
IMPROVING OPERATING SYSTEMS SECURITY: TWO CASE

STUDIES

A Dissertation
Presented to

The Academic Faculty

by

Jinpeng Wei

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology
December 2009

IMPROVING OPERATNG SYSTEMS SECURITY: TWO CASE

STUDIES

Approved by:

Dr. Calton Pu, Advisor
College of Computing
Georgia Institute of Technology

 Dr. Douglas Blough
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Mustaque Ahamad
College of Computing
Georgia Institute of Technology

 Dr. Kang Li
Department of Computer Science
University of Georgia

Dr. Jonathon Giffin
College of Computing
Georgia Institute of Technology

 Date Approved: July 30, 2009

To my wife, Qiong, and my daughter, Ellen.

iv

ACKNOWLEDGEMENTS

 I wish to thank my advisor, Calton Pu, for his guidance and support. He led me

into the realm of Computer Science research and taught me along the way the important

skills for a mature researcher. And most importantly, he showed me how to enjoy

research as a way of living and eventually I understood.

 I wish to thank my wife, Qiong, who has given me continuous love,

encouragement, and support over the years, especially the most difficult times during my

Ph.D. study. Without her I may not finish my thesis.

 I wish to thank my parents, who raised me and gave me the best education that

they could think of, and kept watching my progress with their love and considerations.

 I appreciate many professors that have directly or indirectly enlightened me,

including Dr. Ling Liu, Dr. Mustaque Ahamad, Dr. Jonathon Giffin, Dr. Karsten Schwan,

Dr. Alessandro Orso, and Dr. Douglas Blough at Georgia Tech and Dr. Kang Li at

University of Georgia.

 I also thank Jeffrey R. Jackson and John A. Wiegert at Intel Corporation who

exposed me to virtualization technology (especially Xen), Carlos V. Rozas and Anand

Rajan at Intel Corporation who inspired my work on kernel control flow integrity, and

Dr. Xiaolan Zhang, Dr. Vasanth Bala, and Dr. Arun Iyengar at IBM T. J. Watson

Research Center.

 Finally, I thank my fellow Ph.D. students in the Distributed Data Intensive

Systems Lab, especially Dr. Lenin Singaravelu, Dr. Lakshmish Ramaswamy, Dr. Li

Xiong, Dr. Jianjun Zhang, Dr. Mudhakar Srivatsa, Dr. James Caverlee, Dr. Steve Webb,

 v

Qinyi Wu, Younggyun Koh, and Danesh Irani. I feel grateful to have worked with and

shared frustration and happiness with all of them.

 vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iv

LIST OF TABLES xi

LIST OF FIGURES xiii

LIST OF SYMBOLS AND ABBREVIATIONS xvi

SUMMARY xvii

CHAPTER

1 Introduction 1

1.1. Contributions 3

1.2. Outline 4

1.3. Mapping From This Dissertation to Existing Publications 5

2 TOCTTOU 6

2.1. Problem Statement 6

2.2. The CUU Model of TOCTTOU 7

2.2.1. The Abstract File System 8

2.2.1.1. Definition of Abstract File System 8

2.2.1.2. Concurrent Access to AbsFS 10

2.2.2. The CUU Model 11

2.2.2.1. Exclusion of Careless Programming 11

2.2.2.2. TOCTTOU Attacks in AbsFS 12

2.2.2.3. An Enumeration of TOCTTOU pairs 13

2.2.2.4. Prevention of TOCTTOU Attacks 15

2.2.3. Concrete File System Examples 18

 vii

2.2.3.1. Exclusion of Careless File Attribute Settings 18

2.2.3.2. Unix-Style File Systems 18

2.2.3.3. Study of POSIX and Linux 20

2.2.3.4. Example of TOCTTOU Attacks 21

2.3. Detection of TOCTTOU Vulnerabilities 23

2.3.1. Model-Based TOCTTOU Detection 23

2.3.1.1. Components of Practical Attacks 23

2.3.1.2. CUU Model-Based Detection Tools 24

2.3.2. Analysis of Real TOCTTOU Attacks 27

2.3.2.1. Experimental Setup 27

2.3.2.2. rpm 4.2 Temporary File Vulnerability 29

2.3.2.3. vi 6.1 Vulnerability 32

2.3.2.4. Other Vulnerabilities 37

2.3.3. Evaluation of Detection Method 38

2.3.3.1. Discussion of False Negatives 38

2.3.3.2. Discussion of False Positives 39

2.3.3.3. Overhead Measurements 40

2.4. Probabilistic Analysis of TOCTTOU Attacks 42

2.4.1. A Probabilistic Model for Predicting TOCTTOU Attack Success Rate 43

2.4.1.1. The Basic General Model 43

2.4.1.2. Attack Success Rate on a Uniprocessor 44

2.4.1.3. Attack Success Rate on Multiprocessors 45

2.4.1.4. Probabilistic Analysis of P(attack finished | victim not suspended) 46

2.4.2. Baseline Measurements of TOCTTOU Attacks on Uniprocessors 48

2.4.2.1. vi Attack Experiments on Uniprocessors 48

 viii

2.4.2.2. gedit Attack Experiment on Uniprocessors 49

2.4.3. vi Attack Experiments on SMP 49

2.4.4. gedit Attack Experiments on Multiprocessors 51

2.4.4.1. gedit SMP Attack Event Analysis 52

2.4.4.2. gedit Multicore Attack Experiment 53

2.4.5. Pipelining Attacker Program 56

2.5. A Methodical Defense against TOCTTOU Attacks: The EDGI Approach 57

2.5.1. The Design of EDGI 58

2.5.1.1. Overview 58

2.5.1.2. Invariant Maintenance 59

2.5.1.3. Inferring Invariant Scope 60

2.5.1.4. Remaining Issues 62

2.5.2. Linux Implementation of EDGI 63

2.5.2.1. Invariant Holder Tracking 63

2.5.2.2. Invariant Maintenance 66

2.5.2.3. Engineering of EDGI Software 66

2.5.3. Experimental Evaluation of EDGI 67

2.5.3.1. Discussion of False Negatives 67

2.5.3.2. Discussion of False Positives 68

2.5.3.3. Overhead Measurements 68

2.6. Related Work 70

2.7. Discussion 72

3 K-Queue Driven Transient Kernel Control Flow Attacks 73

3.1. Overview 73

3.2. K-Queue Driven Transient Control Flow Attacks 76

 ix

3.2.1. Overview of Kernel Control Flows 76

3.2.2. K-Queues in the Linux Kernel 77

3.2.2.1. IRQ Action Queues 78

3.2.2.2. Tasklet Queues 78

3.2.2.3. Work Queues 79

3.2.2.4. Soft Timer Queues 79

3.2.3. Example Attacks Driven by K-Queues 81

3.2.3.1. Stealthy Key Logger 82

3.2.3.2. Stealthy Denial of Service Attack (CPU Cycle Stealer) 83

3.2.3.3. Running a Hidden Process: the Alter-Scheduler 85

3.3. A Specialized Defense against Soft-Timer-Driven Transient Kernel Control
Flow Attacks 86

3.3.1. Introduction 86

3.3.2. Soft Timer Attack Detection and Defense 86

3.3.2.1. Security Assumptions and Threat Model 87

3.3.2.2. Legitimate STIR Identification 88

3.3.2.3. The STIR Checker 94

3.3.3. Linux Implementation and Evaluation 95

3.3.3.1. Implementation and Evaluation of the STIR Analyzer 95

