warehouse is equipped with a tag on which a barcode is printed. This barcode serves
as a unique identifier for an individual item. Employee with a barcode scanner manually scans the barcode
and identify the item. The scanned item is automatically stored in the inventory database to keep track
of their locations. This manual scanning method has several drawbacks. First, it easily leads to human
errors because of the highly repetitive nature of the task. Second, this scanning process is time-consuming
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and dangerous. When an item is located on the top of shelves that cannot be easily viewed by a human,
an employee is required to use specialized lift equipment, like mobile stairs or forklift devices. These types
of equipment are identified as potential hazard items for the workers according to the worker safety series
published by the Occupational Safety and Health Administration. Carrying this equipment in a workplace
also reduces the speed of the inventory audit process.

Another conventional approach is the use of the Radio Frequency Identification (RFID) system. This
system is based on the wireless technology by reading the unique RFID tag of each item. In spite of rapid
and accurate technology, it is not an economically viable solution because RFID tags are more expensive
compared to the traditional paper tags.

To solve the issues of the conventional methods, a mobile robot-based inventory tracking technology has
been suggested by Zimmerman [24]. The mobile robot is capable of mapping/localization through manual
navigation in an inventory space. Using the mapping information, the mobile robot captures shelf images,
and identifies an item from the captured images through recognizing a barcode on the image. However,
the limitation of the mobile robot-based inventory audit method is that the robot platform might have a
complex structure because in order to obtain images on the top of shelves, the camera system on a platform
must be attached at a certain height that enables it to get the images, which makes the mobile robot is very
bulky.

To resolve this issue, several companies (e.g., Walmart, Amazon, PINC and Eyesee) have suggested
UAS-based inventory tracking solutions. Based on the authors’ knowledge, the companies have conceptually
introduced their UAS-based tracking solution, but there are little literature containing technical details. This
paper describes a framework for a UAS-based inventory audit solution using optical image information. In
particular, this paper presents two primary topics: UAV trajectory optimization, and a deep learning-based
imagery analysis. For the former topic, we discuss a multi-UAV trajectory optimization framework because
the size of a warehouse or manufacturing environment is considerably large, and the typical endurance
of a quadcopter is short, approximately between 10 and 30 minutes [4]. Hence, an operation concept
using multi-UAV is a suitable approach to scan the inventory items in a large warehouse or manufacturing
environment. For the deep learning-based imagery analysis, we describe a tag identification algorithm. For
the tag identification algorithm, we introduce a multi-layer Convolution Neural Network (CNN) architecture.
The main contributions of this paper are:

• A multi-UAV trajectory optimization that considers the characteristics of inventory space, and the
characteristics of a UAV.

• A framework of a multi-layer convolution neural network for the identification of each inventory item,
which includes CNN architecture, and flight demonstration.

In the remainder of the paper, we first introduce a multi-UAV trajectory optimization based on an
endurance-constrained vehicle routing problem. The proposed algorithm is demonstrated by a numerical
simulation using a 3D representative inventory model. Then, we present a framework of CNN-based imagery
analysis for the image analysis. This proposed CNN-based imagery analysis framework is demonstrated by
an indoor flight experiment.

II. Multi-UAV Trajectory Optimization

In order to efficiently operate multiple UAVs in a large inventory space, a trajectory optimization is
a key element because it is directly related to UAV operation time and cost. In general, the goal of the
trajectory optimization is to minimize an objective function while satisfying a set of constraints. According
to a paper written by Choi et al., there are five types of trajectory optimization techniques: potential field
methods, geometric methods, optimization-based methods, stochastic methods, and road map methods [5].
Among these methods, a graph-based optimization approach is commonly applied to coverage path-planning
(CPP) problems, which generates an optimal trajectory passing over an entire coverage area. The notable
approaches include a cell decomposition-based CPP method, a wavefront-based CPP method, and a vehicle
routing-based CPP approach [7]. The cell decomposition-based CPP method decomposes multiple convex
small areas if the area of interest is large or non-convex. Then, it solves high-level optimization problem
determining a visiting sequence based on the decomposed convex cells. The trajectory inside of each cell is
defined by simply sweeping a line from left to right. Another approach is the wavefront-based CPP method,
which employs a wavefront function that scores each cell based on an initial position, a target position, and
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obstacle positions [3]. Based on these scores, the algorithm determines a CPP trajectory that finds a route
maximizing the pseudo-gradient. This approach has benefits of being simple and able to solve non-convex
problems. An alternative approach is a vehicle routing-based CPP algorithm. The vehicle routing problem as
a graph-based approach solves an optimization problem to determine the best route that visits all waypoints
by a set of vehicles, given a potential route network. The vehicle routing-based optimization method includes
a set of constraints by vehicle characteristics, or operational constraints. This approach can be extended
for multi-UAV trajectory optimization problems. Alilar et al. solve a multi-UAV vehicle routing problem
with various operational constraints such as number of operators, and setup time for an aerial imaging CPP
problem [1].

