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SUMMARY

One of the greatest challenges preventing use of advanced controllers in aerospace is developing

methods to verify, validate, and certify them with high assurance. Traditional test and simulation-

based approaches evaluate system behavior at design time in a subset of the total state space. Results

from simulation and testing cannot be interpolated over systems with large state spaces, systems

with nonlinear dynamics, systems that learn or degrade over time, systems operating under high

uncertainty, or systems in complex and adversarial environments.

Run Time Assurance (RTA) systems are proposed as a complementary verification approach

to facilitate near-term certification of advanced aerospace decision and control systems. RTA sys-

tems monitor the state of a cyber-physical system (CPS) online for violations of predetermined

boundaries that trigger a switch to a simple, safety remediation controller. For example, automatic

collision avoidance systems are RTA systems that monitor the CPS state for violations of proximity

constraints and switch to a backup controller that assures safe separation. Design of RTA systems

is generally ad hoc and specific to application, although common design elements and requirements

of RTA systems cross applications and domains.

This research elicits, formally specifies, and analyzes RTA-based collision avoidance system

requirements for a conceptual spacecraft conducting autonomous close-proximity operations. First,

the Automatic Ground Collision Avoidance System developed for aircraft is studied to identify

common design elements and requirements of RTA last-instant collision avoidance systems that

cross the air and space domains. Second, formal requirements specification templates are developed

for a generalized RTA architecture that extends the simplex architecture by accounting for human

interaction, system faults, and safety interlocks. Third, formal requirements are elicited through

the process of formal specification as well as from common design elements and requirements,

spacecraft guidance constraints in the literature, and a structured hazard assessment. Finally, the

requirements are analyzed using compositional reasoning and formal model checking verification

techniques.



CHAPTER 1

INTRODUCTION

Automated collision avoidance systems are a form of run time assurance (RTA) that continually

verify safety during operations. RTA systems go a step beyond alerting systems that inform hu-

man operators that an undesired condition is imminent. When undesired conditions are detected,

RTA systems automatically react with a simple, assured response. An RTA monitor and set of au-

tomatic backup controllers, like automatic collision avoidance, assure operations adhere to desired

properties regardless of the form of the primary controller. When bounded by a well-designed RTA

system, the primary controller could theoretically be anywhere on a spectrum from human pilot to

a fully autonomous decision and control system. RTA is an enabling technology for verification of

increasingly autonomous systems for which certification criteria do not yet exist.

Development of specific criteria for the certification of new aerospace control systems lags

the development of state-of-the-art aerospace control systems. For example, proportional-integral-

derivative controllers were developed in the 1920s [1], while frequency response methods such as

the Nyquist and Bode plots that yield the gain and phase margins describing stability weren’t de-

veloped until more than a decade later [2, 3]. More complex and capable control systems design

like adaptive control began to emerge in the 1950s [4, 5], while Lyapunov stability and [6] other

verification approaches like run time assurance [7] appeared much more recently. Since the adap-

tive controller introduction, additional active research areas like robust, optimal, and more recently

intelligent control have emerged pushing the state of the art in control design.

Despite significant advances in control theory, 1930s era gain and phase margins are given as cri-

teria for certification [8]. In some cases, linearization about fixed points provides sufficient evidence

[8]. In other cases, system developers can work directly with certification authorities to determine

appropriate certification evidence for control systems designs on a case by case basis; however, this

is a very long and costly approach. While alternative certification criteria for state-of-the-art control

approaches may one day be developed, the certification process presents a signification barrier to

operational use of many advanced control techniques.
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Figure 1.1: Timeline showing the introduction of control techniques in blue with verification ap-
proaches in purple lagging behind.

In addition to a lack of specific certification criteria, we’ve known for decades that test-based

approaches are insufficient to completely verify correct system behavior to the levels required in

aerospace [9]. This is echoed in other industries like autonomous vehicle development, where one

study found that autonomous vehicles would have to be driven hundreds of billions of miles to be

sufficiently tested [10].

Run time assurance (RTA) is a promising online verification approach to enable certification

of complex control designs for which certification criteria do not exist yet, and is beginning to

gain recognition in recent standards [11]. Ensuring decision and control systems always exhibit

safe behavior is becoming an increasingly daunting task as the complexity of the controllers and

the systems under control increase. While several approaches to RTA have been developed and

successfully demonstrated, the design and verification of these systems is ad hoc and specific to the

application.

1.1 Approach

This dissertation seeks to evaluate the following hypotheses through case studies in legacy and novel

aerospace collision avoidance applications:

1. Common design elements and requirements for RTA systems cross the air and space domains.

2. Abstraction techniques, systems-theoretic accident analysis [12], and formal specification

and analysis [13, 14, 15] provide a structured, rigorous, and generalizable approach to the
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development and verification of high-level RTA system requirements before detailed design

phases.

The first hypothesis is evaluated by development of a generalized RTA approach described in Chap-

ter 4, informed by the Auto GCAS case study in Chapter 3, and demonstrated in Chapter 5 where

automatic spacecraft collision avoidance requirements are traced to inspiration from the aircraft

domain. The second hypothesis is evaluated through a case study in Chapter 5.

The research in this dissertation has three principle phases. First, a case study is conducted on

the research and development of the Automatic Ground Collision Avoidance System (Auto GCAS)

to determine key factors contributing to the success of a real-world RTA system. Auto GCAS is a

particularly interesting case study because it is the product of more than three decades of research

and prototypes, has been studied extensively by psychologists as a human-automation teaming ex-

ample, and is unique as a system that takes control from a pilot in life or death situations [16, 17].

These key factors to success are identified in Chapter 3 and form a foundational set of common

design elements and requirements for RTA systems that are expanded in Chapters 4 and 5.

Second, these common design elements and requirements are developed into design specifi-

cation and requirements for a generalized, conceptual aerospace RTA. The RTA system verifica-

tion problem is expressed as a set of finite state machine design specifications and linear temporal

logic requirements, allowing the use of compositional model checking verification techniques. The

general design specifications and requirements presented in Chapter 4 extend simplex architecture-

based RTA systems by including human interaction, failure monitoring, and interlock monitoring

components in the design. The design specification and requirements elicitation process builds on

the foundational design elements identified in Auto GCAS by examining standards and guidance

reviews, literature reviews, and systems-theoretic hazard analysis [12]. The process of formal spec-

ification and incremental analysis elicits additional previously unidentified requirements. Where

applicable, reusable design specification and requirements patterns are identified.

Third, the approach is employed in the early specification and analysis of a novel, hypothetical,

last instant collision avoidance system for a hypothetical future autonomous spacecraft. The space

operations culture relies heavily on human operators for monitoring and human-coded commands

[18, 19, 20, 21, 22, 23]. The approach presented in this research makes progress towards safe inte-
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gration of autonomous capabilities onboard spacecraft. This collision avoidance system is scoped to

prevent collisions in scenarios where two space objects feature low relative velocities (e.g. during

autonomous rendezvous, proximity operations, and docking (ARPOD) missions). The automatic

collision avoidance system monitors and intervenes when a black-box controller violates safe sep-

aration boundaries. Formal verification evidence is provided for the RTA-based design. Gaps in

the formal verification capabilities and the appropriateness of various verification techniques are

discussed.

1.2 Research Contribution

This research works towards combining aerospace RTA and formal methods, as well as filling a

gap in the development of requirements for automatic and autonomous spacecraft maneuvering.

“Specification is difficult, unglamorous, and arguably the biggest bottleneck facing verification and

validation of aerospace, and other, autonomous systems [24].” This research seeks to make progress

in the specification challenge. RTA systems and formal specification and analysis have been applied

successfully in a variety of applications [7, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,

39] as is discussed in greater detail in Chapter 2. However, the ad-hoc implementations of RTA

and formal methods by experts are application-specific and lack a generalized, repeatable approach.

While recent standards provide some guidance to on the use of RTA [11] and formal methods [40,

15], the standards have not proposed formal specification and analysis of RTA. While widespread

adoption of formal specification and analysis is partially hindered by the lack of design templates for

implementation [41], this work is presented in the form of specification patterns and provides a con-

ceptual example application. Some standards provide guidance on spacecraft systems engineering

[42, 43], and space autonomy requirements engineering [44], and regulations are placed on satel-

lite communication frequencies [45]. However, no standard or requirements exist to ensure safety

of autonomous spacecraft operations. In addition, the White House [46], European Space Agency

[47], and others have called for the development of a Space Traffic Management (STM) system,

and collision avoidance has been identified as a top priority for success of STM [48]. However, no

international body has published requirements for automatic collision avoidance in the context of

STM. The contributions of this dissertation are as follows:
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• a case study of the Automatic Ground Collision Avoidance System (Auto GCAS) for aircraft

to inform critical components of a general aerospace automated collision avoidance RTA;

• generalized formal requirements for a decision module of an RTA architecture that includes a

fault monitor, interlock monitor, and human-machine interface components;

• safety requirements to bound automated or autonomous maneuvering of spacecraft elicited

from top-down system safety analysis;

• first development of a set of requirements for last-instant automatic collision avoidance sys-

tem for spacecraft; and

• an evaluation of the application of two requirements analysis tools.

1.3 Content Overview

Chapter 2 provides background on practices in systems engineering with context for the use of

formal methods and run time assurance approaches. In Chapter 3, Auto GCAS is studied for key

factors contributing to the success of a real-world RTA system. These well-studied success factors

are then used to construct a novel RTA design and verification approach in Chapter 4, presented

in the form of general patterns and templates for design specifications, requirements, and hazard

analysis. The RTA approach is then evaluated through application to a hypothetical spacecraft

automatic collision avoidance system in Chapter 5. Finally, Chapter 6 discusses conclusion of the

work and recommendations for research to improve upon the initial approach.
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CHAPTER 2

CURRENT STATE OF VERIFICATION AND VALIDATION FOR AEROSPACE

CONTROL SOFTWARE

Several unique concepts come together to create the specification and analysis approach for RTA

presented and evaluated in this dissertation. Section 2.1 provides context for the proposed approach

by defining verification, validation, certification and assurance. Then Section 2.1 introduces various

models for systems engineering, discusses where design errors are introduced and identified, and

describes a new systems engineering model for increasingly autonomous systems that features the

approach presented in this dissertation. Practical considerations for using formal verification are

discussed in Section 2.2, including the state space explosion that hinders the use of formal methods,

methods to abstract systems to facilitate formal analysis, approaches to systems-level metamodeling

and metalevel analysis, necessary concepts to develop formal specifications, formal specification

patterns that facilitate easier reuse, the capabilities of automated formal analysis approaches, and

current requirement specification and analysis tools. Third, context and discussion of decision and

control system hierarchies in Section 2.3 provides insight into the appropriate place to use run

time assurance techniques discussed in Section 2.4. This research is not the first use of RTA, RTA

in aerospace, or RTA and formal methods and Section 2.4 previous work. One of the important

aspects of specifying RTA systems is formally specifying safe boundary conditions, and Section 2.5

discusses hazard-analysis based techniques for requirements elicitation. Finally, as a formal RTA

approach isn’t appropriate universally, unique characteristics of aerospace systems development that

make them a particularly attractive application of RTA are discussed in Section 2.6.

2.1 Verification, Validation, Certification and Assurance

Developing methods to verify, validate, certify, and assure advanced automated and autonomous

decision and control systems presents one of the largest barriers to operational use of autonomy.

Verification investigates whether a system meets requirements [49], validation assesses whether a

system meets the needs of the end user [50], certification determines whether a system conforms to
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a set of criteria or standards for a class of similar systems [8], and assurance is justified confidence

that the system functions as intended with limited vulnerability to threats and hazards based on

evidence generated through development activities [51]. Verification, validation, certification, and

assurance activities intersect at early requirements and architecture development phases and correct

design relies on early rigor.

In this dissertation, verification, validation, certification, and assurance are all addressed at their

intersection in early system design. The proposed approach formally verifies the RTA design meets

requirements, while at the same time utilizing a formal, unambiguous requirements development

process that facilitates validation that the requirements constrain the design as intended. Where

applicable, guidance from certification standards is considered. The proposed approach generates

evidence as part of assurance activities.

2.1.1 Systems Engineering Models

Many systems engineering models such as the “V,” waterfall, spiral, and twin peaks models are used

to describe the stages of the systems engineering development process and interactions between the

stages. One of the many instantiations of the Systems Engineering “V” is shown in Fig. 2.1. This

model shows the steps in the development of a new system from concept to operations. While

there are some slight variations between sources [52, 53, 54], the systems engineering “V” includes

the following core steps: development of a concept of operations, requirements elicitation, high

level architecture design specification, detailed design, hardware and software implementation, unit

testing, subsystem verification, system level verification, system level validation, and transition to

operational use and sustainment until retirement.

One of the core issues with the systems engineering “V” is the linear timeline it generally

assumes. A similar method called the Waterfall model, shown in Fig. 2.2, also depicts systems

engineering phases as a process where progress flows down through the phases, but emphasizes that

feedback should also flow back up to iterate and refine the products in each phase [55]. Another

influential systems engineering model that rejects the notion of sequential design phases is the spiral

model [56]. The spiral model depicted in Fig. 2.3 emphasizes that phases should be developed

concurrently and constantly refined throughout the systems engineering process. Problem frames in

conjunction with the Twin Peaks model [57] as depicted in Fig. 2.4 emphasizes iterating between
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Figure 2.1: Systems Engineering “V” [53]

Figure 2.2: Systems Engineering Waterfall Model [55]
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Figure 2.3: Systems Engineering Spiral Model [56]

Figure 2.4: Twin Peaks Software Systems Engineering Model [57]
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the problem and solution spaces so that architectural considerations are included in the requirements

elicitation process. This model relates requirements and architectures via problems frames which

start with abstract behavioral requirements and architectures which are refined together.

In this dissertation The design approach presented in this may be implemented in an iterative

fashion where feedback flows up through levels. The approach provides a rigorous, formal founda-

tion for continual refinement and iterative verification throughout the design process.

2.1.2 Introduction and Identification of Design Errors

In the software systems engineering process, 70% of faults are introduced in the requirements and

architecture development phases, while 80% are found after integration in the verification, valida-

tion, or operations when the cost to repair them can be as much as 1000 times higher than if it was

found earlier in the design process [58, 59, 60, 61]. As a result, in addition to employing a more

iterative design process, there is a signification opportunity for increased analysis early in the sys-

tems engineering design cycle. This dissertation presents and evaluates a approach that focuses on

the early design specification, requirements, architecture development, and hazard analysis phases.

2.1.3 Connection to Certification and Assurance

At its core, RTA ensures that a system stays within a set of acceptable states while it operates.

This is different from design time verification, which generally relies on showing that an carefully

selected set of possible states always yield an acceptable response. For example, MIL-HDBK-

516C Airworthiness Certification Criteria [8] specifies that a controller demonstrate a gain margin

of 6 dB and a phase margin of 45 degrees, which apply to linear time invariant controllers like

PID controllers, but do not apply to nonlinear, adaptive, or other more complex systems designs.

This certification criteria attempts to cover the entire state space of the controller by evaluating the

system response to a sinusoidal input across wide ranges of frequencies and magnitudes. While

similar metrics may one day be developed for nonlinear and adaptive control systems that currently

represent the state of the art, the development of certification criteria will likely lag behind the

development of decision and control systems for the foreseeable future.

Complexity of the control system designs which promise superior performance has passed a

point where traditional design time verification techniques can scale to cover the entire space of
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possible states. When flight test can cost tens of thousands of dollars an hour or the risk of losing

the test asset is too high, the range of points that can be tested decreases, and simulation-based

verification techniques fill some gaps. However, stochastic simulation approaches like Monte Carlo

still leave coverage gaps in the evaluation. Set based simulation and reachability evaluation methods

provide some promise of greater coverage across a continuous range of states; however, even these

methods struggle to scale to the number of states or for long periods of time. Run time verification

approaches, such as the architecture proposed in this dissertation, present a way to leverage the

state of the art in control system design while assuring safety online by examining a specific set

of states for a limited time horizon and adapting in real time to preserve system safety. Offline

verification approaches analyze, simulate, or test system components prior to deployment, often

looking at results after the verification task is completed. By contrast online verification approaches

continuously evaluate a system while it is running.

2.1.4 A New Systems Engineering Model for Increasingly Autonomous Systems

In an age of increasingly complex and autonomous systems, a new paradigm for systems engineer-

ing is needed. Through years of research and a series of workshops with industry, academia, and

government verification and validation researchers and practitioners [62], a new systems engineer-

ing model co-developed by the author of this dissertation is proposed as depicted in Fig. 2.5. This

system engineering model is theoretical and while portions have been successfully implemented, it

is not yet a fully mature process.

As discussed in Section 2.1.2, 70% of errors are introduced in requirements and architecture

phases, so the approach places heavy emphasis on activities in these phases. Planning and analysis

in the early design stages is critical to understand how the system will demonstrate conformance to

requirements, forms the foundation of the assurance profile, and guides development of the system

with incremental verification and validation activities.

An integrated design and assurance profile generation is comprised of two phases conducted

in parallel. The first early design phase is requirements elicitation, which can be divided into four

separate interconnected and iterative activities:
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Figure 2.5: Systems engineering for increasingly complexity and autonomy, with items addressed
in this research in blue [63, 64, 65, 66].

1. The subject matter expertise (SME) activity includes talking to operators (pilots, mission

controllers, etc.) to develop an intent specification [67] and mission threads and vignettes that

elicit and document SME input.

2. The requirements formalization activity includes extracting and formally defining require-

ments to meet mission capabilities identified in the SME activity.

3. The assurance case development activity includes building the skeleton of a structured argu-

ment in the form of an assurance case that the system will meet requirements.

4. The functional decomposition activity includes decomposing the requirements into functional

components that form the baseline of a conceptual architecture in the first phase of the archi-

tecture development.

Throughout the process of requirements elicitation, complex functions are abstracted until they

can be further refined in the design, components are named and classified in a taxonomy, and rela-

tionships between components and concept are defined in an ontology. This process of abstraction,

taxonomy creation, and ontology development may be implicit (kept in the heads of the specifiers

and designers) or explicit (formally described so that it can be reasoned on).
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The second early design phase is architecture development, an iterative refinement process

which includes development of important artifacts for the assurance profile. The initial architec-

ture of a system emerges from the design specifications in the requirements phase. The following

are important activities in the architecture development stage:

1. The architecture refinement activity includes incremental refinement of the architecture from

conceptual, to reference, to objective, to system architecture.

2. The assurance case refinement activity grows the assurance case in an iterative and incre-

mental process to incorporate more refined functionality, component definitions, and interface

definitions as design decisions are made in architecture refinement.

3. The state logic model activity utilizes models such as state machines to formally define system

and component-level states. This formal specification enables analysis techniques such as

model checking to ensure that a section of the requirements is met by the design.

4. The system safety analysis activity applies appropriate analysis methods incrementally as the

system is developed and may include Functional Hazard Assessments (FHA), Preliminary

System Safety Assessment (PSSA), Failure Modes and Effects Analysis (FMEA), Fault Tree

Analysis (FTA), Systems Theoretic Accident Model and Processes (STAMP), and Systems

Theoretic Process Analysis (STPA).

5. The design level assurance activity identifies system interlock conditions or safety boundaries

informed by the system safety analysis. This activity includes development of design time and

runtime monitoring and mitigation strategies.

6. The test plan activity incrementally develops a test plan to evaluate system functionality.

7. The pedigree or heritage activity documents previous uses of the component including pre-

vious verification evidence and assurance profiles as appropriate. This activity may pull in

evidence or analysis from previous implementations under the appropriate context for reuse

in the analysis of this architectural implementation.

In the later design phases, multiple paths to certification are envisioned. Modeling, simulation,

and traditional test and evaluation are expected to be part of the certification process for many years
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to come. However, traditional simulation and testing approaches alone are likely insufficient and

infeasible as the primary source of verification evidence for autonomy. For example, in 2016 the

RAND Corporation published a study that autonomous vehicles would need to be driven hundreds

of billions of miles to demonstrate their reliability and concluded that new methods and adaptive

regulations are needed to provide sufficient evidence of vehicle safety [10]. While the presence of

these traditional verification activities will not change, it is possible the selection of what to simulate

and test may be guided and supplemented by new methods. One form of supplemental evidence is

analytical proof generated from the requirements elicitation and architecture development phases.

This analytical proof topic is the focus of Section 2.2. Another supplemental evidence path to

certification is to synthesize software automatically from formal specifications [68]. Finally, in

cases where analytical proof or traditional verification is not possible, run time assurance paradigms

may be utilized to a monitor behavior online and switch controllers as described in Section 2.4.

These multiple paths are combined by an assurance validator, which may be a human or in the

future an automated system into an assurance profile, a complete argument of assurance made up

of heterogeneous evidence. One of the most challenging problems will be generating evidence

and assurance arguments in a modular way that enables arguments and evidence from a variety of

sources to be composed into a reusable library.

The design and assurance phases should be conducted in accordance with system design and

safety standards such as Aerospace Recommended Practice (ARP) from the Society of Automotive

Engineers (SAE) International, Radio Technical Commission for Aeronautics (RTCA) guidance,

American Society for Testing and Materials (ASTM) standards, as well as military and federal

standards, handbooks, and regulations. Where appropriate, the following standards, handbooks,

and guidance should be consulted:

• ARP4761: Guidelines and Methods for Conducting the Safety Assessment Process on Civil

Airborne Systems and Equipment [69]

• ARP4754: Guidelines For Development Of Civil Aircraft and Systems [70]

• RTCA DO-254: Design Assurance Guidance for Airborne Electronic Hardware [71]

• RTCA DO-178: Software Considerations in Airborne Systems and Equipment Certification
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[40]

• RTCA DO-333: Formal Methods Supplement to DO-178C and DO-278A [15]

• ASTM 3269-17: Standard Practice for Methods to Safely Bound Flight Behavior of Un-

manned Aircraft Systems Containing Complex Functions [11]

• MIL-HDBK-516C: Airworthiness Certification Criteria [8]

• MIL-STD-882E: System Safety [72]

• FAA’s Standard Airworthiness Certification Regulations [73]

In this dissertation, as a part of the requirements elicitation activity, SMEs are consulted in the

areas of collision avoidance, requirements are extracted from previous collision avoidance programs

and formalized, and the functions of the run time assurance system are decomposed into functional

components forming the baseline of the proposed high-level RTA architecture. In the architecture

development phase, design specifications describe functional system behavior in the form of state

logic models, and system safety analysis in the form of STAMP and STPA is used to define design

level assurance. Together these selected phases of requirements elicitation and architecture devel-

opment were used to create the run time assurance approach, design specifications, requirements,

and hazard analysis presented and evaluated in this dissertation. The development of an assurance

case in either the requirements or architecture phase, as well as the development of a test plan or

pedigree analysis, is beyond the scope of this dissertation.

2.2 State Space Explosion, System Abstraction, and Model-based Formal Verification

2.2.1 State Space Explosion Problem

One of the major challenges of verification is scaling for systems with large numbers of states.

Autonomous systems may need to include a high number state variables as inputs to their complex

or intelligent decision making algorithms. The state space explosion problem is that forN variables

with k possible values, the number of possible states grows exponentially to kN [13]. Complete

verification of these systems requires checking that a system meets requirements under all kN states.

The graph of possible states can be extremely large or infinite, especially in systems with continuous
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dynamics. Certain statements about infinite state spaces are usually undecidable, i.e. a decision

problem where it is impossible to construct a computer algorithm that will always return a correct

answer [13]. Cardinality is the number of states in a transition system model and the main factor

in the verification algorithm runtime [13]. In this dissertation many continuous variables are used

to describe the dynamics of the system (position, velocity, orientation, etc.), as well as discrete and

enumerated variables describing conditions of the system.

2.2.2 Formal Methods

Formal methods are defined as applied mathematics for modeling and analyzing systems with math-

ematical rigor [13] and include proof-based techniques, static analysis, and run time approaches.

Proof-based formal methods techniques for verification can be divided into axiomatic and semantic

approaches [74]. Axiomatic approaches reduce the verification problem to a proof problem include

methods rooted in Hoare logic [75], as well as theorem proving approaches. Theorem-proving

techniques are complex with a step learning curve and require human interaction and ingenuity to

formulate and solve. Semantic problems use exhaustive search techniques to evaluate all possible

program executions for violations of formal specifications and include model checking approaches

[13]. Model checking produces a proof that system meets desired properties or a counter example.

Model checking can be more automated, but may require abstraction to use on very large systems.

Static analysis and run time approaches are also often considered formal methods. Static analysis

methods, such as abstract interpretation [76], screen software for errors by inferring properties with-

out executing program but are vulnerable to false alarms[77]. Run time approaches are discussed in

Section 2.4. Model checking is used in this research.

2.2.3 System Abstraction

One method of dealing with the state space explosion problem is conducting verification at higher

levels of abstraction. An abstraction is a model of a system that removes implementation details

while preserving properties of the system to be analyzed [13]. Models may exist at multiple levels

of abstraction where lower levels refine the abstract model with more implementation details.

All design processes use some form of abstraction. Abstractions are useful approximations of

the design that facilitate understanding of the system and enable early analysis. For example, writing
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an algorithm in a programming language is working with an abstraction of the actual 1’s and 0’s of

the binary that the computer uses to execute the algorithm. Abstractions are not constrained to the

digital domain either. In physics, a free body diagram is an abstract representation of the forces and

moments acting on an object that assumes locations at specific points. Designs can also be described

at various levels of abstraction. For example, at a high level of abstraction, it may be assumed that

the system orientation may rotate within a range of rates. Lower levels of abstraction may describe

selection of a type of actuator such as a momentum exchange device. Greater refinement might

include the actual mass and angular acceleration and velocity characteristics of a specific reaction

wheel array attitude control actuator.

Two important tools in system abstraction are atomic propositions and labeling functions. Atomic

propositions are formal expressions of temporal characteristics that can be evaluated as true for false

(e.g. x ≤ 10). A labeling function L of a state s, denoted L(s) is a form of abstraction where a

Boolean variable can be used as a substitution for a set of atomic propositions which are satisfied

by a state. A propositional logic formula Φ satisfies s if and only if it satisfies L(s) [13].

A popular system model abstraction in computer science is a transition system directed graph,

where states are nodes and transitions are edges [78, 13]. The state of a system is a collection of

variables describing its behavior at a specific moment in time. For example, the state could include

the power setting (an enumerated and discrete on or off value) variable and the distance from the

origin variable (a continuous real numbered value), as well as many other variable descriptions. The

transitions of a system describe the evolution from one state to another; for example, from on to off

or a change in distance, etc.

Definition 1. Transition System. A transition system TS is a tuple (S,Act,→, I, AP,L) where

S is a set of states

Act is a set of actions

→⊂ S ×Act× S is a transition relation

I →⊂ S is a set of initial states

AP is a set of atomic propositions, and

L : S → 2AP is a labeling function.

TS is finite if S, Act and AP are finite.
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In this dissertation, design specifications are captured in the form of transition systems and

requirements are captured in the form of atomic propositions. Labeling functions are used in this

dissertation to abstract atomic propositions when their complexity is enough that the specification

becomes difficult to interpret, or as placeholders where more detailed knowledge of the system

design is needed in later design iterations to generate an atomic proposition.

2.2.4 Formal Specification

Formal methods are a collection of notations and techniques based on mathematical theories, logic,

automata or graph theory for describing and analyzing systems [79]. Three goals of formal methods

are specification, analysis, and synthesis. Formal specification facilitates, a common, unambiguous

understanding of the system between users, designers, programmers, and verifiers. Formal anal-

ysis helps to find errors and increase reliability of the system. Formal synthesis integrates formal

methods into the development process to convert a design to implementation with some level of

automation. Formal specification is described in this section, formal analysis is described in Section

2.2.8, and formal synthesis is beyond the scope of this dissertation.

Specification of design and requirements in formal logic enables automatic analysis of a system

design early in the design phases to find design flaws and conflicts between requirements at mul-

tiple levels in the design. Formal design specifications describe the transition behavior of systems

between states, a definition derived from a computer science definition of transition systems. For-

mal requirements describe atomic constraints or conditions on the system behavior. In this case,

atomic means that the statements are evaluated as true or false and cannot be divided into smaller

statements.

In computer science communities, design specifications are often referred to as “requirements”

and requirements are referred to as “properties.” In computer science, properties (called require-

ments in this dissertation) may describe functional correctness (system performs as expected),

reachability (set of states reachable from an initial set of states), invariance (“something bad never

happens,” i.e. a safety property that is always true), liveness (“something good eventually happens,”

i.e. a property that will eventually be true), fairness (ensuring balanced, proper repetition of events),

and real-time properties (acting as expected in time) [13, 78]. In this dissertation, most of the re-

quirements fall into the category of functional correctness, reachability, invariant, and real-time.
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2.2.5 Logic Notation and Specification

Formal specification may use a variety of different logics and languages. First order logic uses

quantifiers (such as “for all” and “there exists”) and relations (such as inequalities, addition, and

multiplication) to reason over variables in a predefined domain like reals or integers, and is widely

used in calculus and geometry as well as databases and artificial intelligence [79]. If-then-else and

while loops are special kinds of first order logic. Logic symbols used in first order logic are listed in

Table 2.1, and the precedence (order of operation) of the operators is: ¬, ∧ (and
∧
i=1,n µi), ∨ (and∧

i=1,m νi), ∀, ∃,→.

Propositional logic is a simpler formalism than first order with a more restrictive set of sym-

bols that does not include quantification (∀ or ∃) or function or relation (including equivalence ≡)

symbols [79].

Table 2.1: Logic Symbols

Description Symbol
In ∈
Implies →
Not ¬
Or ∨
And ∧
Relation rel
Equivalent to ≡
For all ∀
There exists ∃
Satisfies |=
Conjunct

∧
i=1,n µi

Disjunct
∧
i=1,m νi

Equal to (outside logic) =
Variant a[d, v](u)

Modal logic extends propositional logic with two additional connectives, � (“necessarily”) and

3 (“possibly”). Note, in temporal logic, the square and diamond correspond to slightly different

definitions of “always” or “globally” and “eventually,” respectively. Modal logic is used to create

and reason about finite state machines or finite transition systems. In this research, the design

specifications create a model or transition system, as described in Section 2.2.3. One way to describe

these state models is with Kripke semantics.
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Definition 2. Model. A modelM is defined by [80]:

a set W , whose elements are called worlds (i.e. states of the system);

a relation R on W (R ⊂W ×W ), called the accessibility relation

a labelling function L : W → P(Atoms).

R(x, y) denotes that (x, y) is in R. The set W is often drawn as a set of circles, containing a

labelling function L, with arrows between the circles corresponding to the relations R.

Temporal logic extends propositional logic with operators that represent and reasons about sys-

tems over time [13]. A variety of formal languages have been developed to model systems in tem-

poral logic. Linear temporal logic (LTL) models sequences of events in a linear progression along a

single path. Computational tree logic (CTL) models branching time, where each branch represents

different decisions, and includes operators to define statements such as “there exists a path” and

“along all paths” [81, 13]. Timed computational tree logic (TCTL) extends CTL with continuous

time propositions and expresses properties of timed automata. Another popular temporal logic used

is metric temporal logic (MTL) which uses integer time constraints [82].

In some cases temporal logics are constrained to only reason about future cases, as is the case

with LTL. Other logics, such as past time linear temporal logic (ptLTL), use temporal operators

to describe the past states of an execution trace relative to the current point of reference [83].

Where an LTL statement might say state a implies in the next step that state or condition b is

true (a =⇒ ©b), ptLTL might instead say that if in the last step a is true, it implies b is now true

(©−1a =⇒ b). An example of this is found in the decision logic design specification DL02 which

states that “Once the system enters the failed state (F ), the system shall remain in the failed state

(F ) if a failure condition (f ) is still detected,” expressed in ptLTL as (©−1F ∧ f) =⇒ F . In a

model checking tool used in this research as described in Section 2.2.9, this requirement is written

DL02 : (prevstate == FAILED and system state.f) implies (op state ==

FAILED). This “last state and a current condition implies current state” form is in contrast to say-

ing that if the system is in a current state and condition, then the next state will be a specific state.

The LTL version of DL02 would be written (F ∧ f) =⇒ ©F . In 2003 it was proven that ptLTL

can be exponentially more succinct that LTL [84]. A list of ptLTL symbols is listed in precedence

order in Table 2.2. In this dissertation, ptLTL is used to specify requirements.
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Table 2.2: Summary of Past Time Linear Temporal Logic (ptLTL) Symbols used in this Dissertation.

Symbol Description Translation Alternative Symbols
� historically/always “always” [∗]
©−1 previous step “previously”
¬ negation “not” !
∪ until “until” U
∧ conjunction “and”
∨ disjunction “or”
⇒ implication “implies” − >
⇔ logical equivalence “is equivalent to” < − >

Definition 3. Semantics of ptLTL. A linear structure π over a finite set of propositions A is a

function π : N → 2A [85]. Let π be a linear structure over A, let ϕ and ψ be ptLTL formulas, and

let i, j, k ∈ N. ϕ is true in π, written π |= ϕ if and only if (iff) (π, 0) |= ϕ. Then ϕ holds in π at

time i, written (π, i) |= ϕ, is inductively defined as follows [85]:

(π, i) |= p iff p ∈ π(i)

(π, i) |= �ϕ iff ∀j ≤ i, (π, j) |= ϕ

(π, i) |=©−1ϕ iff i > 0 and (π, i− 1) |= ϕ

(π, i) |= ¬ϕ iff (π, i) 2 ϕ

(π, i) |= ϕ ∪ ψ iif ∃j ≤ i, ((π, j) |= ψ and ∀k : j < k ≤ i, (π, k) |= ϕ

(π, i) |= ϕ ∧ ψ iff (π, i) |= ϕ and (π, i) |= ψ

(π, i) |= ϕ ∨ ψ iff (π, i) |= ϕ or (π, i) |= ψ

2.2.6 Tabular Requirements Formats

In this research, formal requirements are documented in tables. While these tables do not follow

a standard convention, several different conventions have been created over the years. An early

case of requirements specifications tables is Parnas tables [86, 87], which separate functional and

relational expression cases into rows and columns. There are several types of Parnas tables including

normal tables (headers are values and inner cells are expressions), inverted normal tables (headers

are expressions and inner cells are value assignments), decision tables (for tuple domains), vector

tables (for tuple ranges), and several others [86]. Parnas tables proved very useful in development

of the U.S. Naval A-7E aircraft [88], particularly in the software requirement specifications, which
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aided subject matter experts and pilots in funding hundreds of detailed errors. Lessons learned from

the program were incorporated in the Navy’s Software Cost Reduction (SCR) requirements method

[89].

2.2.7 Patterns

Often a system specification will use a limited set of requirements patterns, defined as sets of logical

statements with the same syntax. Perhaps the most influential work on formal property patterns was

that by Dwyer et. al. [90, 91]. Motivated by a hypothesis that practitioners did not use formal meth-

ods because formal languages are difficult to write correctly, read or understand, they created a spec-

ification pattern system that is a “collection of parameterizable, high-level, formalism-independent

specification abstractions,” that cover 95% of 500 examples of property specifications surveyed.

Just as is done in this research, Dwyer et. al. [91] model systems as finite transition systems and

properties as formal constraints on the transition behavior. The patterns contain five primary kinds

of scopes that describe the conditions over which the specification must hold (beginning with the

starting state up to but not including the ending state):

• global (throughout the entire program execution),

• before (up to a specific state or event),

• after (following a specific state or event),

• between (after one state or event and before another), and

• after-until (a modification of between where the condition continues even if the second state

or event never occurs).

They also introduced eight primary patterns, which the authors will refer to as predicates, that

describe what condition shall occur in the given scope, including:

• absence (state or event does not occur),

• existence (state or event must occur),

• bounded existence (state or event must occur at least, at most, or exactly k times),
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• universality (state or event occurs for entire scope),

• precedence (state or event P is always preceded by state or event Q),

• response (state or event P is always followed by state or event Q),

• chain precedence (a sequence of events P1, ..., Pn must be preceded by a state of events

Q1, ..., Qm), and

• chain response (a sequence of eventsP1, ..., Pn must be followed by a state of eventsQ1, ..., Qm).

More recently, a set of robotic mission patterns have been developed in linear temporal logic

[92, 93]. These patterns are organized in categories of core movement patterns, avoidance pat-

terns, and triggers and are evaluated across six experiments for coverage in real world missions and

correctness.

In this dissertation, it is hypothesized that many formal specifications for collision avoidance

will fall into a finite set of patterns. The results are described in Section 4.2.

2.2.8 Automated Formal Analysis

Formal analysis of design specification items and requirements evaluates logical entailment, logical

consistency, realizability, and traceability.

• Logical entailment analysis shows that a metamodel defined by design specifications meets

the atomic safety requirements. This is completed by evaluating that a conjunction of the

design specifications and assumptions satisfy requirements (A1 ∧A2 ∧ ...∧An ∧D1 ∧D2 ∧

... ∧ Dm =⇒ Ri). Logical entailment is usually shown by proof. In some cases proof

can be generated automatically using tools like model checking. When the expression is too

complex interactive proof tools like theorem provers are typically employed. Model checking

[81, 94] is an automatic verification technique that shows a model of a concurrent system

satisfies properties in temporal logic. Several techniques may be applied to do this including

binary decision trees [95], k-induction [96], and property directed graphs [97]. The logical

entailment in this work is accomplished with k-induction model checking.

• Logical Consistency checks that the design specification items and assumptions are free of

conflicts for N time steps.
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• Realizability checks that the design specification can coexist for all possible input conditions

that satisfy the requirements (A1 ∧ A2 ∧ ... ∧ An ∧D1 ∧D2 ∧ ... ∧Dm). The realizability

algorithms used in this work are based on the work of [98].

