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SUMMARY 

Malicious attacks on computer systems attempt to obtain and maintain illicit 

control over the victim system.  To obtain unauthorized access, they often exploit 

vulnerabilities in the victim system, and to maintain illicit control, they apply various 

hiding techniques to remain stealthy.  In this dissertation, we discuss and present 

solutions for two classes of security problems: TOCTTOU (time-of-check-to-time-of-

use) and K-Queue.  TOCTTOU is a vulnerability that can be exploited to obtain 

unauthorized root access, and K-Queue is a hiding technique that can be used to maintain 

stealthy control of the victim kernel. 

The first security problem is TOCTTOU, a race condition in Unix-style file 

systems in which an attacker exploits a small timing gap between a file system call that 

checks a condition and a use kernel call that depends on the condition.  TOCTTOU 

vulnerabilities are widespread and cause serious consequences. For example, according to 

US-CERT (United States Computer Emergency Readiness Team), such vulnerabilities 

exist in a wide range of applications, affect many operating systems, and often give the 

attacker unauthorized root access. Our research contributions on TOCTTOU include: (1) 

A model that enumerates the complete set of potential TOCTTOU vulnerabilities (e.g., 

224 TOCTTOU pairs in Linux); (2) A set of tools that detect TOCTTOU vulnerabilities 

in Linux applications such as vi, gedit, and rpm; (3) A theoretical as well as an 

experimental evaluation of security risks that shows that TOCTTOU vulnerabilities can 

no longer be considered “low risk” given the wide-scale deployment of multiprocessors; 

(4) An event-driven protection mechanism and its implementation in the Linux kernel 

that defend Linux applications against TOCTTOU attacks at low performance overhead. 
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The second security problem addressed in this dissertation is kernel queue or K-

Queue, which represents a new hiding technique that can be used by the attacker to 

maintain stealthy control of the victim system after a successful break-in. K-Queue-

driven attacks can achieve continual malicious function execution without persistently 

changing either kernel code or data (from the “gold” distribution), which prevents state-

of-the-art kernel integrity monitors such as CFI and SBCFI from detecting them. We 

have studied a concrete instance of K-Queue-driven attacks that use the soft timer 

mechanism found in nearly all full-featured operating systems.  We demonstrate that an 

attacker can use soft timer interrupt requests (STIRs) to perform powerful attacks, 

including key logging, denial of service, and hidden process scheduling. To defend 

against soft-timer-driven kernel control flow attacks, we propose and implement an 

approach based on an automated static analysis of the entire kernel that identifies and 

catalogs all legitimate STIRs in a database.  At runtime, a reference monitor in a trusted 

virtual machine compares each pending STIR with STIRs in the database, allowing the 

execution of only known good STIRs.  Our defensive technique effectively mitigates 

soft-timer-driven attacks at a low cost (less than 7% for each of our benchmarks). 

As the finishing touch of this dissertation, we design and implement a solution to 

the general class of K-Queue-driven attacks which can exploit IRQ action queues, tasklet 

queues, soft timer queues, and work queues.  Our first contribution is a unified static 

analysis framework and a set of tools that can generate specifications of K-Queue 

summary signatures and the corresponding checking code in an automated way. We also 

design and implement a unified runtime reference monitor based on virtualization that 

validates K-Queue invariants and guards such invariants against tampering. Finally, we 



 xix

perform a comprehensive experimental evaluation of the scalability of our static analysis 

framework and tool set, which shows that different K-Queue analyzers have significant 

overlapping that can be exploited for better efficiency; and we carry out an evaluation of 

the complexity and runtime overhead of our K-Queue Checker which suggests ways for 

further optimization. 

 



 

1 

CHAPTER 1                                                                     

INTRODUCTION 

 Operating systems are privileged programs that hold ultimate control over the 

computing assets (e.g., CPU, memory, network bandwidth, and files) of any computing 

system. 

 However, today’s operating systems are not secure, because they contain 

numerous vulnerabilities. For example, Secunia1 has reported 2,135 vulnerabilities for 

Microsoft Windows since 2003. Such vulnerabilities are bad for security because 

attackers (often called hackers) can exploit them to obtain illicit control over the victim 

operating system and thus access to, or control over, the computing assets managed by 

the operating system.  The large number of vulnerabilities and the ease with which many 

of them can be exploited often increase the attacker’s chance of success.  For example, it 

has been reported that an unpatched Windows XP with SP1 [23] can be compromised 

within six minutes after installation. 

 The damage due to malicious compromise to an operating system has increased 

significantly in recent years. Traditional hackers exploit vulnerable systems mainly for 

showing off their technical skills. The game is over once the target system is penetrated, 

and they would like to be noticed. In some sense this style of attacking is good for 

security, because the damage is one time and remediation can be taken once the 

comproise is announced.  However, most hackers today exploit vulnerabilities for 

monetary gains, so the real game begins after the target system is conquered, and the 

hackers would like this game to last forever.  For example, once getting into a system, 

today’s attackers often collect sensitive information (e.g., credit card numbers and trading 

                                                 

 
 
1 http://secunia.com 
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secrets), install key loggers to steal passwords, or install other kinds of malicious 

software or malware, which includes spyware, rootkits, virus, worms, Trojans, and 

stealthy backdoors.  Even worse, they can enlist the victim machine into botnets, large 

collections of compromised machines under the control of a bot master. The largest 

botnet to date contains more than eight million nodes [24]. These botnets are valuable for 

sending spam emails or mounting distributed DoS (Denial of Service) attacks, so they are 

often traded in underground black markets. 

 In other words, the attackers today are interested not in showing off but in the 

actual benefit of using the compromised computing system.  To maximize their gains, 

they strive to maintain a stealthy control over the victim system.  Unfortunately, 

remaining stealthy is not a tough job for the attacker, because today’s mainstream 

operating systems have a monolithic privilege system – once the attacker becomes the 

root user, he/she can freely modify any state of the system, including the operating 

system itself, to hide his/her activities. This coarse-grained access control has 

significantly lowered our confidence on long-running systems, to the extent that most 

administrators are forced to completely re-install a computer system to regain trust if they 

suspect that a root compromise has happened.  Unfortunately, it is a difficult decision to 

re-install a computing system in active use.  So we are often forced to live with 

potentially compromised operating systems. 

 The thesis of this dissertation is to increase our trust on long-running computing 

systems by improving the security of operating systems.  Obviously this is a big topic; 

therefore we approach it by two concrete case studies.  Specifically, we discuss and 

present solutions for two classes of security problems: TOCTTOU (time-of-check-to-

time-of-use) and K-Queue (Kernel Queue), in which TOCTTOU is a race condition 

vulnerability that can be exploited for privilege escalation and K-Queue is a kernel 

mechanism that can be misused to maintain stealthy control of the victim kernel. By these 
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cases studies, we hope to gain insights in how to systematically improve the runtime 

security of modern operating systems. 

 We choose TOCTTOU and K-Queue because both of them enable non-obtrusive, 

stealthy attacks that are of interest to today’s hackers.  Both of them touch fundamental 

system software design philosophies that are unfornately bad for security.  TOCTTOU, 

an inherent design flaw (i.e., the lack of transactional support) in modern file systems, has 

been around for more than 30 years, yet such vulnerabilities continue to be discovered in 

widely-used applications and the adoption of multi-cores aggravates the security threat 

represented by such vulnerabilities.  K-Queue reflects an inherent lack of fine-grained 

access control of the CPU inside a modern operating system kernel, which allows a 

malicious extension to easily inject illicit control flows into the kernel. 

 Our solutions to both problems are inspired by the concept of para-transactional 

invariants (PTIs).  PTIs, runtime properties that remain true throughout the execution of a 

block of program statements, are a general and unifying concept for understanding and 

preserving runtime properties.  We extract and express runtime properties whose 

violations are the root cause for TOCTTOU and K-Queue.  By adding the missing logic 

into the vulnerable system to eliminate the root causes, we provide effective and efficient 

solutions to these security problems. Our work helps improve the security of modern 

operating systems. 

1.1. Contributions 

 This dissertation makes the following contributions in the TOCTTOU problem. 

 An abstract model that is capable of enumerating the complete set of potential 

TOCTTOU vulnerabilities (e.g., 224 TOCTTOU pairs in Linux). 

 A systematic search for potential TOCTTOU vulnerabilites in Linux system 

utility programs, which reveals unknown TOCTTOU vulnerabilities in widely-

used applications such as vi, gedit, and rpm. 
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 A detailed experimental and theoretical study of successfully exploiting 

TOCTTOU vulnerabilities in real-world applications, on both uniprocessors 

and multiprocessors, which significantly advances our understanding of 

TOCTTOU attacks. 

 A modular and event-driven defense mechanism (EDGI) and its Linux 

implementation that defend applications against TOCTTOU attacks at low 

performance overhead and do not require existing applications to change. 

 

 In terms of the K-Queue problem, this dissertation makes the following 

contributions. 

 A definition of K-Queue-driven transient control flow attacks as a new attack 

class that maintains stealthy control of the victim kernel, and an empirical study 

of attacks that leverages the soft timer queue. 

 An authentication model that uses summary signatures to differentiate K-Queue 

requests from legitimate and malicious software. 

 A unified static analysis framework and a set of tools that can generate 

specifications of K-Queue summary signatures and the corresponding checking 

code in an automated way. 

 A runtime reference monitor based on virtualization that validates K-Queue 

invariants and guards such invariants against tampering, which effectively 

defends potential K-Queue-driven attacks. 

1.2. Outline 

 The rest of this dissertation is organized as follows.  Chapter 2 discusses our 

solution to the TOCTTOU (time-of-check-to-time-of-use) problem. Chapter 3 presents 

our solution to K-Queue driven transient control flow attacks. Chapter 4 discusses future 

work and draws the conclusion. 
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1.3. Mapping From This Dissertation to Existing Publications 

 This dissertation is based on several published papers by the author. Specifically, 

the result in Section 2.3 was published in paper [61], the result in Section 2.4 was 

published in paper [62], the solution in Section 2.5 was published in [44], and Sections 

3.2 and 3.3 are based on paper [63]. 
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CHAPTER 2                                                                       

TOCTTOU 

 The first contribution of this dissertation research is a complete solution to the 

well-known and long-standing TOCTTOU problem.  We propose the CUU model that is 

capable of enumerating the complete set of potential TOCTTOU vulnerabilities, and our 

modular and event-driven defense mechanism (EDGI) and its Linux implementation are 

also complete. 

2.1. Problem Statement 

 TOCTTOU (time-of-check-to-time-of-use) is a well-known security vulnerability 

[2] in file systems lacking strong synchronization support (e.g., the Unix file system). A 

TOCTTOU vulnerability is characterized by two distinct operations [6]. First, a 

vulnerable program checks for a file condition. Second, the program uses (operates on) 

the file, assuming that the established file condition remains invariant during execution. 

An illustrative vulnerable program is sendmail, which used to check for a specific 

attribute of a mailbox file (e.g., it is not a symbolic link) in step one and append new 

messages (as root) in step two. However, the checking and appending operations do not 

form an atomic unit. Therefore, a local attacker (the mailbox owner) can exploit the 

window of vulnerability between the two operations by deleting his/her mailbox and 

replacing it with a symbolic link to /etc/passwd.  If the replacement is completed within 

the window and the new messages happen to be syntactically correct /etc/passwd entries 

with root access, then sendmail may unintentionally give unauthorized root access to a 

normal user (the attacker). 

 The sendmail example shows the structural complexity of a TOCTTOU attack, 

which requires (unintended) shared access to a file by the attacker and the victim (the 
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sendmail program), plus the two distinct steps (check and use) in the victim.  This 

complexity plus the non-deterministic nature of TOCTTOU attacks make the detection 

difficult.  For example, TOCTTOU attacks usually result in escalation of privileges, but 

no immediately recognizable damage.  Furthermore, TOCTTOU attacks are inherently 

non-deterministic and not easily reproducible, making post mortem analysis also difficult. 

These difficulties are illustrated by the TOCTTOU vulnerabilities recently found in vi 

and emacs (Section 2.3.2), which appear to have been in place since the time those 

venerable programs were created. 

 TOCTTOU vulnerabilities are a very significant problem. In fact, CERT [58] 

released 20 advisories on TOCTTOU vulnerabilities between 2000 and 2004. These 

advisories covered a wide range of applications from system management tools (e.g., 

/bin/sh, shar, tripwire) to user level applications (e.g., gpm, Netscape browser), and they 

affected many operating systems, including Caldera, Conectiva, Debian, FreeBSD, HP-

UX, Immunix, MandrakeSoft, RedHat, Sun Solaris, and SuSE.  In 11 of these CERT 

advisories, the attacker was able to gain unauthorized root access.  A similar list compiled 

from the BUGTRAQ [11] mailing list is shown in Table 1.  TOCTTOU vulnerabilities 

are widespread and cause serious consequences. 

Table 1: Reported TOCTTOU vulnerabilities 
Domain Application Name 

Enterprise applications Apache, bzip2, gzip, getmail, Imp-webmail, procmail, openldap, openSSL, 
Kerberos, OpenOffice, StarOffice, CUPS, SAP, samba 

Administrative tools at, diskcheck, GNU fileutils, logwatch, patchadd 
Device managers Esound, glint, pppd, Xinetd 

Development tools make, perl, Rational ClearCase, KDE, BitKeeper, Cscope 
 

2.2. The CUU Model of TOCTTOU 

 Although in general TOCTTOU problems are not limited to file access [14], in 

this dissertation we focus on file-related TOCTTOU problems. We first propose an 

abstract model of such TOCTTOU problems (called CUU –“C” stands for “Check” and 

“U” stands for “Use”) that captures all potential vulnerabilities.  The model is based on 
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two mutually exclusive invariants: a file object either does not exist, or it exists and is 

mapped to a logical disk block.  For each file object, one of these invariants must remain 

true between the check and use steps of every program. Otherwise, potential TOCTTOU 

vulnerabilities arise.  This model allows us to enumerate all the file system call pairs of 

check and use (called exploitable TOCTTOU pairs), between which the invariants may 

be violated.  Guided by this model, we are able to detect concrete TOCTTOU 

vulnerabilities in real-world applications.  From this model we also derive a protection 

mechanism, which maintains the invariants across all the exploitable TOCTTOU pairs by 

preventing access from other concurrent processes/users. The practical value of CUU is 

demonstrated by the mapping of concrete Unix-style file systems to it. We have 

exhaustively analyzed the file system calls of POSIX and Linux and classified them 

according to the CUU model.  From this classification we enumerated all the exploitable 

TOCTTOU pairs for POSIX (485 pairs) and Linux (224 pairs). 

2.2.1. The Abstract File System 

 Due to the complexity of the TOCTTOU problem in real file systems, in this 

section we define a simplified Abstract File System (AbsFS), on which we define the 

TOCTTOU problem (see Section 2.2.2) and design a defense mechanism (see Section 

2.5).  In Section 2.2.3 we map concrete file systems (POSIX and Linux) to AbsFS and 

translate the results from the AbsFS to the concrete file systems. 

2.2.1.1. Definition of Abstract File System 

 The Abstract File System (AbsFS) manages a set of file system (FS) objects.  

Each file system object consists of a pathname, an ordered set of logical disk blocks, and 

a mapping of the pathname to the corresponding set of logical disk blocks.  For simplicity 

we assume the AbsFS to contain only contiguous files, i.e., the set of logical disk blocks 

is sequential for every file, and the AbsFS only needs to map the pathname to the address 
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(block number) of the initial logical disk block.  Let F denote the set of all pathnames and 

B denote the set of all logical disk blocks, the pathname mapping function resolve is 

defined by:  

Β⊄∅∅},∪→ {: BFresolve . 

 Given a pathname Ff ∈ , if the AbsFS object corresponding to f exists, with the 

initial logical disk block number Bb∈ , then we define bfresolve =)( .  If the AbsFS 

object corresponding to f does not exist, we define ∅=)( fresolve . 

 The AbsFS defines an Application Programming Interface consisting of 4 

operations on file objects. 

 Definition 1: creation(pathname) is the operation that creates new FS objects in 

the AbsFS by changing the mapping for pathname f from ∅=)( fresolve  to 

bfresolve =)( , for some Bb∈ . 

 Definition 2: removal(pathname) is the operation that changes the mapping for 

pathname f from bfresolve =)(  to ∅=)( fresolve . 

 Definition 3: normal use(pathname) is the operation that works on an existing file 

system object and does not remove it.   

 Definition 4: check(pathname) is the operation that returns a predicate about the 

named FS object.  The predicate may be bfresolve =)(  or ∅=)( fresolve . The file f has 

to be in one of these two states. 

 An application uses the creation operation to create a new FS object, the check 

operation to determine the invariant bfresolve =)(  or ∅=)( fresolve , the normal use 

operation to read or write the FS object, and the removal operation to delete an FS object.  

These four kinds of operations (creation, normal use, removal, and check) are all the 

currently defined AbsFS operations.  The creation and removal operations change the 

resolve mapping, while the check and normal use operations do not change the resolve 
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mapping.  The AbsFS operations and FS object states can be represented in a state 

transition diagram shown in Figure 1. 

 

Figure 1: State Transition Diagram for FS Object f 

2.2.1.2.Concurrent Access to AbsFS 

 Since the TOCTTOU vulnerability happens with concurrent access by a victim 

process and an attacker process, we extend the notation above to include explicit 

modeling of concurrent file system object access. 

 Definition 5: Safe sequence of AbsFS operations.  Given a sequence O of AbsFS 

operations invoked by a process/user on FS object f, )(),...,(),()( 21 fofofofO n= , 1>n , if 

11, −≤≤∀ nii , )( fresolve  remains an invariant between )( foi and )(1 foi+ , we say the 

sequence )( fO  is a safe sequence of AbsFS operations (from the concurrency point of 

view).  Since in most cases all the operations in the sequence belong to the same 

process/user, for notational simplicity, we omit the process/user id from the sequence. In 

case of interleaved operations, we will add a superscript to denote the different 

processes/users. 

 It is straightforward to see that the exclusive access by a single process to files is 

safe, i.e., the state of each FS object persists from the end of each AbsFS operation to the 

beginning of the next AbsFS operation under exclusive access.   

 Definition 6: Unsafe sequence of AbsFS operations: Given a sequence of 

operations )(),...,(),()( 21 fofofofO n= , 1>n , if 11, −≤≤∃ nii , )( fresolve  is not invariant 
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between )( foi and )(1 foi+ , i.e., )()(
1

fresolvefresolve
ii oo +

≠ , )( fO  is an unsafe sequence of 

AbsFS operations.  

2.2.2. The CUU Model 

2.2.2.1.Exclusion of Careless Programming 

 Before we start the discussion of the TOCTTOU problem, we point out that the 

TOCTTOU vulnerability is not due to a naively careless programming style.  Consider 

the sendmail example.  Hypothetically, the sendmail could simply open the file name that 

is the user’s mailbox by naming convention (e.g., /usr/mail/username) and then append 

emails to that file.  This simplistic approach fails immediately because the naming 

convention may or may not hold for all names (e.g., a user may have created a symbolic 

link from /usr/mail/username to /etc/passwd).  To avoid this kind of problems, many 

system programmers have adopted a more careful programming style.  In case of files, 

this careful programming style establishes a predicate on the file before using it.  For 

example, sendmail establishes the predicate bfresolve =)( , where b belongs to a regular 

file, not a symbolic link, before appending messages to f.  The predicate bfresolve =)(  is 

an invariant that should remain true as long as the sendmail keeps appending messages.  

We call the predicate an invariant instead of pre-condition, because the normal 

connotation of pre-condition is that it must be true before entering a function, but it may 

become false after the function has started.  In contrast, our invariant must remain true 

through the duration of file usage. 

 In the rest of this dissertation we exclude the careless programming style and 

assume that all system utilities of interest will establish an invariant on a pathname before 

using it.  This is represented in our notation by dividing a sequence of AbsFS 

operations )(),...,(),(),...,()( 11 fofofofofO nii +=  into two subsequences. The first 

subsequence )(),...,(1 fofo i  is called the “Check” part, and the second subsequence  
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)(),...,(1 fofo ni+  is called the “Use” part.  The “Check” part establishes the invariant  

)( fresolve
io  and the “Use” part of the sequence relies on the invariant remaining true, 

i.e., )( fO is a safe sequence of AbsFS operations.  

2.2.2.2.TOCTTOU Attacks in AbsFS 

 Definition 7: A TOCTTOU (Time-Of-Check-To-Time-Of-Use) attack on file 

object f consists of two concurrent processes, victim v and attacker a, with interleaved 

AbsFS operations that make v’s sequence unsafe.  Consider the victim v executing the 

sequence )()...,(),(),...,()( 11 fofofofofO v
n

v
i

v
i

vv
+= , divided into the “Check” and “Use” parts.  

Concurrent with v, attacker a is able to change the mapping )( fresolve
io  established by v 

during the execution of the sequence )( fOv , transforming it into an unsafe sequence.  This 

is achieved by inserting the sequence )(),...,(),()( 21 fofofofO a
k

aaa =  between the 

“Check” and “Use” parts of )( fOv . The result becomes: 

)()...,(),(),...,(),(),(),...,( 1211 fofofofofofofo v
n

v
i

a
k

aav
i

v
+ . 

 To illustrate the definition with concrete scenario, we temporarily move from 

AbsFS to a Unix-style file system environment.  Suppose the invariant established by v is 

bfresolve
io =)( , the attack sequence )( fOa  of a can be: first remove f and then create a 

symbolic link named f which points to another file object t ( ',')( bbbtresolve ≠= ), resulting 

in ')( bfresolvea
ok

= . If the invariant established by v is ∅=)( fresolve
io , a possible attack 

sequence )( fOa  is to create the file object f, making ∅≠)( fresolvea
ok

. 

 The TOCTTOU attack is successful if )()( fresolvefresolve a
o

v
o ki

≠  and victim v 

continues execution without realizing the invariant created by the subsequence 

)(),...,(1 fofo v
i

v  (the “Check” part) has been violated.  Consequently, the subsequence 

)()...,(1 fofo v
n

v
i+  (the “Use” part) will execute under the assumption of the original invariant, 

which is no longer true. 
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 The side effect of v executing the “Use” subsequence )()...,(1 fofo v
n

v
i+  after a 

successful TOCTTOU attack is that v is actually working on some other unintended file 

object.  For example, if t = /etc/passwd in the sendmail example, emails may be 

appended to /etc/passwd.  

 Proposition 1: Violation of an invariant is a necessary condition for a successful 

TOCTTOU attack. 

 The proposition 1 follows from Definition 7.  If there is no violation of invariants, 

the sequence )( fOv  is a safe sequence, so there would be no TOCTTOU attack.  

Consequently, through the entire duration of )( fOv , we can prevent TOCTTOU attacks 

by preserving the invariant established by )( fOv and making the sequence a safe 

sequence. 

2.2.2.3. An Enumeration of TOCTTOU pairs 

 Definition 8: Consider an unsafe sequence of AbsFS operations 

)(),...,(),()( 21 fofofofO n= , where )()(
1

fresolvefresolve
ii oo +

≠ .  The two operations 

surrounding the violation of the original invariant (the last operation of the “Check” part 

and the first operation of the “Use” part), )( foi and )(1 foi+ , are called a TOCTTOU pair.   

 It is useful to identify the TOCTTOU pairs explicitly, since the combinations that 

yield such pairs are non-trivial but manageable.  The diagram in Figure 1 shows all the 

AbsFS operations and the two states in which a file may be.  On the left side of diagram 

is the non-existent state, denoted by ∅=)( fresolve  and on the right side of the diagram is 

the existent state, denoted by bfresolve =)( .   

 Let us consider first the non-existent state and the invariant ∅=)( fresolve .  The 

first term of a TOCTTOU pair is an operation that results in the non-existent state of f.  

From the state transition diagram in Figure 1, we see that two operations lead to the non-

existent state: {check, removal}.  The removal operation explicitly makes f non-existent, 
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while the check operation also ends in the non-existent state if it does not find the 

pathname mapping.  The second term of the TOCTTOU pair is an operation that starts 

from the invariant ∅=)( fresolve  (the non-existent state). The two operations that start 

from the non-existent state are: {check, creation}.  Therefore, the TOCTTOU pairs 

associated with the non-existent state are contained in the set produced by the Cartesian 

product of {check, removal}×{check, creation}.   

 While the Cartesian product contains all the TOCTTOU pairs, we will refine the 

second term, which corresponds to the “Use” part of the TOCTTOU pair.  For an attacker 

to exploit a TOCTTOU vulnerability for some gain (e.g., escalation of privileges), the 

victim must be tricked into doing something useful for the attacker in the “Use” part.  

Examples of useful actions are: (1) set or modify the status information of an existing file 

object (e.g. make /etc/passwd world-writable); (2) modify the runtime environment of the 

victim application (e.g. change the current directory); and (3) release the content of a 

sensitive file object (e.g. read the content of /etc/shadow into memory).  Since the check 

operation does not produce any useful results for the attacker, we define exploitable 

TOCTTOU pairs by eliminating the check operation from the second term of TOCTTOU 

pairs. 

 Now we consider the existent state of f, characterized by the invariant 

bfresolve =)( . The state transition diagram in Figure 1 shows that the set of operations 

that lead into the existent state is {creation, check, normal use}, and the set of operations 

that start from the existent state is {check, normal use, removal}.  So the TOCTTOU 

Table 2: Exploitable TOCTTOU pairs (AbsFS) 
Invariant TOCTTOU Pairs 

∅=)( fresolve  <check, creation> 
<removal, creation> 

bfresolve =)( <creation, normal use> 
<check, normal use> 
<normal use, normal use> 
<creation, removal> 
<check, removal> 
<normal use, removal> 
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pairs associated with this invariant are in the set {creation, check, normal use}×{check, 

normal use, removal}.  As a second term of the TOCTTOU pairs, check will not produce 

useful results for the attacker.  Consequently, we also eliminate check from the list of 

exploitable TOCTTOU pairs. 

 By deleting check from the second terms, the exploitable TOCTTOU pairs are 

{check, removal}×{creation} for the first invariant and {creation, check, normal 

use}×{normal use, removal} for the second invariant.  Since there are only two invariants 

in AbsFS, we have enumerated all the exploitable TOCTTOU pairs in Table 2. 

 Proposition 2: The enumeration of TOCTTOU pairs in Table 2 is complete, i.e., 

it contains all the exploitable TOCTTOU pairs in AbsFS. 

Proof: by construction we have enumerated all the exploitable TOCTTOU pairs in Table 

2.  There are only two invariants in the state diagram in Figure 1, and we have analyzed 

all the state transitions in Figure 1. 

2.2.2.4. Prevention of TOCTTOU Attacks 

 In the rest of this section, we will focus on the preservation of invariants across 

the exploitable TOCTTOU pairs.  This protection will be done in two steps.  First, we 

will maintain explicitly the invariant holder for each file object.  Second, for every file 

system operation that may change the invariant, we check whether the invoker of the 

operation is the holder.  The operation is allowed if it’s invoked by the holder.  It is 

disallowed if it belongs to another process/user. 

 In Figure 1, we described the state transitions of a file with a single process/user. 

Figure 2 shows the state transitions of a file under concurrent access by multiple 

processes/users.  Without loss of generality, we adopt the policy that the first process/user 

accessing the file object becomes the invariant holder.  (Intuitively, we consider the 

invariant as an exclusive lock.)  The goal of our protection mechanism is to reject any 

changes to the invariant except by the invariant holder.   
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Figure 2: The Enhanced State Transition Diagram with Two Users 

 The main difference between Figure 1 and Figure 2 is the addition of three states.  

Two of the states (on the top part of Figure 2) are due to the explicit representation of the 

cases of invariants with a holder (same as Figure 1) and without a holder (new states).  