Our primary goal is to solve a multi-UAV trajectory problem to scan all the shelves in an inventory space
without any collision. For this problem, we propose the framework of a two-phase multi-UAV trajectory
optimization that guarantees a collision-free trajectory, and minimizes the number of UAV platforms needed.
The novelty of the proposed trajectory optimization framework is incorporating it with an actual inventory
problem, and generating non-collision trajectories for a multi-UAV operation.

A. Mathematical Formulation of Endurance-Constraint Vehicle Routing Problem

The multi-UAV trajectory optimization is structured based on the formulation of a distance-constrained
arc-based vehicle routing problem suggested by Kara [12]. Let G = (N ,A) be a graph that describes a
route network, which consists of a set of nodes N = {0, 1, · · · , n + 1} and a set of arcs A. In the nodes
N , an initial depot node is the 0th node, an artificial depot (i.e., returning depot) is the n + 1th node,
and waypoints W are from the 1st node to the nth node. The arcs A indicate the connection between
two nodes, A = {(i, j) : i, j ∈ N , i 6= j}. For the multi-UAV inventory tracking mission, the trajectory
optimization formulation satisfies the following conditions: First, all UAVs deploy from the initial depot
node (0th node) and finish the mission on the artificial node (n+ 1th node). Second, the arcs of each shelf
must be scanned. Third, all the UAVs must meet their endurance constraints. To formulate the multi-UAV
trajectory optimization, the following decision variables are considered:

• xijk : If the vehicle k flies between the ith node and jth node, the variable xijk is defined as 1,
otherwise, it is 0.

• yijk : The total distance between ith node and jth node of vehicle k.

The objective function of the endurance-constrained vehicle routing problem is minimizing the total mission
time with setup time defined by

J = min
∑
k∈V

∑
i∈N

∑
j∈N

Tijkxijk +
∑
k∈V

tsx0hk, (h ∈ W), (1)

where Tijk is time matrix corresponding to flying from the ith node to the jth node by the kth vehicle, and
the ts is setup time to deploy a UAV platform. Constraints can be written as:

c1 :
∑
k∈V

∑
j∈N

xijk = 1, (∀i ∈ W) (2)

c2 :
∑
i∈N

x0jk = 1, (∀k ∈ V) (3)

c3 :
∑
i∈N

xi(n+1)k = 1, (∀k ∈ V) (4)

c4 :
∑
i∈N

xihk −
∑
j∈N

xhjk = 0, (∀h ∈ W,∀k ∈ V) (5)

c5 :
∑
j∈N

yijk −
∑
j∈N

yjik −
∑
j∈N
Tijkxijk = 0, (∀i ∈ N ,∀k ∈ N ) (6)

c6 : y0jk = T0jkx0jk, (∀j ∈ N ,∀k ∈ V) (7)

c7 : yijk ≤ (E−Tj0k)xijk, (∀i, j ∈ N ,∀k ∈ V) (8)

c8 : yi(n+1)k ≤ Exi(n+1)k, (∀i ∈ N ,∀k ∈ V) (9)

c9 : yijk ≥ (T0ik + Tijk)xijk, (∀i, j ∈ N ,∀k ∈ V) (10)
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Constraint c1 states that all the waypoints W must be visited exactly once. Constraint c2 means that each
vehicle is deployed at the depot node, and constraint c3 indicates that each vehicle returns to the artificial
node. Constraint c4 implies that after a vehicle visits a node, it leaves the node. Constraint c5 eliminates
all the sub-tours. Constraints c6 ∼ c9 are the bounding constraints that a vehicle must meet its maximum
endurance E.

