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SUMMARY 

 

The present study describes the flow characteristics of swirling flows induced by 

twisted tape inserts in circular pipes. The study is focused on the secondary flow which is 

investigated experimentally and with numerical models. The results are expected to 

improve the paper manufacturing process by identifying and removing the detrimental 

secondary flow.  

Experimental tests show for the first time the existence of two co-rotating helical 

vortices superimposed over the main swirling flow, downstream of twisted tapes. The 

close proximity of the two co-rotating vortices creates a local counter-rotating flow at the 

pipe centerline. The flow is analyzed using LDV measurements and high speed camera 

visualization with fine air bubbles seeding which confirm that the helical vortices are 

stable. After extracting the characteristic tangential velocity profiles of the main vortex 

and of the two secondary vortices, it was observed that the maximum tangential velocity 

of all three vortices is the same, approximately half of the bulk velocity. The winding of 

the helical vortices is in the swirl direction and the pitch of the helical vortices is found to 

be independent of the inlet velocity.  

The experimental findings are confirmed by numerical simulations. The 

numerical results show that the helical vortices originate inside the swirler and evolve 

from single co-rotating vortices on each side of the tape. The flow characteristics are 

analyzed in detail. Swirlers with multiple twists and multiple chambers are shown to have 

less stable secondary motion and could be employed in applications were the secondary 

motion is detrimental.  
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CHAPTER 1 

 

INTRODUCTION 

 

This study investigates the characteristics of swirling flows induced by 180o 

twisted tapes in circular pipes. The main goal of the study is to elucidate the secondary 

motion. The results of this investigation are expected to improve technology associated 

primarily with the paper manufacturing industry, however swirling flows have numerous 

other applications including homogenizing mixtures for casting or production of 

chemicals, enhancing heat transfer in heat exchangers and stabilizing flames and breaking 

fuel droplets in combustion. 

Swirling flows are flows combining rectilinear motion and rotation around the 

flow axis. The average motion is characterized by spiral streamlines, increasing the path 

traveled by the fluid compared to a flow without rotation. The most common swirl 

generation systems are angled vanes, eccentric fluid injection, rotating pipes and twisted 

tape inserts. 

The secondary flow presented in this study consisting of helical vortices 

downstream of twisted tapes swirlers has never been documented before. These new 

findings are expected to benefit both the paper industry and swirling flow research in 

general, particularly heat transfer applications where twisted tapes are used.  
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1.1 Motivation 

In the paper manufacturing industry a mixture of wood fibers, water and 

chemicals named pulp is spread on a forming wire mesh and dried to form a paper sheet. 

The aspect and strength of the final paper depend on the isotropy of the fiber distribution.  

 

 
Figure 1.1   Beloit Converflo hydraulic headbox [Smook 1992]: (a) components 
schematic, (b) perspective flow schematic. 

 

A schematic of the paper forming process is shown in figure 1.1. In order to 

spread the pulp into a thin sheet, the pulp is first passed through a tube bank which 

provides a fast transition from a circular cross-section to a wide rectangular cross section. 

(a) 

(b) 
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The average flow speed in the forming section is approximately 3 m/s. As fibers tend to 

align preferentially in the flow direction, inducing swirl and fine turbulence in the tubes 

was shown to be beneficial for the quality of the pulp jet [Aidun 1995]. The fiber 

distribution isotropy is improved, producing stronger paper with less wood consumption 

[Aidun 1998, 1999, 2000, 2002]. One of the systems used to generate swirl is to insert 

180o twisted tapes in the tubes of the tube bank shown in figure 1.1. However, 

preliminary tests showed the presence of secondary motion in the flow downstream of the 

tube bank containing twisted tapes, which creates streaks and non-uniformities in paper, 

compromising its quality.  

 

 
 

Figure 1.2:   Twisted tape parameters. 

 

Traditionally, twisted tapes have been used both for heat transfer improvement 

and mixing of chemical products. The main characteristics of twisted tapes are presented 

in figure 1.2. The defining parameters are the °180  pitch H , the pipe diameter d  and the 

tape thicknessδ . The relevant non-dimensional parameters are the Reynolds number 

ν/Re bUd ⋅=  and the twist ratio dHyr /=  where bU  is the bulk velocity and ν  is the 
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kinematic viscosity. Low values of the ratio ry  correspond to strong twist and high swirl 

numbers.  

Prior to this investigation, the presence of secondary motion in the swirling flow 

downstream of a twisted tape swirler was indicated by a periodic change of the velocity 

profiles near the pipe centerline observed in Laser Doppler Velocimetry (LDV) 

measurements of the tangential velocity [Islek 2004, Aidun and Parsheh 2007]. The flow 

appeared to periodically counter-rotate and then revert to a normal swirling flow (figure 

1.3). No explanation was found in published literature as the only similar reports are 

documenting a non-periodic, low amplitude counter-rotating flow in a swirling jet 

induced by a rotating pipe (figure 1.4).  

 

 
 

Figure 1.3:   Average tangential velocity profiles downstream of a 60 mm long, 180o 
twisted tape swirler at different axial positions. Some of the profiles display counter-
rotating flow near the core [Aidun and Parsheh 2007]. 
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(a) 

 
(b) 

 
Figure 1.4:   Average tangential velocity profiles across the core of a swirling jet induced 
by rotating pipes at Re = 2.4x104, S=0.5 [Facciolo et al. 2007]: a) complete profiles, b) 
core close-up. x represents axial distance from pipe exit and the symbols are:                                   

                                          
  

 

The authors of the rotating pipe jet experiments [Facciolo and Alfredsson 2004, 

Facciolo et al. 2007, Maciel et al. 2008] attributed the counter-rotating flow to the 
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influence of the cross flow Reynolds stress. Using a simplified form of the conservation 

of tangential momentum developed for fully developed axially rotating pipe flow 

(assuming no axial or tangential gradients) they showed that the mean tangential velocity 

depends on the cross flow Reynolds stress as: 

r

dr
vv

r

R

r
VrV

R

r

rw ∫−= θθ ν
)(       (1.1) 

where wV  is the tangential velocity of the rotating pipe, R  is the inner radius of the pipe 

and rvvθ  is the cross flow Reynolds stress. Based on equation (1.1) the authors suggested 

that a large, positive rvvθ  could produce a deviation from the solid-body rotation large 

enough to create a counter-rotating core. However, the counter rotating flow in jets was 

not spatially periodic as the flow observed in the flow in pipes with twisted tape inserts 

[Aidun and Parsheh 2007]. 

The main objective of the present investigation is to identify the cause of the 

secondary flow in swirling flows induced by short twisted tape inserts in circular pipes in 

order to eliminate it. Eliminating the secondary flow will improve the isotropy of the 

fiber distribution in paper, which would allow achieving a specific strength with less 

wood consumption. Also, improving the overall quality of the paper would reduce the 

losses resulting from discarded substandard paper (with streaks or holes) and the 

production time losses caused by sheet breaks. Due to the large scale of the industry, 

small efficiency improvements result in significant financial savings.  

The paper industry is a multibillion dollars industry covering a large range of 

products from tissues to packaging. There are numerous paper production centers 

throughout the world with a considerable environmental and economical impact 
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associated with their large consumption of wood and energy. The present study is part of 

the larger effort to improve the efficiency of the industry, improving its economic output 

while reducing its environmental impact [Islek 2004]. 

 

1.2   Objectives 

The investigation presented here has two main parts associated with its two 

complementary objectives. The first part identifies the cause of the secondary flow 

downstream of short twisted tapes using experimental techniques. The second part 

investigates how the secondary flow appears and how to eliminate it using numerical 

modeling. This exploratory study evolved sequentially and the steps in the second part 

were determined by the results of the first part. The following section is an outline of the 

steps followed to meet each objective and also a short summary of the main findings 

corresponding to each step, which led to the current structure of the study.  

 

Objective I:   Identify the Cause of the Secondary Flow 

• The existing literature is reviewed in order to find similar flow reports 

o Counter-rotating flow was never observed before downstream of  twisted 
tapes 

 
o The only previous case of counter–rotating flow was observed in jets 

induced by rotating pipes but it was not periodic 
 

• Laser Doppler Velocimetry (LDV) measurements are collected in the swirling 
flow induced by a twisted tape with a 60 mm pitch to confirm the previous results 
[Aidun and Parsheh 2007]  

 
o The previous results are confirmed by the LDV measurements 

 
o The LDV measurements are collected along the entire 350mm (14d) long 

test section with a 5 mm (0.2d) axial resolution  
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• New measurements are performed for twisted tapes with 45 and 90 mm pitch to 

identify pitch dependency 
 

o The flow behavior is similar to that observed downstream of the 60 mm 
pitch twisted tape 

 
• Direct visualization of the secondary motion is performed to determine its 

structure and the results are correlated with the LDV measurements  
 

o An air bubbles injection system was designed and installed in the flow 
circuit 

 
o The air bubble distribution shows the presence of a stable pair of helical 

vortices 
 

• The results are processed in order to determine the characteristics of the 
secondary flow  

 
o The tangential velocity field is reconstructed from LDV measurements 

� The helical vortices are co-rotating with the primary vortex 

� The helical vortices are responsible for the counter-rotating flow 
region near the centerline which is not axi-symmetric 

 
 
Objective II:    Identify Methods to Eliminate the Secondary Flow 

• A numerical model is developed 

o The test section is modeled at its actual size using the commercial 
software FLUENT 

 
• The model is validated with experimental results 

o All flow features are qualitatively recovered with a laminar formulation 

• The flow is investigated inside the twisted tape swirler 

o The secondary motion originates inside the swirler  

o The characteristics of the swirler determine the characteristics of the 
helical vortices 
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• The secondary motion formation mechanism is identified 

o The vortices are a result of pressure and centrifugal imbalances created by 
the swirler geometry 

 
• The flow is modeled numerically for different swirler configurations 

o Tests are performed for twisted tapes with multiple twists 

o Tests are performed for twisted tapes with multiple chambers 

• Configurations which have the potential to create swirl without secondary motion 
are identified 

 
o Multiple chambers could create swirl without secondary motion within a 

short distance from the swirler 
 
As a result of this investigation several phenomena were observed for the first 

time. To the knowledge of the author, the following findings are original contributions of 

the present study: 

• First observation and characterization of co-rotating helical vortices downstream 
of the twisted tape. 

 
• First explanation of the counter-rotating core of the primary vortex based on co-

rotating helical vortices. 
 

• First numerical modeling of the formation of helical vortices downstream of 
twisted tapes swirlers. 

 
• First indications that the secondary motion inside twisted tape swirlers consists of 

single co-rotating vortices each side of the tape, as all previous studies report two 
counter-rotating vortices. 

 
• First accurate, non-intrusive, LDV velocity measurements through helical vortices 

• First detailed high speed camera visualizations of helical vortices showing the 3D 
motion. 
 

Some of the experimental results presented in this study were published in Cazan 

and Aidun [2009].  
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CHAPTER 2 

 

LITERATURE REVIEW  

 

2.1 Turbulent swirling flows 

Many industrial devices with rotating parts (turbines, compressors) operate with 

high Reynolds number flows where swirl and turbulence interact. In laboratories, due to 

size constrains, swirling flows are reproduced either using static devices (angled vanes, 

twisted tapes, eccentric injection) or dynamic devices like rotating pipes. Since counter-

rotating flow has been previously attributed to turbulence, as explained in the previous 

chapter, the following section presents a summary of turbulence/swirl interactions.  

Swirling flows are a result of the superposition of axial flow and vortex motion. 

The equations governing the swirling flow are the definition of vorticity V×∇=Ω  (also 

equal to twice the rate of rotation for a fluid rotating as a solid body), mass conservation 

0=⋅∇ V  and the vorticity equation. For incompressible flows the vorticity equation 

states that the rate of change of vorticity is given by:  

Ω∇⋅+∇⋅Ω=Ω 2)( νV
Dt

D
      (2.1.1) 

The first term on the right side is called the vortex stretching term. If the strain 

rate produced by the velocity gradients act to stretch the material line aligned with Ω , 

then the magnitude of Ω  increases correspondingly. The second term on the right side is 

a viscous diffusion term describing the rate of change of Ω  due to molecular diffusion of 

vorticity.  
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One convenient way to quantify the vortex motion is using the circulation defined 

as the line integral of the tangential component of the velocity taken around a closed 

curve in the flow field. The circulation is related to the vorticity through Stokes theorem: 

∫ ∫∫ ⋅⋅Ω=⋅=Γ dAndsV       (2.1.2) 

If the flow is inviscid, the circulation is governed by the Kelvin theorem, which 

states that no circulation is produced or destroyed in the absence of viscous shear:  

0=Γ
Dt

D
      (2.1.3) 

The tangential velocity induced by a vortex is related to the circulation through the 

equation: 

∫∫∫ −
Ω×−= dv
rr

r
rV 3

1

1

4

1
)(

πθ       (2.1.4) 

which reduces to the Biot-Savart law if the vorticity is concentrated to a single line 

filament of circulation Γ  [Widnall 1975]: 

∫ −
×Γ−= 3

1

11

4
)(

rr

drr
rV

πθ       (2.1.5) 

The amount of swirl present in the flow is usually described by a non-dimensional 

swirl number [Gupta et al. 1984]. The swirl number (or swirl intensity) is defined as the 

ratio of the angular momentum flux to the axial momentum flux: 

x

θ

GR

G
S

⋅
=

⋅
=

momentum) axial offlux  (axial(radius)

momentum l tangentiaofflux  axial
     (2.1.6)    where 

∫ ⋅⋅⋅⋅= dAVVrG xθθ ρ     (2.1.7) 

∫ ⋅⋅= dAVG xx
2ρ     (2.1.8) 
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This formula can be further simplified if an average axial momentum avgxG _  is used 

instead of xG  such that:  

23
_ bavgx URGR ⋅⋅⋅=⋅ ρπ       (2.1.9) 

in which case S represents the non-dimensional angular momentum flux: 

23
bUR

G
S

⋅⋅⋅
=

ρπ
θ       (2.1.10) 

Since S represents a ratio of two integrated quantities, two swirling flows with 

different velocity distributions may have the same swirl number. The swirl number does 

not differentiate between swirling flows with or without secondary motion. For swirling 

flows induced by rotating pipes the swirl number is expressed as the ratio of the 

tangential velocity of the pipe wV  and the bulk velocity bU  [Facciolo et al. 2007]: 

b

w

U

V
S =     (2.1.11) 

It is usually assumed that the radial pressure gradient and the mean tangential 

velocity component are related by: 

r

V

dr

dP 2
θρ ⋅≈       (2.1.12) 

where rV /2
θ  is the centripetal acceleration [Baker and Sayre 1974]. This simplified form 

of the radial momentum equation in cylindrical coordinates shows that there are strong 

pressure gradients in the radial direction and also that as the swirl decays the pressure 

becomes more uniform. When the swirl decays the resulting adverse pressure gradients in 

the axial direction can produce flow reversal [Kitoh 1991, Pashtrapanska et al. 2006]. 
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The decay of the swirl follows an exponential distribution in the axial direction 

[Smithberg and Landis 1964]: 

)/)(exp( 00 dzzSS −⋅−⋅= β       (2.1.13) 

where 0S  is the swirl intensity at a reference position 0z  and z  is the axial location were 

the swirl intensity S  is calculated. Experimental measurements [Baker and Sayre 1974, 

Kitoh 1991] revealed that the decay coefficient β  is dependent on Re, increasing as the 

Re decreases (the decay is faster at low Re). Kitoh [1991] showed that there is no 

universal formula fitting all swirling flows as the decay depends on the geometry 

generating the swirl and initial swirl intensity.  

 

 
Figure 2.1.1:   Axial and tangential average velocity profiles for turbulent swirling flows: 
── upstream, - - - downstream [Baker and Sayre 1974]. 
 

Most studies [Algifri et al. 1987, Baker and Sayre 1974, Kitoh 1991]  show that 

there are three flow regions in the turbulent swirling flow inside a pipe, regions 

characterized by the average tangential velocity distribution (figure 2.1.1). These regions 

are a forced vortex region near the pipe axis where the flow rotates at a constant angular 

velocity == rVθω constant followed by a free vortex region where the angular 
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momentum is constant rV ⋅= θω = constant and a wall region where viscosity dissipates 

the angular momentum and tangential velocity decreases sharply. 

 

 
Figure 2.1.2 :   Rankine vortex [Loiseleux et al 1998]. 

 

The combined vortex structure is common to both confined swirling flows in 

pipes and swirling jets. The combined vortex was described first by Rankine [1888] and 

is usually called a “Rankine vortex”. The mathematical formulation of the variation of the 

tangential velocity θV  with the radial distance r  from the vortex axis is: 










>⋅

≤⋅
=

0
0

0

0
0

0

)(

rrfor
r

r
V

rrfor
r

r
V

rVθ       (2.1.14) 

where 00 rV ⋅= ω  is the maximum tangential velocity, 0r  is the radial location of 0V  and 

ω is the constant angular velocity in the core region corresponding to a solid body 
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rotation. The tangential and axial velocity profiles for a swirling jet with Rankine velocity 

distribution are shown in figure 2.1.2.  

Most experiments show a smooth transition between the core and the free vortex 

region as opposed to the singularity in the Rankine model, which neglects the shear layer. 

A more realistic description of the tangential velocity distribution for the combined 

vortex is an exponential distribution sometimes called Gaussian due to its mathematical 

similarity with the Gaussian distribution in statistics. The model is also called a 

“Batchelor vortex” after the author of a paper which described the trailing vortices behind 

a wing [Batchelor 1964], but a similar solution was described previously by Burgers 

[1948] while investigating turbulent flows.  

 

 

Figure 2.1.3 :   Batchelor vortex [Lessen et al. 1974]. 
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The mean tangential velocity distribution is given by: 

r

e
rV

rAd
2

1
)(

⋅−−Γ=θ       (2.1.15) 

where Γ is the circulation and Ad is a constant [Burgers 1948, Batchelor 1964, Lessen et 

al. 1974]. Figure 2.1.3 shows the non-dimensional velocity distribution of a swirling jet 

where W is the non-dimensional mean tangential velocity, U is the non-dimensional axial 

velocity, q is the non-dimensional circulation and r is a non-dimensional radius [Lessen et 

al 1974]. In the non-dimensional form the tangential velocity distribution has a maximum 

of 0.639 at r = 1.12 so the dimensional form can be recovered if the results are adjusted 

accordingly. 

In the wall region where viscous effects are dominant the mean axial velocity 

follows approximately the classic “log law” near the wall [ Kitoh 1991, Klepper 1972]: 

5.5ln5.2 +⋅= +yuVz τ       (2.1.16) 

where ρττ wu =  is the friction velocity, wτ  is the wall shear stress and vwyy δ=+ is 

the distance from the wall measured in wall units (or viscous lengths) τνδ uv /= . Inside 

the boundary layer the mean tangential velocity is much smaller than the mean axial 

velocity and follows a linear distribution [Smithberg and Landis 1964].  

In the axial direction, as the swirl decays, the flow tends toward regular axial 

flow. The tangential velocity decreases while the axial velocity increases near the 

centerline and decreases near the wall (figure 2.1.1). As a result, in the axial direction the 

static pressure strongly decreases near the wall and slightly increases near the centerline. 

However, the static pressure gradients are stronger in the radial direction than in the axial 

direction. Several studies observed a recirculation zone near the inlet created by the axial 
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adverse pressure gradient, the existence and size of the recirculation zone depending on 

the geometry of the swirler and increasing with the Re number [Kitoh 1991, Parchen and 

Steenbergen 1998]. The recirculation zone created by swirling jets is used to stabilize 

flames in combustors [Dewan et al. 2004]. 

As the swirl decays, the rotating motion also loses its symmetry. Several 

investigations showed that after the swirl decays to a certain level the vortex axis does 

not coincide with the pipe axis, the asymmetry being as large as 10% of the pipe radius 

[Baker and Sayre 1974, Parchen and Steenbergen 1998, Pashtrapanska et al. 2006].  

The swirl/turbulence interaction is the subject of numerous studies as part of the 

effort to model swirling flows at high Reynolds numbers. Analyzing the flow structure 

Kitoh [1991] pointed out that the turbulent structures in the flow are subject to centrifugal 

forces due to the helical streamline and also to flow skewness due to the non-uniform 

spiral pitch. Consequently the shear stress direction in the annular region does not 

coincide with the velocity gradient direction as assumed by the “eddy viscosity model” 

which models the turbulent stresses similarly to the viscous stresses.  

Most studies agree on the anisotropic character of the turbulence in swirling flows 

[Parchen and Steenbergen 1998, Pashtrapanska et al. 2006]. As the swirl decays 

downstream, the decay affects first the annular region. Immediately after exiting the 

swirler the turbulent kinetic energy decreases and then increases again as the solid-body 

rotation core shrinks and disappears [Pashtrapanska et al. 2006].  

For swirling flows induced by vanes normal Reynolds stresses show a significant 

increase near the centerline as the swirl decays (figure 2.1.4). The levels of the 

fluctuations of the tangential velocity 2θv ( 2v in figure 2.1.4) and radial velocity 2rv  ( 2w  
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in figure 2.1.4) are approximately equal and much larger than the fluctuations of the axial 

velocity 2
zv ( 2u  in figure 2.1.4). The velocity fluctuations show a return to isotropy as the 

swirl decays farther downstream [Parchen and Steenbergen 1998].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1.4:   Radial distribution of the components of the Reynolds stress tensor along 
the pipe axis [Parchen and Steenbergen 1998]. 