These transitions are allowed, since the pathname is free and the invariant holder is not in 

competition with any other process/user.  The third new state is at the bottom of Figure 2, 

representing a potential attack since those transitions would change the invariant for the 

holder.  These transitions are rejected as an error. The original invariant holder maintains 

the hold on the invariant and the invariant remains unchanged. 

 The implementation of invariant holder lock relies on a lock table and maps the 

invariant holder id to the invariant across all TOCTTOU pairs.  Consider a TOCTTOU 

pair < 21,oo >.  When a process u accesses a pathname f through )(1 fo , u becomes the 

invariant holder, moving from the top states of Figure 2 to one of the middle states.  

(Note that all four AbsFS operations are allowed in this step.)  Our protection mechanism 

uses the lock table to remember this invariant/holder mapping.  The lock is released when 
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the invariant holder process ends. These state transitions are denoted as exit(u), in which 

case u releases the invariant. 

 While the pathname f is in one of the middle states, with invariant holder u, 

another process/user (u’) may attempt to change the invariant, which will result in 

“error”. Other operations that do not affect the invariant (e.g., check and normal use) are 

allowed, as shown in Figure 2.  Thus this mechanism implements the assumption 

required in Proposition 2 to protect the invariants across TOCTTOU pairs. 

 For practical purposes, we note that our protection mechanism does not require 

explicit request and release of invariant-related locks.  The management of invariant 

locks can be done automatically on behalf of applications.  Furthermore, the 

implementation can be simplified with the following proposition. 

 Proposition 3: Blocking the creation and removal of a file object f across a 

sequence )(),...,(),( 21 fofofo n  is sufficient to make the sequence safe. 

 By Definition 5, a sequence of execution )(),...,(),( 21 fofofo n  is safe if 

11, −≤≤∀ nii , )( fresolve  is an invariant between )( foi and )(1 foi+ . If we forbid any creation 

or removal of f across )(),...,(),( 21 fofofo n , we forbid creation or removal of f 

between )( foi and )(1 foi+ , and since creation and removal are the only operations that can 

change )( fresolve , )( fresolve  must be an invariant between )( foi and )(1 foi+ . So 

)(),...,(),( 21 fofofo n  is guaranteed to be a safe sequence of execution. 

 This proposition is the basis for the EDGI defense in Section 2.5. 

 Proposition 4: Making all exploitable TOCTTOU pairs safe is sufficient to make 

all file access sequences safe and prevent TOCTTOU attacks. 

 Proof: Proposition 3 shows the preservation of invariants through a file operation 

sequence suffices in making the sequence safe.  Proposition 2 shows that all exploitable 

TOCTTOU pairs have been enumerated.  Combining the two propositions we have the 
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assurance that making all file operation sequences safe (for each process/user) can 

prevent all TOCTTOU vulnerabilities from being exploited. 

2.2.3. Concrete File System Examples 

2.2.3.1. Exclusion of Careless File Attribute Settings 

 The AbsFS contains a simplified model of file system objects, with a very simple 

mapping of pathname to logical disk blocks, without any additional file system attributes 

such as access permission.  In concrete file systems, appropriate access control attributes 

need to be set to prevent trivial unauthorized file access.  For example, Unix files with 

world writable settings can be easily exploited by many kinds of attacks.  In our modeling 

and analysis of TOCTTOU attacks, we assume that appropriate file access control 

settings are being used by careful system administrators. 

2.2.3.2. Unix-Style File Systems 

 Table 2 gives a complete list of TOCTTOU pairs in AbsFS.  Now we map the 

AbsFS into Unix-style file systems.  The first observation in the mapping is that Unix-

style file systems have several kinds of file system objects: regular files, directories, and 

links.  The second observation is that the abstract operations of check, creation, normal 

use, and removal may be implemented by several system calls.  Therefore, we map these 

abstract operations into sets of system calls (CreationSet, NormalUseSet, RemovalSet 

and CheckSet) and divide these sets into operations on each kind of file system objects. 

CreationSet = FileCreationSet ∪ DirCreationSet ∪ LinkCreationSet 

NormalUseSet2 = FileNormalUseSet ∪ DirNormalUseSet 

                                                 

 
 
2 On Unix-style file systems, the normal use of a link (symbolic or hard) is actually on the regular file or directory that 
the link refers to, so we do not need to define a separate NormalUseSet for link. 
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RemovalSet = FileRemovalSet ∪ LinkRemovalSet ∪ DirRemovalSet 

CheckSet = FileCheckSet ∪ LinkCheckSet ∪ DirCheckSet 

Table 3: Enumeration of exploitable TOCTTOU pairs (Unix-Style file systems) 
Invariant Exploitable TOCTTOU Pairs 

∅=)( fresolve  

(FileCheckSet × FileCreationSet) ∪ (FileRemovalSet × 
FileCreationSet) ∪ 
(DirCheckSet × DirCreationSet) ∪ (DirRemovalSet × 
DirCreationSet) ∪ 
(LinkCheckSet × LinkCreationSet) ∪ (LinkRemovalSet × 
LinkCreationSet) 

bfresolve =)(  

(FileCheckSet × FileNormalUseSet) ∪ (FileCreationSet × 
FileNormalUseSet) ∪ (LinkCreationSet × FileNormalUseSet) ∪ 
(FileNormalUseSet × FileNormalUseSet)∪ 
(DirCheckSet × DirNormalUseSet) ∪ (DirCreationSet × 
DirNormalUseSet)  ∪ (LinkCreationSet × DirNormalUseSet) ∪ 
(DirNormalUseSet × DirNormalUseSet) 

  

 The third observation is that the removal operation in Unix-style file systems does 

not produce any useful results for the attacker. This is because in Unix-style file systems, 

under the assumption of careful file attribute settings (Section 2.2.3.1), there are only two 

ways for the attacker to make )()( tresolvefresolve =  in a TOCTTOU attack (t is an existing 

security sensitive file object such as /etc/passwd and f is the file object accessed by a 

TOCTTOU pair >< 21 , oo in the victim application): via symbolic link or hard link. If the 

attacker replaces f with a symbolic link to t, then the victim’s removal operation on f only 

removes f itself, but not t; If the attacker replaces f with a hard link to t, this will increase 

the number of hard links of t by 1, and when the victim performs the removal operation 

on f, it decreases the number of hard links of t by 1 (restores the original hard link 

number of t, but never decreases it). Since t is physically removed only when its hard link 

number becomes 0, given t’s initial hard link number is nonzero, the attacker can not 

cause t to be removed. 

 Thus for Unix-style file systems we can eliminate those TOCTTOU pairs with 

removal as the second term from Table 2.  The remaining AbsFS TOCTTOU pairs can be 
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mapped to Unix-style file systems as shown in Table 3. For an actual file system, we can 

map the actual file system calls to these sets to obtain the concrete TOCTTOU pairs. 

 

Figure 3: POSIX File Operations 
 

Figure 4: Linux File Operations 

2.2.3.3. Study of POSIX and Linux 

 We focus on POSIX [30] and Linux as representative examples of Unix-style file 

systems with TOCTTOU vulnerabilities.  We believe the same mapping can be done with 

the other flavors of Unix file systems.  The POSIX mapping is shown in Figure 3 and the 

Linux mapping is shown in Figure 4. Compare Figure 4 to Figure 3 we can see that the 

sets are almost the same due to the fact that Linux is POSIX-compliant. We do see some 

discrepancy though, notably the FileNormalUseSet. For example, POSIX has 6 different 

system calls on executing a program (execl, execle, execlp, execv, execve, execvp), but 

Linux only has one (execve). A closer look at the Linux implementation reveals that 

Linux implements only execve as a system call and uses library calls to implement the 

remaining 5 POSIX interfaces, which are different wrappers on top of this basic system 

call. 

FileCreationSet = {creat, open, mknod, 
rename} 
DirCreationSet = {mkdir, rename} 
LinkCreationSet = {link, symlink, 
rename} 
FileNormalUseSet = {chmod, chown, 
truncate, utime, open, execve} 
DirNormalUseSet = {chmod, chown, 
utime, mount, chdir, chroot, pivot_root} 
FileRemovalSet = {unlink, rename} 
DirRemovalSet = {rmdir, rename} 
LinkRemovalSet = {unlink, rename} 
FileCheckSet = {stat, access} 
DirCheckSet = {stat, access} 
LinkCheckSet = {stat, access} 

FileCreationSet = {creat, open, mknod, mkfifo, 
rename} 
DirCreationSet = {mkdir, rename} 
LinkCreationSet = {link, symlink, rename} 
FileNormalUseSet = {chmod, chown, truncate, 
utime, open, fopen, fdopen, popen, execl, execle, 
execlp, execv, execve, execvp, pathconf} 
DirNormalUseSet = {chmod, chown, utime, 
chdir, pathconf} 
FileRemovalSet = {remove, unlink, rename} 
DirRemovalSet = {remove, rmdir, rename} 
LinkRemovalSet = {remove, unlink, rename} 
FileCheckSet = {access, stat} 
DirCheckSet = {access, stat} 
LinkCheckSet = {lstat, readlink} 
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 Applying the mapping of Figure 3 to the mapping in Table 3, we have identified 

485 exploitable TOCTTOU pairs for POSIX. Similarly, by applying Figure 4 to the 

mapping in Table 3, we get 224 exploitable TOCTTOU pairs for Linux   

 Proposition 5: If the classification of a concrete file system’s operations is 

complete, then the enumeration of exploitable TOCTTOU pairs is complete for the 

concrete file system.  By complete we mean the classification contains all the concrete 

file system calls that operate on file objects, and all the concrete file system calls are 

classified into check, creation, normal use, and removal functions on the file objects.  

(File system calls that have multiple functions appear in multiple categories.) 

 Proof: The Proposition 2 guarantees the completeness of exploitable TOCTTOU 

pairs for the AbsFS.  Assuming that we have exhaustively analyzed the concrete file 

system calls and classified them, Proposition 5 follows from Proposition 2. 

 By exhaustively analyzing the POSIX file system calls (Figure 3), we can apply 

Proposition 5 to the enumeration of exploitable TOCTTOU pairs based on Table 3 and 

Figure 3 and conclude that we have enumerated all the exploitable TOCTTOU pairs in 

POSIX.  Analogously, we apply Proposition 5 to the enumeration of exploitable 

TOCTTOU pairs in Linux, based on Table 3 and Figure 4, and the result is in Table 28 of 

the Appendix. 

2.2.3.4. Example of TOCTTOU Attacks 

 We have studied some real world programs with known TOCTTOU 

vulnerabilities on Unix-style systems. The results are shown in Table 4. For example, in 

sendmail, the TOCTTOU vulnerability is a <stat, open> pair, the invariant is 

bumboxresolve =)( , and the attack is first removing umbox and second creating a 

symbolic link under the name umbox. 

 Logwatch Vulnerability.  logwatch is an open-source script for monitoring log 

files in Linux.  logwatch 2.1.1 running as root was reported [52] to allow a local attacker 
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to gain elevated privileges, e.g., write access to /etc/passwd.  This attack consists of the 

following steps: 

1) Get the running process ID {pid} of logwatch; 

2) Create a temporary directory named /tmp/logwatch.{pid}; 

3) Create a symbolic link with a specific name in the temporary directory, which 

points to /etc/log.d/scripts/logfiles/samba/`cd etc;chmod 666 passwd #` 

4) Wait for logwatch to use the temporary symbolic link.  Although logwatch 

only opens it for writing, the tricky file name causes the shell to execute it as a 

command line later. 

Table 4: Some existing TOCTTOU vulnerabilities on Unix-style systems 
Applications TOCTTOU pair Classification and Invariant 
BitKeeper, Cscope 15.5, CUPS, 
getmail 4.2.0, glint, Kerberos 4, 
openldap, OpenOffice 1.0.1, 
patchadd, procmail, samba, 
Xinetd 

<stat, open> FileCheckSet ×  FileCreationSet 
∅=)( fresolve  

Rational ClearCase, pppd <stat, chmod> FileCheckSet × FileNormalUseSet 
bfresolve =)(Sendmail <stat, open> 

logwatch 2.1.1 <stat, mkdir> DirCheckSet × DirCreationSet 
∅=)( fresolve

bzip2-1.0.1, gzip, SAP <open, chmod> FileCreationSet × FileNormalUseSet
bfresolve =)(  Mac OS X 10.4 – launchd <open, chown> 

StarOffice 5.2 <mkdir, chmod> DirCreationSet × DirNormalUseSet 
bfresolve =)(

 

 The TOCTTOU pair in logwatch is <stat, mkdir>. logwatch first checks whether 

the directory /tmp/logwatch.{pid} exists (stat) before creating it. However, an attacker 

may create that directory (as shown above) between the stat and mkdir system calls.  In 

this case, logwatch’s mkdir fails, but since logwatch does not check the return value of 

its mkdir, it continues blindly and uses the temporary directory.  The invariant in 

logwatch is ∅=)(tmpdirresolve  and the attack is a creation operation (mkdir) by the 

attacker. (Here the tmpdir is /tmp/logwatch.{pid}) 



 23

 Table 4 summarizes the TOCTTOU pairs and their associated invariants for a 

number of known TOCTTOU vulnerabilities. 

2.3. Detection of TOCTTOU Vulnerabilities 

 In this part of the dissertation, we implement CUU model-based software tools 

that systematically search for potential TOCTTOU vulnerabilities in Linux system utility 

programs. They are able to detect previously reported TOCTTOU vulnerabilities as well 

as finding some unknown ones (e.g., in the rpm software distribution program, the vi/vim 

and emacs editors).  We conduct a detailed experimental study of successfully exploiting 

these vulnerabilities and analyze the significant events during a TOCTTOU attack against 

the native binaries of rpm and vi.  By repeating the experiments, we also evaluate the 

probability of these events happening, as well as the success rate of these non-

deterministic TOCTTOU attacks. These analyses provide a quantitatively better 

understanding of TOCTTOU attacks.  

2.3.1. Model-Based TOCTTOU Detection 

2.3.1.1. Components of Practical Attacks 

 An actual TOCTTOU vulnerability consists of a victim program containing a 

TOCTTOU pair (described in Section 2.2.2.3) and an attacker program trying to take 

advantage of the potential race condition introduced by the TOCTTOU pair.  The attacker 

program attempts to access or modify the file being manipulated by the victim through 

shared access during the vulnerability window between the “Check” call and the “Use” 

call.  For example, by adding a line to an unintentionally shared script file in the rpm 

attack (Section 2.3.2.2), the attacker can trick the victim into executing unintended code 

at a higher privilege level (root). In general, we say that a TOCTTOU attack is profitable 

if the victim is running at a higher level of privilege. In Unix-style OSs, this means the 

victim running as root and the attacker as normal user.   
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 An important observation is that even though the victim is running at a higher 

level of privilege, the attacker must have sufficient privileges to operate on the shared file 

attributes, e.g., creation or deletion. This observation narrows the scope of potential 

TOCTTOU vulnerabilities. Table 5 shows a list of directories owned by root in Linux. 

Since normal users cannot change the attributes or content of files in these directories, 

these files are safe. 

Table 5: Directories immune to TOCTTOU 
/bin 
/boot 
/dev 
/etc 
/lib 
/misc 
/mnt 
/opt 

/root 
/proc 
/sbin 
/usr/bin 
/usr/etc 
/usr/include 
/usr/lib 

/usr/dict 
/usr/kerberos 
/usr/libexec 
/usr/sbin 
/usr/src 
/usr/X11R6 
/var/cache 

/var/db 
/var/empty 
/var/ftp 
/var/lock 
/var/log 
/var/lib 
/var/run 

 

2.3.1.2. CUU Model-Based Detection Tools 

 Based on the CUU model, we design a software framework and implement 

software tools to detect actual TOCTTOU vulnerabilities in Linux.  Figure 5 shows the 

four components of our detection framework, based on dynamic monitoring of system 

calls made by sensitive applications (e.g., those that execute with root privileges).  The 

first component of our framework is a set of plug-in Sensor code in the kernel, placed in 

file-related system calls such as those in Figure 4.  These Sensors record the system call 

name and its arguments, particularly file name (full path for unique identification 

purposes). For some system calls, other related arguments are also recorded to assist in 

later analysis, e.g., the mode value of chmod(path, mode).  Some environmental variables 

are also recorded, including process id, name of the application, user id, group id, 

effective user id, and effective group id.  This information will be used in the analysis to 

determine if a TOCTTOU pair can be exploited. We do not use standard Linux trace 

facilities such as strace for two reasons: First, strace does not output full pathname for 
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files referred to using relative pathnames; second, strace does not give enough 

environmental information such as effective user id. 

 
Figure 5: Framework for TOCTTOU detection 

 The Sensors component also carries out a preliminary filtering of their log. 

Specifically, they identify the system calls on files under the system directories listed in 

Table 5 and filter them out, since those files are immune to TOCTTOU attacks.  After 

this filter, remaining potentially vulnerable system calls are recorded in a circular FIFO 

ring buffer by printk. 

 The second component of our framework is the Collector, which periodically 

empties the ring buffer (before it fills up).  The current implementation of the Collector is 

a Linux daemon that transforms the log records into an XML format and writes the 

output to a log file for both online and offline analysis. 

 The third component of our framework is the Analyzer, which looks for 

TOCTTOU pairs (listed in Table 3) that refer to the same file pathname.  For offline 

analysis, this correlation is currently done using XSLT (eXtensible Stylesheet Language 

Transformations) templates.  This analysis proceeds in several rounds as follows. 
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 Round 1: First, the Analyzer sorts the log records by file name, grouping its 

operation records such as the names and locations (sequence numbers) of system calls. 

 Round 2: Second, system calls on each file are paired to facilitate the matching of 

TOCTTOU pairs. 

 Round 3: Third, system call pairs are compared to the list in Table 3. When a 

TOCTTOU pair is found, an XSLT template is generated to extract the corresponding log 

records from the original log file.  

 Round 4: Fourth, the log records related to TOCTTOU pairs found are extracted 

into a new file for further inspection.  

 The fourth component of our framework is the Inspector, which identifies the 

actual TOCTTOU vulnerability in the program being monitored.  The Inspector links the 

TOCTTOU pair with associated environmental information, including file pathname, 

related arguments, process id, program name, user id, group id, effective user id, and 

effective group id. The Inspector decides whether an actual exploitation can occur.  

 For each TOCTTOU pair, the Inspector does the following steps: 

 Check the arguments of the calls to see if these calls can be profitable to an 

attacker. For example, if the “Use” call is chmod, then a value of 0666 for the 

mode argument falls into this category because this chmod can be used to make 

/etc/passwd world-writable. On the other hand, a mode value of 0600 is not 

profitable because it will not give the attacker any permission on a file that 

he/she does not own. In this case the TOCTTOU pair in question is not a 

TOCTTOU vulnerability. 

 Check the file pathname. For the chmod example, if the file is stored under a 

directory writable by an ordinary user, like his/her home directory, then 

continue to the next step; otherwise the TOCTTOU pair is not a TOCTTOU 

vulnerability. 
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 Check the effective user id. Continuing with the chmod example, if the 

effective user id is 0 (root), then report this TOCTTOU pair as a vulnerability; 

otherwise, the TOCTTOU pair is not a vulnerability. 

 It should be noted that the steps described above give only an outline of the 

Inspection process based on one attack scenario for one particular TOCTTOU pair. For 

different TOCTTOU pair and different attack scenario, the details of these checks can be 

different. For example, the same TOCTTOU pair as the above with a mode value of 0644 

and the same other conditions is also considered a vulnerability because it can be 

exploited to make /etc/shadow readable by an attacker. Thus the Inspector requires a 

template (or signature) for each kind of attack scenario. Table 6 shows the set of 

templates used by the current implementation of the Inspector. For brevity, this table does 

not show the file pathname and effective user id which are checked in every template. 

This set may be expanded as new attack scenarios are found. 

Table 6: Templates used in the Inspector 

“Use” call Arguments to check Sample attack scenarios 
chmod mode Gain unauthorized access rights to 

/etc/passwd 
chown owner, group Change the ownership of /etc/passwd 
chroot  Access information under a restricted 

directory 
execve  Run arbitrary code 
open mode, flag Mislead privileged programs to do things for 

the attacker, or steal sensitive information 
truncate length Erase the content of /etc/passwd 

 

2.3.2. Analysis of Real TOCTTOU Attacks 

2.3.2.1. Experimental Setup 

 We applied our detection framework and tools to find previously unreported 

TOCTTOU vulnerabilities in Linux.  Although the CUU model describes all the 

TOCTTOU pairs in Linux file systems, it is impractical to test all the execution paths of 
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all the system software (or even a single program of any complexity).  Our intent is to 

learn as much as possible about real TOCTTOU vulnerabilities through a detailed 

analysis.  The experiments show that significant weaknesses can be found relatively 

easily using our framework and tools. 

 From the discussion in Section 2.3.1.1, we focus our attention on system software 

programs that use file system (outside the directories listed in Table 5) as a root. Each 

program chosen is downloaded, installed, configured, and deployed.  Furthermore, we 

also build a testing environment which includes the design and generation of a 

representative workload for each application, plus the analysis of TOCTTOU pairs 

observed.  Although this is a laborious process that requires high expertise, one could 

imagine incorporating such testing environments into the software release of system 

programs, facilitating future evaluations and experiments. 

 Our tools were implemented on Red Hat 9 Linux (kernel 2.4.20) to find 

TOCTTOU vulnerabilities in about 130 commonly used utility programs. The script-

based experiments consist of about 400 lines of shell script for 70 programs in /bin and 

/sbin.  This script takes about 270 seconds to gather approximately 310K bytes of system 

call and event information. The other 60 programs were run manually using an interactive 

interface.  From this sample of Linux system utilities, we found five potential TOCTTOU 

vulnerabilities (see Table 7). 

 The experiments were run on an Intel P4 (2.26GHz) laptop with 256M memory. 

The Collector produces an event log at the rate of 650 bytes/sec when the system is idle 

(only background tasks such as daemons are running), 11KB/sec during the peak time a 

large application such as OpenOffice is started, and 2KB/sec on average. The Analyzer 

processes the log at the speed of 4KB/sec. 

 From the list in Table 7, we wrote simple attack programs that confirmed the 

TOCTTOU vulnerabilities in rpm, emacs and vi.  We discuss the attack on rpm and vi in 
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detail (Sections 2.3.2.2 and 2.3.2.3, respectively), and outline the others in Section 

2.3.2.4. 

Table 7: Potential TOCTTOU vulnerabilities 
Application TOCTTOU errors Possible exploit 
vi <open, chown> Changing the owner of /etc/passwd to an 

ordinary user 
rpm <open, open> Running arbitrary command 
emacs <open,chmod> Making /etc/shadow readable by an 

ordinary user 
gedit <rename, chown> Changing the owner of /etc/passwd to an 

ordinary user 
esd (Enlightened 
Sound Daemon) 

<mkdir, chmod> Gaining full access to another user’s 
home directory 

2.3.2.2. rpm 4.2 Temporary File Vulnerability 

 rpm is a popular software management tool for  installing,  uninstalling,  

verifying,  querying, and  updating software packages in Linux. When rpm installs or 

removes a software package, it creates a temporary script file in directories such as 

/var/tmp or /var/local/tmp. This shell script is used to install or remove help 

documentation of the software package.  Since the access mode of this file is set to 666 

(world-writable), an attacker can insert arbitrary commands into this script. Given the 

privileges required for installing software (usually root), this is a significant vulnerability.  

The TOCTTOU pair involved is <open, open>: the first open creates the script file for 

writing the script; and the second open is called in a child process to read and execute the 

script. 

2.3.2.2.1 Baseline Analysis of rpm 

 In our evaluation of the TOCTTOU vulnerability in rpm, we start by measuring 

the total running time of rpm (denoted by t) and the window of vulnerability (the time 

interval between the two opens, denoted by v).  We ran rpm (as root) 100 times, 

alternatively installing and uninstalling a package named sharutils-4.2.1-14.i386.rpm, 

and measured t and v for each invocation.  From Table 8 we can see that the window of 
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vulnerability is relatively narrow (less than 5%), since the two opens are separated only 

by a few milliseconds. 

Table 8: Baseline vulnerability of rpm 
Package Operation Install (rpm -i) Uninstall (rpm -e) 

Average Stdev Average Stdev 
t  (μsec) 125,188 9,930 110,571 10,961
v (μsec) 5,053 20 4,218 102

v/t 4.1% --- 3.8% --- 

2.3.2.2.2 An Experiment to Exploit rpm 

 The second part of our evaluation is to measure the effectiveness of an attack 

trying to exploit this apparently small window of vulnerability.  This experiment runs a 

user-level attack process in a loop.  It constantly checks for the existence of a file name 

with the prefix “/var/tmp/rpm-tmp”. A victim process (rpm run by root) installs a 

software package and creates a script file of that name.  Note that rpm inserts a random 

suffix as protection against direct guessing, but a directory listing command bypasses the 

need to guess the full pathname.  If a file name of the expected prefix appears, the 

attacker appends the command “chown attacker:attacker /etc/passwd” to it.  If the append 

happens during the window of vulnerability, then the child process of rpm will execute 

the script and the inserted command line, making the attacker the owner of /etc/passwd.  

When rpm finishes, the test program checks whether the attacker has become the owner 

of /etc/passwd. 

 Due to the non-deterministic nature of these experiments, we ran the experiment 

100 times in a batch. After running several batches, we found a surprisingly high average 

number of 85 successful attacks per batch, considering the apparently narrow window of 

vulnerability shown in Table 8. 

2.3.2.2.3 Event Analysis of rpm Exploit 

 To fully understand what happened during the TOCTTOU attack, we analyze the 

important system events during the experiment. Figure 6 shows the events in a successful 
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exploit of rpm.  In Figure 6, the dark (upper) line shows the events of the rpm process, 

and the lower line shows the events of the attacker process.  The attacker process stays in 

a loop looking for file names of interest.  When the rpm process creates the file (just 

before the 200 msec clock tick), the attacker detects it and appends the chown line to the 

temporary script and goes back to the loop.   

 
Figure 6: Event Analysis of rpm Exploit 

 

 The two timelines show that even though the CPU consumption during the 

window of vulnerability is relatively small, the rpm process causes interrupts that 

lengthen the window, represented by dotted upper line. Specifically, there are at least two 

scheduling actions within the rpm vulnerability window: rpm creates a new process to 

execute bash, which creates another new process to execute an external executable file 

(/sbin/install-info).  Each process creation causes rpm to yield CPU to the scheduler.  

Figure 6 shows that the attacker process is scheduled as a result and the attack succeeds.  
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Consequently, the two scheduling actions created by rpm make the attack more likely to 

succeed because rpm yields the CPU in the window of vulnerability. 

 In our experiments, we also found another reason more attacks succeed than 

indicated by the short window of vulnerability.  Specifically, we observed that in some 

cases the appending to the script file by the attacker happened after the second open of 

rpm (outside the window), but the attack still succeeds. In these cases, we believe that 

append started after bash opened the script file (the second open of rpm), but it finished 

before bash reached the end of the script.  Since bash interprets the script line by line, 

there is a good chance of executing the newly appended line. These two explanations 

(CPU yielding and slow interpretation of the script) help explain the lengthening of the 

window of vulnerability and the high attack success rate of 85%. 