• Traceability analysis, based on the techniques in [99] shows which design specifications fulfill

each of the requirements. In complex state machines, traceability analysis may be used to

analyze the system logic to determine if there is a reduced set of logic may be used to describe

the system transitions. The benefit of reducing the logic with logic equivalence is that it may

be easier to implement and verify in a complete system. The disadvantage is that the intuition

is lost as to why the logic is written a certain way. During early system analysis, an intuitive

set of logic may be constructed and proved equivalent to a simpler set of logic which is

implemented. One way to reduce to a smaller, logically equivalent set is to evaluate whether

the design specifications which define the state machine are unnecessary to meet the desired

requirements.

As described in Section 2.1.2, the majority of errors are introduced in early design phases. Introduc-

ing formal methods analysis is best in early design phases because the design is still relatively small

and errors are less expensive to fix [79]. Compositional verification helps to verify or test portions of

code separately and then make conclusions about the system as a whole, which is helpful in modern

coding practices where coding tasks are divided over large teams [79]. Compositional verification

includes statements such as: if property p1 for subsystem A and property p2 for subsystem B both

hold, it implies property p holds for the entire system.

In this dissertation the verification approach conducts logical entailment to ensure the design

specifications meet the desired safety properties, logical consistency checking of the design specifi-

cations to ensure they are free of conflicts, realizability checking to ensure that all the design speci-

fications can coexist for all possible input conditions that satisfy assumptions, traceability analysis

to show that the design specifications tie to each of the requirements, and compositional verification

to show that design specifications and requirements in lower level functional components satisfy

higher system-level design specifications and requirements.
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2.2.9 Requirements Specification and Analysis Tools

A variety of methods and tools are used in practice to document and analyze requirements, how-

ever they differ on how formal they approach requirements specification and whether they enable

analysis. The least formal and most popular tools to document requirements used are spreadsheets

and word processors. From there, the Systems Modeling Language (SysML) [100, 101] and IBM’s

DOORS [102] are examples of tools that offer slightly more structured ways to document require-

ments in the context of Model Based Systems Engineering (MBSE) and requirements management,

respectively. However, MBSE tools like DOORS and SysML do not enforce formal, mathematically

or logically precise requirements specifications that can be automatically analyzed.

Another class of tools conduct some form of basic analysis on natural language requirements.

QVScribe [103, 104, 105, 106] conducts entry level analysis on natural language requirements to

find things like vague words (i.e. using “it” rather than referring to a specific component), consis-

tency in units and terms, negative imperatives (“shall not” rather than “shall”), and universal quan-

tifiers (such as “no”). It is worth noting that the requirements community is somewhat divided over

the use of negative imperatives and universal quantifiers and removing ambiguity in requirements is

an area of active research [107]. There has also been development in basic analysis techniques for

DOORS and SysML such as checking that natural language requirements conform to requirements

templates in DOORS [108], automated analysis of requirements change impact in SysML [109],

and verification of formalized SysML requirements on activity diagrams formalized as hierarchical

colored petri nets [110, 111, 112]. Another similar tool is Jama [113], which helps organize and

track changes in requirements, risk and test cases. Program management tools like Atlassian’s JIRA

and Confluence tools can also be used to manage requirements, design changes, and test plans [114].

Going beyond searching for presence of specific words or phrases to formal specification, natu-

ral language processing tools like the Automatic Requirements Specification Extraction from Nat-

ural Language (ARSENAL) [115, 116] find formal specifications in natural language requirements.

One of the challenges of extracting formal requirements from natural language requirements is that

the natural language requirements are often not complete enough to find all the required information

to generate a mathematical or logical statement.

Recognizing the need for complete specifications, other approaches focus on the creation of
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structured natural language requirements with various levels of analysis support. NASA’s Formal

Requirements Elicitation Tool (FRET) tool [117] uses a graphical user interface to guide subject

matter experts in specifying requirements that can be translated to temporal logic. While FRET does

not currently support analysis, it creates an ontology that may be especially useful in knowledge

graph-related artificial intelligence and machine learning [118]. In addition, FRET’s requirements

can be used to formally analyze compliance of Simulink models using CocoSim [117, 119]. Formal

Simulink model analysis tools in the same class as CoCoSim include QVTrace [120, 121], Simulink

Design Verifier [122], and others [123].

A final class of tools offers formal analysis of system requirements and design specifications.

The EARS-CTRL tool analyzes requirements specified using Easy Approach to Requirements Syn-

tax (EARS), a structured natural language [124, 125] and offers basic realizability checking. The

two most capable constrained, near-natural language requirements specification and formal analy-

sis tools are the Specification and Analysis of Requirements (SpeAR) tool [126] and the Analysis

of Semantic Specifications and Efficient generation of Requirements-based Tests (ASSERT) tool

[127, 128, 129]. SpeAR is an open source tool that allows users to specify their requirements in

Table 2.3: Comparison of SpeAR and ASSERT Formal Requirements Specification and Analysis
Tools

SpeAR ASSERT
Specification Format ptLTL set theory and subset of

first order logic
Specification Language SpeAR SADL Requirements Language
Translated Output (1) Lustre FSM, ptLTL requirements Prolog first order logic if-then
Translated Output (2) JKIND k-induction model checker ACL2s Lisp representation
Analysis Engine Z3, CVC4, SMTInpterpol, or ACL2s Theorem Prover

Yices 2 SMT Solver
Availability Open Source Proprietary

a constrained natural language with the formal semantics of ptLTL. SpeAR’s realizability analysis

algorithms are based on the work of [98]. SpeAR conducts logical entailment analysis in three

steps. First, SpeAR outputs a Lustre [130] model with design specifications in the form of a finite

state machine and requirements in ptLTLT. Next JKIND [131], a k-induction [96] model checker

[13] is used to explore the state space of the requirements. Third, JKIND calls a Satisfiability Mod-

ulo Theory (SMT) solver [132] to prove or falsify requirements in parallel. SpeAR supports use
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of the Z3 [133], CVC4 [134], SMTInterpol [135], and Yices 2 [136] SMT solvers. If the design

specification violates a requirement, SpeAR creates a counterexample showing a trace of the vi-

olation. Traceability analysis in SpeAR is based on the techniques in based on the techniques in

[99]. In ASSERT, requirements are captured using a combination of set theory and a subset of first

order logic (based on the Web Ontology Language (OWL)) [137] using an extension of the Seman-

tic Application Design Language (SADL) [138], called the SADL Requirements Language (SRL)

[128]. Then requirements are translated into if-then first order logic in Prolog [139]. From there,

the requirements are translated to Lisp [140] so that they may be analyzed for contingency, conflict,

completeness, independence and surjectivity [141] using the ACL2s Theorem Prover [142].

In this dissertation, QVScribe and SpeAR are used in the analysis. QVScribe is used to analyze

an initial set of natural language requirements. SpeAR is used to formally document the require-

ments in ptLTL and then analyze them for realizability, logical entailment, logical consistency, and

traceability.

2.2.10 Metamodeling and Metalevel Analysis

Metamodels are abstract models of complex systems that give an all-inclusive picture of a system

or process, and enable metalevel analysis, which is at a higher and more abstract level than a system

is typically analyzed. Metamodeling is proposed as a method to conduct system-level analysis

under the state-space explosion problem. One way to deal with state-space explosion is through

abstraction (metamodeling), where a system analyst might:

• represent the graph with atomic propositions,

• represent sets of states and sets of transitions rather than single states and single transitions,

• conduct proofs at the highest level of abstraction reasonable, and/or

• apply lessons from abstract interpretation, which focuses on sound approximations of seman-

tics in computer programs and uses static analysis to automatically extract possible executions

of computer program without actually executing the program.

In this dissertation, metamodels and metalevel analysis are used in the formal specification and

analysis of design specifications, requirements, and products of the hazard analysis.
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2.3 Hierarchy of Decision and Control Functions

When discussing decision and control functions, there are a variety of forms depending on where

the control is in a larger hierarchy as described in Figures 2.6-2.7. At the lowest level, often called

inner loop control, a controller sends commands to actuators based on sensed state information.

In practice, inner loop control is often done by a lower level autopilot function. At the next level,

sometimes called outer loop control, a controller is sending higher level commands like heading,

speed and altitude that are translated by the inner loop control into actuator commands. Navigation

is sometimes used to describe monitoring of a trajectory and determining the control required to stay

on the desired track. When there is no feedback in the controller that indicates the current state, it

is referred to as open loop control. Guidance is the determination of a desired trajectory at a higher

level that may be communicated as waypoints or path primitives.

Figure 2.6: Inner, Outer, and Open Loop Control

In this dissertation, RTA is conducted at the guidance and navigation levels, rather than at the

inner loop control levels. RTA is used to ensure that higher level system states are acceptable.

2.4 Run Time Assurance

Current certification approaches rely on offline verification methods to evaluate every possible state

space scenario, which is an impossible task for non-deterministic, adaptive, or near-infinite state

algorithms. To supplement and complement offline verification methods, Runtime Verification (RV)

methods monitor and analyze the behavior of software and hardware systems online [143]. Run

Time Assurance (RTA) systems go one step beyond RV methods by acting on the results of RV
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Figure 2.7: Hierarchy of Controls Functions

online. The two core functions of RTA systems are to:

• monitor and detect potential safety boundary violations

• invoke a recovery or switching mechanism to ensure system safety.

Online verification methods like RV and RTA present a path to enhance system performance with

non-deterministic, non-stochastic, adaptive, near infinite state components that promise greater per-

formance but cannot be verified with existing methods. Assurance of a system within an RTA ap-

proach is predicated on offline verification of the bounding, monitoring, and recovery mechanisms.

The backup controller goes by many names in the literature, including the backup controller, safety

controller, high-assurance controller, recovery controller, safety remediation controller, and rever-

sionary controller, which will be used interchangeably in this dissertation.

Run time assurance has evolved over the last several decades from research straddling the

aerospace and computer domains. There are several approaches to run time assurance including

barrier functions that gradually influence the control to prevent safety violations [144, 145] and

hybrid systems that switch between discrete modes with distinct control approaches governing con-
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tinuous dynamics[146]. However, this dissertation builds on an architectural approach to run time

assurance, known as the simplex architecture, which arose out of research in the computer science

and cyber physical systems.

2.4.1 Runtime Verification

While this research focuses on RTA, RV is worth a brief introduction because significant work has

been accomplished using formal methods to verify online monitors and alerting systems. RV is also

sometimes called runtime monitoring, trace analysis, and dynamic analysis [147]. Runtime verifica-

tion can be used for testing, verification, and debugging before deployment and to ensure reliability,

safety, robustness and security after deployment. RV reasons about explicit properties describing

system behavior in a specification language, as well as implicit properties such as deadlock avoid-

ance, memory safety, and bounds checking covered by specific RV algorithms and not necessarily

in the specification [147]. Reasoning about implicit properties is beyond the scope of this research,

so the rest of this section focuses on RV of explicit properties.

Explicit properties describe the system behavior, which is how the system changes over time

through updates to internal state or some actions taken to interact with the environment [147].

Specifically, RV gives precise information about a single execution trace of a system at runtime

[148]. A trace is a behavior abstraction for a single run of a system as a finite sequence of events

[148]. An event is any observation about the system, and often an abstraction such as a light turning

on or a temperature limit is reached [147]. A property of a system is a set of traces while a speci-

fication is a textual object that describes and denotes a set of traces. One property may have many

specifications [147].

RV can be used on software, hardware, cyber-physical systems, sensor networks, or any other

application where system behavior is observed. RV is particularly attractive in aerospace applica-

tions because aerospace systems are safety critical with reliability requirements on the order of the

10−9 catastrophic fault rate for civil aircraft avionics [149], and it has been shown that testing alone

cannot verify systems to that level of criticality [9].

Aerospace systems are distributed hard real-time systems and feature unique RV challenges

[150]. In distributed systems, computations take place in different locations or nodes connected

by communication channels, or directed edges in a graph. For example, subsystems may conduct
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computations at lower levels that impact the global system behavior. Hard real time systems process

information as it is received in small fractions of a second, and these temporal constraints make

them difficult to test and debug. Significant progress has been made developing an RV framework

for distributed hard real-time systems called Copilot [151]. Copilot is a monitor programming

domain specific language embedded in the Haskell functional programming language. The benefit

of using a Haskell-based language is that it is inherently type-safe, Turing-complete, and keeps the

DSL small, along with other benefits. Verification of monitors in Copilot is accomplished using

k-induction model checking [152]. Runtime verification of distributed hard real-time systems is

beyond the scope of this research.

One of the closest sets of RV research to this dissertation is the 2015 dissertation of Aaron Kane

[153]. Kane’s research focuses on RV for embedded systems, while this research focuses on RTA

for abstractions of a specific class of systems (aerospace collision avoidance systems). Both Kane’s

research and this research develop an architecture to accomplish the RV or RTA tasks, respectively.

Both dissertations use formally specified monitors, however Kane’s dissertation focuses more on

the monitoring algorithm proof, while this research focuses on system-level proofs. Both disserta-

tions identify requirements patterns for RV of the embedded system or RTA of the abstract system

description. Finally, both dissertations show feasibility of the approach on a specific system.

2.4.2 The Simplex Architecture

The development of control architectures resembling run time assurance can be traced back work

in the mid-1990s at Carnegie Mellon University. Initially these systems were envisioned to test

an upgraded controller before completely replacing the legacy controller. This is like the popular

software testing concept of sandboxing [25], where new untested and untrusted code is isolated

from critical resources. The concept of using redundant control software running separately, but

in parallel with heterogeneous designs for high-performance or high reliability, was introduced in

[26]. Building on this concept, the necessary technologies for an architectural solution to upgrade

software while a system was running were described in [154]. This architectural solution was

matured to become the simplex architecture, introduced a few months later in [27], and included

many of the core components still used today. As shown in Fig. 2.8, the 1996 version of the simplex

architecture was intended as a way to add incremental control improvements and included a baseline
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Figure 2.8: Simplex Architecture presented in [27]

controller (i.e. the legacy controller design), a complex controller (i.e. new, higher performance

design), and a safety controller (which returns the system to a safe state if it is being pushed outside

the safety region). The decision module determined which of the control outputs were applied

to the plant. This model also included a limited form of user interaction, where the user could

change the complex controller through an upgrade manager function. Additional refinements

of this concept were published in [28, 29], including a refined image of the simplex architecture

depicted in Fig. 2.9. The work by [29] focused on the use of RTA to detect and tolerate timing and

semantic faults. Timing faults occur when a controller did not complete computation of its control

command by the end of a sampling period and could be the result of improper selection of the

sampling period or other coding faults such as divide by zero or infinite loops. Semantic faults occur

when a controller generates a command that violates the control specification for the application-

domain specific physical system (i.e. when the state of the system is approaching an unsafe region

of the state space). This work also formally specified switching conditions, admissible states, and

admissible controls in terms of dynamics and control theory definitions. The simplex architecture

was evolved again to utilize formal methods verification of a high-performance controller, a high-

assurance controller, and decision logic with application to an aerospace example [30]. This work

also highlighted one of the disadvantages of the simplex architecture:the total system performance
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Figure 2.9: Simplex Architecture presented in [29]

Figure 2.10: Simplex Architecture using a formally verified high-performance controller inside the
operating envelope of a high-assurance controller that could be switched to as a safety backup[30]

Figure 2.11: Lyapunov function ellipsoidal boundary inside operational constraint polytope [30]
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Figure 2.12: Simplex Architecture with a physical plant, a verified safety controller, a verified
decision module, and an unverified complex controller [32].

is limited by the operational envelope of the secondary (high assurance, backup) controller. As an

example, the work cited the triple redundant Boeing 777 flight control system featuring two different

controllers: a normal controller optimized for the 777 and a secondary controller based on the 747

control laws that had 25 years of heritage. One disadvantage of the design was that the normal

controller (the 777 controller) was restricted to flight inside the secondary controller’s (747) smaller

flight envelope. In this version of the simplex architecture, the constraints of the system (including

physical, environmental, safety, and operational requirements) were represented as a polytope, an

n-dimensional figure with hyperplane faces, where states inside the polytope were admissible. The

recovery region was a smaller space inside the admissible states defined by a Lyapunov function

(geometrically represented as an n-dimensional ellipsoid).

While the work in [30] suggested that all components be verified, nearly a decade later work

in [31, 32] returned to looking at the simplex architecture as an enabler of unverified code. This

approach predicated system safety on offline verification of the decision module and safety con-

troller for cases when verification of a complex controller is cost prohibitive or impossible. In [33],

the decision module switching was computed using reach set computations for a restricted class of

hybrid automata based on [34, 35, 36], and then expanded to address some of those restrictions in

[32].

2.4.3 Run Time Assurance for Aerospace

While some interest in run time assurance for aerospace was present as early as Sha’s 777 flight

control system example in 2001 [30], interest grew tremendously in the 2010s. In [155] a run time

verification and validation wrapper is introduced that monitors high-risk algorithms for unacceptable
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Figure 2.13: Run time assurance wrapper concept including fault detection and isolation for ad-
vanced controller [37].

errors, reverts to a simple backup, and is demonstrated on a multiple control layers including inner

loop control. A fault detection and isolation component was also introduced in [155] to detect

whether unacceptable errors were occurring because of control surface failures, sensor failures, or

an error in the software. Work in [37] built on the concept of a run time assurance wrapper, shown

in 2.13, for aerospace systems echoing the importance of developing a fault detection and isolation

(FDI) capability concurrently with the RTA. However, the focus of the FDI in was on detecting faults

in the advanced controller, not other system wide faults. This paper echoed [30] by discussing the

importance of defining the reversionary safety envelope (RSE) of the reversionary controller, state

that the aircraft is only guaranteed to be safe under the reversionary controller if it is within the RSE.

Work in [7] demonstrate and evaluate one of the primary motivations of RTA systems: enabling safe

integration of adaptive control on aircraft that cannot be verified using traditional verification. In [7],

an RTA system is developed to enable adaptive control on a quadcopter. A baseline controller using

proportional-integral-derivative (PID) linear control schemes that can be verified using traditional

techniques is employed as a backup controller. Similar RTA concepts were employed on highly

adaptive flight control systems [156], propulsion systems [157] including turbofan engine control

[158], and geofencing UAVs [159].

Within the last five years progress has been made towards developing certification criteria for

run time assurance [160] resulting in the publication of a recent ASTM standard for the use of run

time assurance in unmanned aircraft [11].
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Figure 2.14: Run time assurance control architecture to enable nonlinear adaptive control of a
quadrotor with a backup PID baseline controller [7].

2.4.4 Multi-Monitor Run Time Assurance

While much of RTA research focuses on the use of a single simple backup controller, multi-monitor

run-time assurance (MMRTA) architectural approaches [39] have multiple backup controllers de-

pending on the type of boundary violation prediction. These approaches emphasize a modular

framework with minimal to no interfaces between backup controllers, enabling easier verification.

In initial research backup controllers have been created for ground collision avoidance and geofenc-

ing, and envisioned future functions include midair collision avoidance, separation assurance, and

weather avoidance. Each backup controller operates independently and an executive flight module

deconflicts between the systems, interfaces with the autopilot to conduct the maneuver, and uses a

risk-based decision logic “moral compass” to prioritize backup approaches. In practice it was found

that the structure of both the ground collision avoidance and geofence backup controllers was almost

entirely the same, differing by just 30 lines of code [39]. One consequence of this approach is that

in responding in priority order, it may be possible for activation of one recovery function to violate

a different boundary. For instance, if the system decides that a ground collision is a higher risk

than a geofence boundary violation, the ground collision avoidance recovery maneuver may violate

the geofence boundary. One way to deal with this possibility is to make the boundary conditions

more conservative at the cost of restricted performance. Rather than treating each backup system

independently, an alternative approach is integrating multiple backup systems together so that each

is aware of the strategy of the other, such as integration of ground and midair collision avoidance

36



in the integrated collision avoidance system [161, 162]. The complexities and challenges of this

approach are discussed further in Section 6.2.1.

2.4.5 Formal Methods and Run Time Assurance

Formal methods has been used to define and verify monitors, decision modules, and backup con-

trollers in previous work. In [163], a runtime monitor is used to enforce behavior based on a formally

defined concept of operations for an unmanned system. By contrast, this dissertation uses require-

ments informed by previous work, standards, and hazard analysis rather than concepts of operation.

In addition, the high-level RTA architecture in this dissertation is different. In [31], model checking

was used to verify correctness of discrete system switching logic, but the high-level architecture

and types of properties proven were different than that presented in this dissertation. The use of

formal methods based a limited set of formal requirements for runtime monitoring of system be-

havior is presented in [164, 165]. Like the research in this dissertation, this work clearly separated

implementation (or design) specifications from high-level requirements specifications. However,

run time assurance was constrained to what they described as a Monitoring and Checking (MaC)

framework, to assure correctness of execution at run time. The MaC framework monitored system

performance but did not react to requirements violations with an automated response. Formal veri-

fication of linear temporal logic specifications has been applied to PID attitude control of spacecraft

[166], a simplex run time assurance system for spacecraft attitude [167, 168, 169], switching logic

for automatic maneuvering [170], and an LTL specification monitor automaton [171].

2.5 Requirements Elicitation from Hazards Analysis using Systems Theoretic Accident Model

and Processes and Systems Theoretic Process Analysis

This section provides background information on the STAMP and STPA methods used to conduct

the hazard analysis. A hazard assessment using STAMP modeling and STPA was selected because

it can be applied early in a design process, incorporates human interaction, and allows for analysis

of hazards in the presence of feedback between systems, while many hazard analysis methods are

linear and unidirectional. While STAMP and STPA can provide indication of unsafe actions that

could be translated to safety requirements, they are qualitative, not quantitative and cannot provide
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Figure 2.15: Components of a STAMP functional control block diagram.

a risk level or percent reliability. STAMP and STPA can be done iteratively from the earliest stage

of system design until completion, with refinement as design decisions are made.

2.5.1 Hazards, Faults and Failures

This section provides context for the hazard assessment with definitions of failures, faults, and

fault tolerance. A failure is the inability of a system, subsystem, component, or part to perform its

required function within specified limits [43, 8]. A fault is the physical or logical cause that explains

a failure, [43] or a manifestation of an error [8]. Fault tolerance is the ability of the system to sustain

acceptable performance and safety in the event of one or more failures [43, 8]. These definitions

compliment the STPA and STAMP definitions provided in the next couple sections.

2.5.2 Systems Theoretic Accident Models and Processes

STAMP is a functional control block diagram model of complex systems described in [12], and

briefly summarized here. The basic structure of the diagram is shown in Fig. 2.15. Each of the

blocks in the system are functional blocks rather than physical component blocks which enables

multiple physical instantiations to be applied. The diagram is also hierarchical where blocks above

have control over blocks below. Each functional block is either a controller or a controlled process

but can be both depending on its location in the diagram and relationship to other blocks. Every
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controller has a control algorithm that describes how it decides its output and a process model that

describes how it uses inputs to construct a model of the world. Down arrows in the diagram are

control actions while up arrows are feedback. While not explicitly stated in previous work, STAMP

also facilities nesting of subsystems within larger systems, and can be expanded to explore multiple

levels of a system design.

2.5.3 Systems Theoretic Process Analysis

STPA is a hazard analysis technique described in [12], and briefly summarized here. The first

step is to identify accidents, which are undesired or unplanned events that result in some type of

loss, including but not limited to loss of human life, human injury, property damage, environmental

pollution, or mission loss. The second step is to identify hazards, defined a system state or set

of conditions that in a worst-case environment would lead to an accident. Each hazard should tie

directly to an accident. The third step is to identify safety constraints, which are constraints than

can be implemented to reduce the risk level of the hazards.

Having completed the first three steps, the next step is to identify unsafe control actions by ana-

lyzing the STAMP diagram. Unsafe control actions are comprised of four components: a controller,

control action, unsafe control action type, and context. Each control action (down arrow) in the

STAMP model is evaluated for four possible unsafe control action types:

• provided (in an inappropriate context),

• not provided (in a context where it should be),

• duration (a continuous control action is provided for too long or too short a duration), and

• timing (a control action is provided to early or too late).

Requirements can be generated that constraining the design or highlighting the need for addi-

tional feedback to prevent unsafe control actions.

2.5.4 Previous Applications of STAMP and STPA in Aerospace

A number of factors including ineffective safety engineering of spacecraft software have been shown

to cause spacecraft accidents [172]. While software is becoming more prevalent in aerospace, haz-
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ard analysis processes outside of STAMP and STPA often fall short of identifying software hazards

[173, 174]. STAMP and STPA have been used to used to analyze spacecraft [175], an aircraft rapid

decompression event [176], space launch vehicles [177], safety and cyber security for integrating

unmanned aircraft in the national airspace system [178], the NextGen air traffic management system

[179, 180] manned-unmanned teaming of aircraft [181, 182], the takeoff phase of a complex UAV

[183], and others. A combination of intent specifications [67], STAMP and STPA were applied to a

spacecraft in low Earth orbit [184]. Previous applications demonstrate the ability of However, pre-

vious research has not specifically considered hazards for automated maneuvering, and a complete

set of safety constraints, and requirements from the process have not been presented.

2.6 Design Elements Specific to Aerospace Systems

This dissertation is scoped to run time assurance systems, and specifically collision avoidance sys-

tems, although the concepts are anticipated to apply in other domains. Aerospace engineering is

relatively unique because of several features. Aerospace systems are in a class of safety or mission

critical systems like nuclear and medical domains where high assurance is expected. Aerospace

systems also often feature long lifecycles and legacy computing requirements when they are in ser-

vice over the course of several decades or require rugged or radiation hardened electronics that are

decades behind. Aerospace systems are also often produced in smaller quantities, and sometimes

only one implementation of a specific system is built. Aerospace Systems feature unique sensing

needs that are common to their class of system but not necessarily common to other domains such

as pitot tubes, angle of attack sensors, and star sensors. Finally, aerospace often divides the sys-

tems engineering process into a common set of subsystems: structures, propulsion, power, thermal,

controls, aerodynamics (mostly aircraft but also a consideration for low orbiting spacecraft), and

communication, and command and data handling. A common set of subsystems facilitates similar

high-level software architectures and RTA approaches.
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CHAPTER 3

CASE STUDY I: AUTOMATIC GROUND COLLISION AVOIDANCE SYSTEM

Auto GCAS is a very interesting case study for the development and acceptance of automatic control

systems in aerospace because of the degree of risk if the system were to fail, a three decade develop-

ment with a rich set of best practices and lessons learned, and its uniqueness as a deployed system

that takes control from the pilot in life or death situations [16]. Several factors of the Auto GCAS

system design as well as the development and test process contributed to its success. Applying de-

sign principles such as simplicity of the recovery response, nuisance free operations, the ordering of

high-level requirements, failure monitoring, pilot-selectable risk tolerance, operator transparency,

modular design, and high reliability are instrumental to the success of future autonomous systems.

Including operators, design and test engineers, managers, and certification authorities throughout

the design process with a deep understanding of the need for the automated system are critical

components of the autonomous system design process.

3.1 Key Design Factors Contributing to the Successful Development of the Automatic Ground

Collision Avoidance System

3.1.1 Simplicity of the Recovery Response

The first key to the successful implementation and certification of automatic ground and air colli-

sion avoidance systems was the simplicity of the automatic recovery maneuver, which facilitated

comprehensive evaluation and improved human trust in the system. Simplicity of the automatic

recovery response is key because it gives a finite set of responses that are acceptable and can be

pre-verified for use. Pilots can evaluate whether specific maneuvers were too aggressive or not re-

sponsive enough. In automation trust research, it has been found that simplifying algorithms so that

they are understandable to the end user is an important factor in calibrating user trust [185]. For

Auto GCAS, familiarity of the maneuver and its consistency with pilot training and behavior re-

sulted in strong positive perceptions of the system [17]. Rather than optimizing a trajectory for each

specific collision avoidance scenario, a predefined set of verified maneuvers was created. In F-16
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Auto GCAS, a single roll to wings level and 5g pull maneuver is conducted [186]. In the Automatic

Air Collision Avoidance System (Auto ACAS) system, nine [187] different maneuvers are consid-

ered. In patented [188] and experimental Auto GCAS designs for small UAVs [38], lesser capability

aircraft [189], and cargo-class aircraft [190], three or more possible maneuvers may be considered.

A finite set of pre-verified maneuvers is critical to the development of autonomous backup control

systems.

3.1.2 Nuisance Free Operations

In studies of pilot trust in Auto GCAS, nuisance avoidance was the most prominent condition

for developing trust in Auto GCAS [16]. One pilot in the study indicated that one false fly-up

would likely cause pilots to turn the system off and lose the protection it provided. Interviews with

pilots indicated that the high occurrence of nuisance warnings caused pilots to “tune out” or turn

off previous ground collision warning systems that required a manual response [191, 192]. This

feedback is an example of cases found in previous research that frequent false-alarm rates lead

pilots to deactivate critical alarm systems [193].

Shortcomings of Previous Ground Collision Warning Systems

Previous collision warning systems were prone to missed detections and false alarms that informed

development of Auto GCAS. Several ground collision detection, warning, and advisory systems

were implemented on aircraft. Line in the sky and Digital Terrain Elevation Database (DTED)-based

collision warning systems are described in this section, with discussion of their shortcomings.

Early altimeter and radar-based solutions tended towards overly conservative or partial coverage.

An early line in the sky system warned the pilots if the barometric altimeter indicated the aircraft

was below a pilot-set mean sea level (MSL) altitude [194, 190], and an altitude low (ALOW) system

was implemented that warned the pilot when the aircraft radar altitude went below a pilot-set above

ground level altitude floor [194, 190]. Line in the sky systems were overly conservative, potentially

providing warnings and advisories frequently and far in advance of the need to maneuver. Improving

on these line in the sky systems, the Ground Avoidance Advisory Function (GAAF) used radar to

predict collisions while considering altitude loss during a maneuver, reaction time, roll response

time, weight, drag, and potential energy [194, 195, 190]. A similar commercial Ground Proximity

42



Warning System (GPWS) warned for excessive descent rate, excessive terrain closure rate, altitude

loss after takeoff, unsafe terrain clearance, and excessive deviation below glideslope [196, 197,

198]. While less nuisance-prone than line in the sky solutions, radar-based solutions like GAAF

and GPWS primarily considered terrain below the aircraft and lacked the ability to detect collisions

with rising terrain ahead of the aircraft, leaving the aircraft vulnerable. A solution that didn’t depend

on radar or barometric altitude was needed.

The need to reduce nuisance activations while also looking at terrain ahead of the aircraft

prompted development of systems that used DTED and GPS to predict collisions. The Enhanced

GPWS (EGPSW) and Terrain Awareness Warning Systems (TAWS) used terrain, obstacles (such

as towers), and airport runway databases as well as aircraft state to provide collision cautions or

warnings about to 60 seconds ahead; however these systems did not recommend recovery maneuver

actions [196, 197, 199]. A US Navy derivative of TAWS did recommend two possible recoveries:

either a roll to wings level and 5-g pull Vertical Recovery Trajectory (VRT) or a 5-g pull Oblique

Recovery Trajectory (ORT) from the current bank angle. The USAF equivalent to TAWS was the

Predictive Ground Collision Avoidance System (PGCAS), which directed pilots to conduct a roll to

wings level and 4-g pull when the aircraft was expected to dip below a pilot-set minimum terrain

clearance (MTC) height [195]. While systems that use DTED and GPS to predict collisions may be

able to detect collisions ahead of the aircraft and be less nuisance prone than line in the sky solu-

tions, they still must come on early enough for an aware pilot to engage the maneuver. The primary

shortcoming of warning-based systems was that conservatism was built into the design to allow for

pilot reaction time. This conservatism made them prone to false alarms, which have been shown to

degrade trust and acceptance of a system [200]. In addition, if the pilot is distracted, task fixated,

spatially disorientated, or unconscious from gravity-induced loss of consciousness (GLOC), a warn-

ing is not enough. Auto GCAS goes one step beyond a warning system by automatically engaging

an avoidance maneuver.

Manually Enabled Automatic Maneuver System

The Pilot Activated Recovery System (PARS) [201, 191, 192, 202] is a related, manually-activated,

automatic response system that leverages ground collision avoidance research but is not ground

aware. Pilots may activate PARS at any time to command the aircraft to return to wings level flight
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as flight test aid, to mitigate spatial disorientation, or for any other reason.

Time-Based Metrics

To facilitate nuisance-free collision avoidance, Auto GCAS developed a novel approach that used

time rather than distance as a metric [16]. In 1995, a study was conducted to develop a time-based

metric where pilots felt an aggressive recovery should be activated to avoid a collision [191, 192].

The time available metric was developed where zero time available would result in an automatic ma-

neuver that touched the terrain, and increasingly positive time available would result in maneuvers

at greater altitudes above the terrain.

Table 3.1: Pilot Anxiety Rating Scale [191, 192]

Anxiety Rating Value
Was never more than casually aware of the ground 1
Would have felt more comfortable with a recovery at a lower altitude 2
Recovery went as anticipated 3
Recovery went lower than personal comfort levels allow 4
Sensation of life-threatening conditions 5

Figure 3.1: Nuisance Boundary Based on Time Available [191, 192]
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To determine the line between nuisance and appropriate activation times, pilots flew towards the

ground at a variety of dive angles, bank angles, airspeeds, and load factors and activated a recovery

maneuver when his or her comfort threshold was met. After each run, the pilots rated the timing of

the recovery initiation, their anxiety level during the maneuver, and the precision/aggressiveness of

the maneuver for each run. The anxiety level descriptions are provided in Table 3.1. The results of

the study are shown in Fig. 3.1. A nearly linear relationship between the average time available for

a specific anxiety rating was observed, and a rapidly decreasing lower boundary for time available

appeared to asymptotically approach a lower boundary. Based on this information a 1.5 second time

available design criteria was identified.

3.1.3 High Level Requirements Precedence

Another key aspect of the Auto GCAS design that has made it successful over previous systems is

the order of the high-level requirements. Placing the requirement to not interfere with the primary

operations of the aircraft (be nuisance free) ahead of preventing collisions was critical. In order of

precedence, the requirements for the automatic ground and air collision avoidance systems were to

do no harm, do not interfere, and prevent collisions. These requirements were so important that

they were featured prominently on the edges of the program patch, shown in Fig. 3.2. In a way, the

order of the high-level requirements is somewhat counter intuitive as one might expect preventing

collisions to be the top priority of a collision avoidance system. This order of requirements proved

critical in pilot acceptance of the system [17]. To do no harm, the system could not put the aircraft

or the pilot in additional danger. To not interfere, the system had to engage later than an aware pilot

to avoid nuisance activations and ensure the pilot can complete his or her mission. Finally, when

the system doesn’t cause harm to the pilot or activate as a nuisance, the system will maneuver to

prevent collisions. Nuisance free operation, in accordance with the “do not interfere” high level

requirement proved to be one of the most important goals of the system design [191, 192, 16].

3.1.4 System Wide Integrity Management

Recognizing and accommodating failures is a critical element of Auto GCAS [187], which accom-

plishes this through distributed integrity monitoring methods [191]. For example, a failure of the

inertial navigation system should not allow Auto GCAS to roll inverted and pull down into the
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Figure 3.2: Program Patch for the Automatic Collision Avoidance Technologies Fighter Risk Re-
duction Program (ACAT/FRRP)

ground instead of pulling up to avoid a collision [191]. Most of the Auto GCAS algorithm resides

in non-redundant mission avionics and a method was needed to mitigate single-point-of-failure is-

sues [203]. Auto GCAS uses System Wide Integrity Management (SWIM), a set of hardware and

software tests hosted in the redundant flight control system, to ensure automatic maneuver requests

are safe and accurate [203]. Example tests include heartbeat checks where a stale or missing heart-

beat signal from a component indicates a failure, and “reasonableness checks” that ensure incoming

data are within a reasonable range of values [38]. Extensive simulation, ground testing, and in-flight

testing verified that any failure state that could cause unsafe activation of an automatic maneuver

was detected and inhibited operation of Auto GCAS [191]. While protection from ground collisions

are lost in the presence of a failure, it is ensured that the higher priorities of do no harm, and do not

interfere are respected [191].

3.1.5 Variable Risk Tolerance

One of the challenges of developing Auto GCAS is that the level of protection was sometimes

competing with the need to be nuisance free. To deal with this, Auto GCAS used two pilot selectable

modes: a “norm” mode which provided adequate safety buffers for most cases, and a “min” mode

which minimized buffer size for nuisance-free low-level flying at the trade-off of reduced protection

[191, 192]. Including an ability to modify the level of acceptable risk for different missions may

prove to be an important consideration in the design of other automated flight control systems.

46



3.1.6 Transparency

Initially there were concerns that adding content to the pilot vehicle interface, and in particular

chevrons indicating proximity to Auto GCAS activation to the head-up-display (HUD), would con-

sume valuable display “real estate” and could give pilots a false sense of security that changed how

they flew [16]. In the end it was decided that the benefit of providing system transparency to the

operator outweighed the risks [17, 16]. However, future automated system designs will need to

consider implications of transparency.

3.1.7 Modularity

One of the key concepts in the overall Automatic Collision Avoidance Technologies (ACAT) pro-

gram, which included Auto GCAS and Auto ACAS, was the development of a modular architecture

that could be applied across many platforms [38]. While the modular architecture is applicable

across platforms, practical challenges prevent taking the software directly from one platform to an-

other. For example, when the NASA Small Unmanned Aerial Vehicle (SUAV) Auto GCAS program

was initiated, the original requirement was to tailor the F-16 algorithm including the actual F-16

Auto GCAS C++ code to the small UAV; however, the documentation available was insufficient for

a third party to tailor the software for a new platform [38]. Nonetheless, the functional component

architecture of Auto GCAS was transitioned across platforms even if the software was not. The

modularity was further built upon in NASA’s iGCAS, a ground collision avoidance warning system

for general aviation [38].