 

The Reynolds shear stresses are shown in figure 2.1.5 for a swirling flow induced 

by vanes [Kitoh 1991]. In figure 2.1.5 u ,v  and w  correspond to axial, tangential and 

radial velocity fluctuations ( rz vvv ′′′ ,, θ ). The arrows in the uv profile show locations 
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where 0=
∂
∂

r

U
 but the sign changes of uv do not coincide with those locations as eddy 

viscosity models would predict.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 2.1.5:   The shear stresses in a turbulent swirling flow at different axial locations 

[Kitoh 1991]. Arrows in (a) indicate radial positions of 0=
∂
∂

r

U
. 
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There are a number of studies investigating the turbulent swirling flow inside a 

rotating pipe. In the case of a rotating pipe, the wall shear actually induces the swirl 

instead of reducing it as in the studies of stationary pipes. The velocity fluctuations are 

larger near the wall with the axial velocity fluctuations being the largest while the radial 

and tangential fluctuations are almost equal [Imao et al. 1996]. These characteristics are 

similar to the non-rotating case and opposite from the swirling flows generated by vanes. 

The same characteristics persist even in swirling flows inside stationary pipes if the swirl 

is generated by rotating pipes [Anwer and So 1989, Rocklage-Marliani et al. 2003].  

Inside a rotating pipe the turbulent flow becomes laminar near the inlet but then 

returns to turbulence [Nishibori et al. 1987]. For the same rotation rate, the laminarization 

of the flow occurs as the axial Reynolds number is increasing. Most studies agree that the 

swirl has a stabilizing effect on turbulent flows while destabilizing the laminar flows 

[Anwer and So 1989, Kitoh 1991, Nishibori et al. 1987]. Increased rotation reduces the 

turbulent fluctuations and the overall friction loss while the axial velocity profile 

becomes parabolic.  

There have been numerous attempts of modeling swirling flows unfortunately 

with limited success. Early simulations [Kobayashi and Yoda 1987, Parchen and 

Steenbergen 1998] used ε−k  models based on “scalar eddy-viscosity” but the results 

did not match the experiments and they concluded that this was a result of the velocity 

fluctuations anisotropy in the swirling flow.  

To simulate turbulent swirling flows models have to capture the anisotropic 

effects of rotation on the Reynolds shear stresses which determine the turbulence decay 

[Kitoh 1991, Pashtrapanska et al. 2006, Rocklage-Marliani et al. 2003]. Accurate 
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simulations of turbulent swirling flows should employ Reynolds Stress Models (RSM) 

[Kitoh 1991, Pope 2000] which calculate each component of the turbulent stress tensor, 

unfortunately with an increase in the computational cost. Other alternatives are Direct 

Numerical Simulations (DNS) or Large Eddy Simulations (LES), but the computational 

cost of these methods is even larger.  

Orlandi and Fatica [1997] performed a DNS simulation of the turbulent flow in a 

rotating pipe which showed a large logarithmic region spanning from the wall up to half 

of the radius. While most studies agree with a logarithmic variation near the wall, the size 

of the region is much larger than that reported by experimental studies. 

 

2.2   Vortex identification 

One of the biggest challenges encountered in the study of swirling and vortex 

flow is to consistently identify vortices. Many methods have been suggested but most of 

them failed to receive a wide acceptance. These methods associate specific flow features 

with the presence of vortices in order to identify them.  

Some of these features are intuitive like closed stream lines [Lugt 1979, Robinson 

et al. 1989], large vorticity magnitude [Hussain and Hayakawa 1987] and regions of low 

pressure balancing the centrifugal forces [Robinson 1991]. However, these methods have 

limitations in specific cases: the streamlines depend on the reference system, the vorticity 

magnitude has maxima near the walls and pressure minima are generated by unsteady 

strain [Jeong and Hussain 1995]. Most researchers favor quantitative methods to identify 

vortices which are independent of the reference system used (Galilean invariant). 
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Several advanced methods have been proposed based on the invariants of the 

characteristic equation of the velocity gradient tensor u∇ . A short description of these 

methods is presented below while in depth analysis and comparison of these methods are 

described by Jeong and Hussain [1995] and Chakraborty et al. [2005]. 

The eigenvalues λ  of the velocity gradient tensor u∇ satisfy the characteristic 

equation: 

023 =+++ uuu RQP λλλ           (2.2.1) 

where Pu (the first invariant) is given by uPu ⋅−∇= , Qu (the second invariant) is given 

by ( ) ( )( ) 2/)( 22 utruQu ∇−⋅∇=  and Ru (the third invariant) is given by ( )uDetRu ∇−= . 

For incompressible flows 0=uP  and the discriminant ∆ of the equation is given by 

( ) ( )23 23 uu RQ +=∆ . 

Hunt et al. [1988] proposed using 0>uQ  to identify vortices (the Q criterion). Qu 

can also be written as ( ) 2/
22

uu SQ −Ω=  where ( )( ) 21ttr ΩΩ=Ω  is the Euclidean 

norm of the vorticity tensor ( )( ) 2tuu ∇−∇=Ω  (the anti-symmetric part of u∇ ) and 

( )( ) 21t
uuu SStrS =  is the Euclidean norm of the rate of strain tensor ( )( ) 2t

u uuS ∇+∇=  

(the symmetric part of u∇ ). In an incompressible flow, Qu is a measure of the excess of 

rotation rate relative to the strain rate.  

Another method to identify vortices is the ∆ criterion proposed by Chong et al. 

[1990]. This method considers a vortex core a region where the streamlines are closed or 

spiraling which translates in u∇ having a pair of two complex conjugate eigenvalues 
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cicr iλλ ± . This condition is satisfied when the discriminant ∆ of the characteristic 

equation is positive 0>∆ .  

A variant of the ∆ criterion method named the “Swirling Strength” criterion was 

later proposed by Zhou et al. [1999]. The method associates the complex part of the 

complex pair of eigenvalues ciλ  to the strength of the vortex, as the time period for 

completing one revolution of the streamline is ciλπ /2 . Thresholds values of ciλ  are used 

to obtain vortices which correspond in size with vortices obtained with the other criteria. 

Chakraborty et al. [2005] added an extra condition of “Spiraling Compactness“ to 

account for differences in vortex size between the “Swirling Strength” method and other 

methods when applied to swirling jets. They relate the ratio cicr λλ /  to the radius of the 

spiral streamlines. A point is considered to be inside a vortex core if this ratio is smaller 

than a threshold value in addition to the previous condition that ciλ  is larger than a 

threshold value. 

One of the most widely accepted methods to identify vortices to this date is the 

2λ criterion introduced by Jeong and Hussain [1995]. This method identifies the location 

of minimum pressure regions which indicate the presence of a vortex core while 

neglecting misleading effects such as unsteady straining which could create a pressure 

minimum without a vortical motion and viscous effects which could eliminate the 

pressure minimum in a flow with vortical motion. After applying the gradient operator to 

the Navier-Stokes equations and neglecting the unsteady and viscous terms, the pressure 

can be written as: 

( )pSu ∇∇−=Ω+
ρ
122        (2.2.2) 
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A local pressure minimum requires two positive eigenvalues of the pressure 

Hessian, so using the previous equation the authors define a vortex core as a connected 

region with two negative eigenvalues of 22 Ω+uS . As 22 Ω+uS  is symmetric, all its 

eigenvalues are real. Ordering the three eigenvalues λ in a sequence such that 

321 λλλ ≤≤ , the definition is equivalent to the requirement that 02 <λ  within the vortex 

core (which is why the method was named the 2λ  criterion). 

Comparing the vortex identification methods presented above on multiple test 

cases Jeong and Hussain [1995] observed different results. However, Chakraborty et al. 

[2005] concluded that in intense swirling regions the vortex structures identified using 

these methods were almost identical for kinematic and dynamic interpretation. In the 

present study, vortices are identified by the 2λ  criterion and also elongated low pressure 

regions, closed streamlines and vorticity magnitude.  

 

2.3   Flows in pipes with twisted tape inserts 

Swirling flows are widely used in industries where enhanced mixing is required. 

This investigation is focused on swirling flows induced by twisted tapes and this chapter 

summarizes the studies published previously. The main characteristics of twisted tapes 

were presented in Chapter 1.  

There are numerous studies dedicated to flows through twisted tape swirlers but 

most of them investigate only the variations of the heat transfer and of the friction 

coefficient [Abu-Khader 2006], with few attempts to elucidate the mechanisms behind 

these changes. A comprehensive list of articles regarding twisted tape inserts is 

summarized in the review article of Dewan et al. [2004].  
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While the twisted tapes used in this study are twisted 180o and the flows 

investigated are in the range Re 104 to 105, in previous investigations researchers studied 

mostly flows induced by tapes with multiple twists (twist angle larger than 180o) and a 

large number of the published reports focused on low Re flows in the laminar regime. 

However, the numerical part of the present study reproduces both the experiments at high 

Re using 180o twisted tapes and also tapes with multiple twists and flows in the laminar 

regime, allowing a better comparison with the previous studies. 

One of the first investigations [Kreith and Sonju 1965] studied theoretically and 

experimentally the decay of turbulent swirling water flow in a 1 inch (25.4 mm) diameter 

pipe with twisted tape inserts for Re between 104 and 105 (figure 2.3.1a). The authors 

used long twisted tapes (30d) and considered the flow fully developed. The swirl 

measured at different axial locations using a rotating blade in the center of the pipe 

decayed to 10-20 % of the initial swirl intensity in approximately 50 diameters (figure 

2.3.1b). The swirl decay was faster at low Reynolds numbers and independent of the 

pitch. However, the swirl measurements made using the rotating blade actually measured 

an average angular velocity which does not capture the presence of secondary flow.  

Another early work [Seymour 1966] investigated high Reynolds number swirling 

flows in pipes with 1, 2 and 3 inch diameters. The experiments showed the presence of 

two asymmetric vortices in the flow field at Re =105 in a 3 inch (76.2 mm) diameter pipe 

(figure 2.3.2a). 

 

 



 26 

 
 

 
(a) 

 
(b) 

 
 
Figure 2.3.1   Swirling flow induced by twisted tapes [Kreith and Sonju 1965]: (a) 
twisted tape inserts and rotating blade devices for 1 and 2 inch diameter pipes, (b) swirl 
decay at Re = 6.1x104 in a 1 inch diameter pipe. The twisted tape characteristics for the 
data in plot (b) are: 

 
 

 
 

The pressure profiles near the walls of the pipe and near the twisted tape revealed 

a pressure gradient in the direction of the twist and the experiments also showed two 

maxima in the axial velocity contours (figure 2.3.2b). A study on twisted tape inserts 

conducted by Smithberg and Landis [1964] showed similar features as Seymour’s 

investigation for axial velocities, but no secondary flow patterns for tangential velocities. 
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                              (a) 

 

 
     (b) 

 
Figure 2.3.2:   Characteristics of the flow in the cross section of a 3 inch diameter pipe 
with a twisted tape insert at Re = 105 [Seymour 1966]: (a) cross section velocity field, (b) 
axial velocity contours 
 

 

  
 

 
Figure 2.3.3   Axial velocity contours calculated at Re = 1,200 for tapes with different 
twist ratios [Date 1974] 

 

Date [1974] investigated the flow induced by twisted tapes using a numerical 

model. The model assumed fully developed flow with no axial gradients and it was based 

on a vorticity-stream function formulation solved with finite differences. The axial 

velocity profiles of flows induced by tapes with larger twist ratios showed single maxima 

peaks near the wall, in the opposite direction relative to the twist of the tape. At lower 

twist ratios, the velocity profiles showed two peaks (figure 2.3.3). 
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(a)  yr = 4.32, Re = 668 
1.52 m long tape 
(~7 x 180o twists) 

(b)  yr = 3.53, Re = 554 
1.52 m long tape 

(~8.5 x 180o twists) 

(c)  yr = 3.0, Re = 1000 
 

 
Figure 2.3.4:   Comparison between smoke visualizations and computed flow fields in a 
2 inch (50.8 mm) diameter pipe with twisted tape inserts (direction of tape twist from left 
to right): a), b) [Manglik and Ranganathan 1997], c) [Yerra et al. 2007]. 

 

More recent studies [Manglik et al. 1993, 1997, 2001, Yerra et al. 2007] identified 

the secondary flow as one of the important causes of the heat transfer enhancement. 

Smoke visualizations in air flows at low Reynolds numbers were compared to finite 

difference numerical simulations using a vorticity-stream function formulation. Their 

images show the presence of two structures in the semicircular cross section which they 

identified as counter-rotating vortices (Fig. 2.3.4). The two vortex cell pattern emerged as 

either the Reynolds number was increased or the twist ratio was decreased. Consequently 

the authors introduced a swirl number defined as rySW Re=  to characterize the flow 

changes in pipes with twisted tapes.  

Kazuhisa et al. [2004] described another numerical investigation of the laminar 

swirling flow generated by a twisted-tape insert in a cylindrical pipe. Their model 

employed a non-orthogonal coordinate system rotating with the tape, while the equations 

were solved using the SIMPLEC algorithm [Patankar 1980]. The simulation captured the 
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inception and evolution of the secondary flow showing that a counter-rotating vortex 

appears immediately downstream of the inlet in a central position and than drifts to the 

corner of the semicircular domain, against the twist direction (Fig. 2.3.5). The drifting 

was explained as an effect of the centrifugal forces, but the exact mechanism was not 

detailed. The authors assumed that the effect of buoyancy is important only for the 

laminar regime subject to high heat flux and not for turbulent flows. They concluded that 

in cases where the buoyancy is neglected, the flow patterns depend only on the swirl 

number and not on the Reynolds number.  

 

      

 

 
 

 
Figure 2.3.5:   Transition of secondary flow for yr = 10, Re = 2,000 where ξ  represents 
the normalized turn angle of the twisted tape [Kazuhisa et al 2004]. 

 

Some researchers [Klepper 1972, Saha et al 2001] pointed out that more efficient 

heat transfer can be achieved using multiple short twisted tapes. These devices produce 

less pressure drop compared to full length twisted tapes and they can be optimized using 

different distances between tapes and tapes with different pitch [Dewan et al 2004]. 
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Rahmani et al [2004, 2005] simulated a similar problem: the flow through a 

helical static mixer which consists of a series of left and right twisting helical elements at 

right angles to each other. Each element is twisted 180° (figure 2.3.6a). The two-phase 

flow was modeled using the commercial software FLUENT [Fluent Inc. 2006]. The plots 

of the velocity vectors and the particle locations showed very similar profiles to those in 

the regular twisted tape flows with two distinct regions and a vortex near the wall in the 

direction of the rotation (figure 2.3.6 b and c). 

 

 
(a) 

 
 

 
(b) 

 
 

 
(c) 

 
Figure 2.3.6:   Numerical simulation of the flow through a pipe with a static mixer insert 
[Rahmani 2004]: (a) static mixer schematics, (b) cross section velocity vectors, (c) 
particles location after the 4th element at Re = 1000. 
 

 

 

2.4   Related studies: flows through curved and helical pipes 

Some researchers suggested that the secondary vortices presented in the previous 

section have similar characteristics to another type of centrifugally driven secondary 

motion, usually known as Dean vortices [Ujhidy et al. 2003]. The next section is 

dedicated to Dean vortices which are pairs of counter-rotating vortices formed in U-

curved and helical pipes. 
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The centrifugal effect of a U-bend on the flow through a cylindrical pipe was first 

observed by Eustice [1911] using dye injection. Dean [1927, 1928] developed the first 

analytic solution for the U-shaped pipe problem, assuming small perturbations and that 

the pipe curvature is much larger than the pipe diameter ( dRc >> ). He demonstrated that 

the centrifugal forces induced by the pipe radius were larger in the center of the pipe 

where the velocity was higher than near the walls, creating an unstable stratification. As a 

result, the fluid moved toward the exterior wall creating two counter-rotating vortices. 

These types of vortices were consequently named “Dean vortices” and the non-

dimensional parameter introduced by him to characterize flow stability 

( )[ ] 2/12Re cRdDn ⋅⋅= was named the “Dean number” where d  is the pipe inner 

diameter, Re  is the Reynolds number based on d  and cR  is the radius of the pipe 

curvature. 

 

 
(a) 

 

 
(b) 

 
Figure 2.4.1:   Smoke visualization of secondary flow patterns in curved semicircular 
tubes [Cheng et al 1987]: (a) Re = 530, Dn = 87, (b) Re = 1070, Dn = 175. 

 

There are numerous theoretical studies and visualizations of the flows through 

curved pipes with circular, semicircular and squared sections. Cheng et al [1987] 

recorded images of the flow patterns in U-shaped ducts with semicircular sections using 
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smoke in air at low Reynolds numbers. The photos show the Dean vortices clearly (figure 

2.4.1). 

Another class of flows with similar characteristics to the twisted tape flows are 

the flows through helical pipes. Kao [1987] demonstrated that increasing the torsion 

magnitude at low Dean numbers might reduce the two cell secondary flow to a single 

vortex. His numerical simulations using the orthogonal coordinate transformation 

developed earlier by Germano [1982] showed that small changes in torsion caused 

significant changes in the flow pattern. The changes were more dramatic as the Dean 

number increased. He found that the flow patterns were influenced by the ratio 

torsion/curvature, rather then the absolute values of the two parameters. Testing the effect 

of the ratio, he found that for a ratio of 3 the lower vortex is so dominant that the upper 

one is squeezed in a very narrow region with a poorly defined core.  

Liu and Masliyah [1993] who also studied numerically the laminar flow in helical 

pipes with circular cross section confirmed these findings. For constant Reynolds and 

Dean numbers the two-cell vortex pattern changed to one vortex as a result of increased 

torsion. As torsion increased, the maximum axial velocity location moved spirally from 

the outer wall toward the center while the pressure plots showed a low-pressure zone near 

the inner wall.  

In a more recent study Tiwari et al. [2006] demonstrated numerically that the 

formation of Dean vortices in helical pipes reduces the near wall concentration buildup 

for two-phase flows by increasing the shear rates at the wall. They explained the complex 

flow field as a result of the combination of Coriolis force effects (due to the torsion of the 

tube centerline) and centrifugal force effects (due to the curvature). Their simulations 
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also showed that the flow reaches a fully developed state after a °238  rotation. The 

presence of a straight pipe at the end changed the flow field in the last °20 of the helical 

pipe as a result of the changes in the pressure field.  

These findings are illustrated in the cross-section flow schematic for a helical pipe 

(figure 2.4.2a) which shows non-symmetric vortices with the upper vortex smaller than 

the lower one. Simulations with and without gravity showed that it has little effect on 

vortex position. A two-phase flow simulation with 1-micron diameter particles also 

showed that for Dean numbers larger than 1,000 centrifugal forces balanced the gravity 

and reduced the peak concentrations of the particles. 

 

 
(b) 

 
 

(a)  

 

 
(c) 

 
Figure 2.4.2:   Dean vortices in U-shaped and helical pipes: (a) schematic [Tiwari et al 
2006], (b) smoke visualization in U-shaped pipe [Cheng et al 1987], (c) smoke 
visualization in helical pipes [Yamamoto et al 2002]. 
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Smoke visualizations confirm the sketches of the secondary motion in U-shaped 

and helical pipes shown in Figure 2.4.2a. Figure 2.4.2b shows a visualization of air flow 

through U-shaped pipes [Cheng et al 1987] while figure 2.4.2c shows a flow visualization 

of the secondary motion in helical pipes [Yamamoto et al 2002]. 

 

 

2.5 Flows with helical vortices 

As will be shown in the following chapters, the flow in this study contains a pair 

of co-rotating helical vortices. Similar helical vortices have been observed in different 

rotating flows, most of the reports coming from investigations of vortex breakdown either 

in confined swirling flows, swirling jets or on highly swept delta wings. The presence of 

helical vortices was also reported in the swirling flow created by tangential injection 

inside a chamber with a closed end [Alekseenko et al. 1999].  

In vortex breakdown helical vortices appear either as a single helix or double 

helix. These structures can be present with or without a vortex breakdown bubble. The 

helical structures are generally unstable and the single helix sometimes rotates around the 

flow axis. The focus of most of the vortex breakdown studies are the bubble mode and 

the single helix mode. These modes create an axial recirculation flow region in swirling 

jets which is used to stabilize flames in combustion. While the bubble mode has a 

stagnation point on the axis and the helical mode has a stagnation point off-axis, the 

double helical mode does not have a stagnation point or axial flow recirculation so it does 

not provide a stabilizing effect like the bubble and single helix modes. Comprehensive 
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reviews of vortex breakdown are presented by Lucca-Negro and O’Doherty [2000], 

Escudier [1988] and Leibovich [1984, 1978]. 