2.3.2.3. vi 6.1 Vulnerability 

 The Unix “visual editor” vi is a widely used text editor in many UNIX-style 

environments.  For example, Red Hat Linux distribution includes vi 6.1.  Using our tools, 

we found potential TOCTTOU vulnerabilities in vi 6.1.  Specifically, if vi is run by root 

to edit a file owned by a normal user, then the normal user may become the owner of 

sensitive files such as /etc/passwd. 

while ((fd = mch_open((char *)wfname, …) 
…… 
chown((char*)wfname, st_old.st_uid, 
st_old.st_gid); 

(a) 

if (rename (temp_filename, real_filename) != 0) 
{ … } 
chmod (real_filename, st.st_mode); 
chown (real_filename, st.st_uid, st.st_gid); 

(b) 
Figure 7: (a) vi 6.1 vulnerability (fileio.c), (b) gedit 2.8.3 vulnerability (gedit-document.c) 
 
 The problem can be summarized as follows.  When vi saves the file being edited, 

it first renames the original file to a backup, then creates a new file under the original 

name (wfname in Figure 7(a)). The new file is closed after all the content in the edit 

buffer has been written to it. If vi is running as root, the initial owner and group of this 

new file is root, so vi needs to change the owner and group of the new file to its original 
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owner and group.  This forms an <open, chown> window of vulnerability every time vi 

saves the file (Figure 7(a)).  During this window, if the file name can be changed to a 

link to /etc/passwd, then vi can be tricked into changing the ownership of /etc/passwd to 

the normal user. 
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2.3.2.3.1 Baseline Analysis of vi 

 Using the same method of the rpm study, we measured the percentage of time 

when vi is running in its vulnerability window as it saves the file being edited. In vi, this 

depends on the edited file size.  In our experiments, we bypass the user typing time to 

avoid the variations caused by human participation. 

 We define the save window t as the time vi spends in processing one “save” 

command, and the vulnerability window v during which TOCTTOU attack may happen.  

We measured 60 consecutive “saves” of the file for t, and timestamp the open and chown 

system calls for v.  Since the “save” time of a file depends on the file size, we did a set of 

experiments on different file sizes.  Figure 8 shows the time required for a “save” 

command for files of sizes from 100KB to 10MB.  We found a per file fixed cost that 

takes about 14msec for the small (100KB) file and an incremental cost of 9msec/MB (for 

files of size up to 10MB). 
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 Since chown happens after the file is completed, the window of vulnerability v 

follows approximately the same incremental growth of 9msec/MB (see Figure 8).  Figure 

9 shows the window of vulnerability to be relatively long compared to the total “save” 

time.  It gradually grows to about 80% of the “save” total elapsed time for 10MB files.  

This experiment tells us that vi is more vulnerable when the file being edited is larger.  

For a small file (100KB size) the window of vulnerability is still about 5% of the “save” 

time.  

 
Figure 10: A program to attack vi 

2.3.2.3.2 An Experiment to Exploit vi 

 Unlike a batch program such as rpm, which is easily run from a script, vi is 

designed for interactive use by humans. To eliminate the influence of human “think time” 

in the experiments, we wrote another program to interact with vi by sending it commands 

that simulate human typing.  This reduces the runtime and the window of vulnerability to 

minimum.  The experiment runs a vi (as root) editing a file owned by the attacker in the 

attacker’s home directory.  The editing consists of either appending or deleting a line 

from the file and the experiment ends with vi exiting.  

 The attack (Figure 10) consists of a tight loop constantly checking (by stat-ing) 

whether the owner of the file has become root, which signifies the start of the window of 

vulnerability. Once this happens, the attacker replaces the file with a symbolic link to 

/etc/passwd (as shown in Figure 10 and Figure 11).  When vi exits, it should change the 

1  while (!finish){ 
2     if (stat(wfname, &stbuf) == 0){ 
3        if ((stbuf.st_uid == 0) && (stbuf.st_gid == 0)) 
4          {    
5               unlink(wfname); 
6               symlink(“/etc/passwd”, wfname); 
7               finish = 1; 
8          } 
9     } 
10 } 
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ownership of /etc/passwd to the attacker. If vi finishes and /etc/passwd is still owned by 

root, the attack fails. 

 Contrary to the surprisingly high probability of success in the rpm case, we found 

a relatively low probability of success in the vi case (see Figure 12 and Figure 13), 

despite a relatively wide window of vulnerability.  This leads to a more careful analysis 

of the system events during the attack. 

 
Figure 11: Event Analysis of the vi Exploit 

2.3.2.3.3 Event Analysis of vi Exploit 

 Although the window of vulnerability may be wide, an attack will succeed only 

when: 

1. vi has called open to create the new file, 

2. vi has not called chown, 

3. vi relinquishes CPU, voluntarily or involuntarily, and the attacker is scheduled 

to run, and 

4. the attacker process finishes the file redirection during this run. 
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 The first two conditions have been studied in the baseline experiment.  The fourth 

condition depends on the implementation of the attacker program.  For example, if the 

attacker program is written in C instead of shell script, it will be less likely to be 

interrupted. 

 The third condition is the least predictable.  In our experiments, we have found 

several reasons for vi to relinquish CPU.  First, vi may suspend itself to wait for I/O. This 

is likely since the window of vulnerability includes the writing of the content of the file, 

which may result in disk operations. Second, vi may use up its CPU slice. Third, vi may 

be preempted by higher priority processes such as ntpd, kswapd, and bdflush kernel 

threads. Even after vi relinquishes CPU, the second part of the condition (that the attacker 

process is scheduled to run) still depends on other processes not being ready to run.   

 This analysis illustrates the highly non-deterministic nature of a TOCTTOU 

attack.  To achieve a statistically meaningful evaluation, we repeat the experiments and 

compute the probability of attack success.  To make the experimental results 

reproducible, we eliminated all the confounding factors that we have identified.  For 

example, in each round of experiments, we ran vi at least 50 times, each time on a 

different file, to minimize file caching effects.  We also observed memory allocation 

problems after large files have been used.  To relieve memory pressure, we added a 2-

second delay between successive vi invocations. 
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 Figure 12 shows the success rate for file sizes ranging from 100KB to 1MB 

averaged over 500 rounds. We see that for small files, there is a rough correlation 

between the size of window of vulnerability and success rate.  Although not strictly 

linear, the larger the file being edited, the higher the probability of successfully attacking 

vi. 

 Figure 13 shows the results for file sizes ranging from 2MB to 4MB, with a 

stepping size of 20KB, averaged over 100 rounds.  Unlike the dominantly increasing 

success rate for small file sizes, we found apparently random fluctuations on success rates 

between file sizes of 2MB and 3MB, probably due to race conditions.  For example, files 

of size 2MB have success rate of 4%, which is lower than the 8% success rate of file size 

500KB in Figure 12.  The growing success trend resumes after files become larger than 

3MB. 

2.3.2.4. Other Vulnerabilities 

 In our experiments, we identified 5 TOCTTOU pairs (see Table 7) and confirmed 

3 of them through direct attacks (rpm, vi, and emacs). Due to its similarity to the vi 

experiments (Section 2.3.2.3), the analysis of the attack of emacs is omitted here.   

 We also tried to attack gedit, the fourth vulnerability discovered. gedit [25] is a 

text editor for the GNOME desktop environment, and version 2.8.3 of gedit has a 

<rename, chown> TOCTTOU vulnerability (See Figure 7(b)). Like vi, gedit becomes 

vulnerable when it is run by root to edit a file (real_filename) owned by a normal user 

(also the attacker), and it saves the file.  Unlike vi, gedit writes to a temporary scratch 

file, then renames the scratch file to the original file name, and calls chown. Thus the 

window of vulnerability is between the rename and the directly following chown, a very 

short time that reduces the probability of successful attack. Not surprisingly, our attack 

experiment (using the program in Figure 14) found no success on a uniprocessor.  
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However, as we will discuss in more detail in section 2.4.4, this is not the case once gedit 

is running on multiprocessors. 

 The fifth vulnerability is the Enlightened Sound Daemon (esd), which creates a 

directory /tmp/.esd and then changes the access mode of this directory to 777, giving full 

permissions (read/write/execute) to all users. Besides, this directory is under /tmp, a place 

where any user can create files or directories. So a possible attack is to create a symbolic 

link /tmp/.esd before the mkdir call of esd and let the link point to some directories 

owned by the running user (such as his/her home directory). If esd does not check 

whether its mkdir call succeeds, then it will change the access mode of the running 

user’s home directory to 777. Then an attacker has full access to the running user’s home 

directory.  We postponed our experiments on esd since this TOCTTOU vulnerability has 

been reported in BUGTRAQ [12]. 

 
Figure 14: gedit attack program version 1 

 Overall, we consider the CUU model-based detection framework to be a success.  

With a modest number of experiments, we confirmed known TOCTTOU vulnerabilities 

and found several previously unreported ones.  However, this offline analysis only covers 

the execution paths exercised by the workloads, so it cannot guarantee the absence of 

TOCTTOU vulnerabilities when none is reported. 

2.3.3. Evaluation of Detection Method 

2.3.3.1. Discussion of False Negatives 

1  while (!finish){ 
2     if (stat(real_filename, &stbuf) == 0){ 
3        if ((stbuf.st_uid == 0) && (stbuf.st_gid == 0)) 
4          {    
5               unlink(real_filename); 
6               symlink(“/etc/passwd”, real_filename); 
7               finish = 1; 
8          } 
9     } 
10 } 
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 As mentioned in Section 2.3.2.1, our tools are not designed for exhaustive testing. 

While we attempted to generate representative workloads for the 130 programs tested, we 

cannot guarantee coverage of all execution paths.  The coverage problem may be 

alleviated by improvements in the testing technology and documentation. 

 More fundamentally, the CUU-Model covers pairs of file system calls, assuming 

that a precondition is established by the “Check” call before the “Use” call relies on it.  In 

programs where preconditions are not explicitly established (a bad programming 

practice), e.g., a program creates a temporary file under a known name without first stat-

ing the existence of the file, exploits may happen outside the CUU model.  The problem 

of complex interactions among more than a pair of system calls is an open research 

question.  (Currently, there are no known examples of such complex vulnerabilities.) 

2.3.3.2. Discussion of False Positives 

 Tool-based detection of vulnerabilities typically does not achieve 100% precision.  

The framework described in Section 2.3.1 is no exception.  There are some technical 

sources of false positives: 

1. Incomplete knowledge of search space: The list of immune directories (Table 5) is 

not complete because of the dynamic changes to system state (e.g. newly created 

root-owned directories under /usr/local), which leads to false positives. 

2. Artifacts of test environment: If the test cases themselves uses /tmp or the home 

directory of an ordinary user, our tools have to report related TOCTTOU pairs, which 

are false positives. For example, the initial test case for cpio uses a temporary 

directory /tmp/cpio, so the tools reported a <stat, chdir> on this directory. 

3. Coincidental events: Because our tools do system-wide monitoring, they capture file 

system calls made by every process. Sometimes two unrelated processes happen to 

make system calls on the same file that appear to be a TOCTTOU pair. 
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4. Incomplete knowledge of application domain: Not every TOCTTOU pair is profitably 

exploitable. For example, the application rpm invoked by “--addsign” option contains 

a <stat, open> pair, which can open any file in the system for reading, such as 

/etc/shadow. However, rpm can not process /etc/shadow because it is not in the 

format recognizable by rpm. So it is unlikely that this pair can be exploited to 

undermine a system. 

 By improving the kernel filter (source 1), re-designing test cases (source 2), and 

reducing concurrent activities (source 3), we reduced the false positive of our tools; for 

example, in one experiment testing 33 Linux programs under /bin, the false positive rate 

fell from 75% to 27%.  However, source 4 is hard to remove due to the differences 

among application domains. 

2.3.3.3. Overhead Measurements 

 To evaluate the overhead of our detection framework, we ran a variant of the 

Andrew benchmark [28].  The benchmark consists of five stages. First, it uses mkdir to 

recursively create 110 directories. Second, it copies 744 files with a total size of 12MB. 

Third, it stats 1715 files and directories. Fourth, it greps (scan through) these files and 

directories, reading a total amount of 26M bytes. Fifth, it does a compilation of around 

150 source files. For every stage, the total running time is calculated and recorded. We 

run this benchmark for 20 rounds and get the average. To mitigate the interference from 

other processes during the run, we start Red Hat Linux in single-user mode (without X 

window system and daemon processes such as apmd, crond, cardmgr, syslogd, gpm, cups 

and sendmail). To get an estimation of the overhead of our system, we run this 

experiment on a Linux box without modifications to get the baseline results, and then a 

Linux box with our monitoring tools (without the Analyzer and the Inspector which are 

used offline). For the latter case, we ran the experiment under two different directories to 
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see the influence of file pathname to the overhead. The total running time of these five 

stages for the experiments is shown in Figure 15 and Table 9. 

Table 9: Andrew Benchmark Results (msec) 

Functions 
 
 

Original 
Linux 

 

Modified Linux 
Immune Dir 

Modified Linux 
Vulnerable Dir 

Time Overhead Time Overhead 
mkdir 2.8

±0.06
3.0

±0.10 7.1%
4.1 

±0.05 46%
copy 59.2

±0.49
64.8
±2.2 9.5%

80.8 
±0.46 36%

stat 61.1
±0.55

69.4
±0.41 14%

149.3 
±3.5 144%

grep 543.1
±2.4

576.2
±5.9 6.1%

645.3 
±3.7 19%

compile 20,668
±66

20,959
±90 1.4%

21,311 
±195 3.1%

 

 

Figure 15: Andrew Benchmark Results 

 The results show a relatively higher overhead for mkdir, copy and stat when the 

benchmark is run under an ordinary user’s home directory (denoted Vulnerable Dir in 

Figure 15 and Table 9). But when the benchmark is run under /root  (denoted Immune 

Dir in Figure 15 and Table 9), the overhead becomes much lower (dropping from 144% 

to 14% for stat). This difference shows that printks in the kernel and the Collector 

daemon process contribute significantly to the overhead, because the filter in kernel 

suppresses most log messages caused by the benchmark when it runs in a directory 
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immune to TOCTTOU (Table 5), therefore the printks and Collector have much less 

work to do. The other source of overhead comes from the Sensor (including the filter and 

a query of the internal /proc file system data structure to map a process id to the complete 

command line to assist the Inspector). However, the overhead of our detection tools is 

amortized by application workload, as shown for compilation. 

 PostMark benchmark [43] is designed to create a large pool of continually 

changing files and to measure the transaction rates for a workload approximating a large 

Internet electronic mail server. Since mail server software such as sendmail had well 

known TOCTTOU problems, PostMark seems to be another representative workload to 

evaluate the performance overhead of our software tools.  

 When PostMark benchmark is running, it first tests the speed of creating new 

files, and the files have variable lengths that are configurable. Then it tests the speed of 

transactions. Each transaction has a pair of smaller transactions, which are either 

read/append or create/delete. 

 On the original Linux kernel the running time of this benchmark is 30 seconds. 

On our modified kernel, with all the same parameter settings, the running time is 30.35 

seconds when the experiment is run under /root (an immune directory), and 35 seconds 

when the experiment is run under a vulnerable directory. So the overhead is 1.17% and 

16.7% for these two cases, respectively. This result also shows that the printks and the 

Collector contribute significantly to the overhead. 

2.4. Probabilistic Analysis of TOCTTOU Attacks 

 Traditionally, attacks exploiting race conditions such as TOCTTOU have been 

condidered rare and “low risk”. Our TOCTTOU attack experiments against vi on 

uniprocessors (Section 2.3.2.3) seem to support this belief.  However, one major reason 

for the low attack success rate is that the CPU is a bottleneck – the attacker simply cannot 

get a chance to run.  Once the CPU is no longer the bottleneck, the situation may change.  
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For example, a multiprocessor will give the attacker the option of running on a dedicated 

processor and actively seeking attack opportunities. So the attacker may achieve a higher 

rate of success on a multiprocessor. 

 In this section, we present a probabilistic analysis of TOCTTOU attacks taking 

multiprocessors into account. We first propose a probabilistic model which shows that 

multiprocessors increase the success rate of TOCTTOU attacks, especially when the 

victim program is rarely suspended in the vulnerability window. Then we perform a 

detailed experimental and event analysis of TOCTTOU attacks on multiprocessors, to 

confirm the applicability of our model.  We use vi and gedit as the victim programs in the 

attack experiments, which contain new TOCTTOU vulnerabilities that were found by our 

detection tools (Section 2.3.2). 

2.4.1. A Probabilistic Model for Predicting TOCTTOU Attack Success Rate 

2.4.1.1. The Basic General Model 

 A TOCTTOU attack succeeds when the attacker is able to modify the mapping 

from file name to disk block within the vulnerability window. In order to succeed, the 

attacker must first find the vulnerability window, and then change the file mapping. 

Therefore, our model divides the attacker program into two parts: (1) a detection part that 

finds the beginning of the vulnerability window, and (2) an attack part that modifies the 

file mapping. 

 One of the critical issues is whether the victim is suspended within the 

vulnerability window, since the suspension increases substantially the success rate.  

Based on the law of total probability, the attack success rate: 

 
P(attack succeeds) = P(victim suspended) * P(attack succeeds | victim suspended) + 
P(victim not suspended) * P(attack succeeds | victim not suspended) 
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 In addition, in order for the attack to succeed, the attacker program must be 

scheduled within the vulnerability window and the attack must finish within the 

vulnerability window, so 

 

 We can derive P(attack succeeds | victim not suspended) in a similar way and get 

the refined probability in Equation 1. 

 In Equation 1, all the events are under the context of the victim vulnerability 

window. e.g. “attack finished” means “attack finished within the vulnerability window”. 

 

Equation 1: The probability of a successful TOCTTOU attack 

2.4.1.2. Attack Success Rate on a Uniprocessor 

 On a uniprocessor, P(attack scheduled | victim not suspended) = 0 since it is 

impossible to schedule the attacker when the victim is running. Therefore on a 

uniprocessor the second part of Equation 1 contributes nothing to the success rate. I.e., 

P(attack succeeds) = P(victim suspended) * P(attack scheduled | victim suspended) * 

P(attack finished | victim suspended). 

 Several observations can be made about P(attack succeeds) on a uniprocessor: 

• P(attack succeeds) ≤ P(victim suspended).  This means that the probability 

that the victim is suspended within its vulnerability window gives an upper 

bound for the attack success rate.  If the victim is always suspended (e.g. rpm 

in 2.3.2.2), the attacker can achieve a success rate as high as 100%.  In 

contrast, if the victim is rarely suspended (e.g. gedit in Section 2.3.2.4), the 

attack success rate can be near zero. 

P(attack succeeds | victim suspended) = P(attack scheduled * attack finished | victim 
suspended)  
= P(attack scheduled | victim suspended) * P(attack finished | victim suspended) 

P(attack succeeds) = P(victim suspended) * P(attack scheduled | victim suspended) * 
P(attack finished | victim suspended)  
+ P(victim not suspended) * P(attack scheduled | victim not suspended) * P(attack 
finished | victim not suspended) 
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• P(attack scheduled | victim suspended) is the probability that the attacker 

process gets scheduled when the victim relinquishes CPU. This value depends 

on several factors such as the readiness of the attacker, the system load (if 

round-robin scheduling is used), or the priority of the attacker (if priority-

based scheduling is used). Typically in a lightly loaded environment this value 

can be nearly 100% if the attacker program uses an infinite loop actively 

looking for the exploit opportunity. 

• P(attack finished | victim suspended) is the probability that the attacker 

successfully modifies the file mapping while the victim is suspended. Since 

there is only one CPU, as long as the attack part is not interrupted, this 

probability can be 100%. Typically this is the case because modifying the file 

mapping requires very short processing time and needs not block on I/O. 

 Based on the above analysis, the attack success rate is mainly determined by 

P(victim suspended) on a uniprocessor system, and the implementation of the attack part 

is relatively less critical. 

2.4.1.3.Attack Success Rate on Multiprocessors 

 On multiprocessors, the attacker can run on a different processor than the victim 

when the victim is running within its vulnerability window.  This makes the second part 

of Equation 1 non-zero, i.e., P(attack scheduled | victim not suspended) > 0.  This fact 

increases the success rate of TOCTTOU attacks on multiprocessors as compared to 

uniprocessors.  If P(victim suspended) is relatively large, then the success rate on 

multiprocessors may not increase significantly.  However, if P(victim suspended) is very 

small (approaching 0), then P(victim not suspended) approaches 1, and the gain due to 

the second part of P(attack succeeds) may become very significant. 



 46

 Therefore for an attacker, the benefit of having multiprocessors is maximized 

when the victim is rarely suspended in the vulnerability window.  An analysis of the 

second part of Equation 1 shows that: 

• P(attack scheduled | victim not suspended) is similar to P(attack scheduled | 

victim suspended) discussed in Section 2.4.1.2. The conclusion is that it can 

be as high as 100%. 

• P(attack finished | victim not suspended) is the probability that the attack is 

finished within the vulnerability window.  Since the victim is running 

concurrently with the attacker, the result of the attack depends on the relative 

speed of the attacker and the victim, a more detailed analysis is needed (next 

Section). 

2.4.1.4. Probabilistic Analysis of P(attack finished | victim not suspended) 

 In order to predict P(attack finished | victim not suspended) in more detail, we 

analyze the race condition at different levels: the first level is CPU, which is the main 

contention in uniprocessor attacks; the next level is file object, because the file system 

already has a synchronization mechanism to regulate shared accesses. In Unix-style file 

systems, the modifications to an inode are synchronized by a semaphore. Since the 

operations of the victim and the attacker on the shared file modify the same inode, they 

both need to acquire the same semaphore.  In this case, the race is reduced to the 

competition for the semaphore and we can model the success rate of the attack in the 

following way. 

 In this model, we assume that the attacker runs in a tight loop (the detection part), 

waiting for the vulnerability window of the victim to appear. Let D be the time consumed 

by each iteration of detection part, and let 1t be the earliest start time for a successful 

detection and 2t  be the latest start time for a successful detection followed by a 
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successful attack (e.g. the attacker acquires the semaphore first). 1t and 2t  are determined 

by the victim process. Some observations can be made as follow (Figure 16): 

 
Figure 16: Different attack scheduling on a 
multiprocessor 

 A successful attack starts with a successful detection as its precondition. This 

successful detection may start as early as 1t  (Figure 16, case (a)), and as late as Dt +1  

(Figure 16, case (f)). Then the interval ),[ 11 Dtt +  is our sample space. Out of this interval 

),[ 11 Dtt + , if the detection is started before 2t , the attack succeeds (Figure 16, cases (a) 

through (c)); otherwise the attack fails (Figure 16, cases (d) through (f), because the 

attack is launched too late). Let’s assume a uniform distribution for the start time of the 

detection part, the success rate is thus 
D

tt 12 − . 

 In Figure 16 we assume that ),[ 112 Dttt +∈ . Two other cases are: 

• If 12 tt < , then the success rate is 0; 

• If Dtt +≥ 12 , then the success rate is 1. 

 Let 12 ttL −= , and we get: 
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 In formula (1), L measures the laxity of the successful attacks, which is a 

characterization of the victim: the larger L, the more vulnerable the victim. D is a 

characterization of the detection part of the attacker: the smaller D, the faster the attacker, 
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and the higher success rate. So L/D gives a very useful measurement of the relative speed 

of the victim and the attacker. 

 It should be noted that L and D in formula (1) are not strictly constant, because 

the executions of the victim as well as the attacker are interleaved with other events (e.g. 

kernel timers) in the system. That is, the running environment imposes variance on these 

parameters. So formula (1) only offers a statistical guidance about the attack success rate. 

2.4.2. Baseline Measurements of TOCTTOU Attacks on Uniprocessors 

 For comparison purposes, in this section we summarize the measured success 

rates of vi and gedit TOCTTOU attacks on uniprocessors from Section 2.3.2. 

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

100 200 300 400 500 600 700 800 900 1000

File size in KB

500 rounds attack success rate

 
Figure 17: Success rate of attacking vi (small files) on a uniprocessor 

2.4.2.1. vi Attack Experiments on Uniprocessors 

 Since the vi vulnerability window includes the writing of a whole file, the size of 

the window naturally depends on the file size. The measured success rates for file sizes 

ranging from 20KB to 10MB are the following: 

• When the file size is small (from 100KB to 1MB), there is a rough correlation 

between attack success rate and file size, as shown in Figure 17.  However, 

the correlation disappears for larger file sizes (e.g., between 2MB to 3MB), 

showing that file size alone does not determine the success rate completely.  
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• Besides file size, we studied other factors (e.g., I/O operation, CPU slicing, 

and preemption by higher priority kernel threads) that corroborate the non-

deterministic nature of TOCTTOU attacks on a uniprocessor (Section 2.3.2.3). 

 From Figure 17 we can see that for normal file sizes (Using vi to edit a 2MB text 

file is considered rare in real life), the success rate can be as low as 1.5% and as high as 

18%. Furthermore, when the file size approaches 0, the success rate also approaches 0. 

2.4.2.2. gedit Attack Experiment on Uniprocessors 

 The experiments in which a TOCTTOU attack was carried out against the gedit 

vulnerability saw no successes. This is because the gedit vulnerability window (Figure 

7(b)) does not include the writing of the new file as in vi, so it is much shorter and bears 

no relationship to the file size. These factors reduced the success rate for gedit attacks to 

essentially zero on a uniprocessor. 

2.4.3. vi Attack Experiments on SMP 

 We repeated the vi attack experiments described in Section 2.3.2.3 on a SMP 

machine (2 Intel Xeon 1.7GHz CPUs, 512MB main memory, and 18.2GB SCSI disk with 

ext3 file system). 

 First we tried different file sizes ranging from 20KB to 1MB with a stepping size 

of 20KB, and observed the success rate of 100% for all file sizes.  This confirms the 

probabilistic predictions in Section 2.4.1.3 and shows that a multiprocessor greatly 

increases the attacker’s chance of success compared to a uniprocessor (Figure 17 in 

Section 2.4.2.1).   We did a detailed event analysis to confirm the attacker and victim 

processes ran on separate CPUs during the vulnerability window. We also eliminated the 

possibility that the attack success is due to the victim being blocked on I/O operations 

(which would have made the attack easier).  Consequently, we conclude that the attack 
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success is due to the length of vi vulnerability window being much larger than the time it 

takes the attacker to finish the attack steps (file name redirection).  

 Figure 18 shows the L and D values (Section 2.4.1.4) for the vi attack experiments 

that we conducted on the SMP. We can see that L >> D when the file is large (e.g.1MB); 

and the difference (L – D) decreases as the file size decreases. But (L – D) is always 

positive, even when the file size becomes very small. Therefore we can say with almost 

certainty that for vi attack experiments, L > D. By formula (1) we know that the success 

rate of vi attacks is almost 100% all the time. 
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Figure 18: The L and D values for vi SMP attack experiments 

 

 One thing to notice from Figure 18 is that as the file size approaches 0, the 

difference (L – D) also approaches 0. Is it possible that L becomes smaller than D? Then 

according to formula (1) the attack success rate will be smaller than 100%. 

 To see this we run the experiment again with the smallest files (only 1 byte each). 

And the success rate we get is around 96%. Again we did a detailed event analysis of this 

experiment. We measure the average L and D values and put them in Table 10. We can 

see that although L > D in these attacks, they have become very close. If we consider the 

fact that the values for L and D are not strictly constant due to the environmental 

influence, we realize that whether L > D all the time becomes questionable when they are 

close enough (When L >> D the inaccuracy introduced by the environment does not 
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change the relationship). This helps to explain why the success rate can not be 100% 

when the file contains only 1 byte. 

Table 10: The average L and D values (in microseconds) for vi SMP attack experiments 
(file size = 1 byte) 

 Average Stdev 
L 61.6 3.78 
D 41.1 2.73 

 

 Another point is that so far we actually treat P(attack finished | victim not 

suspended) in Section 2.4.1.4 as the sole basis for predicting the success rate, which is 

not always accurate (Equation 1). The justification is that when the vi vulnerability 

window is large enough, the effect of other factors in Equation 1 is negligible. For 

example, P(attack scheduled | victim not suspended) < 100% in general which means that 

the attacker may not be scheduled during sometime in the vulnerability window. 