Modular Architecture of Auto GCAS

The modular architecture of the F-16 Auto GCAS is presented in Fig. 3.3. The “Aircraft State”

and “Navigation Solution” functions pass required aircraft state information to the Auto GCAS al-

gorithm. The “Digital Terrain Elevation Data” functional block contains terrain elevation data from

the National Geospatial-Intelligence agency including updated data from the Shuttle Radar Topog-

raphy Mission in 2000 that collected data from 60◦ North latitude to 56◦ South latitude [191, 192].

The “Terrain Map Scanning” function scans the DTED using a variety of scan patterns based on the

aircraft state and creates a two-dimensional profile of the terrain ahead of the aircraft. The “Aircraft
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Figure 3.3: Auto GCAS Modular System Architecture [191, 192, 203, 186]

Recovery Trajectory Prediction” function uses aircraft state information to estimate an aircraft tra-

jectory of the single roll to wings level and 5-g pull automatic recovery maneuver. The “Collision

Estimation” function compares the trajectory prediction against the two-dimensional terrain profiles

with a safety buffer. When the trajectory prediction “touches” the terrain, the “Command Recovery”

function executes the automatic recovery maneuver and the “Notify Pilot” function informs the pi-

lot when the maneuver initiates and terminates. The “Integrity Management” function is distributed

throughout the Auto GCAS interfaces in the form of System Wide Integrity Management (SWIM)

as discussed in Section 3.1.4 [203, 191].

Modular Architecture of NASA SUAV Auto GCAS

To provide insight into how the F-16 Auto GCAS architecture may be adapted to other platforms,

the NASA SUAS Auto GCAS is included here as an example. Though slight differences in imple-

mentation exist, the basic functions are the same across platforms. The modular architecture of the

NASA SUAS Auto GCAS in [38] Fig. 3.4 is visibly and functionally very similar to the F-16 Auto

GCAS architecture in 3.3. The “Sense own-state” function provides the required aircraft state infor-

mation to Auto GCAS. The “Sense terrain” function provides a map of local digital terrain elevation

data to Auto GCAS. The “Predict avoidance trajectories” function uses aircraft state information to

create trajectory predictions for each of the three pre-defined avoidance trajectories. While F-16

Auto GCAS predicts one trajectory, SUAV predicts three. The “Identify collision threats” function
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Figure 3.4: NASA SUAV Auto GCAS Modular System Architecture [38]

scans local digital terrain elevation data to generate a two-dimensional terrain profile ahead of the

aircraft. The area scanned differs between the SUAS and F-16 solutions. The “Determine need to

avoid” function compares the three trajectory predictions against the two-dimensional terrain pro-

files with a safety buffer (in blue). When the last of the three trajectory predictions intersects the

terrain, a collision avoidance maneuver following that trajectory is commanded and executed by the

“Avoid” function. The “Common interface” function provides similar functionality to the System

Wide “Integrity management” (SWIM) functions of the F-16 Auto GCAS - it checks for failure in

the Auto GCAS algorithm or data used by Auto GCAS.

It is worth noting that the modularity of the design was so effective, that later instantiations were

adapted from a GCAS function to a GeoFence monitor that ensured a UAV stayed within a bounded

area on a map by modifying only 30 lines of Auto GCAS Code [39].

Modular Architecture of Auto ACAS

To provide insight into how the architecture of the F-16 Auto GCAS architecture may be adapted

for a different function (midair collision avoidance rather than ground collision avoidance), the F-16

Auto ACAS architecture is included here as an example. Just as with the Auto GCAS solution, the

Auto ACAS “Aircraft State” and “Navigation Solution” function blocks pass required aircraft state

information to the Auto ACAS algorithm [204]. Instead of DTED, locations of other aircraft are

captured and sent to the Auto ACAS Algorithm via radar with the “Radar Target Location” and
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Figure 3.5: Auto ACAS Modular Algorithm Architecture [187]

via datalink with the “[Air Combat Maneuvering Instrumentation] (ACMI) Pod Aircraft Location

and Intent” functional blocks [187]. The “Track File & Conflict Determination” functional block

includes a “Track Manager” that determines the best estimate of other aircraft locations from multi-

ple input sources and predicts their trajectories with appropriate uncertainty buffers corresponding

to the fidelity of their source, a “Threat Isolation” function that prioritizes highest collision threats

[187], and a “Formation Logic” function that prevents activation of an automatic maneuver when the

aircraft is in formation flight described by a formation deactivation boundary [187]. The “Aircraft

Recovery Trajectory Prediction” functional block estimates the future path of the aircraft over 4.5

seconds of a hypothetical automated recovery maneuver and is partitioned into generic and platform

specific sections to maximize reuse of the software for integration on other platforms [187]. The

“Collision Estimation” function includes a “Maneuver Selection and Coordination” function as well

as a “Maneuver Activation and Control” function. The selection function chooses the three best of

nine possible recovery maneuver options based on pre-selection logic including “rules of the road,”

pilot training and preferences, collision geometry, energy considerations, and maneuver effective-

ness [187]. For example, if two aircraft are approaching head-on, “rules of the road” will pre-select

options where both aircraft turn to the right and not consider options that maneuver to the left [187].

The activation and control block commands an automatic recovery maneuver when a collision is
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determined to be imminent and terminates the maneuver when separation criteria or a max dura-

tion is met. Like Auto GCAS, Auto ACAS notifies the pilot when maneuvers are commanded and

terminated. SWIM plays an important role in Auto ACAS, just as it does in Auto GCAS. In Auto

ACAS, the ownship aircraft as well as external aircraft are monitored for faults. In addition to tests

in redundant flight control, Auto ACAS performs several self-tests including freshness and validity

of inputs, health of supporting subsystems, heartbeat checks, and mathematical operations checks

[204]. For other aircraft, Auto ACAS monitor’s its confidence in the data provided, especially if it

is from a nonredundant source, or subject to frequent dropouts [204].

3.1.8 Reliability

Avoidance of false alarms and clear understanding of reliability were key factors in the trust of the

Auto GCAS system. People tend to initially assume machines are perfect and their trust in them

rapidly deteriorates following system errors [205]. As human relationships with automated sys-

tems mature, dependability and predictably become the primary basis of trust in the system [206].

Important factors to increasing trust in automation include past performance (pedigree/heritage),

simplified and understandable performance, system intent, and explaining and demonstrating reli-

ability [185]. Knowledge of Auto GCAS’s 98% reliability increased test pilot trust of the system

[17].

3.1.9 Inclusion of Pilots, Engineers, Managers, and Certification Authorities Throughout the Design

Process

A study of Auto GCAS trust found that mutual understanding and respect was critical between

pilots, engineers, and program managers. These personnel featured different accountability, vul-

nerability, and expectations in the development of Auto GCAS [16]. Pilots as the end users were

accountable for successful missions, were vulnerable to loss of life and interference of the system

with their mission, and expected Auto GCAS to save their life when needed. Engineers were ac-

countable for designing the system to save pilot lives without interfering with the pilot’s ability to

perform their mission, were vulnerable to backlash from managers and pilots if the system wasn’t

properly designed, and expected the system to be designed and executed properly. Managers were

accountable for accomplishing larger military goals for the system, were vulnerable to loss of re-
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sources to complete system design and evaluation, and expected the system to reduce mishaps. The

study [16] found that understanding of these different accountabilities, vulnerabilities, and expecta-

tions resulted in human-to-human trust that led to greater trust in Auto GCAS.

In addition to engaging with system stakeholders, early engagement with certification author-

ities during system design is important to smooth the certification process that allows fielding of

systems. Military and civilian certification standards are updated regularly, and new flight certifi-

cates may be tested to new standards may require additional design and development costs. The

Auto GCAS team engaged the USAF flight safety certification group during system requirements

development to design a tailored certification program for the Auto GCAS solution for F-16s with

analog flight control computers years before certification would be requested [203].

3.1.10 Personal Connection to the System Need

An important influence of the expectations and acceptance of Auto GCAS was found to be pilot’s

personal connections through the loss of fellow pilots to ground collisions [17]. A controlled flight

into terrain (CFIT) mishap occurs when an airworthy aircraft under the control of a pilot with inade-

quate awareness flies into terrain, water, or obstacles [207]. Prior to Auto GCAS, CFIT was the top

cause of USAF fighter pilot fatalities, and second leading cause of fighter mishaps [208]. Between

2000 and 2013, the DoD lost 23 pilots and 29 F-16, F/A-18, or F-22 aircraft to CFIT [190]. At

the time of this writing, Auto GCAS has been credited with saving 8 aircraft and 9 lives on F-16s

with digital flight control computers. Personal experience with loss in the absence of an automated

system will be an important factor in motivating the development and transition of future automatic

backup systems.

3.2 Selected Conceptual Requirements

In this section, selected generalized, conceptual requirements for Auto GCAS are included to pro-

vide context for the development of a generalized run time assurance requirements and architecture

presented in the next chapter. Additional insights into design considerations can be found in [203,

187, 192, 191, 17, 204, 38].
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3.2.1 Do No Harm

• The automatic recovery shall not cause harm to pilot, aircraft, or components.

• The automatic recovery maneuver shall not place the aircraft in an uncontrollable state.

• Auto GCAS shall not activate an automatic recovery maneuver if a failure of a subsystem

supporting Auto GCAS exists.

• Auto GCAS shall leave the failed mode state if a failure does not exist.

• Subsystem monitors shall determine if a failure exists and be provided to Auto GCAS.

• Interlock conditions shall prevent Auto GCAS activation.

• The automatic recovery maneuver shall not activate during aerial refueling.

• The automatic recovery maneuver shall not activate when the aircraft has an excessively high

angle of attack.

• The automatic recovery maneuver shall not activate when the aircraft velocity is too low.

• The pilot shall be able to interrupt a maneuver.

• The pilot shall be able to manually engage a maneuver.

3.2.2 Do Not Interfere

• The automatic recovery maneuver shall not activate during landings.

• The pilot shall be able to turn the system off.

• The pilot shall be able to select the protection level.

• Auto GCAS shall notify the pilot when the automatic recovery maneuver initiates and termi-

nates.

• The system shall record data about each automatic recovery maneuver activation.

• The DTED used by the system shall have a resolution and accuracy that supports safe and

nuisance free operation.

53



• Auto GCAS shall inform the pilot if the aircraft speed is too low for the automatic recovery

maneuver.

3.2.3 Prevent Collisions

• The system shall conduct an automatic recovery maneuver when the projected recovery tra-

jectory intersects the terrain profile contour with buffers.

• The system shall terminate an automatic recovery maneuver as soon as it is determined that

the aircraft will clear the terrain threat.

• The recovery maneuver shall consist of a roll to wings level and a pull up.

3.3 Inspiration for Spacecraft Last-Instant Collision Avoidance System Design from Air Do-

main Systems

In this chapter, Auto GCAS was explored as a real-world example of an RTA system. Other air

and space collision avoidance systems are also explored and captured in an air and space collision

avoidance taxonomy in Appendix A. The goal of Chapter 4 is to create a generalizable run time as-

surance approach including a novel generalized architecture and patterns for formal hazard analysis

and requirements elicitation. In Chapter 5, this methodology is evaluated on the development of an

RTA architecture and formal requirements for a hypothetical last instant collision avoidance system

for spacecraft.

This last section of this chapter focuses on the last instant collision avoidance category, which

is by necessity the most automated, to better understand common requirements across both air and

space domains. The name “last instant” was used to differentiate systems like The Traffic Collision

Advisory System (TCAS) [209, 210], the Traffic Alert and Collision Avoidance System II (TCAS II)

[211, 212], the Aircraft Collision Avoidance System X (ACAS-X) [213, 214, 215], AFRL’s Sense

and Avoid (SAA) system [210, 216, 217], and NASA’s Detect and Avoid Alerting Logic for Un-

manned Systems (DAIDALUS) program [218, 219] that operate tens of seconds ahead of a collision

from systems like Auto ACAS that operate with seconds until the collision (time scales are longer in

space domain). Here, air domain high-level collision avoidance requirements are examined and rec-

ommendations of which requirements concepts are shared or different across domains is discussed.
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This part of the research investigates the mapping of high-level aircraft collision avoidance system

Figure 3.6: Differences and similarities in last instant collision avoidance systems across air and
space domains

design considerations to the spacecraft domain.

The high-level requirements that are expected to be shared by both aircraft and spacecraft last

instant systems are summarized in Fig. 3.6 and explained as follows:

• simple maneuver: A simple collision avoidance maneuver can be thoroughly evaluated of-

fline and provides predictability that increases trust in the system [185], especially when the

maneuver is consistent with what a human would have selected [17]. In Auto GCAS a single

maneuver was used [186], while other instantiations of ground collision avoidance systems

used three or more maneuvers [188, 38, 189, 190], and Auto ACAS used nine [187]. Fur-

ther research is required to determine an appropriate finite set of maneuvers for spacecraft

collision avoidance.

• nuisance free: In the aircraft domain, any automatic collision avoidance maneuver should

begin as late as practical and return to operations as soon as possible to have a minimal

impact on the mission of the aircraft or spacecraft [191, 192, 16]. For spacecraft that provide

critical space-based services, a similar criteria will likely limit service downtime.

• time available metric: Aircraft systems used “time available” to maneuver as described in
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Section A.2.4, (where zero time available would result in a maneuver that intersects the ob-

stacle in a single point) [191, 192, 16], and time will also likely play into the maneuver

decision for spacecraft.

• decision logic: Spacecraft will likely use a similar set of modes and conditions used to de-

cide when it is safe to plan and engage a collision avoidance maneuver with considerations

for safety interlock conditions, failures, human interaction with the system, and whether the

condition to maneuver is present as are seen in the aircraft systems [203, 187, 191, 204, 38].

• failure detection: A critical element of last instant collision avoidance systems is failure de-

tection [187] through a variety of monitoring methods [191], such as “heartbeat checks” for

stale signals and “reasonableness checks” to evaluate whether signals are within a realistic

range of values [38]. Special considerations may be made to mitigate single-point-of-failure

in non-redundant hardware [203].

• risk level selection: Spacecraft collision avoidance systems could both benefit from aircraft-

inspired operator tunable risk tolerances [191, 192, 38] that may impact the probability of

collision threshold or size of the uncertainty buffers in the maneuver.

• system transparency: Spacecraft collision avoidance systems could also take inspiration from

how and what information is presented to the human operator (or pilot) so that their trust in

the system is calibrated in air collision avoidance systems [17, 16].

• design modularity: A key design concept in aircraft last instant collision avoidance system

designs was the use of a modular architecture that could be used across many platforms,

which enabled the use of a similar architecture on different aircraft classes [38].

• uncertainty buffers: Predicted maneuvers should have some buffer around them that describes

the possible outcome of the maneuver with bounded disturbances from the environment [191,

192, 187]. Uncertainty can come from measurement of the current state or variations in the

execution of a maneuver, both of which should factor into a spacecraft collision avoidance

system design.
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• acceleration limits: Both air and space collision avoidance maneuvers feature bounded trans-

lational and rotational acceleration limits, including:

– structural: aircraft [38] or spacecraft baseline structural acceleration limit;

– “payload”: while a human pilot and spacecraft payload are not one-to-one equivalent,

pilot physiological limits [204] and physical payload limits both represent an onboard

system that may have tighter acceleration limit requirements than the baseline aircraft

or spacecraft; and

– special configurations: aircraft may have several configurations depending on additional

fuel tanks or other mission-specific items that change the moment of inertia of the air-

craft and can result in additional loads, while spacecraft have antenna, solar panels,

booms, tethers and other deployable components that similarly will change the acceler-

ation limits of the system.

• interlocks: Several interlock conditions may cause either system to go into standby tem-

porarily. For example, an aircraft undergoing aerial refueling [38] or a spacecraft undergoing

refueling from a service satellite may not want to automatically maneuver to avoid the other

object.

• off switch: For both aircraft and spacecraft, a human operator (pilot or ground station operator)

should have the ability to turn the system off, a feature that builds trust in the system [17].

• scalability: Both air and space collision avoidance systems will need to scale to avoid colli-

sions with multiple objects in their neighborhood, in part to ensure that avoiding a collision

with one object does not cause a collision with another [204, 187]. This is particularly chal-

lenging in the space domain when trying to avoid a cloud of debris rather than a single object

[20].

• cooperation: Both aircraft [220, 204, 187] and spacecraft need to consider levels of cooper-

ation between themselves and other aircraft or spacecraft. It may be more efficient or safer

for two objects to coordinate a collision avoidance maneuver than for one or both to indepen-

dently plan a maneuver.
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• data logging: Information about a collision avoidance activation or predicted collision should

be logged on either system for analysis after the event [38].

While air and space collision avoidance systems feature many similarities in the design, there are

several key differences as follows:

• dynamics: The dynamics of an aircraft or spacecraft maneuver are very different. Aircraft

last instant collision avoidance maneuvers feature roll and pull, bunt, and maintain options

[187], while spacecraft may conduct in-plane or out-of-plane maneuvers, or maneuver using

linearized relative motion dynamics or natural motion trajectories [221].

• fuel conservation: While fuel conservation is important for aircraft, fuel usage is not a huge

design consideration for aircraft collision avoidance. However, fuel is a limited resource that

generally cannot be replenished and is used conservatively on spacecraft.

• last instant definition: For aircraft, a last instant maneuver may be on the order of seconds

ahead of a collision [191], while a conservative spacecraft maneuver may be days or weeks

ahead [20].

• manned versus unmanned: The aircraft collision avoidance system examined relied on human-

centric maneuver limits, depended on the human pilot as a supervisor, expected real time re-

sponses from the pilot, and had considerations for when a pilot experienced gravity-induced

loss of consciousness [38]. The spacecraft class considered in this research is unmanned and

should consider maneuver timing and duration limits for fault tolerance, as well as delays in

ground responses and ground communication outages.

• energy: The Auto GCAS considered potential and kinetic energy of the aircraft in the decision

to maneuver [38]. In the space domain, change in velocity (∆V ) required to conduct the

maneuver may be a larger driving factor than spacecraft energy state.

• uncertainty representation: While aircraft maneuver uncertainty grows with time, when that

prediction is on the order of seconds, the uncertainty growth is relatively small and can be

represented as a cone around the maneuver [187]. Spacecraft uncertainty is often represented

with ellipses and grows in a more complex shape over time resembling something closer to a

58



“basket,” “banana,” or “bean,” requiring a different representation than that used for aircraft

for longer duration predictions [18, 222, 223, 224, 225, 226, 227].

In summary and depicted in 3.6, roughly 15 conceptual requirements are expected to have equiv-

alences in the air and space domain, while 6 conceptual requirements are expected to differ signifi-

cantly. The requirements specified here are further refined in Chapter 5. For instance, the decision

logic requirement corresponds to a subcomponent of the collision avoidance system that is expected

to have at least 14 requirements defining the transition logic between modes, as described in [170].

One of the key differences between the aircraft and spacecraft domains to be explored further is

the impact of information content, latency, accuracy, and precision on requirements. In the aircraft

domain, shorter time horizons, onboard transponders and sensors (radar), and less time between

measurements translates to less uncertainty accumulation compared to the spacecraft domain. These

differences could be explored in more depth in future work.

Deeper examination of the requirements presented here inform future development of a meta-

model for system-level formal and non-formal analysis of a spacecraft with an automatic collision

avoidance system in the context of a space traffic management framework. In Chapter 5, design

specification, requirements, and functional interface descriptions for spacecraft last instant auto-

matic maneuvering are formally specified in temporal logic with inspiration from the air domain.

These design specifications and requirements are analyzed for realizability, logical consistency, and

logical entailment using formal methods [98, 81, 94, 96, 13]. The requirements are refined through

hazard analysis to identify additional safety constraint requirements.

3.4 Summary

In this chapter, Auto GCAS was explored as a unique real-world example of an RTA system.

Lessons learned from the development of Auto GCAS are integrated into the development of a

generalizeable run time assurance approach featuring a novel generalized architecture and patterns

for formal hazard analysis and requirements elicitation in Chapter 4. This approach is evaluated

on the development of an RTA architecture and formal requirements for a hypothetical last instant

collision avoidance system for spacecraft in Chapter 5.
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CHAPTER 4

FORMAL RUN TIME ASSURANCE DESIGN APPROACH

Chapter 2 described the current state of the art in run time assurance, formal specification and

analysis, and other techniques with a hint at how they are employed or expanded in the rest of

this thesis. Chapter 3 investigated the development of a specific RTA system for clues to common

requirements and architectural elements across aerospace RTA systems. This chapter describes the

overall RTA design approach, including the first formally specified and analyzed generalized RTA

architecture that includes a fault monitor, interlock monitor, and human-machine interface. While

the presentation of this generalized approach is novel, its development was heavily influenced by

the author’s experience in the development and evaluation of automatic ground and midair collision

avoidance systems [228, 186, 187, 202, 204, 229], as explored in the last chapter.

At the highest level, the requirements of RTA systems are to do no harm, do not interfere, and

automatically respond to unsafe conditions. To do no harm, the system must monitor for faults and

interlock conditions. A fault is a failure due to a design or component malfunction that make it

unsafe to calculate or engage an automatic maneuver. An interlock condition is a condition where it

is safe to compute automatic control, but unsafe to engage it. To not interfere, the system must mon-

itor boundary violations (and the boundary violations must be sufficiently large to allow maximum

safe operating region for the nominal controller), and it must be capable of interacting with a human

supervisor. Finally, the system must be capable of monitoring and detecting unsafe conditions in

order to engage a revert to a safe controller when appropriate.

4.1 General Run Time Assurance Architecture

The general run time assurance architecture is presented in Fig. 4.1 and features these primary

functional components (functional components describe specific functions and interactions that may

be implemented on one or more physical components):

• Plant: This functional component is the system under control and could be a spacecraft,

aircraft, or other system.
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Figure 4.1: General Run Time Assurance Architecture

• Nominal controller: This functional component is the primary, high performance controller

of the system that isn’t verified with traditional offline verification techniques. Depending on

the application this could be a human pilot, or other adaptive or complex control software for

which offline verification techniques do not exist.

• Reversionary controller: This functional component continuously computes a simple, veri-

fied, control response to the state of the plant.

• Human supervisor: This functional component is a human on the loop that can interact with

the nominal and reversionary controller in a variety of ways such as manually engaging the re-

versionary controller, turning the ability to switch to the reversionary controller off, manually

switching from reversionary controller back to nominal controller, or adjusting the sensitivity

of the decision to switch between controllers. In the case of a human-piloted vehicle, the

human supervisor and nominal controller could be the same entity.

• Failure monitor: This functional component monitors the state of the plant, control subsys-

tem, and subsystems and components supporting the control subsystem for failures. Informa-
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tion about the failures is used in the decision logic to determine which controller is used.

• Interlock monitor: This functional component monitors the state of the plant and its sub-

systems for interlock conditions where it is unsafe for certain control actions to take place.

Interlock conditions are mutually exclusive control actions. For example, door control and

motion control on an elevator are interlock conditions where the elevator is prevented from

moving unless the doors are closed, and the doors are locked closed while the elevator is in

motion.

• Boundary monitor: This functional component monitors the state of the plant and the nominal

controller for predetermined safety boundary violations. Examples of boundary violations

might be a trajectory prediction that intersects the terrain (indicating an imminent ground

collision) or a control input that would cause excessive acceleration (risking damage to the

structure or components).

• Decision Logic: The functional component takes inputs from all the other components pic-

tured and determines which control output, nominal or reversionary, to output to the plant.

While inclusion of a human supervisor, failure monitor, and interlock monitor is unique to this

form of run time assurance, it is not wholly unprecedented, as was discussed in the last chapter.

4.1.1 Abstract Output States of RTA Components

In addition to monitoring for unsafe boundary violations, the proposed RTA architecture considers

inputs from the human supervisor, the presence of safety interlock conditions, and faults on systems

providing critical information. Detecting the presence of a condition to maneuver, failure condition,

or interlock condition is an important element of the overall system development. None of these

capabilities are trivial to develop. The abstracted output states of each component introduced here

will be described further in future sections:

• failure (f ): A failure is a condition where it is unsafe to compute or execute a maneuver

because a fault is detected on a system that provides critical information used by the automatic

maneuver system to decide when and how to maneuver. This is an output of the failure

monitor component.
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• interlock (i): A safety interlock is a condition in which it is unsafe to conduct a maneuver or

conducting a maneuver may result in higher risk to the plant component. This is an output of

the interlock monitor component.

• condition to maneuver (c): A condition to maneuver is true when a safety boundary has

been crossed and the reversionary controller should take over, and false at all other times.

Specification of this component is mission specific. This is an output of the boundary monitor

component.

• maneuver completed (m): The maneuver completed flag is false when a system is maneu-

vering, and true when not actively maneuvering. This flag is important as part of the overall

design principles that requires a maneuver be completed before engaging another maneuver

(to prevent introduction of instability from rapidly switching between control strategies). This

is an output of the reversionary controller component.

• person manually interrupts (p): The condition where a person manually interrupts a maneuver

is included because maneuver operations often still include a human in the loop; including

the condition in the logic allows for human supervision of autonomous operations. This is an

output of the human supervisor component.

• person manually engages maneuver (e): The condition where a person decides to manually

engage a maneuver for a variety of reasons; the system activates the current planned maneu-

ver. This is an output of the human supervisor component.

The above abstracted states represent the core states of the RTA architecture, however other

variations may be implemented depending on the needs of the specific system. For example, vari-

ations and lower abstractions of the failure monitor component, may also include identification of

the specific fault or failure. In addition, there may be a variety of other human supervisor inputs

such as system settings or opportunities to aid a maneuver.

Four states are proposed for the decision logic component, in order of precedence with failed

having the highest priority, and maneuver having the lowest priority. These priorities are founded on

a guiding principle that first the system should do no harm, second that it should not interfere with
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the primary mission of the system, and third that it should maneuver when an appropriate condition

exists. Transition between these four system states is determined by the state of the six conditions.

• Failed (F ): In the failed state, the system does not predict conditions to maneuver or calcu-

late automatic maneuver trajectories, because a critical system providing information for the

prediction has failed. The system stays in the failed state as long as a failure is present (f ).

• Standby (S): In the standby state, the system predicts conditions (like an imminent collision,

or the need to maintain a position in a constellation) and calculates automatic maneuver tra-

jectories, but is prevented from maneuvering. It is intended to account for safety interlock

conditions, in which no failure is present, but some other condition exists that prevents the

system from maneuvering. The system standby state is the initial state of the system, and

each time the system is reset, it should first return to the standby state. The system stays in

the standby state as long as there is no failure and an interlock condition is present (¬f ∧ i).

• Active (A): In the active state, the system is predicting the need to maneuver, calculating

automatic maneuvers, determining whether a maneuver need is imminent, and is prepared to

activate a maneuver. While the need to maneuver is calculated in both standby and active

states, the primary difference is that the system will not activate a maneuver in standby. The

active state is the most vulnerable state to change as the system only remains in the active state

if there are no failures, no interlocks, no manual interrupt, there is no maneuver condition

present, and the operator has not manually engaged a maneuver (¬f ∧ ¬i ∧ ¬p ∧ ¬c ∧ ¬e).

• Maneuver (M ): In the maneuver state, the system’s automatic maneuvers are prescribed by

the need (which may be collision avoidance, station keeping, or rendezvous). The system

stays in the maneuver state if the maneuver has not been completed and there is no manual

interrupt from a human (¬m∧¬p). The rationale for this staying condition is that the safety of

the system depends on completing the maneuver once it has started and may be compromised

if the maneuver is stopped in the middle.
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4.1.2 Decision Logic Functional Component Formalization

At the core of an automatic collision avoidance system is the responsibility of deciding whether to

maneuver. The decision logic functional component accepts the state of several system conditions

and determines whether the system is allowed to maneuver. This section first describes a set of

conditions that impact the decision to maneuver is presented, then a set of system states is defined,

and finally, a design specification is developed to constrain transition between states based on the

previous state and the conditions of the system. This design specification is described in formal

logic and shown as a finite state machine. The design specifications and requirements of the decision

logic functional component could be applied to a variety of spacecraft automatic maneuver missions

beyond collision avoidance such as proximity operations or station keeping. While introduced in

Chapter 2, it is worth noting again for clarity that©−1 indicates that the formal statement is true for

the previous timestep, and � indicates that the formal statement is invariant, i.e. from a past time

perspective, it is historically (always) true and has been true for all timesteps up to and including

the current timestep.

Decision Logic Design Specification

Using the 4 states (F, S,A,M ) and 6 conditions (f, i, c,m, p, e) described in Section 4.1.1, 14 de-

sign specifications define the transition system behavior in the decision logic functional component.

These 14 design specifications are a logically equivalent, but reduced set of conditions correspond-

ing to the safety requirements described later. The finite state transition system described by these

design specifications is depicted in Fig. 4.2, which visually depicts the transitions between states.

The ptLTL formulation of the design specification is listed in Table 4.1. The natural language ex-

pression of these design specifications and the rationale for each is listed below.

[DL01] Once the system enters the standby state (S), the system shall remain in the standby state (S)

if there is no failure detected and an interlock condition exists (¬f ∧ i).

Rationale: Initializing the system in the standby state ensures that the system has sufficient

time to check for failures or interlocks before deciding to maneuver. The only ways to leave

the standby state are to go to the active state if there is not an interlock condition and not a

failure or to the failed state if there is a failure.
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Figure 4.2: Finite state machine describing automatic maneuver decision logic defined by the design
specifications.

Table 4.1: Decision logic functional component transition system design specification expressed in
ptLTL.

ID
DL01 ©−1S ∧(¬f ∧ i) =⇒ S
DL02 ©−1F ∧f =⇒ F
DL03 ©−1M ∧¬m ∧ ¬p =⇒ M
DL04 ©−1A ∧¬f ∧ ¬i ∧ ¬p ∧ ¬c ∧ ¬e =⇒ A
DL05 ©−1F ∧¬f =⇒ S
DL06 ©−1S ∧f =⇒ F
DL07 ©−1A ∧f =⇒ F
DL08 ©−1A ∧(¬f ∧ (i ∨ p)) =⇒ S
DL09 ©−1M ∧(p ∨ (m ∧ i ∧ ¬f)) =⇒ S
DL10 ©−1S ∧(¬f ∧ ¬i) =⇒ A
DL11 ©−1M ∧m ∧ ¬p ∧ ¬f ∧ ¬i =⇒ A
DL12 ©−1A ∧¬f ∧ ¬i ∧ ¬p ∧ (c ∨ e) =⇒ M
DL13 ©−1M ∧¬p ∧m ∧ f =⇒ F
DL14 init =⇒ S

[DL02] Once the system enters the failed state (F ), the system shall remain in the failed state (F ) if a

failure condition (f ) is still detected.

Rationale: Failed is a worst-case scenario, where it is undesirable to calculate an automatic
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maneuver trajectory because the information the system is basing that calculation on could be

unreliable, so it has priority over the other states if a failure is detected. It is undesirable for

the system to switch out of a failed state unless no failures exist.

[DL03] Once system enters the maneuver state (M ), the system shall remain in the maneuver state as

long as the maneuver has not been completed and there is no manual interrupt (¬m ∧ ¬p).

Rationale: It is desired that the maneuver be completed before the system switches to another

state, so that the maneuver is not stopped prematurely if a failure or interlock condition is

detected. This is because while the end state of the calculated maneuver may be considered

safe, prematurely stopping could result in an unsafe condition at some time in the future. The

only reason for a system to be stopped in the middle of a maneuver is if a human supervising

the maneuver sends a manual interrupt.

[DL04] Once the system enters the active state (A), the system shall remain in the active state as long

as there is no failure detected, no interlock detected, no manual interrupt, no condition to

maneuver exist, and the operator has not manually commanded a maneuver (¬f ∧¬i∧¬p∧

¬c ∧ ¬e).

Rationale: The active state is the most vulnerable state for transition to other states and will

only hold true while there are no failures, no interlocks, and a condition to maneuver is not

present. This prioritization prevents maneuvers that might compromise safety of the system,

assuming that in the spacecraft environment, the safest action is often to do nothing.

[DL05] The system shall transition from the failed state (F ) to the standby state (S) when there is no

failure detected (¬f ).

Rationale: If a failure is not detected, the system should switch out of the failed state. The

system switches into the standby state before switching back to the active state because no

maneuver trajectories or conditions to maneuver are calculated in the failed state, but they

are calculated in the standby and active states. Switching from failed to standby provides

sufficient time to calculate maneuver trajectories, determine whether the conditions for an au-

tomatic maneuver exist, and check that no interlock or failure conditions are detected, before

switching the system into an active state.
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[DL06] The system shall transition from the standby state (S) to the failed state (F ) when a failure is

detected (f ).

Rationale: If a failure is detected, the system will transition to the failed state which has

the highest priority and prevents the system algorithm from actively predicting a condition to

maneuver based on compromised data integrity.

[DL07] The system shall transition from the active state (A) to the failed state (F ) when a failure is

detected (f ).

Rationale: If a failure is detected, the system will transition to the failed state which has the

highest priority, and prevent the system algorithm from actively predicting potential need for

an automatic maneuver based on compromised data integrity.

[DL08] The system shall transition from the active state (A) to the standby state (S) when there is no

failure and either there is an interlock or a manual interrupt (¬f ∧ (i ∨ p)).

Rationale: If the system is in active state and there is no failure, but an interlock condition

is detected that makes it unsafe or undesirable to automatically maneuver, the system should

switch to the standby state. If there is not a failure and a human monitoring the system wants

to prevent a maneuver through a manual interrupt, then the system should not be able to

transition to an automatic maneuver state.

[DL09] The system shall transition from the maneuver state (M ) to the standby state (S) when either a

manual interrupt is selected, or the maneuver is completed and there is an interlock condition

and no failure condition detected (p ∨ (m ∧ i ∧ ¬f )).

Rationale: If the system is actively maneuvering, it should complete its maneuver before

transitioning. Once the maneuver is complete, if an interlock condition is detected the system

should switch directly to a standby. If, however, during the maneuver, a human supervisor

determines the need to abort the maneuver, a manual interrupt will also send the system to the

standby state.

[DL10] The system shall transition from the standby state (S) to the active state (A) when the there is

no failure and no interlock detected (¬f ∧ ¬i).

Rationale: If the system is in the standby state and the interlock condition that caused the sys-
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tem to go into standby no longer exists, and there is no failure, then the system will transition

into the active state.

[DL11] The system shall transition from the maneuver state (M ) to the active state (A) when the

maneuver is completed and there is no manual interrupt, no failure, and not interlock present

(m ∧ ¬p ∧ ¬f ∧ ¬i).

Rationale: If the system is in the maneuver state, where it is actively maneuvering and there

are no interlock, failure, or manual interrupt conditions detected, then on completion of the

maneuver, the system will transition back to an active state where it will be prepared to im-

mediately conduct another automatic maneuver should a condition to maneuver exist.

[DL12] The system shall transition from the active state (A) to the maneuver state (M ) when there is

no failure, no interlock, no manual interrupt, and either the condition to maneuver is present

or a command is manually activated(¬f ∧ ¬i ∧ ¬p ∧ (c ∨ e)).

Rationale: Maneuver is the lowest priority of the states. As such, only when no failure

conditions or interlock conditions are detected, and a condition to maneuver is present, will

the system conduct an automatic maneuver. When there is a failure, interlock, or manual

interrupt condition, it is assumed that it is safer to do nothing than to maneuver.

[DL13] The system shall transition from the maneuver state (M ) to the failed state (F ) when there is

no manual interrupt, the maneuver has been completed, and a failure exists (¬p ∧m ∧ f ).

Rationale: The system shall not transition from the maneuver unless it has been completed

or there is a manual interrupt. Once the maneuver is completed, if there is no interrupt, the

next highest priority is a failure, which will transition the system directly to the failed state

(init =⇒ S).

[DL14] The system shall initialize in the standby state. Initializing the system in the standby state

ensures that the system has enough time to check for failures or interlocks before deciding to

maneuver.

Rationale: Initializing the system in the standby state ensures that the system has sufficient

time to check for failures or interlocks before deciding to maneuver.

In addition to the transition design specifications, a set of seven specifications describe the
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interface to the decision logic functional block. These specifications were inspired by requirements

stating what the decision logic should consider for aircraft systems and are formally interpreted as

inputs and outputs in this work. These specifications are captured in the inputs and outputs section of

the SpeAR Decision Logic system specification but are not formalized in temporal logic or analyzed

using formal methods.

Table 4.2: Formal description of Decision Logic functional block interface.

Specification ID Variable Description Interface
DL15 f failure exists input
DL16 i interlock exists input
DL17 p manual interrupt by a person input
DL18 c condition to maneuver input
DL19 m maneuver completed input
DL20 e manually commanded by a person input
DL21 syspower on/off power state input
DL22 DLmode decision logic mode output

[DL15] The decision logic shall accept the failure state f of supporting subsystems as an input.

Rationale: A failure monitor is envisioned to be a separate component to promote modularity

(monitors should be designed specific to the specific hardware on board). For example, if

an automatic maneuver system relies on GPS, but the GPS system is failed, the automatic

maneuver system should be aware to prevent acting on failed information.

[DL16] The decision logic shall accept the interlock state i of the spacecraft as an input.

Rationale: An interlock monitor is envisioned to be a separate component to promote modu-

larity by monitoring interlock conditions specific to the spacecraft and mission.

[DL17] The decision logic shall accept manual interrupts from the operator p as an input.

Rationale: The operator’s ability to interrupt maneuvers should be accepted as an input to

stop the automatic maneuver.