A vortex breakdown is “an abrupt change in the structure of the core of a swirling 

flow” [Althaus et al. 1995, Sarpkaya 1971]. The first observations of vortex breakdown 

are attributed to Peckham and Atkinson [1957] in an investigation of the vortices formed 

by flow separation over the leading edge of delta wings at high angle of incidence. After 

the initial observation of vortex breakdown on wings, most investigations focused on 

vortex breakdown in pipes, as the axial and tangential components of the flow can be 

controlled independently. Unfortunately, despite over 50 years of research, there is still 

no general agreement on how the breakdown forms [Snyder and Spall 2000]. In fact, as 

Billant et al. [1998] point out, the theories are contradictory and even the features 

observed experimentally are different. Some researchers observed a dominant bubble 

mode and a secondary helical mode [Escudier 1988, Ruith et al. 2003] while others 

consider the helical mode the basic mode and the bubble secondary [Leibovich 1978, 

Sarpkaya 1971]. At the same time, there are reports of both helical vortices winding in 

the direction of the flow rotation [Leibovich 1978, Sarpkaya 1971] and vortices winding 

against the flow rotation [Escudier 1988, Lambourne and Bryer 1961, Ruith et al. 2003]. 

These differences are generally attributed to the different swirl generation methods as the 

swirl can be generated with adjustable vanes [Sarpkaya 1971, Faler and Leibovich 1978], 

rotating walls [Escudier 1984], tangential injection [Escudier and Zehnder 1982] or 

rotating pipe sections [Billant et al. 1998]. The vortex breakdown was found to be very 

sensitive to the swirl generation method making generalization difficult.  
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Vortex breakdown occurs when the swirl number exceeds a critical value or when 

swirling flows are exposed to an adverse pressure gradient (sudden expansion, divergent 

pipes). The breakdown mode selection is dependent on Re and swirl level. However, 

several regimes are bi-stable and the mode changes suddenly from one mode to the other. 

This unpredictable behavior was best captured by the classic photo of Lambourne and 

Bryer [1961] which shows both the bubble and the helical breakdown modes occurring in 

the same conditions, at the same time on each side of a delta wing (figure 2.5.1. ).  

 
 

 
 

Figure 2.5.1   Vortex breakdown over a delta wing displaying both the helical and the 
bubble modes [original in Lambourne and Bryer 1961 - reproduced from Leibovich 
1978]; 

 

The vortex breakdown appears as the swirling flow undergoes a transition from a 

supercritical state (which does not allow the presence of waves) to a subcritical state 

(which allows the presence of standing waves) [Leibovich 1978, Escudier 1988]. All 

authors agree that the presence of helical vortices in vortex breakdown is a result of 

instabilities amplified by the centrifugal forces in the rotating flow [Sarpkaya 1971, 

Escudier 1988, Leibovich 1978]. However, the authors do not agree on the relevance of 

the helical mode which is considered fundamental for breakdown by Leibovich [1978] 
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and just a particular case by Escudier [1982, 1988] and Ruith et al. [2003]. Axisymmetric 

vortex breakdown has been achieved in well controlled experiments with no helical 

disturbances suggesting that the vortex breakdown is an axisymmetric phenomenon 

[Escudier 1988].  

 
 

 
(a) 

 

 
(b) 

 

Figure 2.5.2   Visualization of vortex breakdown [Sarpkaya 1971]: (a) bubble mode with 
helical tail (the flow outside the bubble is unaffected), (b) double helix breakdown mode. 
 

The double helical mode was observed for the first time by Sarpkaya [1971] who 

presented numerous dye visualizations of vortex breakdown in water (figure 2.5.2). The 

double helical mode appeared at Re < 2000 and high circulation. The dye stream injected 

on the centerline evolved into a curved sheet and each side of the sheet wrapped around 

the other in a double helix which eventually broke into turbulence. The helical vortices 
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were co-rotating and the helix winding was in the direction of the flow. The author 

attributed the appearance of this mode to the amplification of helical instabilities.  

 

 

 
(a) 

 

 
(b) 

 

Figure 2.5.3   Double helical mode breakdown in swirling flows induced by tangential 
injection: (a) dye visualization at Re = 220, (b) cavitating flow at Re = 9x104 [Escudier 
and Zehnder1982]. 

 

Later, the helical modes were also observed by Escudier and Zehnder [1982] 

(figure 2.5.3) but the helix winding was in the opposite sense compared to the rotation of 

the outer flow. In figure 2.5.3a, dye injection in water shows a breakdown bubble 

followed by a double helix at Re = 220 while figure 2.5.3b shows a similar behavior at 

Re = 9x104 for cavitating flows.  

Several articles report tangential velocity measurements but none of these reports 

have showed the velocity distribution corresponding to the double helical mode or 

identified counter-rotating flow. Faller and Leibovich [1978] report velocity 

measurements with Laser Doppler Velocimetry in a vortex bubble with a helical tail 

(figure 2.5.4a). Their plots show that tangential velocity profiles have two inflection 

points at the end of the bubble (figure 2.5.4b), similar to the velocity profiles investigated 
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in the present study, but the flow did not become counter-rotating. The swirl was 

produced with swirl vanes while the vortex breakdown bubble was created in an 

expanding pipe.  

 

 
(a) 

 

(b) 
 

Figure 2.5.4    Vortex breakdown bubble at Re = 2560: (a) dye visualization (b) 
tangential velocity measurements (S marks stagnation points) [Faler and Leibovich 
1978]. 
 
 

The previous studies confirmed the presence of helical vortices in vortex 

breakdown in pipes. Helical vortices are also present in vortex breakdown in unconfined 

jets. The presence of two helical vortices in swirling jets was visualized by Billant et al. 

[1998] with fluorescent dye in water and two laser light sheets. Figure 2.5.5a shows axial 

and cross-sectional visualizations of the jet structure while figure 2.5.5b shows the jet 

development along the axis. The swirl was created using a rotating honeycomb and the 
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helical vortices were present in flows with Re < 2000 and S < 1.4. For S > 1.4 the vortex 

breakdown evolves into the bubble mode independent of Re. At higher Re but under the 

critical swirl number S = 1.4 the jet structure evolved from a double helix to three helical 

vortices.  

 

 
(a) 

 

 
(b) 

 

Figure 2.5.5   Helical vortices in a swirling jet at Re = 606 and S = 1.41: (a) vertical and 
cross-section jet structure, (b) vortex development along the jet axis (locations in 
diameters) [Billant et al. 1998] 
 

Numerical simulations have also been widely employed to investigate vortex 

breakdown. Comprehensive reviews of numerical simulations are summarized by Althaus 

et al. [1995], Lucca Negro and O’Doherty [2001] and Ruith et al. [2003]. While most of 

these simulations reproduce the bubble mode and the helical mode, Ruith et al. [2003] 

also captured the double helical mode (figure 2.5.6). In their simulations the winding of 

the helical vortices was opposite to the main flow, similar to the experimental reports of 
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Escudier and Zehnder [1982]. The authors did not report counter-rotating flow and they 

attributed the helical vortices, which were unstable, to amplification of helical 

disturbances.  

 
      z 

 

Figure 2.5.6   Particle paths in a numerical simulation of a swirling jet show a double 
helix structure downstream of a breakdown bubble at Re = 150 [Ruith et al. 2003]. 
 

In conclusion the double helical mode in vortex breakdown is an unstable flow 

regime generally attributed to a centrifugal amplification of helical instabilities. The lack 

of stability suggests that the helical vortices are weak and no counter-rotating flow have 

been observed either in flow measurements, visualizations or numerical simulations.  

Helical vortices were also reported in the swirling flow created by tangential 

injection inside a chamber with a closed end [Alekseenko et al. 1999]. The authors 

created experimentally different types of helical structures by varying the inclination of 

plates at the bottom of the chamber, the inlet conditions of the injection nozzles and the 

characteristics of the chamber outlet. One of the helical structures visualized by air 

bubble injection was a double helix similar to the vortex system discussed in the 

following chapters (figure 2.5.7). However, the double helix structure was very unstable, 

unlike the helical vortices identified in the present study. The authors developed a 
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simplified analytical model which they used to calculate the flow field for a given pitch 

of the helix, radius of the helix, strength of the vortex (circulation) and ratio between the 

axial and tangential velocity. This approach was continued later by one of the authors to 

calculate velocity distributions for different combinations of multiple helical vortices 

[Okulov 2004, Fukumoto and Okulov 2005]. None of these studies reported counter-

rotating flow. 

 
 

 
 

(a) 
 

(b) 
 

(c) 
 

Figure 2.5.7   Helical vortices in the swirling flow induced by centrifugal injection into a 
rectangular container [Alekseenko et al 1999]: (a) setup top view, (b) setup side view 
with a sketch of the helical vortices, (c) air bubble visualization. 
 

The articles presented in this section show that helical vortices are not a rare 

occurrence in nature, but also that in most cases they are unstable and difficult to 

measure. As the helical vortices observed in the present study are stable, their 

investigation could help the understanding of the flow structures and their interaction in 

vortex breakdown and other rotating flows as well, even though specific flows are 

strongly dependent on the swirl generation system. 
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CHAPTER 3 

 

EXPERIMENTAL SETUP 

 

3.1   General setup 

The experimental setup is designed to allow the investigation of the swirling flow 

induced by a twisted tape in a circular pipe (Figures 3.1.1 and 3.1.2). It consists of a 

closed circuit where water from the tanks is pumped by a 0.5 HP magnetic drive 

centrifugal pump with a frequency controlled motor. The inner diameter of the testing 

pipe is 1 inch (d = 25.4 mm) and the pipe is made of 1.5 mm thick glass which provides 

optical access. Seymour [1966] investigated twisted tapes inserts in 1, 2 and 3 inch (25.4, 

50.8 and 76.2 mm) diameter pipes and showed that the tube diameter does not influence 

the structure of the secondary flow. Consequently, in this study only a 1 inch (25.4 mm) 

diameter pipe is considered. The pump allows tests at Reynolds numbers in the range 

54 1010 −  (Re based on the pipe diameter d). The water tanks 1 and 2 have a maximum 

combined capacity of approximately 1 cubic meter but usually about half of this capacity 

is used during tests. 

The flow circuit has a calming section immediately upstream of the twisted tape. 

The calming section is designed to reduce the turbulence level and consists of a coarse 

screen, a honeycomb, two fine screens and a nozzle as suggested by Farell and Youssef 

[1996]. The hexagonal cells of the honeycomb have a flat side to flat side dimension of 

6.35 mm and wall thickness of 0.25 mm. The coarse screen and the two fine screens have 

square cells with cell sizes 9.6, 2 and 1 mm.  
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Figure 3.1.1:   Setup schematic. 

 

 

 

 
 

 
Figure 3.1.2:   General view of the experimental setup. 
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The 140 mm long nozzle is installed 1d (25.4 mm) downstream of the second fine 

screen and has a 9:1 area contraction ratio. The inlet diameter is 3d (76.2mm) and the 

outlet diameter is 1d (25.4mm) [Islek 2004]. The system used to straighten the flow is 

similar to the one used by Seymour [1966]. The flow exits from the nozzle into the 

twisted tape swirler. 

The twisted tapes tested have lengths of 45, 60 and 90 mm and they are twisted 

°180  (the pitch is equal to the length). The corresponding pitch to diameter ratios are 

1.77, 2.36 and 3.54, respectively. The swirlers were manufactured by stereolithography 

(by Vistatek Inc.) using “Somos Watershed 11120” resin. The twisted tape and the pipe 

form a single part, so the width of the tape is equal to the inner diameter of the pipe with 

no gap in between (figure 3.1.3). This design eliminates uncertainties due to any 

secondary effects of the tape/wall clearance which occur for common twisted tape inserts. 

The twisted tape has a profiled edge to limit flow separation at the leading edge of the 

swirler. The tape thickness is 3 mm (0.118d) at the leading edge and 1.5 mm (0.059d) at 

the trailing edge. 

 

 

 
 

 
Figure 3.1.3:   Twisted tape swirler: pitch H = 60 mm, diameter d = 25.4 mm, pitch to 
diameter ratio yr = 2.36. 
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The flow is investigated using LDV measurements and direct visualization of 

injected fine air bubbles. The air bubbles generator was built using a spinal needle (a 

large needle designed to be inserted into the spinal column between the lumbar vertebrae 

for diagnostic purposes or to administer medication) with a 1.25 mm (0.049d) outer 

diameter, 0.9 mm (0.035d) inner diameter and with 4 equally spaced holes of 0.45 mm 

(0.018d) oriented upstream (figure 3.1.4). A thin long plug is used to prevent water 

infiltration into the air circuit when the air injection is stopped. The needle was inserted 

into a polycarbonate flange with a 25.4 mm (1d) diameter flow section. The device is 

installed just upstream of the swirler. The air mass flow is supplied by a compressed air 

line controlled by a ball valve. 

 

 
(a) 

 

 
(b) 

 
Figure 3.1.4:  Air bubbles injector: (a) general view, (b) close-up of the perforated 
needle. 

 

The bubbles motion is recorded using a black and white “Phantom V5” high-

speed camera capable of 3800 frames per second (fps) for frame sizes of 512x512 pixels 

or 4200 fps frame sizes of 1024x256 pixels. The camera was fitted with a Nikon “Micro-

Nikkor” lens with focal length f = 55 mm for close shots and a Elicar V-HQ Macro lens 
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with focal length f = 90 mm for wider field views. The lighting is provided by two 

“Lowe” light sources “Omni–Light” of 500 W and “Tota-Light” of 750 W. In addition to 

the high speed camera some images were also recorded with a regular camera (Sony 

DSC-H5).  

 

3.2   Setup for Laser Doppler Velocimetry (LDV) measurements 

Flow velocities are measured using a two-component LDV system (TSI Inc.) in 

backscattering mode with an argon-ion laser (Coherent Innova 70 - C3). The laser has a 

maximum power of 3.4 W. Green light with wavelength 5.514=nλ nm was used for 

axial velocity measurements while blue light ( 488=nλ nm) was used for the tangential 

velocity measurements. One of the blue light beams had a phase shift of 1 MHz to 

distinguish between the positive and negative velocities. The half angle between the laser 

beams is °= 97.3κ .  

The head of the laser can be translated in all three directions using a traverse 

system with three electric motors controlled by a computer. The spatial resolution of the 

traverse is 210−  mm.  

Velocities are calculated from the Doppler signal as frdi dfV ⋅=~
 where iV

~
 is the 

instantaneous velocity in i direction , df is the Doppler frequency and frd  is the fringe 

spacing κλ sin2 ⋅= nfrd . Velocity statistics were calculated from batches of 5,000 

samples collected at each measurement point.  

The high curvature of the pipe walls required special measures to compensate for 

light refraction. Following previous investigations of the lensing effect of curved glass 
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walls [Glover et al. 1985], a rectangular glass enclosure ( 5040340 ××  mm) with 3 mm 

thick walls was attached to the glass pipe, while the space between the straight walls and 

the pipe was filled with glycerin which has an index of refraction close to the index of 

refraction of glass. The velocities were measured only along the horizontal diameter 

where the vertical component of the velocity measured with the laser is equal to the 

tangential velocity θV . This strategy also minimized the effects of light distortion on the 

measurements.  

 

Figure 3.2.1:   Light refraction through the different media surrounding the test section 
for tangential velocity component measurements (not to scale). 

 

The level of light distortion induced by the curved glass walls and medium 

changes (air/glass/water) is still significant even with the presence of the rectangular 

container filled with glycerin. While the laser head moves 15 mm toward the pipe, the 
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measuring volume created at the intersection of the light beams actually sweeps 24 mm 

across the horizontal diameter inside the pipe. Consequently, the actual locations of the 

measurements are determined from the positions of the laser head after calculating 

corrections which account for the angle changes of the light due to refraction at the 

interfaces between different mediums [Glover et al. 1985]. 

Figure 3.2.1 shows the direction changes for the upper blue light beam used to 

measure the tangential component of the velocity. X ′  is the actual position of the 

measuring volume while X  is the position if the refraction is ignored. The beam 

intersection angle is also modified by refraction from κ  to κ ′ . The lower beam follows 

an identical path.  

The following equations describe the path changes due to refraction for the upper 

beam and they were solved numerically with MATLAB to provide the compensated 

positions for the laser head: 

( ) ( )[ ]

( )



























−+−+
⋅⋅=′

⋅=

⋅=

⋅=

⋅+−⋅+−⋅⋅=

⋅=

⋅=

65432

3
0

5
2

6

4
0

5

3
2

4

112
0

2
3

1
1

2

1
1

sin

sin

sinsin

sinsin

sinsin

tantantantantan
cos

sin

sinsin

sinsin

θθθθθ
θ

θθ

θθ

θθ

κθκθκθθ

θθ

κθ

w

m

w

g

g

m

g

m

g

g

a

n

n
RX

n

n
R

R

n

n

XtBX
R

n

n

n

n

(3.2.1) 



 50 

The new angle between the beams is calculated from the “Law of Sines” as 

)sin(sin 6 k

RX
′−

=
′

πθ
, so the actual angle is given by 








′

−=′ 6sinsin θπκ
X

R
a . The 

measured velocities are corrected using κ ′ . 

In the previous equations system, as well as in figure 3.2.1, °= 97.3κ  is the laser 

angle, 17=BX mm is the tank half thickness, 31 =gt mm is the container wall thickness, 

7.12=R mm is the inner radius of the pipe and 2.14=oR mm is the outer radius of the 

pipe. The indices of refraction are na = 1 for air, ng1 = 1.51 for the container wall, nm = 

1.47 for glycerin, ng2 = 1.47 for the pipe wall and nw = 1.33 for water (all values are 

standard values for yellow light at 589=λ  nm). 

This non-linear system of equations describes the actual position inside the pipe 

for known laser head positions. However, in order to describe the flow field uniformly 

with equally spaced measurements, the inverse problem was solved, calculating the laser 

head positions corresponding to specific positions inside the pipe (between -12 and 12 

mm with 1 mm spacing). The inverse system was solved by minimizing the error 

function defined as: 

)()( argarg ettcalculatedett xabsxxabserr −=           (3.2.2) 

where 12,11...2,1,0,1,2,...11,12arg −−−−=ettx mm. The maximum error was under 1% 

(0.83% for 2arg =ettx  mm) and the solutions of the inverse problem are tabulated in table 

A1 in Appendix 1. The fourth column of the table shows the positions of the traverse 

after the 0 position of the traverse has been align with the pipe centerline. The fifth 

column of the table shows the velocity correction corresponding to the change in the 

beam intersection angle; the measured velocities were multiplied with those coefficients. 
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The flow was seeded with 3 µm diameter titanium dioxide (TiO2) particles with 

density 4.2 g/cm3 and index of refraction 2.6. Initial measurements for the 90 mm swirler 

were performed using 0.3 µm diameter alumina particles (Al2O3) with density 3.84 g/cm3 

and index of refraction 1.67, but the increase in the diameter and index of refraction 

greatly improved the signal to noise ratio (SNR) without any loss of sensitivity [Menon 

and Lai 1991]. As a result, the measurements with TiO2 particles were collected much 

faster. 

The settling velocity for the TiO2 particles calculated as  
g

s

ga
V

µ
ρ

⋅
⋅⋅∆=

18

2

 is 

510568.1 −× m/s, much lower than the velocities measured (in the range 10-1 - 101 m/s). In 

the previous formula ρ∆  is the difference between the density of the medium and the 

density of the particles, a  is the particle diameter, g  the gravitational acceleration and 

gµ  is the viscosity of water.  

The measurements were processed using transit time weighting with statistics 

calculated as: 
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where bτ  is the total burst time of the signal and iV
~

 is the instantaneous velocity in i 

direction. The data processing is incorporated in the control software of the laser. No 

differences were observed between measurements with and without velocity biased 

correction (without bias correction statistics are calculated considering 1=bτ ). 
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An extensive investigation of the measurements uncertainty in this experimental 

setup was performed in a previous study [Islek 2005]. Four types of errors were 

considered: (1) errors due to factors upstream of the twisted tape (alignment of the flow 

loop components), (2) errors due to factors downstream of the twisted tape (test 

section/LDV head alignment), (3) errors in the twisted tape alignment (from vertical) and 

(4) errors due to variation in LDV sampling. The uncertainty was found to be 

approximately 3% for average velocities and 10% for turbulent root mean square (rms) 

fluctuations. 

The laser was also used to create a cross section sheet of light after passing a 

green light beam through a divergent cylindrical lens with a focal length f = -40 mm. The 

air bubble streams reflect and scatter the laser light, marking the positions of the centers 

of the secondary vortices as two bright white spots on the green circular cross-section. 
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CHAPTER 4 

 

EXPERIMENTAL RESULTS AND COMMENTS 

 

4.1   Results of the LDV measurements 

Tangential velocities were measured in the swirling flow induced by twisted tape 

inserts with 45, 60 and 90 mm pitch (1.77, 2.36 and 3.54 twist ratio) at different Re  from 

104 to 105. The measurements were collected along the horizontal diameter of the pipe at 

5 mm (0.2d) intervals along the pipe axis. Each set of measurements contains 25 radial 

positions spaced 1 mm (0.039d) apart. The range of optical accessible locations along the 

pipe axis was from 25 mm to 350 mm (1d to 13.78d) starting from the end of the twisted 

tape.  