B. Collision-free Trajectory Generation

The optimization result using the vehicle routing problem does not guarantee non-collision trajectories.
Thus, the objective of the next step is to generate collision-free trajectories based on the trajectory results
from the previous step. The main idea of the collision-free trajectory is checking the collision possibility of all
the possible UAS deployment sequences Q. Algorithm 1 summarizes the collision-free trajectory generation.
In the possible sequences Q (line 2), the n corresponds to the number of sequence combinations. Each Qi

has the information of the ith UAV’s sequence. We note that if the number of UAVs is five, then each Qi has
5 numbers, and n is 125. The algorithm stores the deployment time tdeploy allowing all the UAVs to prevent
any collisions during their operations (line 8 - 22). Checking for collision is accomplished by measuring the
distance between time-domain trajectories with time offset t0 of UAVj and the time-domain trajectories
of UAV si, that is, the previous deployed UAVs from 1 to j − 1 in the sequence Qi. In the algorithm,
Xi indicates the vehicle state vector with time data. The final deployment time tdeploy is defined when a
minimum distance dmin satisfies a distance constraint dc. Based on the result of the deployment time, the
vehicle trajectories considering the deployment time are computed. From the computed trajectories, the
optimal sequence is determined by finding the minimum total mission time from all the vehicle state results
X .

Algorithm 1 Optimization of Collision-free UAS schedule

1: Inputs:
2: UAV sequence, Q = [Q1, Q2, ..., Qn]
3: Time step, ∆t
4: for (Qi ∈ Q) do
5: t0 = 0
6: tdeploy = 0
7: Xi(t) = Qi, Xi(t) = [X1(t),X2(t),X3(t),X4(t),X5(t)]
8: for (j = 2 : 5) do
9: UAV si = X̄ (t), X̄ (t) = [X̄1(t), ..., X̄j−1(t)]

10: UAVj = Xj(t)
11: tdiff = 0
12: while (dmin < dc || tdiff < ts) do
13: t0 = t0 + ∆t
14: for X̄i ∈ UAV si do
15: dist← append(distance(X̄i(t),Xj(t)))
16: end for
17: dmin = Min(dist)
18: tdiff = t0 − t0prev
19: t0prev = t0
20: end while
21: tdeploy ← append(t0)
22: end for
23: X̃i = Xi(t+ toffset)
24: end for
25: X̃ ∗ ← FindOptimalSequence(X̃ )
26: return X̃ ∗

C. Numerical Simulation Result

In this section, the proposed multi-UAV trajectory optimization algorithm is applied to a representative
inventory environment. To create a realistic inventory environment, we generate a 3D inventory space based
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on an actual inventory drawing. Figure 1(a) is the image from an actual inventory space, and Figure 1(b)
is the 3D inventory model to validate our proposed multi-UAV trajectory optimization. For the numerical
simulation, the UAV platform is assumed to be the DJI Phantom 4, and its endurance is assumed to be 25
minutes. The scanning speed is assumed to be 0.3m/s.

To collect the images of all the inventory items, we also assume that UAVs should fly all the shelves,
and UAVs are deployed from one depot position. Based on these assumptions, the initial flyable trajectory
network is determined and is employed to solve the multi-UAV endurance constraint-based vehicle routing
problem introduced in Section A. Table 1 summarizes the results of the multi-UAV trajectory optimization.
Note that we use the relative tolerance from the optimal solution, 0.05. The definition of the relative tolerance
is as follows,

relative tolerance =

∣∣∣∣objective function value− lower bound value
objective function value

∣∣∣∣ (11)

The result shows that to scan all the shelves given the inventory area, the required number of UAVs is five.
The result also presents that the flight times of all the UAVs meet the endurance constraint, which is 25
minutes. Figure 2 visualizes the trajectories of the UAVs. Note that in the figure, each color indicates the
trajectory of each UAV. This trajectory is able to pass all the shelves we want to collect the images, but
this trajectory does not provide any information about when UAV is deployed and whether the generated
trajectory is flyable without any collisions between UAVs.

(a) Example of an inventory area (b) 3D model of the inventory area

Figure 1. Inventory area and 3D model of the inventory area

Table 1. Mission flight time (Platform: DJI Phantom 4)

UAV id Mission flight time

UAV-1 24min 12sec

UAV-2 23min 34sec

UAV-3 24min 4sec

UAV-4 24min 12sec

UAV-5 24min 12sec

To compute deployment time without any collisions, Algorithm 1 is employed. In the numerical simula-
tion, the separation distance constraint is assumed to be 3m. Figure 3 illustrates the result of the collision-free
schedule. Figure 3(a) depicts the UAVs’ operational schedule, and Figure 3(b) is the corresponding separa-
tion distance between UAVs. The result shows that the total mission time is around 79 minutes 13 seconds.
The result of the separation distance response shows that all the UAVs satisfy the separation distance con-
straint. To conclude, the proposed two-layer multi-UAV trajectory optimization algorithm can minimize
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(a) Front view (b) Top view

(c) 3D view (d) Side view

Figure 2. Results of multi-UAV trajectory optimization
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the number of UAVs, total mission time, and can satisfy the UAV performance constraint as well as the
separation assurance requirement during the inventory tracking mission.

