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ABSTRACT

Isolating and controlling specific features in the outputs of generative models in a
user-friendly way is a difficult and open-ended problem. We develop techniques
that allow a user to generate an image they are envisioning in their head by answer-
ing a sequence of relative queries of the form “do you prefer image a or image
b?” Our framework consists of a Conditional VAE that uses the collected rela-
tive queries to partition the latent space into preference-relevant features and non-
preference-relevant features. We then use the user’s responses to relative queries
to determine the preference-relevant features that correspond to their envisioned
output image. Additionally, we develop techniques for modeling the uncertainty
in images’ predicted preference-relevant features, allowing our framework to gen-
eralize to scenarios in which the relative query training set contains noise. [1_-]

Below is a place to sign saying that you have read and approve this proposal for Alec Helbling to
pursue the College of Computing Undergraduate Research Option.

Approved:
Chris J. Rozell, Ph.D.
Professor of Electrical and Computer Engineering
Georgia Institute of Technology

Approved:

Mark Riedl, Ph.D.
Professor at the College of Computing
Georgia Institute of Technology

'Code available at https://github.com/helblazer8ll/oracle-guided-image—-synthesis


https://github.com/helblazer811/oracle-guided-image-synthesis

1 INTRODUCTION

Deep generative models have recently demonstrated the ability to transform samples from a latent
distribution to high-fidelity, photorealistic images (Oussidi & Elhassouny, 2018). However, the
latent attributes learned by these models do not necessarily correspond to intuitive features that a user
will implicitly understand. This makes rendering images with specific semantic features difficult for
end-users. In this paper, we outline a framework for using relative queries to guide the generative
process of Variational Autoencoders (VAEs) (Kingma & Welling| [2014) to allow end-users to render
images that they can envision but not directly describe.

Many image features, called relative features, are best understood by comparing pairs of images
(Parikh & Grauman, [2011). For example, most people would likely find it difficult to quantify how
angry a person appears, but are easily able to articulate which of two people appears angrier. Our
core contribution is a framework that allows a user to generate images with specific relative features
by simply answering a sequence of relative queries of the form “do you prefer image a or image
b?” We learn a Conditional VAE model (Kingma et al) 2014) which can conditionally generate
images from a set of preference-relevant “relative” features r € R* and latent reconstructive features
z € R?. The VAE encoder E: x — (r,z) learns to infer both relative features and reconstructive
features given an image, and the decoder D: (r,z) — x learns to conditionally generate images
from r and z. We then use a sequence of relative queries to deduce a distribution of user preference
over these relative features (Canal et al., |2019; [Jamieson & Nowakl] 2011)), and sample from this
distribution to generate images that match user preferences (See Figure|I).

Using relative queries unlocks the ability to model intuitive concepts that are difficult to explic-
itly describe or quantify (Thurstonel| [1927; |David, [1963). Prior work has used these types relative
comparisons to perform tasks such as learning an embedding (Agarwal et al., [2007; Tamuz et al.,
2011)) or searching an embedding of relative attributes (Canal et al.,[2019; Jamieson & Nowak, 2011}
Davenport, 2013)); we build upon this literature by using relative queries to control the generative
process of a VAE. We train our VAE to map images to a set of relative attributes using the triplet loss
(Karaletsos et al., [2015). Additionally, we train our model to be robust to noisy relative queries by
quantifying the uncertainty in the predicted relative features (Warburg et al.). We demonstrate the
success of our approach with experiments on the Morpho-MNIST dataset (Castro et al.,[2019).

2 RELATED WORKS

Our work builds off of the substantial deep generative modeling literature (Goodfellow et al.| (2014).
We use Variational Autoencoders ? as a core piece of our framework. The deep learning research
community has explored other generative modeling techniques like Generative Adversarial Net-
works (Goodfellow et al.|(2014), however GANSs are not traditionally accompanied with an encoder
function, which is necessary for much of our approach.