Figure 4.1.1 shows a sample of these measurements collected between 150 mm 

(5.91d) and 230 mm (9.06d) for the 60 mm (yr = 2.36) swirler at Re = 7.7x104 (bulk 

velocity 3=bU m/s). As reported previously by Aidun and Parsheh [2007], the profiles 

of the tangential velocity θV  between z = 170 mm (6.69d) and z = 180 mm (7.09d) show 

an inflection point which eventually leads to asymmetric counter rotating flow near the 

centerline for z-positions between 185 mm (7.28d) and 205 mm (8.07d) but which returns 

to the initial typical “S” profile of a simple vortex at z = 230 mm (9.06d). This pattern 

repeats periodically along the pipe axis for all the 3 swirlers investigated. Positive values 

of the tangential velocity are marked “+” on the plots and negative values of the 

tangential velocity are marked “-” on the plots. 
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Figure 4.1.1:   Variation of the average tangential velocity θV  along the pipe axis from 

150=z mm (5.91d) to 230=z  mm (9.06d) for the flow induced by a twisted tape with 
60=H mm pitch (yr = 2.36) at 4107.7Re ×= . 
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Figure 4.1.2:  Variation of the normalized angular velocity nω  along the pipe axis from 

0 to 350 mm (13.78d) from swirler exit for flows induced by twisted tapes with H  = 45, 
60 and 90 mm pitch (1.77, 2.36 and 3.54 twist ratio) at 4107.7Re ×= .  



 55 

The first profile in figure 4.1.1 is typical for swirling motions. The tangential 

velocity increases linearly in a core region, reaches a maximum for 5±=r  mm (± 0.2d) 

and slowly decays toward the edge of the pipe. When the product θVr ⋅  is positive, the 

flow rotates in the direction of the tape and when the product is negative, the flow rotates 

against the direction of the tape.  

Aidun and Parsheh [2007] proposed using the normalized angular velocity at the 

pipe centerline nω to characterize the periodicity of the flow induced by twisted tapes. 

The normalized angular velocity at the centerline is defined as: 

b
n U

R 0ωω ⋅
=       (4.1.1) 

where R  is the pipe inner radius, 
00

0 lim
=→

∂∂==
rr

rVθωω  is the centerline angular 

velocity, θV  is the average tangential velocity, ( )RU b ⋅⋅= 2Reν  is the bulk streamwise 

mean velocity, Re  is the Reynolds number and ν  is the kinematic viscosity of water. 

Figure 4.1.2 shows the variation of the normalized angular velocity at the 

centerline nω  along the pipe axis for the three swirlers investigated. The negative values 

of nω  represent counter-rotating flow while the positive values show rotation in the 

direction of the tape. All three profiles clearly show a sinusoidal variation corresponding 

to a periodic repetition of profiles similar to those shown in figure 4.1.1. The pitch of the 

sinusoids is approximately 1/3 larger than the corresponding swirler pitch 

( HH ×= )34(ω ). The pitch of the profiles is independent of Reynolds number, as 

confirmed by the plots of nω  at five different Re for the 90 mm long swirler (yr = 3.54) 

(figure 4.1.3).  
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Figure 4.1.3:   Variation of the normalized angular velocity nω  with Reynolds number 

for the swirler with pitch H = 90 mm (yr = 3.54) on axial locations from 50 mm (2d) to 
350 mm (13.78d) from swirler exit. 
 

The influence of the secondary vortices in the flow induced by a 60 mm long 

twisted tape (yr = 2.36) for Re = 7.7x104 (Ub = 3m/s) on the average axial velocity zV  and 

the root mean square (rms) fluctuations of the axial velocity zv′  is shown in figure 4.1.4. 

The influence of the secondary vortices on the average tangential velocity θV  and the rms 

of the tangential velocityθv′  is shown in figure 4.1.5. The fluctuations are normalized by 

the bulk velocity 3=bU m/s. While the average axial velocity profiles and the rms 

profiles for both axial and tangential velocities are not as instructive as the average 

tangential velocity, they still display distinctive features. 

Figure 4.1.4 shows the changes in the average axial velocity profiles at three axial 

locations. The axial velocity profiles are not symmetric because the two secondary 

vortices are not identical. The increase in the average tangential velocity due to the 

superposition of the main and the secondary vortices near the wall at 185=z  mm (7.28d) 

significantly decreases the axial velocity (by approximately 30%Ub) while the core 

region of approximately 10 mm (0.4d) is less affected.  
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Figure 4.1.4:   Measurements of the normalized average axial velocity bz UV /  (top) and 

the normalized rms fluctuations of the axial velocity bz Uv /′  (bottom) in the flow induced 

by a 60 mm long twisted tape (yr = 2.36) at Re = 4107.7 ×  (Ub = 3m/s) at three axial 
locations z = 150, 185 and 230 mm (5.9d, 7.28d and 9.06d) downstream of the swirler. 
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Figure 4.1.5   Measurements of the normalized average tangential velocity bUV /θ  (top) 

and the normalized rms fluctuations of the tangential velocity bUv /θ′  (bottom) in the 

flow induced by a 60 mm long twisted tape (yr = 2.36) at Re = 4107.7 ×  (Ub = 3m/s) at 
three axial locations z = 150, 185 and 230 mm (5.9d, 7.28d and 9.06d) downstream of the 
swirler. 
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Both the axial and the tangential velocity fluctuations in Figs. 4.1.4 and 4.1.5 

show an increase near the centers of the secondary vortices. These are most likely due to 

oscillations of the secondary vortices visible in the air bubble visualizations, which are 

described in the next section. 

The impact of the oscillations is slightly stronger on tangential velocities which 

show maximum fluctuations of approximately 15% while the axial velocity fluctuations 

have a maximum of approximately 10%. Near the pipe centerline both the axial and 

tangential velocity fluctuations are approximately 8%. The oscillations seem incoherent 

as a power spectrum analysis of the axial velocity measurements did not reveal any 

dominant frequency (figure 4.1.6). The power spectrum was evaluated inside the helical 

vortex core at the location z = 185 mm (7.28d) and r = -5 mm (-0.2d) from 50,000 axial 

velocity measurements sampled at 1,000 Hz and processed with Hamming windows on 

sub-segments of 4096 measurements.  
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Figure 4.1.6:   Power spectrum analysis of the axial velocity zV  inside the helical vortex 
core at z = 185 mm (7.28d) and r = -5 mm (-0.2d) for the flow induced by a twisted tape 
with 60 mm pitch (yr = 2.36) at Re = 4107.7 × . 
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Figure 4.1.7:   Normalized average axial velocity bz UV /  (top) and normalized rms 

fluctuations of the axial velocity bz Uv /′  (bottom) at 4107.7Re ×=  (Ub =3m/s) in the 

absence of the swirler at two axial locations, 40=z  mm (1.57d) and 300=z  mm 
(11.81d) downstream of the contraction end. 
 

Velocity LDV measurements were also collected inside the pipe in the absence of 

the twisted tape in order to evaluate the flow characteristics at the inlet of the twisted tape 

swirler. The honeycomb and the 9:1 contraction significantly suppress the velocity 

fluctuations for all Re investigated. Figure 4.1.7 shows the flow characteristics in the 

absence of the swirler at two axial locations 40=z  mm (1.57d) and 300=z  mm 

(11.81d), downstream of the contraction end at Re = 7.7x104 (bulk velocity 3=bU m/s). 

At 40=z  mm (1.57d) the average axial velocity zV  has a flat profile of approximately 

101% of bU  while the velocity fluctuations represent approximately 1% of the bulk 

velocity throughout the pipe except very close to the walls where viscous effects reduce 

the average velocity while increasing turbulence intensity to approximately 15%. The 

average axial velocity profile is similar for all Re investigated (in the range 104-105). The 
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normalized rms fluctuations of the axial velocity bz Uv /′  represent 

approximately %5.01±  of the bulk velocity near the centerline for the whole range of Re 

investigated. These profiles are used later as inlet boundary conditions for the numerical 

simulations. The flow development along the axis is slow and at the next location at 

300=z  mm (11.81d), close to the end of the test section, the viscous effects increase the 

centerline average axial velocity to 110% of bU  while the decrease in the axial velocity 

near the walls is accompanied by an increase in fluctuations. 

 

4.2   Air bubble visualization 

The air-bubble injection device described in the previous section was installed to 

visualize the secondary flow. As shown in figure 4.2.1, the air bubbles injected follow 

stable helical trajectories which do not change throughout the experiments. The air 

bubble trajectories also do not change with Re, consistent with the LDV measurements. 

The LDV measurements were done in the absence of the air bubbles, thus avoiding any 

interference. As the photos in figure 4.2.1 are recorded without the rectangular glass 

container, the air bubbles appear closer to the wall than they actually are. 

Figure 4.2.1 also shows that the pitch of the air bubble streams and the pitch of 

the measured normalized angular velocity nω  are identical. This similarity suggests that 

the sinusoidal variation of nω  is a result of two helical vortices originating inside the 

twisted tape swirler and winding with the swirl. The centers of the vortices create low 

pressure regions which concentrate the air bubbles. These vortices are similar to the 

double helix described in the investigation of the swirling flow induced in a rectangular 

chamber by tangential injection [Alekseenko et al. 1999] and shown in figure 2.5.7. 
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However, as mentioned before, the helical structures created using two plane slopes at the 

chamber’s bottom were very unstable.  
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Figure 4.2.1:   Side and top views of the air bubble streams showing their helical nature 
and corresponding centerline angular velocities calculated from LDV measurements for 
the flow induced by a twisted tape with pitch H = 60 mm (yr = 2.36) at Re = 7.7x104 
(Ub=3m/s). 
 

The impact of the swirl decay is very limited over the short axial length of the 

pipe in our investigation as both the measurements (Figures 4.1.1 and 4.1.2) and the 

visualizations (figure 4.2.1) confirm. This is in agreement with the study preformed by 

Kreith and Sonju [1965] which showed that the swirl behind a twisted tape decays 

approximately 20% over the first 10 diameters with slower decay at higher Re and 

independent of the tape pitch (figure 2.3.1). The focus of this study is within few 

diameters downstream of the twisted tape.  

A thin laser light sheet reveals the location of the centers of the secondary vortices 

in the pipe cross-section plane (figure 4.2.2a). A movie showing the laser sheet moving 

along the pipe axis highlights the stability of the helical vortices and confirms that their 
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centers are located about a quarter of a diameter away from the pipe edge, consistent with 

the measurements.  

The secondary vortices are stationary with low amplitude oscillations as they 

respond to random turbulent fluctuations. The minimum pressure location in the flow 

field is not at the pipe centerline as in regular swirling flows, but at the center of the 

secondary vortices, as proved by the air bubble streams. High speed camera recordings 

show the rotation of individual air bubbles around the secondary vortices 200 times 

slower than the actual motion (figures 4.2.2 b, c and d). The air bubbles rotating under the 

influence of the primary vortex are trapped when they pass through the field of the 

secondary vortices. 

Once the bubbles are trapped on the orbit of a secondary vortex, they spiral 

toward the secondary vortex axis. Within approximately 3 diameters along the pipe axis 

most bubbles are sucked in the center of the secondary vortices. Downstream the bubbles 

size increases, restricting good visualization close to the entrance of the straight pipe. The 

size of the air bubbles increases as Re decreases because the injection holes are facing 

upstream and the bubble size depends on the dynamic pressure of the incoming fluid 

(figure 4.2.2d). 

A photo of the swirler under intense light proves that the vortices change their 

pitch compared to the twisted tape while still inside the twisted semicircular channels. 

The air bubble stream drifts away from the tape toward the center of the channels and it 

continues smoothly inside the straight pipe (figure 4.2.3). The photo is not very clear as 

the swirler was not designed to be optically accessible.  

 



 63 

 

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

 

Figure 4.2.2:   Air bubble visualizations of the helical vortices for the flow induced by 
the tape with pitch 60=H mm (yr = 2.36) at Re = 7.7x104 (the flow is from right to left):  
(a) general view, (b) high speed camera close-up at the straight pipe entrance, (c) high 
speed camera side view, d) high speed camera side view at Re = 2.5x104 . 

 

 

 

 
 

Figure 4.2.3:   The air bubble stream drifts away from the twisted tape toward the center 
of the channel (right) and continues smoothly inside the straight pipe (left) (flow induced 
by the tape with pitch 60=H mm (yr = 2.36) at Re = 7.7x104). 
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The LDV measurements showed that the pitch of the helical vortices did not 

change with Re. Those measurements are confirmed with high speed camera photos 

recorded at 4,200 fps (figure 4.2.4) which show how the flow induced by the tape with 

pitch 45 mm (yr = 1.77) changes with Re in the interval 104 – 105.  

The pitch does not change even for the flow at Re = 2x104 where the helical 

vortices are visible only in first half of the test section. In the second half of the test 

section the bubbles accumulate at the centerline suggesting the flow has become a regular 

swirling flow. The air bubbles do not identify any helical vortices inside the test section 

for Re = 104 and the main swirl is indicated only in the first half of the test section by the 

bubbles accumulating at the centerline. Further investigations of the presence of vortices 

inside the swirler at lower Re are described in Chapter 6.6 using numerical simulations 

and the λ2 vortex identification method.  

 

 



 65 

 
 

 

 

F
ig

ur
e 

4.
2.

4:
   

H
el

ic
al

 v
or

tic
es

 v
ar

ia
tio

n 
w

ith
 R

e 
in

 th
e 

ra
ng

e 
10

5  to
 6

x1
04  (

45
 m

m
 p

itc
h 

ta
pe

).
 



 66 

 

 

F
ig

ur
e 

4.
2.

4 
co

nt
in

ue
d: 

  H
el

ic
al

 v
or

tic
es

 v
ar

ia
tio

n 
w

ith
 R

e 
in

 th
e 

ra
ng

e 
5x

10
4  to

 1
04  (

45
 m

m
 p

itc
h 

ta
pe

).
 



 67 

The movies show that one of the vortices becomes unstable at the end of the 350 

mm (13.78d) test section. In order to investigate if this is an effect of an imperfect 

connection between the test section and the rest of the pipe, a 1.3 m (51.18d) long 

continuous pipe section was attached to the 60 mm (yr = 2.36) long twisted tape swirler. 

Air bubble visualizations in this new setup at Re = 7.7x104 revealed that the helical 

vortex becomes unstable approximately 15d downstream from the swirler and confirmed 

that this effect was not a result of the test section configuration (figure 4.2.5). The flow 

transitions from a double helix structure to a single helix structure as the weaker vortex 

merges with the stronger one, which then maintains its helical path until the end of the 

pipe. As the photo in figure 4.2.5 is recorded without the rectangular glass container, the 

air bubbles appear closer to the wall than they actually are. 

 

 
 

Figure 4.2.5:   Vortex development in the flow induced by a 60 mm long twisted tape   
(yr = 2.36) at Re = 7.7x104 in a 1.3 m (51.18d) pipe.  
 
 

Another set of tests was performed using a conventional copper twisted tape 

inserted into a transparent plexiglass pipe (figure 4.2.6). The new setup, which allows 

optical access inside the swirler, was designed to confirm the early secondary vortex 

formation inside the swirler seen in figure 4.2.3. This experiment also confirmed that 

regular twisted tapes produce helical vortices just like the compact swirler used in the 

previous experiments. Unfortunately the tape was twisted only to a 110 mm pitch (yr = 

4.33), as the copper failed on attempts to twist it further, so it did not match exactly the 
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compact swirler characteristics described previously. However, even the weaker swirl 

induced by this long tape created helical vortices as shown in figure 4.2.7. The photo in 

figure 4.2.7 is also recorded without the rectangular glass container, so the air bubbles 

appear closer to the wall than they actually are. 

 

 
(a) 

 

 
(b) 

 
Figure 4.2.6:   Copper twisted tape swirler with 110 mm pitch (yr = 4.33) (a) inlet view, 
(b) inside the straight pipe.  
 

 
 

 
 

 
Figure 4.2.7   High-speed camera view of the formation of the helical vortices inside the 
110 mm (yr = 4.33) long twisted tape swirler at Re = 7.7x104. 
 

 

4.3   Velocity field reconstruction 

The stability of the helical vortices throughout the test section suggests that 

successive cross sectional flow fields are almost identical, except being rotated relative to 

each other. As the swirl decay is slow over the helical vortex pitch which spans 80 mm 

(3.15d) at Re=7.7x104 (figure 4.1.1), and considering the periodicity of the flow (figure 
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4.2.1), an approximation of the flow field is recovered from measurements at several 

axial locations. The measurements collected across the horizontal diameter at successive 

axial locations can be considered as measurements at different angles of the same cross-

sectional flow field, enabling its reconstruction. The flow field resulted from the 

combination of all the measurements from figure 4.1.1 with appropriate angular phase 

shift is shown in figure 4.3.1. 

 

 
 

 

Figure 4.3.1:   Reconstructed average tangential velocity field of the swirling flow 
induced by a twisted tape with pitch 60=H  mm (yr =2.36) at Re = 7.7x104 (Ub = 3m/s). 
 

The number of diameters used for the flow field reconstruction depends on the 

periodicity of the normalized angular velocity. For the 60 mm long swirler (yr = 2.36) the 

variation of the angular velocity at the centerline exhibits an 80 mm (3.15d) period. The 

measurements were collected every 5 mm (0.2d) along the pipe so the cross sectional 

flow field reconstruction includes 16580 ==m  measurement sets. The angle between 
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the measurements was determined assuming equal spacing ( °=°= 25.1116180θ ). Each 

measurement set contains 25 radial positions spaced 1 mm (0.039d) apart. As the 

centerline measurement is repeated in all 16 measurements sets, the cross sectional flow 

field is characterized by 385152516 =−×  independent measurements. 

The arrows in figure 4.3.1 show the location of the measurements and the relative 

magnitude and orientation of the tangential velocity in the cross sectional field. The 

arrows are not complete velocity vectors as they lack the radial velocity component. The 

radial velocity components must have the same order of magnitude as the tangential 

velocities of the secondary vortices to satisfy mass conservation in the regions showing 

low tangential velocities near the edges of the secondary vortices. To display the arrows, 

the velocities were projected on the vertical and horizontal axis using the corresponding 

angle for each measurement diameter (°0  for the first one, °25.11  for the second, °50.22  

for the third, etc.). 

The cumulative plot in figure 4.3.1 shows a three vortex structure with two 

secondary vortices superimposed over the main swirling flow created by the twist of the 

tape. The two secondary vortices have a diameter equal to the pipe radius. They rotate in 

the same direction as the main flow and have a skewed shape due to its presence.  

 

4.4   Secondary flow recovery 

The analysis of the velocity profiles from figure 4.1.1 suggests that the velocity 

distribution of the tangential velocity field generated by the main swirl is described by the 

measurements that do not cross the secondary vortices. The measurements least affected 

by the secondary vortices are collected perpendicular to the line crossing through their 
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centers (figure 4.3.1). In the case of the twisted tape with 60 mm pitch (yr = 2.36) 

presented in figure 4.1.1, these measurements are the ones collected at the axial location z 

= 225 mm (8.86d) for which nω exhibits a peak in figure 4.1.2. In order to reveal the 

effect of the secondary vortices on the total tangential velocity field, the background 

created by the velocity field of the main vortex was subtracted from all velocities profiles 

in figure 4.1.1.  

 
 

 
 

 

Figure 4.4.1:   The actual tangential velocity profile of the lower secondary vortex is 
highlighted in the plot of )()( 21 zVzVV θθθ −=∆  where θV (z1=180mm) are the 

measurements through the center of the lower vortex and θV (z2=225mm) is the main 

vortex velocity distribution. 
 

The actual velocity distribution of the secondary vortices can be extracted only 

from the measurements which cross through their centers. These measurements sets are 

identified in figure 4.1.1 as the ones showing maximum counter-rotating flow, 

respectively the measurements at z = 180 mm (7.09d) for the lower vortex (located on the 

lower side of figure 4.3.1) and z = 190 mm (7.48d) for the upper vortex. The background 
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removal process is shown in figure 4.4.1 for the measurements which cross through the 

center of the lower vortex. 

The total tangential velocity field after subtraction of the velocity field induced by 

the primary vortex is shown in figure 4.4.2 as seen looking upstream. Compared to the 

original field, the secondary vortices recovered the round shape and their centers shifted 

approximately 1.5 mm (0.06d) toward exterior. The arrows show the direction of rotation 

for both secondary vortices and also for the main field.  

 

 

+ 

+ 

 
 

 

Figure 4.4.2:   Average tangential velocity contours of the secondary vortices after 
removing the main vortex background at Re = 7.7x104 (Ub = 3m/s). The circles show the 
boundaries of the vortices while the arrows show their rotation. 
 

Figure 4.4.3 shows the tangential velocity profiles of all three vortices present in 

the flow field ignoring the angle difference between the two secondary vortices. These 

velocity profiles are extracted from the measurements which cross through the center of 



 73 

the secondary vortices, thus showing the actual distance between the center of the pipe 

and the centers of the vortices and also the actual tangential velocity magnitudes. 

 
 

 
 

 

Figure 4.4.3:   Average tangential velocity profiles of the three vortices present in the 
flow induced by a twisted tape with pitch H = 60 mm (yr = 2.36) at Re = 7.7x104 (Ub = 
3m/s).  

 

The fact that without the influence of the primary vortex the two secondary 

vortices recovered their symmetric shape suggests that the overall flow field is the result 

of a superposition of the fields induced by the secondary vortices on the field generated 

by the primary vortex, regardless of Reynolds numbers or the turbulence level. 