(a) UAVs’ operation schedules (b) Separation distance

Figure 3. Results of collision-free trajectory generation

III. Deep Learning-based Inventory Tracking

This section discusses an imagery analysis method to solve an inventory audit problem based on images
collected by a UAS platform. In a warehouse or manufacturing environment, each inventory item has an
information tag. Among the diverse information printed on the tag, two allow for the product identification.
The product ID which consists of a set of unique characters and the barcode. It may happen that some
warehouses use RFID technology to perform such an audit. However, RFID technology is often backed up
by the type of tag previously described. In the present study it is assumed that no barcode readers are
integrated on the UAS platform. Thus, the only way to identify the item is to somehow read the product ID
from the scanned image of the item by a UAS platfrom. This is ultimately a text extraction problem. This
type of problem has been widely studied because of diverse potential applications such as receipt detection,
and car license plate recognition. To address this problem, the most common approach consists of a two-step
pipeline, text detection and then text recognition [22]. Text extraction, which is generally called an object
detection problem, has experienced great improvements in recent years thanks to the use of the Convolutional
Neural Network (CNN) [8, 9, 11]. Hence, in this paper, a CNN architecture is proposed to solve the inventory
audit problem. The main challenge here, is that the tag contains numerous text regions, but only one of them
contains the product ID. This particular region will be called the Region of Interest (RoI) in the following
sections. Then, applying a single text detector followed by a text recognition algorithm is not sufficient since
several text regions will be detected.

A topic facing similar challenges is automatic sales receipt detection/recognition. In the same fash-
ion as for the product tags, sale receipts contain several text boxes but all of them are not of interest.
Raoui-Outach et al. have proposed a methodology for detecting and understanding sales receipts using
deep-learning [16]. In their methodology the algorithm successfully extracts receipt information, which in-
cludes detection/localization/classification of receipt and store brand name. Once a text box of interest
is detected, an Optical Character Recognition (OCR) algorithm is applied to the text box to extract the
relevant information.

Another relevant research field is car license plate recognition, which has gained a lot of attention in the
field of Intelligent Transport Systems (ITS). Indeed, the idea is to first detect the license plate as an object
and then to perform text recognition or OCR on it. Sliding window methods are the most natural and
direct way to perform this kind of object detection [14]. However, it has a computational limitation for large
or high-definition images. To resolve this limitation, Li et al. have introduced a CNN-based license plate
detection method [13]. The method improves the full sliding window method using a CNN-based region
detection that reduces the number of candidates for sliding window. Instead of applying a sliding window
structure, Xie et al. have applied Multi-Directional YOLO (“You Only Look Once”) [21]. The algorithm is
capable of rapid multi-license plate detection using a very deep CNN, which overcomes existing limitations
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resulting from variation of view point and accidental rotation of the camera.
Inspired by the previous research topics, sales receipt and license plate detection, a multi-layer CNN

architecture, seen in Figure 4, is proposed to perform inventory tracking.

A. Multi-Layer Convolutional Neural Network Architecture

The proposed multi-layer convolutional neural network (CNN) consists of three main steps: Tag region and
text box detection, RoI Selection, and Optical Character Recognition (OCR). In the tag region and text box
detection, the tag region detection localizes a tag from a collected image. The text box detection identifies
all the text box locations based on the image information. In the RoI selection step, the text box with the
actual item label information is specified using the previous outcomes: the tag region and text boxes. Then,
the final text box is submitted to the OCR algorithm to extract the tag information. Figure 4 illustrates the
proposed multi-layer CNN architecture.