3.3.3.2. Implementation of the STIR Defense 97

3.3.3.3. Evaluation of Linux Case Study 101

3.4. A General Defense against K-Queue Driven Transient Control Flow Attacks105

3.4.1. A Unified Static Analysis Framework and Tool Set 105

3.4.1.1. Basic Analysis Tasks 107

3.4.1.2. The Analysis Engine 108

3.4.1.3. The Work List 109

 x

3.4.1.4. Basic Tools 109

3.4.1.5. Kernel Merging 111

3.4.1.6. Result Database 111

3.4.2. Code Generation for the K-Queue Checkers 113

3.4.3. The Offset Analyzer 115

3.4.3.1. Computing the Byte Offsets for Individual Fields 115

3.4.3.2. Computing Offset Information for Arbitrary Pointer Expressions 117

3.4.4. Guarding of K-Queue PTIs at Run-time 118

3.4.4.1. TOCTTOU Attack against the K-Queue Defense 118

3.4.4.2. Countermeasures to the TOCTTOU Attacks 118

3.4.5. Implementation 120

3.4.5.1. The K-Queue Analyzers 120

3.4.5.2. The K-Queue Defense 120

3.4.6. Evaluation of the K-Queue Defense 121

3.4.6.1. Security Properties 121

3.4.6.2. Performance and Scalability of the K-Queue Static Analyzer 123

3.4.6.3. Benefit of the Code Generation 128

3.4.6.4. Performance Overhead of the K-Queue Checker 128

3.5. Related Work 130

3.6. Discussion 133

4 Conclusion and Future Work 134

4.1. Future Work 134

APPENDIX A 136

REFERENCES 137

 xi

LIST OF TABLES

Page

Table 1: Reported TOCTTOU vulnerabilities 7

Table 2: Exploitable TOCTTOU pairs (AbsFS) 14

Table 3: Enumeration of exploitable TOCTTOU pairs (Unix-Style file systems) 19

Table 4: Some existing TOCTTOU vulnerabilities on Unix-style systems 22

Table 5: Directories immune to TOCTTOU 24

Table 6: Templates used in the Inspector 27

Table 7: Potential TOCTTOU vulnerabilities 29

Table 8: Baseline vulnerability of rpm 30

Table 9: Andrew Benchmark Results (msec) 41

Table 10: The average L and D values (in microseconds) for vi SMP attack experiments
(file size = 1 byte) 51

Table 11: L and D values for gedit attacks on a SMP (in microseconds) 52

Table 12: Invariant Maintenance Rules in EDGI 61

Table 13: Linux Implementation of EDGI 67

Table 14: Andrew Benchmark Results (in milliseconds) 69

Table 15: Different ways of assigning timer callback functions in the Linux kernel 90

Table 16: Representative STIR callback functions that need transitive closure analysis
(Linux-2.6.16) 96

Table 17: A sampling of legitimate functions that can be assigned to dev−> tx_timeout in
dev_watchdog 97

Table 18: Overhead measurement of the STIR Checker in execution time (seconds) 103

Table 19: Possible ways that a call back function can be assigned in different K-Queues
 108

Table 20: Number of common analysis tasks among different K-Queues 112

 xii

Table 21: Benefit of sharing on the K-Queue analysis time 112

Table 22: Format of the table pointsTo 113

Table 23: Format of the table transClosure 113

Table 24: Modifications to the guest kernel 121

Table 25: Complicated function pointers encountered by the task queue analyzer 122

Table 26: Configurations and complexity of the kernels used in the evaluation 123

Table 27: Overhead of the K-Queue Checker 129

Table 28: Exploitable TOCTTOU Pairs in Linux 136

 xiii

LIST OF FIGURES

Page

Figure 1: State Transition Diagram for FS Object f 10

Figure 2: The Enhanced State Transition Diagram with Two Users 16

Figure 3: POSIX File Operations 20

Figure 4: Linux File Operations 20

Figure 5: Framework for TOCTTOU detection 25

Figure 6: Event Analysis of rpm Exploit 31

Figure 7: (a) vi 6.1 vulnerability (fileio.c), (b) gedit 2.8.3 vulnerability (gedit-document.c)
 32

Figure 8: Vulnerability and Save Window Sizes of vi 33

Figure 9: Window of Vulnerability Divided by Total Save Time, as a Function of File
Size 33