The maximum velocity induced by the secondary vortices is approximately the 

same as the maximum velocity induced by the primary vortex. Due to space restrictions, 

the size of the core region of the secondary vortices is only 6 mm (0.24d) compared to the 

10 mm (0.39d) for the primary vortex, meaning that the secondary vortices have a higher 

angular velocity than the primary vortex. In figure 4.4.3 the angular velocities calculated 

at the centers of the secondary vortices are 135 rot/s for the lower vortex and 175 rot/s for 

the upper vortex, while the angular velocity of the primary vortex is 71 rot/s.  
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The distance between the centers of the secondary vortices and the pipe centerline 

is approximately 0.25d (6.6 - 6.8 mm). The space separating the two secondary vortices is 

approximately 3 mm (0.12d). The measurements are confirmed by the air bubble 

visualizations described in section 4.2. 

Despite the fact that the swirler is symmetric and the two helical vortices have the 

same pitch, the angle formed by their centers and the center of the main vortex (which is 

also the center of the pipe) is °155  instead of °180 angle. The angle observed between the 

secondary vortices is created as one of the vortices becomes unstable before eventually 

merging with the second helical vortex (see visualization in figure 4.2.5). The remaining 

helical vortex oscillates and its pitch increases but it does not disappear until the end of 

the 1.3m (51.18d) pipe. The oscillations of the helical vortices create the peaks observed 

in the velocity fluctuations plots near the cores of the helical vortices (figures 4.1.4 and 

4.1.5).  

 

4.5   Vortex inception and development 

Previous studies of swirling flows induced by twisted tapes inserts suggest that 

the secondary motion is produced by the centrifugal imbalance caused by the radial 

velocity distribution coupled with the rotational motion created by the twist of the tape. 

These studies generally showed two counter-rotating vortices appearing on each side of 

the twisted tape and changing their size and location in the cross-section along the pipe 

[Seymour 1966, Kazuhisa et al. 2004, Yerra et al. 2007].  

The swirlers investigated here do not allow direct measurements inside them. At 

the same time, no traces of a counter-rotating vortex were observed either in the air 
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bubble visualizations or in the LDV measurements inside the straight pipe presented in 

this study.  

The experiments presented in this chapter suggest that single co-rotating vortices 

form on each side of the twisted tape. As the co-rotating vortex strengthens and expands, 

its core slowly moves away from the twisted tape resulting in the increase of the vortex 

pitch relative to the twisted tape pitch (as shown in figure 4.1.2). Once the twisted tape 

ends, the co-rotating secondary vortices preserve their size, helical trajectory and pitch 

inside the straight pipe.  

The same tangential velocity component drives the primary vortex and also 

accelerates the secondary vortices. As a result all vortices reach approximately the same 

maximum tangential velocity, as indicated by the measurements. Figure 4.4.3 shows that 

for the swirling flow induced by the tape with 60 mm (2.36d) pitch at Re = 7.7x104 the 

maximum velocity of all three vortices is approximately half the magnitude of the bulk 

velocity.  

The pitch of the secondary vortices HH ×= )34(ω  is characteristic to °180  

twisted tapes and it is not the same for tapes twisted more than 180o (as it will be shown 

in the next chapters). The coexistence of the two co-rotating vortices is possible due to 

the presence of the primary vortex, which reduces the tangential velocity of the two 

secondary vortices near the pipe centerline, allowing a smooth transition. Further details 

of the formation of the secondary vortices are presented in the following chapters using 

numerical simulation. 
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CHAPTER 5 

 

NUMERICAL SIMULATIONS: MODELS  

 

5.1   Background 

While the experimental measurements and the air bubble visualizations clearly 

answered the main question of the present study, showing that counter-rotating flow is 

possible as a result of the presence of secondary helical vortices, it also raised the 

question of how these vortices form and develop inside the swirler. As the setup does not 

allow non-intrusive measurements inside the swirler, an alternative solution for 

investigating the inception of the secondary vortices is to model the flow using 

commercial CFD software. Numerical simulations are capable of providing a complete 

description of the flow field, including the velocity field and the pressure distribution, 

thus complementing the experimental observations.  

The purpose of the simulation is not to reproduce the flow precisely. The accuracy 

of the simulation is limited by the computational resources available and the demanding 

characteristics of the flow (high Re flow, large domain and large 3D gradients). 

Consequently, the simulation is designed to capture qualitatively the helical vortices 

observed in the experiments, in order to identify their origin. 

Simulations of swirling flows through pipes with twisted tapes inserts at low Re 

[Date 1974, Kazuhisa et al. 2004, Yerra et al. 2007] and also simulations of flows 

through static mixers using the software “FLUENT” for Re up to 5x103 [Rahmani 2004, 

2005] were described in Chapter 2.3. However, all the previous studies investigated the 
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flow inside the twisted tape, while the present study analyzes the behavior of the 

secondary flow downstream of a short twisted tape swirler. This explains the absence of 

any previous reports of helical vortices induced by twisted tapes.  

The secondary flow observed in the experiments and presented in the previous 

chapters is further investigated using numerical models. The models simulate the swirling 

flow through an 180o twisted tape swirler with a straight pipe section upstream of the 

swirler and another straight pipe section downstream from the swirler. Additionally, 

swirlers with multiple twists and multiple chambers are also investigated. The flow is 

calculated using the commercial CFD software FLUENT (Fluent Inc., Lebanon, NH) 

while the various computational grids are created using the grid generator software 

GAMBIT produced by the same company. The main characteristics of the simulations 

are described in the following sections. 

 

5.2   Governing equations 

The stability of the helical vortices observed during the experiments suggests that 

the flow is in a quasi-steady state, thus the flow is modeled using the steady state Navier-

Stokes equations. A Cartesian coordinates system XYZ was preferred because the flow is 

not axi-symmetric and the Cartesian system avoids the singularities which the Navier-

Stokes equations in cylindrical coordinates have at the centerline from terms containing 

r/1 and 2/1 r . The working fluid in the model is liquid water (incompressible) at room 

temperature. The flow field is obtained solving the governing integral equations for the 

conservation of mass and momentum using a pressure-based solver in which the pressure 

field is extracted by solving a pressure correction equation.  
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For a steady incompressible flow, the mass conservation equation in Cartesian 

coordinates expressed in index notation (where repeated indices imply summation) is: 

0=
∂
∂

i
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x

u
      (5.1) 

where iu  represents the velocity component in the ix  direction. The momentum 

conservation equation in the absence of external body forces is: 
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where ρ  is the density, p  is the pressure and g  is the gravitational acceleration in the 

ix  direction. The stress tensor ijτ  for an incompressible flow is given by: 
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where µ  is the kinematic viscosity.  

The experimental data show that the flow is laminar at the inlet of the swirler for 

all Re investigated due to the honeycomb and the 9:1 contraction located immediately 

upstream (figure 4.1.7). The experiments also showed that inside the straight pipe the 

flow is stable and the behavior of the secondary motion is closer to a laminar regime 

rather than the turbulent regime expected at the high Re of the experiments. This is 

unlikely to be a result of relaminarization as previously observed in rotating flows 

[Humphrey and Webster 1993], because Re is very high. This behavior is most likely 

caused by the close proximity of the test section to the calming section installed 

immediately upstream from the swirler. Simulations are run with both laminar and 
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turbulent formulations and compared to the experimental data to determine which effects 

are dominant.  

When turbulence effects are incorporated into the governing equations, the 

momentum equation becomes: 
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which is the Reynolds averaged Navier-Stokes equation for a steady, incompressible 

flow. In equation (5.4) jiuu ′′ρ  is the Reynolds stress produced by velocity fluctuations 

iu′ . The large gradients in the flow and its 3D nature (associated with the presence of the 

helical vortices) require a fine grid with large numbers of computational cells so Direct 

Numerical Simulations (DNS) and Large Eddy Simulations (LES) methods are 

computationally expensive. To reduce the computational requirements the Reynolds 

stresses jiuu ′′ρ have to be modeled. The “Reynolds Stress Model” (RSM) which solves 

the transport equation for each component of the Reynolds stress tensor is recommended 

for swirling flows where the turbulence is anisotropic [Pope 2000]. 

 

5.3   Computational domain 

The flow is three-dimensional and non-axisymmetric. The numerical model 

simulates a 1 inch (25.4 mm) diameter cylindrical pipe with a twisted tape insert using 

finite volumes. The computational domain employs a 3D Cartesian coordinate system 

XYZ centered on the pipe axis at the end of the swirler with the Z axis orientated along 

the pipe centerline, in the direction of the flow. The coordinate system was centered at 

the end of the swirler to match the experimental measurements.  
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The reference parameters for the simulations are the diameter d = 25.4 mm, the 

Reynolds number and the atmospheric pressure P0 = 101,325 Pa. Velocities are 

normalized with the bulk velocity 
d

U b

Re⋅= ν
 , where the kinematic viscosity of water at 

1 atm. and 15 oC is 610−=ν m2/s. The following numerical results are expressed in non-

dimensional form but some physical dimensions are also provided for comparison with 

the experiments. Also, when compared to the experimental data, the results of the 

numerical modeling are converted in cylindrical coordinates where the velocity 

components are the axial velocity zV , the tangential velocity θV  and  the radial 

velocity rV . 

The mesh is unstructured and it consists of tetrahedral cells selected for their 

capacity to accommodate the complex 3D shape of the twisted tape. Grid independence 

tests for grids with 0.039, 0.027 and 0.021 average side length cells indicated that the 

0.027 cells represent the optimum for these simulations. Grids with 0.039 cells 

underestimated the pitch of the secondary vortices while 0.027 and 0.021 provide similar 

results.  

The mesh with 0.027 cells contains approximately 4 million tetrahedral cells. The 

17.72 long computational domain (equivalent to 450 mm) has three sections: a 1.57 long 

straight pipe inlet section (40 mm) followed by a pipe section containing an 180o twisted 

tape insert with twist ratios 1.77, 2.36 or 3.54 (45, 60 or 90 mm pitch) and ending with a 

straight pipe section corresponding to the experimental test section.  
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Figure 5.3.1:   Computational domain for the twisted tape with yr = 2.36: (a) inlet cross 
section, (b) cross section showing the inlet of the twisted tape swirler, (c) full 17.72d long 
computational domain . 
 
 

In order to correlate the results with the more general case of regular twisted tapes 

with constant width, the swirlers in the simulations have a constant width equal to the 

width of the experimental swirlers at the exit 0.059 (1.5 mm). The pitch of the helical 

vortices is likely to depend on the position of the vortices relative to the tape at the exit of 

the swirler. As the vortices form inside the swirler, the effect of the larger entrance 

blockage is considered negligible for the qualitative simulations performed in this study. 

Figure 5.3.1 shows the grid cross-section at the pipe inlet, the cross-section at the twisted 

tape inlet and a general view of the entire domain for the twisted tape with yr = 2.36.  

 

 

(c) 
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5.4   Numerical solver 

The steady state flow is solved using the commercial CFD software FLUENT. 

The solver is 3D, pressure based, segregated and implicit. The gradients are evaluated 

using the node based Green–Gauss method. A third order MUSCLE scheme is used for 

discretization. The pressure velocity coupling is implemented using the PISO method and 

the pressure discretization is implemented using the PRESTO method. Details about the 

solver are presented in the following paragraphs.  

In the pressure-based solver the pressure equation is derived from the mass and 

momentum conservation equations so the velocity field, corrected by the pressure, 

satisfies the mass continuity equation. Since the governing equations are nonlinear and 

coupled to one another, the solution process involves iterations until the solution 

converges. In this simulation the governing equations are solved sequentially using the 

“segregated” algorithm in which the individual governing equations for the solution 

variables are solved one after another. The “segregated” algorithm is memory-efficient as 

the discretized equations are stored in the memory one at a time. While the solution 

convergence is relatively slow compared to the “coupled” algorithm which solves the 

pressure and momentum equations at the same time, the memory requirement is half and 

allows the use of a finer grid. 

The equations are linearized with an implicit formulation in which the unknown 

value in each cell is computed using a relation that includes both existing and unknown 

values from neighboring cells. Each unknown appears in more than one equation in the 

system creating a system of linear equations solved using a Gauss-Seidel algorithm.  



 83 

The gradients are computed using the “Green-Gauss Node Based” scheme. This 

scheme reconstructs values at a node from surrounding cell-centered values on arbitrary 

unstructured meshes by solving a constrained minimization problem and it provides 

second-order spatial accuracy. The node-based averaging scheme provides better 

accuracy for unstructured tetrahedral meshes compared with the cell-based scheme 

[Holmes and Connell 1989, Rauch et al 1991]. 

The pressure equation is discretized with the PRESTO scheme (PREssure 

STaggering Option) which uses the discrete continuity balance for a control volume to 

compute the face pressure. The PRESTO scheme provides improved accuracy for flows 

with high swirl numbers, high-speed rotating flows, and flows in strongly curved 

domains compared to the other models available in FLUENT [Fluent Inc. 2006]. 

The momentum equation is discretized with a third-order MUSCL (Monotone 

Upstream-Centered Schemes for Conservation Laws) scheme. This scheme was created 

from the original MUSCL scheme [Van Leer 1979] by combining a central differencing 

scheme and second-order upwind scheme. The MUSCL scheme is applicable to arbitrary 

meshes and improves spatial accuracy for all types of meshes by reducing numerical 

diffusion, particularly for complex three-dimensional flows [Fluent Inc. 2006]. 

The coupling between pressure and velocity is achieved using PISO scheme 

(Pressure-Implicit with Splitting of Operators) with skewness correction which provides 

faster convergence on meshes with a high degree of distortion [Issa 1985]. The PISO 

coupling scheme is part of the SIMPLE family of algorithms [Patankar 80] and it 

performs two corrections: “neighbor” correction and “skewness” correction. The 

“neighbor” correction adds iterations inside the solution stage of the pressure-correction 
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equation in order to satisfy the continuity and momentum equation more closely. The 

“skewness” correction adds iterations to improve the adjustment of the face mass flux 

correction according to the normal pressure correction gradient. For meshes with a high 

degree of skewness the PISO algorithm applies one or more iterations of skewness 

correction for each separate iteration of neighbor correction. The PISO algorithm takes 

more CPU time per solver iteration, but it decreases the number of iterations required for 

convergence [Fluent Inc. 2006]. 

The flow is solved with both laminar and turbulent simulations. The turbulent 

flow is modeled using Reynolds Stress Model (RSM) [Launder et al 1975] which is 

recommended for swirling flows and flows with secondary motion where the turbulence 

is anisotropic [Pope 2000]. In the turbulent simulation a new set of 7 more equations is 

solved in addition to the equations solved with the laminar model.  These equations are 

the transport equations for all six components of the Reynolds stress tensor and an 

additional scale-determining equation for the turbulent dissipation rate. The equations are 

discretized with a second order scheme.  

At the walls, the near-wall Reynolds stresses and the dissipation rate are 

calculated with the standard wall functions proposed by Launder and Spalding [1974]. 

The stresses are specified explicitly assuming that equilibrium and the log-law are valid 

near the walls while convection and diffusion are neglected in the stress transport 

equations. The addition of the turbulent model approximately doubles the solver run time.  

The simulations are run on a computer with dual core processor (Intel 2.13 GHz) 

and with 4 GB of memory. The solution is considered satisfactory when the convergence 

criterion 310−<iε  is satisfied where iε  are the relative errors for the three momentum 
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equations along each coordinate axis and the mass conservation. For turbulent flows the 

residuals of the six components of the Reynolds stress tensor are monitored in addition to 

the residuals of mass and momentum. Comparisons with experimental data are also used 

to asses the quality of the simulation in the case of high residual error. Most laminar 

simulations require about 3000 iterations to converge at approximately 1 iteration/minute 

(50 clock hours). 

 

5.5   Boundary conditions  

No-slip boundary conditions are applied on solid surfaces (on the wall and 

twisted tape). The inflow velocity profile was determined experimentally by running a 

test with a simple pipe, without the swirler. The experiments showed that, despite the 

large Reynolds number used, the honeycomb flow straightner and the 9:1 contraction 

maintained the flow laminar at the swirler inlet for the entire velocity range investigated 

(figure 4.1.7). The experimental inlet profiles used in the simulations are flat as observed 

in the experiments (figure 4.1.7) with specified axial inlet velocities corresponding to Re 

in the range 102 to 105 (between 0.004 m/s and 4 m/s) and 1% turbulence intensity for the 

turbulent simulations. The mass flow through the inlet is constant. The outflow boundary 

condition is also constant mass flow.  

In addition to the boundary conditions provided for the laminar case, the RSM 

turbulent model requires inlet boundary conditions for each component of the Reynolds 

stress and for the dissipation rate. These quantities are calculated using the inlet turbulent 

intensity and a characteristic length. In these simulations the turbulent intensity is 
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specified to be 1% (determined from experiments) and the characteristic length is the 

hydraulic diameter equal to the pipe diameter d = 0.0254 m. 
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CHAPTER 6 

 

NUMERICAL SIMULATIONS: RESULTS AND ANALYSIS 

 

6.1   Numerical model validation 

The numerical model is validated by comparing the pitch of the helical vortices 

and the tangential velocity profiles with the experimental observations (flow 

visualizations and LDV measurements). Figure 6.1.1 shows numerical results obtained 

with the laminar simulation for the swirler with yr = 2.36 at Re = 7.7x104 (bulk velocity 

3m/s) side by side with a photo recorded during experimental tests. The helical vortices 

are identified from the numerical simulation results by isobar surfaces of low pressure 

which are equivalent to the air bubbles accumulations observed in the experiments. 

Figure 6.1.2 shows a comparison between the position of the helical vortices in the pipe 

cross-section as shown by a laser sheet in the experiments and the positions shown by a 

cross-section plane in the numerical simulation.   

Comparing the pitch of the helical vortices and their axial and radial positions 

inside the pipe, the results of the laminar steady state numerical simulation match 

qualitatively with the experimental images both in the developing region inside the 

swirler and in the stable region inside the straight pipe. Inside the straight pipe the pitch 

of the helical vortices is approximately 3.15 (80 mm) both in the experiments and in the 

numerical simulation. The reference value of the pressure p = 1 for the isobar surfaces 

used for this case to identify the helical vortices is selected to match approximately the 

thickness of the bubble streams observed in experiments. The pathlines calculated 
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numerically (figure 6.1.1b) also match well the few short pathlines of small air bubbles 

visible in the experimental photo as a result of the fast flow motion relative to the 

exposure time 1/250 seconds (figure 6.1.1a). 

 
 

 

 
 

 

 
 

Figure 6.1.1:  Experimental and numerical visualizations of the development of the 
helical vortices for the twisted tape with yr = 2.36 at Re = 7.7x104: (a) side view photo of 
air bubbles streams, (b) side view plot of isobar surfaces (p = 1) and pathlines calculated 
with a laminar numerical simulation at steady state. 

 

 
 

 

 
 

 

 
 

 

Figure 6.1.2:   Relative position in the pipe cross-section of the helical vortices induced 
by the twisted tape with yr = 2.36 at Re = 7.7x104: (a) experimental photo, (b) laminar 
numerical simulation.  
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Similar comparisons showing the entire experimental test section for the flows 

induced by all the swirlers available (yr = 1.77, 2.36 and 3.54) at Re = 7.7x104 are shown 

in figures 6.1.3, 6.1.4 and 6.1.5. The pitch and position of the helical vortices predicted 

by the laminar steady state numerical simulations are in good agreement with the 

experiments. For the twisted tapes with yr = 1.77 and yr = 2.36, the locations of the 

helical vortices in the numerical results are slightly shifted toward the exit, but the pitch 

is approximately the same as observed in the experiments. 

 

 

 
4 

Figure 6.1.3:   Helical vortices generated by a twisted tape with twist ratio yr = 1.77 (45 
mm pitch) at Re = 7.7x104: (a) high speed camera visualization, (b) numerical results. 
 
 

 

 
 

Figure 6.1.4:   Helical vortices generated by a twisted tape with twist ratio yr = 2.36 (60 
mm pitch) at Re = 7.7x104: (a) high speed camera visualization, (b) numerical results. 
 
 

 

 
 

Figure 6.1.5:   Helical vortices generated by a twisted tape with twist ratio yr = 3.54 (90 
mm pitch) at Re = 7.7x104: (a) high speed camera visualization, (b) numerical results. 

 

The pitch of the helical vortices is approximately 2.36d (60±15%mm) for the 

swirler with yr = 1.77, 3.15d  (80±9%mm) for the swirler with yr = 2.36 and 4.72d  

(b) 

(a) 

(a) 

(b) 

(a) 

(b) 
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(120±6% mm) for the swirler with yr = 3.54, both in the experiments and in the numerical 

simulations. The reference values for the isobar surfaces which identify the vortex cores 

are p = 0.99 for the swirler with yr = 1.77, p = 1 for the swirler with yr = 2.36 and p = 1 

for the swirler with yr = 3.54, as the shorter tape generates stronger vortices with larger 

pressure drop in the core than longer tapes.  

Figures 6.1.6 and 6.1.7 allow a comparison between the pitch of the helical 

vortices induced by twisted tapes with yr = 1.77 and yr = 2.36 calculated with both 

laminar and turbulent simulations. As shown before, the laminar simulation recovers well 

the characteristics observed in the experiments. The turbulent simulation however shows 

significant discrepancies with the experiments.  