However, if the vulnerability window is very large, the attacker is still within it when 

he/she is scheduled eventually. That is, the temporary suspension does not affect the 

result of the attack. However, when the vulnerability window becomes small enough (e.g. 

L and D become close enough), the suspension may cause the attacker to miss the 

vulnerability window. In such a case the attack fails, thus the suspension changes the 

attack result. 

 In several of the failed 1-byte vi experiments, we find that some other processes 

prevents the attacker from being scheduled on another CPU during the vi vulnerability 

window. 

 This analysis tells us that although using a multiprocessor can greatly increase the 

attack’s chance of success, the success is still not guaranteed: the attack is still influenced 

by other environmental factors such as kernel activities and system load. However, 96% 

is more than enough for an attacker. 

2.4.4. gedit Attack Experiments on Multiprocessors 
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2.4.4.1. gedit SMP Attack Event Analysis 

 As mentioned in Section 2.4.2.2, our attack experiments against gedit on 

uniprocessors saw no successes. However, when we try this attack on a SMP (the same 

machine as in Section 2.4.3), we get roughly 83%, a surprisingly high success rate. A 

detailed event analysis is thus conducted to understand this result. 

 For the gedit attack, we have observed that if the attacker’s unlink is invoked 

before gedit’s chmod (Figure 7(b) and Figure 14), then attack succeeds. This is because 

these two system calls compete for the same semaphore, so if unlink wins, chmod as 

well as the following chown will be delayed. As a result the attacker’s unlink and 

symlink can have enough time to finish before gedit’s chown. On the other hand, if 

unlink loses, unlink and the following symlink of the attacker will be delayed, so the 

attack will fail. So there is an interesting cascading effect in gedit attack experiment. 

Therefore, for gedit attacks, 1t  is somewhere within the execution of rename (the 

attacker does not need to wait until the end of rename to see that real_filename has been 

created), D is the interval between the start of stat and the start of unlink. Let 3t  be the 

start of chmod, then Dtt −= 32 , and 1312 tDtttL −−=−= . We experimentally get the L 

and D values as in Table 11. 

Table 11: L and D values for gedit attacks on a SMP (in microseconds) 
 Average Stdev 
L 11.6 3.89 
D 32.7 2.83 

 

 The calculation of L here is not accurate because the estimation of 1t  is not 

accurate. Currently 1t  is established as the earliest observed start time of stat which 

indicates a vulnerability window. So it may not be optimal. An earlier (thus smaller) 

1t will result in a larger L. So the success rate indicated by Table 11 (35%) may be overly 

conservative compared to the observed success rate. 
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 An important contributing factor to L is the computation time between the end of 

rename and the start of chmod. The average length of this computation is 43 

microseconds. As we will see in Section 2.4.4.2, this factor is very important for the high 

success rate of gedit attack on the SMP. 

 There is another contributing factor. Usually when gedit’s chmod is blocked, the 

Linux kernel will try to schedule something else to run (e.g. internal kernel events such as 

soft IRQs, kernel timers and tasklets), which further lengthens gedit vulnerability 

window (but this contributes just a little to the delay compared with that due to the 

semaphore). 

2.4.4.2. gedit Multicore Attack Experiment 

2.4.4.2.1 Attack one 

 We repeat the gedit attack (Figure 14) on a multi-core (Dell Precision 380 with 2 

Intel Pentium D 3.2 GHz dual-core and Hyper-Threading CPUs, 4GB main memory, and 

80GB SCSI disk with ext3 file system). We get very different result: now we see almost 

no success in the same attack experiment. The main change in the situation is that the 

victim spends much less time between rename and chmod (3 microseconds vs. 43 

microseconds), so chmod happens before unlink of the attacker, but in the SMP 

experiment (Section 2.4.4.1) situation is the opposite. 

 
Figure 19: Failed gedit attack (program 1) on a multi-core 
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 Figure 19 shows the important system events during one failed attack on the 

multi-core. The upper bar corresponds to the execution of gedit (rename, chmod, 

chown) and the lower bar corresponds to that of the attacker (stat, unlink, symlink). 

Notice that the gap (the computation) between rename and chmod of gedit is only 3 

microseconds, but the gap between stat and unlink of the attacker is 17 microseconds. It 

is because of this relatively larger gap that the attacker’s unlink is called later than the 

victim’s chmod. Actually we can see that unlink is called later than chown and as a 

result unlink has to wait on the semaphore during its execution. The 17 microsecond gap 

of the attacker includes 11 microseconds of computation and 6 microseconds of system 

trap processing (page fault). Speaking in terms of D, these 17 microseconds are counted 

so D is around 22. On the other hand L is around 193 −=− D , so according to formula 

(1) the attack success rate is probably 0. Putting this in another way, the victim is now 

much faster than the attacker, so it is very difficult for the attacker to win the race. 

2.4.4.2.2 Attack Two 

 We think that the 17 microsecond gap in Figure 19 is mainly responsible for the 

low success rate. If we could reduce the length of this gap then the situation may change. 

A source code analysis tells us that before the vulnerability window the true branch of 

statement 3 in Figure 14 (statements 5 to 7) is never taken. Once the vulnerability 

window starts, the true branch of statement 3 is taken, and then statement 5 (unlink) is 

about to be executed. Right at this point the attacker program encounters a trap (page 

fault). We figure out that this effect is due to the memory management for shared 

libraries in Linux.  Specifically, in Linux all system calls are through libc, which is a 

dynamic library shared among user-level applications. To save physical memory, Linux 

kernel keeps only one copy of libc in physical memory, and its virtual memory 

mechanism maps the pages of this copy to the address space of an application on demand. 

For example, the physical page containing the wrapper for unlink is mapped into an 
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application’s address space when this application first invokes unlink. This mapping is 

preceded by a trap (page fault) and the corresponding handler routine carries out the 

mapping. This is exactly what happens in Figure 14, where unlink is first invoked when 

the true branch of statement 3 is taken. As a consequence, if we intentionally invoke 

unlink (and symlink although it seems to be on the same page as unlink) before the true 

branch of statement 3 is taken, we may remove the trap (page fault). 

 So we re-implement the attacker program as shown in Figure 20. Now unlink and 

symlink are called no matter the vulnerability window appears or not. The only trick is to 

switch in the correct file name when it does appear. 

 Then we perform the gedit attack experiment again using the program in Figure 

20. And we begin to see many successes! 

 

Figure 20: gedit attack program version 2 

 We plot the important system events during one successful gedit attack in Figure 

21, similar to Figure 19. We can see that now the gap between stat and unlink of the 

attacker has decreased to 2 microseconds: the trap has disappeared. On the other hand, 

the gap between rename and chmod of gedit is 2 microseconds. So the attacker has a 

very narrow chance of winning the race. In this particular case, the attacker wins because 

his/her stat starts well before the end of rename, so he/she identifies the vulnerability 

1    while (!finish){  /* argv[1] holds real_filename */ 
2      if (stat(argv[1], &stbuf) == 0){ 
3         if ((stbuf.st_uid == 0) && (stbuf.st_gid == 0)) 
4           { 
5              fname = argv[1]; 
6              finish = 1; 
7           } 
8         else 
9              fname = dummy; 
10 
11       unlink(fname); 
12       symlink(“/etc/passwd”, fname); 
13    }//if stat(argv[1] .. 
14  }//while 
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window at the first moment, and invokes unlink ahead of chmod. Has the attacker been 

2 microseconds later, the attack would fail. 

 
Figure 21: Successful gedit attack (program 2) 
on a multi-core 

 Notice that during this attack the running time of stat has been lengthened to 26 

microseconds (typically it needs 4 microseconds), probably due to some other more 

complicated race condition (For example the contention for directory entries along the 

path name). We are not quite clear about the reason but this does not change the 

applicability of formula (1) because now we have a much earlier 1t  (27 microseconds 

into rename), which makes a L value of at least 1 microseconds. 

 This experience tells us that on multiprocessors the implementation of the attacker 

program can be very critical in determining the attack success rate, especially when the 

vulnerability window is very narrow. 

2.4.5. Pipelining Attacker Program 

 The multi-core gedit experiment highlights the importance of the implementation 

of the attacker program. Concretely, we found that among the three steps of the attack 

(stat, unlink, symlink), unlink is the most time-consuming.  A closer look into the file 

system source code shows that actually symlink needs not wait on the completion of 

unlink. Instead symlink can begin once the inode has been detached from the directory 

by unlink, which happens relatively early.  (The main part of unlink is spent physically 

0 20 40 60 80 100 120 140 160 
Time in microseconds

rename gedit comp chmod chown stat

Wake up 
the victim 

gedit

symlink

attacker

Blocked on the 
semaphore 

attacker comp unlink



 57

truncating the file.)  This observation shows that on a multiprocessor, the attacker can 

distribute its attack steps to multiple CPUs to speed up the attack part and increase its 

success rate. 

 
Figure 22: The effect of parallelizing the attack program 

 To confirm this hypothesis, we implemented a multithreaded gedit attack program 

with two threads: the first thread carries out the stat, unlink steps and the second thread 

carries out the symlink step asynchronously. Figure 22 shows the effect of parallelizing 

the attack program for three different file sizes. For each file size (e.g. 500KB), there are 

three bars: the first two bars correspond to the execution of the two threads in a 

parallelized attack program, and the third bar corresponds to the execution of the normal 

sequential attack program.  In the parallelized attack, symlink can finish (and so does the 

attack) well before the end of unlink.  This is in contrast to the sequential attack, where 

symlink has to wait until unlink finishes.  The comparison between the end times of 

symlink shows that leveraging on the parallelism provided by a multiprocessor can 

greatly reduce the amount of time needed for a successful attack.  This is especially 

important when the vulnerability window is very narrow so the attacker needs to be very 

fast. This experiment shows one feasible way of doing it. 

2.5. A Methodical Defense against TOCTTOU Attacks: The EDGI Approach 

 In this part of the dissertation, we present the design, implementation, and 

evaluation of an event-driven defense mechanism (called EDGI) that prevents 
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exploitation of TOCTTOU vulnerabilities. The EDGI defense has several advantages 

over previously proposed solutions.  First, based on the CUU model (Section 2.2), EDGI 

is a systematically developed defense mechanism with careful design (using ECA rules) 

and implementation.  Assuming the completeness of the CUU model, EDGI can stop all 

TOCTTOU attacks.  Second, with careful handling of issues such as inference of 

invariant scopes and time-outs, EDGI allows very few false positives.  Third, it does not 

require changes to applications or file system API.  Fourth, our implementation on Linux 

kernel and its experimental evaluation show that EDGI carries little overhead. 

2.5.1. The Design of EDGI 

2.5.1.1.Overview 

 We propose an event driven approach, called EDGI (Event Driven Guarding of 

Invariants), to defend applications against TOCTTOU attacks. The design requirements 

of EDGI are:  

1. It should solve the problem within the file system, and does not change the API, so 

that existing or future applications need not be modified. 

2. It should solve the problem completely, i.e., no false negatives. 

3. It should not add undue burden on the system, i.e., very low rate of false positives. 

4. It should incur very low overhead on the system.  

 EDGI consists of three design steps (described in the rest of this section), a 

concrete implementation (Section 2.5.2), and an experimental evaluation (Section 2.5.3).  

The first design step is to map the CUU model into invariants in a concrete file system 

(Linux in our case) and the kernel calls that preserve the invariants.  The second design 

step uses ECA (event-condition-action) rules [26, 36] to model the concrete invariant 

preservation methods, so we can have reasonable assurance the invariants are indeed 

preserved.  The third design step completes the design by addressing the remaining issues 
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such as the automated inference of invariant scope and inheritance of invariants by 

children processes. 

 Under the CUU model’s assumption, the “Check” part of a sequence of 

operations on a file object creates an invariant that should be preserved through to the 

corresponding “Use” part. Specifically, a file certified to be non-existent ( ∅=)( fresolve ) 

by the “Check” operations should remain non-existent until the “Use” operations create 

it.  Similarly, a file certified to be existent ( bfresolve =)( ) by the “Check” operations 

should remain the same file until the “Use” part (by the same user) accesses it.  

Identifying and preserving these two invariants ( ∅=)( fresolve  or bfresolve =)( ) are the 

main goals of EDGI approach. 

 The EDGI design treats an invariant as a sophisticated lock. The user invoking a 

“Check” call becomes the owner of the lock, and the lock is usually held by the same user 

through the “Use” call.  Due to the complications of Unix file system, the invariant 

handling is more complicated than a normal lock compatibility table.  Therefore, we 

represent the invariant handling using ECA rules, as explained in the following section. 

We note that we only use ECA rules as a model, since our implementation does not 

support general-purpose rule processing. 

2.5.1.2. Invariant Maintenance 

 The EDGI approach adopts a modular design and implementation strategy by 

separating the EDGI invariant processing from the existing kernel. The invariant-related 

information is maintained as extra state information for each file object.  When an 

invariant-related event is triggered, the corresponding set of conditions is evaluated and if 

necessary, appropriate actions are taken to maintain the invariant. 

 The invariant-related information for each file object includes its state (free or 

actively used), a tainted flag, invariant holder user id and a process list.  In detail: 
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• refcnt – the number of active processes using the file object. When refcnt = 0, the file 

object is free. 

• tainted – when refcnt > 0, this flag means whether the name to disk object binding 

can be trusted. 

• fsuid – the user id of the processes that are actively using the file object. 

• gh_list – a doubly-linked list, in which each node contains a process id and the 

timestamp of the last system call made by the process on the file object. 

 Two kinds of events trigger condition evaluation: 

• File system calls such as access, open, and mkdir. 

• Process operations: fork, execve, exit. 

 The conditions evaluated by each event and their associated actions are 

summarized in Table 12 (f denotes the file object). The conditions refer to the file object 

status (whether the invariant is ∅=)( fresolve  or bfresolve =)( ), and actions include the 

creation, removal and potentially more complex invariant maintenance actions. 

2.5.1.3. Inferring Invariant Scope 

 EDGI prevents TOCTTOU attacks by making the sequence of system calls on a 

file object safe. As suggested by Proposition 3 (Section 2.2.2.4), the invariant 

maintenance rules in Table 12 are not restricted to a TOCTTOU pair, but extend to a 

sequence of file system calls. During the time such a sequence of accesses exists, the file 

object is said to be actively used. Otherwise the file object is said to be free. 

 The interval during which the file object is actively used forms the scope of its 

invariant.  The scope varies in length, depending on the number of consecutive “Use” 

calls made by the application.  Consequently, a significant technical challenge is to 

correctly identify this scope - the boundaries of the TOCTTOU vulnerability window of 

the application. Since current Unix-style file systems are oblivious to such application-
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level semantics, we need to infer the scope, so no changes are imposed on the 

applications or the file system interfaces. 

Table 12: Invariant Maintenance Rules in EDGI 

 

 The inference of invariant scope is guided by the CUU model, which specifies the 

initial TOCTTOU pair explicitly.  The “Use” call of the initial pair becomes the “Check” 

call of the next pair, completed by the following “Use” call.  According to Proposition 2, 

the CUU model correctly captures the TOCTTOU problem. The invariant of the initial 

pair is maintained from the “Check” call through the “Use” call, and then to the 

additional “Use” calls. The sequence continues until the program ends, a time-out or 

Name Event Condition Action 
Incarnation rule Any system 

call on f 
refcnt == 0 Set f’s state as actively used (refcnt++); set its 

tainted flag as false, fsuid as current user id, record 
current pid and current system time in the gh_list. 

Reinforcement 
rule 

Any system 
call on f 

refcnt > 0 and 
fsuid == current user id and 
tainted == false 

Record current pid and current system time in the 
gh_list. 

Abort rule Any system 
call on f 

refcnt > 0 and 
fsuid == current user id and 
tainted == true 

Record current pid and current system time in the 
gh_list. Return an error. 

Root 
preemption rule 

Any system 
call on f 

refcnt > 0 and 
fsuid != current user id and 
current user id == root 

Remove all invariant holders information from the 
gh_list; set f’s fsuid as current user id, set refcnt as 1, 
tainted as false, record current pid and current 
system time in the gh_list. 

Owner 
preemption rule 

Any system 
call on f 

refcnt > 0 and 
fsuid != current user id and 
current user id != root and 
fsuid != root and 
current user is the owner of  f 

Remove all invariant holders information from the 
gh_list; set f’s fsuid as current user id, set refcnt as 1, 
tainted as false, record current pid and current 
system time in the gh_list. 

Invariant 
maintenance 
rule 1 

Any system 
call in the 
RemovalSet 
(Section 
2.2.3.2) on f 

refcnt > 0 and  
fsuid != current user id 

Traverse the gh_list to get the latest timestamp t, 
compute the interval between t and current time, if it 
is less than threshold MAX_AGE, deny the current 
request, otherwise grant the current request and set 
tainted as true. 

Invariant 
maintenance 
rule 2 

Any system 
call in the 
CreationSet 
(Section 
2.2.3.2) on f 

refcnt > 0 and  
fsuid != current user id 

Traverse the gh_list to get the latest timestamp t, 
compute the interval between t and current time, if it 
is less than threshold MAX_AGE, deny the current 
request, otherwise grant the current request and set 
tainted as true. 

Clone rule Fork (parent, 
child) 

True For each file object that has parent in its gh_list, 
record child and current system time, and increment 
the refcnt. 

Termination 
rule 

Exit True Remove current pid from the gh_list of each file 
object that has it on its gh_list, and decrement the 
corresponding refcnt. 

Distract rule Execve True Remove current pid from the gh_list of each file 
object that has it on its gh_list, and decrement the 
corresponding refcnt. 
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preemption occurs (see Section 2.5.1.4). In summary, the scope of an invariant is a safe 

sequence of system calls (Definition 5 in Section 2.2.1.2). 

2.5.1.4. Remaining Issues 

 There are some additional issues that need to be resolved for an actual 

implementation.  First, if we consider the invariants as similar to locks, then the question 

of dead-lock and live-lock arises.  For example, it is possible that an invariant holder is a 

long-running process which only touches a file object at the very beginning and then 

never uses it again.  Consequently, a legitimate user may be prevented from 

creating/deleting the file object for a long time, resulting in denial of service. This 

problem can be addressed by a time out mechanism.  If an invariant holder process does 

not access a file object for an exceedingly long time, the invariant will be temporarily 

disabled to allow other legitimate users to proceed.  (Timeout is discussed in Section 

2.5.3.2.) 

 If the time-out results in simple preemption (i.e., breaking the lock), then this 

method may be used to attack very long application runs.  To prevent the preemption-

related attack, we use a tainted bit to mark the preemption. After a preemption-related file 

creation or deletion, the invariant no longer holds. EDGI marks the file object as tainted, 

so the next access request from the original invariant holder will be aborted.  

 The second and related problem is the relationship between the current invariant 

holder and the next process attempting to access the file object.  Up to now, we have 

assumed a symmetric relationship, without distinguishing legitimate users from attackers.  

In reality, we know some processes are more trustworthy than others. Specifically, in 

Unix environments we trust the file object owner and root processes completely.  

Consequently, we allow these processes to “break the lock” by preempting other 

invariant holders. Concretely, when the file object owner or root process attempt to 
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access a file object, they immediately become the invariant holder, and the invariant for 

the former holder is removed. 

 The third issue is the inheritance of invariants by children processes.  For 

example, after a user process checks on a file object and becomes an invariant holder, it 

spawns a child process, and terminates. In the mean time, the child process continues, and 

uses the file object.  In the simple solution, the invariant is removed when the owner 

(parent) process terminates.  In this case an attacker can achieve a TOCTTOU attack 

before the child process uses the file. Thus we must extend the scope of invariants to the 

child process at every process creation. This invariant inheritance extension is analogous 

to the invariant scope extension discussed in Section 2.5.1.3. 

 A final question is whether the EDGI approach is a complete solution, capable of 

stopping all TOCTTOU attacks. For every file system call, the rules summarized in Table 

12 are checked and followed.  The first time a “Check” call is invoked on a file object, 

that user becomes the file object’s invariant holder. At any given time there is at most one 

invariant holder for each file object.  Users other than the invariant holder are not allowed 

to create or remove the file object (including changes to mapping between the name and 

disk objects). Therefore, the EDGI defense is able to stop all TOCTTOU attacks 

identified by the CUU model. 

2.5.2. Linux Implementation of EDGI 

 We have implemented the design described in the previous section in the Linux 

file system.  The implementation consists of modular kernel modifications to maintain 

the invariants for every file object and its user/owner. We outline the process that 

remembers the invariant holder of each file object (Section 2.5.2.1) and then the 

maintenance of the invariants (Section 2.5.2.2). 

2.5.2.1. Invariant Holder Tracking 
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 Invariant holder tracking is accomplished by maintaining a hash table of 

pathnames that keeps track of the processes that are actively using each file object. The 

index to this hash table is the file pathname, and for each entry, a list of process ids is 

maintained.  Our modular implementation augments the existing directory entry (dentry) 

cache code and extends its data structures with the fields introduced in Section 2.5.1.2: 

fsuid, refcnt, tainted, gh_list. 

 Before a system call uses a file object by name, it first needs to resolve the 

pathname to a dentry. Our implementation instruments the Linux kernel to call the 

invariant holder tracking algorithm after each such pathname resolution. There are two 

possible approaches to implementing this algorithm.  The first is to instrument the body 

of every system call (e.g., sys_open) that uses a file pathname as argument. The second is 

to instrument the pathname resolution functions themselves (in the Linux case, 

link_path_walk and lookup_hash). 

 The first approach has the disadvantage that instrumented code has to spread over 

many places, making testing and maintenance difficult. Although techniques such as 

Aspect Oriented Programming (AOP) [31] could help, we were unable to find a 

sufficiently robust C language aspect weaver tool that can work on Linux kernel. The 

second approach has the advantage that only a few (in the Linux case, exactly two) places 

need to be instrumented, making the testing and maintenance relatively easy. We chose 

the second approach for our implementation. 

 The invariant holder tracking algorithm GH is shown in Figure 23. This algorithm 

effectively implements the rules summarized in Table 12, and it is called right before 

link_path_walk and lookup_hash successfully returns. 

 Line 1-2 of the invariant holder tracking algorithm addresses the situation where a 

new invariant holder is identified: invariant related data structure is initialized, including 

the invariant holder user id (fsuid), the invariant holder process id, the tainted flag, and a 

timestamp. After these steps, the invariant maintenance part (Section 2.5.2.2) will start 
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applying this invariant. We can see that the same sequence also occurs in Lines 10 and 

16, where a new invariant holder is decided due to preemption. 

 
 
1 
2 
 
3 
4 
5 
6 
7 
8 
9 
10 
 
11 
12 
13 
14 
15 
16 
 
 
17 

Input: dentry d 
Output: 0 – succeed, -1 – the binding of d is tainted. 
if d.refcnt = 0 
then d.fsuid ← current user id, record current pid and current time in d.gh_list,  
d.refcnt++, d.tainted ← false, return 0. 
else  
    if d.fsuid = current user id 
    then record current pid and current time in  d.gh_list, if d.tainted = false 
                        then return 0 
                         else  return -1. 
    else 
       if current user id = root 
       then remove all invariants on d.gh_list,  d.fsuid ← root, record current pid  
and current time in d.gh_list, d.refcnt ←1, d.tainted ← false, return 0. 
       else 
             if d.fsuid = root 
             then return 0. 
             else  
                   if current user id is the owner of d 
                   then remove all invariants on d.gh_list, d.fsuid ← current user id,  
record current pid and current time in d.gh_list, d.refcnt←1, d.tainted ← false,  
return 0. 
                   else return 0. 

Figure 23: Invariant Holder Tracking Algorithm 

 Lines 4-7 address the situation in which an existing invariant holder accesses the 

file object again. Notice that the tainted flag is checked to abort the invariant holder 

process if the name to disk binding of the file object has been changed by another user’s 

process (Section 2.5.2.2). 

 Lines 9-10 correspond to the preemption of invariant from a normal user to the 

root discussed in Section 2.5.1.4. Similarly, lines 15-16 handle the preemption by file 

object owner. 

 The invariant holder tracking algorithm needs the current process id and current 

user id runtime information, which are obtained from the current global data structure 

maintained by the Linux kernel. 
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2.5.2.2. Invariant Maintenance 

 The second part of implementation is invariant maintenance by thwarting the 

attacker’s attempt to change the name to disk binding of a file object, which in turn is 

achieved by deleting or creating a file object.  We instrumented two kernel functions to 

perform invariant checks: 

• may_delete(d): this function is called to do permission check before deleting a file 

object d. We add invariant checking after all the existing checks have been passed: If 

d.refcnt > 0 and the current user id is not the same as d.fsuid, traverse d.gh_list to get 

the last access timestamp; if it is younger than MAX_AGE, return –EBUSY (file 

object in use and cannot be deleted). Otherwise set d.tainted as true and return 0. 

• may_create(d): this function is called to do permission check before creating a file 

object, similar invariant checking is added after all the existing checks have been 

passed. 

 

 The may_create kernel function is called by all the system calls in the 

CreationSet (Section 2.2.3.2) and the may_delete function is called by all the system 

calls in the corresponding RemovalSet.  These invariant checks implement the Invariant 

Maintenance Rules 1 and 2 in Table 12. 

2.5.2.3.Engineering of EDGI Software  

 Table 13 shows the size of EDGI implementation in Linux kernel 2.4.28.  The 

changes were concentrated in one file (dcache.c), which was changed by about 55% 

(LOC means lines of code).  The other changes were small, with less than 5% change in 

one other file (namei.c), plus single-line changes in three other files.  This 

implementation of less than 1000 LOC was achieved after careful control and data flow 

analysis of the kernel, plus some tracing. We consider this implementation to be highly 

modular and relatively easily portable to other Linux releases.  
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 From top-down point of view, the methodical design and implementation process 

benefited from the CUU model as a starting point.  Then, the ECA rules facilitated the 

reasoning of invariant maintenance.  The rules were translated into the Invariant Holder 

Tracking algorithm.  These steps give us the confidence that the invariants are maintained 

by EDGI software. 

 Conversely, from a bottom-up point of view, the Linux kernel was organized in a 

methodical way.  For example, it has exactly two functions (may_delete and 

may_create) controlling all file object status changes. By guarding these two functions, 

we were able to guard all 224 TOCTTOU pairs identified by the CUU model.  This kind 

of function factoring in the Linux kernel contributed to the modular implementation of 

EDGI. 

Table 13: Linux Implementation of EDGI 

Source File Modified 
Places 

Original 
LOC 

Added 
LOC 

fs/dcache.c 4 1,307 749 
fs/namei.c 5 2,047 84 
fs/exec.c 1 1,157 1 
kernel/exit.c 1 602 1 
kernel/fork.c 1 896 1 

2.5.3. Experimental Evaluation of EDGI  

2.5.3.1. Discussion of False Negatives 

 The EDGI system design follows the CUU model.  In Section 2.5.1.4 we included 

an informal argument for the completeness of the CUU model, details of which can be 

found in Section 2.2.2.  If the ECA rules summarized in Table 12 captures all the 

TOCTTOU pairs identified by the CUU model, and the invariant holder tracking 

algorithm in Figure 23 implements all the rules in Table 12, and our Linux kernel 

implementation (Section 2.5.2) is correct, then our implementation should have zero false 

negatives. 
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 We have run all the attack experiments we could find, including known 

TOCTTOU vulnerabilities such as logwatch 2.1.1 [52] and new vulnerabilities recently 

detected, including rpm, vi/vim, and emacs. In all the experiments the EDGI system is 

able to stop the attacker program. 

 One exception to the invariant maintenance rules is the preemption by programs 

running as root, which are allowed to gain the invariant and change file object status at 

will.  We consider this exception to be safe, since if an attacker has already obtained root 

privileges, there is no further gain for using TOCTTOU attacks. 