We incorporate additional constraints in the form of the triplet loss into our VAE objective. The
triplet loss |Schroff et al.| (2015); |[Hoffer & Ailon| (2015) and similar forms of contrastive learning
Chen et al.|(2020) have been explored in the deep learning literature. There also precedent for adding
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Figure 1: Left: The VAE is trained with a combination of unsupervised image data and weakly
supervised triplet data to encode relative attributes. Right: The paired comparison localization pro-
cedure is used to estimate a posterior distribution in latent space representing the user’s preference.
The posterior mean is then decoded to an estimate image.




additional constraints to the objective function of VAEs |[Kingma & Welling| (2014). There is even
work on incorporating triplet constraints into the loss function of VAEs Karaletsos et al.[(2015).

Metric learning or similarity learning is a sub-field of deep learning with a rich history. There
is even a rich literature of algorithms for preforming statistical inference from paired comparisons.
Algorithms like non-metric Multidimensional Scaling|Agarwal et al. (2007), Crowd Kernel Learning
Tamuz et al.|(2011), and Stochastic Triplet Embedding Van Der Maaten & Weinberger|(2012) utilize
relative comparisons to construct similarity embeddings. A considerable amount of work has been
done to try and learn similarity embeddings where different properties of similarity are isolated
Amid & Ukkonen| (2015)).

Learning a similarity embedding is very similar to learning disentangled latent representations
through unsupervised learning. We draw inspiration from the substantial disentanglement literature
Chen et al.|(2018)); [Locatello et al.| (2020); [Eastwood & Williams| (2018)). The disentanglement lit-
erature focused on learning a latent representation where different concepts are isolated into distinct
subspaces. We draw inspiration from the disentanglement literature. However, a key difference in
our approach and the unsupervised disentanglement approach is that the disentanglement literature
can only learn a similarity space with respect to features that are learn-able through unsupervised
learning, we argue that similarity learning through triplets is a much more general approach that
allows us to perform paired comparison search based on arbitrary metrics of similarity.

We build upon the preference learning literature, specifically work pertaining to learning human
preferences from paired comparisons |Davenport| (2013). Other work frames the problem of prefer-
ence learning as a Gaussian Process|Chu & Ghahramani| (2005). Additionally, we utilize techniques
for efficiently selecting paired comparison queries to present to users |Canal et al.[(2019).

The most directly comparable work to ours is work that attempts to allow fine-grained control over
generative models. Many of these techniques attempt to learn disentangled representations with
respect to meaningful attributes in data [Plumerault et al.| (2020); Karras et al.| (2019). Other work
attempts to connect language models to image generation models [Radford et al.| (2021)). Our work
leverages weak supervision in the form of triplets to learn a latent space that aligns with aspects of
similarity, which is most similar to [Makhzani et al.| (2016). However, we specifically focus on the
task of making the VAE conducive to efficient human interpretable search, which to the best of our
knowledge has not been done before.

Final Search Estimates

Algorithm 1 Relative Comparison Search

Input: Decoder D(r, z), Oracle O(q),
Response Model R, Query Selector S,
Number of Queries T'
Initialize query set @ = {}
fori=1toT do
Generate query from q; = {p,n} from S
Answer q; with the oracle o; = O(q;)
Add the answered query to QQ = Q U o;
Find p(r. | Q) with response model R
end for
Sample an arbitrary vector z ~ N (0, I,,)
Decode the posterior mean X* = D(r,,,z)
Output: decoded image X*
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Figure 2: Over eight trials we show 1) the
decoded final estimate vector, 2) the Nearest
Neighbor image with relative features closest to
our final estimate vector, and 3) the ground truth
image. We use the Bayesian VAE model with
noise using the triplet response model. Both the
decoded and nearest neighbor images seem sim-
ilar to the ground truth.