Figure 4. Multi-layer convolutional neural network architecture (Green: CNN-based algorithm, Blue: Simple
Crossing Information Algorithm)

1. Tag region and text box detection

Tag region detection The objective of tag region detection is to localize the tag. For the localization
problem, our approach applies a simple bounding-box regression that has been applied on the R-CNN
framework [9]. In the CNN architecture, we apply the pre-trained CNN architecture ResNet34 to reduce the
computational time in the training phase, which is also called transfer learning [10]. The transfer learning is
a popular technique in CNN-based image analysis since it decreases the required computational time through
using the pre-trained model. The proposed CNN architecture combines a fully connected layer with dropout
to generate a more flexible learning model. To be more specific, the fully connected layer has one hidden
layer. The input layer has 25,088 nodes and the first hidden layer includes 258 nodes. The final layer has 4
nodes that represent bounding box information, the center of the bounding box and its width/height. For
the activation function, a ReLu function is employed in the fully connected layer. In the training process,
the input image is rescaled into a 224 × 224 RGB-colored image, and a data augmentation technique such as
random flip, rotating image, and variation of lightning is also implemented to improve the training results.
To optimize the fully connected layer, the Adaptive Moment Estimation (Adam) optimizer is adopted.

Text box detection The aim of this step is to localize and draw boxes around any line of text on the
image. The idea is that among all the text lines detected on the image, one of them will be the region of
interest containing the product ID. Such a detection problem is usually a core first step before performing
any OCR. Then, due to the increasing popularity in the problem of extracting text from natural images,
many text detection methods have been developed in ecent years. As of today, one of the highest-performing
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one is the EAST algorithm (Efficient and Accurate Scene Text detector) developed by [23] in 2017. The
idea is to feed the full image into a single fully convolutional neural network (FCN). This FCN is comprised
of three parts: a feature extractor, a feature merging branch, and an output layer. The feature extractor
is usually a deep convolutional network, such as VGG16 [19], pre-trained on ImageNet [6]. Then, features
from the feature extracting branch are gradually merged in order to identify text with different sizes. The
final feature map of the image is obtained and fed into the output layer. This algorithm reaches state of
the art performance in text localization. Particularly, what is the most notable is its speed. Indeed, in
most of state of the art text detection methods such as Fast R-CNN, [8] the algorithm is making candidate
text region proposals which are then filtered and reduced to actual text regions of the picture. Here, there
is no similar proposal step; text regions are directly computed, which makes the EAST among the fastest
algorithms to reach such a level of performance. These properties makes it very attractive, EAST trained
model has been made publicly available through OpenCV a. In our text detection problem, the EAST model
was implemented. The results of the EAST model are shown in Figure 5. As one can see, several text boxes
are detected due to the presence of several text lines on the tag. It is necessary to filter these text regions
to specify the one of interest with actual label information. This is done by crossing the current results with
the previous results from tag detection.

(a) (b) (c)

Figure 5. Example outputs from EAST algorithm

2. Region of Interest Selection

The tag detection and text box detection yield the information about the tag location T = [x0 y0 x1 y1]
and multiple regions of interest about text boxes Tbi = [x0i y0i x1i y1i], i = {1, 2, ..., n}. Note that the
tag location and the multiple regions indicate two corner points of a bounding box, which are the top left
corner and bottom right corner points. The ith location of a text box is one element of all the detected text
boxes, Tbi ∈ Tb. Using the two outcomes, we specify the location of actual label information. The method
for identifying the candidate locations, Tlc, collects the text box information within the top half of the tag
location Tc,

x0c = x0 − γH (12)

y0c = y0 − γW (13)

x1c =
1

2
(x0 + x1) + γH (14)

y1c = y1 + γW, (15)

where H is the height of the detected tag, H = x1−x0, and W is the width of the detected tag, W = y1−y0.
The variable γ is a margin to prevent a case where the bounding box of the label is located outside of the
bounding box of the tag. In the numerical simulation, the parameter γ is defined as 0.1. Based on the
extracted candidate bounding boxes, the final label location is determined to be the bounding box with the
maximum area among the candidates Tlc. Algorithm 2 summarizes the process of the ROI selection.

ahttps://www.pyimagesearch.com/2018/08/20/opencv-text-detection-east-text-detector/
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Algorithm 2 ROI selection

1: Input: Tc,Tbi, γ
2: Output: Tl

3: for each Tbi ∈ Tb do
4: if Tbi within Tc then
5: Tlc ← Tbi

6: end if
7: end for
8: Tl ← max(area(Tlc))
9: return Tl

3. Optical Character Recognition (OCR)

Once the region of interest has been identified and cropped, as in Figure 8(a), the next step is to extract the
text information from it. In other words, the objective is to recognize the different characters and then to
concatenate them into a string. This problem is commonly called Optical Character Recognition (OCR) and
has been of interest for a long time in the computer vision community. Thus, several applications showing
good performance are already existing and widely used. Recently two applications showed state of the art
performance; Tesseract [20] and the Google Vision API b. Both of them were tested and compared, and the
results are provided in the following section. The most recent version (Version 4) of Tesseract was used this
work and relies on the use of LSTM networks which are a derivative of recurrent neural networks. On the
other hand, apart from the quasi-certainty that a deep CNN is utilized somewhere, not much information is
available on what type of algorithms the Google Vision API is using. In any case, no tuning whatsoever nor
training of the OCR module was required. Thus, the OCR step is really just corresponding to a black-box
tool that can be easily switched if needed.