2.5.3.2. Discussion of False Positives 

 As mentioned in Section 2.5.1.4, our conservation maintenance of invariants may 

introduce long delays, if an invariant holder runs for a long time. These long delays can 

be considered a kind of false positives, since they may or may not be necessary. Our 

implementation introduces a time-out mechanism to mitigate this problem.  If another 

user’s process wants to create/delete the file object and encounters the last access time by 

the invariant holder to be older than the time-out period, the new process is allowed to 

preempt the invariant and the file object is marked as tainted.  If the original invariant 

holder attempts to use the file object again, then we have found a real conflict.  The 

current implementation aborts the original invariant holder, although other design choices 

are possible. 

 The determination of a suitable time-out period, called MAX_AGE in Table 12, is 

probably dependent on each specific workload and a research question. If it is too short, 

an attacker may use it to abort a long running legitimate process by attempting to 

create/delete a shared file.  If it is too long, another legitimate process may be delayed for 

a long time. We have experimentally chosen a MAX_AGE of 60 seconds. 

2.5.3.3. Overhead Measurements 
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 To evaluate the overhead introduced by our EDGI defense mechanism, we run the 

same variant of the Andrew benchmark as used in Section 2.3.3.3. The experiments were 

run on a Pentium III 800MHz laptop with 640MB memory, running Red Hat Linux in 

single user mode.  We report the average and standard deviation of 20 runs for each 

experiment in Table 14, which compares the measurements on the original Linux kernel 

and on the EDGI-augmented Linux kernel.  The same data is shown as bar chart in Figure 

24. 

Table 14: Andrew Benchmark Results (in milliseconds) 
Functions Original Linux Modified Linux Overhead 
mkdir 6.35

±0.21
6.43

±0.19
1.3% 

copy 217.0
±1.5

218.6
±1.4

0.7% 

Stat 132.0
±1.9

193.6
±0.8

47% 

grep 777.0
±4.3

870.1
±5.3

12% 

compile 53,971
±434

55,615
±367

3.0% 

 

Figure 24: Andrew Benchmark Results 

 The Andrew benchmark results show that EDGI generally has a moderate 

overhead.  The only exception is stat, which has 47% overhead. The explanation is that 

stat takes less time than other calls (such as mkdir), but the extra processing due to 
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invariant holder tracking (now part of pathname resolution) has a constant factor across 

different calls.  This constant overhead weighs more in short system calls such as stat.  

Fortunately, stat is used relatively rarely, thus the overall impact remains small. 

 We also evaluate the overhead of EDGI using the PostMark benchmark 

mentioned in Section 2.3.3.3. On the original Linux kernel the running time of this 

benchmark is 40.0 seconds. On EDGI-augmented kernel, with all the same parameter 

settings, the running time is 40.1 seconds (Again these results are averaged over 20 

rounds). So the overhead is 0.25%. This result corroborates the moderate overhead of 

EDGI. 

2.6. Related Work 

 Bishop and Dilger [6, 7] were the first to explore the TOCTTOU problem and 

developed a prototype analysis tool that used pattern matching to look for TOCTTOU 

pairs in the application source code. They suggested several solutions to the TOCTTOU 

problem, including modifications of file system interfaces. Several research projects have 

tried to prevent subsets of TOCTTOU vulnerabilities. RaceGuard [18] prevents the 

temporary file creation race condition in UNIX systems, specifically the <stat, open> 

TOCTTOU pair.  Dean and Hu [19] proposed a probabilistic approach to another specific 

TOCTTOU pair: <access, open>.  Interestingly however, Borisov [8] described an 

effective attack that can defeat Dean and Hu’s approach, which demonstrates the 

challenging nature of the TOCTTOU problem. 

 Tsyrklevich et al. proposed a more generic defense mechanism called pseudo-

transactions [57], which can be used to prevent some classes of TOCTTOU 

vulnerabilities from being exploited.  Pseudo-transactions work by wrapping known 

susceptible TOCTTOU pairs inside pseudo-transactions.  Their implementation of 

pseudo-transactions supports a flexible specification of allowed and denied file system 

call pairs.  However, they were only able to generate a set of specifications from 
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empirical refinement through practical use.  The main difference between the CUU 

model and pseudo-transactions is the complete enumeration of exploitable TOCTTOU 

pairs by the CUU model.  To the best of our knowledge, this complete enumeration has 

not been achieved before. 

 Static analysis of source code has recently shown some success in finding bugs in 

systems software. For example, Meta-compilation [20] and RacerX [21] use compiler-

extensions to find software bugs, and MOPS [13, 51] uses model checking to verify that a 

program preserves certain security properties.  These static analysis tools could be used to 

detect TOCTTOU pairs in programs.  However, they are limited in the detection of real 

TOCTTOU problems because of dynamic states (e.g., file names, ownership, and access 

rights). 

 In contrast to static analysis, dynamic detection monitors application execution to 

find software bugs without access to source code. These tools can be further classified 

into dynamic online analysis tools such as [34, 50] and post mortem analysis tools such 

as the one proposed by Ko et al. [33]. However, [33] can only detect the result of 

exploiting a TOCTTOU vulnerability, but not locate the error.  

 The difficulty of detection contrasts with the simplicity of some of the technical 

suggestions in advisories and reports on TOCTTOU exploits from US-CERT [58] and 

BUGTRAQ [11], including setting proper file/directory permissions and checking the 

return code of function calls.  However, some other suggested programming fixes are 

varied and non-trivial: using random numbers to obfuscate file names, replacing 

mktemp() with mkstemp(), and using a strict umask to protect temporary directories.  

More significantly, none of these fixes can be considered a comprehensive solution for 

TOCTTOU vulnerabilities. 
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2.7. Discussion 

 Our solution to the TOCTTOU problem illustrates one example of para-

transactional invariants (PTIs) that the mapping from the file pathname to the disk block 

number must remain invariant between the check call and the use call.  The EDGI 

defense against TOCTTOU attacks preserves this invariant by wrapping the check and 

use operations into an atomic execution unit similar to a database transaction, which 

guarantees that the invariant is preserved despite any concurrent processes (including the 

attack process). 
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CHAPTER 3                                                                       

K-QUEUE DRIVEN TRANSIENT KERNEL CONTROL FLOW 

ATTACKS 

 The second contribution of this dissertation research is a solution to K-Queue-

driven transient kernel control flow attacks.  We identify such attacks as a new hiding 

technique that can be used by an attacker to maintain stealthy control of the kernel 

(Section 3.1). Having addressed a representative subclass of such attacks (Section 3.3), 

we solve the complete class of K-Queue-driven attacks as a final step of this thesis 

(Section 3.4). 

3.1. Overview 

 Internet-scale attacks, such as botnets, often utilize malicious software (malware) 

to hide their presence and extract information from their host systems.  Rootkits, for 

example, are a common type of kernel-level malware that intercept and modify system 

events with the goal of hiding illicit activity [10, 29].  Other kernel-level malware can 

collect sensitive data, cause a denial of service, or open backdoors into the system.  In 

this chapter we present an attack technique that allows an attacker to execute kernel-level 

malware while evading detection from existing defensive tools.  We then focus on 

techniques for detecting and mitigating the attack. 

 We divide attacks designed to maintain stealthy control of the victim kernel into 

three broad and sometimes overlapping categories: (1) detour attacks, (2) persistent 

kernel control flow attacks, and (3) transient kernel control flow attacks. The first 

category consists of malware (malicious software) that changes code on a disk or in 

memory.  These changes can be detected by trusted security tools that compare the 

current state of the system code against a known good state (e.g., a “gold” distribution 

version).  The second category consists of attacks that are capable of invoking malicious 
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functions during execution by changing data (e.g., function pointers in the interrupt 

handler table).  The attacks in this category do not make any changes to the kernel code, 

but they can be detected by control flow integrity (CFI) [1] and state-based control flow 

integrity (SBCFI) [42].  However, the attacks in the third category are capable of evading 

current defensive techniques. 

 This category, transient kernel control flow attacks, can achieve continual 

malicious function execution without persistently changing either kernel code or data 

(from the “gold” distribution).  One class of transient kernel control flow attacks is K-

Queue-driven attacks that use existing kernel interfaces (called K-Queues) to 

dynamically schedule executions of malicious functionality in the kernel space. K-

Queues are dynamic schedulable queues in the kernel that can be used to inject transient 

control flows.  All instances of K-Queues share some common properties. For example, 

they all provide APIs for submitting an execution request for some callback function, and 

they all have a dispatch engine that takes the request from the queue and invokes the 

callback function.  A kernel level malware can abuse these APIs to request that its 

malicious code be invoked as a callback function.  We have confirmed that this is feasible 

for the soft-timer queue, one type of K-Queue (Section 3.2.3). K-Queue-driven attacks 

are difficult to detect because malicious requests of the malware are hidden among the 

many other requests from legitimate kernel components, which prevents CFI and SBCFI 

from detecting them in this scenario. 

 To defend against K-Queue-driven transient control flow attacks, we verify and 

preserve a class of para-transactional invariants (PTIs) at runtime: A legitimate K-Queue 

callback function and its callees (functions it calls) should always target trusted code of 

the kernel during the execution of the callback function. In other words, the control flow 

resulting from a legitimate K-Queue request should never include the malware code.  If 

we can preserve these invariants, we can guarantee that control will never go to the 

malware code as a result of invoking a K-Queue callback function, which suggests that 
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K-Queue-driven transient control flow attacks can be defeated by preserving the related 

invariants. 

 Our defense encodes the PTIs associated with K-Queues into a whitelist of K-

Queue summary signatures.  Each K-Queue summary signature is a two-element tuple: 

<function, assertion>.  function represents a legitimate K-Queue callback function, and 

assertion represents properties of the legitimate data passed to the legitimate callback 

function as input.   We add a reference monitor to the system that verifies each pending 

K-Queue request (represented by a function attribute and a data attribute) before invoking 

the callback function.  Specifically, the function attribute is used to look up a summary 

signature database.  If a matching signature is found and the data attribute satisfies the 

matching assertion, the verification is successful, and the callback function is invoked.  

Otherwise, the callback function is not invoked. 

 Although our basic idea is straight-forward, completely implementing it is 

challenging.  The first challenge is the building of the summary signature database.  In 

order to find out all legitimate uses of a particular K-Queue, the entire code base of the 

kernel, including device drivers, needs to be studied.  However, a modern kernel is very 

complex, which means that hundreds of places may submit requests to a particular K-

Queue. Obviously, it is impractical to find all such K-Queue uses manually.  Fortunately, 

significant amount of information is already embedded in the kernel source code 

concerning the uses of K-Queues.  For example, there are certain “contract” (e.g., calling 

conventions, APIs, or helper functions) between the K-Queues and their requesters. So 

we can infer K-Queue usage by searching for such “contract” patterns in the kernel 

source code.  By applying static code analysis, we perform this kind of inference in an 

automated way. 

 Another challenge is the development of a checker program based on the result of 

the static analysis.  Again it is impractical to write the code manually because the 

verification can be very complex.  For example, a top-level K-Queue callback function 
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may need to be compared against hundreds of candidate functions, and depending on the 

candidate function the data attribute may need to be tested in many different ways. 

Obviously, manually writing and maintaining such code is tedious and error prone.  

Fortunately, this tediousness can be alleviated by applying automated code generation.  

The observation is that most of the checker code can be generated as a by-product of the 

static analysis process. 

 Our approach significantly reduces the amount of human labor in the summary 

signature generation and coding of the K-Queue checker.  For example, out of 46 

legitimate soft timer callback functions in a particular kernel of 482,369 lines of code, 

only one callback function is missed by the static analyzer. If the static analyzer is not 

used, all 46 callback functions would have to be manually recognized and their checker 

code manually written. 

3.2. K-Queue Driven Transient Control Flow Attacks 

3.2.1. Overview of Kernel Control Flows 

 We use Linux as a concrete and representative multi-threaded kernel.  The Linux 

kernel can have a number of control flows (listed in Figure 25): exception handlers, 

interrupt service routines, Softirqs, and kernel threads such as work queues [9]. 

 Of the various kinds of kernel control flows, exception and interrupt handlers 

execute at the highest priority, usually with interrupts disabled.  Exceptions such as 

system calls are a result of process invocation.  Interrupts are used by hardware (e.g., I/O 

devices) to notify the kernel of urgent events (for example, arrival of a packet in the 

network interface card that needs to be copied to kernel/user buffers). 

 Some exception and interrupt handler operations are interruptible and executed in 

Softirqs, for example, sending the keyboard line buffer to the terminal handler process.  

Softirqs are invoked in interrupt context (e.g. when the service routine for an I/O interrupt 
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is finished), but with interrupt enabled. Softirqs reduce the kernel response time to 

exceptions and interrupts. 

 Furthest from hardware, kernel threads execute in process context and are 

therefore fully interruptible.  They are interleaved with user processes, with the main 

difference being that kernel threads execute in kernel context while user processes 

execute in user process context.   

 

Figure 25: Kernel Control Flows with Schedulable Queues (Linux Kernel 2.6) 

3.2.2. K-Queues in the Linux Kernel 

 The kernel control flows outlined in Figure 25 are executed by the kernel through 

kernel schedulable queues or K-Queues for short.  These K-Queues are implemented as 

linked lists.  Representative K-Queues (with descending execution priorities) include IRQ 

action queues, tasklet queues, soft timer queues, and work queues. 
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3.2.2.1. IRQ Action Queues 

 When an interrupt happens, the Interrupt Descriptor Table (IDT) is used to find 

the corresponding Interrupt Service Routine (ISR), which may in turn delegate the 

interrupt handling to several IRQ actions. This is because multiple I/O devices can share 

an interrupt pin; therefore each of them may have its own way of handling the shared 

interrupt. The Linux kernel uses IRQ action queues to support such interrupt sharing.  

Each element of an IRQ action queue is a structure irqaction (Figure 26), which contains 

a handler field, a dev_id field, a pointer to the next element in the queue (the next field), 

and other information.  The handler field is a function pointer to the handler routine, and 

the dev_id field is used to uniquely identify the device that provides the handler routine.  

When an interrupt happens, the ISR invokes all handler routine in the corresponding IRQ 

action queue. 

3.2.2.2. Tasklet Queues 

 Compared to Interrupt Service Routines, tasklets are the preferred way to 

implement deferrable functions in I/O device drivers.  For example, a gigabit network 

interface card driver may dynamically adjust the size of receive buffers according to their 

fill level (e.g., allocate more buffer space when the fill level exceeds certain threshold).  

The expansion of receive buffers can be time consuming due to allocation of more kernel 

struct work_struct { 
        unsigned long pending; 
        struct list_head entry;  
        void (*func)(void *); 
        void *data; 
        void *wq_data;   
        struct timer_list timer; 
 }; 

Figure 28: The Definition of 
work_struct in Linux Kernel 
2.6 

struct tasklet_struct 
{  
        struct tasklet_struct *next; 
        unsigned long state; 
        atomic_t count; 
        void (*func)(unsigned long); 
        unsigned long data; 
}; 

Figure 27: The Definition of 
tasklet_struct in Linux Kernel 
2.6 

struct irqaction {       
        irqreturn_t (*handler)(int, 
void *, struct pt_regs *); 
        unsigned long flags; 
        cpumask_t mask;  
        const char *name;  
        void *dev_id; 
        struct irqaction *next; 
        int irq;         
        struct proc_dir_entry *dir; 
};

Figure 26: The Definition 
of irqaction in Linux 
Kernel 2.6 
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memory, and it should be interruptible, being an optimization that does not affect the 

correct reception of packets.  Consequently, the device driver can request a tasklet to 

expand receive buffers, instead of doing it in the receive interrupt handler. 

 As Figure 27 shows, a tasklet request contains a callback function pointer (in the 

func field) and a data pointer.  In Linux, the tasklet request is inserted into one of two 

tasklet queues, implemented by two Softirqs (numbers 0 and 5).  When the do_softirq 

function comes across a tasklet structure (Figure 27) during the traversal of the two 

queues, it invokes the callback function and passes on the data field as the input 

parameter. 

3.2.2.3. Work Queues 

 Work queues are used to schedule kernel threads that interleave with user 

processes.  Compared to tasklets, which execute in interrupt context, work queues 

execute kernel threads in kernel context.  Consequently, work queues run at lower 

priority than tasklets. 

 A work queue is a linked list of work requests (Figure 28), dynamically inserted 

through functions such as queue_work. Similar to a tasklet, each work request has a 

callback function (the func field) and a data field. The server for a work queue is a kernel 

thread such as events/0, which executes each element in the list by invoking its callback 

function with the data field passed on as the input parameter. 

 Linux kernel may have multiple work queues.  Two predefined work queues are 

the events work queue that can be used by all device drivers and the kblockd work queue 

used by the block device layer.  Additional work queues can be created at runtime. 

3.2.2.4. Soft Timer Queues 

 Since the attack scenarios described in Section 3.2.3 use soft timer queues, we 

provide more background information here.  Dynamic soft timer is a well-established 
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mechanism used by many kernel components to schedule the execution of timed-event 

handling functions. Common uses of soft timers include retries when polling a physical 

device, retransmission of data, and handling of network protocol timeouts. Figure 29 

shows one concrete example in Linux kernel 2.6.16, where a soft timer interrupt is used 

to implement the retransmission of data when the device is temporarily not ready.  

 

Figure 29: Use of soft timer in Linux-
2.6.16/drivers/char/isicom.c; the function 
isicom_tx may be periodically invoked as 
a result. 

 

 

 

Figure 30: A simplified view of the data 
structures related to soft timers 

 

 In the Linux kernel, the requester of a soft timer first prepares an instance of soft 

timer interrupt request (STIR) of type struct timer_list (such as tx in Figure 29), which 

contains information about the callback function (the function field), a data pointer (the 

data field), and the expiration time, among others. The add_timer function is invoked to 

add this instance of STIR into a linked list of pending timers: tvec_bases (Figure 30). 

 The soft timer queue is implemented by a Softirq (number 1) and STIRs executed 

in interrupt context (Figure 25).  When a STIR in the linked list expires, it is removed 

from the list, its callback function is invoked, and the data pointer is passed along to the 

callback function as the input parameter.  Typical callback functions also create the next 

STIR at the end of request processing (e.g., isicom_tx in Figure 29). 
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static struct timer_list tx; 
static void isicom_tx(unsigned long _data) 
{      ….. 
        init_timer(&tx);   
        tx.expires = jiffies + HZ/100;   
        tx.data = 0; 
        tx.function = isicom_tx; 
        add_timer(&tx); 
        return;  
} 
static int __devinit isicom_setup(void) 
{  
        …… 
        init_timer(&tx); 
        tx.expires = jiffies + 1;  tx.data = 0; 
        tx.function = isicom_tx; 
        add_timer(&tx);  
        …… 
} 
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3.2.3. Example Attacks Driven by K-Queues 

 A common feature among the K-Queues described in Section 3.2.2 is that they all 

contain some callback functions, and upon invocation such functions inject control flows 

into the main kernel control loop. Under the assumption that everything in the kernel 

space is equally trusted, such transfers of control are acceptable.  However, if one of the 

requesters is malicious, the K-Queue mechanism can be turned into a reliable way of 

maintaining stealthy control: an attack can be divided into a sequence of K-Queue 

requests and executed using successive callback functions.  In this section, we 

demonstrate that such an attack is possible by leveraging the soft timer queue (Section 

3.2.2.4). 

 For ease of presentation, we adopt a simple and informal model of kernel-level 

malware that executes useful work for a botnet owner or renter.  Under this model, the 

malware’s lifecycle can be divided into three steps: (1) system penetration, (2) interpose 

on the kernel control flow, and (3) continually execute malicious functionality.  

Penetration methods (step 1) such as buffer overflows [17] are well known and omitted 

from this discussion.  Previous persistent kernel control flow attacks (e.g., the rootkits 

listed in [42]) change kernel data structures (step 2) to force the kernel to branch/jump to 

malicious functionality (step 3).  Like persistent attacks, our new transient attacks 

interpose on the kernel’s control flow (step 2) at the time of the attack.  However, unlike 

persistent kernel control flow attacks, which typically replace a permanent function 

pointer in the kernel, a transient kernel control flow attack simply installs a malicious 

STIR (Section 3.2.2.4).  In our demonstration, malicious functionality is implemented 

using a Linux loadable kernel module (LKM) initialization function that requests the first 

STIR. When the malicious LKM is loaded, the kernel invokes its initialization function, 

and step 2 is completed.  The malware’s persistent execution (step 3) is possible because 

each STIR can request the next STIR that references the callback function.  For added 

stealth, the location of this callback function can change with each STIR execution. 
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 To understand the effectiveness of transient kernel control flow attacks, this 

section outlines the design of three soft timer driven attacks to show that they can 

perform a wide variety of malicious objectives.  These attacks are implemented as LKMs 

and run through the soft timer facility.  More specifically, they invoke the kernel API 

add_timer to request a STIR in their initialization function. add_timer takes as input a 

parameter that points to a data structure of type struct timer_list, and the function field 

of this structure is set to a callback function. A callback function is specific to the 

corresponding malware, but all such functions request the next STIR before they return, 

e.g., by calling add_timer. 

 The three soft-timer based malware examples below demonstrate violation of the 

three basic security properties: the stealthy key logger violates confidentiality, and the 

cycle stealer and the alter-scheduler violate both availability and integrity. 

3.2.3.1. Stealthy Key Logger 

 A typical class of malware steals sensitive information from the host node. A 

straightforward but easily detected malware implementation intercepts the kernel 

functions that process such sensitive information.  For example, a key logger [45] can 

replace the keyboard interrupt handler (e.g., IRQ 1) with a malicious handler that records 

the keyboard input.  The following implemented example shows that persistent kernel 

modifications are not needed for this type of malicious functionality. 

 

 

 A timer-driven key logger keeps kernel code and interrupt-related data structures 

intact.  It periodically looks at various buffers in the kernel, where the keyboard input 

information is stored.  As Figure 31 shows, when a key is pressed, the keyboard hardware 

TTY flip
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line discipline
buffer 

user 
app. 

keyboard

kernel space user space

Figure 31: Flow of keyboard input information in Linux 
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generates an interrupt. The keyboard interrupt handler fetches the key stroke information 

and temporarily stores it in the TTY flip buffer before transferring it into the TTY line 

discipline buffer. Finally, when a user-level application reads from the standard input 

device, the keystroke information is copied into the user’s buffer. 

 The sampling rate determines whether or not a timer-driven key logger can 

capture every keystroke.  The key logger can obtain keystroke information from the TTY 

flip buffer, the TTY line discipline buffer, or the user’s buffer.  The TTY flip buffer has a 

very short retention time relative to the TTY line discipline buffer, which is a large 

circular buffer (normally 4096 bytes).  Since each keystroke generates 2 bytes of 

information, the TTY line discipline buffer can keep information on up to 2048 

keystrokes. Since it can take several minutes for the average user to fill up the line 

discipline buffer, the key logger malware only needs to inspect the buffer periodically 

(e.g., once per minute should be good enough) to collect all of the user’s keystrokes. In 

the event that more frequent sampling is required, the key logger can request faster soft 

timer interrupts.  In this case, techniques for hiding the higher resource consumption 

should be employed (see Section 3.2.3.2) to keep the key logger stealthy. 

 We have implemented the sampling key logger on Linux to collect key strokes 

from an X Window desktop. It captures keystrokes entered into X Window applications, 

including the gedit editor, the Firefox web browser, and terminal window emulators.  

These applications handle many security-critical keystrokes including usernames, 

passwords, and credit card numbers. 

3.2.3.2. Stealthy Denial of Service Attack (CPU Cycle Stealer) 

 A second common type of attack causes a denial of service (DoS) or lowered 

quality of service.  In a soft timer-driven attack, the call back function can perform 

computationally intensive work to steal system resources thereby slowing down or 

halting any legitimate application.  One simple CPU cycle stealer has been implemented 
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by inserting a program to compute the factorial of a given number in the call back 

function. By adjusting the value of the number and the timer’s period, different 

slowdown factor can be obtained. We measure the CPU usage during such an attack 

where the timer's period is fixed at one second, as shown in Figure 32. When the value of 

the number is below 25, the CPU consumption by the malware is negligible. As the value 

becomes larger, there is an exponential increase in the CPU consumption by the malware.  

For example, when the value is 36, the CPU consumption is about 54%, and when the 

value grows to 42, the CPU consumption is close to 100%.  Note that the actual algorithm 

used to steal CPU cycles is irrelevant to the attack.  Instead, this attack shows that a 

resource-exhaustion attack can be stealthily deployed, preventing the system from 

performing its intended tasks. 
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Figure 32: CPU Consumption by Computing 
Factorials of Different Numbers 

 The attack becomes effective when the malware is able to hide itself and its 

effects from detection for a significant amount of time.  One problem with typical DoS 

attacks is that the wasted CPU cycles are detectable by system tools such as top.  This is 

because the kernel maintains performance accounting information for different sources of 

computation. For example, the CPU time consumed by the above malicious call back 

function is attributed to “software interrupt”. To hide this attack, the malicious call back 

function further manipulates the kernel accounting data (e.g., kstat_cpu(0).cpustat) such 
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that the CPU time used by the malicious STIR is attributed towards the idle CPU time. 

Therefore, it is not immediately obvious why the system performance is degrading. 

 Our CPU cycle stealer violates the availability of CPU resources and the integrity 

of the performance accounting information. However, since the performance accounting 

information is dynamic, there is no easy notion of what is normal. Under such attacks, a 

system may report slowdown of a service, but there can be many other reasons for poor 

performance (network congestion, server overload, retries due to device error, etc). 

Therefore, this type of attack is not easily discovered. 

3.2.3.3. Running a Hidden Process: the Alter-Scheduler 

 A third kind of malware, called alter-scheduler, is capable of running a malicious 

process without relying on the legitimate kernel scheduler.  Some existing malware can 

hide a malicious process by removing its entry from the all-task linked list of the kernel.  

However, this malware must leave the malicious task structure in the run queue in order 

for it to be scheduled.  Therefore, a detection tool such as [41] that cross-checks the all-

task linked list and the run queue is able to detect the malicious process. 

 The alter-scheduler malware implements a special scheduler exclusively for the 

malicious process.  It keeps a record of the malicious process structure and detaches it 

from both the all-task list and the standard run queue.  Within the STIR call back 

function, the alter-scheduler preempts the currently running task, as if a higher-priority 

process has become runnable.  Then it forces a context switch to the malicious process, as 

if the malicious process has been chosen as the new task to run.  The standard scheduler 

is resumed when the malicious process surrenders the CPU. 

 This style of attack is very powerful because the malicious process is made 

independent of (and thus invisible to) the legitimate kernel scheduler and other relevant 

routines, and the malicious alter-scheduler instead supplies the missing functionality 



 86

(e.g., giving the malicious process opportunities to run).  Therefore, malware based on 

the alter-scheduler can remain stealthy against state-of-the-art detectors such as [41]. 

3.3. A Specialized Defense against Soft-Timer-Driven Transient Kernel Control 

Flow Attacks 

3.3.1. Introduction 

 In this section, we discuss the design, implementation, and evaluation of a static 

analysis based tool that detects soft-timer driven attacks.  Under our security 

assumptions, this tool detects all soft-timer attacks with less than 7% performance 

overhead. 

 The static analysis tool uses summary signatures to differentiate STIRs from 

legitimate and malicious software.  Summary signatures characterize legitimate STIRs 

using callback functions and other constraints, and are derived through automated static 

analysis of the kernel source code.  At runtime, a reference monitor mediates STIR 

execution based on the summary signatures.  We take several measures to protect the 

reference monitor, including executing it in a different virtual machine and using memory 

protections to prevent an attacker from bypassing the mediation step.  Section 3.3.2 

provides a complete discussion of our architecture and its security properties. 