[DL18] The decision logic shall accept the condition to maneuver c as an input.

Rationale: A prediction function separate to the decision logic that monitors for a specific

condition to maneuver c (such as collision avoidance, station keeping, etc.) promotes modu-

larity of the system and should be known by the decision logic.
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[DL19] The decision logic shall accept maneuver completed m as an input.

Rationale: The decision logic should know if a maneuver has been completed to be able to

decide whether it is appropriate to activate another maneuver.

[DL20] The decision logic shall accept manual activation commands from the operator e as an input.

Rationale: The operator’s ability to manually initiate maneuvers is accepted as an input to

activate a maneuver.

[DL21] The decision logic shall accept the on/off state syspower from the operator as an input.

Rationale: The operator’s ability to turn the system off should be accepted as an input to stop

the automatic maneuver to allow full operator control, especially in off-nominal states.

[DL22] The decision logic shall output the current decision logic mode DLMode.

Rationale: The decision logic mode may need to be used by other systems, and will be

provided to the maneuver controller.

Decision Logic Requirements

Requirements may be used in a formal analysis technique like model checking [13] to validate that

the a design specification meets desirable the system behavior. In this section, requirements are

specified for all the conditions that can affect transition from each Decision Logic transition system

state, while marking conditions that do not impact the state as “don’t cares” (×). By systematically

setting each condition that does impact the state to true (1) or false (0) and specifying the next

state, it can be verified that the logic in the requirements account for all possible conditions. The

requirements relating to each phase are described in Tables 4.3-4.6.

Documented in Table 4.3, the only condition which impacts transition from the failed state (F )

is the detection of a failure (f ). Once in the failed state (F ), the system will stay in the failed state

if a failure is detected (f ). When a failure is no longer detected (¬f ), the system will transition to

the standby state (S).

As seen in Table 4.4, the only conditions which impact transition from the standby state (S), are

the detection of a failure (f ) or detection of an interlock condition (i). In the standby state (S), if a

failure is detected (f ), the system will transition to the failed state (F ). The system will stay in the

standby state (S) as long a there is no failure detected but there is an interlock detected (¬f ∧ i).
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Table 4.3: Transition and Staying Condition Requirements for Failed State

Requirement Previous State f i p c m e Condition Summary Operating State
DLRF01 F 0 × × × × × ¬f S
DLRF02 F 1 × × × × × f F

The system will transition from standby (S) to active (A) when there is no interlock and no failure

condition (¬i ∧ ¬f ).

Table 4.4: Transition and Staying Condition Requirements for Standby State

Requirement Previous State f i p c m e Condition Summary Operating State
DLRS01 S 0 0 × × × × ¬f ∧ ¬i A
DLRS02 S 0 1 × × × × ¬f ∧ i S
DLRS03 S 1 0 × × × × f ∧ ¬i F
DLRS04 S 1 1 × × × × f ∧ i F

Evident from Table 4.5, all but the maneuver completed flag (m) impact the system transition

from active state (A). Once in the active state, if a failure is detected (f ), the system will transition

to the failed state (F ). If there is no failure and either an interlock condition exists or the manual

interrupt is engaged by a person (f ∧ (i ∨ p)), the system will transition to the standby state (S). If

there is no failure detected, no interlock detected, no manual interrupt and a condition to maneuver

exists or a maneuver is manually commanded by the operator (¬f∧¬i∧¬p∧(c∨e)), the system will

transition to the maneuver state (M ). If there is no failure detected, no interlock condition detected,

no manual interrupt, no condition to maneuver present, and no manually commanded maneuver

(¬f ∧ ¬i ∧ ¬p ∧ ¬c ∧ ¬e), then the system will remain in active (A).

As seen in Table 4.6, the maneuver state (M ) is impacted by all conditions except the condition

to maneuver (c). Once in the maneuver state, if a manual interrupt is engaged or the maneuver is

completed and an interlock is detected (p∨ (m∧ i)), the system will switch to the standby state (S).

If the maneuver is completed and a failure is detected (m ∧ f ), the system will switch to the failed

state (F ). If the maneuver is completed and there is not a manual interrupt, not failure detected, and

not an interlock detected (m∧¬p∧¬f ∧¬i), then the system will transition to the active state (A).

If there is no manual interrupt and the maneuver is not completed (¬p ∧ ¬m), then the system will

stay in the maneuver state.
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Table 4.5: Transition and Staying Condition Requirements for Active State

Requirement Previous State f i p c m e Condition Summary Operating State
DLRA01 A 0 0 0 0 × 0 ¬f ∧ ¬i ∧ ¬p ∧ ¬c ∧ ¬e A
DLRA02 A 0 0 0 0 × 1 ¬f ∧ ¬i ∧ ¬p ∧ ¬c ∧ e M
DLRA03 A 0 0 0 1 × 0 ¬f ∧ ¬i ∧ ¬p ∧ ¬c ∧ e M
DLRA04 A 0 0 0 1 × 1 ¬f ∧ ¬i ∧ ¬p ∧ c ∧ e M
DLRA05 A 0 0 1 0 × × ¬f ∧ ¬i ∧ p ∧ ¬c S
DLRA06 A 0 0 1 1 × × ¬f ∧ ¬i ∧ p ∧ c S
DLRA07 A 0 1 0 0 × × ¬f ∧ i ∧ ¬p ∧ ¬c S
DLRA08 A 0 1 0 1 × × ¬f ∧ i ∧ ¬p ∧ c S
DLRA09 A 0 1 1 0 × × ¬f ∧ i ∧ p ∧ ¬c S
DLRA10 A 0 1 1 1 × × ¬f ∧ i ∧ p ∧ c S
DLRA11 A 1 0 0 0 × × f ∧ ¬i ∧ ¬p ∧ ¬c F
DLRA12 A 1 0 0 1 × × f ∧ ¬i ∧ ¬p ∧ c F
DLRA13 A 1 0 1 0 × × f ∧ ¬i ∧ p ∧ ¬c F
DLRA14 A 1 0 1 1 × × f ∧ ¬i ∧ p ∧ c F
DLRA15 A 1 1 0 0 × × f ∧ i ∧ ¬p ∧ ¬c F
DLRA16 A 1 1 0 1 × × f ∧ i ∧ ¬p ∧ c F
DLRA17 A 1 1 1 0 × × f ∧ i ∧ p ∧ ¬c F
DLRA18 A 1 1 1 1 × × f ∧ i ∧ p ∧ c F

Table 4.6: Transition and Staying Condition Requirements for Maneuver State

Requirement Previous State f i p c m e Condition Summary Operating State
DLRM01 M 0 0 0 × 0 × ¬f ∧ ¬i ∧ ¬p ∧ ¬m M
DLRM02 M 0 0 0 × 1 × ¬f ∧ ¬i ∧ ¬p ∧m A
DLRM03 M 0 0 1 × 0 × ¬f ∧ ¬i ∧ p ∧ ¬m S
DLRM04 M 0 0 1 × 1 × ¬f ∧ ¬i ∧ p ∧m S
DLRM05 M 0 1 0 × 0 × ¬f ∧ i ∧ ¬p ∧ ¬m M
DLRM06 M 0 1 0 × 1 × ¬f ∧ i ∧ ¬p ∧m S
DLRM07 M 0 1 1 × 0 × ¬f ∧ i ∧ p ∧ ¬m S
DLRM08 M 0 1 1 × 1 × ¬f ∧ i ∧ p ∧m S
DLRM09 M 1 0 0 × 0 × f ∧ ¬i ∧ ¬p ∧ ¬m M
DLRM10 M 1 0 0 × 1 × f ∧ ¬i ∧ ¬p ∧m F
DLRM11 M 1 0 1 × 0 × f ∧ ¬i ∧ p ∧ ¬m S
DLRM12 M 1 0 1 × 1 × f ∧ ¬i ∧ p ∧m S
DLRM13 M 1 1 0 × 0 × f ∧ i ∧ ¬p ∧ ¬m M
DLRM14 M 1 1 0 × 1 × f ∧ i ∧ ¬p ∧m F
DLRM15 M 1 1 1 × 0 × f ∧ i ∧ p ∧ ¬m S
DLRM16 M 1 1 1 × 1 × f ∧ i ∧ p ∧m S

73



Decision Logic Discussion

While the content of this section was previously published in [170], it is included here for complete-

ness, with a few slight modifications. In the initial logic, the operator could not manually engage

a maneuver. However, after evaluating the Auto GCAS design specifications and requirements and

its pilot activated recovery system [201, 191, 192, 202], which enabled pilots to manually engage

Auto GCAS recovery maneuvers, it was determined that such a functionality would also apply to

spacecraft. In the case study in this work, a ground operator may wish to manually abort a prox-

imity operation such as docking by activating a collision avoidance maneuver. To accommodate

this in the logic, only a few changes were made to the design and safety requirements. First, a

6th Boolean state, e was added to the list of states to indicate that a ground station operator has

manually engaged a collision avoidance maneuver. Next, design specification DL04 was updated to

include ∧¬e in the conditions to stay in the active state, and DL12 was updated from c to (c ∨ e)

as a condition to transition from the active state to the maneuver state. A few safety requirements

were also changed. Requirement DLAR01 was updated to include ∧¬e as a condition to stay in the

active state, DLAR02 was split into 3 conditions to account for possible combinations of c and e

that could transition the system from the active state to the maneuver state, and e was set to a “don’t

care” for the other requirements.

4.2 Design Specification and Requirements Patterns

In this section, the general requirements patterns used in the specification and verification of the run

time assurance architecture are described.

4.2.1 Initialization Pattern

The initialization pattern is common across all components. To completely describe component

dynamics, the initial state and reaction to a given input in each state must be specified. For an initial

state q, the value of q(x) for every state variable x is consistent with the initialization of x [78]. The

initialization design specification pattern is described by Eqn. 4.1.

init =⇒ state (4.1)
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The specific initial state of each component is determined as part of the design process. This is

one of many design specifications for each component.

4.2.2 Decision Logic Patterns

The decision logic design specifications and requirements both follow a simple specification pattern

that the previous decision logic mode (©−1DLMode) and the state of a subset of the RTA abstract

system states f, i, p, c,m, e implies the current decision logic mode DLMode, as described below.

(©−1DLMode) ∧ (f ∧ i ∧ p ∧ c ∧m ∧ e) =⇒ DLMode,

DLMode ∈ {F, S,M,A}

f, i, p, c,m, e ∈ {true, false,×}

(4.2)

4.2.3 Interlock Monitor Patterns

Each of the interlock condition design specifications follow the pattern that always a condition im-

plies the system is in interlock (�condition =⇒ i), except for the initial state where it is assumed

an interlock condition does not exist ¬i. The state transition of the interlock condition follows a dis-

tinct pattern: the disjunction (“or”) of all of the individual interlock requirements ϕILi
describes the

interlock present state i, while the conjunction (“and”) of all the requirements describes the absence

of an interlock ¬i, as summarized by Eqn. 4.3.

i :=
k∨
i=1

ϕILi

¬i :=
k∧
i=1

¬ϕILi

(4.3)

Each individual interlock requirement follows the same pattern, shown in Eqn. 4.4. However,

the states used to define the condition that implies interlock may vary and are application specific.

�condition =⇒ i. (4.4)
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Two categories of interlock conditions are temporary and permanent. Temporary interlocks

occur during finite activities likely to occur frequently throughout a mission, while permanent in-

terlocks occur during a very small set of conditions likely only encountered once in the life on the

platform. Examples of temporary and permanent interlocks are described in the case study in the

net chapter.

4.2.4 Ground Computer Pattern

At this early stage of development, the ground computer’s responsibility is to update the state model

with information from the operator or the spacecraft and the only pattern used is to check equiva-

lence of the model with the inputs. The design specification is a record update and the requirements

check that each variable was updated correctly. This pattern is used in Section 5.3.2.

ϕRGCi
: xmodel = xsource (4.5)

4.2.5 Other Specification Patterns

The other components primarily feature record updates, or conditions described in the safety con-

straints in the next section.

4.3 Safety Specification Patterns

Requirements can be sourced from both the safety constraints and unsafe control actions from the

STAMP and STPA analysis. The safety constraints are sourced top-down directly from high level

accidents and the hazards that could case those accidents. Unsafe control actions are sourced from

a bottom-up analysis of signals and information exchanged between different components of the

system.

Safety constraints corresponding directly to the limited set of hazards fell into three general

categories: acceleration or velocity limits, pointing and time-bounded pointing constraints, and

interlock conditions. Each of these patterns are described in more detail in this section.
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4.3.1 Acceleration and Velocity Constraints

The simplest safety constraint pattern is constraints on the upper limits of translational and rota-

tional accelerations for all time, i.e. the acceleration in any given axis is always smaller than some

maximum and larger than some minimum value. These pattern limits are simple enough to be ex-

pressed in propositional, first order, or linear temporal logic and are summarized by Eqs. 4.6-4.7,

where a represents any translational or angular position variable. Acceleration constraints prevent

damage to the spacecraft and its components such as a structural failure resulting from excessive

forces during acceleration, or excessive wear on an actuator that frequently operates near its limits.

Velocity limits on the spacecraft help ensure the spacecraft is controllable within a finite time hori-

zon. For instance, it may be difficult or impossible to slow a vehicle with high angular velocity so

that it is able to achieve communication requirements [230].

ϕaccelerationlimit
= �(ä ≤ äupperlimit

) ∧ (ä ≥ älowerlimit
) (4.6)

ϕvelocitylimit
= �(ȧ ≤ ȧupperlimit

) ∧ (ȧ ≥ ȧlowerlimit
) (4.7)

4.3.2 Pointing and Time-Bounded Pointing Constraints

Safety constraint patterns also include time-bounded requirements on spacecraft orientation. For

communication, data transfer, solar panel charging, sensor pointing keep out zones, and duration

limited attitudes, a variation of a pointing constraint or time-bounded pointing constraint is used.

First, a centerline unit vector n̂ of the desired or undesired attitude is defined. This unit vector may

be aligned with the boresight of the sensor or antenna or orthogonal to a solar panel or spacecraft

surface, depending on the requirement. From this pointing unit vector, all other angles are measured.

Second, an angle around this centerline unit vector θn̂ is defined by variables such as an antenna

or sensor’s solid angle field of view α, a maximum sun incidence angle for charging, a generalized

unsafe angle from the unit vector θUS , and/or a safety buffer angle β.

In this simplest cases of this requirement, such as attitude keep out zones or solar panel charging,

the angle between n̂ and the object of interest (such as the sun) should be less than the desired angle

77



θdesired or greater than the undesired angle θundesired:

ϕattitudeexclusion = �θn̂ ≥ θundesired, (4.8)

ϕattitudedesired = �θn̂ ≤ θdesired. (4.9)

When the pointing requirement is only to be met during some scheduled time, or under some

pointing condition Xpointing the scope of these constraints may be reduced from always (�) to

during some scheduled time tscheduled in the form:

ϕattitudedesired = �(Xpointing ∨ tscheduled) =⇒ θn̂ ≤ θdesired. (4.10)

For more complex instances, labeling functions are used to define a line of sight (LOS) and

field of view (FOV) property. The LOS property is true when the angle between object of interest

and n̂, sometimes called the zenith angle θs is less than some max zenith angle θsmax . The FOV

property is true when the angle between the centerline unit vector and some desired object (such as

a receiving ground station) or undesired object (such as the sun), the fixation angle θR, is within the

angle defined by the second step.

L(θs, θR) =



∅, if θs > θsmax and θR > θdesired

FOV if θs > θsmax and θR ≤ θdesired

LOS if θs ≤ θsmax and θR > θdesired

LOS ∧ FOV if θs ≤ θsmax and θR ≤ θdesired.

(4.11)

Then the safety requirement becomes:

ϕattitudelabeled = �tscheduled =⇒ (LOS ∧ FOV ). (4.12)
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4.3.3 Interlock Conditions

The third type of safety constraint described interlock conditions, or conditions where it is unsafe

to maneuver even when a fault is not present. These conditions were identified as ways to allow

a human operator to intervene to prevent excessive fuel or actuator use, by limiting duration of

maneuvers or preventing maneuvers when the fuel level fl below a fuel level threshold flt or end of

life reserve flEOL
as follows:

ϕdurationlimit
= (condition on time) =⇒ i, or (4.13)

ϕfuellimit
= (fl ≤ flt) ∨ (fl ≤ flEOL

) =⇒ i. (4.14)

4.4 Additional Considerations

Three other important considerations for RTA design are independence of the RTA system from

the system under observation, redundant monitoring, and detection of RTA failures beyond physics

to include computational failures. Some systems separate the RTA in software only, while other

systems such as the safe Testing of Autonomy in Complex Environments (TACE) also separate

the RTA system in hardware [231]. Hardware separation helps ensure that failures in autonomy

components do not propagate to the lower level control and backup systems and enable unique

testing features. Another consideration in RTA design is whether to develop redundant monitors. In

Auto GCAS development, SWIM conducted hardware and software tests in four redundant flight

control computer processors [203]. To check for computational failures in developmental Auto

GCAS, SWIM used heartbeat checks and reasonableness checks to monitor for computation failures

[38].

4.5 Summary

In this chapter, the generalized RTA architecture featuring fault monitoring, interlock monitoring,

and a human supervisor and the abstract states of the system were described. Then patterns for

design specifications, requirements and safety constraints (requirements specifically from hazard
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analysis) were presented. This RTA architecture and set of patterns are used in the next chapter to

formally specify and analyze the requirements and architecture of a hypothetical spacecraft auto-

matic collision avoidance system.
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CHAPTER 5

CASE STUDY II: ILLUSTRATION OF IMPROVED RTA AND REQUIREMENTS

ELICITATION APPROACH IN HYPOTHETICAL LAST INSTANT SPACECRAFT

COLLISION AVOIDANCE SYSTEM

This chapter explores the application of the RTA and requirements approach in the design of a

novel system for last instant spacecraft collision avoidance and includes the development of a sys-

tem model, design specifications, and requirements for spacecraft last instant collision avoidance

systems. First, the scope of the collision avoidance problem and associated reference frames and

dynamics are explained. Second, requirements are identified from standards and regulations. Third,

requirements are identified from constraints in spacecraft collision avoidance literature. Fourth, ad-

ditional requirements are identified based on hazard analysis. Fifth, the requirements from literature

and hazard analysis are combined with requirements identified in the aircraft collision avoidance do-

main and further refined into design specifications and requirements. These design specifications

and requirements are then captured in formal logic, which can be analyzed manually for common

patterns and automatically with formal methods for realizability, logical entailment, logical consis-

tency, and traceability. While the focus of this chapter is on the design of an last instant automatic

collision avoidance system for spacecraft, many design specifications and requirements are applica-

ble to longer time horizons and other automatic maneuver missions as well.

5.1 Problem Scoping

To provide scoping to the collision avoidance requirements, a proximity operations scenario was

selected [232, 233]. Since multiple spacecraft collisions have occurred during rendezvous [234,

235, 236, 237], this research is scoped to consider last instant collision avoidance for spacecraft

attempting rendezvous. In order to keep the requirements general, no specific set of sensors or

actuators are considered. This has some specific implications such as assumed ability to maneuver

in any direction. In reality a collision avoidance maneuver would likely include an attitude maneuver

to align the thrusters in a desired direction before maneuvering [233, 238, 239]. In addition, this
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research stops short of completing design of a collision avoidance system.

A conceptual depiction of the collision avoidance scenario is presented in Fig. 5.1, where two

spacecraft (SC1 and SC2) with connections to independent ground stations (GS1 and GS2) are

conducting a rendezvous and docking operation and violate safety boundaries triggering a collision

avoidance maneuver. The collision avoidance maneuver is assumed to select one of multiple nearby

natural motion trajectories to maneuver to avoid the collision. Once the spacecraft transfers to

a natural motion trajectory such as an ellipse, periodic line segment, or stationary point relative

to the other spacecraft, it will remain in the trajectory. While the spacecraft will drift from the

trajectory over time with the accumulation of disturbances, it remains there for enough time for

ground operators to review the operation and determine appropriate next steps.

Figure 5.1: Conceptual depiction of two spacecraft operating in close proximity with communica-
tion back down to separate ground stations on earth.

Examples of multiple candidate elliptical trajectories is depicted in Fig. 5.2. The top candidate

elliptical collision avoidance trajectories are highlighted in a darker green. In Fig. 5.3, a chaser

spacecraft is depicted as rendezvousing with the target at the center using online in-plane motion.

Several in-plane ellipses are considered for collision avoidance trajectories. The red ellipse behind

the spacecraft is excluded because of the excess fuel required to reverse course, while the next

nearest ellipse in green is the top choice and other blue ellipses remain candidate trajectories.

Assuming the spacecraft are in a near circular orbit and within a few kilometers of one an-
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Figure 5.2: Conceptual depiction of a “chaser” spacecraft operating around a “target” spacecraft
surrounded by natural motion trajectory ellipses that serve as candidate escape trajectories.

Figure 5.3: Hill’s reference frame with chaser and target satellites and relative positions.
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other, Hill’s reference frame and linearized Clohessy-Wiltshire may be used to describe the system

dynamics.

5.1.1 Hill’s Frame

For relative motion dynamics, a satellite-centered reference frame is used. Developed in the 1870s

to describe the orbit of one body about each other [240], the reference frame is also sometimes

referred to as the local-vertical local-horizontal (LVLH) or radial-tangential normal (RTN) frame

when centered on the earth. The frame, depicted in Fig. 5.4 is centered on the “target” (also called

“chief”) satellite, with:

• x-axis x̂ (or êR for “radial direction”) that points outwards from Earth’s center (x̂ = êR = ~r
r ),

• y-axis ŷ (or êT for “tangential direction”) points in the direction of the velocity vector (ŷ =

êT = êN × ~̂eR) of the target satellite, and

• z-axis ẑ (or êN for “normal direction”) points orthogonally out of the orbital plane (ẑ = êN =

~r×~v
||~r×~v|| , where ~r and ~v are the position and velocity vectors of the target satellite).

The x and y axes define the orbital plane of the satellite at the center of Hill’s frame, while z is

referred to as out of plane.

Figure 5.4: Hill’s reference frame.
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5.1.2 Clohessy-Wiltshire Equations

The relative motion of a “chaser” (or “deputy”) spacecraft to a “target” (or chief) spacecraft, is

described by Eqn. 5.1:

~̈R = −µ
~R

|~R|3
+

1

mc

~F (5.1)

where µ is Earth’s gravitational parameter ((3.986004418±0.000000008)×1014 m3

s2 ), ~rH is the rela-

tive position of the chaser satellite in Hill’s frame, ~r is the position of the target satellite with respect

to the center of the Earth, ~R is the relative position of the chaser satellite with respect to the center

of Earth (~R = ~r + ~rH ), mc is the mass of the chaser satellite, and ~F is a vector of external forces.

Figure 5.5: Hill’s reference frame with chaser and target satellites and relative positions.

These dynamics were linearized by Clohessy and Wiltshire in 1960 in [241] by assuming the

spacecraft are in a circular orbit and that the distance between the spacecraft is much smaller than

the distance from either spacecraft to the center of the orbit (~rH << ~R). The linearized Clohessy-

Wiltshire dynamics in Hill’s frame are:

ẍ = 2nẏ + 3n2x+
Fx
mc

ÿ = −2nẋ+
Fy
mc

z̈ = −n2z +
Fz
mc

(5.2)
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where x, y, and z are Cartesian positions (in this notation the dotted variables are derivatives with

respect to time, i.e. ẋ = dx
dt and ẍ = d(dx)

d(dt) ); Fx, Fy, and Fz are thrust force applied by chaser

spacecraft; a is length of the semi-major axis of the target’s orbit; and n is satellite mean motion

(n =
√
µ/a3).

In state space form, the equations may be described as:

Ẋ =



ẋ

ẏ

ż

ẍ

ÿ

z̈


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0





x

y

z

ẋ

ẏ

ż


+



0 0 0

0 0 0

0 0 0

1/mc 0 0

0 1/mc 0

0 0 1/mc




Fx

Fy

Fz

 (5.3)

As can be seen from the equations, the in plane dynamics (x and y) are decoupled from the out

of plane dynamics (z). In addition, the in plane dynamics are unstable with two eigenvalues at the

origin and two at ±nj . The out of plane dynamics are stable with two eigenvalues at ±nj. The in

plane dynamics are completely controllable from Fy but not controllable from Fx, and the out of

plane dynamics are controllable from Fz .

5.1.3 Natural Motion Trajectories

Within the linearized Clohessy-Wiltshire equations Ẋ = AX + BU , natural motion trajectories

(NMTs) describe the motion of the satellite with no control input (U = 0 and Ẋ = AX). Open

NMTs, denoted N̄ , may be a non-periodic line segment, helix (traveling ellipse), or spiral. Closed

NMTs, denotedN may be ellipses, periodic line segments or stationary points. Examples of closed

NMTs with randomly selected initial conditions are shown in Fig. 5.6

To create any closed NMT, one must choose an initial state X0 = X(0) such that ẏ(0) =

−2nx(0) where n is the mean motion of the circular orbital trajectory. In addition to this criteria,

each closed NMT has specific additional criteria. For the closed NMT to be a stationary point,

x(0) = z(0) = ẋ(0) = ż(0) = 0, and y(0) = y0 may be any arbitrary value reasonably close (5-10

kilometers or less) to the target spacecraft. To create a periodic line segment x(0) = ẋ(0) = ẏ(0) =

86



Figure 5.6: Examples of closed natural motion trajectories in Hill’s relative motion reference frame
including ellipses, periodic line segments, and stationary points (marked with x’s).

0, z(0) = csinψ, ż(0) = nccosψ, and y(0) = y0 may be any arbitrary value reasonably close to the

target, where c is the magnitude of the oscillation (1/2 the length of the line segment) and n is the

mean motion as previously defined. To create an ellipse NMT y(0) = 2
n ẋ(0), for arbitrary but close

values of x(0), z(0), ẋ(0) and ż(0).

5.2 Requirements Elicitation

In this section, formal design specifications are elicited where applicable to describe the behavior of

the components in the form of transitions systems and formal requirements are elicited that describe

constraints on the system design. The design specification and requirements elicitation process was

iterative, starting with an initial set of requirements inspired by aircraft collision avoidance require-

ments that were manually converted to appropriate spacecraft collision avoidance requirements,
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and supplemented with additional requirements informed by a literature search and hazard analy-

sis. While introduced in Chapter 2, and discussed in Chapter 4 it is worth noting again for clarity

that all formal statements are in ptLTL where ©−1 indicates that the formal statement is true for

the previous timestep and � indicates that the formal statement is invariant, i.e. from a past time

perspective, it is historically (always) true and has been true for all timesteps up to and including

the current timestep.

5.2.1 Requirements from Standards and Guidance

No requirements or safety properties for automatic spacecraft maneuvering currently exist in stan-

dards or regulations. This is in part due to the often proprietary or classified nature of spacecraft pro-

grams. There is also not currently a space traffic management organization that governs maneuver-

ing of vehicles in space analogous to air traffic management systems that govern commercial aircraft

operations. However, several entities are involved in the development and approval of a satellite.

The largest regulation source is arguably the Federal Communications Commission (FCC), which

governs the radio frequencies satellites operate in and reviews applications from satellite owners

and operators in the United States for US market access licenses. The Code of Federal Regulations

(CFR), Title 47, Part 25 Satellite Communications [45], has specific regulations governing debris

mitigation that generally address geostationary orbits where the majority of the valuable spacecraft

reside; however, applications for large numbers of non-geostationary systems has prompted debate

over regulations and guidance for satellites and constellations of satellites operating in other than

geostationary orbit [242]. The Federal Aviation Administration (FAA) is primarily concerned with

launch safety. The development of a satellite is managed by the owner or operator of that satel-

lite. The NASA Systems Engineering Handbook [43] and USAF Space and Missile Systems Center

(SMC) Systems Engineering Primer & Handbook [42] provide complementary guidance on the de-

velopment of spacecraft in a rigorous system engineering process, but these are also not a source

for on-orbit maneuver requirements.

5.2.2 Requirements from Spacecraft Collision Avoidance Literature

To supplement general collision avoidance requirements from the aircraft domain, a literature search

on spacecraft collision avoidance strategies was conducted. The collision avoidance literature is
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largely a variety of optimization approaches and the constraints provide an excellent source of re-

quirements. A variety of long term and short-term approaches were examined. Two-point boundary

value problems that constrain initial and final positions of the spacecraft are common, but excluded

here in favor of more general constraints. While some approaches to collision avoidance were

nonlinear [243, 244, 245], many involved linear relative motion dynamics [246, 221, 247]. The

following constraints were identified from the literature:

• Bounded control input u, or thrust, or change in velocity ∆v: Some form of this constraint

is the most common in the literature and is used to represent the limits of how much the

spacecraft state can be changed by the onboard propulsion system. In some cases this is

presented as a generalized constraint, such as

|Uk|∞ ≤ umax (5.4)

where Uk is a velocity impulse in a discrete-time spaceraft model and umax is a maximum

value such as 10 m/s [233]. In some cases a nonlinear control constraint is linearized. For

example, in [245] a nonlinear constraint on control u2x + u2y ≤ u2max is linearized as

−γ̄umax ≤ ux(k) ≤ γ̄umax,−γ̄umax ≤ uy(k) ≤ γ̄umax, γ̄ ∈
[ 1√

2
, 1
]

(5.5)

where γ̄ is chosen to reduce conservatism (γ̄ = 1 implies all thrust acts in on direction,

while γ̄ = 1√
2

implies thrust is evenly distributed between x and y directions, and the actual

distribution is somewhere in between). Similar control magnitude limits are presented in

[248, 247]. Maximum thrust is also a common constraint, with values such as 5 N [221] or

10 N in each axis [249]. In other cases, the change in velocity ∆v is limited [246, 250, 251],

in some cases to just a single value in a positive or negative direction [252].

• Minimum separation distance: This constraint describes some minimum distance between

the space objects that must be maintained at all times. Variations consider intersections of

ellipses described by standard deviation in covariance matrices [252]. In [253], a minimum
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distance constraint is described as:

||r(t)− rO(t)|| ≥ dmin(t) (5.6)

where r(t) and rO(t) are the positions of the spacecraft and obstacle and dmin(t) is the

desired minimum distance between these objects. A similar constraint is presented in [246].

This minimum distance constraint can alternatively be represented as a penalty function [253]

in the optimization of a trajectory.

• Thrust direction limits: Constraints on thrust direction may be imposed to avoid firing a

thruster into the object the spacecraft is trying to avoid. This constraint is highly dependent

on geometry, though an example of avoiding an in-orbital track target is given in [233]:

∆ẏ ≤ µe−βk, µ > 0, β > 0 (5.7)

where ∆ẏ is the change in velocity in the y-direction.

• Station keeping constraints: Depending on the type of orbit, it may be required that a satellite

maintain station keeping constraints, i.e. stay within an acceptable range of a desired state

xj at time t(j). In [246] these constraints us a curvilinear coordinate frame as six inequality

constraints for N timesteps:

−xB ≤ xj ≤ xB, − yB ≤ yj ≤ yB, − zB ≤ zj ≤ zB, j ∈ [1, N ]. (5.8)

• Avoiding obstacles with a tangent line or hyperplane: An alternative to a minimum distance

requirement is defining obstacle avoidance with a tangent line or hyperplane. In [246] a linear

constraint is identified as:

αjyj + βjzj ≥ r∀j ∈ [1, N ] (5.9)

where αj = cosθj , βj = sin θj , and θj = θ0 + ntj , as pictured in Fig. 5.7.

In [233], a hyperplane is defined that separates the obstacle from the spacecraft and used in a
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Figure 5.7: Separation constraint method based on tangent line [246].

constraint that

nTkXp,k ≥ nTk rc,k (5.10)

where nk is a vector normal to the hyperplane, rc,k is a point on the boundary of the uncer-

tainty ellipsoid of the obstacle, and Xp,k is the position of the spacecraft at time k.

• Minimum drift rate: Along-track drift of a satellite in a relative motion orbit results in ellipti-

cal motion around an object if the along-track drift is zero, or corkscrew motion for non-zero

drift [246]. Keeping the drift below a minimal value ensures the spacecraft will not move in

a corkscrew motion into the obstacle in a finite period of time.

• Line of sight constraints: While a more important requirement for proximity operations and

docking, constraints on line of sight [245, 233] between a sensor on the spacecraft and the

obstacle being avoided enable higher accuracy, closed-loop control during the avoidance ma-

neuver.

• Spacecraft size: Because spacecraft can differ considerably in size and shape, and even

change size by deploying antennas, booms, solar panels, and other appendages, it is im-
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portant to incorporate the size of the spacecraft in the collision avoidance maneuver. Some

approaches to this include using the longest axis of a spacecraft at a spacecraft radius [243]

and creating a buffer ellipse around the obstacle spacecraft [221].

• Minimum probability of collision Pc: Probability of collision remains a standard metric for

determining when it is appropriate to maneuver. When the probability of collision is over a

threshold such as 10−4, it may be grounds to maneuver to ensure safe separation [247, 252].

• Time of closest approach (TCA): The time of closest approach between the two space objects

and the available thrust onboard provide a lower limit to how close a maneuver can occur

to the predicted collision time. In [252], a limit of 10−3 to 10−2 meters per second in ∆v

restricts collision avoidance maneuvers to occurring far from TCA.

• Collision Geometry: The geometry of the collision scenario can play an important role in

collision avoidance maneuvers. Determining whether the collision is frontal or lateral is im-

portant in [252], as their interrelation could cause a maneuver that increases separation in the

frontal direction decrease separation in the lateral direction and vice versa.

• Post maneuver trajectory prediction: Considering the trajectory of the spacecraft after the

maneuver and whether the maneuver will result in increased collision risk with other objects

is an important consideration in maneuver selection [252].

Additional practical considerations on maneuver time and communication may factor into the auto-

matic collision avoidance maneuver controller design. In practice, a spacecraft maneuver involves

first reorienting the spacecraft to align the primary thruster in the desired direction, and then waiting

for an optimal time to command a burn [238, 239]. In some cases with a small notification time

before the maneuver, it may be assumed that there is not time to reorient the spacecraft, and a burn

is conducted from the current orientation [238, 254]. In addition, there is a cost benefit analysis be-

tween the amount of propellant consumed and the estimated probability of collision [255]. Finally,

communication and computation concerns such as signal routing, real time feedback, and real time

communication can determine success of a maneuver [256].
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5.2.3 Requirements from Hazard Analysis

Following the approaches listed in Section 2.5, accidents, hazards, and safety constraints are iden-

tified for spacecraft automatic maneuvers. While the intention is to use these as a guideline for

developing safety requirements for a spacecraft automatic collision avoidance system, these acci-

dents, hazards, and constraints are generic and may be applied to the development of any spacecraft

control system that maneuvers automatically. Accident and hazard identification was primarily ac-

complished by interviewing stakeholders.

Accidents

As described earlier, an accident is defined as an undesired or unplanned event that results in a

loss. The loss is application specific and could be a variety of challenges such as the loss of human

life or health, damage to property, environmental pollution, or mission loss. This definition of a

loss is not consistent across sources and may lead to confusion. For instance, Air Force Instruction

51-503: Aerospace and Ground Accident Investigations [257] defines an accident as an unplanned

occurrence, mishap or series of occurrences, that results in damage or injury and meets Class A, B,

C, or D mishap reporting criteria.

Two primary accidents related to automatic or autonomous spacecraft maneuvering were iden-

tified, as follows:

[A1] Spacecraft is damaged or destroyed.

[A2] Spacecraft is unable to complete its mission.

These accidents are obviously not mutually exclusive.

Hazards

With the accidents in mind, hazards were identified. MIL-STD-882E, Department of Defense Stan-

dard Practice System Safety [72], defines a hazard as “A real or potential condition that could lead

to an unplanned event or series of events (i.e. mishap) resulting in death, injury, occupational ill-

ness, damage to or loss of equipment or property, or damage to the environment.” In STAMP and

STPA a hazard is defined as a system state or set of conditions that in a worst-case environment, will
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lead to an accident. In both definitions, a hazard is a specific condition that could lead to a mishap

or accident. Each hazard is traced to the accident(s) they may cause by indicating those accident

numbers in parentheses at the end of the hazard. Rationale is provided for each hazard to provide

additional context and examples. The hazards are written in priority order, but this priority may be

very subjective depending on the spacecraft and mission.

[H1] Spacecraft maneuver causes ground communication loss (A1, A2).

Rationale: A “loss of spacecraft signal” is addressed in a standard fault protection type called

“Command Loss Response” at JPL [258]. While this communication loss can be caused by a

variety of factors, erroneous spacecraft attitude (pointing error) is focused on here, as it can

result from incorrect automatic or autonomous control operations. This hazard is listed first

because a ground communication loss prevents operator intervention that may be critical to

prevent damage or mission loss. This hazard is further scoped to only referring to maneuvers

that prevent ground communication that would otherwise be available and scheduled. Many

spacecraft missions do not have constant ground communication and may be intentionally out

of contact multiple times a day. This could occur because the spacecraft does not have line of

sight to a ground station in the operator’s network for a portion of its orbit, or communication

with that spacecraft is a lower priority than spacecraft that share the same ground station. This

hazard only applies in situations where the spacecraft has line of sight to a ground station in

the operator’s network and has priority to use it over another spacecraft. Communication

requires that the ground station is in the field of view of the spacecraft’s communication

antenna.

[H2] Spacecraft is on a collision course with another spacecraft or debris (A1).