 

 

 
 

Figure 6.1.6:   Helical vortices induced by a swirler with yr = 1.77 at Re = 7.7x104: (a) 
isobar surfaces of p = 0.99 for the laminar simulation, (b) isobar surfaces of p =1.01 for 
the turbulent simulation. 

 

 

 
 

Figure 6.1.7:   Helical vortices induced by a swirler with yr = 2.36 at Re = 7.7x104: (a) 
isobar surfaces of p = 1 for the laminar simulation, (b) isobar surfaces of p = 1.02 for the 
turbulent simulation. 
 

The pitch determined using the turbulent simulation is approximately 25% longer 

for both the twisted tape with yr = 1.77 (75 mm pitch instead of 60 mm measured in 

experiments) and the twisted tape with yr = 2.36 (100 mm instead of 80 mm measured in 

(a) 

(b) 

(a) 

(b) 
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experiments). The vortices are also weaker in the turbulent model as shown by the higher 

pressure characterizing the vortex core. For the yr = 1.77 tape the vortex cores calculated 

with the laminar simulation are identified by the isobar surfaces of p = 0.99 while in the 

turbulent simulation the core pressure is p = 1.01.  

Downstream from the swirler, the pitch of the helical vortices is approximately 

constant inside the straight pipe for both the laminar and turbulent simulations. This fact, 

coupled with the experimental observation that the pitch does not vary with Re, suggest 

that turbulence does not have a major influence inside the test section which extends 14d 

from the end of the swirler. The discrepancy between the results of the turbulent 

simulations and the experiments is likely due to a slower vortex development inside the 

swirler and not to excessive dissipation inside the straight pipe. The flow at the swirler 

inlet is laminar while the flow inside the straight pipe is turbulent, thus the vortices are 

generated inside the swirler in a transitional flow.  

As the cross-section velocity vectors show (figure 6.1.8), the vortices are closer to 

the twisted tape at the swirler exit in the results obtained with the turbulent simulation 

compared to those calculated with laminar simulations. The difference between the 

positions of the vortices relative to the tape is the cause of the longer pitch in the 

turbulent simulations. The fact that the results of the laminar simulations are closer to the 

experimental results than those obtained with the turbulent simulations could be due to a 

more accurate description of the transitional flow inside the swirler which is involved in 

the vortex generation.  
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yr = 1.77, laminar 

 
yr = 2.36, laminar 

 
yr = 3.54, laminar 

 
yr = 1.77, turbulent 

 
yr = 2.36, turbulent 

 

 
yr = 3.54, turbulent 

 
Figure 6.1.8:   Cross-section velocity vectors at the end of the swirler (z = 0) for the 
tapes with yr = 1.77, 2.36 and 3.54 at Re = 7.7x104: (top row) laminar simulation, 
(bottom row) turbulent simulation. 

 

In addition to the experimental photos, the numerical models are also validated 

against LDV measurements. Figure 6.1.9 shows a comparison between the experimental 

measurements of the average tangential velocity and tangential velocity profiles 

calculated with the steady state laminar simulation across the horizontal diameter at two 

axial locations. Figure 6.1.9a shows the velocity profiles when the helical vortices are in 

vertical position (z/d = 5.9 in experiments, z/d = 6.57 in the laminar numerical simulation 

as shown in figure 6.1.4) and the velocities are measured between the helical vortices for 

the flow induced by a twisted tape with yr = 2.36 at Re = 7.7x104. Figure 6.1.9b shows 

the velocity profiles when the helical vortices are in horizontal position (z/d = 7.48 in 
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experiments, z/d = 8.03 in the numerical simulation as shown in figure 6.1.4) and the 

velocities are measured through the helical vortices.  

 
 

 
 

 

 
 

 

Figure 6.1.9:   Comparison between experimental average tangential velocity profiles 
and calculated tangential velocity profiles from the steady state numerical simulation for 
the tape with yr = 2.36 at Re = 7.7x104 (Ub = 3 m/s): (a) between the helical vortices, (b) 
through the helical vortices. 

 

Also shown for comparison are the average tangential velocity profiles calculated 

with the turbulent simulation at axial locations close to the experimental locations. The 

profiles between the helical vortices (z/d = 5.31) and through the helical vortices (z/d = 

7.28) are measured across the vertical diameters (rotated 90o) as the pitch in the turbulent 

results does not match the experimental pitch (as shown in figure 6.1.7). 

 

(a) 

(b) 
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In figure 6.1.9 the tangential velocity profiles calculated using the laminar 

numerical simulations match qualitatively the trends observed in the experiments. 

However, as figure 6.1.4 also shows, the helical vortices in the simulation are shifted by a 

small 0.6d axial displacement relative to the experiments. In figure 6.1.9a the maximum 

values calculated with the laminar numerical simulation are within 2% of the 

experimental values on the right side and within 18% on the left side, as the two sides 

have different amplitudes. In figure 6.1.9b the maximum values calculated with the 

laminar numerical simulation are within 15% of the experimental values on the right side 

and within 1% on the left side. The simulation does not capture however the angle 

between the two helical vortices observed experimentally. The angle did not appear in 

unsteady simulations either (the results are identical with the steady state results). 

While the average tangential velocity profiles calculated with the turbulent model 

also capture the trends from the experimental measurements, the tangential velocity 

maxima in figure 6.1.9a are 55% lower than the experimental results on the left side and 

40% lower on the right side. In figure 6.1.9b the tangential velocity maxima are 15% 

lower than the experimental results on the left side and 30% lower on the right side. This 

effect, just like the longer pitch, is the result of the underestimation of the vortex strength 

inside the swirler, which could be caused by an overestimation of the turbulence level. 

The characteristics of the early development of the vortices inside the swirler completely 

define the behavior of the helical vortices inside the straight pipe. 
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Experimental velocity profiles at z/d = 7.48
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Numerical velocity profiles at z/d = 8.03
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Figure 6.1.10   Variation of the normalized tangential velocity with Re: (a) Experimental 
profiles at z/d = 7.48, (b) Results of laminar numerical simulations at z/d = 8.03 (the 
profiles collected through the secondary co-rotating helical vortices display counter-
rotating flow).  
 
 

Figure 6.1.10 shows a comparison between the variation of the normalized 

tangential velocity with Re for the entire range available in the experiments (Re from 104 

to 105) measured experimentally and the variation calculated with laminar numerical 

(a) 

(b) 
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simulations. As mentioned before, the only fluid used in these simulations is water, so 

different Re represent different inlet velocities. The tangential velocities are normalized 

with the bulk velocity corresponding to Re. The numerical results at z/d = 8.03 (figure 

6.1.10b) match qualitatively the experimental profiles measured at z/d = 7.48 (figure 

6.1.10a). The calculated maxima of the tangential velocity profiles are within 20% 

compared to the maxima measured experimentally for Re between 4x104 and 105. The 

simulation captures the change in the velocity profile at Re = 104 but not its magnitude. 

The plots also confirm that the pitch of the helical vortices does not change with Re, as 

the counter-rotating flow is present at the same axial location both in the results of the 

laminar numerical simulations and in the experimental measurements at all Re. 

Using the axial vorticity component and the area integral also allowed the 

evaluation of the circulation in cross-section planes (using formula 2.1.2), in order to 

verify the accuracy of the simulations. The area integral of a variable Φ  in a cross-

section plane is calculated as ∫ ∑ ⋅Φ=⋅Φ
cN

i
ii AdA  where iA  is the area of the intersection 

between the cross-section plane and the tetrahedral cell i , iΦ  is the value of the variable 

inside the cell i  and cN  is the number of cells intersected by the cross-section plane. 

For the reference case of a flow through a swirler with yr = 2.36 at Re = 7.7x104 

the values of the circulation normalized by RU b ⋅  were -7x10-6 at z/d=0, 5.5x10-6 at z/d 

=1, -7.6x10-7 at z/d=5 and 1.2x10-7 at z/d=10. These values represent a reasonable 

approximation for 0 as expected, confirming the accuracy of the simulations. 

A test case was run with an inviscid formulation and slip boundary conditions at 

the walls, in order to investigate if the formation of the helical vortices is an inviscid 
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phenomenon. The results show that without viscosity and wall shear stress there are no 

helical vortices and the flow becomes a regular swirling flow (figure 6.1.11). 

 
(a) z/d = 0 

 
(b) z/d = 10 

 
Figure 6.1.11   Velocity vectors calculated with an inviscid numerical simulation for the 
tape with yr = 2.36 at Re = 7.7x104 at two axial locations: (a) z/d = 0, (b) z/d = 10. 
 
 

All previous results showed that turbulence is not a major influence for the 

characteristics of the helical vortices and also that the laminar simulations reproduce the 

helical vortices more accurate than the turbulent simulations, relative to the experimental 

data. As a result, laminar numerical simulations are used for the rest of the numerical 

investigation.  

 

 

6.2   Vortex identification 

In the previous chapters, the helical vortices have been identified in the results 

from numerical simulations by isobar surfaces of low pressure [Robinson 91], which 

correspond to the air bubbles accumulations in the experimental flow visualizations. That 
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method is confirmed in this chapter using closed streamlines [Lugt 1979, Robinson 91], 

vorticity [Hussain and Hayakawa 1987] and the more advanced λ2 method [Jeong and 

Hussain 1995] described in Chapter 2.2.  

Figure 6.2.1 shows the velocity vectors and the streamlines in the cross-section 

plane at z/d = 6.57 for the flow induced by a twisted tape with yr = 2.36 at Re = 7.7x104. 

The closed streamlines indicate the presence of the helical vortices and also the main 

rotation around the pipe centerline.  

The primary vortex (or main swirl) is not identified by the low pressure methods 

because the pressure is the lowest in the cores of the secondary vortices, hiding the 

primary vortex effect on the pressure field. As the streamlines show, the flow obviously 

rotates around the pipe centerline in the direction of the tape twist (which was the 

expected effect from the twisted tape) but the two helical vortices induce motion in 

opposite direction near the centerline. The entire field can be considered a vortex with 

large parts of the cross-section flow actually belonging to two vortices. 

Figure 6.2.2 shows the vorticity magnitude normalized by Ub/R at z/d = 6.57. 

Similarly to pressure contours, the vorticity contours identify the secondary vortices but 

not the primary vortex which is identified only by the streamlines. The plot is dominated 

by the wall vorticity with a magnitude approximately three times larger than the vorticity 

magnitude of the secondary vortices.  

 

 

 

 



 99 

 

 
   

 
 

 
Figure 6.2.1:   Visualizations of the velocity field in the cross-section plane at z/d = 6.57 
in the flow induced by a twisted tape with yr = 2.36 at Re = 7.7x104 (a) velocity vectors, 
(b) stream lines. 

(a) 

(b) 
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Figure 6.2.2   Normalized vorticity magnitude contours at z/d = 6.57 in the flow induced 
by a twisted tape with yr = 2.36 at Re = 7.7x104 

 

In figure 6.2.3 the cores of the secondary vortices are identified by the λ2 method 

in addition to the isobar surfaces of low pressure. The λ2 method is also based on 

identifying low pressure cores but, as explained in Chapter 2.2, it also removes the 

viscous effects. Figure 6.2.3 shows the entire computational domain and a swirler close-

up where the centers of the connected regions with λ2 < 0 are marked by line segments. 

The plots show the reference case: a laminar simulation of the flow induced by a twisted 

tape with yr = 2.36 at Re = 7.7x104. The isobar surfaces are made transparent which 

allows the λ2 lines to be visible at the centers of the low pressure isobar surfaces.  

 

 

Ω R/Ub 
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Figure 6.2.3:   Comparison between vortex identification with isobar surfaces and λ2 
lines: (a) full domain, (b) close-up view of the swirler. 
 

The plots confirm that the isobar surfaces are reliable in identifying the vortex 

cores at high Re where the pressure gradients generated by the swirling motion are 

larger than viscous effects. All the identification methods used confirm that the large, 

stable structures which intuitively were considered vortices based on the velocity 

vectors in the cross-section are actually vortices according to generally accepted vortex 

identification criteria. Thus the presence of the helical vortices in the swirling flow 

induced by short twisted tapes is confirmed. The isobar surface remains the most 

convenient method for vortex identification in this investigation as it allows direct 

comparison between the numerical results and the experimental visualizations. The λ2 

method is useful to identify vortices at low Re where the pressure gradients inside the 

swirler are lower and viscous effects hide the secondary motion.  

 
 

6.3   Flow field analysis 

As the helical vortices behind twisted tapes have never been observed before, the 

numerical simulation results will be used next to provide an in depth analysis of their 

behavior and their interaction with the main swirl. The advantage offered by the 

numerical simulation compared to the experimental investigation is that it provides all the 

flow variables at the same moment of time.  

(a) 

(b) 
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Figure 6.3.1:   Isobar surfaces, pathlines and velocity vectors identify helical vortices in 
the flow field induced by a twisted tape with yr = 2.36 at Re = 7.7x104 calculated with a 
steady state laminar simulation (perspective view). 
 

Figure 6.3.1 shows a perspective view of the flow field induced by a twisted tape 

with yr = 2.36 inside a straight pipe at Re = 7.7x104 calculated with a steady state laminar 

simulation. The cross-section plane shows the velocity vectors while pathlines originating 

at the pipe inlet on the horizontal diameter reveal the complex 3D motion created by the 

interaction of the two helical vortices and the main swirl. The isobar surfaces of p = 1 

mark the cores of the helical vortices.  

In the experimental part, the presence of the helical vortices inside the swirling 

flow was indicated by counter-rotating flow encountered in the measurements of the 

tangential velocity. The flow field was recreated from the experimental velocity plots 
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between and through the helical vortices assuming that the velocity profiles from figure 

4.1.1 are similar to the velocity profiles in a cross-section plane at different angles. Figure 

6.3.2 shows that the assumption was correct and the velocity field recovered from the 

LDV measurements (figure 4.3.1) is qualitatively similar to the one calculated with the 

laminar simulation (figure 6.3.2a). 

 

 

 

 
 

 

 

 

 

 
 

 

Figure 6.3.2:   Variation of the flow parameters between and through the helical vortices 
(along the horizontal and vertical diameter, respectively) for the flow induced by a 
twisted tape with yr = 2.36 at Re = 7.7x104 (Ub = 3m/s) in the cross-section plane at      
z/d = 6.57 downstream of the swirler: (a) velocity vectors, (b) tangential velocity, (c) 
pressure, (d) axial velocity. 
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Figures 6.3.2b and 6.3.2d show the tangential and axial velocity distributions 

which are very similar to the profiles shown in figures 4.1.5 and 4.1.4 respectively. 

Figure 6.3.2c shows the pressure distribution where the effect of the secondary vortices is 

clearly visible as a large pressure drop inside the cores of the helical vortices (responsible 

for the air bubble accumulations in the experimental visualizations). The pressure 

distribution plot shows that the two vortices have slightly different strengths, possibly as 

an effect of the twisted tape wake at the exit of the swirler. The main difference between 

experiments and the results of the numerical model is the absence of the angle observed 

experimentally between the secondary vortices, which is an unsteady behavior (as 

explained in Chapter 4.2).  

While figure 6.3.2 showed one dimensional plots which confirmed the 

experimental measurements, figure 6.3.3 shows the full 2D distribution of the flow 

parameters in the cross-section using colored vectors. As the flow field is not axis-

symmetric, only the 2D map of the velocity components and the pressure distribution 

throughout the domain reveals the actual correlations between these parameters.  

The normalized pressure distribution in figure 6.3.3a shows that the helical 

vortices create much larger pressure gradients than the pressure gradients in the plane 

perpendicular to the vortices. The presence of the helical vortices reduces the axial 

velocity which has maxima between the vortices and minima inside the helical vortices 

(figure 6.3.3c). The plots also show that the radial velocity component at the edges of the 

helical vortices is of the same order of magnitude as the axial and tangential velocity 

component, with magnitudes as large as half of the bulk velocity (figure 6.3.3d).  
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Figure 6.3.3   2D distribution of the flow parameters for the flow induced by a twisted 
tape with yr = 2.36 at Re = 7.7x104 (Ub = 3 m/s) in the cross-section plane at z/d = 6.57 
downstream of the swirler: (a) normalized pressure 0/ Pp , (b) normalized tangential 

velocity bUV /θ ,  
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Figure 6.3.3 continued:   (c) normalized axial velocity bz UV / , (d) normalized radial 

velocity br UV / . 
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Figure 6.3.3b shows that the tangential velocity component has maxima where the 

edges of the secondary vortices reach near the wall and the contributions from the 

secondary motion and the main swirl overlap and have the same direction. The magnitude 

of the resulting tangential velocity is double the magnitude of the tangential velocity 

corresponding to the main swirl which is visible in the plane perpendicular to the 

secondary vortices. The tangential velocity component induced by the main swirl is small 

near the pipe centerline, which is also the center of rotation for the main swirl. At the 

same time the tangential components induced by the helical vortices have their maxima 

near the pipe centerline because the centers of the two secondary vortices are located in 

the middle of the pipe radius and their edges reach the wall and the pipe centerline. Near 

the pipe centerline the larger tangential velocity components induced by the helical 

vortices rotate in the opposite direction compared to the main swirl and overcome its 

effect which results in two patches of counter-rotating flow visible in figure 6.3.3b 

between the two vortices. 

Figure 6.3.4 shows the helical vortices for the three main cases investigated (tapes 

with twist ratio yr = 1.77, 2.36 and 3.54 at Re = 7.7x104), including their development 

inside the swirler. The pitch calculated with the laminar simulation matches well the pitch 

of the normalized angular velocity extracted from the LDV measurements (figure 4.1.2). 

The similar ratio between the helical vortex pitch and the twisted tape pitch in all three 

cases (approximately 4/3) is likely due to the similar position of the helical vortices at the 

end of the 180o twist. The plots show that the ratio between the pitch of the helical 

vortices and the pitch of the swirler is almost the same for all three swirlers tested for Re 



 108 

in the range 104-105. As the swirl number plots show, in this range the swirl number is 

almost constant. 

 

 

 

 
 

Figure 6.3.4:   Helical vortices for the three cases investigated experimentally at Re = 
7.7x104: (a) yr = 1.77 tape, (b) yr = 2.36 tape, (c) yr = 3.54 tape. 

 

Figure 6.3.5 shows the positions of the secondary vortices at the exit of swirler 

with velocity vectors and streamlines for all three cases investigated. The patterns are 

very similar even though the shorter tapes induce stronger swirl. The closed streamlines 

clearly identify in all three cases the presence of a single vortex co-rotating with the main 

flow on each side of the tape.  

Figure 6.3.6 shows the cross-section isobar contours at axial locations where the 

helical vortices are in vertical and horizontal positions (top and bottom row respectively) 

for the yr = 2.36 tape at Re = 7.7x104. The pitch of the helical vortices is the distance 

between two consecutive plots with the same vortex orientation. The pitch is slightly 

uneven as the secondary vortices are not perfect helices and the angle between the 

vortices is approximately 176o instead of 180o. However, the plots show that the 

characteristics of the flow field change very little along the pipe axis, its periodicity 

justifying the velocity field reconstruction from the LDV measurements along the axis 

presented in Chapter 4.3.  

 

(a) 

(b) 

(c) 
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yr = 1.77 tape, vectors 

 
yr = 2.36 tape, vectors 

 
yr = 3.54 tape, vectors 

 
yr = 1.77 tape, streamlines 

 
yr = 2.36 tape, streamlines 

 
yr = 3.54 tape, streamlines 

         (a)                                           (b)                                            (c) 
Figure 6.3.5:   The flow field at the swirler exit described by velocity vectors (top row) 
and streamlines (bottom row) at Re = 7.7x104: a) yr = 1.77 tape, b) yr = 2.36 tape, c) yr = 
3.54 tape. 
 
 

 
z/d = 0.59 
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z/d = 6.57 

 
z/d = 9.49 

 
z/d = 1.97 

 
z/d = 4.96 

 
z/d = 8.03 

 
z/d = 11.1 

Figure 6.3.6:   Pressure contours at axial positions where the helical vortices are in 
vertical and horizontal positions. The flow is induced by a tape with yr = 2.36 at Re = 
7.7x104). 
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Figure 6.3.7   Vorticity distribution for the flow induced by a twisted tape with twist ratio 
yr = 2.36 at Re = 7.7x104 (Ub = 3 m/s) in the cross section plane at z/d = 7.28: (a) 
normalized vorticity magnitude, (b) normalized axial vorticity component  
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The numerical simulation results contain the complete velocity field which allows 

the calculation of vorticity. Figure 6.3.7a shows the vorticity magnitude and figure 6.3.7b 

shows the axial vorticity component, both normalized with RU b / , at z/d = 7.28 for the 

reference case of a flow through a swirler with yr = 2.36 at Re = 7.7x104. As explained in 

the previous section, vorticity plots are dominated by vorticity produced near the wall, in 

the boundary layer. In the vorticity magnitude plot the wall vorticity is approximately 4.5 

times larger than the vorticity corresponding to the secondary vortices. In figure 6.3.7b 

the axial vorticity near the wall is approximately 2.5 times larger than the axial vorticity 

in the secondary vortices and it is oriented in the opposite direction. The λ2 method and 

the low-pressure isobar surfaces were preferred for vortex identification in order to avoid 

the effects of viscosity near the wall.  