3 DEDUCING USER PREFERENCES FROM RELATIVE QUERIES

We first describe our method for determining the relative features r, corresponding to a user’s envi-
sioned image x*. We search the space of relative features r by asking a sequence of queries

Q= {(x;,xfl) | x;) < x%, for N queries}, (1)



where x}, < x}, indicates that in the i query the user prefers X/ to x},. We assume that x}, < x},
implies that |r}, —r.| < [r}, —r.]| in relative attribute space. Following Canal et al.{(2019), we model
the probability that a user will select an image with relative features r;, over an image with features
r; using the logistic response model

p(Qi | 1) = o(k(| v — 1), |* = [ rx =1, [*)), 2)

where o(z) denotes the logistic function and k is a tuneable noise constant corresponding to the
confidence in a user responses. Using the information from the queries (), we infer a probability
distribution p(r. | @) over relative features. We model the relationship between a single query
response and r, through the posterior p(Q; | r.) where Q; = (x},, x}, ), and combine the information
from multiple queries using a recursive application of Bayes rule. Using MCMC with a Gaussian
prior p(r) ~ N(0, I,.), we sample from p(r.|Q) to predict r.. We concatenate r, with an arbitrary
vector z ~ N (0, I,) and decode this using our VAE decoder to generate an approximation of the

user’s envisioned image X*. This procedure is shown in Algorithm and Figure

4 RELATIVE ATTRIBUTE CONDITIONAL VARIATIONAL AUTOENCODER

We now describe our procedure for training the Conditional VAE (Kingma et al.,[2014) that allows us
to model the conditional likelihood py(x | r, z), which we can use to generate images x conditioned
on relative features r and reconstructive features z. We restrict the relative attributes r to be a
contextually relevant set of features; in a face generation task, for example, this may include hair
or eye color. The reconstructive features z encode properties necessary to generate images (such as
lighting or pose), but which a user has no particular interest in controlling.

There is no guarantee that an unsupervised VAE will by default learn to encode relative features r
so that points are ordered in a way that respects a user’s perceptual similarity. To solve this problem
we optimize a variation of the triplet loss (Schroff et al.,2015) (Figure|I]), which allows us to learn
an embedding of features r that satisfy triplet constraints of the form “anchor x, is more similar
to a positive image X, than a negative image X,.” A core benefit of using triplet comparisons is
that they can be indirectly inferred from easily-available sources like search engine mouse click
data (Joachims| 2002} Joachims et al., [2007), so they can be applied in more general contexts than
explicit quantitative attributes. We add the triplet loss L;(ra, rp, Iy ) to our objective function as

Egy(zrix) [l0gpo(x | 2,1)] = D 1(qy (2,7 | x) || p(2, 1)) — Li(ra, rp, Tn). 3)

5 RELATIVE COMPARISON SEARCH WITH UNCERTAINTY QUANTIFICATION

We found that when data is limited or noisy it is very rarely feasible to perfectly learn an embedding
that matches relative features r. However, the logistic response model of Equation [2] assumes we
know the exact features r for each image. If our VAE encoder incorrectly predicts features r for
a pair of query images (x,,x,) the logistic response model can be overconfident in the predicted
locations of the user’s preferred features r,, leading to the generation of images that do not satisfy
the user’s preferences. We address this problem by modeling the uncertainty in predicted relative
features r. For each image x we use our VAE encoder to predict a distribution N(r,, ), using
the variance r,2 to encode the uncertainty of the exact relative features corresponding to an image.
To perform this uncertainty quantification, we optimize the Bayesian Triplet Loss (BTL) (Warburg
et al.). Using the BTL we represent each triplet item as a Gaussian over relative attributes r. We
predict the distribution for a triplet t = (r,,rp,r,,) as

p(t is satisfied) = p(T < 0) = p(|r, — rp|* — |ra — r,|* < 0). 4)

Here 7 is a random variable representing |r, — rp|? — |r, — r,|? given the parameters of the
distributions of the positive r, = N (p,, ps), negative r,, = N'(n,, n,), and the ideal point r, =
N(riy, 1) (derivation in Appendix . p(T < 0) corresponds to the probability that r,, is closer
to r, than r,,. We optimize the negative log likelihood of p(T < —m)

Li(ra,rp,ry) = —log(p(T < —m)), )



Table 1: Network architecture reconstruction performance and triplet loss performance