Rationale: Spacecraft collisions could not only lead to loss of the spacecraft and mission,

they could lead to loss of other spacecraft as well as the creation of debris that threatens other

space operations. Several examples of collision events include collisions during rendezvous

and proximity operations, as well as confirmed random, accidental collisions:

1. 23 December 1991: (but not recognized until 2005) collision of a defunct Cosmos nav-

igation satellite with a piece of debris from another Cosmos satellite [259];
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2. 1994: collision of the Soyuz TM-17 ferry spacecraft with the MIR space station, result-

ing in only minor damage [234];

3. 24 July 1996: collision of the French Ceris Satellite with a fragment of Ariane-1 H-10

upper rocket stage [260];

4. 2001: an 800kg, 2-meter diameter cylindrical Russian satellite launched in 1998 was

struck by Cosmos 926 debris [261];

5. 1997: collision of the Progress M-34 spacecraft with Mir, causing damage to MIR solar

panels, radiators, and a hull puncture [235, 236];

6. 17 January 2005: collision of a U.S. rocket body with a fragment of the third stage of a

Chinese launch vehicle [259, 261];

7. 2005: collision of DART with MUBLCOM sending MUBLCOM into a higher orbit

with no significant damages [237];

8. February 2009: Iridium 33 and Cosmos-225 Collision [262]; and

9. 22 January 2013: BLITS retroreflector satellite was impacted by a piece of orbital debris

[263].

In addition to the collision events listed here, several suspected but unconfirmed orbital debris

collisions have occurred, and are excluded here for brevity; however more details may be

found in [264, 261].

[H3] Spacecraft maneuver is aggressive enough to cause damage (A1).

Rationale: An aggressive maneuver is one with high translational or rotational acceleration

and may cause damage to the structure, payload, or appendages. These accelerations could

potentially exceed the safe limits of the spacecraft structure, payload (which may be a sen-

sitive instrument), or one of many possible appendages and deployables like solar panels,

antennas, booms, and tethers. An example of this occurred in April 2016 when a combination

of a design flaw in reaction wheel rotation direction and bad settings for rocket firings caused

the Japanese Hitomi X-ray observatory to spin out of control, shedding portions of its solar

panels or deployable telescope as a result [230].
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[H4] Spacecraft maneuver leads to uncontrollable state. (A1, A2).

Rationale: It is possible for a maneuver or successive maneuvers to lead to a loss of the ability

to control a spacecraft. The Japanese Hitomi attitude failures present a convenient example

for this hazard because eventually the spacecraft was spinning too fast to control [230].

[H5] Spacecraft generates insufficient power to maintain operations (A1, A2).

Rationale: In order to generate power, the spacecraft’s solar panels must be pointed towards

the sun for a duration of time. If a spacecraft is unable to point the solar panels at the sun,

or is unable to maintain that attitude, the solar panels may not provide sufficient power to

keep batteries charged. This hazard is listed fifth because while it may not directly cause

damage or mission loss, many other critical subsystems like communications and controls

rely on power. In 1998, a series of attitude anomalies on the Near Earth Asteroid Rendezvous

(NEAR) spacecraft nearly caused the loss of the spacecraft, which recovered in a safe mode

designed to minimize power usage and maximize solar array output [265]. The Japanese Hit-

omi attitude failures also present an example for this hazard because eventually the spacecraft

was spinning too fast for the solar panels to sustain the satellite’s battery [230]. There is also

some overlap with H5 and H3 in cases where excessive acceleration leads to a loss of the

solar panels.

[H6] Spacecraft loses data transfer with the ground (A2).

Rationale: Data transfer is similar to general communication requirements but features higher

bandwidth requirements and often tighter antenna field of view pointing requirements. A loss

of data transfer ability could lead to a loss of mission data, this is especially true when onboard

memory is often very limited. If the onboard memory fills before the data can be transferred

down, new data may not be saved, or older data will have to be deleted before it can be

downlinked to the ground for more permanent storage.

[H7] Spacecraft damaged or destroyed by unsafe attitude (A1, A2).

Rationale: Depending on the spacecraft mission or payload, there may be attitudes where it

is unsafe to point a spacecraft. The most common example is the solar exclusion angle; where
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sensitive instruments must not be pointed too close to the sun to avoid damage. This is the

motivation behind exclusion zone guidance methods for spacecraft such as that in [266].

[H8] Spacecraft exceeds unsafe attitude duration (A1, A2).

Rationale: This hazard was documented with three specific conditions in mind: the space-

craft attitude causes excessive heating from sun exposure on a particular component (thermal

management), the spacecraft’s solar panels are pointed away from the sun for long enough to

threaten spacecraft power loss (power management), or spacecraft components are left within

a solar exclusion angle long enough to cause damage. Development of a safe mode for the

Cassini spacecraft included reaching an attitude that enabled the spacecraft to communicate

with the ground, was thermally safe for several days, could be maintained without being over-

whelmed by aerodynamic forces curing low altitude flybys, and that gave the star tracker a

clear field of view [267]. Many spacecraft have a “safe mode” that may do one or more of

the following [258]: minimize power by stopping the current operations, powering down all

nonessential functions, configuring hardware in safe states, establishing uplink and downlink

communications, reconfiguring antenna, and commanding an attitude that achieves thermal

safety and solar panel charging.

[H9] Spacecraft expends excess fuel (A1, A2).

Rationale: Fuel is a limited resource on spacecraft and could lead to mission or spacecraft

loss when depleted. For example, during the 1998 NEAR spacecraft anomaly, nearly 29 kg

of fuel (corresponding to 96 m/s of delta-v) were burned in thousands of thruster fires [265].

After recovering, the spacecraft had barely enough fuel to conduct the original mission, with

little to no margin for additional error.

[H10] Spacecraft actuation strategy causes excessive wear or damage to actuators (A1, A2).

Rationale: This hazard was documented with reaction wheel actuators in mind. Reaction

wheel actuators control spacecraft attitude by spinning to exchange momentum with the

spacecraft. Reaction wheels can become saturated when commanded to their limits and can

undergo wear if kept near their limits for extended periods of time. Loss of two reaction

wheels occurred in the Kepler Space Telescope mission. After the first wheel was lost, the
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wheel vendor recommended keeping the wheel speeds below 300 revolutions per minute to

preserve functionality of the remaining wheels for as long as possible [268].

Safety Constraints

MIL-STD-882E [208.2.1(h)] [72] requires a list of constraints that can be implemented to reduce

the risk level of hazards. In the STPA process, a safety constraint is a capability that will prevent a

hazard from occurring. The safety constraints corresponding to each of the hazards are listed here.

These safety constraints are traced to their corresponding hazards and used to generate requirements

formal requirements. Safety constraints here are scoped to only those relating to satellite control.

Each of the formalized safety constraints in this section describe the requirements of the system;

they define what property that should be true. Design specifications that describe how the system

behaves to achieve those requirements may use a variety of approaches and are left open ended.

[C1] Spacecraft shall maintain attitude requirements for communication with ground station (H1).

In order to formally specify this constraint as a requirement in ptLTL, first a few definitions

are needed. As depicted in Fig. 5.8, the solid angle field of view (FOV) α is the total angle

observable to the sensor/transmitter, the boresight is the centerline of the sensor/transmitter

FOV, the target zenith angle θs is the angle between the sensor/transmitter and surface nor-

mal, and the fixation angle θR is the angle between the sensor/transmitter boresight and the

receiver.

For communication, a reasonable assumption is that the antenna’s solid angle field of view

(FOV) α is approximately 70◦ [269]. Let the atomic proposition AP = {LOSCOMM ,

FOVCOMM} be the set of events where LOSCOMM indicates the ground station is in light

of sight of the satellite when the zenith angle θs is less than or equal to 90◦ (θs ≤ 90◦), as

depicted in Fig. 5.9a and FOVCOMM indicates that the fixation angle θR is smaller than half

the antenna solid view FOV α (θR ≤ α) as depicted in 5.9b. The trace of the system trajectory
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Figure 5.8: Diagram of solid angles, boresight, zenith angle, and fixation angle for a satellite com-
munication antenna.

is then given by the labeling function L(θs, θR) : R2 → 2AP :

L(θs, θR) =



∅, if θs > π
2 and θR > α

2

FOVCOMM if θs > π
2 and θR ≤ α

2

LOSCOMM if θs ≤ π
2 and θR > α

2

LOSCOMM ∧ FOVCOMM if θs ≤ π
2 and θR ≤ α

2 .

(5.11)

Then the safety requirement becomes:

ϕC1 = �scheduledCOMM =⇒ (LOSCOMM ∧ FOVCOMM ). (5.12)

Further refinement on this requirement might include temporal considerations, such as ensur-

ing proper orientation for some time before the scheduled communication window to some-

time after. A design specification should be created to ensure the spacecraft attitude controller

maintains the communication safety constraint requirement ϕC1. There is an assumption with

this requirement that scheduled communication only takes place when the satellite is within

the line of sight of the ground station LOSGS , and in the case of a ground station with a

limited field of view receiver, that the satellite is within the ground station’s field of view
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(a) Examples of satellites with line of sight to a
ground station, which occurs when the angle between
the communication transmitter on the satellite and
the surface normal to the Earth’s surface where the
ground station is located (the zenith angle θs) is less
than or equal to 90◦.

(b) Examples of satellite orientations where the angle
between the communication transmitter boresight and
the ground station (the fixation angle θR) is less than
half the antenna solid angle field of view (FOV) α.
The two yellow satellites represent extremes of the
possible orientations, where the boresight is within
the purple shaded region.

Figure 5.9: Depictions of satellite communication with line of site or field of view to a ground
station.

FOVGS . This is a constraint that should be checked on the scheduler.

Figure 5.10: Notional depiction of regions where the Ground Station’s receiver antenna has line of
sight to the ground station (LOSGS) , does not have line of sight (¬LOSCOMM ), and when the
satellite’s antenna is in field of view of the ground station (FOV ).
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[C2] Spacecraft maneuvers shall maintain safe separation with another spacecraft or debris (H2).

There are several ways to represent safe separation, including but not limited to the following:

– The spacecraft are safely separated if the probability of collision Pc is less than some

maximum Pcmax , such as 10−4 used in modern spacecraft collision detection and avoid-

ance approaches [20, 21, 22, 23].

ϕC2Pc
= �(Pc ≤ Pcmax). (5.13)

– The spacecraft are safely separated if the distance in the relative motion Hill’s frame

||~rH || is greater than some separation distance rs. This is representative of collision

detection systems that warn when the closest simulated miss distance is less than 200

meters, 300 meters, or 1 kilometer (depending on organization) away.

ϕC2rs = �||~rH || > rs. (5.14)

– The spacecraft are safely separated if the distance in the relative motion Hill’s frame

||~rH || is greater than some separation distance rs and the relative velocity ||~vH || is below

a threshold vs, or the spacecraft are moving away from one another. Recall that the inner

product (or dot product) can indicate relative motion of the of the spacecraft, as depicted

in 5.11:

~vTH~rH = ~vH � ~rH = ||~vH ||||~rH ||cosθ =


> 0 =⇒ moving away

< 0 =⇒ moving toward

= 0 =⇒ moving orthogonally.

(5.15)

This constraint then becomes:

ϕC2rv = �(||~rH || > rs) ∧
(

(||~vH || < vs) ∨ (~vTH~rH ≥ 0)
)
. (5.16)

[C2alt] Spacecraft maneuvers shall safely approach spacecraft during autonomous rendezvous,
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Figure 5.11: Relative position and velocity vectors between two objects in Hill’s reference frame.

proximity operations and docking (H2). In cases where spacecraft formation flying or

a controlled collision (docking) is intended, alternative criteria may be developed. A

variation on this constraint changes the magnitude of the acceptable velocity moving

towards the spacecraft based on the distance between the spacecraft, where acceptable

relative velocity decreases as the spacecraft distance decreases, as depicted in Fig. 5.12.

Figure 5.12: Notional depiction of a variable safe relative velocity vs that decreases as the distance
between two spacecraft decreases, where a variable risk level setting adjusts the curves to allow
higher velocity closer to.

This concept is similar detecting the difference between aircraft flying in formation and

aircraft on a collision course [187]. In the Automatic Air Collision Avoidance System

(Auto ACAS) development, a set of formation logic based on range and closure rate

as seen in Fig. was used to define whether to inhibit an automatic collision avoidance

maneuver. A similar study could be conducted to determine a formation and docking

deactivation region for spacecraft.

This concept is notionally borrowed from the idea of using a temporal rather than dis-

tance requirement to avoid collisions in the aircraft domain where the time-to-collision
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Figure 5.13: Formation flight boundary diagram for the Automatic Air Collision Avoidance (Auto
ACAS) program [187].

Tc is the separation distance ||~rH || over closure velocity ||~vH || [270]:

Tc =
||~rH ||
||~vH ||

. (5.17)

However, this function assumes a linear path and in aircraft avoidance maneuver, or in

spacecraft relative motion, the path is not linear. A better estimate may be found by

the time to collision point Tcp, which is the distance from the present position along the

trajectory to the collision point dcp, divided by the speed along the trajectory scp [270]:

Tcp =
dcp
scp

. (5.18)

Given the development of a finite set of collision avoidance maneuvers, the Tcp could be

computed for each maneuver option and used in the decision to engage an automatic collision
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avoidance maneuver.

[C3] Spacecraft shall maneuver below acceleration threshold to cause damage (H3).

Spacecraft translational and rotational acceleration limits depend on the limits of the structure

of the spacecraft (ex. ẍstr), the payload that may vary on satellites that otherwise feature the

same components (ex. ẍpay), and variations of limits for special states like the use of deploy-

able antennas or booms (ex. ẍsp). For each axis of translational and rotational acceleration,

the minimum and maximum accelerations follow the form ẍmin = −min(|ẍstr|, |ẍpay|, |ẍsp|)

and ẍmax = min(|ẍstr|, |ẍpay|, |ẍsp|). This is assuming that the acceleration limits are the

same in the positive and negative directions. In the case that the limits are not equal and

opposite in each direction, the smallest acceleration in either direction (positive or negative)

along the axis is the limit for that direction. Then the constraint becomes:

ϕC3 =�(ẍmin ≤ ẍ) ∧ (ẍ ≤ ẍmax) ∧ (ÿmin ≤ ÿ) ∧ (ÿ ≤ ÿmax)

∧ (z̈min ≤ z̈) ∧ (z̈ ≤ z̈max) ∧ (θ̈1min ≤ θ̈1) ∧ (θ̈1 ≤ θ̈1max)

∧ (θ̈2min ≤ θ̈2) ∧ (θ̈2 ≤ θ̈2max) ∧ (θ̈3min ≤ θ̈3) ∧ (θ̈3 ≤ θ̈3max).

(5.19)

Note that all of these constraints are on acceleration of the spacecraft in the spacecraft body

frame.

[C4] Spacecraft maneuver shall maintain controllability (H4).

In its simplest form, this constraint states that the state of the spacecraft Xsc always remains

within the set of controllable states:

ϕC4 = �Xsc ∈ XC . (5.20)

Determining the set of controllable states is non-trivial though. A linear time invariant (LTI)

system is controllable if for all initial and final states in the set of real numbers (∀xo, xf ∈ Rn)

there exists a control input for a time between 0 and the final time (∃u(t), t ∈ [0,−tf ] such

that the final state is reached at the final time (s.t. x(tf ) = xf ). One test for controllability is

the controllability matrix: (A,B) is controllable if C(A,B) = [B,AB,A2B, ..., An−1B] is

full rank (also C(A, b) is invertable).
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The relative translational motion of a “chaser” (or “deputy”) spacecraft to a target (or chief)

spacecraft, in linearized Clohessy-Wiltshire dynamics in Hill’s frame are:

ẍ = 2nẏ + 3n2x+
Fx
mc

ÿ = −2nẋ+
Fy
mc

z̈ = −n2z +
Fz
mc

(5.21)

where x, y, and z are Cartesian positions (in this notation the dotted variables are derivatives

with respect to time, i.e. ẋ = dx
dt and ẍ = d(dx)

d(dt) ); Fx, Fy, and Fz are thrust force applied

by chaser spacecraft; a is length of the semi-major axis of the target’s orbit; and n is satellite

mean motion (n =
√
µ/a3).

In state space form (Ẋ = AX +BU ), the equations may be described as:

Ẋ =



ẋ

ẏ

ż

ẍ

ÿ

z̈


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0





x

y

z

ẋ

ẏ

ż


+



0 0 0

0 0 0

0 0 0

1/mc 0 0

0 1/mc 0

0 0 1/mc




Fx

Fy

Fz



(5.22)

As can be found from the equations, the controllability matrix C(A,B) = [B,AB,A2B, ..., An−1B]

is full rank, indicating that it is controllable. In addition, the in-plane dynamics (x and y) are

decoupled from the out-of-plane dynamics (z). While the dynamics are controllable, the

in-plane dynamics are unstable with two eigenvalues at the origin and two at ±nj. The

out-of-plane dynamics are stable with two eigenvalues at ±nj. The in-plane dynamics are

completely controllable from Fy but not controllable from Fx, and the out-of-plane dynamics

are controllable from Fz .

The spacecraft attitude dynamics are nonlinear and cannot be evaluated using a traditional

controllability matrix test. More details on the spacecraft attitude dynamics were described
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previously by the authors in [169, 167].

While the system is completely controllable, it is possible for the translational or angular

velocity to be so high that it exceeds capabilities of the actuators. One way to deal with this

is to place limits on the maximum velocity, much like the acceleration limits in constraint 3.

Then the constraint becomes:

ϕC4 = �(ẋ ≤ ẋmax)∧(ẏ ≤ ẏmax)∧(ż ≤ żmax)∧(θ̇1 ≤ θ̇1max)∧(θ̇2 ≤ θ̇2max)∧(θ̇3 ≤ θ̇3max).

(5.23)

[C5] Spacecraft shall maintain attitude requirements for sufficient power generation (H5).

In the spacecraft domain, solar panels are often used to recharge on-board batteries which

provide power to all spacecraft subsystems. Solar panel charging may be triggered in multi-

ple ways. One way is by scheduling charging attitudes as part of the mission plan based on

projections of orbital locations and power usage. Let scheduledCHRG be an atomic proposi-

tion indicating that charging is scheduled at the present time. Another way to trigger charging

is that the depth of discharge DOD of the batteries is above some threshold value DODmax

(could also be thought of as the percentage of remaining power below a safety threshold) and

a sun safe mode is activated that minimizes power usage and maximizes charging [265] until

some charge level is achieved.

For power generation, the solar panels must have a sun incidence angle that is within a range

of angles for charging. The power P generated by the solar panels is described by

P = PIIdcosθSI , (5.24)

where PI is the ideal performance (power generated in watts per square meter), Id is inherent

degradation (nominally 0.677, generally ∈ [0.49, 0.88]), and θSI is the sun incidence angle

(angle between the surface normal n̂SP and sun incident r̂SI unit vectors [269]. The cosine

of the sun incidence angle is the cosine loss of power generated compared to a sun pointed

normal to the solar panels. The geometry for charging is depicted in Fig. 5.14.

The constraint then becomes that when the depth of discharge is above the max threshold, or
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when charging is scheduled, then the spacecraft should be have a sun incidence angle smaller

than the angle required for charging:

ϕC5 = �((DOD > DODmax) ∨ scheduledCHRG) =⇒ (θSI ≤ θCHRG). (5.25)

Figure 5.14: Relative position and velocity vectors between two objects in Hill’s reference frame.

[C6] Spacecraft shall maintain attitude requirements for data transfer with ground station (H6).

This constraint is very similar [C1], except that the antenna’s solid angle FOV for data

transfer αDATA is tighter than that required for communications. For data transfer, a rea-

sonable assumption is that αDATA is approximately 40◦ [269]. Let the atomic proposition

AP={LOSDATA, FOVDATA} be the set of events where LOSDATA indicates the ground

station is in line of sight of the satellite when the zenith angle θs is less than or equal to 90◦

(θs ≤ 90◦), and FOVDATA indicates that the fixation angle θR is smaller than half αDATA

(θR ≤ αDATA
2 ). The trace of the system trajectory is then given by the labeling function

L(θs, θR) : R2 → 2AP :

L(θs, θR) =



∅, if θs > π
2 and θR > αDATA

2

FOVDATA if θs > π
2 and θR ≤ αDATA

2

LOSDATA if θs ≤ π
2 and θR > αDATA

2

LOSDATA ∧ FOVDATA if θs ≤ π
2 and θR ≤ αDATA

2 .

(5.26)
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Then the safety requirement becomes:

ϕC6 = �scheduledDATA =⇒ (LOSDATA ∧ FOVDATA). (5.27)

Like [C1], several possible refinements may be made on this constraint.

[C7] Spacecraft shall adhere to attitude keep out zone geometries (H7).

The spacecraft adheres to attitude exclusion zone geometries when the angle between the

sensor boresight and the direction of exclusion r̂, denoted θEZ is less than half the sensor field

of view α plus a safety buffer angle β, as depicted in Fig.5.15. Then the safety requirement

becomes:

ϕC7 = �θEZ >
α

2
+ β (5.28)

Figure 5.15: Notional depiction of attitude keep out (or exclusion) zone geometry.

[C8] Spacecraft shall limit duration of unfavorable attitudes (H8).

The primary difference between [C7] and [C8] is that in [C7] it is never safe to point in an

exclusion zone direction, while in [C8] it is acceptable to point in an exclusion zone direction

as long as it is for a limited duration. Let AP = {LOSS , TS} be the set of events where

LOSS indicates that the spacecraft is in a favorable and safe attitude, and TS indicates that

if the system has been pointing in an unfavorable duration, it has been for a safe duration.

One way to define the safe line of sight is using the method in [C7]. Another way to define

the safe line of sight is with a vector XUS aligned with the sensitive spacecraft directions and
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the vector to the unfavorable attitude r̂. In this case, θR is the angle between the sensitive

spacecraft component and the unsafe attitude direction, and θUS is some buffer angle around

the sensitive spacecraft component that shouldn’t be exposed to the unsafe attitude for a long

duration of time. In the case where one face of the spacecraft is sensitive to an exclusion zone,

θUS might be 90◦. The line of sight is safe (LOSS is true) when θR > θUS , as pictured in Fig.

5.16. The pointing duration is safe (TS is true) when the amount of time that the system has

had an unfavorable attitude tUS is less than the duration safety limit TSL. These conditions

are captured by the labeling function L(LOSS , TS) : R2 → 2AP :

L(LOSS , TS) = f(θR, tUS) =



¬LOSS ∧ ¬TS if θR ≤ θUS and tUS ≥ TSL

¬LOSS ∧ TS if θR ≤ θUS and tUS < TSL

LOSS ∧ ¬TS if θR > θUS and tUS ≥ TSL

LOSS ∧ TS if θR > θUS and tUS < TSL.

(5.29)

Then the safety requirement becomes:

ϕC8 = (LOSS ∧ TS) ∨ (LOSS ∧ ¬TS) ∨ (¬LOSS ∧ TS) (5.30)

Figure 5.16: Notional depiction of attitude keep out (or exclusion) zone geometry.
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[C9] Hazard 9 is divided into 4 different safety constraints, each one of which corresponds to an

interlock condition. An interlock condition occurs when two events are mutually exclusive

(for example elevator doors do not open when the elevator is in motion, and the elevator

will not move when the doors are open). In the case of [C9], each constraint represents a

condition that would prevent an autonomous system from maneuvering as a safety measure

to prevent excessive fuel use. As constraints are created, care should be taken to minimize

the number of resulting interlock conditions. Interlock conditions should also be analyzed for

conflicts with other requirements. For example, the Mars Polar Lander included a requirement

to go into a sleep mode to conserve batteries after 24 hours without receiving a command,

which conflicted with a requirement to test alternative communication methods after 24 hours

without a command [271].

[C9a] Spacecraft shall not maneuver if an insufficient amount of time has passed since the last

maneuver (H9).

Restricting the minimum time between maneuvers provides an opportunity for a human

or computer monitor to detect a fault between firings and prevents a fault from triggering

multiple successive firings that deplete fuel reserves. This translates to an interlock

condition i being true when the time since the last maneuver Tsm is less than or equal to

some minimum time between maneuvers Tsmmin
, written as:

ϕC9a = Tsm ≤ Tsmmin
=⇒ i (5.31)

[C9b] Spacecraft shall not maneuver if the cumulative maneuver time within a past timeframe

exceeds a threshold total time (H9).

Restricting the maximum amount of time that a system can maneuver (i.e. expend

fuel) within a time window is a second fault tolerance approach. In this case, if the

cumulative maneuver time Tcm exceeds a maximum cumulative maneuver time Tcmmax
,

an interlock condition i is present.

ϕC9b = Tcm > Tcmmax
=⇒ i (5.32)
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[C9c] Spacecraft shall not maneuver if the fuel level is below an operator-specified threshold

(H9).

This constraint allows a human operator to specify a fuel level that an automated ma-

neuver cannot operate under as an additional fault tolerant approach. For this constraint,

if the fuel level fl goes below the operator specified threshold, flt, then an interlock

condition i is present.

ϕC9c = fl ≤ flt =⇒ i (5.33)

[C9d] Spacecraft shall not maneuver when total fuel reaches the end of life threshold with

buffer (H9).

Anticipated to be far below the operator’s safety threshold, another fault tolerant mea-

sure is to ensure faulty automatic maneuvers do not deplete the fuel required to deorbit

or reorbit a satellite at the end of its life. Similarly to [C9c], this is written formally as:

ϕC9d = fl ≤ flEOL =⇒ i. (5.34)

[C10] Spacecraft actuation strategy should conserve actuator use to prevent wear when possible

(H10).

As discussed in [167], this constraint is like the acceleration and velocity constraints of [C3]

and [C4]. Accelerating uses fuel or can cause excessive wear to actuators like reaction wheels

and excessive velocity on internal actuators over an extended period f time can have the same

effect. Acceleration and velocity limits are used here, assuming the limits are the same in the

positive and negative direction, which may not be the case for all situations.

ϕC10 =�(||ẍ|| ≤ ẍwear) ∧ (||ÿ|| ≤ ÿwear) ∧ (||z̈|| ≤ z̈wear)

∧ (||θ̈1|| ≤ θ̈1wear) ∧ (θ̈2|| ≤ θ̈2wear) ∧ (||θ̈3|| ≤ θ̈3wear)

∧ (||ẋ|| ≤ ẋwear) ∧ (||ẏ|| ≤ ẏwear) ∧ (||ż|| ≤ żwear)

∧ (||θ̇1|| ≤ θ̇1wear) ∧ (||θ̇2|| ≤ θ̇2wear) ∧ (||θ̇3|| ≤ θ̇3wear).

(5.35)

A summary of the safety constraint formalization is presented in Table 5.1.
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Table 5.1: Summary of formalized safety constraints in ptLTL.

Requirement ptLTL
ϕC1 �scheduledCOMM =⇒ (LOSCOMM ∧ FOVCOMM )
ϕC2Pc

�(Pc ≤ Pcmax).
ϕC2rs �||~rH || > rs.

ϕC2rv �(||~rH || > rs) ∧
(

(||~vH || < vs) ∨ (~vTH~rH ≥ 0)
)

ϕC3 �(ẍmin ≤ ẍ) ∧ (ẍ ≤ ẍmax) ∧ (ÿmin ≤ ÿ) ∧ (ÿ ≤ ÿmax)

∧(z̈min ≤ z̈) ∧ (z̈ ≤ z̈max) ∧ (θ̈1min ≤ θ̈1)
∧(θ̈1 ≤ θ̈1max) ∧ (θ̈2min ≤ θ̈2) ∧ (θ̈2 ≤ θ̈2max)

∧(θ̈3min ≤ θ̈3) ∧ (θ̈3 ≤ θ̈3max).
ϕC4set �Xsc ∈ XC
ϕC4 �(ẋ ≤ ẋmax) ∧ (ẏ ≤ ẏmax) ∧ (ż ≤ żmax)

∧(θ̇1 ≤ θ̇1max) ∧ (θ̇2 ≤ θ̇2max) ∧ (θ̇3 ≤ θ̇3max)
ϕC5 �((DOD > DODmax) ∨ scheduledCHRG)

=⇒ (θSI ≤ θCHRG).
ϕC6 �scheduledDATA =⇒ (LOSDATA ∧ FOVDATA)
ϕC7 �θEZ > α

2 + β
ϕC8 (LOSS ∧ TS) ∨ (LOSS ∧ ¬TS) ∨ (¬LOSS ∧ TS)
ϕC9a Tsm ≤ Tsmmin

=⇒ i

ϕC9b Tcm > Tcmmax
=⇒ i

ϕC9c fl ≤ flt =⇒ i
ϕC9d fl ≤ flEOL =⇒ i
ϕC10 �(||ẍ|| ≤ ẍwear) ∧ (||ÿ|| ≤ ÿwear) ∧ (||z̈|| ≤ z̈wear)

∧(||θ̈1|| ≤ θ̈1wear) ∧ (θ̈2|| ≤ θ̈2wear) ∧(||θ̈3|| ≤ θ̈3wear)
∧(||ẋ|| ≤ ẋwear) ∧ (||ẏ|| ≤ ẏwear) ∧ (||ż|| ≤ żwear)
∧(||θ̇1|| ≤ θ̇1wear) ∧ (||θ̇2|| ≤ θ̇2wear) ∧ (||θ̇3|| ≤ θ̇3wear).

5.2.4 Functional Space Traffic Management System Metamodel

A functional metamodel of the space traffic management system was developed concurrently with

spacecraft last instant collision avoidance design specifications and requirements. The sparsely pop-

ulated elements of the metamodel include the expected functional components that will interact with

an automatic collision avoidance system from the spacecraft up through informing and controlling

agencies, and down to the automatic collision avoidance system inside the controller subsystem.

This metamodel was designed to facilitate Systems Theoretic Process Analysis, so controlling func-

tion blocks are divided into a control algorithm and process model. Functional blocks that do not

control other blocks are modeled as controlled processes. Arrows pointing into each functional

block (generally also pointing down) are generally control inputs or other data, while out arrows

(generally pointing up) are feedback. Specific functional signals between components are labeled
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with a variable name and data type where applicable and reasonable. Recognizing that control in-

puts occur at multiple levels of a system, multi-level metamodels were created at various levels

of abstraction, where the highest level (level 1) depicts a system-wide metamodel, and successive

metamodels dive deeper into subsystems and lower level components.

Level 1 Metamodel

To provide context to the hypothetical automatic collision avoidance system, the level 1 metamodel

depicted in Fig. 5.17 includes a future hypothetical space surveillance network (SSN), a ground

station (GS) block, and a spacecraft (SC) block, which will each be described further in the next

several sections.

Figure 5.17: Level 1 Metamodel depicting functional relationships between a space surveillance
network, a ground station, and a spacecraft in the context of a hypothetical Space Traffic Manage-
ment system.

Level 2 Space Surveillance Network Metamodel

A level 2 metamodel centered on the SSN block is depicted in Fig. 5.18 A future hypothetical

space surveillance network (SSN) functional control block could include a current space situational

awareness agency like the Combined Space Operations Center (CSpoC), or a future space traf-

fic control agency. The SSN functional block maintains a catalog of spacecraft, updates two-line

element (TLE) sets (or some other future standard data format) describing spacecraft properties,
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independently predicts conjunctions, and issues collision warnings. The SSN may also request

ground-based observations of satellites from radars, telescopes, and other resources to maintain a

current catalog. The control output of the SSN includes updates to individual spacecraft states based

on ground observations as well as event-triggered collision warnings. The SSN can accept obser-

vation requests from spacecraft owner/operators in the ground station (GS) block, as well as data

such as onboard GPS-based position and velocity which may be higher accuracy than ground-based

measurements. While the current state of information exchange between the SSN functional block

and GS block is accomplished via emails and phone calls [47, 20], a future space traffic control

system could include alternative, less human-centric, automatic communications.

Figure 5.18: Level 2 Metamodel of a hypothetical Space Surveillance Network in the context of a
Space Traffic Management system.

Level 2 Ground Station Metamodel

The GS function block, depicted in Fig 5.19, includes a ground operator and computer where the

satellite owner/operator interacts with the SSN and spacecraft (SC). The GS may request observa-

tions of their satellite or objects at risk of colliding with their satellite and send current spacecraft

data such as GPS position and velocity to the SSN. The GS human operator provides mission defini-

tions, operations, maneuvers, and commands that are communicated through the ground computer

to the spacecraft. The GS has a process model of the global state of space traffic management

(database and picture of all the catalog of objects), local state of N satellites in the spacecraft

“neighborhood” (which may have multiple definitions such as the N objects with the closest ap-
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proach distance in a finite time horizon), the state of the spacecraft (including position, velocity,

orientation, angular rates, and states subsystems as well as other data like health monitoring), and a

model of the spacecraft. For the human ground operator, this is a mental model, while the ground

computer may maintain a simulation model of the system. Modeled data and commands may be

sent from the GS to the SC. The SC provides feedback on the sensed spacecraft, actuator and system

states, as well as local state (when capable of sensing or communicating with other objects in the

spacecraft “neighborhood,” or an echo back of the local state model for verification purposes), and

a selected trajectory when a collision avoidance maneuver is activated.

Figure 5.19: Metamodel of a hypothetical ground station in the context of a Space Traffic Manage-
ment system.

Level 2 Spacecraft Metamodel

Inside the SC are several subsystems. All data in and out pass through the communication (COMM)

subsystem and then into a central bus called the command and data handling (CDH) subsystem that

keeps a model of the mission, schedule, and tasking and then routes data and commands to other

subsystems, including the controller (CTRL).
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Figure 5.20: Metamodel of a spacecraft in the context of a Space Traffic Management system

Level 3 Spacecraft Controller Metamodel

The CTRL is anticipated to have a monitor function that evaluates the state of the spacecraft, states

of different controllers (which could include translational or rotational control for a variety of tasks,

special modes, and degraded operations), incoming commands from operators, and other system

information like whether the spacecraft is in communication with the ground, whether it is docked

to another spacecraft, whether it is in a special test mode, or if there is a critical operation ongoing

that cannot be interrupted. One of the control options for the control monitor and selector is the

automatic collision avoidance system which is envisioned to contain a model of the spacecraft states,

subsystem states, and models of the spacecraft and local object dynamics. The automatic collision

avoidance system uses this process model in a set of four proposed functional blocks: an interlock

monitor block which decides if an interlock condition exists it would be unsafe to maneuver; a

decision logic block that takes in failure states, interlock conditions, manual interrupts from the

ground, whether maneuvers have been completed, and whether a collision is imminent and outputs

the control system mode; a maneuver selection block that accepts the operator specified risk levels

and state of the spacecraft and local objects to predict when a collision may occur as well as what
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maneuver should be selected when to avoid; and a maneuver controller block which accepts the

mode of the system and the selected collision avoidance trajectory to maneuver the spacecraft for

collision avoidance. The design specifications, requirements, and interfaces in this research focus

on this automatic collision avoidance system, including the inputs and outputs to the system and

how the operator interacts with it.

Figure 5.21: Metamodel of a spacecraft controller with automatic collision avoidance function in
the context of a Space Traffic Management system

5.3 Formal Design Specifications and Requirements

In this section, formal design specifications are elicited to describe the behavior of the functional

components in the form of transitions systems and formal requirements are elicited that describe

constraints on the system design. The design specification and requirements elicitation process was

iterative, starting with an initial set of requirements inspired by aircraft collision avoidance require-

ments that were manually converted to appropriate spacecraft collision avoidance requirements,

and supplemented with additional requirements informed by a literature search and hazard analysis.

In the process of documenting and analyzing the formal requirements and design specifications in
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SpeAR additional refinements to the model were identified and implemented. An iterative design

process was used to continuously refine the handwritten formal design specifications and require-

ments, the SpeAR specifications, and the model description.

An abstraction of the STAMP model was used implemented in SpeAR to focus on the elements

that provide information to the automatic collision avoidance system. This model is intended to be

refined with additional details for any given automatic collision avoidance design and placeholders

are included where needed. The SpeAR model has three levels as depicted in Fig.

Figure 5.22: Level 1 and Level 2 SpeAR implementation with signal routing

5.3.1 Interlock Monitor Functional Component Formalization

As discussed earlier, a safety interlock is a condition in which it is unsafe to conduct a maneuver

or conducting a maneuver may result in higher risk to the vehicle. In this section, design specifica-

tions and requirements are described for a safety interlock monitor function that determines when

the interlock condition i is true. Like the last section, the design specifications and requirements

here may apply to spacecraft automatic maneuvers beyond collision avoidance such as proximity

operations or station keeping. While it may be impossible to determine if the list of conditions is

ever truly complete, identifying all the conditions explicitly is an important step to understanding

conflicts between design specifications. These requirements are inspired by the need for interlocks

in aircraft automatic collision avoidance systems.

The signals routed through the interlock monitor functional block are depicted in Fig. 5.24.

118



Figure 5.23: Level 2 and Level 3 SpeAR implementation with signal routing

Interlock Monitor Design Specification

Due to the complex nature of the interlock monitor’s transition system, a labeling function (rather

than the table used to describe the decision logic design specifications) describes the transitions

between the states of interlock present i and no interlock present ¬i. Let AP = {i,¬i} describe

whether or not an interlock exists. This intermediate function, described by Eqn. 5.36, can then

serve as a simplification. Each of the variables used in the interlock monitor are described further
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Figure 5.24: Description of the signals routed through the interlock monitor functional block.

in the requirements.

L(Phase, command, communicating, docked, priority, controllable, test, critical, Tsm , Tcm , fl) =

i (Phase == launch) ∨ (Phase == insertion) ∨ (Phase == disposal)

∨command ∨ ¬communicating ∨ docked ∨ ¬controllable ∨ test

∨critical ∨ (Tsm(m) ≤ Tsmmin
) ∨ (Tcm(DLmode) ≥ Tcmmax

)

∨(fl ≤ flt) ∨ (fl ≤ flEOL
)

¬i otherwise

(5.36)

Interlock Monitor Requirements

The natural language expression of each with corresponding rationale are listed below and the for-

mal expression of each is summarized in Table 5.2. Each interlock condition (IL) requirement

implies that the interlock condition i is true.
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Table 5.2: Formal expression of system interlock condition safety requirements in ptLTL.