The swirl downstream of the twisted tape swirler is decaying as shown by Kreith 

and Sonju [1965] (figure 2.3.1). The swirl decay is quantified by the variation of the swirl 

number along the pipe axis. The complete flow field calculated with the laminar model 

allows an accurate estimation of the swirl number in cross-section planes along the pipe 

axis using formula 2.1.6.  

Figure 6.3.8 shows the swirl numbers calculated at axial locations 1, 5 and 10 

diameters downstream of the swirler for 180o twisted tape swirlers with twist ratio 1.77, 

2.36 and 3.54 at Re = 7.7x104 (bulk velocity 3 m/s). The decay along the first 10 

diameters downstream of the swirler, which is the focus of this study, is approximately 

the same in absolute value for all three cases at 0.03. The decay represents 7.3 % for the 

swirler with yr = 1.77, 10.3 % for the swirler with yr = 2.36 and 10.8 % for the swirler 

with yr = 3.54. These results are similar to those of Kreith and Sonju [1965] (figure 2.3.1) 
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and confirm that the decay over 3.15d (80 mm) along the pipe axis from 5.9d to 9.05d for 

the swirler with twist ratio yr = 2.36 at Re = 7.7x104 is very limited (~3%) which justifies 

the reconstruction of the flow field from the LDV measurements performed in Chapter 

4.3. 
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0.4136 0.4038 0.3834

0.3111 0.3006
0.2792

0.207 0.1994 0.1847

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9 10 11
z / d

S

yr = 1.77

yr = 2.36

yr = 3.54

 
 

Figure 6.3.8   Swirl decay along the pipe axis as quantified by the variation of the swirl 
number S for the three swirlers with twist ratios 1.77, 2.36 and 3.54 at Re = 7.7x104 

 

Figure 6.3.9 shows on a logarithmic scale how the swirl induced by the tape with 

twist ratio yr = 2.36 varies with Re in the range 102 to 105. As mentioned before, the only 

fluid used in these simulations is water, so different Re represent different inlet velocities. 

The swirl is quantified by the swirl number calculated one diameter downstream from the 

swirler exit. The plot shows that the swirl number increases rapidly with Re from Re = 

102 to Re = 103 and then it reaches asymptotically a level of S = 0.31, almost constant 

from Re = 104 to Re = 105 which is the experimental flow range in this study.  

The swirl decay also varies with the inlet velocity, expressed in non-dimensional 

form by Re (for water only). Figure 6.3.10 shows the swirl decay dependency on Re for 

the tape with twist ratio yr = 2.36 and Re in the range 102 to 105. The plot confirms that 
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the swirl decay along the pipe axis decreases with an increase in Re as observed by 

Kreith and Sonju [1965]. 

 

Swirl number variation with Re for tape with twist ratio y r = 2.36
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Figure 6.3.9   Swirl number variation with Re. The swirl number S is calculated at       
z/d = 1 downstream of the swirler with twist ratio yr = 2.36 (60 mm pitch in the 
experiments). 
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Figure 6.3.10   Swirl decay along the pipe axis as quantified by the variation of the swirl 
number S for the flow induced by the swirler with twist ratio yr = 2.36 (60 mm pitch) at 
Re in the range 102 to 105. 
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6.4   Comparison with counter-rotating flow in previous studies 

 

As described in chapter 1.1, the counter-rotating flow has been observed before 

only in swirling jets generated by rotating pipes, and it was attributed to turbulence. In 

those reports, the tangential velocity was related to the cross-section Reynolds stress by 

formula 1.1 which was derived for a fully developed swirling flow inside the rotating 

pipe, assuming axis-symmetric flow and no axial gradients. However, the formula was 

used to explain the flow behavior inside the swirling jet, 6.5d downstream from the pipe 

exit.  

An LES simulation of the same flow [Meciel et al. 2008] shows that the swirling 

jet is expanding (figure 6.4.1a and 6.4.1c) and also that helical vortices are present 

immediately downstream from the pipe exit (figure 6.4.1b), challenging the axi-

symmetric flow and no axial gradients assumptions. The assumption of axi-symmetric 

flow dismisses a priori the possibility of a non-axi-symmetric rotating flow with a 

counter-rotating core, similar to the counter-rotating flow region identified in the present 

study.  

The two flow cases share common features as both are swirling flows and contain 

counter-rotating flow and helical vortices, but also have differences as the jet is 

unbounded and spreading. Also, the swirl is generated differently which means the 

helical vortices are generated differently too.  
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Figure 6.4.1   Flow structures in the swirling jet induced by a rotating pipe [Meciel et al. 
2008] (in these plots x is the jet axis): (a) snapshots of instantaneous vortical structures 
identified with λ2 iso-surfaces, (b) side-view close-up at the pipe exit, (c) instantaneous 
velocity field.  

 

Figures 6.4.2 and 6.4.3 show a flow in which the fluid discharges from the swirler 

with d = 1 (25.4 mm) and yr = 2.36 into a pipe with a larger cross-section (d2 = 1.4d) and 

length 7.87d (200 mm). Figure 6.4.2 shows the helical vortices identified by isobar 

surfaces of p/P0 = 1.03 and vortex cores identified with λ2 method while figure 6.4.3 

shows the cross-section velocity distribution at several axial locations using velocity 

vectors. While the step is disrupting, the helical vortices are clearly visible in both 

 
 

 

 
 

 

(a) (b) 

(c) 
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figures. Figure 6.4.2 and the first plot in figure 6.4.3 at z/d = 0 show that the secondary 

vortices inside the swirler did not change as a result of the increase in diameter 

downstream. The flow adjusts to the new cross-section and the helical vortices are 

present at z/d =4 but they disappear by the end of the 7.87d test section.  

 

 
Figure 6.4.2   Helical vortices identified by isobar surfaces of p/P0 = 1.03 and vortex 
cores identified with λ2 method in the swirling flow induced by a swirler with d = 
25.4mm and yr = 2.36 at Re = 7.7x104 
 

Larger increases in cross-section could not be simulated with the available 

computational resources, while maintaining a test section long enough to observe the 

behavior of the helical vortices. However, the case tested suggests that helical vortices 

are likely to survive a cross-section change and could also be the cause of the counter-

rotating flow observed in swirling jets.  

Further detailed analysis of this topic would require additional resources and 

rotating pipes are not the focus of this study. As a result, the confirmation of the source of 

counter-rotating flow in swirling jets induced by rotating pipes is left for future studies.  
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Figure 6.4.3   Velocity vectors at several axial locations following a 40% increase in the 
pipe diameter downstream from the swirler with yr =2.36 at Re = 7.7x104 
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6.5   Vortex inception and development  

The main goal of the numerical simulations is to identify the formation process of 

the helical vortices in order to eliminate them. None of the previous studies presented in 

chapter 2.3 reported helical vortices. Most of those investigations described secondary 

flow inside the twisted tape swirlers consisting of two counter-rotating vortices on each 

side of the tape (figure 2.3.4).  

There are also some similarities between the twisted tape swirler and blades in 

turbomachines. The effect of the twisted tape on the flow could be compared to the effect 

of two blades extending from the centerline to the pipe wall and spaced 180o apart. Like 

blades in turbines and compressors, each half of the twisted tape has a pressure side and a 

suction side driving the flow. However, the turn angle of the twisted tape is much larger 

compared to typical blade turns.  

In turbomachines secondary flow is created when a shear layer is turned through a 

duct or cascade. Streamwise vorticity is generated due to the velocity differential between 

the streamlines and also due to translation of the vorticity vector associated with the shear 

layer [Squire and Winter 1961, Lakshminarayana 1995].  

The high resolution of the velocity field calculated with the numerical model 

allows a detailed investigation of the vortex formation and also of the characteristics of 

the helical vortices downstream from the swirler. A description of the vortex formation 

for the reference case of flow induced by a twisted tape with twist ratio yr = 2.36 (60 mm 

pitch) at Re = 7.7x104 (bulk velocity 3 m/s) is presented in the following paragraphs. The 

positions of the cross-section planes are expressed both as angle of twist and as the 
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corresponding physical distance in mm. Relative to the photo of the swirler in figure 

6.5.1a the cross-section planes progress from the far end of the swirler toward the viewer.  

 

 
(a) twisted tape swirler exit 

 

 
(b) 0 twist (inlet) 

 
Figure 6.5.1:   Swirler inlet: (a) photo of the swirler,  (b) velocity vectors at the inlet (at 
the far end in figure 6.5.1a) 

 

As the fluid enters the swirler, the twisted tape starts blocking the flow gradually 

(figure 6.5.1a and 6.5.1b). Figure 6.5.1.b shows velocity vectors in the cross section at the 

inlet, seen from the end of the tape. The flow at the inlet is axial except for the leading 

edge effect of the twisted tape splitting the flow.  

After the first 5o of twist (~2 mm in axial direction for the 60 mm pitch tape) the 

flow hits the twisted tape on half of the semicircular channel and the wall reaction exerts 

pressure on the fluid pushing the flow in the direction of the tape twist. At the same time 

the other half of the tape pulls away from the fluid creating a low pressure region (a 

suction side) (figure 6.5.2 a). Similarly to secondary flow formation in turbomachines, in 

the case of the twisted tape swirler the secondary flow is initiated by the viscous shear 

layer formed on the twisted tape surface. 
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(a) 

(b) 

 
Figure 6.5.2:   Flow field inside the swirler after 5o twist (~2mm): a) static pressure 
contours after 5o twist, b) Wall shear stress contours [Pa] and cross-section velocity 
vectors 
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(c) 

(d) 

 
Figure 6.5.2 (cont):   Flow field inside the swirler after 5o twist (~2mm): c) normalized 
tangential vorticity, d) normalized radial vorticity 
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On the suction side of the twisted tape, the wall shear stress decreases until it 

becomes zero, producing flow separation (figure 6.5.2b). At the same time the pressure 

imbalance creates a flow across the twisted tape surface from the pressure side toward the 

suction side. At the swirler inlet the dominant vorticity components are tangential and 

radial formed near the walls (figures 6.5.2c and 6.5.2d) while there is little axial vorticity. 

The wall shear stress contours and velocity vectors in figure 6.5.3a show that the 

region of flow separation increases in size after 30o twist. After approximately 60o twist 

(20 mm), secondary vortices appear on the suction side of the tape from the flow 

separation region, as shown by velocity vectors and the normalized axial vorticity plots in 

figure 6.5.3b. The streamlines in figure 6.5.4a show that these vortices become distinct 

after 75o twist (25 mm). The axial vorticity inside the secondary vortices reaches 

maximum after 75o twist. The flow across the twisted tape generates positive axial 

vorticity on the tape surface which is convected toward the emerging secondary vortices, 

as both the flow direction and the gradient of axial vorticity are aligned from the pressure 

side toward the suction side (figure 6.5.4b). After inception, the secondary vortices 

development is a result of competing effects from vortex stretching produced by strong 

tangential and radial vorticity components (figures 6.5.4c and 6.5.4d), viscous diffusion 

and axial vorticity convection from the surface of the twisted tape (figure 6.5.4b), 

according to equation 2.1.1. As the flow continues to turn, the small vortex formed in the 

flow separation region on the suction side of the tape grows in size due to vortex 

stretching, while the axial vorticity inside the vortex starts to decrease.  
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(a) 
 

 (b) 
 
Figure 6.5.3:   Secondary vortex development: (a) wall shear stress and velocity vectors 
after 30o twist (10 mm), (b) normalized axial vorticity and velocity vectors after 60o twist 
(20mm).  
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Figure 6.5.4:   Flow field inside the swirler after 75o twist (25mm): a) streamlines, b) 
normalized axial vorticity and velocity vectors, 
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Figure 6.5.4 (cont.):   Flow field inside the swirler after 75o twist (25mm): c) normalized 
tangential vorticity and velocity vectors, d) normalized radial vorticity and velocity 
vectors. 

 

(d) 

(c) 

br UR/Ω  

bUR/θΩ  



 126 

As the secondary vortex grows, it changes its position inside the semicircular 

channel in an apparent move against the flow (figure 6.5.5a and 6.5.5b). This motion 

against the flow is likely due to conservation of angular momentum as the vortex tends to 

preserve its rotation axis direction and oppose the change forced by the tape. The vortices 

do not move against the flow in the semicircular channel, rather the channel moves 

around the secondary vortices, changing their relative position.  

 

 
(a) velocity vectors after 120o twist 

(40 mm inside the swirler) 

 
(b) velocity vectors after 180o twist 

(swirler exit) 
 

 
(c) velocity vectors at z/d = 0.59  
(15 mm from the end of the tape) 

 

 
(d) velocity vectors at z/d = 1.18  
(30 mm from the end of the tape) 

 
Figure 6.5.5:   Vortex formation for a twisted tape with yr = 2.36 (60 mm pitch) at Re = 
7.7x104. 
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After the exit, the two vortices maintain their helical shape imposed in the 

formation stage inside the swirler and continue into the straight pipe (figure 6.5.5c and 

6.5.5d). The position of the vortex at the exit determines the pitch of the helical vortices 

inside the straight pipe. 

Figure 6.5.6 shows the evolution of the normalized axial vorticity inside the 

center of a secondary vortex along the twisted tape, as a function of the twist angle of the 

tape. After 45o twist, axial vorticity spots become distinguishable in the flow on the 

suction side of the twisted tape. The secondary vortex becomes evident in the velocity 

field and low pressure isobar surfaces after approximately 60o twist, as the axial vorticity 

increases very fast. The axial vorticity reaches its peak after 75o twist, and then the vortex 

starts growing in size while the axial vorticity decreases fast due to the cumulated effect 

of vortex stretching and viscous dissipation. After approximately 150o twist there is a 

distinct change of slope in the axial vorticity decay, suggesting that the vortices have 

reach their final size and vortex stretching is not a factor anymore, leaving viscous 

dissipation as the only cause of decay at a slower rate.  
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Figure 6.5.6:   Variation of the normalized axial vorticity in the center of the secondary 
vortex along the twisted tape for the flow through an 180o twisted tape with yr = 2.36 at 
Re = 7.7x104.  
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Figure 6.5.7 shows side and front views of the development of the helical vortices 

inside the swirler with yr = 2.36 at Re = 7.7x104, giving a better perspective of the actual 

physical phenomenon. Figure 6.5.7c shows the actual swirler to allow a direct 

comparison with the numerical results. The secondary vortices are identified with isobar 

surfaces of p/P0 = 1 while tangential velocity vectors show the local flow direction in 

cross-section planes.  

 

 
(a) 

 
(b) 

 
(c) 

 
Figure 6.5.7:   Formation of the secondary vortices inside the swirler. The plots show 
isobar surfaces of p/P0 = 1 and cross-section planes with tangential velocity vectors for 
the tape with yr = 2.36 (60 mm pitch) at Re = 7.7x104: (a) side view, (b) front view, (c) 
actual swirler.  
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In figure 6.5.7a the cross-section planes show the flow at 0o, 60o, 120o and 180o 

while in figure 6.5.7b the velocity vectors are shown in a plane after 75o. Figure 6.5.7a 

shows that a distinct vortex emerges approximately after 60o twist (20 mm inside the 

swirler) matching the experimental observations. Figure 6.5.7b shows that the secondary 

vortices follow the tape twist and describe helical trajectories relative to the pipe axis 

which continue inside the straight pipe. 

These results are similar to the results showed by Rahmani [2004, 2005] for static 

mixers and Date [1974] for a short swirler. The present results also match well the swirl 

decay measurements of Kreith and Sonju [1965]. However, these results differ from the 

results published by Manglik et al. [1993, 1997], Yerra et al. [2007], Kazuhisa et al. 

[2004] and the measurements of Seymour [1966], which show counter-rotating vortices 

inside or at the exit of the twisted tape. The differences could be caused by the fact that 

Manglik et al. [1997], Yerra et al. [2007] and Kazuhisa et al. [2004] used different 

numerical models and different grid resolutions to simulate air at low Re and twisted 

tapes with multiple twists. Little details are given on the numerical method of Manglik et 

al. [1997] and Yerra et al. [2007] (streamlines and velocity vectors plots are presented in 

those articles, but the numerical method was not published and it is referenced to an 

internal lab report TFTPL-7 from the University of Cincinnati , September 2002 which 

was unavailable for this study). No details are given about the numerical grid used in 

Kazuhisa et al. [2004] and a low grid resolution and the use of a non-orthogonal 

coordinate system could significantly impact the results.  

One of the reasons previous authors proposed a two counter-rotating vortex 

structure inside twisted tapes was the fact that axial velocity contours measured [Seymour 
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1966] or simulated [Date 1974] displayed two peaks. Figure 6.5.8a shows that the axial 

profile indeed has two peaks in the current simulation but these are created by a single 

co-rotating vortex as shown by the velocity vectors in figure 6.5.8b.  

 
 

 
(a) 

 

 
(b) 

 
Figure 6.5.8   Axial velocity contours (a) and velocity vectors (b) at the exit of the 
twisted tape swirler with yr = 2.36 at Re = 7.7x104.  

 

The measurements of Seymour were done after multiple tape twists with probes 

inserted directly in the flow which could have altered the flow. Given the close match 

between experiments and the simulations presented in this study, the vortex formation 

mechanism described here seems reliable for water flow through 180o twisted tapes. 

For all three swirlers tested, the position of the secondary vortices inside the 

swirler relative to the twisted tape depends on the angle of the twist. In all three cases the 

vortices appear after approximately 60o (1/3 of the swirler) as shown by the isobar-

surfaces in figure 6.3.4. The secondary vortices also reach similar positions at the end of 

the swirler as shown by streamlines in figure 6.3.5. The pitch of the secondary vortices 

changes continuously inside the swirler as the vortices change their position relative to 
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the twisted tape from the location where they first appear until the end of the twisted tape. 

While the tape rotates 120o after the secondary vortices form, the vortices lag behind and 

rotate approximately 90o inside the swirler over 2/3 of the twisted tape length, which also 

represents half of the first 180o pitch of the helical vortices (figure 6.5.9). After the 

twisted tape ends, inside the straight pipe the pitch does not change anymore and mirrors 

the part of the pitch shaped inside the swirler. As such, the pitch of the helical vortices is 

twice as long as the part of the pitch created inside the swirler, resulting in the 4/3 ratio 

between the pitch of the helical vortices and the pitch of the twisted tape observed in both 

experiments and simulations.  

 
(a) 

 

(b) 
 
Figure 6.5.9   Change of position for the secondary vortices inside the swirler: (a) the 
vortices appear first after 60o twist; (b) secondary vortices at the swirler exit, after 180o 
twist. The red lines highlight the fact that the angle between lines passing through the 
secondary vortices in the two plots is approximately 90o.  
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6.6   Multiple twists 

As the previous chapter showed, after their inception the vortices keep moving 

away from their initial position against the main flow. This behavior raised the question 

how the vortices develop if the tape is twisted more than 180o.  

Figure 6.6.1 shows the behavior of the secondary vortices for tapes with twist 

ratio 2.36 (60 mm pitch) and with twists of 180o, 360o, 720o and 1080o at Re = 7.7x104. 

The tape with the 180o twist is shown as reference. The 360o tape produces helical 

vortices which spiral toward the centerline where they merge. For the 720o tape helical 

vortices are still visible but they are weak and unstable. In the last case, the flow 

downstream of the tape with 1080o twist is a simple swirling flow without any secondary 

vortices. The swirling flow induced by the tape with 180o twist has the most stable helical 

vortices. There is no tape-end effect on the position of the secondary vortices. After 180o 

the position of the secondary vortices in the cross-section is the same either if the tape 

ends or if more twists are following.  

 

 

 

 
 

Figure 6.6.1:   Effect of multiples twists on the secondary vortices: (a) 180o twist, (b) 
360o twist, (c) 720o twist, (d) 1080o twist. 

 

In order to verify the numerical predictions for multiple twists two, 180o twisted 

tapes with twist ratio yr = 2.36 (60 mm pitch) were installed in succession and the flow 

was visualized with air bubbles and high speed camera. Figure 6.6.2 shows the 

(a) 

(b) 

(c) 

(d) 
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comparison between the experiment and the numerical prediction for the flow at Re = 

7.7x104 including the swirler exit. The experimental visualization confirms both the 

convergence of the helical vortices toward the centerline and the shorter pitch of the 

helical vortices (70 mm) compared to the 180o case (80 mm). The helical vortices 

however do not merge in the experiments. After the two secondary vortices get close 

together, the radius of the helix increases back to half a radius and the vortices continue 

in a stable double helix structure until the end of the 1.14 m (45d) long pipe.  

 

 
 

Figure 6.6.2   Helical vortices induced by a 360o twisted tape with 60 mm pitch            
(yr = 2.36) at Re = 7.7x104: a) high speed camera visualization, b) numerical simulation.  
 

In order to investigate the behavior of the secondary vortices for tapes with 

multiple twists, the flow created by a twisted tape with 1080o twist and twist ratio           

yr = 2.36 is sampled with cross-section planes extracted after each 90o twist. The 

locations of the cross-section planes are shown in figure 6.6.3 and the plots of the 

tangential velocity vectors in each cross-section are presented in detail in figure 6.6.4.  