Figure 10: A program to attack vi 34

Figure 11: Event Analysis of the vi Exploit 35

Figure 12: Success Rate of Attacking vi (small files) 36

Figure 13: Success Rates of Attacking vi (large files) 36

Figure 14: gedit attack program version 1 38

Figure 15: Andrew Benchmark Results 41

Figure 16: Different attack scheduling on a multiprocessor 47

Figure 17: Success rate of attacking vi (small files) on a uniprocessor 48

Figure 18: The L and D values for vi SMP attack experiments 50

Figure 19: Failed gedit attack (program 1) on a multi-core 53

Figure 20: gedit attack program version 2 55

Figure 21: Successful gedit attack (program 2) on a multi-core 56

 xiv

Figure 22: The effect of parallelizing the attack program 57

Figure 23: Invariant Holder Tracking Algorithm 65

Figure 24: Andrew Benchmark Results 69

Figure 25: Kernel Control Flows with Schedulable Queues (Kernel 2.6) 77

Figure 26: The Definition of irqaction in Linux Kernel 2.6 78

Figure 27: The Definition of tasklet_struct in Linux Kernel 2.6 78

Figure 28: The Definition of work_struct in Linux Kernel 2.6 78

Figure 29: Use of soft timer in Linux-2.6.16/drivers/char/isicom.c; the function isicom_tx
may be periodically invoked as a result. 80

Figure 30: A simplified view of the data structures related to soft timers 80

Figure 31: Flow of keyboard input information in Linux 82

Figure 32: CPU Consumption by Computing Factorials of Different Numbers 84

Figure 33: Illustration of a malicious STIR with a legitimate callback function
(dev_watchdog in Linux kernel 2.6.16) and a malicious data pointer (Shaded
area means malicious). Here dev_watchdog may invoke a function pointer
derived from the data field of the STIR. 88

Figure 34: Overall processing of the STIR summary signatures 90

Figure 35: Analysis of each STIR callback function 92

Figure 36: Defense against soft timer attacks 94

Figure 37: Pseudocode of check_stir 100

Figure 38: K-Queue static analysis framework 106

Figure 39: Generated code for a function pointer (a) and a normal function (b) 114

Figure 40: Source code for retriving the value of a function pointer from a guest VM 115

Figure 41: Code generation for offset analysis 116

Figure 42: Dereferencing of complex function pointers 117

Figure 43: Cumulative Analysis Time (in minutes) 124

Figure 44: Number of External Transitive Closure Analysis 125

 xv

Figure 45: Number of Points-to Analysis 126

Figure 46: Number of Cumulative Internal Transitive Closure Analysis 126

 xvi

LIST OF SYMBOLS AND ABBREVIATIONS

TOCTTOU Time-Of-Check-To-Time-Of-Use

STIR Soft Timer Interrupt Request

 xvii

SUMMARY

Malicious attacks on computer systems attempt to obtain and maintain illicit

control over the victim system. To obtain unauthorized access, they often exploit

vulnerabilities in the victim system, and to maintain illicit control, they apply various

hiding techniques to remain stealthy. In this dissertation, we discuss and present

solutions for two classes of security problems: TOCTTOU (time-of-check-to-time-of-

use) and K-Queue. TOCTTOU is a vulnerability that can be exploited to obtain

unauthorized root access, and K-Queue is a hiding technique that can be used to maintain

stealthy control of the victim kernel.

The first security problem is TOCTTOU, a race condition in Unix-style file

systems in which an attacker exploits a small timing gap between a file system call that

checks a condition and a use kernel call that depends on the condition. TOCTTOU

vulnerabilities are widespread and cause serious consequences. For example, according to

US-CERT (United States Computer Emergency Readiness Team), such vulnerabilities

exist in a wide range of applications, affect many operating systems, and often give the

attacker unauthorized root access. Our research contributions on TOCTTOU include: (1)

A model that enumerates the complete set of potential TOCTTOU vulnerabilities (e.g.,

224 TOCTTOU pairs in Linux); (2) A set of tools that detect TOCTTOU vulnerabilities

in Linux applications such as vi, gedit, and rpm; (3) A theoretical as well as an

experimental evaluation of security risks that shows that TOCTTOU vulnerabilities can

no longer be considered “low risk” given the wide-scale deployment of multiprocessors;

(4) An event-driven protection mechanism and its implementation in the Linux kernel

that defend Linux applications against TOCTTOU attacks at low performance overhead.