 In the rest of this section, we present our defense mechanism against such attacks.  

We describe the Xen-based prototype implementation of the defense and its evaluation in 

terms of effectiveness and performance overhead. 

3.3.2. Soft Timer Attack Detection and Defense 

 As described in Section 3.2.3, a soft timer based attack must usurp kernel control 

flow in order to execute malicious code.  Soft timers can be leveraged to do this in one of 

two ways: (Type 1) supply a malicious timer callback function, or (Type 2) supply a 

legitimate timer callback function but a malicious data pointer such that the control flow 
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of the legitimate callback function is modified to invoke malicious functionality as a 

subroutine (similar to the “jump-to-libc” style attacks [55]). The latter option is possible 

because when a STIR callback function is invoked, a data pointer embedded in the STIR 

is passed as the input parameter.  In some cases, the STIR callback function may derive a 

function pointer from this input, thereby allowing the data to alter the control flow. 

3.3.2.1. Security Assumptions and Threat Model 

 Our defensive techniques against soft timer attacks are based on four standard 

security assumptions.  First, since we use a virtualization-based architecture, we assume 

that the virtual machine manager (VMM) and the security virtual machine (VM) are part 

of the trusted computing base.  This assumption is based on the idea that the VMM code 

base can be small, and therefore auditable, and the interface between the guest VM and 

the VMM can be narrow and protected.  Our second assumption is that the legitimate 

kernel code in the guest VM’s memory can not be tampered with by malicious code.  In a 

production setting, this must be enforced by existing security tools such as Copilot [40] 

or SecVisor [53]. Third, we assume that the source code of the kernel and all kernel 

extensions are available for the static analysis portion of our tool.  Note that closed source 

operating system vendors could perform the static analysis and make the results available 

to the end-users.  For open source operating systems, the entire procedure can be 

performed by end-users. Lastly, in order to provide protections for this system, we 

require that the system can be booted into a known good state (i.e., secure boot [3]).  We 

then perform a brief initialization phase to setup our defensive system and then the guest 

VM is open to outside events and may be placed under attack at any time.   

 Our threat model allows an attacker to install malicious code on this system 

running at the highest privilege level.  The attacker is able to perform kernel-level 

attacks, but we assume that protections are in place to prevent tampering with kernel code 

as described above.  Under this model, the attacker is powerful and able to run soft timer 
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attacks unless our defensive system prevents them. This is a realistic threat model and no 

more constraining to an attacker than previous work in this space [42]. 

 

Figure 33: Illustration of a malicious STIR with a legitimate callback function 
(dev_watchdog in Linux kernel 2.6.16) and a malicious data pointer (Shaded area means 
malicious).  Here dev_watchdog may invoke a function pointer derived from the data 
field of the STIR. 

3.3.2.2. Legitimate STIR Identification 

 The basic idea of our proposed defense is to validate each STIR before its 

execution, thereby preventing the execution of malicious STIRs.  Based on the “fail-safe 

defaults” principle [49], we use a white list of STIR summary signatures to distinguish 

legitimate STIRs from malicious ones.  An unknown STIR that does not have a matching 

STIR summary signature is considered suspect and denied execution.   

3.3.2.2.1 STIR Summary Signatures 

 Recall that a malicious STIR can induce kernel control flow in two ways: (1) 

supply a malicious timer callback function, or (2) supply a legitimate timer callback 

function but a malicious data pointer.  In order to detect type 1 malicious STIRs, we only 

need to check their callback functions against a white list of legitimate timer callback 

functions.  However, in order to detect type 2 malicious STIRs, we must check the data 

pointer in addition to checking the callback function.  Figure 33 illustrates a type 2 

malicious STIR (in shaded color). This figure shows that the tx_timeout field of the 

data structure (in shaded color) referenced by the data pointer of the malicious STIR is 

set to a malicious function (e.g., malicious_foo). Therefore, we can detect this 
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malicious STIR by comparing the tx_timeout field against a white list of legitimate 

functions (for example e1000_tx_timeout) that can be assigned to this field for the 

legitimate STIRs. 

 Consequently, we choose the STIR summary signature as a two-element tuple 

<function, assertion>, where function represents a legitimate timer callback function 

(e.g., dev_watchdog), and assertion represents properties of legitimate data passed to 

the legitimate callback function as input.  Specifically, an assertion is the logical AND of 

0 or more parameterized predicates.  Each predicate has the form “deref equals 

functionlist”, where deref specifies a way to dereference a function pointer (e.g., 

data−>tx_timeout), and functionlist is the logical OR of one or more legitimate 

functions that can be assigned to the dereferenced function pointer.  An example assertion 

associated with dev_watchdog is: 

 

 Figure 34 shows the overall processing of the STIR summary signatures, divided 

into three phases corresponding to compile time, initialization time and evaluation time, 

respectively.  In the first phase, Linux kernel source code is statically analyzed by the 

STIR Analyzer to generate the symbolic STIR summary signatures.  These signatures are 

symbolic because the addresses of the functions in them may be unknown at compile 

time (e.g., due to dynamic kernel module loading).  The actual mappings of these 

functions to their runtime addresses happen in the second phase, when the symbolic 

summary signatures become resolved summary signatures. This process is in some way 

similar to partial evaluation [16]. Finally, during the normal operation of the guest VM 

(e.g., the evaluation time), the STIR Checker (Section 3.3.2.3) uses the resolved summary 

signatures to prevent control transfers due to malicious STIRs. 

 In the first phase, the STIR Analyzer performs a top-level analysis to derive the 

function part of the STIR summary signatures and a transitive closure analysis to generate 

the assertion part of the STIR summary signatures.  The latter analysis identifies all 

(data−>tx_timeout equals (el000_tx_timeout OR xircom_tx_timeout)) 
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function pointer dereferences of the input parameter in the legitimate STIR callback 

functions, as well as all legitimate functions that they target. 

  

Figure 34: Overall processing of the STIR summary signatures 

3.3.2.2.2 Top-Level Analysis 

 We first consider the collection of legitimate STIR callback functions, which we 

call LegitTimerfuncs. These are the top-level functions that require validation 

before execution. Each function in LegitTimerfuncs will become the function part 

of a STIR summary signature after the transitive closure analysis. 

Table 15: Different ways of assigning timer 
callback functions in the Linux kernel 

t.function = fn; 
t = TIMER_INITIALIZER (fn, expires, data); 
DEFINE_TIMER(t, fn, expires, data); 
setup_timer(&t, fn, data); 

 

 

 LegitTimerfuncs is constructed by scanning the kernel source code to 

identify all legitimate instances of soft timer callback functions. Table 15 shows the four 

techniques to link soft timer callback functions, denoted fn, to the timer_list 

structure, denoted t.  The first is by assignment.  The second and third techniques are 

macros that actually expand to assignment.  Therefore the first three cases are analyzed in 
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the same way: the STIR Analyzer traverses each assignment statement (lval = rval) 

of each function in the Linux kernel, and if lval ends with a field named function within 

a structure of type timer_list, then rval is recognized as a soft timer callback 

function.  The last technique to link a soft timer callback function is to use the 

setup_timer procedure.  This technique is handled by traversing each function call to 

setup_timer and collecting the second parameter in the function call. 

 We assume that benign programmers follow the standard APIs in Table 15 to 

request STIRs. Since the top-level analysis considers all 4 ways in Table 15, it can 

capture all legitimate STIR callback functions. 

3.3.2.2.3 STIR Callback Transitive Closure Analysis 

 Verification of the top-level LegitTimerfuncs is insufficient to guarantee 

defense because it only addresses type 1 malicious STIRs and not type 2. To detect 

potential attacks in lower level subroutines, the second part of the STIR Analyzer checks 

the function calls within each callback function in LegitTimerfuncs to see if any of 

them allows indirect control transfers.  Concretely, if function pointers are derived from 

the input parameter of a callback function and the callback function further branches to 

one of those pointers, then the analyzer raises a flag to indicate that the callback function 

needs a transitive closure analysis of all such pointers. 

 Figure 35 shows the high-level algorithm for the transitive closure analysis. Given 

a callback function fn with parameter arg, the STIR Analyzer first traverses each 

assignment statement of fn to compute the set of variables (tainted_vars) whose 

value can be influenced by arg, directly or indirectly. Next, the STIR Analyzer searches 

every function call statement of fn to see if the target function or its parameter is 

influenced by any variable in tainted_vars. Existence of such a function call means 

that control can go to places decided by arg, which could be exploited by malware. 
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 If the STIR Analyzer does not raise a flag for a callback function in the transitive 

closure analysis, a signature <function, assertion> is completed where function is the 

name of the callback function, and assertion is simply the boolean value true (which 

means that no further check is needed on the data parameter arg of the callback 

function).  

 

 

 If the STIR Analyzer raises a flag, a further step is performed to compute the 

assertion. This step can be further subdivided into three cases. 

 Case 1: Only the function name part of a function call statement (e.g. f in 

f(params) of Figure 35) is influenced by the input parameter (arg), which means that 

arg is used to derive a function pointer. In this case, the third step decides the legitimate 

functions that can be assigned to the function pointer derived from arg. For each distinct 

way of dereferencing arg, a predicate “deref equals functionlist” is generated, where 

deref specifies the way to dereference arg, and functionlist is the logical OR of 

legitimate functions that can be assigned to the dereferenced function pointer. The 

assertion then is the logical AND of all such predicates. The process of deriving 

legitimate functions in a predicate is similar to the top-level analysis (section 3.3.2.2.2) 

which identifies the timer callback functions. 

 Case 2: Only the parameter part of a function call statement (e.g. params in 

f(params) of Figure 35) is influenced by the input parameter arg. In this case, the 

same analysis in Figure 35 is applied to f, and all resultant predicates are appended 

(ANDed) to the assertion. 

Transitive closure analysis of fn(arg): 
    - Initially arg is added to tainted_vars; 

- For each assignment statement lval = rval or lval = f’(rval) in fn: 
       If any part of rval is in tainted_vars, then lval is added to tainted_vars. 

    - For each function call statements f(params) in fn: 
         If any part of f(params) is in tainted vars, then raise a flag for fn.

Figure 35: Analysis of each STIR callback function 



 93

 Case 3: Both the function name and the parameter of a function call statement are 

influenced by arg.  The third step treats this case as a composition of case 1 and case 2. 

E.g., it first processes the function name part to derive the legitimate functions and then 

processes the parameter part on each of the identified legitimate functions. 

 The STIR Analyzer relies on accurate type information to recognize function 

pointer dereferences.  In the Linux kernel (written in C), addresses could be calculated by 

pointer arithmetic operations.  In practice, we have found no such unsafe pointer 

arithmetic operations in all of the STIR related kernel functions we have inspected.  Due 

to the threat represented by kernel control flow attacks (both persistent and transient), we 

encourage kernel developers to continue avoiding pointer arithmetic operations in 

legitimate kernel functions.  This will help to support comprehensive kernel code analysis 

that depends on type information. 

3.3.2.2.4 Generation of Resolved STIR Summary Signatures 

 The outcome of the STIR Analyzer is the symbolic STIR summary signatures. 

These contain symbols (e.g., STIR callback function names) whose runtime addresses 

may not be determined statically. Specifically, Linux supports loadable kernel modules 

(LKMs) that can be added to the kernel at runtime. If a legitimate LKM uses a soft timer, 

the address of its callback function cannot be known until after the module is loaded (at 

runtime). Therefore, we provide a mechanism for registering such symbol-address 

mappings at runtime. 

 Because we employ a VMM-based detection architecture (described in Section 

3.3.2.3), the registration mechanism is split into two components: a guest VM component 

(called a STIR Symbol Mapper) and a security VM component (called a STIR Symbol 

Resolver), as shown in Figure 34. At the guest VM initialization time, the STIR Symbol 

Mapper first generates mappings from function names in the symbolic STIR summary 

signatures to virtual addresses in the guest kernel’s address space. It then informs the 
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STIR Symbol Resolver about these mappings through an inter-VM communication. 

When the STIR Symbol Resolver receives the mapping list, it merges the addresses with 

the corresponding symbolic STIR summary signatures, which become resolved STIR 

summary signatures that can be used to check the legitimacy of pending STIRs. 

3.3.2.3. The STIR Checker 

 Because soft timer attacks are at the kernel-level, a defense mechanism inside the 

same kernel would be vulnerable to tampering by an attacker.  Consequently, an effective 

defense must be isolated from the victim kernel.  Virtual machine managers (VMMs) are 

one environment that provides such isolation, allowing us to run the defensive 

mechanism in a VM that is isolated from the guest VM. Our implementation uses Xen [4] 

for these isolation properties. 

 
Figure 36: Defense against soft timer attacks 

 

 As shown in Figure 36, our architecture places the STIR Checker outside of the 

victim guest kernel in a separate domain (called the security VM).  The purpose of the 

STIR Checker is to prevent control transfers from the guest kernel to malicious 

functionality such as those outlined in Section 3.2.3.   Specifically, the software timer 

dispatcher of the guest kernel is modified to inform the STIR Checker about the callback 

function and related data when a pending STIR expires, and invoke the callback function 

only if the STIR Checker returns true (yes).  During the time when the STIR Checker is 

Security VM Guest VM 

STIR 
Dispatcher 

STIR 
Checker 

Resolved 
STIR 

Sig. DB 

 
Xen



 95

making a decision, the guest kernel is suspended waiting for the decision.  The 

communication between the STIR Checker in the security VM and the guest VM is 

facilitated by an inter-VM communication channel.  The small modification to the guest 

kernel is protected from tampering using the memory-protection capabilities from the 

Lares architecture [39]; therefore the STIR Checking cannot be trivially bypassed.  

 The STIR Checker module compares the next STIR to be dispatched against a list 

of resolved STIR summary signatures (Section 3.3.2.2).  As Figure 36 shows, all STIR 

summary signatures are stored in a database, indexed by their function element (Section 

3.3.2.2). Given a STIR, the STIR Checker first uses its function field as the index to look 

up the summary signature database. If a signature is found, and the located assertion 

evaluates to true on the data field, the STIR is considered legitimate. Otherwise it is 

considered malicious. 

3.3.3. Linux Implementation and Evaluation 

3.3.3.1. Implementation and Evaluation of the STIR Analyzer 

 We use the Common Intermediate Language (CIL) [37] to implement a prototype 

STIR Analyzer, which consists of several program analysis modules that implement the 

algorithms in section 3.3.2.2.  These modules receive high-level representations of the 

kernel source files generated by CIL, analyze them, and output the results into a text file. 

 The STIR Analyzer can analyze the entire Linux kernel 2.6.16 in about one hour 

on our test system (a 2.4 GHz Intel Core 2 Duo with 2 GB of RAM).  The analyzer found 

a total of 365 legitimate STIR callback functions in the 3688 kernel source files analyzed. 

 A majority of these STIR callback functions (333 out of 365) do not derive 

function pointers from the input parameter; therefore they can not be used to construct 

type 2 malicious STIRs (Section 3.3.2.2). 
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 On the other hand, 32 of the 365 top-level callback functions do derive function 

pointers from their input parameter.  Transitive closure analysis was carried out for these 

32 functions to identify the legitimate subroutines to which the derived function pointers 

can point.  We describe them in some detail, since they represent potential vulnerabilities 

(e.g., type 2 malicious STIRs) that are difficult to defend against. 

Table 16: Representative STIR callback functions that need transitive closure analysis 
(Linux-2.6.16) 
Source file Timer Callback Function Function Pointers Derived From Input 

drivers/input/joystick/db9.c db9_timer(struct db9 *private) 
private->pd->port->ops->read_data, 
private->pd->port->ops->read_status, 
private->pd->port->ops->write_control 

drivers/input/gameport/gameport
.c 

gameport_run_poll_handler(struct 
gameport *d) d->poll_handler 

drivers/isdn/hisax/isdnl3.c l3ExpireTimer (struct L3Timer *t) t->pc->st->lli.l4l3 
drivers/scsi/scsi_debug.c timer_intr_handler (unsigned long indx) queued_arr[indx].done_funct 
net/sched/sch_generic.c dev_watchdog (struct net_device *arg) arg->tx_timeout 
 

 Table 16 lists some of the 32 STIR callback functions that derive function 

pointers from the input parameter. From these functions, we can make the following 

observations.  First, the dereferences in some functions are complicated. For example, the 

input parameter private in db9_timer goes through 4 layers of indirection before 

reaching a function pointer (private−>pd−>port−>ops−>read_data).  Second, it 

is normal for a STIR callback function (such as db9_timer) to dereference the input 

parameter in multiple ways.  Correspondingly the assertion part of the STIR summary 

signature for such a function will have multiple predicates (Section 3.3.2.2). Finally, most 

of the callback functions interpret the input parameter as a pointer to a structure.  The 

only exception is timer_intr_handler in drivers/scsi/scsi_debug.c, which uses the 

input parameter as an index into a global array of structures. A function pointer is in turn 

retrieved from the array element indexed by the input parameter. 

 When a callback function such as dev_watchdog is encountered, the STIR 

Analyzer goes through a further step of transitive closure analysis.  For 

dev_watchdog, the STIR Analyzer reveals 113 functions in the Linux kernel that can 
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be assigned to dev−>tx_timeout. Due to space limitations, only 4 of them are shown 

in Table 17. 

 

 Uses of the Symbolic STIR Summary Signatures. As shown in Figure 34, the 

output of the STIR Analyzer is the symbolic STIR summary signatures.  We use this 

information to implement the rest of our defense.  The usage falls into two categories: 

first, the function names in the symbolic summary signatures are retrieved and 

incorporated into the STIR Symbol Mapper in the guest kernel and the STIR Symbol 

Resolver (Section 3.3.3.2) in the security VM; second, the function pointer dereference 

information in the symbolic summary signatures are transformed into offsets within data 

structures (through an offline type analysis) and then incorporated into the STIR Checker 

(Section 3.3.3.2). 

3.3.3.2. Implementation of the STIR Defense 

 Our implementation uses the Lares architecture [39] to transfer control to the 

STIR Checker in the security VM and to ensure that the STIR Dispatcher cannot be 

circumvented.  Lares provides the infrastructure needed to place hooks into the guest 

kernel, which divert execution into the security VM.  Lares also provides protections to 

ensure that the hooks in the guest VM are not tampered or circumvented. 

 This functionality is supported, in part, by a new hypercall (lares_op) that is 

effectively a system call from an operating system kernel into the VMM.  The security 

VM first invokes lares_op to register a shared memory region for exchanging 

information between itself and the VMM.  When the hook in the guest VM is triggered, a 

Table 17: A sampling of legitimate functions that can be assigned to dev−> tx_timeout in 
dev_watchdog 

Function Location 
ace_watchdog drivers/net/acenic.c 
ariadne_tx_timeout drivers/net/ariadne.c 
arlan_tx_timeout drivers/net/wireless/arlan-main.c 
e1000_tx_timeout drivers/net/e1000/e1000_main.c 
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VMCALL to lares_op is made with input parameters that contain the hook’s location 

and function arguments.  Upon receiving the VMCALL, lares_op pauses the guest 

VM, copies the parameters from the guest VM to the memory region shared with the 

security VM, and triggers a virtual IRQ.  The security VM handles the virtual IRQ by 

copying the event context from the guest into its address space.  It then performs its 

monitoring function and places the response in the shared memory block.  Next, 

lares_op is invoked again to inform the VMM that the response is ready.  Upon 

receiving this hypercall, the VMM unpauses the guest and enforces the response from the 

security VM in the guest VM. 

 For this work, we extended Lares by defining a new parameter structure passed 

through the VMCALL from the guest kernel to the security VM. Two commands are 

defined in this structure: REGISTER_STIR_SYMBOLS, and CHECK_STIR. The first 

command is used by the STIR Symbol Mapper, and the second command is used by the 

modified soft timer dispatching logic. 

3.3.3.2.1 Implementation of the STIR Symbol Mapper 

 The STIR Symbol Mapper is implemented in the guest VM as a loadable kernel 

module that notifies the STIR Symbol Resolver about symbol-address mappings through 

a VMCALL with the command REGISTER_STIR_SYMBOLS, and the address and 

length of an array of <symbol id, address> tuples. The return value of this VMCALL is a 

boolean (success or failure).  

 Our implementation of the Symbol Mapper first performs a filtering of available 

kernel and module symbols before invoking the VMCALL, such that only STIR-related 

symbol-address mappings are passed to the Symbol Resolver. In order to perform the 

filtering, the STIR Symbol Mapper is initialized with a static list of STIR-related 

symbols, which is derived from the symbolic STIR summary signatures generated by the 

STIR Analyzer (Section 3.3.3.1). 
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3.3.3.2.2 Implementation of the STIR Symbol Resolver 

 The STIR Symbol Resolver is the security VM component to support STIR 

related symbol registration.  The main task of this component is to handle the 

REGISTER_STIR_SYMBOLS command from the guest VM.  It first copies the STIR-

related symbol mappings (in a list of <symbol id, address>) from the guest kernel using 

the XenAccess [38] virtual machine introspection library.  Next, it merges the addresses 

in the mappings to the STIR summary signature database (Figure 34) for that guest, using 

the symbol id as a search index. 

 In our implementation, each guest has its own instance of the STIR summary 

signature database.  This database is initialized by a template generated from the STIR 

Analyzer (Section 3.3.3.1), where the addresses of the function symbols are undefined 

(therefore the signatures are initially symbolic signatures).  When the 

REGISTER_STIR_SYMBOLS command is executed, these symbols are resolved, and 

the corresponding signatures become resolved STIR summary signatures. 

 The symbol-address mapping registration must be carried out in a secure way, to 

ensure that the malware is unable to register a malicious callback function.  Therefore we 

assume that some other measure is taken to ensure that this registration is performed only 

when the guest OS is in a “known good” state.  Since a guest OS is less likely to be 

compromised in the early stage of its life (e.g., during a secure boot [3]), our current 

implementation approximates this requirement by dividing the life time of a guest OS 

into a symbol registration phase (e.g., the initialization time in Figure 34) followed by a 

guarding phase (the evaluation time in Figure 34), where symbol mappings can be 

registered only in the symbol registration phase (during this phase the guest OS is 

assumed to be in a “known good” state).  We further perform the phase transition 

automatically for the guest kernel when it performs such registration for the first time, 

which is intended to minimize the attack window where a malware can misuse the 

VMCALL interface to insert malicious address mappings.  However, a side effect of this 
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particular implementation decision is that all legitimate LKMs that use soft timers must 

be loaded prior to the registration phase. 

 We note that this requirement may be undesirable for on-demand kernel module 

loading, but it can be resolved by other implementation options, such as verifying the 

runtime integrity of the guest kernel using Copilot [40] before allowing symbol mappings 

to be registered for a second time.  Addressing these issues would improve the usability 

of the system, but security is already assured based on our assumptions.  For these 

reasons, the usability issues are beyond the scope of this dissertation, and we leave them 

as future work. 

3.3.3.2.3 Implementation of the STIR Checking 

 As shown in Figure 36, the current STIR Checker is implemented in a security 

VM running on Xen. Its core function is check_stir, which performs verification of 

pending STIRs. As Figure 37 shows, check_stir takes as input two integer parameters: 

function and data, and returns true (success) or false (failure). It uses the resolved STIR 

summary signatures that are transformed from symbolic STIR Signatures by the STIR 

Symbol Resolver. 

 The function deref in Figure 37 uses the APIs provided by XenAccess [38] to 

dereference the data pointer (data) passed from the guest kernel (e.g., 

 

Figure 37: Pseudocode of check_stir 

boolean check_stir (unsigned long function, unsigned long data){  
Use function as index to look up the resolved STIR summary signature database. 
If no signature is located, return false. 
Otherwise, if the assertion part of the located signature is empty, return true. 
                  Otherwise, return assertion (data). 

} 
boolean assertion (unsigned long data){ 
     for each predicate (deref equals functionlist){ 
           if deref(data) matches no address in functionlist 
           return false. 
     } 
     return true. 
} 



 101

data−>tx_timeout). The offset information is statically computed by using the 

output of the STIR Analyzer. For example, in order to dereference 

data−>tx_timeout, where data is of type struct net_device *, we statically 

compute the offset of the field tx_timeout by analyzing the definition of struct 

net_device. 

 Finally, the soft timer dispatching logic of the guest Linux kernel is modified to 

make a VMCALL into Xen. Specifically, when a STIR in the pending timers queue 

expires, the guest kernel invokes a VMCALL, with the command CHECK_STIR, plus 

the function and data fields of the STIR as parameters. If the VMCALL returns true, 

function is called as normal. Otherwise, a warning message is generated and function is 

not invoked. 

3.3.3.3. Evaluation of Linux Case Study 

3.3.3.3.1 Effectiveness of Malicious STIR Detection 

 To evaluate the efficacy of our approach, we experimentally confirmed that our 

implementation of the STIR Checker is able to detect the key logger, the CPU cycle 

stealer and the alter-scheduler discussed in section 3.2.3.  We first installed our three 

“malware” kernel modules into an unprotected guest Linux kernel and confirmed that 

they are able to achieve their intended malicious purposes (e.g., stealing key strokes). We 

then activated the STIR-Aware environment containing the modified guest kernel, the 

Lares-patched Xen VMM, and the security VM running the STIR-Checker.  We first 

instructed the STIR Symbol Mapper in the guest kernel to register symbols with the STIR 

Symbol Resolver; currently this is initiated by loading the Symbol Mapper LKM.  Then 

we installed the malware kernel modules.  The STIR Checker is able to immediately 

generate warnings about the suspicious STIRs used by the newly loaded modules, and the 

malware functions are not invoked by the guest kernel as a result. The “malware” 
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modules have been implemented using both attack techniques mentioned in Section 3.3.2. 

These results confirm that our approach can stop both types of STIR attacks. 

 False Positives.  Under the assumption that the STIR Analyzer processes the 

complete source code of the guest kernel (including all legitimate modules), the STIR 

Analyzer correctly carries out function pointer analysis, and the guest kernel installs all 

necessary and legitimate modules before registering symbol-address mappings, our 

detection can have no false positives. This is because all potential legitimate STIRs have 

been captured in the resolved STIR summary signature database before the guest Linux 

enters the guarding phase (Section 3.3.3.2.2).   

 False Negatives.  Due to our detection methodology, in order to obtain control, 

the malware must reuse legitimate STIR callback functions (such as dev_watchdog in 

Figure 33), and manipulate the parameter passed to the STIR callback function in such a 

way that control will eventually go to its malicious code.  One way to leverage 

dev_watchdog has been shown in Figure 33. However, our detection techniques 

counter this type of attack by calculating and verifying the legitimate functions that can 

be assigned to dev−>tx_timeout as shown in Table 17, thus closing this possibility. 

 However, it is possible for the malware to search deeper in the control flow for 

opportunities, such as looking at the function ace_watchdog in Table 17, since 

ace_watchdog takes dev as the input parameter. This approach will also fail because 

the transitive closure analysis covers this case. 

 In summary, we believe that our detection can have no false negatives under the 

threat model in Section 3.3.2.1.  However, since we may be facing a powerful adversary, 

our detection is not a panacea. A determined attacker may find a way not covered by our 

threat model to evade detection, although the STIR checking clearly raises the bar for an 

attacker. 

 Attacks on the STIR checking mechanism and our counter-measures.  We 

anticipate that attackers may use either of two different kinds of attacks in an attempt to 
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defeat the STIR checking.  (1) The malware may disable the modification to the soft 

timer dispatcher so that it does not make the VMCALL, or ignores the return value.  We 

protect against this by using Lares to make the code page of the soft timer dispatcher 

read-only.  (2) The malware may try to register false mappings for legitimate symbols.  