B. Flight Experiment Result

To demonstrate the proposed multi-layer CNN architecture, a small-scale inventory environment shown in
Figure 6 is created. In the flight experiment, a DJI Mavic Air is manually flown in front of each item on the
shelf and takes pictures of the items. It is of note that a common format of the tag is used and that every
UAV picture contains a single tag.

Figure 6. Simplified flight experiment setup

The process is repeated several times by changing the positions of the items on the shelf as well as their
corresponding tags. Using this flight experiment environment, 2,630 tag images are collected. Figure 7 shows
the examples of collected images. 2,104 images are utilized for the training of the tag detection algorithm,
and 264 images are used as a test set for the framework. The text box detection CNN and OCR applications

bhttp://cloud.google.com/vision
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don’t need any training since a pre-trained model are used from public sources. Among the 264 test images,
96% of the product IDs (253 pictures) are correctly cropped after the RoI selection step. The product ID is
considered correctly cropped if it contains the six characters entirely, displayed in Figure 8.

Using the 253 correctly cropped product IDs, the performance of both OCR applications is evaluated. It
is observed that due to some uncertainties like blurring or distortion both OCR applications often confuse
the “O” and ”0” characters and also the “I” and “1” characters. This is expected because even the human
eye in such conditions may confuse them. Thus, two types of OCR are performed. A strict OCR in which
every character has to be strictly identified, and a soft OCR in which “I” and “1” on one hand and “0” and
“O” on the other hand are considered the same characters. Finally, the overall performance of the framework
is simply the product of the accuracy after the RoI selection multiplied by the accuracy of the OCR step.
These results are summarized in Table 2. In the result, the multi-layer CNN with Google Vision API Soft
OCR presents the best performance, which is around 87 %. The result also shows that Google Vision OCR
has better performance than Tesseract OCR in both the Soft and Strict cases.

Figure 7. Example images from the flight experiment

(a) Positive images

(b) Negative images

Figure 8. Results of ROI selection
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Figure 9. Example of Convolutional Neural Network Architecture (Preliminary result from the proposed first
CNN architecture)

Table 2. Accuracy of region detector and text recognition

Layers ROI selection OCR Overall Performance

Multi-layer CNN with Tesseract Strict OCR 96 % 66% 63%

Multi-layer CNN with Tesseract Soft OCR 96 % 79% 76%

Multi-layer CNN with Google Vision API Strict OCR 96 % 73% 70%

Multi-layer CNN with Google Vision API Soft OCR 96 % 91% 87%

IV. Conclusions and Future Work

In this paper, a framework for multi-UAV trajectory optimization to scan the entire inventory space and
a multi-layer CNN architecture to track inventory items have been introduced. In the multi-UAV trajectory
optimization, we proposed a two-step process to generate a non-collision flight trajectory, which is based on
the distance-constrained vehicle routing problem and the optimization of a collision-free UAS schedule. In the
numerical simulation, the proposed multi-UAV trajectory optimization shows that resulting trajectory meets
the vehicle endurance requirement, minimizes the total mission time, and leads to a non-collision trajectory.
In the imagery analysis to track inventory items, we proposed a multi-layer CNN architecture that contains
tag detection, text box detection, ROI selection, and OCR. The proposed framework is demonstrated by
flight experiment and compares the performance of two different approaches using two OCR algorithms,
Tesseract and Google Vision API. In the soft OCR case, the multi-layer CNN with Google Vision API has
outperformed with an overall performance of 87 %.

Potential future work related to multi-UAV trajectory optimization can include developing a computa-
tionally faster and simpler optimization framework instead of using a two-step process, as well as scaling up
the size of the inventory problem so that it can solve an entire warehouse. Another potential area of research
regarding the imagery analysis is that this paper only handles a tracking problem with one tag per image,
but it is possible to have multiple tags per image. As an extension of this research, one can create multi-
tag recognition algorithms through applying diverse deep-learning algorithms such as Single Shot MultiBox
Detector (SSD), YOLO, and Faster-RCNN [15][17][18].
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