 xviii

The second security problem addressed in this dissertation is kernel queue or K-

Queue, which represents a new hiding technique that can be used by the attacker to

maintain stealthy control of the victim system after a successful break-in. K-Queue-

driven attacks can achieve continual malicious function execution without persistently

changing either kernel code or data (from the “gold” distribution), which prevents state-

of-the-art kernel integrity monitors such as CFI and SBCFI from detecting them. We

have studied a concrete instance of K-Queue-driven attacks that use the soft timer

mechanism found in nearly all full-featured operating systems. We demonstrate that an

attacker can use soft timer interrupt requests (STIRs) to perform powerful attacks,

including key logging, denial of service, and hidden process scheduling. To defend

against soft-timer-driven kernel control flow attacks, we propose and implement an

approach based on an automated static analysis of the entire kernel that identifies and

catalogs all legitimate STIRs in a database. At runtime, a reference monitor in a trusted

virtual machine compares each pending STIR with STIRs in the database, allowing the

execution of only known good STIRs. Our defensive technique effectively mitigates

soft-timer-driven attacks at a low cost (less than 7% for each of our benchmarks).

As the finishing touch of this dissertation, we design and implement a solution to

the general class of K-Queue-driven attacks which can exploit IRQ action queues, tasklet

queues, soft timer queues, and work queues. Our first contribution is a unified static

analysis framework and a set of tools that can generate specifications of K-Queue

summary signatures and the corresponding checking code in an automated way. We also

design and implement a unified runtime reference monitor based on virtualization that

validates K-Queue invariants and guards such invariants against tampering. Finally, we

 xix

perform a comprehensive experimental evaluation of the scalability of our static analysis

framework and tool set, which shows that different K-Queue analyzers have significant

overlapping that can be exploited for better efficiency; and we carry out an evaluation of

the complexity and runtime overhead of our K-Queue Checker which suggests ways for

further optimization.

1

CHAPTER 1

INTRODUCTION

 Operating systems are privileged programs that hold ultimate control over the

computing assets (e.g., CPU, memory, network bandwidth, and files) of any computing

system.

 However, today’s operating systems are not secure, because they contain

numerous vulnerabilities. For example, Secunia1 has reported 2,135 vulnerabilities for

Microsoft Windows since 2003. Such vulnerabilities are bad for security because

attackers (often called hackers) can exploit them to obtain illicit control over the victim

operating system and thus access to, or control over, the computing assets managed by

the operating system. The large number of vulnerabilities and the ease with which many

of them can be exploited often increase the attacker’s chance of success. For example, it

has been reported that an unpatched Windows XP with SP1 [23] can be compromised

within six minutes after installation.

 The damage due to malicious compromise to an operating system has increased

significantly in recent years. Traditional hackers exploit vulnerable systems mainly for

showing off their technical skills. The game is over once the target system is penetrated,

and they would like to be noticed. In some sense this style of attacking is good for

security, because the damage is one time and remediation can be taken once the

comproise is announced. However, most hackers today exploit vulnerabilities for

monetary gains, so the real game begins after the target system is conquered, and the

hackers would like this game to last forever. For example, once getting into a system,

today’s attackers often collect sensitive information (e.g., credit card numbers and trading

1 http://secunia.com

 2

secrets), install key loggers to steal passwords, or install other kinds of malicious

software or malware, which includes spyware, rootkits, virus, worms, Trojans, and

stealthy backdoors. Even worse, they can enlist the victim machine into botnets, large

collections of compromised machines under the control of a bot master. The largest

botnet to date contains more than eight million nodes [24]. These botnets are valuable for

sending spam emails or mounting distributed DoS (Denial of Service) attacks, so they are

often traded in underground black markets.

 In other words, the attackers today are interested not in showing off but in the

actual benefit of using the compromised computing system. To maximize their gains,

they strive to maintain a stealthy control over the victim system. Unfortunately,

remaining stealthy is not a tough job for the attacker, because today’s mainstream

operating systems have a monolithic privilege system – once the attacker becomes the

root user, he/she can freely modify any state of the system, including the operating

system itself, to hide his/her activities. This coarse-grained access control has

significantly lowered our confidence on long-running systems, to the extent that most

administrators are forced to completely re-install a computer system to regain trust if they

suspect that a root compromise has happened. Unfortunately, it is a difficult decision to

re-install a computing system in active use. So we are often forced to live with

potentially compromised operating systems.