By performing the phase transition (Section 3.3.3.2.2), such actions are ignored and 

therefore have no effect. 

3.3.3.3.2 Performance Overhead 

 In order to measure the performance overhead of the STIR Checker, we ran a set 

of synthetic workloads: cat - read and display the content of 8000 small files (with size 

ranging from 5K to 7.5K bytes) in a complicated directory tree. ccrypt - encrypt a text 

stream of 64M bytes, where ccrypt3 is an open source encryption and decryption tool. 

gzip - compress a text file of 64M bytes using the --best option. cp - recursively copy a 

Linux kernel source tree. make - perform a full build of the Apache HTTP server (version 

2.2.2) from source. 

Table 18: Overhead measurement of the STIR Checker in execution time 
(seconds) 

 cat ccrypt gzip cp make 
Original 20.85 3.30 5.92 43.95 217.95
STIR-aware 20.96 3.30 6.01 46.61 218.58
Overhead 0.52% 0% 1.52% 6.05% 0.29% 
Callbacks/Sec 46.9 46.3 47.3 61.4 81.6 

 

 

 Table 18 shows the execution times of the workloads under the original Linux and 

the modified Linux (denoted STIR-aware). The VMM used in these experiments is Xen 

3.0.4, and the guest Linux kernel is version 2.6.16. The host CPU is an Intel Core 2 Duo 

                                                 

 
 
3 http://sourceforge.net/projects/ccrypt/ 
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running at 2.4 GHz with VT-x enabled.  The host is allocated 1.5 GB of memory and the 

HVM (i.e., fully virtualized) guest is allocated 512 MB of memory. 

 From Table 18 we can see that the performance overhead of the STIR Checker on 

the synthetic workloads is low (less than 7%). Our testing found that out of the 365 STIR 

callback functions identified by the STIR Analyzer, only 74 are present in the guest 

kernel at runtime, and the majority of these STIR callbacks are dormant most of the time 

(although there may be multiple STIRs sharing the same call back function), therefore the 

frequency that a STIR actually expires (e.g., the frequency of the callbacks) is not high. 

For example, the baseline frequency of callbacks is around 45 per second. Table 18 

shows the average frequency of callbacks during the experiment, which is similar to the 

baseline frequency. 

 We also evaluate the overhead of the STIR Checker by running the Iperf-2.0.2 

benchmark4.  In this experiment the security VM ran the Iperf server, and the guest VM 

ran the Iperf client.  Iperf is used to measure the maximum throughput between the 

virtual NIC in the guest VM (the front end) and the virtual bridge in the security VM (the 

backend). The experiment is run for 60 seconds, using 64KB buffers and 10 concurrent 

connections.  The average throughput in the original environment is 717.9 MB/s, and it is 

688.4 MB/s in the STIR-Aware environment.  This suggests a performance drop of 4.1% 

(decrease in network throughput). In addition, we measured the frequency of STIR 

callbacks during the Iperf experiment and found that it increased to 287 per second, 

which explains the slightly higher overhead of the STIR Checker compared to the 

synthetic workloads. 

 In summary, the performance overhead for the STIR-Aware environment is small 

compared to the added security benefit that it provides. 

                                                 

 
 
4 http://dast.nlanr.net/Projects/Iperf/  
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3.4. A General Defense against K-Queue Driven Transient Control Flow Attacks 

 While our defense in Section 3.3 addresses the soft-time-driven attacks, there are 

other instances of K-Queues (Section 3.2.2) that can be leveraged in a similar way to the 

soft timer by an attacker to maintain stealthy control of the victim kernel.  Therefore, we 

have extended our defense against soft-timer-based attacks to address the more general 

class of K-qeueue-driven control flow attacks.  Our contributions are (1) a unified static 

analysis framework and a set of tools that can generate summary signatures and the 

corresponding checking code for different K-Queue instances. (2) A runtime reference 

monitor that validates K-Queue invariants and guards such invariants against tampering. 

(3) A comprehensive experimental evaluation of our tools on a series of Linux kernel 

configurations. 

3.4.1. A Unified Static Analysis Framework and Tool Set 

 We build a unified static analysis framework (Figure 38) and develop a set of 

tools that can be used to derive specifications of legitimate K-Queue requests, based on 

the following observation: although details of different K-Queues may vary, their 

specifications can be derived by a common set of analysis tasks. For example, the top-

level legitimate K-Queue callback functions can be derived by a points-to analysis of the 

function pointer embedded in the respective K-Queue request data structures (Figure 26 – 

Figure 28); and every legitimate K-Queue callback function that takes a data parameter 

needs to go through a transitive closure analysis. It is more scalable and efficient to 

separate such analysis requirements out and allow the different K-Queue analyzers to 

share them.  This way, future K-Queue analyzers will not have to repeat the effort of 

existing K-Queue analyzers. Therefore, we develop basic analysis tools and an analysis 

engine that composes these basic tools to carry out the analysis for each K-Queue 

instance. 
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 Our analysis framework has the following advantages: 

 General: the same framework engine can be used by any K-Queue instance, 

with only different starting seed analysis tasks. Other than that, all K-Queue 

analysis proceeds in a similar fashion.  This ensures that our framework can 

handle future K-Queue instances not covered in Section 3.2.2. 

 Incremental: our framework uses a database to store basic analysis results.  

This database enables accumulation of static analysis results over time, and 

more importantly, it facilitates sharing of basic analysis results among the 

different K-Queue analyzers. 

 Automated: we develop a set of static analysis tools that can process the kernel 

source code and generate stubs of the corresponding checker code.  Such 

automation greatly simplifies the job of a human analyzer. 

 Tunable: our analysis framework leverage persistent data (e.g., a file-based 

work list and database tables) that can be easily modified offline, which offers 

an opportunity for correcting errors or omissions made by the analysis tools. 

Then we can have improved analysis precision. 

  

 

Figure 38: K-Queue static analysis framework 
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3.4.1.1. Basic Analysis Tasks 

 One of the basic analysis tasks is points-to analysis of function pointers, since our 

defense needs to know the legitimate targets of function pointers. For example, the top-

level legitimate K-Queue call back functions can be recognized in this way. We observe 

that there are certain “contracts” between a K-Queue and its requesters that enable 

automated inference of legitimate K-Queue callback functions. Figure 26 – Figure 28 

show the data structures in certain K-Queues that need to be initialized by a requester and 

read by a K-Queue dispatcher.  Among the fields that must be initialized is the callback 

function.  Table 19 summarizes possible ways that a callback function field can be 

assigned for different K-Queues. 

 Direct assignment (DA).  This is an unstructured way of assignment.  The 

requester needs to be aware of the K-Queue data structure, allocate memory for 

it, and initialize its fields. But here a callback function is directly assigned to 

the appropriate field, as oppose to the indirect assignment case below. 

 Indirect assignment (IA) through an intermediate variable. This way is also 

unstructured, but different from the DA case above, a function pointer variable 

is assigned to the callback function field.  For example, do_floppy in Table 

19 may point to several possible functions under different conditions. 

 Assignment through a function parameter (PA).  This is a structured way of 

assignment in which a requester can call a wrapper function which in turn 

initializes a K-Queue data structure. The actual callback function is passed in as 

a parameter to the wrapper function. For example, the task queue callback 

function can be assigned indirectly through a parameter to the function 

schedule_bh, which in turn assigns it to the routine field of a task queue 

structure.  In order to capture this kind of functions, the analyzer must 

recognize every function call to schedule_bh and record the corresponding 

actual parameter. 
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 Accordingly, we can decompose the points-to analysis task into three kinds of 

simpler tasks: direct assignment analysis, indirect assignment analysis, and parameter 

assignment analysis.  

Table 19: Possible ways that a call back function can be assigned in different K-Queues 
 Direct Assignment Parameter Assignment Indirect 

Assignment Structure Field Function Index (from 0) 
Soft timer timer_list function    
IRQ action 
queue 

irqaction handler request_irq 1  

Tasklet queue tasklet_struct func tasklet_init 1  
Task queue5 tq_struct routine schedule_bh 0 do_floppy 
 

 Another basic analysis tasks is transitive closure analysis, which identifies 

constraints on the data parameters passed on to a legitimate target function. For example, 

the K-Queue instances discussed in Section 3.2.2 all pass a requester-supplied data 

parameter to the callback function.  If the callback function makes control transfer 

decisions based on the data parameter, we must make sure that the attacker cannot supply 

a malicious data parameter to induce kernel control flow to the malware (e.g., via a type 2 

attack as the one in Figure 33). 

3.4.1.2. The Analysis Engine 

 The heart of the K-Queue static analysis framework is the analysis engine, which 

repeatedly consumes individual analysis tasks (Section 3.4.1.1) from a work list. This 

work list is dynamically changing: on one hand, tasks are removed from it by the analysis 

engine; on the other hand, new tasks may be appended to it as a result of performing an 

analysis task.  The analysis process is bootstrapped by some seed tasks inserted to the 

work list by a human analyzer, and it finishes when the work list becomes empty. 

                                                 

 
 
5 Task queue in Linux kernel 2.4.32 is the predecessor of work queue found in Linux kernel 2.6 
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 During each individual analysis task, the analysis engine runs one or more of the 

basic tools on the merged kernel source file as necessary and generates three kinds of 

output: (1) source code for the runtime checker to verify the integrity of a pending K-

Queue request, (2) static analysis results that are stored to a database for reuse, and (3) 

detailed logs for in-depth diagnosis by a human analyzer.  

3.4.1.3. The Work List 

 The work list contains pending static analysis tasks.  Each element in this list 

specifies the type of analysis (direct assignment, parameter assignment, or transitive 

closure) and the corresponding input parameters.  One example is <DA, tasklet_struct, 

func, 1>, which instructs the analysis engine to invoke the direct assignment collector for 

the func field of kernel data structure tasklet_struct. This task can bootstrap an analysis 

for the tasklet queue (section 3.2.2.2), one of the K-Queues. 

3.4.1.4. Basic Tools 

 These are the building-blocks of the static analyzer that carry out the basic 

analysis tasks discussed in Section 3.4.1.1. 

3.4.1.4.1 Direct Assignment Collector 

 This tool takes as input the name of a structure (e.g., irqaction) and the name 

of a field (e.g., handler) within that structure, and outputs kernel functions that can be 

assigned to such a field. It traverses each assignment statement (lval = rval) of the 

kernel. If lval ends with a field with the specified name, this field belongs to a structure 

with the specified name, and rval is an actual function, the tool collects rval as a 

legitimate function. If rval is not an actual function (e.g., a formal parameter), the tool 

dumps the exact expression of rval to the log file, which can help a human analyzer 

find corner cases that need other means of analysis (e.g., the Parameter Collector). 
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3.4.1.4.2 Parameter Collector 

 This tool collects target functions that are passed to a wrapper function as an 

actual parameter and later assigned to a function pointer (i.e., in the PA case in Table 19).  

It takes as input the name of a wrapper function and the index of the parameter of 

interest.  It traverses the entire kernel searching for each invocation to the specified 

function, and collects the actual values of the parameter at the specified index. 

3.4.1.4.3 Transitive Closure Analyzer 

 This tool is a major component of the tool set.  It takes as input the name of a 

function and a list of its formal parameters that are tainted, i.e., these parameters can 

influence the control flow of the given function. This tool performs a flow-sensitive and 

intra-procedural transitive closure analysis, starting from the given function and 

descending into functions called by the given function and so on.  It is flow-sensitive 

because it propagates taint to downstream functions through parameters.  It is intra-

procedural because only downstream functions defined within the same source file as the 

given function are analyzed.  In case that a downstream function is located in a different 

source file, an external transitive closure analysis task is scheduled for execution later. 

 This tool builds a hash table of all functions defined in the given kernel source 

file, so that it can quickly navigate to any function to continue the analysis. It also 

maintains a list of functions that needs to be analyzed (called a work list).  Initially, the 

work list contains only the function given as the input of this tool.  As this tool processes 

the given function, it may recognize more functions that need to be analyzed; then it adds 

such functions to the work list.  The main body of this tool is a loop over the work list 

until it becomes empty.  For each function in the work list, this tool performs two kinds 

of tasks: taint propagation and new analysis task recognition. 

 Taint propagation. The tool traverses each assignment statement (lval = 

rval) in the function and taints the variable lval if any part of rval is already tainted. 
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 New analysis task recognition. The tool traverses each function call statement 

fn(args) in the function to see if any part of fn or args or both is a tainted variable.  

If fn is tainted, a new points-to analysis task is generated for fn after the corresponding 

structure name and field name are derived from fn. If args is tainted and fn is an 

actual function, a transitive closure analysis task is generated for fn with the list of 

tainted arguments. 

 The work list maintained by the transitive closure analyzer is called an internal 

work list to differentiate it from the external work list used by the static analysis engine in 

Figure 38. New points-to analysis tasks are added to the external work list.  New 

transitive closure analysis tasks are first added to the internal work list, and if they can 

not be handled because the corresponding function is not defined within the given kernel 

source file, they are added to the external work list with the hope that they will be found 

in some other source file. 

3.4.1.5. Kernel Merging 

 One challenge of transitive closure analysis is how to continue analysis on 

downstream functions invoked by the current function – if such downstream functions are 

not in the current source file, the analysis task needs to be recorded somewhere and later 

tried on a different source file.   Although our external work list can satisfy this 

requirement, this kind of interprocedural transitive closure analysis can be very 

inefficient, because many kernel source files may need to be sifted through before the 

body of a function is found.  To optimize transitive closure analysis, we merge the entire 

kernel (given a configuration) into a single source file, so that the interprocedural analysis 

tasks are all turned into intraprocedural analysis.  We test our analysis engine on a series 

of merged kernel source files in Section 3.4.6.2. 

3.4.1.6. Result Database 
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 In our initial implementation, each kind of K-Queue analyzer runs independently. 

We quickly find out that there are redundant analysis tasks among the K-Queue analyzers 

that can be avoided.  For example, the fact that the task queue analyzer has performed 

points-to analysis on structure scsi_cmnd and field done is agnostic to the IRQ action 

queue analyzer even if the latter needs to perform points-to analysis on the same pointer.  

A more specific measurement of redundancy is presented in Table 20, which shows the 

number of common analysis tasks among pairs of the K-Queue analyzers.  When such 

sharing is significant, an analyzer may waste much time processing analysis that has been 

handled.  As Table 21 shows, without sharing, the soft timer analyzer runs for 284 

minutes on a kernel of 482,369 lines of code, but with sharing it only needs 127 minutes 

on the same kernel.  This means that enabling sharing among the K-Queue analyzers can 

have significant time savings.  Therefore, we introduce a database of individual points-to 

and transitive closure analysis results that is shared among the different K-Queue 

analyzers. This database contains two tables: pointsTo and transClosure, the formats of 

which are shown in Table 22 and Table 23, respectively. 

Table 20: Number of common analysis tasks among different K-Queues 
 Transitive Closure Points-to 
IRQ action queue  vs. soft timer queue 97 51 
IRQ action queue  vs. task queue 4 2 
Task queue vs. soft timer queue 4 3 

  

Table 21: Benefit of sharing on the K-Queue analysis time 
K-Queue Without sharing With sharing % time savings 
Task queue 155 minutes 147 minutes 5.2 
Tasklet queue 360 seconds 314 seconds 12.8 
IRQ action queue 175 minutes 166 minutes 5.1 
Soft timer queue 284 minutes 127 minutes 55.3 

 

 When the analysis engine (Section 3.4.1.2) sees a points-to analysis task, it first 

uses the structure and field names as a key to query the pointsTo table.  If a row is found, 

it directly uses the returned points-to set.  Otherwise, it invokes the points-to analysis 
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tools (e.g., the Direct Assignment Collector and the Parameter Collector) and inserts the 

results to the pointsTo table.  The analysis engine uses the transClosure table in a similar 

fashion except that it uses the function name and the list of tainted arguments as search 

keys. 

Table 22: Format of the table pointsTo 
Field Type Meaning 
sname varchar[40] Structure name 
fldname varchar[40] Field name 
p2set blob Set of function names 
 

Table 23: Format of the table transClosure 
Field Type Meaning 
Fname varchar[40] Function name 
Arglist varchar[20] List of tainted arguments 
pointer_set blob Set of function pointers used 
 

3.4.2. Code Generation for the K-Queue Checkers 

 The analysis tool generates code stub for the runtime checker.  The generated 

code includes two kinds of functions: those for verifying the control flow integrity of a 

function pointer and those for verifying the control flow integrity of a real function. 

Figure 39(a) shows the function pointer checker code for structure irqaction and field 

handler, and Figure 39(b) shows the checker code for the real function rtl8139_interrupt. 

 The main body of the code in Figure 39(a) performs a series of comparisons to 

match the runtime value of a function pointer to a real function in its points-to set.  If a 

match is found, the integrity of the function pointer is reduced to that of the matching real 

function.  If no such match is found, the function pointer has no integrity because it 

points to something unexpected (e.g., the malware code).  In other words, the integrity of 

a function pointer is the disjunction (logical OR) of the integrity of all its legitimate 

targets (real functions). 
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int  check_pointer_irqaction_2_handler_01(unsigned 
int data){ 
  unsigned int fp; 
  int offs[1] = {-1}; 
 
/* Fetch the function pointer value into fp */ 
  fp = deref_data(offs, data); 
  if (fp == 0) return 1; 
      
  if (fp == 0xc010c6cc) 
     return check_func_math_error_irq_01(data); 
  … 
  if (fp == 0xc01b4f50) 
     return check_func_rtl8139_interrupt_01(data); 
  … 
  unlock_kqueue_regions(); 
  return 0; 
} 

int check_func_rtl8139_interrupt_01(unsigned int 
data){ 
 
 return 1 
        && 
check_pointer_mii_if_info_2_mdio_read_110(data)
        && 
check_pointer_pci_ops_2_read_word_100(data) 
        && 
check_pointer_pci_ops_2_write_word_100(data); 
} 

(a) (b) 
Figure 39: Generated code for a function pointer (a) and a real function (b) 
 

 Similarly, the integrity of a real function is the conjunction (logical AND) of the 

integrity of all function pointers that it transfers control to, and if no such function 

pointers are used, the function has integrity by default.  For example, rtl8139_interrupt in 

Figure 39(b) invokes three function pointers.  One of these function pointers has structure 

name mii_if_info and field name mdio_read. 

 Note from Figure 39(a) that the function pointer checker uses constant address 

(e.g., 0xc010c6cc) to recognize actual target functions at runtime.  This is an optimization 

performed by the static analyzer to avoid address translation at runtime, which is possible 

for target functions built into the kernel.  Specifically, the code generator looks up the 

kernel symbol map generated by the normal kernel compiler to carry out such 

translations. 

 Also note from Figure 39(a) that before comparison the code fetches the runtime 

value of the function pointer by calling deref_data (Figure 40).  deref_data takes 

as input an array of integers (i.e., offsets) representing byte offsets. The exact content 

of this array is not supplied by the current implementation, because the automatic 

derivation of a function pointer expression by dereferencing the data variable is still an 
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ongoing research problem. For now, the output of the transitive closure analyzer contains 

enough information for a human analyzer to derive such an expression.  Once that is 

done, our offset analyzer (Section 3.4.3) can automatically analyze the given pointer 

expression and generate offset information to fill in the offset array in Figure 39(a). 

unsigned long deref_data(int *offsets, uint32_t data){ 
  unsigned long i = 0; 
  uint32_t tmpval, uint32_t guest_p = data;   
 
  while (offsets[i] != -1){   /*offsets array ends with -1*/ 
    if (guest_p == 0)   return -1;          /* refuse to dereference null pointer */ 
 
    lock_kqueue_region(guest_p + offsets[i], guest_p + offsets[i] + sizeof(uint32_t)); 
 
    if (lares_copy_from_guest(&tmpval, guest_p + offsets[i], sizeof(uint32_t))) 
        return -1; 
 
    guest_p = tmpval; 
    i++; 
  } 
  return (unsigned long) guest_p; 
} 
Figure 40: Source code for retrieving the value of a function pointer from a guest VM 

3.4.3. The Offset Analyzer 

 Since our runtime K-Queue checker employs the same architecture as the STIR 

Checker discussed in Section 3.3.2.3, there exists a semantic gap between the K-Queue 

checker and the guest kernel that resides in a different address space. Specifically, before 

the K-Queue checker can evaluate a pointer expression in the guest kernel, it needs to 

convert the structure field information into byte offset information; because what the K-

Queue checker can access are just raw memory pages of the guest kernel.  Therefore, we 

provide an offset analyzer for this purpose. 

3.4.3.1. Computing the Byte Offsets for Individual Fields 

 Given the definition of a structure, in order to compute the byte offset of a 

particular field within this structure, a naïve offset analyzer would just sum up the bytes 

occupied by the fields preceding the given field. However, this approach may give wrong 
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results because of the padding of structure fields by the compiler.  Specifically, a modern 

compiler can pad additional bytes between a field and its successor so that the latter will 

be properly aligned in memory [47]. Normally, such padding is invisible to the 

programmer.  However, when we want to fetch the value of a field from the raw memory, 

we must have the correct offset information taking the padding into account. 

 Although the C standard6 specifies the expected way of structure alignment and 

padding, statically computing the padding is error prone and non-portable because the 

exact number of bytes to pad depends on several factors, mainly the compiler and the 

machine architecture.  On the other hand, at runtime, we can reliably get the offset of a 

field by using the ‘&’ operator.  I.e., to compute the offset of field f within a structure s, 

we can simply compute &s.f-&s. Therefore, we take a hybrid approach which proceeds 

in several steps: 

 (1) Statically generate code that defines a variable for each structure type in the 

kernel and calculates the offset of each field within its structure when running. For 

example, for struct s and field f defined in Figure 41(a), our approach generates the code 

snippet in Figure 41(b). 

struct s{ …  struct foo f;  …}; 
struct foo{ …  int bar;  … }; 
 
 

(a) 

struct s s_v; 
printf(“s f %d foo 0\n”, 
               (unsigned int) &s_v.f - (unsigned int) &s_v); 
 

(b) 
Figure 41: Code generation for offset analysis 
  

 The code in Figure 41(b) also displays the type name of field f (i.e., foo) and 

whether f is a pointer (“0” means “no”, and “1” means “yes”).  Such information is used 

to make further dereference starting from f (e.g., s.f.bar), which will be discussed in 

more detail shortly; 
                                                 

 
 
6 ISO/IEC Standard 9899:1999 
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 (2) Compile the generated code on the target architecture. The major caveat is to 

include proper header files of the kernel in the generated code so that it can compile, 

which can be tricky.  We solve this problem by merging all type definitions of the kernel 

into the generated code. 

 (3) Run the generated code on the target architecture and collect the output. 

 (4) Transform and store the output into the offset database table for future 

inquiries.  This table has five attributes: structure name, field name, field offset, field type 

(structure name), and whether the field is a pointer. 

3.4.3.2. Computing Offset Information for Arbitrary Pointer Expressions 

 Given a function pointer expression nfffS .... 210 L , the offset analyzer returns an 

array of non-negative offset integers using the information in the offset database table.  It 

first uses ( 10 , fS ) to query the offset database table, if the result is not empty, it should 

contain the byte offset of 1f  within structure 0S , and the type name of 1f  if it is a 

structure type (let’s call the type 1S  for now). If 1f  is a structure type, the offset analyzer 

uses ( 21, fS ) to query the offset database table to obtain the byte offset of 2f  within 1S . 

This process continues until the offset of nf  within structure 1−nS is found from the 

database. 

 

Figure 42: Dereferencing of complex function pointers 
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 The offset database table records whether a field is a pointer, because this 

attribute influences the number of memory accesses when we evaluate a function pointer 

expression at runtime (i.e., the length of the array returned by the offset analyzer). 

Consider the above example again, if 1f  is a pointer as shown in Figure 42(b), in order to 

retrieve the value of 2f  we need to have two memory accesses, the first one retrieves 0S  

to get 1f , and the second one retrieves 1S  to get 2f .  However, if 1f  is not a pointer as 

shown in Figure 42(a), we only need one memory access because 1f  is a structure 

embedded in 0S , so 2f  can be obtained by reading directly from the byte offset 

offset1+offset2 of structure 0S . 

3.4.4. Guarding of K-Queue PTIs at Run-time 

3.4.4.1. TOCTTOU Attack against the K-Queue Defense 

 So far our defense validates (checks) a K-Queue PTI before the guest kernel uses 

it (i.e., invokes a K-Queue callback function).  However, if the guest kernel is multi-

threaded, which is the case for the current Linux kernel, such a defense is vulnerable to a 

TOCTTOU (Time-Of-Check-To-Time-Of-Use) attack: right after the K-Queue PTI is 

checked, but before the K-Queue call back function finishes, a malicious control flow in 

the guest kernel can potentially modify a function pointer involved in the PTI, so that the 

call back function transfers control to the malware.  This constitutes a TOCTTOU race 

condition.  Such attacks may be hard to mount and succeed, but they are possible.  

3.4.4.2. Countermeasures to the TOCTTOU Attacks 

 To counter the TOCTTOU attack against our defense, we protect the function 

pointers participated in a K-Queue PTI from tampering during the execution of the K-

Queue call back function.  Specifically, we temporarily write-protect memory regions in 

the guest domain that hold such function pointers until the guest kernel finishes the K-
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Queue call back function.  To support this kind of write-protection, we extend the shadow 

page table manager of the hypervisor so that it masks a memory page as read-only if it 

contains a protected memory region.  In case there is a legitimate write to the same page 

but out of the protected region, we use emulations. We add a hyper call for the security 

VM to request that a memory region for any guest VM be protected or unprotected. 

 During the K-Queue PTI checking, each participating structure field is first write-

protected (i.e., locked by lock_kqueue_region in Figure 40) and then checked. The 

addresses of the structure fields protected so far are recorded in an array, so that when the 

checking fails at any point, the already protected structure fields can be unlocked (i.e.  by 

unlock_kqueue_regions in Figure 39(a) ).  If the checking succeeds, the unlocking 

is deferred until an acknowledgement is received from the guest VM that the call back 

function has finished. 

 We take careful measures to unlock structure fields as soon as possible.  This is 

because of the performance penalty caused by page-level write-protection.  Since 

hardware support for fine-grained memory protection is not widely available, we have to 

satisfy with a suboptimal page-level protection. 

 Our memory region protection can defeat the TOCTTOU attacks mentioned 

above.  Since we lock a structure field before using it, the attacker cannot change the 

verification result. If the attacker modifies a legitimate function pointer before it is locked 

(and thus verified), the checker will discover this modification and not follow (use) the 

function pointer.  On the other hand, the attacker cannot modify the function pointer 

immediately after it is verified, because it has been locked.  By the time the attacker can 

modify the function pointer, it has been used (i.e., the callback function has finished), so 

the modification is harmless.  Note that if we first verify then lock, then there is a 

possibility that an attacker modifies the verified function pointer before it is locked, thus 

the attack can still succeed.  So verifying then locking is a wrong design. 
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3.4.5. Implementation 

3.4.5.1. The K-Queue Analyzers 

 We implement the static analyzers for the IRQ action queue, the tasklet queue, the 

task queue, and the soft timer queue based on our static analysis framework.  Such 

analyzers are extended from the STIR analyzer (Section 3.3.3.1), so they use the same 

CIL [37] tool.  We implement the analysis engine in Shell scripts, which invokes the CIL 

modules that implement the basic analysis toos (Section 3.4.1.4). These modules are 

written in Objective Caml7.  We use MySQL8 (version 5.1.34) to store the result database 

(Section 3.4.1.6), and write a Java program to insert into or query the result database. 