Requirement
IL01a ϕIL01a = �(Phase == launch) =⇒ i
IL01b ϕIL01b = �(Phase == insertion) =⇒ i
IL01c ϕIL01c = �(Phase == disposal) =⇒ i
IL02 ϕIL02 = �command =⇒ i
IL03 ϕIL03 = �¬communicating =⇒ i
IL04 ϕIL04 = �docked =⇒ i
IL05 ϕIL04 = �priority =⇒ i
IL06 ϕIL06 = �¬controllable =⇒ i
IL07 ϕIL07 = �test =⇒ i
IL08 ϕIL08 = �critical =⇒ i
IL09 ϕIL09 = �Tsm(m) ≤ Tsmmin

=⇒ i

IL10 ϕIL10 = �Tcm(DLmode) ≥ Tcmmax
=⇒ i

IL11 ϕIL11 = �fl ≤ flt =⇒ i
IL12 ϕIL12 = �fl ≤ flEOL

=⇒ i
IL13 init =⇒ ¬i

[IL01a] The system shall set the interlock condition (i) to true when the spacecraft is in launch phase

(Phase == launch).

[IL01b] The system shall set the interlock condition (i) to true when the spacecraft is in insertion

phase (Phase == insertion).

[IL01c] The system shall set the interlock condition (i) to true when the spacecraft is in disposal phase

(Phase == disposal).

Rationale: First, it is assumed that in the lifecycle of the space vehicle, it will go through sev-

eral mission phases including: launch (from Earth, controlled by launch vehicle), insertion

(orbital insertion, controlled by launch vehicle), detumble (stop of tumbling motion after ex-

iting the launch vehicle), deployment (deploy appendages like solar panels), acquisition (ini-

tial spacecraft state determination), nominal operations (including various mission-oriented

maneuvers), safe (possible operational capability or power reduction during emergencies and

failures), other (including special modes), and disposal (procedures to “de-orbit” or “re-orbit”

satellite). An interlock during launch and insertion ensures the spacecraft will not maneuver

before it has successfully exited the launch vehicle and any other shrouding, while an inter-

lock during disposal prevents maneuvers that would use critical fuel needed for the satellite
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disposal process.

[IL02] The system shall set the interlock condition (i) to true when following manual maneuver com-

mands (command).

Rationale: It is assumed that the operator has better situational awareness than the space-

craft. It is also assumed that the manual maneuver is of higher priority of than the automatic

maneuver.

[IL03] The system shall set the interlock condition (i) to true when outside communication window

of a ground station (¬communicating).

Rationale: This requirement is intended for incremental introduction of automatic capabili-

ties, and may be removed when the automatic maneuver system heritage provides confidence

in unsupervised operation. Until that point, it is assumed that the operator should be on the

loop (i.e. supervising) and able to stop the maneuver if it is faulty; this can only be accom-

plished when the spacecraft has communication established with the ground station. It is

assumed that latency between the spacecraft and ground station is small enough that inter-

rupting a maneuver is feasible.

[IL04] The system shall set the interlock condition (i) to true when the spacecraft is docked with

another spacecraft (docked).

Rationale: It is assumed that automatic maneuvers like station keeping or collision avoidance

are not designed for a docked spacecraft configuration, and the system should go into standby.

[IL05] The system shall set the interlock condition (i) to true if a control system at a higher priority

level (priority) is actively maneuvering.

Rationale: It is assumed it is possible to assign priority to automatic maneuvers. For example,

if an automatic station keeping and automatic collision avoidance system are both on board,

it might be of higher priority to avoid collisions than to maintain station. This is to be decided

by the owner/operator.

[IL06] The system shall set the interlock condition (i) to true when the spacecraft is in uncontrollable

(¬controllable) state.
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Rationale: The system should be able to detect that the spacecraft is in an uncontrollable

state, and not attempt a maneuver that could exacerbate the system state.

[IL07] The system shall set the interlock condition (i) to true when in a test mode (test).

Rationale: It is assumed that there are on board tests or experiments that might need to be

completed and that the system would need to be locked out when in test mode.

[IL08] The system shall set the interlock condition (i) to true during operations critical processes

(critical).

Rationale: It is assumed that some “critical” level operations activities should not be inter-

rupted for an automatic maneuver. Operations should be marked “critical” sparingly. This

differs from priority in that it could be an operation that doesn’t involve maneuvering while

priority implies maneuvering.

[IL09] The system shall set the interlock condition (i) to true if an insufficient amount of time since

the last maneuver (Tsm(m) < Tsmmin
).

Rationale: This safety requirement provides is a fault tolerance measure designed to prevent

the system from maneuvering many times in quick succession. It is designed to allow the

operator time to monitor system and detect faults. The minimum time between maneuvers is

to be determined by the operators. The time since maneuver Tsm is a function of the maneuver

completed flag m.

[IL10] The system shall set the interlock condition (i) to true if the cumulative maneuver time within

a past timeframe exceeds a threshold total time (Tcm(DLmode) > Tcmmax
).

Rationale: This safety requirement also provides a fault tolerance measure that limits ma-

neuver duration time to prevent the system from expending excessive resources. It allows the

operator time to monitor system and detect faults. The cumulative time is a function of the

decision logic mode (DLmode ∈ {S, F,M,A}) and the maximum value is expected to be

set by the operator.

[IL11] The system shall set the interlock condition (i) to true if the fuel level (fl) is below a specified

threshold (flt).

Rationale: This safety requirement also provides fault tolerance, in this case to limit cumu-
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lative fuel usage over many successive maneuvers in a short time frame and allows operator

time to monitor system and detect faults. The fuel level threshold is expected to be set by the

operator. The operator may initially be very conservative with this setting and slowly reduce

it throughout the mission. The operator should be notified if this threshold is exceeded by

other operations outside of the automatic maneuver, so that they can decide to lower it.

[IL12] The system shall set the interlock condition (i) to true when fuel level (fl) reaches end of life

threshold with buffer (flEOL
).

Rationale: This safety requirement ensures that the fuel required for end of life disposal of

the spacecraft is still available. This should be set by the operators of the mission.

[IL13] The system shall set the interlock condition (i) to false for the initial state (init).

Rationale: In the initial state, the system is not experiencing an interlock until one is detected.

In the decision logic, the system state starts in standby (S) to give the system time to assess

whether an interlock or failure is present before maneuvering.

5.3.2 Ground Station Computer Functional Component Formalization

This section provides design specifications and requirements for the operator to interact with the

spacecraft and maintain situational awareness during operations through the mission computer. The

operator is located on the ground and communicates with the spacecraft through a mission computer

as depicted in Fig. 5.19. These requirements focus solely on the type of data needed for the system

to function, not human factors design requirements. However, a more thorough system specification

might include human factors considerations for the design of:

• an on/off switch for the automatic maneuver system,

• a mechanism to interrupt an automatic maneuver,

• a mechanism to manually engage an automatic maneuver,

• a mechanism to select automatic maneuver system risk level,

• how the spacecraft state and system state are displayed,

• how the maneuver initiation and termination are displayed,
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• how the need to maneuver is displayed,

• and how the operator selected variables are input and displayed.

The signals routed through the operator functional block are depicted in Fig. 5.25

Figure 5.25: Description of the signals routed through the ground station computer.

Ground Computer Design Specification

The ground computer design specification is a record update that updates a model of the spacecraft

state and spacecraft system state based on values coming from the spacecraft or operator input states.

First, the system state model is updated with data from the spacecraft, then the operator values are

updated to reflect operator input as described in the following:

Xsysstmdl
=Xsys{syspower = opon}{Phase = opphase}{p = opinterrupt}{e = opengage}

{command = opcommand}{communicating = opscheduledComm}{test = optest}

{critical = opcritical}{sysrisk = oprisklevel}{flt = opflt}{flEOL
= opflEOL

}

{Tsmmin
= opTsm}{Tcmmax

= opTcm}

(5.37)
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Ground Computer Requirements

The ground computer requirements specify how the ground station computer shall respond to oper-

ator inputs. The formalization of each requirement is included in Table 5.3.

Table 5.3: Formal expression of ground computer requirements.

Requirement ID Requirement
RGC01 ϕRGC01 = �(opon =⇒ syspower)
RGC02 ϕRGC02 = �(opphase = Phase)
RGC03 ϕRGC03 = �(opinterrupt =⇒ p)
RGC04 ϕRGC04 = �(opengage =⇒ e)
RGC05 ϕRGC05 = �(opcommand =⇒ command)
RGC06 ϕRGC06 = �(opscheduledComm =⇒ communicating)
RGC07 ϕRGC07 = �(optest =⇒ test)
RGC08 ϕRGC08 = �(opcritical =⇒ critical)
RGC09 ϕRGC09 = �(sysrisk == oprisklevel)
RGC10 ϕRGC10 = �(flt == opflt )
RGC11 ϕRGC11 = �(flEOL

== opflEOL
)

RGC12 ϕRGC12 = �(Tsmmin
== opTsm )

RGC13 ϕRGC13 = �(Tcmmax
== opTcm )

RGC14 ϕRGC14 = �(flmodel
== fl)

RGC14UL ϕRGC14UL = �(flmodel
≤ 100.0)

RGC14LL ϕRGC14LL = �(flmodel
≥ 0.0)

RGC15 ϕRGC15 = �(DLModemodel == DLMode)
RGC16 ϕRGC16 = �(fmodel == f)
RGC17 ϕRGC17 = �(imodel == i)
RGC18 ϕRGC18 = �(mmodel == m)
RGC19 ϕRGC19 = �(cmodel == c)
RGC20 ϕRGC20 = �(dockedmodel == docked)
RGC21 ϕRGC21 = �(prioritymodel == priority)
RGC22 ϕRGC22 = �(controllablemodel == controllable)
RGC23 ϕRGC23 = �(Xscstmdl

== Xsc)

[RGC01] The system shall turn off (syspower == OFF ) when the ground operator directs the system

to turn off (¬opon).

Rationale: The operator may want to turn off automatic maneuvers for certain portions of

the mission. In addition, the operator may want to turn the system off if they suspect there is

an undetected system fault. [This requirement traces to the need for an off switch inspired by

aircraft collision avoidance systems.]

[RGC01a] The system shall turn on (syspower == ON ) when the ground operator directs the system to
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turn off (opon).

Rationale: Compliments of the requirements such as RGC01a: ϕRGC01a = �(¬opon =⇒

¬syspower) may also be included in the analysis.

[RGC02] The mission phase on the spacecraft computer Phase should reflect the mission phase set in

the ground station computer opphase.

Rationale: It is assumed that the mission phases are updated on the ground and communi-

cated to the spacecraft. During certain mission phases, it is unsafe for the system to automat-

ically maneuver. [This requirement traces to the interlock conditions.]

[RGC03] The system shall set the manual interrupt from a person condition (p) to true when the ground

operator interrupts an automatic maneuver (opinterrupt).

Rationale: The operator should be able to stop an undesired automatic maneuver as a human-

on-the-loop supervisor. [This requirement traces to the need for the system to be nuisance

free, and as a fault tolerance function filling the need to do no harm, inspired by aircraft

collision avoidance systems.]

[RGC04] The system shall set the manually engage a maneuver system setting (e) to true when the

ground operator commands an automatic maneuver (opengage).

Rationale: The operator should be able to activate an automatic maneuver. This is a feature

that enables the operator to select the currently considered automatic maneuver to ensure

safe separation of space objects if they are unhappy with the state of the spacecraft. [This

requirement traces inspiration from the pilot activated recovery system in aircraft systems.]

[RGC05] The system shall execute commands (command) when the operator commands a preplanned

maneuver (opcommand).

Rationale: It is assumed that the operator will still on occasion upload scripted, manually

planned maneuvers to the spacecraft and that this planning will incorporate all available in-

formation. This setting helps to ensure situational awareness and coordination between space-

craft and operators. [This requirement traces to interlocks and system transparency.]

[RGC06] The spacecraft system shall set communication scheduled (communicating) to true when

the ground station computer has scheduled communication (opscheduledComm).

127



Rationale: Communication between the ground station and the spacecraft may not occur all

the time. When the communication is scheduled, this flag should be set to true on both the

spacecraft and at the ground station. [This requirement traces to system transparency inspired

by aircraft systems and to H1, H6, C1, and C6 in the hazard analysis.]

[RGC07] The system shall be set to the test mode (test) when the operator places the system in test

mode(optest).

Rationale: It is envisioned that the spacecraft will have a special mode for testing and that

some system functions will be disabled during the mode. [This requirement traces to system

transparency inspired by aircraft systems.]

[RGC08] The system shall execute commands (critical) when the operator commands a preplanned

maneuver (opcommand).

Rationale: When a critical operation is occurring it should be identified on the ground and

communicated to the spacecraft. It is assumed that some “critical” level operations activities

should not be interrupted for an automatic maneuver. Operations should be marked “criti-

cal” sparingly. This differs from priority in that it could be an operation that doesn’t involve

maneuvering while priority implies maneuvering. [This requirement traces to interlock con-

ditions]

[RGC09] The system shall set the risk level (sysrisk) to the operator selection(oprisklevel).

Rationale: This is analogous to how much safety buffer or margin is limited for the maneu-

ver. The operator should be able to select acceptable level of risk/uncertainty. This risk/uncer-

tainty is expected to impact the size of the reachable space, with high risk/uncertainty used to

project a smaller reachable space (such as 1− σ uncertainty ellipses versus 3− σ uncertainty

ellipses). Higher risk settings are expected to result in less false positive collisions at the risk

of false negatives, resulting in fewer collision avoidance maneuvers, but a higher risk of a col-

lision. [This requirement traces to the risk level selection need inspired by aircraft collision

avoidance systems.]

[RGC10] The system shall set the fuel level safety threshold (flt) to the operator specified fuel level

safety threshold (opflt ).
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Rationale: As a fault tolerance measure, a modifiable minimum safe fuel level will be spec-

ified by the operator to prevent the automatic system from overuse of fuel during undetected

fault. [This requirement traces to H9 and C9c in the hazard analysis.]

[RGC11] The system shall set the fuel level end of life threshold (flEOL
) to the operator specified fuel

level end of life threshold (opflEOL
).

Rationale: As a fault tolerance measure, a modifiable minimum end of life fuel level will

be specified by the operator to prevent the automatic system from overuse of fuel during

undetected fault. [This requirement traces to H9 and C9d in the hazard analysis.]

[RGC12] The system shall set the minimum time between maneuvers(Tsmmin
) to the operator specified

minimum time between maneuvers (opTsm ).

Rationale: As a fault tolerance measure, a modifiable minimum time between automated

maneuvers will be specified by the operator to prevent the automatic system from overusing

fuel during undetected fault. [This requirement traces to H9 and C9a in the hazard analysis.]

[RGC13] The system shall set the maximum cumulative maneuver time (Tcmmax
) to the operator spec-

ified maximum cumulative maneuver time (opTcm ).

Rationale: As a fault tolerance measure, a modifiable minimum cumulative maneuver time

will be specified by the operator to prevent the automatic system from overusing fuel during

undetected fault. [This requirement traces to H9 and C9b in the hazard analysis.]

[RGC14] The system shall set the modeled state of the fuel level (flmodel
) to the spacecraft’s fuel level

reading (fl).

Rationale: Keeping an updated model of the amount of fuel left in the spacecraft based on

the fuel level facilitates situational awareness for the operator. In addition, it could be used

as a fault tolerance measure, where infeasible or excessive changes in fuel levels are used

to check for faults. [This requirement traces to H9 and system transparency inspired by the

aircraft collision avoidance systems.]

[RGC14] : [RGC14UL] and [RGC14LL] The system shall limit the modeled fuel level values to feasi-

ble values.

Rationale: Due to the specification of types in SpeAR, RGC14UL (upper level) and RGC14LL
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(lower level) are added to ensure that the fuel level settings conform to the predicate on the

fuel level type, which states that it should be a value between 0 and 100.0%.

[RGC15] - [RGC23] The system shall update the spacecraft system statemodel variables (DLMode, f ,

i, m, c, docked, priority, controllable, and Xsc) set by the spacecraft with the values sent

from the spacecraft (DLMode, f , i, m, c, docked, priority, controllable, and Xsc).

Rationale: This requirement ensures updates to the spacecraft and system states are available

to the operator, who requires situational awareness and may need to react to state changes.

For instance, if protruding appendages like solar panels or drag devices are retracted prior to

a maneuver, the state of those systems should be sent to the operator. Awareness of automatic

maneuvers is critical to the operator’s understanding of the spacecraft and situational aware-

ness during operations. Also, requirements to update the model of the condition to maneuver

c is included with the intent that the automatic system degrades from an automatic maneuver

system to an advisory system when an interlock condition is present. Even if the system is not

able to maneuver, it should inform the operator that the conditions to maneuver are present.

When the system is in Standby S, it becomes an alerting system that should tell an opera-

tor when a need to maneuver is imminent even if it is locked out of maneuvering. [These

requirements trace to the need for system transparency as identified in the aircraft systems].

Ground Computer Discussion

Though outside the scope of this research, the ground station computer could include independent

estimation of the spacecraft state that it compares with the inputs from the spacecraft as an additional

fault detection capability.

5.3.3 Maneuver Controller Design Specifications and Requirements Formalization

The maneuver controller, also referred to as the reversionary (backup) controller, computes and

commands a simple, verified, control response to the state of the plant for functions such as col-

lision avoidance. The computation occurs continuously so that when the maneuver selector, also

called maneuver monitor or boundary monitor, detects a potential boundary violation (such as an

impending collision), the maneuver controller is ready to engage the preplanned maneuver.
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Do No Harm Requirements

This section describes the safety requirements on the planned and actual maneuver to prevent harm

to the system and its components. The decision logic, interlock monitor, a subset of the operator

requirements, and any failure monitor requirements developed in future work could also be consid-

ered do no harm requirements as they are designed to prevent unsafe activations of an automated

or autonomous maneuver. The do no harm requirements are further divided into two broad cate-

gories: logic and reachability. The logic-based requirements abstract the system state to a set of

atomic propositions, e.g. the system either violates acceleration constraints or it doesn’t, while the

reachability requirements specify that the system stay in a set of safe states. The logic requirements

can be verified by imposing limiters in the design while the reachability requirements may only be

verified by a complex analysis of the system state or some propagation of the system state in future

timesteps. First, the logic-based requirements are introduced and summarized in Table 5.4.

[RMC01] The automatic maneuver translational and angular acceleration shall be within payload limi-

tations.

Rationale: The spacecraft payload may have limited translational and angular accelerations

for safe operation. The payload is called out separately because the same spacecraft bus may

be used on multiple spacecraft for different payloads. [This requirement traces to the need for

“payload” acceleration limits inspired by the aircraft collision avoidance systems, as well as

to H3 and C3 in the Hazard Analysis.]

[RMC02] The automatic maneuver translational and angular acceleration shall be within structural lim-

its of the spacecraft.

Rationale: Maneuver should be below thresholds that would cause damage to structure,

including deployed appendages like solar panels, inflatables booms, and tethers. [This re-

quirement traces to the structural acceleration limit inspired by aircraft collision avoidance

systems and to H3 and C3 in the hazard analysis.]

[RMC03] The automatic maneuver translational and angular acceleration shall be within limits for spe-

cial configurations.

Rationale: There may be multiple spacecraft configurations, primarily described by the de-
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Table 5.4: Formal expression of logic-based do no harm, maneuver constraint requirements.

Requirement ID Requirement
RMC01x ϕR01x = �(−ẍpay ≤ ẍ) ∧ (ẍ ≤ ẍpay)
RMC01y ϕR01y = �(−ÿpay ≤ ÿ) ∧ (ÿ ≤ ÿpay)
RMC01z ϕR01z = �(−z̈pay ≤ z̈) ∧ (z̈ ≤ z̈pay)
RMC01r1 ϕR01r1 = �(−r̈1pay ≤ r̈1) ∧ (r̈1 ≤ r̈1pay)
RMC01r2 ϕR01r2 = �(−r̈2pay ≤ r̈2) ∧ (r̈2 ≤ r̈2pay)
RMC01r3 ϕR01r3 = �(−r̈3pay ≤ r̈3) ∧ (r̈3 ≤ r̈3pay)
RMC02x ϕR02x = �(−ẍstr ≤ ẍ) ∧ (ẍ ≤ ẍstr)
RMC02y ϕR02y = �(−ÿstr ≤ ÿ) ∧ (ÿ ≤ ÿstr)
RMC02z ϕR02z = �(−z̈str ≤ z̈) ∧ (z̈ ≤ z̈str)
RMC02r1 ϕR02r1 = �(−r̈1str ≤ r̈1) ∧ (r̈1 ≤ r̈1str)
RMC02r2 ϕR02r2 = �(−r̈2str ≤ r̈2) ∧ (r̈2 ≤ r̈2str)
RMC02r3 ϕR02r3 = �(−r̈3str ≤ r̈3) ∧ (r̈3 ≤ r̈3str)
RMC03x ϕR03x = �(−ẍsp ≤ ẍ) ∧ (ẍ ≤ ẍsp)
RMC03y ϕR03y = �(−ÿsp ≤ ÿ) ∧ (ÿ ≤ ÿsp)
RMC03z ϕR03z = �(−z̈sp ≤ z̈) ∧ (z̈ ≤ z̈sp)
RMC03r1 ϕR03r1 = �(−r̈1sp ≤ r̈1) ∧ (r̈1 ≤ r̈1sp)
RMC03r2 ϕR03r2 = �(−r̈2sp ≤ r̈2) ∧ (r̈2 ≤ r̈2sp)
RMC03r3 ϕR03r3 = �(−r̈3sp ≤ r̈3) ∧ (r̈3 ≤ r̈3sp)
RMC04x ϕRMC04x = �((xsc − xobstacle) ≥ rmin) ∨ ((xsc − xobstacle) ≤ −rmin)
RMC04y ϕRMC04y = �((ysc − yobstacle) ≥ rmin) ∨ ((ysc − yobstacle) ≤ −rmin)
RMC04z ϕRMC04z = �((zsc − zobstacle) ≥ rmin) ∨ ((zsc − zobstacle) ≤ −rmin)
RMC05x ϕRMC05x = �(ẋ ≤ ẋmax) ∨ (ẋ ≥ −ẋmax)
RMC05y ϕRMC05y = �(ẏ ≤ ẏmax) ∨ (ẏ ≥ −ẏmax)
RMC05z ϕRMC05z = �(ż ≤ żmax) ∨ (ż ≥ −żmax)

RMC05r1 ϕRMC05r1 = �(θ̇1 ≤ θ̇1max) ∨ (θ̇1 ≥ θ̇1min)

RMC05r2 ϕRMC05r2 = �(θ̇2 ≤ θ̇2max) ∨ (θ̇2 ≥ θ̇2min)

RMC05r3 ϕRMC05r3 = �(θ̇3 ≤ θ̇3max) ∨ (θ̇3 ≥ θ̇3min)

ployment state of appendages like solar panels or antennas which may be stowed for launch,

and could optionally be stowed for maneuver operations. [This requirement traces to the spe-

cial configuration acceleration limit inspired by aircraft collision avoidance systems and to

Hazard 3 and Constraint 3 in the hazard analysis].

[RMC04] The automatic maneuver shall not cause a collision with another object. i.e. The spacecraft

shall remain safely separated from the obstacle.

Rationale: As discussed in the hazards analysis, there are many ways to assure that two

spacecraft are safely separated from keeping probability of collision below threshold values,

to maintaining a minimum distance, to maintaining a combination of minimal position and
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velocity constraints. As an initial cut, the simplest of these cases, minimum distance is con-

sidered. Note that eventually it would be better to use a combination of position and velocity,

or to compute a distance, but due to the linear computation restrictions of the SpeAR tool

used in this research [This requirement traces to H2 and C2 in the hazard analysis].

[RMC05] The automatic maneuver shall maintain controllability of the spacecraft. i.e. The velocity of

the spacecraft shall be small enough to allow it to be adapted within an acceptable timeframe.

Rationale: As discussed in the hazard analysis section, it is important to keep the velocity of

the spacecraft within limits that allow the spacecraft controller to respond as needed within

reasonable timeframes. [This requirement traces to H4 and C4 in the hazard analysis.]

For reachability-based analysis, the following do no harm requirements are introduced below,

followed by a summary in Table 5.5.

Table 5.5: Formal expression of reachability-based do no harm, maneuver constraint requirements.

Requirement ID Requirement
RMC04a ϕRMC04a = �Rc ∩Rt = ∀t ∈ [0, thorizon]
RMC04b ϕRMC04b = �Rc ∩Rt = ∀t ∈ [0, thorizon], ∀∆V ≤ ∆Vplanned
RMC05a ϕRMC05a = �Rc ∩Runstable = ∀t ∈ [0, thorizon]
RMC05b ϕRMC05b = �Rc ∩Runcontrollable = ∀t ∈ [0, thorizon]
RMC07a ϕRMC07a = �(xmfin

∈ Xfinsafe
) =⇒ m

RMC07b ϕRMC07b = �xminit ∈ Xinitsafe
RMC07c ϕR19 = �utrajectory ∈ Utrajectory

[RMC04a] The automatic maneuver shall not cause a collision with another object: i.e. The projected

reachable space of the automatic maneuver shall not intersect the projected reachable space

of any object in the spacecraft neighborhood within a finite time horizon.

Rationale: Maneuver shape is assumed to consider dynamics and state of neighboring ob-

jects in its maneuver decision. [Traces to inspiration from aircraft system that track several

obstacles as well as to the hazard analysis H2 and C2.]

[RMC04b] The automatic maneuver trajectory should be passively safe: i.e. the reachable space of the

spacecraft trajectory shall not intersect the reachable space of the object being avoided for all

maneuvers (∆V ) smaller than the planned maneuver.
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Rationale: If the computer shuts down during the maneuver, it should not result in a collision.

This is really more applicable to autonomous rendezvous, proximity operations and docking

than it is to collision avoidance but is included here for completeness. [This requirement

traces to H2 and C2 in the hazard analysis.]

[RMC05a] The automatic maneuver shall retain stability of spacecraft: i.e. the reachable state of the

maneuver shall not intersect the reachable state of unstable maneuvers.

Rationale: The maneuver should not result in an unstable spacecraft state. [This requirement

traces to inspiration from aircraft collision avoidance systems that an automatic recovery

maneuver shall not place the aircraft in an uncontrollable state. It also traces to H4 and C4 in

the hazard analysis.]

[RMC05b] The automatic maneuver shall retain controllability of spacecraft: i.e. the reachable state of

the maneuver shall not intersect the reachable state of uncontrollable maneuvers.

Rationale: The maneuver should not result in an uncontrollable spacecraft state. [This re-

quirement traces to inspiration from aircraft collision avoidance systems that an automatic

recovery maneuver shall not place the aircraft in an uncontrollable state. It also traces to H4

and C4 in the hazard analysis.]

[RMC07a] The automatic maneuver shall terminate (maneuver completed m) as soon as aor the state is

in the safe set of final conditions xmfin
∈ Xfinsafe

.

Rationale: An automatic maneuver will activate when a threat condition (such as a collision,

or loss of constellation position) is present, and this requirement bounds termination time.

[This requirement traces to the hazard analysis H9.]

[RMC07b] The spacecraft shall maneuver within the safe set of initial maneuver states xminit ∈ Xinitsafe .

Rationale: There may be instances where it is only appropriate for a spacecraft to maneuver

at a specific location, such as apogee or perigee in an orbit or at a specific location relative to

another spacecraft. [This traces to the do not harm high-level requirement in aircraft collision

avoidance systems].

[RMC07c] The automatic maneuver utrajectory shall be selected from a set of predefined templates

Utrajectory.
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Rationale: Predefined templates reduce computation time. In addition, a simple maneuver

can be more easily verified and makes the system transparent to the operator. [This require-

ment traces to transparency and simple maneuver needs inspired by aircraft systems.]

Do Not Interfere

This section includes maneuver selection design specifications and requirements intended to prevent

the collision avoidance system from interfering with the primary mission of the spacecraft when

possible.

Table 5.6: Formal expression of do no harm, maneuver constraint requirements.

Requirement ID Requirement
RMC06 ϕRMC06 = �cooperative = cooperativeobstacle ≤ Tar =⇒ c
RMC07 ϕRMC07 = �(Tm ≥ Tmmax) =⇒ m
RMC08 ϕRMC08 = �(Tpm ≤ Tmmax)
RMC09 ϕRMC09 = �fmp ≤ fmmax)
RMC10 ϕRMC10 = �(DLMode == M) =⇒ (xi ≥ Xic(t)− xit) ∧ (xi ≤ Xic(t) + xit)
RMC11a ϕRMC11a = �appendage =⇒ rmodeled == rSC + rappendage
RMC11b ϕRMC11b = �¬appendage =⇒ rmodeled == rSC
RMC12 ϕRMC12 = �m =⇒ 3≤TrorXop
RMC13 ϕRMC13 = Pccollateral ≤ Pccollateralmax

Since these requirements do not assume a controller design, to capture requirements while al-

lowing for the design freedom, several assumptions and placeholders were included in SpeAR.

During the design process of an automatic maneuver system, these values should be computed and

used to replace the constant values in SpeAR. In the SpeAR specification, values for Tm, Tmmax ,

Tpm , fmp , and fmmax are assumed to be equal to constant values. Desired position and velocity

values (Xic(t)) are chosen to be arbitrarily small constants, while acceptable offsets (xit) between

desired and actual states are assumed to be excessively large constants. For example, the desired

position and velocity are for an ellipse starting at 200 meters in each direction from the origin of

the relative motion reference frame, and the allowable offset is larger than what is valid to assume

for linear dynamics. Similar assumptions and placeholders are used for operational limits on the

spacecraft state.

[RMC06] The automatic maneuver shall update expected cooperation level of the collision threat object

based on knowledge of that object.
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Rationale: If two spacecraft are trying to automatically maneuver with different rule sets,

it could lead to a hazardous situation. For example, if two spacecraft both avoid collision

by gaining altitude, both could maneuver to cause a collision. If both spacecraft have the

same software on board, they could both maneuver in a manner that is most efficient for both,

possibly maneuvering later or conserving fuel. [This requirement traces to inspiration from

aircraft systems that considered cooperation].

[RMC07] The automatic maneuver shall terminate (maneuver completed m) as soon as a maximum

maneuver duration has been met Tm > Tmmax has been met (or the state is in the safe set of

final conditions xmfin
∈ Xfinsafe

).

Rationale: An automatic maneuver will activate when a threat condition (such as a collision,

or loss of constellation position) is present, and this requirement bounds termination time.

[This requirement traces to the hazard analysis H9.]

[RMC08] The automatic maneuver shall never exceed threshold duration; i.e. the planned duration of

the maneuver Tpm is less than some maximum maneuver time requirement Tmmax

Rationale: Provides hard constraint on maneuver duration as a fault tolerance measure. Al-

lows operator time to monitor system and detect faults. [This requirement traces to the hazard

analysis H9.]

[RMC09] The predicted fuel use fmp for an automatic maneuver shall be less than the maximum fuel

use limit for any maneuver fmmax .

Rationale: Provides fault tolerance to limit amount of fuel used in any one case. Allows

operator time to monitor system and detect faults. [This requirement traces to the hazard

analysis H9.]

[RMC10] The individual elements of the spacecraft state xi at time t (xi(t)) during automatic maneuvers

DLMode == M shall be within a +/- threshold xit of the commanded value Xic(t)(timing,

position, velocity, acceleration, attitude, attitude rates, and angular accelerations).

Rationale: This design requirement describes a cyber-physical control system tolerance to

accounts for some allowable sensor and actuator uncertainty. [This requirement is inspired

by accuracy requirements in aircraft collision avoidance systems.]
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[RMC11] The automatic maneuver system shall adapt the modeled radius of the spacecraft rsc according

to the state of appendage deployment appendage.

Rationale: For example, if retracting appendages such as solar panels reduces the drag (small

drag is primarily from the upper atmosphere in low orbits or from solar radiation pressure),

and any uncertainty associated with that drag, the trajectory prediction should be updated to

reflect these changes. This requirement enables more complex automatic maneuver systems

in the future to include drag models for various trajectory predictions. [This requirement

traces to H3 and C3 in the hazard analysis.]

[RMC12] The automatic maneuver shall allow the spacecraft to stay in operational position and atti-

tude or return to operational position and attitude within interference time threshold; i.e. the

spacecraft state x(t) will return to an acceptable operational state Xop within a post maneuver

return to operations time requirement Tror.

Rationale: Depending on the system and mission, the automatic maneuver should either

have no interruption of operations, or minimal acceptable interruption of operations. [This

requirement traces to the nuisance free criteria in the aircraft collision avoidance systems].

[RMC13] The probability of a collateral collision Pccollateral resulting from an automatic maneuver shall

be less than a maximum collateral probability of collision requirement Pccollateralmax
.

Rationale: In order to maneuver, the probability of the maneuver have some collateral colli-

sion probability with some other tracked object should be minimized. The maneuver should

look ahead to see how maneuvering changes the probability of collision with other objects.

[This requirement traces to the nuisance free criteria in the aircraft collision avoidance sys-

tems].

5.3.4 Maneuver Selector Design Specifications and Requirements Formalization

The maneuver selector component determines when a collision is imminent. In some cases, it may

also select from a predefined set of candidate automatic avoidance maneuvers to recommend to the

maneuver controller. The numbering on these requirements is continued to allow for the controller

and selector to be more easily combined in some instances.

[RMS14] The system shall maneuver when the perceived time available ta is less than a time available
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Table 5.7: Formal expression of do no harm, maneuver constraint requirements.

Requirement ID Requirement
RMS14a ϕRMS14a = �ta ≤ Tar =⇒ c
RMS14b ϕRMS14b = �ta > Tar =⇒ ¬c
RMS15 ϕRMS15 = �(sysrisk == oprisklevel)
RMS16 ϕRMS16 = �rb ≤ rbmax

RMS16l ϕRMS16l = �sysrisk == LOW =⇒ rbmax == rbLOW

RMS16m ϕRMS16m = �sysrisk == MEDIUM =⇒ rbmax == rbMEDIUM

RMS16h ϕRMS16h = �sysrisk == HIGH =⇒ rbmax == rbHIGH

RMS17 ϕRMS17 = �Pc ≥ Pcmin =⇒ c
RMS18 ϕRMS18 = �robs == rsci
RMS19 ϕRMS19 = �Xobs == Xsci
RMS20 ϕRMC20 = �rmodeled == rsc

requirement threshold value Tar ; i.e. when the time available ta is less than or equal to the

time available requirement threshold Tar , the maneuver selector shall set the condition to ma-

neuver flag c to true.

Rationale: The system should only maneuver when absolutely necessary and minimize time

of service disruption. The time available requirement could be based on a variety of ap-

proaches similar to the discussion in C2 of the hazard analysis. [This requirement traces to

H2 and C2 in the hazard analysis as well as the do not interfere need inspired by aircraft

systems.]

[RMS15] The system shall set risk to ground operator determined risk acceptance thresholds.

Rationale: The operator’s risk tuning would result in larger or smaller reachable set for

collision predictions. This is a sister of the RGC09 requirement which sets this value on

the ground computer and uplinks it to spacecraft. This requirement updates the value on

the spacecraft based on the model. [This requirement traces to the risk level selection need

inspired by aircraft collision avoidance systems.]

[RMS16] The uncertainty buffer around each object shall remain below risk threshold specified for the

risk setting; i.e. the additional radius buffer rb added to each spacecraft’s radius rsc is less

than a maximum buffer radius rbmax .

Rationale: There is an assumption here that a safety buffer will be added to the radius of

the satellite to define a safe occupancy region. Without a threshold limit on uncertainty, a
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spacecraft reachable space could be too large to be useful for collision avoidance. [This

requirement traces to the risk level selection need inspired by aircraft collision avoidance

systems.]

[RMS17] (Collision Avoidance Maneuver Specific) The probability of a collision Pc shall be greater

than a probability of collision required for maneuvering Pcmin to trigger the condition to ma-

neuver.

Rationale: The probability of collision metric is used in current operations to determine if

a maneuver should be conducted to avoid a maneuver. It is assumed that some version of

probability of collision metric will play into the spacecraft maneuver selection logic. [This

requirement traces to the nuisance free operations criteria inspired by aircraft collision avoid-

ance systems.]

[RMS18] The automatic maneuver system shall accept as input the radius of obstacles within local

neighborhood rsci .

Rationale: Knowing the radius of obstacles within a neighborhood (is it a CubeSat or the

ISS?) helps to predict the reachable space and may allow closer approach distances. [This

requirement traces to the nuisance free operations criteria inspired by aircraft collision avoid-

ance systems.]

[RMS19] The automatic maneuver system shall accept as input the state Xsci (at least position, velocity,

but potentially other state information) of spacecraft in a predefined neighborhood.

Rationale: A neighborhood may be defined as a limited number of satellites that will pass

within a threshold distance and time horizon. [This requirement traces to scalability, inspired

by aircraft midair collision avoidance systems.]

[RMS20] The automatic maneuver system shall accept as an input the radius rsc of the spacecraft.

Rationale: The radius of the spacecraft for a specific configuration should factor into the au-

tomatic maneuver algorithm. [This requirement traces to special configurations requirements

in aircraft collision avoidance systems.]
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Non-Behavioral Requirements

The following design requirements should also be considered, because they describe performance

and not behavior, or the behavior is tangential to the operation of the system (such as logging data),

it is not formalized in this work. These requirements are not formalized as the method of ranking

threats and determining collisions is left for future work. All of these requirements are inspired by

aircraft collision avoidance systems. Since these requirements are not formally specified, alternative

verification approaches are recommended.