 The thesis of this dissertation is to increase our trust on long-running computing

systems by improving the security of operating systems. Obviously this is a big topic;

therefore we approach it by two concrete case studies. Specifically, we discuss and

present solutions for two classes of security problems: TOCTTOU (time-of-check-to-

time-of-use) and K-Queue (Kernel Queue), in which TOCTTOU is a race condition

vulnerability that can be exploited for privilege escalation and K-Queue is a kernel

mechanism that can be misused to maintain stealthy control of the victim kernel. By these

 3

cases studies, we hope to gain insights in how to systematically improve the runtime

security of modern operating systems.

 We choose TOCTTOU and K-Queue because both of them enable non-obtrusive,

stealthy attacks that are of interest to today’s hackers. Both of them touch fundamental

system software design philosophies that are unfornately bad for security. TOCTTOU,

an inherent design flaw (i.e., the lack of transactional support) in modern file systems, has

been around for more than 30 years, yet such vulnerabilities continue to be discovered in

widely-used applications and the adoption of multi-cores aggravates the security threat

represented by such vulnerabilities. K-Queue reflects an inherent lack of fine-grained

access control of the CPU inside a modern operating system kernel, which allows a

malicious extension to easily inject illicit control flows into the kernel.

 Our solutions to both problems are inspired by the concept of para-transactional

invariants (PTIs). PTIs, runtime properties that remain true throughout the execution of a

block of program statements, are a general and unifying concept for understanding and

preserving runtime properties. We extract and express runtime properties whose

violations are the root cause for TOCTTOU and K-Queue. By adding the missing logic

into the vulnerable system to eliminate the root causes, we provide effective and efficient

solutions to these security problems. Our work helps improve the security of modern

operating systems.

1.1. Contributions

 This dissertation makes the following contributions in the TOCTTOU problem.

 An abstract model that is capable of enumerating the complete set of potential

TOCTTOU vulnerabilities (e.g., 224 TOCTTOU pairs in Linux).

 A systematic search for potential TOCTTOU vulnerabilites in Linux system

utility programs, which reveals unknown TOCTTOU vulnerabilities in widely-

used applications such as vi, gedit, and rpm.

 4

 A detailed experimental and theoretical study of successfully exploiting

TOCTTOU vulnerabilities in real-world applications, on both uniprocessors

and multiprocessors, which significantly advances our understanding of

TOCTTOU attacks.

 A modular and event-driven defense mechanism (EDGI) and its Linux

implementation that defend applications against TOCTTOU attacks at low

performance overhead and do not require existing applications to change.

 In terms of the K-Queue problem, this dissertation makes the following

contributions.

 A definition of K-Queue-driven transient control flow attacks as a new attack

class that maintains stealthy control of the victim kernel, and an empirical study

of attacks that leverages the soft timer queue.

 An authentication model that uses summary signatures to differentiate K-Queue

requests from legitimate and malicious software.

 A unified static analysis framework and a set of tools that can generate

specifications of K-Queue summary signatures and the corresponding checking

code in an automated way.

 A runtime reference monitor based on virtualization that validates K-Queue

invariants and guards such invariants against tampering, which effectively

defends potential K-Queue-driven attacks.

1.2. Outline

 The rest of this dissertation is organized as follows. Chapter 2 discusses our

solution to the TOCTTOU (time-of-check-to-time-of-use) problem. Chapter 3 presents

our solution to K-Queue driven transient control flow attacks. Chapter 4 discusses future

work and draws the conclusion.

 5

1.3. Mapping From This Dissertation to Existing Publications

 This dissertation is based on several published papers by the author. Specifically,

the result in Section 2.3 was published in paper [61], the result in Section 2.4 was

published in paper [62], the solution in Section 2.5 was published in [44], and Sections

3.2 and 3.3 are based on paper [63].