Percentage of Triplets Satisfied Reconstruction Error
Without Noise | With Noise | Without Noise | With Noise
Bayesian 91.6 82.3 0.036 0.048
Traditional 89.8 78.7 0.037 0.050
Unsupervised 77.9 76.9 0.034 0.034

where m corresponds to the triplet margin (Warburg et al.). We replace the logistic response model
with a response model with uncertainty quantification, and model the posterior p(Q; | r.) as

p(user chooses r, over r,, givenr,) = p(T < 0) ~ p(|rs —1,|* — [rx — 1, < 0).  (6)

This model, which we call the Bayesian Triplet Response Model (BTRM), allows us to account
for the uncertainty in the predicted relative attributes r. This allows our technique for predicting
p(r«|Q) to be robust to imperfect predictions of an image’s relative attributes r.

6 EXPERIMENTS

The focus of our experiments is to 1) demonstrate that we can generate images that align with user
preferences, and 2) investigate the impact of noise in the triplet dataset on localization performance.
We use the simple MorphoMNIST dataset, which consists of MNIST-like digits associated with
metadata features (such as slant and thickness) that allow us to quantitatively evaluate the perfor-
mance of our method (Castro et al., [2019). After using this metadata to generate training triplets,
we withhold the exact quantitative values from the model and use it only for testing purposes. We
train each of our models using the objective of Equation 3} for simplicity, our experiments use only
the digit 1, a six-dimensional relative attribute space, and a zero-dimensional reconstructive space.
We compare the localization performance of three objective functions: the BTL (“Bayesian”), the
traditional triplet loss (“Traditional”), and the unsupervised VAE objective with no triplet constraint
(“Unsupervised”). We also investigate two response models during our localization task: the Logis-
tic Response Model and the Bayesian Triplet Response Model. Finally, we investigate the impact
of noise in the triplet collection process by adding Gaussian noise to the MorphoMNIST metadata,
then generating triplet data from the noisy metadata. We follow Algorithm|T]using a synthetic oracle
meant to simulate a user, and ask 30 queries for 20 trials. See Appendix [B|for experimental details.

Our quantitative results (Figure |3) show that the “Bayesian” model with the triplet response model
outperforms other approaches at the localization task. As expected, the logistic response model
fails in the presence of noise compared to the triplet response model. In the noiseless setting the
triplet response model still outperforms the logistic model, likely due to better alignment between
the triplet objective and triplet response model. We believe the unsupervised model gets closer to
the ground truth for several queries and then diverges because the response model is overconfident
in its estimate of p(r.|@;), which causes convergence to incorrect local minima. It is interesting that
the triplet response model works relatively well even for the Unsupervised and Traditional objective
functions, despite those functions not attempting to quantify uncertainty. This is likely due, in part,
to the encoded means for each image being accurate. There may also be a degree of unsupervised
uncertainty quantification from the VAE objective. While we can achieve satisfactory qualitative
localization performance (Figure[2)), there is a slight trade-off in reconstructive performance for the
supervised models, particularly in the presence of noise.

7 DISCUSSION

Our experiments provide a preliminary demonstration of our framework’s efficacy in allowing users
to guide the image synthesis process of VAEs using relative comparisons. There are several avenues
for future work. First, when using higher-dimensional latent spaces we found that information
from the relative subspace often “leaked” into the reconstructive subspace, causing the decoder to
ignore the relative features in favor of the reconstructive features, and leading to poor generative
performance. One potential solution to this problem may be to use cycle consistency (Jha et al.,
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Figure 3: Shows the search performance of various VAE objective functions, response models,
and noise conditions. The vertical axis represents the Metadata Loss, which measures the distance
between the decoded mean in metadata space and the ground truth image’s metadata. Each plot
shows the localization performance for four different objective functions.

2018)), which may explicitly encourage independence between the reconstructive and relative fea-
tures. Second, constraining the dimensionality of the relative features can reduce computational
cost; constraints that allow a low dimensional relative feature embedding to be learned dynami-
cally (e.g., Veit et al.| (2017)). Finally, active query selection techniques (e.g., (Canal et al.| (2019))
can reduce the number of queries required to converge on a quality image estimate by minimizing
redundant queries.