[M17] Automatic maneuver system shall use best available information to determine the need to

maneuver.

Rationale: Multiple sensing and information sources may provide similar or conflicting in-

formation. A fusion or prioritization strategy should be employed. Best available information

will need to be encoded a priori. For instance, if onboard LIDAR and uplinked TLE informa-

tion are both uploaded, LIDAR may be the best available information.

Verification Method: Inspection.

[M21] The system shall log maneuver data.

Rationale: Logging data allows for further study and improvement of automatic maneuver

systems.

Verification Method: Simulation and Hardware in the Loop Test.

[M22] The system shall transmit maneuver data to ground station within transmit time horizon.

Rationale: Some flexibility should be given to not interrupt other messages with maneuver

data; however maneuver data should be collected in ground-based repositories to prevent data

loss.

Verification Method: Simulation and Hardware in the Loop Test.

[M23] The logged data shall be recorded at a rate greater than or equal to a threshold value.

Rationale: Data rate should be selected to provide sufficient post-maneuver, ground-based

analysis, while not overtaxing spacecraft on board resources.

Verification Method: Inspection. Simulation and Hardware in the Loop Test.
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[M26] The automatic maneuver system shall adjust trajectory prediction uncertainty at uncertainty

update rate.

Rationale: For instance, in a collision avoidance scenario, reducing uncertainty, reduces

reachable set and allows objects to approach closer, and possibly a more conservative collision

avoidance maneuver to be employed.

Verification Method: Inspection, analysis, and hardware in the loop test.

[M33] The automatic maneuver system shall accept as input the state and radius of a threshold num-

ber Nsc of objects within local neighborhood.

Rationale: Being able to accept the state and radius of multiple objects helps when avoiding

a collision with one object could result in a collision with another object.

Verification Method: Inspection.

[M34] The automatic maneuver system shall predict trajectory for a threshold number of spacecraft

Nsc.

Rationale: In order to predict collisions, the system must be able to predict trajectories of

possible colliding objects.

Verification Method: Inspection.

[M35] The automatic maneuver control system redundancy shall be equivalent to the primary control

system redundancy.

Rationale: If the control system (computing hardware) is redundant, the system should have

an equivalent level of redundancy to aid in fault management.

Verification Method: Inspection.

[M36] The automatic maneuver system shall compare predicted trajectories with a rate greater than

or equal to a threshold value.

Rationale: Trajectories should be compared at a rate fast enough so that tunneling (missing a

collision prediction because the timestep is too large) doesn’t occur. In addition, it allows for

more appropriate avoidance maneuver selection criteria.

Verification Method: Inspection.

[M37] The automatic collision avoidance maneuver system shall prevent a threshold percentage of
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known historical collision cases.

Rationale: Metric for “success” of avoidance maneuver.

Verification Method: Simulation and Hardware in the Loop Test.

[M38] The automatic collision avoidance system shall avoid digital virtual obstructions (for testing

purposes).

Rationale: Testing purposes.

Verification Method: Simulation and Hardware in the Loop Test.

5.4 Analysis of Design Specifications and Requirements

5.4.1 Requirement Analysis with QVScribe

Early in the research, an initial set of 82 natural language requirements was analyzed with a trial ver-

sion of QVScribe. The requirements were evaluated using both the word processor and spreadsheet

versions of the tool. From installing the tool to initial analysis results took less than ten minutes.

The quality analysis in QVScribe identified problems with 43 of the 82 natural language require-

ments divided into 3 categories: negative imperatives, vague words, and universal quantifiers. A

summary of the findings and the decisions to edit the requirements based on them are as follows:

• negative imperatives: In 14 cases, a requirement stated that the system “shall not” rather

than “shall,” which is a requirements best practice. All 14 requirements were changed from

describing undesirable conditions to a maintaining a desirable condition or specific behavior

that should prevent an undesirable condition. For example, a requirement that stated the

system “Automatic maneuvers shall not exceed a threshold fuel consumption in a specified

time window” was changed to “Automatic maneuvers shall remain below the threshold fuel

consumption limit within a specified time window.”

• universal quantifiers: The word “no” appeared in 10 requirements, and it was decided to keep

them because they appropriately describe the necessary absence of conditions that trigger

transition between states.

• vague words: QVScribe identified “should” (6 cases), “be able to” or “be capable of” (7

cases), “its” (6 cases), “all” (2 cases), “feasible,” “reasonable,” “appropriately,” and “to re-
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flect” as vague words in the requirements. All cases of “should” were changed to “shall,”

instances of “all” were deleted, and “its” were changed to specific component names. Re-

quirements containing “be able to” or “be capable of” were modified to describe how the

capability was defined. For instance, “The ground operator shall be able to tune uncertain-

ty/risk acceptance thresholds” was updated to “The system shall set risk to ground operator

determined risk acceptance thresholds.” Cases of “feasible,” “reasonable,” “appropriately,”

and “to reflect” were changed to meet a specific criterion. For example, one requirement that

stated “as quickly as feasible” was changed to “within the time requirement.”

In the process of using QVScribe, the following strengths and weaknesses of the tool were

identified:

• Strengths

– Installation was easy and operation was intuitive.

– Quick and accurate identification of requirements. While many requirements documents

include other descriptive information, QVScribe allows for identification and analysis

of just the requirements in that document, so there is no need for a separate version of

the requirements just for analysis.

– It works with word processor and spreadsheet-based requirements which are very com-

mon requirements capture methods.

– While someone could theoretically check their document for trigger words, it is very

labor intensive and time consuming and QVScribe can check for all of them in seconds.

– Identifies and checks for consistency in terms and units.

– Identifies similar terms which helps to identify conflicts in requirements, or the use of

the same term for multiple concepts.

• Weaknesses

– Limited analysis capability for advanced users.

– The consistency of terms was not included in an analysis report output by QVScribe.

However, when this feedback was provided to QRA, they responded that the capability

was in development already for another release.
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Analysis in QVScribe was helpful to provide initial feedback on natural language requirements

before formal specification activities commenced.

5.4.2 Requirement Analysis with SpeAR

Specification in SpeAR

Several limitations in SpeAR restricted the specifications. For instance, nonlinear requirements

based on norms such as the magnitude of a distance, velocity, or acceleration were not possible,

so instead linear inequality constraints were used in their place. Also, the collision avoidance ma-

neuvers were assumed to be in translational motion only, so attitude dynamics were not specified.

However, attitude requirements were formalized as observers so that they could be utilized later

with the addition of attitude dynamics.

Several conventions and features of SpeAR were used in the specification. A definitions file was

used to capture units, types, constants, and patterns. Units were used throughout the specification

and SpeAR completed unit consistency checking. Specific types were created to describe different

variables throughout, and some used type primitives such as defining a mass type that is a real num-

ber greater than or equal to 0.0 kilograms (massT is a {i:real |i >= 0.0} kg). These

type primitives are checked as part of the logical entailment analysis. Other types took the form of

enumerated types. For instance, risk level is defined as an enumerated type with low, medium, and

high values (risklevelT is an enum LOW, MEDIUM, HIGH). More complex types are

used to store state information. For instance, the state of spacecraft within the local neighborhood

of the ownship spacecraft are stored as a record of local state records, each containing the position,

velocity, angular position, angular velocity, whether the spacecraft is cooperative, and the radius of

the spacecraft. Constant variables are captured in all capital letters and include initial conditions for

the spacecraft physical states (position, velocity, etc.) and system states (power on, risk level, etc.).

Patterns captured in SpeAR were functions like computing the minimum of 3 values, the time since

the last maneuver, or the cumulative maneuver time.

A set of specification files were generated for each component, as described in Fig. 5.26, with

connections described earlier in Fig. 5.22-5.23. Each specification file starts by importing the def-

initions file and the specifications of its subsystems. Next inputs and outputs are described as well

144



as any local state variables. A macros section is used to track previous states and specify some

of the labeling function. Assumptions are used to constrain internal state variables or input con-

ditions. Finally the design specifications and requirements are documented. A separate file was

created to capture the safety constraints to ensure logical consistency, and the constraints dealing

with translational motion were included in the main system specification.

Figure 5.26: SpeAR specification files.

Analysis

The formal requirements were documented and analyzed in SpeAR for logical consistency, logical

entailment, realizability, and in limited cases traceability. The summary of the results of this analysis

are presented in Table 5.8.

Table 5.8: SpeAR Analysis Status

Component Specified Logical Logical Realizability
Consistency Entailment

Hazards X X NA NA
Definitions X NA NA NA
ACAS (top level) X X X ?
GS (level 2) X X X X
Ground Computer (level 3) X X X ?
SC (level 2) X X X ?
Decision Logic (level 3) X X X X
Interlock Monitor (level 3) X X X X
Maneuver Selector (level 3) X X X ?
Maneuver Controller (level 3) X X X ?

The logical entailment analysis proved at every level of the design, indicating that the RTA
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architecture and design specifications satisfied the formal requirements of the system. Logical con-

sistency also proved for every file, indicating there are no conflicts in the specifications. A few of

the files were undecided in realizability, meaning that a counter example wasn’t found but SpeAR

wasn’t able to prove realizability. It is possible that these files are realizable. In addition, SpeAR

analyzed unit consistency across all variables and equations and all units are consistent throughout.

5.4.3 Evaluation of Requirements on Representative System

During a one week Tech Sprint in January 2020, the requirements presented in this chapter were

evaluated for applicability to a real RTA system for spacecraft. During the week, researchers

from the Air Force Research Laboratory (AFRL), Verus Research, and the Johns Hopkins Applied

Physics Laboratory investigated what it would take to adapt an RTA system developed and flown on

aircraft to spacecraft. During the Tech Sprint six subject matter experts from the AFRL’s Aerospace

Systems and Space Vehicles directorates evaluated applicability of the requirements for use on an

on-orbit space platform. In particular the list of requirements from the literature and the hazard

analysis were attractive because such a comprehensive list was not previously generated. No flaws

in the requirements were identified. The work presented in this dissertation and the Tech Sprint

were used to develop a research proposal for development of an on-orbit autonomy testbed. The

general architecture presented in Chapter 4 is envisioned on the proposed platform.

5.5 Summary

This chapter developed and analyzed formal design specifications and requirements for a hypothet-

ical spacecraft last instant collision avoidance system. Scoping of the collision avoidance problem

to preventing collisions during rendezvous and docking enabled the use of linearized dynamics and

assumed escape trajectories based on natural motion trajectories. By examining regulations and

standards, previous literature, conducting a hazard analysis, and considering requirements inspired

by aircraft collision avoidance systems, a set of formal design specifications and requirements were

developed. Rationale and traceability was provided for all identified hazards, safety constraints, and

requirements. For non-functional requirements that are not formalized, a verification approach was

recommended. These requirements were analyzed using two different tools. QVScribe analyzed
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the natural language requirements to identify negative imperatives, universal quantifiers, and vague

words. Then SpeAR was used to analyze logical consistency, logical entailment, realizability, and

traceability. Finally, the requirements were evaluated during a one week Tech Sprint with experts

from government and industry to determine applicability to a practical RTA for spacecraft.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

Backup safety systems like automatic collision avoidance will be vital for verifying, validating,

certifying, and assuring advanced, complex, and increasingly autonomous control system designs.

While a variety RTA-style approaches have been used to develop ad hoc and domain specific de-

signs, in this research it was hypothesized that a common RTA architecture and set of requirements

patterns would apply across domains. Additionally, it was hypothesized that this requirements could

be formally specified and analyzed using formal methods. Auto GCAS was studied for vital design

elements in Chapter 3, which were generalized in Chapter 4, and then demonstrated on a hypothet-

ical spacecraft last instant automatic collision avoidance system in Chapter 5.

6.1 Conclusions

The contributions of this dissertation are discussed below.

• A case study of the Automatic Ground Collision Avoidance System (Auto GCAS) as a suc-

cessful RTA system synthesized information from engineering and psychology studies to

identify critical components of a general aerospace automated collision avoidance RTA, form-

ing the basis for the architecture portion of the design approach. The generalized inclusion

of fault monitor, interlock monitor, and human-machine interface components in an RTA ar-

chitecture was identified as critical in the Auto GCAS system. The importance of these com-

ponents was echoed in the development of the requirements of the hypothetical spacecraft

collision avoidance system.

• While RTA, formal methods, and STAMP/STPA hazard analysis have all been done indepen-

dently, this was the first demonstration of how RTA boundary violation safety requirements

could be developed and formally analyzed based on top-down system safety analysis.

• The viability, flexibility, and capability of the proposed RTA architecture and requirements

elicitation, specification, and analysis approach was evaluated in the development of a hypo-
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thetical automatic collision avoidance system for spacecraft.

• Prior to this research, a cohesive set of requirements for automatic maneuvering of spacecraft

did not exist in regulations, standards, or literature. This dissertation is the first development

of a set of safety requirements for automated or autonomous maneuvering of spacecraft. The

requirements from the case study were evaluated for applicability to a practical spacecraft

RTA solution and found to be relevant, useful, and correct.

• This dissertation evaluated the application of two requirements analysis tools applied to the

requirements and architecture. Recommendations for improvements were communicated to

the developers of both tools.

6.2 Recommendations for Future Work

6.2.1 Integration of Multiple Backups

An area of active research for the development of RTA systems is determining the best approach

to integrate multiple safety recovery controllers. In some cases, these backup controllers protect

against different safety boundaries. For instance, Auto GCAS monitors trajectories that intersect

digital terrain elevation data and prevents ground collisions, Auto ACAS monitors the trajectories

of the ownship and other aircraft to prevents midair collisions, and Geofencing monitors the aircraft

trajectory within three dimensional physical boundaries for violations. Each of these boundaries are

disjoint; however it is possible that violations of multiple boundaries could be predicted to occur at

the same time.

AFRL’s approach to this problem has been to combine multiple RTA systems as an Integrated

solution. The Automatic Integrated Collision Avoidance System (Auto ICAS) [161, 162] integrates

Auto GCAS and Auto ACAS into a comprehensive collision avoidance system. The advantage of

this is that each system can consider possible conflicts between boundary violations and select a

better solution than either might select on their own. For instance, in a situation where an aircraft

flying close to the ground is on a collision course with another aircraft, a ground-aware Auto ACAS

will filter from the nine possible maneuvers to select maneuver that avoids the midair collision

while at the same time ensuring none of those maneuvers will fly the aircraft into the ground. An
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integrated solution has the benefit of generating a better solution than either separate system might

otherwise choose. However, this increase in performance also comes at a large increase in cost and

schedule. The Auto ICAS program was the same order of magnitude of cost of either the Auto

GCAS or Auto ACAS. It is unclear at this point whether the decision to integrate solutions with this

approach will scale linearly or exponentially with the number of systems integrated together; how-

ever, if the growth of complexity in military aircraft development and accompanying exponential

growth in program cost and schedule over the decades is any indication, the latter is more likely.

In addition, when a new system must be integrated, or an existing system upgraded, then entire

integrated solution will need to be reevaluated as part of the certification process.

An alternative approach proposed in the NASA/FAA/DoD Resilient Autonomy program is to

use an RTA network architecture where each boundary monitor and recovery controller function is

separate [272]. On the one hand, this modular approach eases certification of each individual com-

ponent and facilitates quick integration of new components and upgrades to legacy components.

On the other hand, additional stress is placed on the certification of the decision module/switching

component to determine which action to take in the case where multiple safety boundaries may be

violated at the same time. The Resilient Autonomy program’s answer to this challenge is to ap-

proach the decision like a human pilot, who responds to the most critical boundary violation first

before moving onto the next violation. They recommend that decisions be based on standards,

though the author of this work proposes this prioritization would also be a function of owner/opera-

tor/pilot preference and the output of the hazard analysis. A disadvantage of the modular approach

is that it is possible to violate a safety boundary. For instance, if a ground collision and geofence

collision were both eminent, the system might decide to engage Auto GCAS to first clear the threat

of ground collision before engaging a geofence controller and violating the geofence boundary. De-

pending on the scenario, this may or may not be acceptable. An integrated solution in the same

vein as Auto ICAS on the other hand could adjust the boundary of a geofence controller based on

awareness of Auto GCAS and Auto ACAS, or could select a collision avoidance maneuver that also

kept the aircraft within the geofence.
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6.2.2 Investigation of Taylor Flowpipes for Long Duration Orbital Uncertainty Propagation

An abstraction technique is needed in which reach-set growth is dominated by perturbation forces

(process noise including gravitational variation, atmospheric drag, and unknown forces such as ra-

diation pressure, etc.) and/or errors from measurement uncertainty (measurement noise from mea-

surement frequency & quality of measurements), rather than growth from the abstraction technique.

Taylor models and Taylor flow pipes [273, 274] are able to model the nonlinear dynamics more

directly and can be used to represent non-convex reachable sets as shown in 6.1. It may be possible

to use Taylor methods to propagate a reachable space that looks close to a Gauss von Mises Filter

as shown in Fig. B.3.

Figure 6.1: Taylor Flow pipe Example [273]

6.2.3 Fault Model Development

One of the elements of this analysis that was left for future work is the development of a fault model

and fault monitoring to inform when the system should go into a failed state. This analysis should

account for sensor faults, actuator faults, and computation faults with causes such as single event

upsets. While there are many promising approaches, linear temporal logic monitors with Bayesian

reasoning for isolation have been used in aircraft [275, 276] and compliment the formal approach

used in this thesis.
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6.2.4 Missed Detections and False Alarms

This research focused on the decision to maneuver assuming that a maneuver would be conducted

if the probability of collision was sufficiently high. However, an important design consideration in

any collision avoidance system is the acceptable rate of missed detections and false alarms, which

can also be thought of as Type 1 and Type 2 errors in statistical hypothesis testing. Hypothesis

testing is a formal way of determining whether a system meets a specification or requirement [277].

Each hypothesis tested consists of a null hypothesis Ho, such as a collision is not imminent, and

an alternative hypothesis H1, such as a collision is imminent. As summarized in Table 6.1, a false

alarm or Type I error occurs when a collision avoidance system maneuvers to avoid a collision that

would not have happened, and a missed detection or Type II error occurs when a collision avoidance

system does not maneuver to prevent a collision.

Table 6.1: Collision Detection Type I and Type II Errors

H0 H1

Collision Collision
Not Imminent Imminent

Do Not Reject H0 Type II Error
System Correct False Negative

Decides Not Missed Detection
Imminent β probability
Reject H0 Type I Error

System decides False Positive Correct
Collision False Alarm
Imminent α Probability

The rates of missed detections and false alarms tie directly to the nuisance criteria of the colli-

sion avoidance system. In Auto GCAS the acceptable rate of Type I Errors, maneuvering to avoid

a collision when a collision was not imminent, was very low because the consequence of an unnec-

essary interruption was high. Type II errors, failing to maneuver to prevent an imminent collision,

may be more acceptable depending on the risk tolerance of the application and consequences of in-

terrupting the primary function of the system. In the spacecraft domain, while a Type I error could

interrupt the primary mission of the spacecraft, the bigger consequence is the use of irreplaceable

fuel to avoid the collision. However, the consequences of a Type II error are very high in the space

domain. Collisions not only result in the loss of the spacecraft, but create an environmental hazard
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in the form of thousands of pieces of debris that take years to millennia to deorbit depending on

altitude. Future studies are required to determine acceptable α and β rates for spacecraft collision

avoidance.

6.2.5 Defining “Do Not Interfere” Criteria

Related to the topic of missed detections and false alarms is the challenge of defining nuisance-

free or “do not interfere” criteria. In Auto GCAS, an experiment was conducted to identify an

appropriate time available metric. If the system maneuvered to avoid a collision before this time, it

would be viewed as an unnecessary interruption to normal operations. While this criteria may be

applicable to a highly maneuverable aircraft, the same metric may not be appropriate for commercial

aircraft, urban air mobility, or package delivery drones. Likewise in the space domain, a criteria

developed for a highly capable autonomous satellite servicing or active debris removal satellite may

not be appropriate for other satellites with various capability levels. In the space domain, there

is a different cost/benefit analysis on the need to maneuver because fuel is a valuable and limited

resource. Defining an appropriate metric or set of metrics is a ripe area for additional research.

6.2.6 Interlocks and Deadlock Avoidance

In the process of designing interlock conditions, it is important to ensure the system is free from

deadlock conditions. A deadlock condition occurs when two or more components wait on each

other to progress [13]. A famous example of this in concurrent systems is the Dining Philosophers

example [278, 279, 280], where five philosophers share five total chopsticks and an request and

release approach must be developed so that each philosopher can eat and think infinitely often.

Each philosopher needs two chopsticks to eat and a deadlock occurs when each philosopher has

one chopstick. When designing compositional systems, like those in this research, where multiple

subsystems compute in parallel and depend on each other to progress. However, deadlocks were

not specifically analyzed in this research.

6.2.7 Different Approaches to Run Time Assurance for Inner Loop versus Outer Loop Control

The approach to RTA and requirements development introduced in this thesis was developed pri-

marily for outer loop control. As discussed in [11], RTA switching in outer loop control systems
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is intended to only occur rarely, no more than once per flight in aircraft, and only for rare events

in spacecraft. However inner loop RTAs like those developed for engine control [157, 158], may

switch controllers more frequently and a hybrid-systems analysis process may be more appropriate

to ensure frequent switching cannot lead to instability in the system.

6.2.8 Alternative Requirements Analysis methods

The analysis in this research was limited to searching for specific words in QVScribe and analysis

of linear design specifications and requirements in SpeAR. More capable formal methods tools such

as theorem provers could be applied like PVS, which has been applied to properties of detect and

avoid systems [219], or ACL2, which has been applied to aerospace design [128, 129].

6.2.9 Computational Concerns for CPS

This research primarily focused on the physics concerns for RTA. However, much research is needed

into methods to synthesize monitors that enforce desired requirements (system properties). Some

considerations have been made in this research when defining requirements so they could be an-

alyzed using open source SMT solvers. Several steps exist between this and writing executable

software for embedded systems and the topic of synthesis and software verification is left for future

work. In [256], considerations are made for signal routing, real time feedback and control concerns,

and real time communication.

6.2.10 Resolution and Accuracy

Resolution and accuracy of the collision predictions are an important factor in the design of auto-

matic systems that was not explored in this research. A study could be conducted to better under-

stand the state of the art available and practical onboard spacecraft as well as the minimal resolution

required.

6.2.11 Other practical considerations

Beyond the considerations in this thesis, several other practical design features, especially in terms

of computation and criticality should be considered. For instance, trustworthy monitors must be
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independent of what is monitored, which could be implemented in hardware and/or software iso-

lation. In addition safety criticality of different functions could dictate where they reside in both

hardware and software. Safety critical functions must be separate from lower criticality functions

and the criticality of the RTA monitor and backup much be equivalent to the critically of the primary

control system. In addition data transformation assurance should be generated to ensure that com-

plex trigonometric functions, coordinate and data transformations, error analysis are correct. Some

functions such as unit checking are completed in SpeAR.
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APPENDIX A

TIME-BASED AEROSPACE COLLISION AVOIDANCE SYSTEM TAXONOMY

As the spacecraft environment becomes increasingly congested and contested [281], the speed of

human-driven spacecraft maneuver decisions becomes insufficient to meet mission assurance re-

quirements. A growing population of millions of pieces of space debris [282] and concerns over the

possibility of cascading collisions between artificial space objects [283, 284] highlight the need for

collision avoidance as a critical component of any future Space Traffic Management (STM) system

[48, 46]. Spacecraft operations today, including collision avoidance, are developed by human teams

days in advance [20]. Automation and autonomy in spacecraft decision and control offer more ag-

ile and responsive approaches to collision avoidance, especially without limitations of latency or

ground communication windows. However, while there are handbooks [43, 42] and limited regula-

tions [45, 242] for spacecraft operation, no general guidance is provided to define requirements for

automatic or autonomous maneuvering. This appendix introduces a time-based categorization of

aerospace collision avoidance systems. While air and space examples exist for all four categories,

there are no space domain examples for the most automated two categories. Analysis of air domain

last instant collision avoidance systems provides insight into high-level requirements for short time

horizon collision avoidance in the space domain.

A.1 Related Work

Previous research has categorized conflict detection and resolution approaches, reviewed opera-

tional ground collision avoidance systems, and surveyed spacecraft conflict detection and resolu-

tion. An influential review of 68 conflict detection and resolution systems for aircraft, robotic,

automobile, and naval applications in [285] first categorized approaches based on the state propaga-

tion method (nominal, worst case, or probabilistic), then further classified using each system’s state

information dimensions [vertical (V), horizontal (H), or three-dimensional (HV) (3-D)], conflict

detection threshold, conflict resolution method (prescribed, optimized, force field, or manual), ma-

neuvering dimensions (speed change, lateral, vertical, or combined maneuvers), and management
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of multiple aircraft conflicts (pairwise or global). At the time the review was published, avoidance

maneuver execution largely relied on a human operator. In contrast, the classifications proposed

in this paper consider whether automation or a human engages the maneuver. In addition, while

the previous work focused primarily on distance metrics for detecting a collision (with time as a

secondary consideration), the categories in this paper are based on time metrics and then further

classifications are made based where computation takes place (on-board or ground-based), whether

or not the maneuver is automated, the relative level of uncertainty associated with the propagation,

and the relative amount of fuel used.

In addition, this paper is scoped to focus only on operational air and space collision avoidance

systems, or systems under development with an intention to be used in operational systems and a

strong emphasis in formal methods verification. An updated thorough review of operational ground

collision avoidance systems for aircraft was completed in [190]; however, this research focuses

on only one of these examples for last instant collision avoidance. A survey of spacecraft conflict

detection and resolution was conducted [222]; however, this research focuses on collision avoidance

maneuvering rather than the detection problems. This research focuses on conceptual requirements

for the decision and control to automatically maneuver to avoid, while related survey papers [222]

have focused more heavily on collision detection and prediction, which is often more challenging.

A.2 Taxonomy

To compare collision avoidance approaches across both the air and space domain, a time-based tax-

onomy is proposed whereby systems are divided into four categories: strategic, tactical, detect and

avoid, and last instant based on factors summarized in Table A.1. In this section, each category is

explored with a general description and common traits between the air and space domain, followed

by mature (operational system or demonstrated in a relevant environment) examples from both the

air and space domain or a discussion of applicable concepts in the absence of examples.

The four approaches to collision avoidance have different resource implications, particularly in

how far into the future collision predictions are computed, where the computation of the prediction

generally takes place, level of automation vs. human interaction, uncertainty, fuel usage and impor-

tance of minimizing mission disruption. For a scaling context between the categories, consider a
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Table A.1: Summary of Collision Avoidance Categories for both Aircraft and Spacecraft

Category Prediction Computation Automated Uncertainty Fuel Maneuver
Horizon Maneuver Use Description

Strategic long on-board no high low modification of
term or ground complex flight or

-based operational plans
Tactical medium on-board no medium medium simple maneuver

term or ground to deconflict
-based paths

Detect near on-board no (with low high simple maneuver
and term or ground exceptions) to maintain
Avoid -based minimum safe

separation
Last imminent on-board yes very very automatic
Instant term low high selection and

engagement of
preplanned
maneuver from
templates

rough comparison of representative collision avoidance system boundaries and prediction horizons

as depicted in Fig. A.1. Note strategic collision avoidance predictions are two orders of magnitude

larger than tactical collision avoidance and therefore excluded from this image. Also, the last instant

collision avoidance prediction cones are barely visible as they are less than a third the length of the

smallest, red detect and avoid safety volume. In both the air and space domain, human expertise

Figure A.1: Rough size comparison of air domain tactical Chorus “well clear” safety cylinder,
detect and avoid TCAS II traffic advisory volumes, and a last instant collision avoidance Auto
ACAS prediction cone.

(of pilots, traffic controllers, and operators) and fuel (particularly in the space domain) are valuable

and limited resources [285, 20]. In both the air and space domains, the longer the position of a sys-

tem is projected into the future, the greater the uncertainty becomes [285, 18, 222]. Maneuvering

far in advance could conserve time or fuel for a maneuver [286]; however, under high uncertainty

the maneuver would be very conservative and possibly unnecessary [287]. Decision makers must

consider mission criticality and acceptable risks when determining how far to maneuver in advance
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Table A.2: Air and Space Domain Category Time Horizon, Descriptions and Examples

Category Aircraft Domain Spacecraft Domain
Time Description Ex. Time Description Ex.

Strategic >10 modifies flight NASA >72 modify NASA
minutes plans, 4D Stratway, hours operation CARA,

waypoints NASA plan ESA
TASAR CRASS

Tactical 2-10 simple NASA 24-72 Uses CDM, 18SPCS
minutes maneuvers Chorus hours HIE plus CDM,

based on manual NASA
position, velocity maneuver CARA
vectors planning

Detect 15 Directs action AFRL SAA, 1-24 Directs None
and seconds (climb, descend, TCAS, hours action (∆V, known
Avoid to 5 etc); operator ACAS-X, Timing,

minutes (or automation) NASA etc);
executes DAIDALUS operator

executes
Last <1-30 System Auto GCAS, <1 System None
Instant seconds automatically Auto ACAS hour automatically known

maneuvers to maneuvers (focus
without seconds without of this
operator input operator input research)

of an anticipated collision [191, 192, 17, 16]. Approaches that maneuver earlier often come at the

expense of human-centered planning and instructions to maneuver but provide large margin and are

generally low risk [288]. However, optimization of the long horizon maneuver planning can lead

to more efficient paths [286]. Approaches that maneuver closer to the potential collision require

automation (where human planning is too slow) in planning and maneuvering but provide smaller

margins with higher risk [191]. Longer horizon predictions may lead decision makers to conduct

unnecessary low fuel maneuvers under high uncertainty, while shorter horizon predictions may re-

quire more aggressive, high fuel maneuvers with greater certainty of position and velocity near the

predicted collision. While slight changes to a flight plan earlier have little impact on missions such

as the transportation of goods or people, some mission-critical operations should only be disrupted

for a collision avoidance maneuver when a collision would otherwise be certain, such as in military
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applications [191, 192, 17, 16].

Timelines, descriptions, and examples of collision avoidance categories in the air and space

domain are summarized in Table A.2. Overlap in time until safety violation, collision, or closest

approach between the different categories occurs because the systems that fit into each category

feature some overlap. The times for each aircraft category are based on the types of tools that

operate in those environments; for instance, the lower limit of the detect and avoid category is based

on the lower limit of the TCAS resolution advisory time window [211]. Likewise, timelines in the

spacecraft domain reflect timelines of the tools; for instance, NASA CARA predicts 7 days out

(strategic), the 4th Air Force, 18th Space Control Squadron (18SPCS) CDMs are issued up to 72

hours in advance [18] (used to separate strategic and tactical). While spacecraft collision warnings

can occasionally be received with less than 24 hours notice [20], this is rare and difficult to manage

with human-centric processes.

A.2.1 Strategic Collision Avoidance Systems

Strategic collision avoidance approaches use long range predictions to modify complex flight or

operational plans far in advance of a potential collision, a definition inspired by [289]. These modi-

fications are done on the ground or on board [286] far enough in advance that they can generally be

optimized.

Aircraft Strategic Collision Avoidance Systems

In the aircraft domain, much of the strategic collision avoidance function is provided by air traffic

control which approves flight plans, and coordinates aircraft clearances for takeoff, departing an

airport terminal area, flying in different altitude bands to avoid weather, entering an airport termi-

nal area, and landing. Beyond human-centric planning, automated systems may aid in air domain

strategic collision avoidance.

Two examples of aircraft domain system strategic collision avoidance system are the NASA Traf-

fic Aware Strategic Aircrew Request (TASAR) program [286, 290, 291, 292] and the NASA Stratway

program [289, 293]. The NASA TASAR program optimizes routes using data from onboard flight

management systems like aircraft state and route, onboard avionics like the Automatic Dependent
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Surveillance-Broadcast (ADS-B) traffic, and ground-based data sources such as weather forecasts

and airspace restrictions. These optimized routes are presented to the aircraft pilot, who can re-

quest approval for the change from air traffic control, and on approval can follow the optimized

path. Operational studies using TASAR showed a significant average cost and time savings [294,

295]. Stratway also adjusts the route of an ownship aircraft to avoid conflicts with other aircraft or

weather. Stratway avoids other aircraft by receiving their planned routes or trajectories and moving

waypoints in the vicinity of the conflict. The system assumes the original flight plan was nearly

optimal, so slight deviations are the best resolution. While Stratway is not at the same technology

readiness level as other examples given in this paper, it is worth noting because it has been rigor-

ously developed with modularity, reusability, and formal verification of the conflict resolution in

mind.

Spacecraft Strategic Collision Avoidance Systems

In the spacecraft domain, much of the spacecraft operations, including collision avoidance, remain

human-planned and scripted [20]. One mitigation is that satellite owners and operators can select

orbits that are less congested for lower conflict frequency, or can operate in well-regulated orbits like

geostationary, where satellites stay in an assigned box of space (bounded orbital inclination, antenna

axis attitude, and longitudinal drift) to avoid conflicts [45, 288]. One of the biggest challenges in

collision avoidance for spacecraft lies in the tracking uncertainty used to detect possible collisions

[222].

The NASA Robotic Conjunction Assessment Risk Analysis (CARA) and ESA Collision Risk As-

sessment Software (CRASS) are examples of strategic collision avoidance approaches in the space-

craft domain. These tools only predict collisions and do not recommend action for specific satellites.

In response to a growing risk of collision to unmanned assets, NASA applied lessons from manned

asset conjunction assessments to the development of the CARA tool in 2004 [296]. The CARA

tool started by predicting collisions up 7 days out (later adjusted to less than 5.5 days) for low earth

orbit (LEO) and less than 10 days out for geosynchronous equatorial orbits (GEO) or highly eccen-

tric orbits (HEO). If a collision is predicted, CARA will include it in the Summary Report, which

includes the current risk, risk history, probability of collision Pc, Pc history, current miss vector,

miss distance history, relative geometry visualization, miss vector uncertainty, and secondary object
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tracking information [297]. ESA’s CRASS tool also detects high risk conjunctions in the next 7

days [21, 22, 23].

A.2.2 Tactical Collision Avoidance Systems

Tactical collision avoidance systems use medium term predictions and a single, simple (often less

optimal) collision avoidance maneuver to provide significant margin by temporarily diverting from a

planned flight path in near term encounters; like strategic, this definition is inspired by [289]. Since

tactical collision avoidance systems do not propagate position as long as strategic, the uncertainty

in a collision prediction and maneuver decision is lower. However, this uncertainty must still be

considered in the context of mission criticality and risk tolerance when deciding to maneuver. While

strategic collision avoidance systems operate with long durations and use modifications to flight

plans, tactical collision avoidance systems typically focus on maneuvers that prevent violation of a

large safety volume boundary around aircraft or spacecraft. A tactical maneuver may involve some

automation or rely heavily on human planners like air traffic controllers or spacecraft operators to

provide deconfliction instructions.

Aircraft Tactical Collision Avoidance Systems

In the aircraft domain, an example of this type of system is the NASA Chorus program [298], which

iteratively searches through nine conflict resolution algorithms to determine which satisfies desired

properties for a specific conflict scenario. If a solution is not found in an iterative approach, an

analytical solution from the ACCoRD CRSS is returned, which has been formally verified using

the PVS theorem prover [299]. This system uses a cylindrical safety volume with a 5 nautical mile

diameter and 1000 ft above and below the aircraft, as depicted in Fig. A.3, to prevent violations of

the FAA’s “well-clear” status.

Figure A.2: Notional depiction (not to scale) of the “well-clear” 5 nautical mile diameter cylindrical
volume and 1000 ft above and below the aircraft.
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Spacecraft Tactical Collision Avoidance Systems

In the spacecraft domain, conjunction assessment has been partially automated, while the risk miti-

gation maneuver analysis is conducted by a human team [20]. For collision assessment, the United

States Air Force (USAF), and more specifically the Air Force Space Command’s (AFSPC) 14th Air

Force, 18th Space Control Squadron (18SPCS) has the mission to maintain the authoritative space

catalog and to conduct the routine space situational awareness. The 18SPCS provides Conjunc-

tion Data Messages (CDMs) to warn satellite owners and operators of potential collisions up to 72

hours in advance [18]. This warning is used here as the separation between Strategic and Tactical

categories in the spacecraft domain. At this point, spacecraft owners/operators evaluate the CDM,

compare the data to their own sources and decide a course of action. At NASA, the CARA tool

[297] outputs a “RED” event when the probability of collision Pc > 8.4×10−4, “YELLOW” when

the Pc > 1× 10−7, and “GREEN” for lower probabilities. When maneuver planning is needed (for

all “RED” events), CARA outputs a High Interest Event (HIE) report with additional analysis. At

ESA, CRASS [21, 22, 23] sends high risk warnings when the probability of collision is greater than

10−4 or the closest miss distance is less than 300 meters. 18SPCS provides collision warnings when

radial separation is less than 200 meters with an overall miss distance of 1 kilometer [23]. Since the

warning sources have different thresholds, it is possible to receive a warning from one or multiple

systems.