 
 

 
 

Figure 6.6.3:   Cross-section planes on a tape with 1080o twist: (a) full domain, (b) close-
up of the last twists (between 540o and 1080o) with isobar surfaces of p/P0 = 1. 
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after 90o twist 

 

 
after 180o twist 

 

 
after 270o twist 

 

 
after 360o twist 

 

 
after 450o twist 

 
after 540o twist 

 

Figure 6.6.4:   Development of the secondary vortices. 
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after 630o twist 

 

 
after 720o twist 

 

 
after 810o twist 

 

 
after 900o twist 

 

 
after 990o twist 

 

 
after 1080o twist 

 

Figure 6.6.4 (continued):   Development of the secondary vortices. 
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Through the first 180o twist the secondary vortices have exactly the same 

behavior shown in the previous chapter for a tape with a simple 180o twist. As the tape 

continues to twist, the secondary vortices move further against the flow and they reach 

the middle of the channel after 450o. The vortices continue to move against the tape 

rotation but after 720o twist they weaken. After 900o twist there are little indications of 

secondary motion in the velocity vectors and the flow becomes a regular swirling flow 

with a low pressure region near the centerline.  

As explained before, the motion against the flow is likely due to conservation of 

angular momentum as the helical vortices tend to preserve their rotation axis direction 

while the channel moves around them, changing their relative position. This lagging is 

what gives the helical vortices a longer pitch than the pitch of the tape for the 180o tape.  

In the previous section it was shown that after approximately 150o twist there is a 

distinct change of slope in the axial vorticity decay, suggesting that the vortices have 

reach their final size and vortex stretching is not a factor anymore, leaving viscous 

dissipation as the only cause of vorticity decay at a slower rate. Figure 6.6.5 shows that 

from 150o to 1080o the axial vorticity decreases at a relatively constant rate until it 

reaches the background level of axial vorticity corresponding to the main swirl. The 

velocity vectors in figure 6.6.5b show that after 1080o twist the remnants of the secondary 

vortices create just a slight disturbance in the swirling flow. 
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            (a) 

 
            (b) 

 
Figure 6.6.5   Normalized axial vorticity inside a twisted tape swirler with yr =2.36 and 
multiple twist at Re = 7.7x104: a) variation along the swirler, b) cross-section velocity 
vectors and normalized axial vorticity after 1080o twist.  
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6.7   Secondary motion at low Re 

LDV measurements and high speed camera visualizations showed that the helical 

vortices induced by twisted tapes have a constant pitch independent of Re in the range 

2x104 to 105 while for Re = 104 there are no visible helical vortices inside the test section, 

downstream of the swirler. In order to investigate the secondary vortices at lower Re and 

determine the critical Re at which the secondary vortices appear first inside the twisted 

tape swirler, numerical simulations are run for Re in the range 100 to 1,500. At low Re 

the secondary vortices are weak and the pressure gradients are small so the cores cannot 

be visualized with isobar surfaces as the viscous effects hide them. Instead the vortices 

are identified using the λ2 method which removes the viscous effects [Jeong and Hussain 

1995].  

Figure 6.7.1 shows the velocity vectors at the end of the 180o twisted tape with   

yr = 2.36 (60 mm pitch) and the side views of the twisted tape for Re 100, 250, 500, 750 

and 1,000. The vortices are identified with red line segments marking the centers of the 

regions where λ2<0 which correspond to vortex cores.  

The velocity vectors show that the flow change is not sudden but rather gradual, 

so the appearance of the secondary motion is better described by a range of Re rather than 

a critical value. There are no secondary vortices visible at Re = 100 and Re =250 but the 

vortex cores are visible at Re = 500, so the secondary vortices appear first in this range 

(bulk velocities between 10 and 20 mm/s). While secondary vortices form inside the 

swirler for Re between 500 and 2x104, the experimental visualizations show that the 

helical vortices are not strong enough to hold the air bubbles outside the swirler.  
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(a)  Velocity vectors  (b)  Vortex cores (λ2) 

 

 

 
Re = 100   (Ub = 0.004 m/s) 

 

 

 
Re = 250   (Ub = 0.01 m/s) 

 

 

 
Re = 500   (Ub = 0.02 m/s) 

 

 

 
Re = 750   (Ub = 0.03 m/s) 

 

 

 
Re = 1000   (Ub = 0.04 m/s) 

 
Figure 6.7.1:   Secondary motion at low Re: (a) velocity vectors at the swirler exit,       
(b) side views of the swirler with secondary vortices identified by λ2 method (the flow is 
from right to left). 
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As explained in the previous section, at the swirler inlet the leading edge of the 

twisted tape and the sudden turn create a low pressure region with flow separation where 

weak vortices form. As the plots in figure 6.7.1 show the inlet vortices disappear within 

30o twist (10 mm) from the swirler inlet as the centrifugal forces grow. The plots at Re = 

500 and 750 show that the secondary vortices present at the end of the swirler form after 

the inlet vortices disappear. 

As the twisted tape induces flow rotation, the centrifugal force could be a 

plausible cause for the secondary motion. One of the first investigations on centrifugal 

stability was published by Rayleigh [1916] who showed that the presence of an inverse 

stratification along the radius (a negative gradient) of the square of the angular 

momentum per unit mass ( )2
θvr ⋅  indicates that the flow is unstable to axi-symmetric 

disturbances. Rayleigh referred to θvr ⋅  as the circulation ( θπ vr ⋅⋅2  is the circulation 

round the circle defined by r = constant and z = constant [Drazin and Reid 1981]) which 

is why the criterion is referred to as the “circulation criterion”.  

The plots in figure 6.7.2 show the distribution of the square of the circulation 

( )2
θvr ⋅  for Re = 500 where the secondary vortices were first identified by the λ2 method. 

The colored vectors plot (figure 6.7.2a) shows that there is an uneven stratification of the 

squared circulation throughout the domain. Figure 6.7.2b shows the profiles of the 

circulation squared inside the semicircular channel along the radii at 45o and 135o which 

are shown in figure 6.7.2a. For the 45o plot the maximum occurs close to the middle of 

the radius followed by an obvious negative gradient toward the wall, confirming the flow 

is centrifugally unstable. The inverted stratification in the first half of the domain leads to 
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the appearance of the secondary motion in the second half as the fluid close to the axis is 

ejected toward the wall. By the 135o plane the circulation is concentrated near the wall. 
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Figure 6.7.2   Squared circulation distribution at the swirler exit for Re = 500 (Ub = 0.02 
m/s): (a) colored velocity vectors, (b) radial profiles along the radii (R = 0.0127 m) at 45o 
and 135o shown in plot (a). 
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The centrifugal stability criterion determined by Rayleigh was developed based 

on the flow between coaxial rotating cylinders. That case was an axis-symmetric flow 

where the occurrence of a centrifugal instability was a 1D problem. In this case the 

problem is 2D and the effect of the centrifugal forces is to shift the center of rotation of 

the flow away from the pipe axis, breaking the flow symmetry. 

Figure 6.7.3 shows a comparison between the variations of the tangential velocity, 

the centrifugal force density rVFcf
2

θρ ⋅= , the total pressure, the circulation squared 

and the axial vorticity for Re = 100, 250 and 500. The twisted tape creates two 

semicircular channels inside the pipe which could be considered to have an inlet half and 

an exit half (see velocity vectors in figure 6.7.2a). The plots show that the centrifugal 

force distribution (b) and the squared circulation distribution (d) in the first half of the 

domain have approximately the same spatial distribution for all three Re.  

However, as Re increases the centrifugal forces become stronger and the flow 

symmetry is lost. The location of the maximum tangential velocity (a) shifts from near 

the inlet toward the second half of the domain and this shift in the tangential velocity 

distribution is accompanied by an emergence of an off-center low pressure region absent 

at Re = 100 and very distinct at Re = 500 (c). As Re increases, the axial vorticity plots (e) 

also show a peak emerging at the same location where the tangential velocity (a) has its 

maximum. The plots show that the flow patterns do not change suddenly, rather the flow 

changes as the pressure gradients increase as a result of an increase in Re. 
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 Re = 100 Re = 250 Re = 500 
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(e) 

   

Figure 6.7.3   Flow characteristics at the swirler exit for Re 100, 250 and 500 (bulk 
velocities 4, 10 and 20 mm/s): (a) tangential velocity, (b) centrifugal force density, (c) 
total pressure, (d) circulation squared, e) axial vorticity; (red indicates maxima). 
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Figure 6.7.4 shows the streamlines at the swirler exit for Re 100, 250, 500, 750, 

1000 and 1500. The streamlines appear to enter into the tape because the twisted tape is 

inclined relative to the XYZ coordinate system and the flow parallel to the tape actually 

has a vertical component. 

 
Re = 100 

 
Re = 250 

 
Re = 500 

 
Re = 750 

 
Re = 1,000 

 
Re = 1,500 

 
Figure 6.7.4   Streamlines at the swirler exit at different Re 
 

Comparing the plots in figure 6.7.4, the angle of the streamlines at the swirler exit 

is approximately the same for all Re as it depends only on the twist of the tape. While the 

λ2 method indicates the presence of secondary vortices at Re = 500, the streamlines in 

figure 6.7.4 do not close until Re = 1,500.  

The two distinctive features of a vortex (low pressure and large tangential 

velocity) are formed separately and they evolve gradually into a vortex as the velocity 

gradients become larger. The coherent low pressure cores appear at lower Re than closed 
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streamlines. The streamlines exhibit sharp turns near the low pressure region for Re from 

500 to 1,000 but whether the low pressure structures identified by the λ2 method are 

vortices is questionable. It seems that these structures should rather be considered a 

precursor of a vortex and that the actual secondary vortices occur when the streamlines 

close.  

The pressure gradients are very small and the vortices very weak and unstable. It 

seems unlikely that these structures could be investigated experimentally and one has to 

rely on numerical simulation to obtain some insights into vortex inception.  

 

 

6.8   Multiple vortices 

Numerical simulations were also run to see if the stability of the pair of two 

helical vortices is maintained in the case of three and four vortices. Swirlers with three 

and four chambers twisted 180o are employed to investigate the generation and 

development of multiple vortices (figure 6.8.1). These complex swirlers could be 

manufactured by stereolitography similarly with the compact swirlers used in the 

experiments. 

 

 

 
(a) 

 

 
(b) 

 

Figure 6.8.1:   Complex 180o swirlers: (a) three chambers, (b) four chambers. 
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Figure 6.8.2:   Secondary vortices in 180o, 60 mm long swirlers (yr = 2.36) at Re = 
7.7x104 identified by isobar surfaces p/P0 = 1: (a) three chambers swirler, (b) four 
chambers swirler. 
 

Figure 6.8.2 shows the secondary motion generated by three and four chambers, 

180o swirlers. Just like in the case of the swirler with two chambers, single co-rotating 

vortices form early inside the swirler near the wall and then drift against the flow. 

However, the pressure gradients are lower than in the case of the regular twisted tape. 

Despite some differences, in both cases the secondary vortices converge toward 

the centerline and the flow becomes a regular swirling flow. Details of the convergence 

process are shown for both cases in figure 6.8.3 using streamlines. In the case with three 

vortices the convergence is slower in approximately 12d while the four vortices converge 

after approximately 6d. The convergence creates unusual structures such as squared and 

triangular vortex cores. 

This study investigated the twisted tape swirler and the counter-rotating flow 

because it was detrimental for the pulp mixing in the paper production. The secondary 

motion was creating preferential alignment of the pulp fibers, resulting in streaks on the 

final paper. These simulations suggest that multi-chamber swirlers can be used to 

produce swirling flow without the undesirable secondary motion in paper production. 

 

 

 

(a) 

(b) 
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a) 3 vortices, z/d = 0.39 

 

 
d) 4 vortices, z/d = 0.35 

 

 
b) 3 vortices, z/d = 5.01 

 
e) 4 vortices, z/d = 3.58 mm 

 

 
c) 3 vortices, z/d = 11.81 

 
f) 4 vortices, z/d = 5.91 

Figure 6.8.3:   Streamlines for multiple vortices: a), b), c) 3 vortices; d), e), f) 4 vortices 
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CHAPTER 7 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

7.1   Conclusions 

Summarizing the contributions made by the present study, the main contribution 

is the identification of the cause of the secondary flow in short twisted tape swirlers. This 

investigation showed that the counter-rotating flow is produced by helical vortices. A 

solution to remove the secondary motion in applications where it is undesirable was 

proposed using multiple chambers swirlers. Removing the secondary flow in paper 

manufacturing will improve paper quality and it is expected to produce economical and 

environmental benefits.  

Starting from an investigation of the cause of the counter-rotating flow observed 

downstream of twisted tapes swirlers during experimental tests, the present study 

identified for the first time the presence of helical vortices in the swirling flow induced 

by 180o twisted tapes. The characteristics of this complex flow were investigated using 

LDV measurements, flow visualizations and numerical simulations. Helical vortices 

occur often in nature but these are the first stable helical vortices ever observed and they 

allowed detailed air bubble visualizations of the complex flow field resulting from the 

interaction between the helical vortices and the main swirl. The newly uncovered 

characteristics of the flow induced by twisted tapes can be used to design mixers with 

improved efficiency and calibrate numerical simulations. This study suggests that a short 

twisted tape (180o) would create a very strong secondary flow while a long tape (720o) 
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would suppress the secondary flow. The results presented here should benefit both the 

researchers and the industry using twisted tapes for mixing or heat transfer, or affected by 

helical vortices.  

The experimental investigation demonstrated that the counter-rotating flow is 

produced by two secondary helical vortices superimposed on the main swirl. The two 

secondary vortices almost double the tangential velocity near the wall. The smaller 

secondary vortices rotate faster than the main vortex and as a result their centers have the 

lowest pressure in the cross sectional field as shown by the air bubble streams. The air 

bubbles provide a good description of the motion associated with the secondary vortices.  

Experiments showed that short 180o twisted tapes produce coherent secondary 

flow for Re in the range 2x104 to 105. The helical vortices generated by the swirler 

become stronger with Re but the secondary flow structure does not change with Re (the 

pitch is constant for a given swirler). The tangential field created by the interaction of the 

three vortices is shown to be well described by superposition of the velocity fields of the 

secondary vortices on the main vortex velocity field. The characteristic tangential 

velocity profiles were identified for each vortex for the swirling flow induced by a 

twisted tape with twist ratio yr = 2.36 (60 mm pitch) at 4107.7Re ×= .  

The helical vortices originate inside the swirler, and their inception and 

development inside the swirler were investigated using numerical simulations. The 

numerical simulations using a laminar formulation described well the transitional flow 

inside the swirler, while simulations using the RSM turbulence model gave only 

qualitative results that did not match the experiments very well.  
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The numerical simulations results showed that the secondary vortices appear early 

inside the swirler as single, small co-rotating vortices in the corner leading the rotation, 

on the suction side. As the tape continues to twist the co-rotating vortices become 

stronger and move away from the twisted tape and from the pipe wall. After the exit, the 

two vortices maintain their helical shape imposed in the formation stage inside the swirler 

and continue into the straight pipe. These results are similar to results showed by 

Rahmani [2004, 2005] but do not agree with the results published by Manglik et al. 

[1993, 1997], Yerra et al. [2007], Kazuhisa et al. [2004] and the measurements of 

Seymour [1966] which showed counter-rotating vortices inside or at the exit of the 

twisted tape. The differences in the numerical methods used could explain some of the 

discrepancies. At the same time, the use of air as medium and heat transfer in those 

previous numerical studies may also be responsible for some differences. The 

experimental measurements of Seymour could have been influenced by the intrusive 

techniques used. The simulations in the present study are validated against the 

experiments presented in the first part and they agree qualitatively with the experimental 

data. No counter-rotating vortices were observed downstream from the swirler in the 

experiments. 

The flow downstream of the swirler was comprehensively described with 

numerical results, which confirmed the experimental tests while providing the pressure 

and the radial velocity component distributions. The helical vortices were identified using 

isobar surfaces of low pressure (corresponding to air bubble accumulations in the 

experiments), closed streamlines, vorticity and the negative eigenvalues of the velocity 

gradient tensor λ2. While all the vortex identification methods clearly identify the 
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secondary, helical vortices, the low pressure surfaces and λ2 methods failed to identify 

the main swirl with its center on the centerline, which is obvious in the streamlines plots. 

This is a result of the low pressure regions created by the two helical vortices.  

After running numerical simulations at low Re, the secondary motion was shown 

to appear first for Re between 250 and 500 (bulk velocities between 10 and 20 mm/s). At 

low Re the pressure gradients are weak and the vortices were better identified by the λ2 

method. 

The flow behavior for twists larger than 180o was also investigated numerically 

and the results showed that as the tape continues to twist, the secondary vortices move 

further against the flow and they reach the middle of the channel after 450o for Re = 

7.7x104 (bulk velocity 3 m/s). The vortices continue to move against the tape rotation but 

after 720o twist they weaken. After 900o twist there are no more indications of secondary 

motion and the flow becomes a regular swirling flow with a low pressure region near the 

centerline. A plot of the variation of the axial vorticity along the twisted tape showed that 

the vorticity inside the secondary vortices increases fast at the beginning of their 

formation followed by a fast decrease as the size of the vortices increases due to vortex 

stretching. Once the size of the vortices stops changing, the axial vorticity intensity 

decreases at a slower, steady rate due to viscous dissipation. For twisted tapes with 

multiple twists, the viscous dissipation reduces the intensity of the secondary vortices 

until they disappear. 

The motion against the flow is likely created by the tendency of the helical 

vortices to preserve their rotation axis direction and oppose the change forced by the tape. 

The vortices do not move against the flow in the semicircular channel, rather the channel 
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moves around the secondary vortices, changing their relative position. This lagging is 

what gives the helical vortices a longer pitch than the pitch of the tape for the 180o tape.  

The helical vortices could also be the cause of the counter-rotating flow in 

swirling jets generated by rotating pipes which was reported by Facciolo and Alfredsson 

[2004]. Their explanation based on a dominant effect of the cross-section Reynolds stress 

was derived assuming axis-symmetric flow and no axial gradients. The LES simulation 

published by the same research group [Maciel et al. 2008] showed the presence of two 

helical vortices in the swirling jet immediately downstream of the rotating pipe. Their 

presence suggests that the mechanism responsible for the presence of the counter-rotating 

flow in the swirling jet could also be the same as the one presented in this study for 

twisted tape. 

 

7.2   Recommendations for future work 

While the present investigation answered how the secondary flow occurs and how 

to eliminate it, it also raised new questions. This study was focused on the vortex 

behavior which is not significantly affected by turbulence (no Re sensitivity), and 

calculating the detailed structure of the turbulent flow was not a present goal. At the same 

time the computational resources available were not sufficient for a rigorous Direct 

Numerical Simulation (DNS) of the flow. However, if sufficient computational resources 

would become available, a future DNS study of the flow could provide a valuable insight 

into how the multiple vortices affect turbulence compared to a regular pipe flow, while 

ensuring that the flow transition inside the swirler is computed accurately. 
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Multiple twists and multi-chambers swirlers could be manufactured to confirm the 

numerical findings presented in this study with measurements and visualizations 

downstream from the swirlers. While challenging, a setup allowing non-intrusive 

measurements inside a twisted tape with multiple twists would provide a valuable 

confirmation for the corresponding numerical results. The existing setup could be further 

used to investigate the vortex/air bubbles interaction in two-phase flows and flow 

stability. 

Further research could also be performed on the secondary flow in jets induced by 

rotating pipes, in order to clarify if there is a connection between helical vortices and the 

observed counter-rotating flow. LDV measurements could be used to determine if the 

counter - rotating flow is axi-symmetric or not.  

Numerical simulations could also be developed to investigate flows of different 

fluids through twisted tapes, such as air or pulp (pulp is a two-phase flow consisting of 

water, chemicals and wood fibers). Another research topic with economic potential 

would be an investigation of the potential of helical vortices behind twisted tapes to 

improve heat transfer in air and water flows. 
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APPENDIX 1 
 
 

Table A1   Tangential Velocity Corrections 
 

 
 

Measurements 
Index 

Pipe Position 
[mm] 

Traverse 
Position 

[mm] 

Centered 
Traverse 

Position [mm] 

Velocity 
Correction 

 
1 -12 -15.54 -8.10 1.3378 
2 -11 -14.81 -7.37 1.3488 
3 -10 -14.08 -6.64 1.3599 
4 -9 -13.37 -5.93 1.3709 
5 -8 -12.67 -5.23 1.3819 
6 -7 -11.98 -4.54 1.3929 
7 -6 -11.30 -3.86 1.4040 
8 -5 -10.63 -3.19 1.4150 
9 -4 -9.97 -2.53 1.4260 
10 -3 -9.32 -1.88 1.4371 
11 -2 -8.68 -1.24 1.4481 
12 -1 -8.06 -0.62 1.4590 
13 0 -7.44 0 1.4700 
14 1 -6.83 0.61 1.4810 
15 2 -6.22 1.22 1.4922 
16 3 -5.63 1.81 1.5032 
17 4 -5.05 2.39 1.5141 
18 5 -4.47 2.97 1.5252 
19 6 -3.91 3.53 1.5361 
20 7 -3.35 4.09 1.5472 
21 8 -2.80 4.64 1.5582 
22 9 -2.25 5.19 1.5693 
23 10 -1.72 5.72 1.5802 
24 11 -1.19 6.25 1.5913 
25 12 -0.67 6.77 1.6023 