 6

CHAPTER 2

TOCTTOU

 The first contribution of this dissertation research is a complete solution to the

well-known and long-standing TOCTTOU problem. We propose the CUU model that is

capable of enumerating the complete set of potential TOCTTOU vulnerabilities, and our

modular and event-driven defense mechanism (EDGI) and its Linux implementation are

also complete.

2.1. Problem Statement

 TOCTTOU (time-of-check-to-time-of-use) is a well-known security vulnerability

[2] in file systems lacking strong synchronization support (e.g., the Unix file system). A

TOCTTOU vulnerability is characterized by two distinct operations [6]. First, a

vulnerable program checks for a file condition. Second, the program uses (operates on)

the file, assuming that the established file condition remains invariant during execution.

An illustrative vulnerable program is sendmail, which used to check for a specific

attribute of a mailbox file (e.g., it is not a symbolic link) in step one and append new

messages (as root) in step two. However, the checking and appending operations do not

form an atomic unit. Therefore, a local attacker (the mailbox owner) can exploit the

window of vulnerability between the two operations by deleting his/her mailbox and

replacing it with a symbolic link to /etc/passwd. If the replacement is completed within

the window and the new messages happen to be syntactically correct /etc/passwd entries

with root access, then sendmail may unintentionally give unauthorized root access to a

normal user (the attacker).

 The sendmail example shows the structural complexity of a TOCTTOU attack,

which requires (unintended) shared access to a file by the attacker and the victim (the

 7

sendmail program), plus the two distinct steps (check and use) in the victim. This

complexity plus the non-deterministic nature of TOCTTOU attacks make the detection

difficult. For example, TOCTTOU attacks usually result in escalation of privileges, but

no immediately recognizable damage. Furthermore, TOCTTOU attacks are inherently

non-deterministic and not easily reproducible, making post mortem analysis also difficult.

These difficulties are illustrated by the TOCTTOU vulnerabilities recently found in vi

and emacs (Section 2.3.2), which appear to have been in place since the time those

venerable programs were created.

 TOCTTOU vulnerabilities are a very significant problem. In fact, CERT [58]

released 20 advisories on TOCTTOU vulnerabilities between 2000 and 2004. These

advisories covered a wide range of applications from system management tools (e.g.,

/bin/sh, shar, tripwire) to user level applications (e.g., gpm, Netscape browser), and they

affected many operating systems, including Caldera, Conectiva, Debian, FreeBSD, HP-

UX, Immunix, MandrakeSoft, RedHat, Sun Solaris, and SuSE. In 11 of these CERT

advisories, the attacker was able to gain unauthorized root access. A similar list compiled

from the BUGTRAQ [11] mailing list is shown in Table 1. TOCTTOU vulnerabilities

are widespread and cause serious consequences.

Table 1: Reported TOCTTOU vulnerabilities
Domain Application Name

Enterprise applications Apache, bzip2, gzip, getmail, Imp-webmail, procmail, openldap, openSSL,
Kerberos, OpenOffice, StarOffice, CUPS, SAP, samba

Administrative tools at, diskcheck, GNU fileutils, logwatch, patchadd
Device managers Esound, glint, pppd, Xinetd

Development tools make, perl, Rational ClearCase, KDE, BitKeeper, Cscope

2.2. The CUU Model of TOCTTOU

 Although in general TOCTTOU problems are not limited to file access [14], in

this dissertation we focus on file-related TOCTTOU problems. We first propose an

abstract model of such TOCTTOU problems (called CUU –“C” stands for “Check” and

“U” stands for “Use”) that captures all potential vulnerabilities. The model is based on

 8

two mutually exclusive invariants: a file object either does not exist, or it exists and is

mapped to a logical disk block. For each file object, one of these invariants must remain

true between the check and use steps of every program. Otherwise, potential TOCTTOU

vulnerabilities arise. This model allows us to enumerate all the file system call pairs of

check and use (called exploitable TOCTTOU pairs), between which the invariants may

be violated. Guided by this model, we are able to detect concrete TOCTTOU

vulnerabilities in real-world applications. From this model we also derive a protection

mechanism, which maintains the invariants across all the exploitable TOCTTOU pairs by

preventing access from other concurrent processes/users. The practical value of CUU is

demonstrated by the mapping of concrete Unix-style file systems to it. We have

exhaustively analyzed the file system calls of POSIX and Linux and classified them

according to the CUU model. From this classification we enumerated all the exploitable

TOCTTOU pairs for POSIX (485 pairs) and Linux (224 pairs).