Collision detection information is used by a team to determine a course of action that tends to

fit the single, simple collision avoidance maneuver definition of the tactical category. At NASA, the

satellite owner/operator mission management and flight operations teams use data from CARA’s

HIE report to plan and execute risk mitigating actions [297]. At ESA, once CRASS or 18SPCS

sends a conjunction assessment, the ESA space debris office (SDO) team confirms the risk contacts

the on-call Spacecraft Controller (SC), Operations Engineer (SOE), Operations Manager (SOM),

and Flight Dynamics (FD) support team by phone. The SOM and SOE perform a preliminary risk

assessment to identify the date and time of the conjunction, the radial miss distance Du, and a

probability of collision (Pc). If Pc > 10−4 or Du < 100m, then a detailed Collision Avoidance

Maneuver (CAM) assessment and maneuver scenarios are discussed by the Flight Control Team

(FCT), FD team and SDO. Once the maneuver decision has been made and coordinated through-
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out the organization, the FD team provides detailed maneuver planning including delta-V required,

thruster on-time(s), telecommand files, position on orbit, and fuel consumption. To provide an ex-

ample of how often this process occurs: in the first four years of the Cryosat-2 mission, 76 warnings

were received, resulting in 6 avoidance maneuvers with a warning time that ranged from less than

24 hours to 6 days [20]. Both the NASA and ESA processes are highly dependent on subject matter

expertise. Tactical collision avoidance approaches are the shortest time horizon currently used for

spacecraft collision avoidance, in part because the human-centered planning is too time consuming

for shorter term collision resolution maneuvers.

A.2.3 Detect and Avoid Collision Avoidance Systems

Detect and Avoid (DAA) or Sense and Avoid (SAA) systems rely on transponders or sensors (rather

than ground based traffic controllers or operators) to detect near term collisions on-board and rec-

ommend actions to maintain minimum safe separation, generally with enough time for a human

operator to engage the maneuver or stop the maneuver before it engages. The use of on-board

transponders or sensing reduces uncertainty and confirms nearer term that a collision is imminent.

There are not currently any mature detect and avoid spacecraft systems in the literature, so this

section examines air domain systems and recommends elements that may be applied to the space

domain.

Aircraft Detect and Avoid Collision Systems

In the case of manned aircraft, a DAA system provides a course of action for the human operator to

follow but does not automatically engage the maneuver. In unmanned air systems, DAA may also

automatically engage the collision avoidance maneuver. Example aircraft domain systems that fall

in this category include the Traffic Collision Advisory System (TCAS) [209, 210], the Traffic Alert

and Collision Avoidance System II (TCAS II) [211, 212], the Aircraft Collision Avoidance System

X (ACAS-X) [213, 214, 215], AFRL’s Sense and Avoid (SAA) system [210, 216, 217], and NASA’s

Detect and Avoid Alerting Logic for Unmanned Systems (DAIDALUS) program [218, 219]. For

example, TCAS and the currently deployed version, TCAS II, are designed to operate independently

of air traffic control and monitor aircraft fitted with transponders in the national air space to predict

possible mid-air collisions. TCAS-equipped aircraft use a safety volume with dimensions that are
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a function of ownship altitude as well as the range, range closure rate, altitude separation, and

vertical closure rate with respect to the collision threat aircraft. If a possible collision is detected

within a future time horizon, TCAS provides a traffic advisory. A notional depiction of the safety

volumes used for TCAS II is shown in Fig. A.3. When that time horizon is sufficiently small, TCAS

provides a resolution advisory to the pilots of both aircraft with recommended maneuvers (e.g.

altitude change) to avoid the collision. The limitation of an advisory system is that it still requires

human intervention; however, the human interaction with such a system may be to simply accept or

reject the proposed maneuver. Including a human in-the-loop requires providing the advisory early

enough that the pilot or operator can assess and respond to the situation.

Figure A.3: Notional depiction (not to scale) of the safety volumes around an aircraft using TCAS
II. Inspired by [211].

Recommended Elements for Spacecraft Detect and Avoid Collision Systems

While no operational or mature research DAA spacecraft systems are discussed in the literature,

the aircraft domain offers some possible, though potentially challenging ways forward. Aircraft

DAA systems may inspire the use of a transponder-like system with collision advisories for space-

craft. However, these transponders could present significant size, weight and power challenges.

Sensing capabilities onboard spacecraft are confined to line-of-sight (which is limited, especially

in LEO) and may require a significant portion of size, weight, and power resources to maintain an

active sensing system specifically for collision avoidance. A publish and subscribe architecture like

ROS [300] or UXAS [301], may be useful in traffic management [302] and may allow a collision
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avoidance system to leverage sensor data from sensors that are not dedicated to collision avoidance.

Another possible scenario may be the use of ground-based radar networks for sensing of near term,

but not last instant collisions; however, this would likely fall into the tactical category due to the

reliance on ground-based detection.

A.2.4 Last Instant Collision Avoidance Systems

Last instant collision avoidance systems detect collisions on-board and select from a limited set of

pre-defined maneuvers to avoid the collision. One of the defining characteristics of this category

is that maneuvers are engaged very close to the time of closest approach, often violating nominal

safe separation requirements while still preventing the collision. In the case of automated avoid-

ance maneuvers, the systems engage later than a human operator would respond. Minimal mission

impact is exchanged for higher risk. Like the detect and avoid category, no last instant collision

avoidance systems are described in the literature for the spacecraft domain. Two air domain last

instant collision avoidance systems are examined and used to recommend approaches for the space

domain, which are expanded upon in later sections. Detection in last instant collision avoidance

systems relies on the use of GPS or Inertial Navigation Systems (INS) to compute ownship position

and velocity and compare it to a digital terrain database on board (for ground collisions), or collision

threat aircraft state data from messages sent between aircraft via datalink, transponders, or sensors

like radar.

Automated Aircraft Collision Avoidance Systems

In the air domain, the Automatic Ground Collision Avoidance (Auto GCAS) and Automatic Air Col-

lision Avoidance (Auto ACAS) are examples of last instant collision avoidance systems that automat-

ically detect when a collision between the aircraft and the ground or another aircraft is imminent

and then automatically maneuvers with seconds to spare. Both of these systems are designed with

the guiding principles that the system should first do no harm (should not cause damage or harm

to aircraft or pilot), then do not interfere (perhaps the most challenging principle that the system

should allow the pilot to fly in the canyon, low to the ground, perform air combat maneuvers, and

fly in formation, only turning on when absolutely necessary), and finally prevent collisions.

Auto GCAS [303, 191, 304, 192, 270, 186, 202] is designed to prevent ground collisions and has
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Figure A.4: Notional depiction (not to scale) of Auto GCAS collision prediction.

a single avoidance maneuver: roll the aircraft to wings level and conduct a five-g pull. To predict

collisions, the aircraft uses a combination of GPS and INS to determine its location relative to a

digital terrain database map. The avoidance maneuver is projected ahead of the current aircraft

location and compared to a two-dimensional projection of the ground with buffers for uncertainty.

When a predicted collision is imminent, the system maneuvers automatically. A critical metric in

the nuisance-free (do not interfere) design criteria was the concept of time available. Zero time

available was measured as the point at which activation of the maneuver would cause the aircraft

to scrape the ground, and positive time available was measured as earlier in time from that point.

To be nuisance free, early studies [191, 192] determined the system should aim to maneuver after a

human pilot would have commanded a maneuver, often with less than a second of time available.

Figure A.5: Notional depiction (not to scale) of Auto ACAS collision prediction.

Auto ACAS [220, 204, 187] is designed to prevent midair collisions of aircraft and may select

from one of nine possible avoidance maneuvers in a selection process that considers aircraft ori-

entation, pilot rules of the road (e.g. two aircraft approaching head-on will both turn to the right),

and pilot preferences (e.g. the selection should favor maneuvers that allow pilots to maintain line

of sight with the other aircraft). Auto ACAS predicts and compares the trajectories of aircraft ap-

proximately four seconds into the future and automatically maneuvers to avoid collisions at the last

instant. Cooperative aircraft are defined as those that also carry Auto ACAS and communicate their
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position and intended avoidance maneuver over a data link. Non-cooperative aircraft may be ob-

served by other means, such as radar, and automatically avoided. One of the key differences between

cooperative and non-cooperative avoidance maneuvers is the cooperative maneuvers feature less un-

certainty allowing aircraft to avoid later and get much closer. In non-cooperative maneuvers, the

aircraft without Auto ACAS is assumed to maintain course and has a larger buffer of uncertainty, re-

sulting in an earlier activation of an automatic maneuver and larger miss distance. The consequence

of maneuvering earlier is that it may become a nuisance, interrupting the primary mission.

Spacecraft Last Instant Collision Avoidance

No operational or high-technology readiness level last instant collision avoidance systems for space-

craft are discussed in the literature. However, there are methods to predict collisions for short du-

ration projections of spacecraft [222]. The problem of computing a last instant collision avoidance

maneuver for the spacecraft domain is the focus of the remainder of this paper. Drawing inspira-

tion from the Auto GCAS and Auto ACAS system, concepts such as the use of uncertainty buffers,

metrics such as time available, reducing mission interruption, use of communication and collabora-

tion between spacecraft, and the concept of selecting from a predefined set of maneuver options are

explored in the next section.
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APPENDIX B

BACKGROUND INFORMATION ON SPACECRAFT COLLISION DETECTION AND

AVOIDANCE

The background information in this section provides context for the development of a last instant

collision avoidance system in Section 5. First, motivation is provided for developing an automatic

collision avoidance system by describing the current state of space traffic management and orbital

debris as well as the anticipated growth of these challenges. Second, historic spacecraft collision

provide context for the development of a collision avoidance system. Third, the collision prediction

and avoidance approaches used in practice are described. Fourth, methods to predict collisions are

explored, including general approaches for collision prediction, approaches to propagate uncertainty

and predict collisions for spacecraft, and methods to compare collision prediction approaches. Fifth,

collision avoidance maneuver approaches are described. Finally, related work in rendezvous and

proximity operations for spacecraft is introduced.

B.1 Motivation

As of 2014, U.S. Space Surveillance Network (SSN) tracked a growing population of around 23,000

orbiting objects larger than 10 cm in orbit around Earth, although it is estimated there are hundreds

of thousands of objects between 1 cm and 10 cm, and millions smaller than 1 cm [282]. In 1978

Kessler and Cour-Palais [283] published a paper predicting the cascading effect of artificial satellites

colliding with increased frequency, creating a debris belt around the Earth. This concept became

commonly known as “Kessler Syndrome” [284]. Due to the high velocities involved (an object

in low-earth orbit moves about 7.8 km/s and relative velocities between objects can be larger),

even collisions with small objects can cause catastrophic damage, and further magnify the problem

by creating additional space debris. Although small amounts of atmospheric drag may eventually

deorbit objects so they burn up in the Earth’s atmosphere, this process can take dozens to hundreds

of years or longer, depending on the orbit add the ballistic coefficient of the object.

In addition to the risk of collisions with existing orbiting spacecraft and debris, there is signif-
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icant growing commercial interest in large constellations of satellites, with most of those objects

concentrated in the already congested low Earth orbit (LEO) regime [305, 306]. Among the compa-

nies with approved proposals are SpaceX with proposed constellations of 4,425 and 7000 satellites1,

OneWeb with 720 satellites2, Kepler Communication with 140, TeleSat with 117 and LeoSat with

1173. This increased congestion prompted the 2018 release of the White House released Space

Policy Directive-3, National Space Traffic Management Policy [46], which discusses collision de-

tection and avoidance extensively, stating: “Timely warning of potential collisions is essential to

preserving the safety of space activities for all.” Organizations like AIAA have begun describing

the need for a comprehensive Space Traffic Management (STM) system, stating in a 2017 positions

paper [48] that collision avoidance is the “top priority and metric for success of the STM Program.”

As the spacecraft environment becomes even more congested and contested [281], more agile ap-

proaches are required and the speed of subject-matter expert driven collision avoidance decisions

may be insufficient to meet requirements.

Since 1999, the International Space Station (ISS) has conducted 25 debris collision avoidance

maneuvers, and in 2017 alone NASA assisted in the execution of 21 collision avoidance maneuvers,

one of which was to avoid the ISS [307], and the challenge of avoiding collisions is growing. Af-

fordable access to space and spacecraft technology are driving an increase in the recent and planned

launches of satellites, which poses an increased risk of satellite conjunctions. Many commercial

entities are planning to launch large numbers or constellations of satellites in the next several years.

Iridium Communications Inc. began deploying their 72-satellite constellation in 2017. SpaceX ap-

plied to launch 4,425 satellites between 2019-2025. OneWeb LLC is deploying 650 to 900 satellites

starting in 2018. LeoSat plans to launch a constellation of 78 to 108 satellites. TeleSat and Viasat

applied for launches of a 117-satellite and 24-satellite constellation, respectively [305, 306]. On

November 15, 2018 the Federal Communication Commission approved additional satellite constel-

lation proposals including a very low Earth orbit (VLEO) constellation of more than 7000 satellites

for SpaceEx. At the time of this research, Space-Track.org4 regularly publishes two-line element

(TLE) sets for almost 17,000 unclassified objects. Proposals for new launches could nearly double
1https://docs.fcc.gov/public/attachments/DOC-349998A1.pdf
2https://docs.fcc.gov/public/attachments/DOC-345467A1.pdf
3https://docs.fcc.gov/public/attachments/DOC-355102A1.pdf
4https://www.space-track.org/
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that number in the next eight years, with most of those objects concentrated in the already congested

low Earth orbit (LEO) regime.

Today spacecraft collision avoidance maneuvers are planned by human subject matter experts

and conducted days to hours in advance. As space becomes increasingly congested, new Space

Traffic Management (STM) approaches are needed, and automated techniques for spacecraft ma-

neuvering become increasingly attractive for tasks such as collision avoidance, rendezvous and

proximity operations, and station keeping. As the number of objects continues to increase both

from collisions and new launches, automating the decision and control to maneuver under a limited

set of circumstances could keep the manpower required for continued operations within reason.

B.2 Historic Spacecraft Collisions

Historic examples of spacecraft collisions provide insight into the source of the collision and pro-

vide context for spacecraft collision prediction and avoidance system design. Three major historical

events demonstrate the realistic risk and consequence of collisions. In January 2007, China tested

an anti-satellite missile by destroying the Fengyn-1C Chinese weather satellite. The test resulted

in the largest recorded creation of orbital debris, comprised of an estimated 150,000 particles and

more than 2,000 trackable pieces 10 centimeters or larger [308]. In February 2009, the Iridium 33

satellite collided with the Russian military satellite Cosmos-2251 at a relative velocity of over 10

km/s 770 km above earth, creating cloud of debris including an estimated 1000 pieces larger than

10 centimeters [262]. India’s 2019 anti-satellite test created 400 pieces of orbital debris, including

60 greater than 10 centimeters, and 24 of which are in eccentric orbits that pass through the Inter-

national Space Station’s orbital altitude, increasing risk of a small debris impact to the station by an

estimated 44 percent 5.

Several examples of collision events may be found in the literature that motivate research in

collision prediction and the development of automatic avoidance maneuvers. These include:

• collisions during rendezvous:

– 1994: collision of the Soyuz TM-17 ferry spacecraft with the MIR space station, result-

ing in only minor damage [234];
5https://www.space.com/nasa-chief-condemns-india-anti-satellite-test.html
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– 1997: collision of the Progress M-34 spacecraft with mir, causing damage to MIR solar

panels, radiators, and a hull puncture [235, 236];

– 2005: collision of DART with MUBLCOM sending MUBLCOM into a higher orbit

with no significant damages [237];

• anti-satellite missile or anti-debris tests

– 1985: destruction of the P78-1 or “Solwind” satellite seven years into the mission after

five onboard instruments have failed with the ASM-135 anti-sat missile launched from

an F-15 [309]; all debris deorbited by 2008 [261];

– 1986: collision of a satellite carrying an explosive with a Delta second stage at 192 km

to ensure rapid debris reentry [264];

– January 2007: anti-satellite missile destruction of the Fengyn-1C weather satellite gen-

erating 2,087 pieces of debris [310, 308] expected to stay in orbit up to 100 years;

– Februrary 2008: destruction of the USA-193 satellite by the SM-3 Missile, with all

debris deorbiting in 40 days [311];

– March 2019: anti-satellite test by India creating 400 pieces of debris 6;

• confirmed random, accidental collisions

– 23 December 1991: (but not recognized until 2005) collision of a defunct Cosmos nav-

igation satellite with a piece of debris from another Cosmos satellite [259];

– 24 July 1996: collision of the French Ceris Satellite with a fragment of Ariane-1 H-10

upper rocket stage [260];

– 2001: an 800kg, 2-meter diameter cylindrical Russian satellite launched in 1998 was

struck by Cosmos 926 debris [261];

– 17 January 2005: collision of a U.S. rocket body with a fragment of the third stage of a

Chinese launch vehicle [259, 261];

– February 2009: Iridium 33 and Cosmos-225 Collision [262]; and
6https://www.space.com/nasa-chief-condemns-india-anti-satellite-test.html
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– 22 January 2013: BLITS retroreflector satellite was impacted by a piece of orbital debris

[263].

In addition to the collision events listed here, several suspected but unconfirmed orbital debris

collisions have occurred, and are excluded here for brevity; however more details may be found in

[264, 261].

B.3 Current State of Practical Spacecraft Collision Prediction and Avoidance

While many approaches are proposed in the literature for spacecraft prediction and avoidance, this

research first gains context by examining the how collision prediction and avoidance is implemented

in practice by the United States and European Space Agency.

In the United States, the United States Air Force (USAF) is the primary US government or-

ganization tasked with cataloging data on all the objects in Earth orbit, and the Combined Space

Operations Center (CSpOC) currently provides Conjunction Data Messages (CDMs) to warn own-

ers and operators of potential collisions [18]. The owners and operators of satellites are responsible

for evaluating risk and potentially maneuvering their systems to avoid the collision. While some

users of CDMs like NASA and ESA have established procedures and devote significant manpower

to computing probabilities of collision, many newer commercial users have difficulty computing

collision probabilities and having confidence in the data [18]. One of the biggest challenges for op-

erators is the large number of conjunction predictions, which may increase as Earth orbit becomes

increasingly congested. In 2014, the CSpOC predecessor issued 671,727 conjunction warnings (an

average of over 1800 per day) [312], a number that may continue to increase without improvements

in conjunction prediction frameworks.

Using the 1996 collision of the French Ceris satellite and a fragment of an Ariane-1 H-10 upper

stage as a motivating example, work by [19] describes the collision prediction and risk estimation

procedures used by the ESA to decide whether to conduct and avoidance maneuver. An updated

description of the ESA conjunction assessment procedure is included in [20, 21, 22, 23], which

was briefly discussed in Section B.3. The European Space Agency’s (ESA) approach to collision

avoidance is also described in a 2014 case study of the Cryosat-2 mission in [20] and summarized

as follows:
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• The process initiates in two ways: when ESA’s Collision Risk Assessment Software (CRASS)

detects a high risk conjunction within the next 7 days, or when the when a close conjunction

warning is emailed to ESA’s Space Debris Office (SDO) from USSTRATCOM/CSpOC 72

hours or less in advance of the conjunction. CRASS sends high risk warnings when the

probability of collision is greater than 1/10000 (Pc > 10−4) or the closest miss distance is

less than 300 meters. CSpOC provides collision warnings when radial separation is less than

200 meters with an overall miss distance of 1 kilometer. Since the two warning sources have

different thresholds, it is possible to receive a warning from one or both systems. CRASS uses

USSTRATCOM TLEs and is considered less accurate than the information used by CSpOC.

• If the SDO team confirms the risk, the on-call Spacecraft Controller, Operations Engineer

(SOE) and Operations Manager (SOM) are contacted by phone. The SOE immediately calls

the on-call Flight Dynamics (FD) support team.

• The SOM and SOE perform a preliminary risk assessment to identify the date and time of the

conjunction, the radial miss distance Du, and a probability of collision (Pc).

• If Pc > 10−4 or Du < 100m, then a detailed Collision Avoidance Maneuver (CAM) assess-

ment and maneuver scenarios are discussed by the Flight Control Team (FCT), FD team and

SDO.

• Once the maneuver decision has been made and coordinated throughout the organization, the

FD team provides detailed maneuver planning including delta-V required, thruster on-time(s),

telecommand files, position on orbit, and fuel consumption.

The overall process is highly dependent on subject matter expertise. In the first four years of the

Cryosat-2 mission, 76 warnings were received, resulting in 6 avoidance maneuvers. The warning

time for cases that resulted in a maneuver ranged from less than 24 hours to 6 days.

Collision avoidance has long been discussed as a strategy for space debris mitigation [313].

Tradeoffs between retiring a satellite at the end of its planned mission or continuing use of the

satellite at the risk of collision or unexpected loss of capabilities to complete the end-of-life pro-

cedure are discussed in [288]. The ESA’s conjunction event detection, collision risk assessment,

orbit determination, orbit and covariance propagation, and process control and data handling are

presented before providing guidelines for collision avoidance maneuvers in [314]. ESA now uses a
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combination of the Debris Risk Assessment and Mitigation Analysis (DRAMA) and Assessment of

Risk Event Statistics (ARES) tools early in mission planning to determine the number of collision

avoidance maneuvers expected each year based on a risk threshold for the mission. A description

of operational collision avoidance at the ESA is presented in [287] and a statistical look at ESA

conjunction predictions is presented in [23].

In summary, spacecraft collision prediction algorithms must operate significantly faster than real

time (predicting 72 hours to 7 days in advance) to be able to predict collisions and warn satellite

operators with sufficient time to make orbital adjustments. When collisions are predicted, operators

must decide whether to maneuver their active assets. If the decision is made to maneuver, a team of

experts on the ground designs and evaluates safe maneuver trajectories.

B.4 Approaches to Collision Prediction

This section expands upon the state of collision prediction and avoidance in practice to examine

a variety of approaches to satellite collision prediction and avoidance. First, general approaches

for collision prediction are explored. Next, approaches to propagate uncertainty and predict colli-

sions for spacecraft specifically are described. Finally, and methods to compare collision prediction

approaches are discussed.

B.4.1 General Collision Prediction Approaches

Before exploring collision prediction approaches specific to spacecraft, the general collision predic-

tion problem is explored in this section. Conjunction prediction is a multi-object trajectory predic-

tion problem to show that now two satellites occupy the same location in space at the same time

within a finite time horizon and set of initial conditions. Extensive surveys are available of colli-

sion detection methods for graphics and physics applications [315]. Conjunction prediction falls

in the category of space-time intersection methods, but rather than extruding volumes in 4D, initial

work in [316] computes 4D bounding boxes of the space-time paths of objects. The observation

that splitting trajectories by time improves accuracy has been used for collision detection based

on swept volumes [317]. While adaptive time-step methods have been used [318], initial work in

[316] uses per-object time steps. Other than AABB trees, additional data structures are available
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for collision detection, such as oriented bounding-box (OBB) trees [319]. In this case, boxes can

be arbitrarily rotated, and fast collision check is done using the separating axis theorem [320]. This

can be advantageous since rotated boxes may have less over approximation than axis-aligned boxes,

so that tree query operations will become more efficient. Since spacecraft dynamics generally stay

within a plane, orienting bounding boxes relative to the plane maid reduce false positives. Interval

arithmetic [321] has been used to reason between time steps and have also been used in combi-

nation with OBB trees to provide continuous-time collision detection [322]. Other data structures

based on sphere hierarchies have also been considered [323]. In order to scale to higher dimensions

(initial work only propagates one variable per satellite) other methods would be needed to compute

occupancy intervals such as those based on reachability [324].

B.4.2 Uncertainty Propagation and Collision Predictions for Spacecraft

A variety of academic models have been used to predict spacecraft position over time, typically

using simulation-based analysis [227, 325, 326, 327, 328]. A large source of position and velocity

propagation uncertainty for near-Earth satellites is atmospheric modeling, which impacts the force

of atmospheric drag on satellites, while the biggest source of uncertainty for objects far from Earth is

solar radiation pressure [18]. When considering orbit propagation of objects, high area-to-mass ratio

(HAMR) objects (e.g. rocket bodies) have special dynamics considerations [329]. These and other

uncertainties have motivated the common use of Monte Carlo simulations for collision prediction.

For long duration predictions, the Pc is most often synthetically created by many trials using one of

two approaches [222]:

1. propagate objects forward in time and draw Monte Carlo samples from the probability distri-

bution function (PDF) at the time of closest approach (TCA) and to calculate the Pc from the

ratio of miss distances dij less than the combined radii of the two objects to the total number

of samples (less computationally burdensome and accurate), as depicted in Fig. B.1; or

2. draw Monte Carlo samples from each PDF at observation time, propagate each forward to

compute the miss distance dij between each of the objects at the time of closest approach

(TCA), to calculate the Pc from the ratio of miss distances less than the combined radii of the

two objects to the total number of samples (more computationally burdensome and accurate
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Figure B.1: Conceptual depiction of long du-
ration collision prediction where Monte Carlo
samples are selected from the probability den-
sity function at the time of closest approach af-
ter a single simulation to compute probability of
collision.

Figure B.2: Conceptual depiction of long du-
ration satellite propagation where Monte Carlo
samples are selected from the probability den-
sity function at the time of observation and
propagated forward to the time of closest ap-
proach (often forming a non-convex distribu-
tion) to compute probability of collision.

approach), as depicted in Fig. B.2.

While many prediction techniques assume Gaussian probabilities, orbital mechanics can often

feature non-Gaussian error in propagation and a variety of methods have been developed to cope

with this [223, 222]. Figure B.3 compares 3 commonly used methods to propagate this type of un-

certainty: Extended Kalman Filters (EKF), Unscented Kalman Filters (UKF), and Gauss von Mises

Filters (GVM) versus Monte Carlo. In addition, Gaussian mixtures methods have been developed

to model uncertainty at initial orbit determination [224, 225], during propagation [226], and for

collision probability between multiple objects [227]. Öpik’s formula has also been applied for colli-

sion risk assessment in LEO and MEO[330]. Some modeling techniques have taken a multi-fidelity

approach [331] to speed up prediction computations. Methods have been developed to fuse infor-

mation from two line element sets (TLEs) and radar measurements to better inform object tracking

[332]. This speaks to the general problem of fusing data from multiple information sources, which

is a significant challenge for space situational awareness. When trying to associate data from an

observation to a known or new object, [333] suggests evaluating whether it is part of a central-

ized or decentralized system, interface and quality of different data sources, capacity to manage

data sources and information, computational resources available, and acceptable level of robustness
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Figure B.3: Uncertainty Propagation Comparison of Extended Kalman Filter, Unscented Kalman
Filter, and Gauss von Mises Filter with Monte Carlo [222]

to data association errors. When considering orbit propagation of objects, high area-to-mass ratio

(HAMR) objects, like rocket bodies, have special dynamics considerations [334, 329].

A variety of methods have been developed to describe the distance or similarity between col-

lisions which can be leveraged in collision prediction [335]. A body of work by Patera in [336,

337, 338, 339] describes various collision prediction and avoidance maneuver techniques. In [336],

a computationally efficient method is presented to calculate collision probability using state vec-

tors and error covariances for a general case, applicable to satellites of irregular shape, based on

a 2D probability density function and combined hard-body of the colliding objects. In [337, 338],
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this method is improved upon for nonlinear and linear relative motion by shifting the origin of the

coordinate system and transforming the integral to one dimensional polar angle. In [339], Patera

discusses the evolution of collision prediction from using states directly, to using position error

probability density ellipsoids and determining the degree of overlap for two objects, to computing

collision position using position with covariances and object size, to spherical conflict probability

volume penetration. The conflict volume penetration collision prediction method is cited to be like

the cylindrical conflict volumes used to predict aircraft midair collisions. The work in that paper ex-

tends the spherical conflict volume to compute conflict probability for an ellipsoidal conflict volume

and analyses data from three actual collisions.

A variety of techniques have been developed for stochastic reachability and related probability

(or chance) constrained optimal control problems. Level set methods have been to approximate

solutions to stochastic necessary and sufficient Hamilton-Jacobi-Bellman equations for an optimum

in continuous time [340, 341]. Dynamic programming has been used to approximate solutions in

discrete time [342, 343]; however these approaches struggle to scale. For example, four dimensional

problems are outside the scope for dynamical programming discrete time reachability problems.

One way to address it was to assume worst-case bounded disturbances on linear dynamics [344].

Another related work is [345] which looks at two propagation methods and a variety of reach-

ability techniques with bounded uncertainty to recreate a prediction of the 2009 Cosmos-Iridium

collision. Figure B.4 shows an interval enclosure of an orbit, while Fig. B.5 shows how error

accumulated from linearizing the dynamics is added to the conservative over approximation and

can quickly grow. This highlights a big challenge: most abstractions used in verification break the

physics of spacecraft orbits (conservation of energy and/or momentum), and yield reach sets that

will eventually cover the entire state space if propagated for enough time.

B.4.3 Methods to Compare Collision Prediction Approaches

A 2011 comparison of five different satellite conjunction analysis tools was applied to detect all

conjunctions between 11,807 objects in the public space catalog with a range of less than 9 km for

a seven day period [346]. Two definitions are provided:

• Point of closest approach (PCA) Conjunction: local minimum of the range between objects
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Figure B.4: Interval Orbit Enclosure [345]
Figure B.5: Explosion due to over approximation
error accumulation [345]

such that the range d is less than or equal to some screening threshold. The minimum corre-

sponds to the root of the dot product of the position and velocity vectors.

Minimize d, ~r · ~v

such that d ≤ dth
(B.1)

• Interval Conjunction: the time interval during which the range between two objects is less

than the screening threshold.

The five tools examined were Intelligent Software Solution and Data Fusion & Neural Networks’s

Continuous Anomalous Orbital Situation Discriminator (CAOS-D), Aerospace Corporation’s Con-

junction Sieve (CSieve), the USAF Computation of Miss Between Orbits (COMBO), Aerospace

Corporation’s Satellite Orbit Analysis Program (SOAP), Analytical Graphics’ STK Advanced Con-

junction Analysis Tools (CAT) and ShadowCAT. CAOS-D, CSieve, and SOAP found the same set

of 116,746 “conjunctions” while STK Advanced CAT and ShadowCAT found slightly less. It was

found that the STK Advanced CAT, which was not designed for all versus all conjunction predic-

tion, had significant error when the Orbit Path filter was left in default, but all conjunctions were

found when it was disabled. CAOS-D only checked PCA conjunctions and Advanced CAT only

checked Interval conjunctions, while the other tools checked for both. While the tools treated satel-
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lite ephemeris data differently, and used different propagators and techniques, the agreement in

conjunction checking was remarkable.

B.5 Spacecraft Collision Avoidance Approaches

Once a collision is predicted by one of the many approaches discussed earlier, an avoidance ma-

neuver must then be determined. The space domain lacks a governing body like air traffic control;

however, individual satellite owners and operators can manually adjust operations plans. In addition,

satellite owners and operators can select orbits that are less congested for lower conflict frequency,

or can operate in well-regulated orbits like geostationary, where satellites stay in an assigned box

of space to avoid conflicts. Much of the spacecraft operations, including collision avoidance, re-

main human-planned and scripted. The current position and velocity of a satellite may be updated

by on-board GPS (if the satellite is equipped with one and enough power is available), or through

ground observations via radar, lasers, or optical telescopes. If a probability of collision is detected

up to a week in advance, modifications to the operations plan and script for the next week may be

made. For example, an optimized maneuver may be included in the operation script for the week,

or a maneuver that was planned might be canceled or delayed to avoid a collision. In some cases,

although the threat is detected up to five days in advance, operators will prefer to take no action

beyond monitoring to see if the collision threat is self-mitigated as the uncertainty shrinks with

observation updates nearer to the time of closest approach (TCA).

Orbit data quality and propagation and collision detection techniques discussed earlier are an

integral part of strategies for collision avoidance [347]. In [255], a method is introduced to maneuver

space vehicles specifically for collision probability risk reduction. The method uses a simple two-

body Kelper propagation with a gradient technique to find maneuver direction and a linear one-

dimensional root finding scheme to find maneuver magnitude. In [326], Patera borrows the concept

of conflict probability from aviation for spacecraft collision avoidance and collision risk reduction.

Several optimization techniques have also been proposed for collision avoidance strategies. The

NLP2 algorithm [348] designs minimal delta-V maneuvers to reduce collision probability when the

conjunction analysis predicts the probability of collision is above a threshold value. The algorithm

can be configured to include an optional miss distance constraint and to include uncertainties in
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individual or joint covariances. Bombardelli and Henando-Ayuso [251] developed an accurate ana-

lytical method to compute miss distance and collision probability of two objects after an impulsive

collision avoidance maneuver. The maneuver is optimized as an eigenvalue problem in the collision

“b-plane” that minimizes delta-V magnitude to maximize collision distance or minimize Gaussian

collision probability. Results show that the linearized formula is valid by showing that the J2 per-

turbation negligibly affects the accuracy of the method. Maneuvers occur a few orbits prior to the

predicted collision. Other optimal control techniques have examined using drag and solar radiation

pressure for collision avoidance [349]. Investigation into collision avoidance strategies for geosta-

tionary satellites avoiding inclined geosynchronous satellites found that radial separation between

the satellites was the most important factor in the strategy and was achieved when the avoidance

maneuver was conducted twelve hours prior to the time of closest approach [350].

In addition to optimization of collision avoidance maneuvers, robust control techniques have

been examined for collision avoidance. Model predictive control and an extended command gover-

nor were developed for robust relative motion guidance and control [351]. Techniques were consid-

ered for robust online optimization of collision avoidance maneuvers in [352]. Collision avoidance

of obstacles using safe positively invariant sets was recently developed in [221]. Nonlinear orbital

dynamics has also been considered in the case of coaxial and coplanar orbits [353] where hybridiza-

tion [354, 355] was used to analyze the nonlinear dynamics and prove collision avoidance for the

two-satellite case.

B.6 Related Research in Autonomous Spacecraft Rendezvous, Proximity Operations and

Docking

The AFRL Space Vehicles Directorate published a benchmark paper [232] for academic exploration

of autonomous spacecraft rendezvous, proximity operations, and docking (ARPOD) with an exam-

ple of in-space assembly of a space station with a “chaser” spacecraft that transports the “target”

passive components. The paper described the phases of the ARPOD mission, including the sensors

and dynamics available at each phase. In addition, the following on-board sensors are listed: radar,

GPS, Laser range finders (< 1 km), stereo cameras (<100 m). Additional orbit and rendezvous

benchmarks based on the Clohessy-Wiltshire Hill (CWH) equations have been proposed in [356,
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357]. One example of autonomous servicing of satellites is autonomous fluid fuel and component

transfer in the 2007 Orbital Express Mission by DARPA [358, 359, 360].

Stochastic reachability has been applied to characterize the initial set of states where space-

craft rendezvous and docking maneuvers could be performed safely [361]. This work focused on

close proximity maneuvers based on linearized time-invariant dynamics Clohessy-Wiltshire-Hill

equations for relative spacecraft motion. Stochastic noise was added separately to in-plane and

out-of-plane motion. The work compared particle (Monte Carlo) approximations [362, 363] to a

convex, overapproximated, reachable set [364, 365].

While not specifically designed for collision avoidance, recent developments in spacecraft rel-

ative motion control and planning [366, 367, 368, 369, 370, 351] could potentially be used for

collision avoidance and are the focus of the application of the verified run time assurance method-

ology to spacecraft in this work.

B.7 Reference Frames and Coordinate Systems

There are dozens of ways to represent spacecraft dynamics depending on the properties desired for

computation and a survey of 22 different representations are included in [371]. Just a subset is

summarized here.

Spacecraft dynamics can be uniquely described using a set of at least six variables. The two most

common approaches are position and velocity cartesian coordinates in an Earth-centered inertial

reference frame (x, y, z, ẋ, ẏ, and ż) and classic orbital elements (semi-major axis a, eccentricity

e, inclination i, argument of periapsis ω, right ascension of the ascending node Ω, and a variable

representing position in the orbit which might be time of perifocal passage T , true anomaly ν,

mean anomaly M , or time after periapsis passage tp) [372, 373]. Beyond these traditional sets the

following are also commonly used:

• The equinoctial orbital elements [374] uses the semi-major axis a and five other elements that

are functions of the classical elements and feature the advantage of freedom from singularities

in the classical orbital elements at e = 0 and i = 0orπ/2.

• The modified equinoctial elements [375, 376] uses the semi-latus rectum p and a slight varia-

tion of five other equinoctial orbital elements.
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• The unified state model [377, 378] uses a total of seven state variables to describe the state of

an orbiting objects. Three of these variables are functions of radial and angular momentum

and describe the shape of the orbit in velocity phase space. The remaining four variables

comprise a quaternion that orients the orbital plane with respect to an inertial reference frame.

While the techniques discussed above address longer duration orbital mechanics, short duration

maneuvers and relative maneuvering are often described by the Clohessy-Wiltshire model in Hill’s

frame. Hill’s frame is centered on the target spacecraft with the following coordinates: î radially

outward from the center of the earth, ĵ in the orbital velocity direction, and k̂ pointing out of the

orbital plane to complete orthogonal coordinate set. Several simplifying assumptions are often made

including: a circular orbit, point mass satellites, and no rotational motion (3 degrees of freedom

equations only). The dynamics are modeled with the Clohessy-Wiltshire Model:

ẍ = 2nẏ + 3n2x+
Fx
m

ÿ = −2nẋ+
Fy
m

z̈ = −n2z +
Fz
m

(B.2)

where x, y, and z are Cartesian positions; ρ is a 2-norm of position (ρ =
√
x2 + y2 + z2); Fx, Fy,

and Fz are thrust force applied by chaser spacecraft; µ is Earth’s gravitational constant; a is length

of the semi-major axis of the target’s orbit; n is satellite mean motion (n =
√
µ/a3); and m is the

mass of chaser spacecraft.
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[124] L. Lúcio, S. Rahman, C.-H. Cheng, and A. Mavin, “Just formal enough? automated analysis
of ears requirements,” in NASA Formal Methods Symposium, Springer, 2017, pp. 427–434.
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