8 CONCLUSION

Our experiments provide a preliminary demonstration of our framework’s efficacy in allowing users
to guide the image synthesis process of VAEs using relative comparisons. We demonstrated the
success of our approach on the MorphoMNIST dataset. Our qualitative results show that we can
converge on estimate images that match the ground truth images. Our quantitative results show a
similar pattern. Our technique converges on examples close to the ground truth metadata examples.
future work we would like to run experiments on larger scale image datasets. A core difficulty
with implementing our system in practical settings is the lack of robustness of our search system to
different hyperparameter settings.

There are several avenues for future work. First, when using higher-dimensional latent spaces we
found that information from the relative subspace often “leaked” into the reconstructive subspace,
causing the decoder to ignore the relative features in favor of the reconstructive features, and lead-
ing to poor generative performance. One potential solution to this problem may be to use cycle
consistency (Jha et all 2018)), which may explicitly encourage independence between the recon-
structive and relative features. Second, constraining the dimensionality of the relative features can
reduce computational cost; constraints that allow a low dimensional relative feature embedding to
be learned dynamically (e.g.,|Veit et al.|(2017)). Third, active query selection techniques (e.g., Canal
et al. (2019)) can reduce the number of queries required to converge on a quality image estimate by
minimizing redundant queries. This is necessary to effectively deploy our system in a setting where
humans are constrained to answering only a few relative queries. Finally, we would like to perform
experiments with human collected data. Due to experimental constraints we use simulated oracles,
which do not perfectly match the behaviors of humans. However, a core motivation of our technique
is that it is better suited to the task of allowing a user to control a generative model.
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A CLOSED-FORM EXPRESSION FOR BAYESIAN TRIPLET LIKELIHOOD

Warburg et al.| shows that the distribution p(7 < —m), where m corresponds to the triplet-margin,
has a closed form representation with mean

e = Wy + 05— pp o = 24 (1 — 1) (7
and variance
o2 =20y (0p + 2up) +o ( nt2un) — Aoy,
+2u*(u*(up + un) - 2upcrp 2un07) (8)
+2(0f + p2) (o) + pp) + (o7 + 1))

B DETAILS OF EXPERIMENTAL SETUP

B.1 SYNTHETIC ORACLE

We use a synthetic oracle O(a, b) to evaluate our framework. For each query our oracle is given the
ground truth image and metadata, as well as two choice images along with their metadata. The oracle
selects as “preferred” the image whose metadata vector is closest in /o distance to the metadata
vector of the ground truth image. This procedure simulates a person who answers queries based on
a few high-level features such as digit slant, width, and height.



B.2 LOCALIZATION PROCEDURE

For our experiments we ran 20 trials of 30 queries each for each technique. We use the following
procedure for each localization trial:

1. Randomly select an image and its corresponding metadata (x*, r..) from our test set, which
we call the ground truth image

2. Follow Algorithm [I]using the synthetic oracle described above as O

(a) During each iteration record current posterior mean estimate X*
(b) Decode the posterior mean estimate to an image

(c) Measure the MorphoMNIST metadata values of the given image and measure the
distance to the ground truth metadata

B.3 NEURAL NETWORK ARCHITECTURE
We used a simple VAE architecture with the following layers:

1. We had 4 units each with:

(a) A Convolutional Layer
(b) A Batchnorm Layer
(¢) A ReLU layer

2. 2 Linear layers each followed by a ReL.U and BatchNorm
3. 6 Latent Units

4. 2 Linear Layers

5. 4 units each with:

(a) A Transposed Convolution Layer
(b) A Batchnorm Layer
(c) A ReLU layer

B.4 HYPERPARAMETER SETTINGS
The core hyperparemters of our system and values are as follows:

Learning Rate (0.0001)
Epochs (100)

Batch Size (256)
Optimizer Type (Adam)
Latent Dimension (6)

KL Divergence Beta (0.01)
Triplet Beta (0.1)

Triplet Margin (0.1)

Adam Betas (0.9, 0.999)
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