3.4.5.2. The K-Queue Defense 

 We implement runtime defense for the IRQ action queue, the tasklet queue, and 

the task queue, based on the STIR Checker in Section 3.3.3.2, which includes a security 

VM component and a guest VM component. The STIR Checker also has a better 

implementation because of the code generation. We define several new commands in the 

parameter structure passed through the VMCALL from the guest kernel to the security 

VM; these commands correspond to invocations and completions of the new K-Queue 

requests. 

 The K-Queue checkers in the Security VM are implemented based on the code 

stubs generated by the K-Queue analyzers.  They inspect the runtime status of the guest 

kernel via the XenAccess [38] library, and they use the offset information returned by the 

Offset Analyzer (Section 3.4.3).  We implement the Offset Analyzer in a mixture of CIL 

module, Shell script, and Java program, and the offset result database is again MySQL. 

                                                 

 
 
7 http://caml.inria.fr/ocaml/index.en.html 
8 http://www.mysql.com 
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 Finally, we modify the dispatching logic of the IRQ action queue, the tasklet 

queue, the soft timer queue, and the task queue in the guest kernel (version 2.4.32), so 

that a VMCALL is made into Xen to start the K-Queue checking before a pending K-

Queue request is invoked. The guest kernel is suspended until the result comes back from 

the security VM.  Table 24 summarizes the modifications to the guest kernel. 

Table 24: Modifications to the guest kernel 
K-Queue instance Kernel function(s) modified Location 
Tasklet queue tasklet_action, 

tasklet_hi_action 
kernel/softirq.c 

IRQ action queue handle_IRQ_event arch/i386/kernel/irq.c 
Task queue __run_task_queue kernel/softirq.c 
Soft timer queue run_timer_list kernel/timer.c 
 

3.4.6. Evaluation of the K-Queue Defense 

3.4.6.1.Security Properties 

 Our K-Queue defense has no false negatives because all function pointers 

occurring in the control flow of the callback function are validated no matter if they are 

actually invoked by the callback function or not.  Specifically, the transitive closure 

analyzer searches through every possible execution path (starting from the callback 

function) and recognizes function pointers along the way. Some of the function pointers 

may not be called in a particular invocation, but the analyzer conservatively reports all 

such function pointers for points-to analysis. 

 On the other hand, our implementation of the K-Queue defense may have false 

positives, due to the limitations of the points-to analysis module in our K-Queue analyzer. 

Our current implementation of the K-Queue analyzers covers direct assignment (DA) and 

some cases of parameter assignment (PA), but not indirect assignment (IA).  Therefore, a 

real function assigned through IA is not collected into the points-to set by the tools 
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automatically.  This will result in a false alarm at runtime should such a function is 

invoked. 

 One example of IA is through do_floppy, a global function pointer variable 

that can point to different functions (main_command_interrupt, 

seek_interrupt, recal_interrupt, or reset_interrupt) under different 

situations. To fully capture the IA case would require an alias analysis which is by itself 

an open research area [27]. 

 Our current implementation does not support function pointer arrays, either. For 

example, bh_action in kernel/softirq.c invokes bh_base[nr] where nr is the data 

associated with bh_action in a tasklet request.  Fortunately, the integrity of 

bh_base[nr] can be verified by finding the known-good values of the global array 

bh_base, which is assigned by the init_bh function call.  By analyzing all calls to 

init_bh and collect the second parameter, we can figure out the known-good values of 

this array. 

Table 25: Complicated function pointers encountered by the task queue analyzer  
Pointer specification Parameter Assignment Indirect Assignment 
Structure Field Function Index 

(from 0) 
acpi_os_dpc function acpi_os_queue_for_ex

ecution 
1 n/a 

ata_queued_cmd scsidone ata_scsi_qc_new 3 n/a 
buffer_head b_end_io init_buffer 1 “callback” in fs/xfs/linux-

2.4/xfs_buf.c, function 
_pagebuf_page_io 

pci_socket handler pci_register_callback 1 n/a 
scsi_cmnd done scsi_do_cmd 4 “SRpnt->sr_done” in 

drivers/scsi/scsi.c, function 
scsi_init_cmd_from_req 

 

 Despite the limitations, our implementation can satisfy the majority of pointer 

analysis tasks in the K-Queues that we found.  For example, out of 55 points-to analysis 

tasks for the task queue, 50 use direct assignment (DA).  The corner cases include five 

parameter assignments (PA) and two indirect assignments (IA), as listed in Table 25. The 
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most complicated case is a PA analysis for ata_queued_cmd->scsidone, which 

involves multiple levels of PAs. But our manual analysis only took several minutes to 

find that the points-to set is {scsi_done, scsi_old_done, scsi_eh_done}. 

3.4.6.2. Performance and Scalability of the K-Queue Static Analyzer 

 We test the performance of our K-Queue static analyzer on a series of 10 

configurations of a Linux kernel with increased complexity.  The kernel version used in 

the evaluation is 2.4.32. The first configuration is a minimal kernel that can boot the 

guest virtual machine. It contains 482,369 lines of code, with essential support for IDE 

disk, ext3 file system, and TCP/IP networking. Each successive configuration includes 

more device drivers.  The most complex kernel configuration contains 1,010,196 lines of 

code. A summary of these 10 kernel configurations is presented in Table 26. 

Table 26: Configurations and complexity of the kernels used in the evaluation 
Configuration Description Lines of code (LOC) 

1 Baseline, minimal configuration 482,369
2 + Multi-device support + Networking options + 

Telephony Support 
563,944

3 + ATA/IDE/MFM/RLL support 592,472
4 + SCSI support (part I) 633,021
5 + SCSI support (part II) 685,526
6 + SCSI support (part III) 765,729
7 + e100 network device support (part I) 820,610
8 + e100 network device support (part II) 882,138
9 + e1000 network device support 948,183
10 + wireless network device support 1,010,196

 

 Each experimental run covers four kinds of K-Queues in the following order: task 

queue, tasklet queue, IRQ action queue, and soft timer queue.  Initially the analysis result 

database is empty. As the analysis proceeds the analysis results are accumulated in the 

database. Each K-Queue instance takes advantage of analysis that has finished, including 

its own analysis tasks and the K-Queue instance(s) ahead of it.  For example, the analysis 
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for the soft timer queue uses some results of the IRQ action queue, so it takes less time 

than if it has no existing results to use. 

 The experimental run for each kernel configuration proceeds as follows.  Each K-

Queue analysis starts with a points-to analysis task. When the points-to set is determined, 

a round of transitive closure analysis is performed, one for each function in the points-to 

set.  As the result of the transitive closure analysis, new points-to analysis tasks may be 

recognized.  If this is the case, another round of points-to analysis is performed, which 

may lead to one more round of transitive closure analysis.  This iterative process 

continues until the last round of transitive closure analysis recognizes no new points-to 

analysis tasks. 

 All the experiments run on a 3.0 GHz Intel Pentium 4 with 1 GB of RAM.  

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

400 500 600 700 800 900 1,000

KLOC

Soft timer

IRQ action
Tasklet

Task queue

 

Figure 43: Cumulative Analysis Time (in minutes) 
  

 The first thing that we measure is the execution time of the K-Queue analysis.  

Figure 43 shows the cumulative execution time at four milestones for different kernel 

configurations.  For example, the curve marked as “IRQ action” represents the total 

analysis time for the task queue, the tasklet queue, and the IRQ action queue. The X-axis 

is the complexity of the kernel configurations measured in KLOC or “thousand lines of 

code”, and the Y-axis is the cumulative execution time in minutes.  The ten points on 

each curve correspond to the measurements for the ten kernel configurations, the left-
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most point corresponds to configuration 1, and the right-most point corresponds to 

configuration 10. 

 From Figure 43 we can see that in general the analysis time increases as the 

complexity of the kernel increases.  However, it seems that the execution time is not a 

simple function of the kernel size.  In fact, we can see flat segments as well as steep 

slopes on the curves, suggesting a non-uniform distribution of the K-Queue requesters in 

the kernel.  For example, the first steep slope occurs on the IRQ action queue curve from 

configuration 2 to configuration 3. This is because configuration 3 requires more analysis 

tasks.  For example, from configuration 2 to configuration 3, the points-to analysis for 

structure hwif_s and field ide_dma_test_irq returns six more actual functions. 

These functions belong to the device drivers for several kinds of IDE controller chipsets 

(including the CMD64 series of chipsets and the HPT36X/37X chipset) that are added in 

configuration 3.  These new actual functions demands more transitive closure analysis 

than configuration 2.  However, from configuration 3 to configuration 4 the IRQ action 

queue curve is pretty flat, because there are few new analysis tasks. 

 The way that the execution time curves look like is expected, because our choice 

for new kernel configurations is agnostic to K-Queue usage. 
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Figure 44: Number of External Transitive Closure Analysis 
 

 Figure 44 shows the number of external transitive closure analysis for the four 

kinds of K-Queues and different kernel configurations.  Since we use merged kernel 
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source files, all such analysis is due to new results from points-to analysis.  Clearly, this 

number increases as the kernel size increases.  The reasoning is as follows.  As the size of 

the kernel grows, more source code is analyzed; then the number of requesters for a 

particular K-Queue is potentially increased.  This leads to a larger points-to set for the top 

level function pointers, thus more functions that need transitive closure analysis.  The 

new transitive closure analysis may lead to new points-to analysis tasks, which result in 

more transitive closure analysis, and so on. 
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Figure 45: Number of Points-to Analysis 
 

 The above reasoning is supported by Figure 45, in which we show the 

measurement of the number of points-to analysis during the experiments. We can see that 

for all four kinds of K-Queues, the number of points-to analysis tasks indeed increases 

with the size of the kernel. 
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Figure 46: Number of Cumulative Internal Transitive Closure Analysis 
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 Figure 46 shows the cumulative number of internal transitive closure analysis 

during the experiments.  The curves have a similar trend as the number of external 

transitive closure analysis and points-to analysis, but at a much larger scale (20x).  This 

demonstrates the benefit of kernel merging: if it is not used, a large number of such 

internal transitive closure analyses would become external transitive closure analyses; 

then the total analysis time would increase dramatically. This is because an external 

transitive closure analysis is more time-consuming than an internal transitive closure 

analysis. Each external transitive closure analysis has a constant overhead of 

preprocessing and parsing the entire kernel source code, while internal transitive closure 

analysis does not incur such overhead. As the kernel becomes more complex, such 

overhead becomes more and more significant. 

 One interesting point on Figure 46 is that up until configuration 6 the soft timer 

queue accounts for the most internal transitive closure analysis among the four K-Queues.  

But starting from configuration 7, this dominance is lost to the IRQ action queue, and the 

number of internal transitive analysis for the soft timer queue even drops from 4,457 in 

configuration 6 to 2,715 in configuration 7.  This is a correct behavior, because the 

number of internal transitive closure analysis for the IRQ action queue increases 

dramatically from 3,449 in configuration 6 to 9,485 in configuration 7, in such a way that 

they cover a significant portion of the analysis for the soft timer queue.  As a supporting 

evidence, the analysis for the IRQ action queue took 1,548 minutes in configuration 7, 

which is significantly longer than that for configuration 6 (630 minutes), as shown in 

Figure 43. 

 The Simplest K-Queue 

 From the evaluation, it seems that the tasklet queue is the simplest K-Queue.  The 

numbers of points-to and transitive closure analysis stay very low until the nineth 

configuration. The entire analysis can be finished in less than 15 minutes in most cases.  

This suggests that tasklet is not heavily used in Linux kernel 2.4.32. 
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3.4.6.3. Benefit of the Code Generation 

 Our K-Queue static analysis tools generate the corresponding checker code as a 

by-product.  For example, they generate over 5,800 lines of code for kernel configuration 

1 in Table 26.  Without automated code generation, it would be very time-consuming to 

develop such checker programs manually. 

3.4.6.4. Performance Overhead of the K-Queue Checker 

 To measure the runtime overhead of our K-Queue Checker, we run the five 

benchmarks used to measure the overhead of the STIR Checker (Section 3.3.3.3.2). 

These benchmarks run on a 2.66 GHz Intel Core 2 Duo with VT-x support, the security 

VM (Domain 0) is allocated 512 MB of RAM, and the guest VM is allocated 256 MB of 

RAM. The hypervisor is Xen 3.3.0, and the guest kernel is Linux 2.4.32 with 

configuration 1 (Table 26). Each experiment is run 10 times and the mean and standard 

deviation of the measurements are computed. Table 27 shows the preliminary results. 

 Table 27 contains three kinds of results. The “Original” results are collected on 

unmodified Xen and guest kernel and serve as the baseline. The results marked as “K-

Queue-aware, no lock” are collected on the modified Xen and guest kernel, but with the 

page-level memory protection (Section 3.4.4.2) turned off. Finally, the results marked as 

“K-Queue-aware, lock” are collected on the full-fledged defense mechanism including 

the modified Xen, the modified guest kernel, and the page-level memory protection. 

 From Table 27, we can see that our implementation of the K-Queue Checker 

incurs performance overhead ranging from 11% to 25 times slow down. This is much 

higher than the overhead measurement for the STIR Checker (Table 18). 

 In order to understand the result, we carry out an event analysis of the K-Queue 

runtime defense and identify three reasons for the high overhead: (1) the K-Queue 

defense needs to protect more K-Queue instances (four instead of one) and some K-

Queue call backs happen at a high frequency. For example, IRQ action call back 
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functions happen at the rate of roughly 136 per second, and tasklet call back functions 

have a similar frequency, not to mention the other two K-Queues. (2) More importantly, 

some K-Queue call back functions are very complicated, so they require a large number 

of function pointer verification.  For example, ide_intr, the IRQ action call back function 

for the IDE disk, requires a total of 192 function pointers to be verified, which leads to 

648 cross-domain introspections.  On the other hand, the most complicated soft timer call 

back function dev_watchdog needs only three function pointer verification and five cross-

domain introspections, and the second most complicated soft timer call back function 

neigh_periodic_timer needs only two function pointer verification and two cross-domain 

introspections. This explains why the overhead measurements in Table 18 are much 

lower than those in Table 27. For example, the cp benchmark has the highest 

performance penalty in Table 27, because cp demands frequent disk operations and 

accordingly frequent callbacks to ide_intr (42 times per second), and we know that the 

verification of ide_intr is very complicated. (3) The coarse-grain locking of memory 

pages by our defense causes a large number of legitimate memory write operations to be 

emulated in software, which adds more performance overhead.  This is consistent with 

the results in Table 27. For example, the cp benchmark sees a 25 times slowdown with 

the memory protection turned on, but once the memory protection is turned off, the 

slowdown drops to 14 times. 

Table 27: Overhead of the K-Queue Checker 
 cat ccrypt gzip cp make 
Original 13.06 

±1.61
3.05 

±0.27
5.35

±0.10
50.00 
±4.35 

128.78
±3.91

K-Queue-
aware, no lock 

16.66 
±0.38

3.89 
±0.50

5.93
±0.12

749.99 
±42.97 

175.92
±5.24

Overhead 28% 28% 11% 1,400% 37%
K-Queue-
aware, lock 

17.15 
±1.68

4.28 
±0.99

6.12
±0.59

1,309.73 
±100.03 

210.44
±25.16

Overhead 31% 40% 14% 2,519% 63%
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 Complexity of the K-Queue Checker 

 To further understand the performance overhead, we define and measure two 

complexity metrics of the K-Queue Checker program: layer and fanout.  First we give an 

informal definition of the layer of verification: each layer is associated with a function 

pointer. The checker starts in layer 1, where the associated function pointer is the top-

level K-Queue function pointers embedded in the K-Queue data structures.  At layer i the 

value of the function pointer is first verified against a white list; if the verification is 

successful then the integrity of the target function itself needs to be verified, which may 

require the checking of a new function pointer. In this case the verification enters a new 

layer i + 1.  When the verification for a target function completes, the checker returns to 

the previous layer (i.e., layer i).  We also define the fanout of a function as the number of 

function pointers whose integrity needs to be checked for that function. 

 For our K-Queue Checker program, the maximum layer during the verification of 

the IRQ action queue is seven, which happens when the top-level call back function is 

ide_intr (linux-2.4.32/drivers/ide/ide-io.c). And during the checking of the IRQ action 

queue, the maximum fanout is 15 (for the function idedisk_error in linux-

2.4.32/drivers/ide/ide-disk.c).  

3.5. Related Work 

 Defenses against Stealthy Attacks. Defense techniques against attacks that 

change kernel code include Tripwire [32], a file system integrity checker, IMA [48], a 

load-time kernel and application code integrity checker, and Copilot [40] and Pioneer 

[54], runtime kernel code checkers.  Representative defenses for attacks that change 

kernel data include CFI [1] and SBCFI [42]. 

 To the best of our knowledge, there have been few concrete instances of attacks 

that do not change kernel code or data, but insert transient execution units into a 

schedulable queue.  The Blue Chicken [46] uses a KTIMER in a Windows Vista kernel to 
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reinstall the Blue Pill hypervisor, which is an example of how a kernel-level malware can 

use soft timer to maintain control of the victim platform. The “cheat” attack described in 

[56] may be regarded as a user-level example, since it uses the to-be-scheduled task 

queue. Known malware detection methods have difficulties with transient kernel control 

flow attacks.  For example, signatures of known malicious STIRs can be created by 

reverse engineering the malware.  This approach suffers from the same problems seen in 

the anti-virus community.  Specifically, they are unable to detect or prevent zero-day 

attacks, and the process of finding appropriate signatures is difficult and error prone.  For 

these reasons, signature checking alone is insufficient to mitigate this threat. 

 Another possible approach for detecting these attacks is to extend control flow 

integrity techniques such as SBCFI [42] and CFI [1].  SBCFI is a checker for persistent 

kernel control flow attacks.  It starts by looking at kernel global variables and performs a 

garbage-collection style traversal of kernel data structures to verify that all of the function 

pointers target trusted addresses in the kernel.  SBCFI can potentially catch a type 1 

malicious STIR, since the function pointer targets can be validated when SBCFI scans the 

kernel variables.  However, SBCFI can not detect type 2 STIRs because it does not 

follow the uninterpreted data field included as part of the callback: it is not defined as a 

pointer type.  The definition of data is intended to allow maximum flexibility for different 

call back functions. In order to make SBCFI work on type 2 STIRs, accurate type 

information for the data field in each call back function must be added, which would 

require a static analysis of all STIR callback functions.  Such an approach would then be 

similar to our STIR Analyzer (Section 3.3.2.2). 

 A more general approach, CFI [1] uses inline reference monitors [22] to compare 

the dynamic execution flow of a program against a statically computed control flow 

graph (CFG).  CFI is a general framework that can be instantiated into an alternative 

implementation of the STIR Checker, however the exact checks that must be performed 
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against the STIR callback functions would still need to be constructed by tools such as 

the STIR Analyzer. 

 Secure Kernel Extensions. K-Queue driven malware exploits an interface 

exposed by the core kernel to its extensions. There has been some effort to achieve finer-

grained divisions within a monolithic kernel, with the goal of improving security. For 

example, Palladium [15] demotes the privileges of the kernel extensions so that 

misbehaving or malicious extensions cannot harm the core portion of the kernel. 

However, such approaches can only prevent the malicious extensions from corrupting the 

core kernel, but cannot prevent sensitive information stealing (section 3.2.3.1) and denial 

of service attacks (Section 3.2.3.2). 

 Points-to analysis. There has been a large body of research work on points-to 

analysis.  However, this problem has not been completely solved yet because in general 

points-to analysis is undecidable.  As a result, a large number of approximation 

algorithms have been proposed, with various trade-off between efficiency and precision. 

Interested readers are referred to a survey by Hind [27]. Our K-Queue analyzer provides 

specialized points-to analysis algorithms (e.g., direct assignment collector and parameter 

collector) for the Linux kernel, which are not intended for a general solution to the 

points-to analysis problem. 

 Applications of Static Analysis in Systems and Security Research. In recent 

years, static analysis of software has been used for many purposes including deriving 

application behavior models for intrusion detection systems [60], building control flow 

graphs of an application [1], and determining type and global variable information for the 

Linux kernel [42].  This technique has also been applied to finding bugs in both kernel 

and application code [13, 21, and 35].  In this dissertation, we add one more use case by 

applying this technique to derive summary signatures for legitimate K-Queue requests. 
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3.6. Discussion 

 The K-Queue case study demonstrates another example of para-transactional 

invariants (PTIs):  that the control flow resulting from a legitimate K-Queue callback 

function should always target trusted code of the kernel.  The scope of such K-Queue 

invariants is from the verification of the K-Queue request to the end of the execution of 

the callback function. 
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CHAPTER 4                                                                       

CONCLUSION AND FUTURE WORK 

 Attacks exploiting inherent shortcomings of today’s operating systems (e.g., 

missing transactional support) are the most difficult to defend because they are often 

stealthy and non-obtrusive. Yet such attacks are on the rise to become a major security 

threat.  This dissertation argues that we can defend these attacks by identifying and 

guarding specific correctness models. To exemplify our approach, we solve two classes 

of important security problems: TOCTTOU and K-Queue.  TOCTTOU is a file-based 

race condition that represents a high security risk due to the wide-scale deployment of 

multiprocessors, and K-Queue driven attacks misuse the schedulable queues interface to 

inject transient and malicious control flows in the victim kernel and can evade the 

detection of state-of-the-art kernel integrity checkers. We propose the CUU model that is 

capable of enumerating all potential TOCTTOU vulnerabilities and our CUU-guided 

defense mechanism and implementation are also complete. We apply automated static 

analysis and code generation that infer the correct usage model of the K-Queues (called 

summary signatures) and generate the corresponding guards that enforce the usage model 

at runtime.  Our work suggests that improving the correctness of operating systems 

enable powerful defense against certain classes of malicious attacks, and that automated 

software engineering techniques are very helpful in increasing the productivity of such 

efforts. 

4.1. Future Work 

 Reduce the runtime overhead of the K-Queue Checker 

 The current K-Queue Checker incurs unacceptable overhead in some cases. But 

the overhead can be reduced in at least two ways. First, we can optimize the Checker 

software to verify different function pointers in the same data structure together and 
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avoid redundant pointer verifications. This is because the function pointers often cluster 

in a small number of data structures (such as hwif_s and tty_driver), and different target 

functions often require the same function pointer to be verified. Second, we can employ 

architectural support for fine-grain memory protection (e.g., Mondrian [64]) once they 

are available, to reduce the overhead of our defense against the TOCTTOU attacks on our 

K-Queue Checkers. 

 Support for polymorphic or obfuscated code. Our current design assumes that 

there is a fixed memory layout for the guest kernel; therefore, it cannot support 

obfuscated guest kernels which apply techniques such as address space randomization.  

Under the current assumption, the runtime addresses of the kernel functions are known in 

advance and therefore can be built into the K-Queue checker.  However, when the 

address space of the guest kernel is obfuscated, the runtime addresses of the kernel 

functions can not be known in advance.  In order to support such guest kernels, we need 

to generate checker code that refers to kernel functions by name rather than address, and 

we need to add a runtime service in the guest kernel that maps function names to their 

actual addresses.  

 Support for loadable kernel modules. Due to a constraint imposed by the CIL 

merger, our current implementation of the K-Queue defense does not support loadable 

kernel modules. We plan to make CIL merger run over individual kernel modules, so that 

we can capture K-Queue requests made by them. These results can then be merged into 

the result database for the core kernel. 
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APPENDIX A 

 

Table 28: Exploitable TOCTTOU Pairs in Linux 
Invariant TOCTTOU Pairs 

∅=)( fresolve  

<stat, creat> <stat, open> <stat, mknod> <stat, rename> <access, creat> <access, open> 
<access, mknod> <access, rename> <unlink, creat> <unlink, open> <unlink, mknod> 
<unlink, rename> <rename, creat> <rename, open> <rename, mknod> <rename, rename> 
<stat, mkdir> <stat, rename> <access, mkdir> <access, rename> <rmdir, mkdir> <rmdir, 
rename> <rename, mkdir> <rename, rename> <stat, link> <stat, symlink> <stat, rename> 
<access, link> <access, symlink> <access, rename> <unlink, link> <unlink, symlink> 
<unlink, rename> <rename, link> <rename, symlink> <rename, rename> 

bfresolve =)(  

<stat, chmod> <stat, chown> <stat, truncate> <stat, utime> <stat, open> <stat, execve> 
<access, chmod> <access, chown> <access, truncate> <access, utime> <access, open> 
<access, execve> <creat, chmod> <creat, chown> <creat, truncate> <creat, utime> <creat, 
open> <creat, execve> <open, chmod> <open, chown> <open, truncate> <open, utime> 
<open, open> <open, execve> <mknod, chmod> <mknod, chown> <mknod, truncate> 
<mknod, utime> <mknod, open> <mknod, execve> <rename, chmod> <rename, chown> 
<rename, truncate> <rename, utime> <rename, open> <rename, execve> <link, chmod> 
<link, chown> <link, truncate> <link, utime> <link, open> <link, execve> <symlink, 
chmod> <symlink, chown> <symlink, truncate> <symlink, utime> <symlink, open> 
<symlink, execve> <rename, chmod> <rename, chown> <rename, truncate> <rename, 
utime> <rename, open> <rename, execve> <chmod, chmod> <chmod, chown> <chmod, 
truncate> <chmod, utime> <chmod, open> <chmod, execve> <chown, chmod> <chown, 
chown> <chown, truncate> <chown, utime> <chown, open> <chown, execve> <truncate, 
chmod> <truncate, chown> <truncate, truncate> <truncate, utime> <truncate, open> 
<truncate, execve> <utime, chmod> <utime, chown> <utime, truncate> <utime, utime> 
<utime, open> <utime, execve> <open, chmod> <open, chown> <open, truncate> <open, 
utime> <open, open> <open, execve> <execve, chmod> <execve, chown> <execve, 
truncate> <execve, utime> <execve, open> <execve, execve> <stat, chmod> <stat, chown> 
<stat, utime> <stat, mount> <stat, chdir> <stat, chroot> <stat, pivot_root> <access, chmod> 
<access, chown> <access, utime> <access, mount> <access, chdir> <access, chroot> 
<access, pivot_root> <mkdir, chmod> <mkdir, chown> <mkdir, utime> <mkdir, mount> 
<mkdir, chdir> <mkdir, chroot> <mkdir, pivot_root> <rename, chmod> <rename, chown> 
<rename, utime> <rename, mount> <rename, chdir> <rename, chroot> <rename, 
pivot_root> <link, chmod> <link, chown> <link, utime> <link, mount> <link, chdir> <link, 
chroot> <link, pivot_root> <symlink, chmod> <symlink, chown> <symlink, utime> 
<symlink, mount> <symlink, chdir> <symlink, chroot> <symlink, pivot_root> <rename, 
chmod> <rename, chown> <rename, utime> <rename, mount> <rename, chdir> <rename, 
chroot> <rename, pivot_root> <chmod, chmod> <chmod, chown> <chmod, utime> 
<chmod, mount> <chmod, chdir> <chmod, chroot> <chmod, pivot_root> <chown, chmod> 
<chown, chown> <chown, utime> <chown, mount> <chown, chdir> <chown, chroot> 
<chown, pivot_root> <utime, chmod> <utime, chown> <utime, utime> <utime, mount> 
<utime, chdir> <utime, chroot> <utime, pivot_root> <mount, chmod> <mount, chown> 
<mount, utime> <mount, mount> <mount, chdir> <mount, chroot> <mount, pivot_root> 
<chdir, chmod> <chdir, chown> <chdir, utime> <chdir, mount> <chdir, chdir> <chdir, 
chroot> <chdir, pivot_root> <chroot, chmod> <chroot, chown> <chroot, utime> <chroot, 
mount> <chroot, chdir> <chroot, chroot> <chroot, pivot_root> <pivot_root, chmod> 
<pivot_root, chown> <pivot_root, utime> <pivot_root, mount> <pivot_root, chdir> 
<pivot_root, chroot> <pivot_root, pivot_root> 
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