2.2.1. The Abstract File System

 Due to the complexity of the TOCTTOU problem in real file systems, in this

section we define a simplified Abstract File System (AbsFS), on which we define the

TOCTTOU problem (see Section 2.2.2) and design a defense mechanism (see Section

2.5). In Section 2.2.3 we map concrete file systems (POSIX and Linux) to AbsFS and

translate the results from the AbsFS to the concrete file systems.

2.2.1.1. Definition of Abstract File System

 The Abstract File System (AbsFS) manages a set of file system (FS) objects.

Each file system object consists of a pathname, an ordered set of logical disk blocks, and

a mapping of the pathname to the corresponding set of logical disk blocks. For simplicity

we assume the AbsFS to contain only contiguous files, i.e., the set of logical disk blocks

is sequential for every file, and the AbsFS only needs to map the pathname to the address

 9

(block number) of the initial logical disk block. Let F denote the set of all pathnames and

B denote the set of all logical disk blocks, the pathname mapping function resolve is

defined by:

Β⊄∅∅},∪→ {: BFresolve .

 Given a pathname Ff ∈ , if the AbsFS object corresponding to f exists, with the

initial logical disk block number Bb∈ , then we define bfresolve =)(. If the AbsFS

object corresponding to f does not exist, we define ∅=)(fresolve .

 The AbsFS defines an Application Programming Interface consisting of 4

operations on file objects.

 Definition 1: creation(pathname) is the operation that creates new FS objects in

the AbsFS by changing the mapping for pathname f from ∅=)(fresolve to

bfresolve =)(, for some Bb∈ .

 Definition 2: removal(pathname) is the operation that changes the mapping for

pathname f from bfresolve =)(to ∅=)(fresolve .

 Definition 3: normal use(pathname) is the operation that works on an existing file

system object and does not remove it.

 Definition 4: check(pathname) is the operation that returns a predicate about the

named FS object. The predicate may be bfresolve =)(or ∅=)(fresolve . The file f has

to be in one of these two states.

 An application uses the creation operation to create a new FS object, the check

operation to determine the invariant bfresolve =)(or ∅=)(fresolve , the normal use

operation to read or write the FS object, and the removal operation to delete an FS object.

These four kinds of operations (creation, normal use, removal, and check) are all the

currently defined AbsFS operations. The creation and removal operations change the

resolve mapping, while the check and normal use operations do not change the resolve

 10

mapping. The AbsFS operations and FS object states can be represented in a state

transition diagram shown in Figure 1.

Figure 1: State Transition Diagram for FS Object f

2.2.1.2.Concurrent Access to AbsFS

 Since the TOCTTOU vulnerability happens with concurrent access by a victim

process and an attacker process, we extend the notation above to include explicit

modeling of concurrent file system object access.

 Definition 5: Safe sequence of AbsFS operations. Given a sequence O of AbsFS

operations invoked by a process/user on FS object f,)(),...,(),()(21 fofofofO n= , 1>n , if

11, −≤≤∀ nii ,)(fresolve remains an invariant between)(foi and)(1 foi+ , we say the

sequence)(fO is a safe sequence of AbsFS operations (from the concurrency point of

view). Since in most cases all the operations in the sequence belong to the same

process/user, for notational simplicity, we omit the process/user id from the sequence. In

case of interleaved operations, we will add a superscript to denote the different

processes/users.

 It is straightforward to see that the exclusive access by a single process to files is

safe, i.e., the state of each FS object persists from the end of each AbsFS operation to the

beginning of the next AbsFS operation under exclusive access.

 Definition 6: Unsafe sequence of AbsFS operations: Given a sequence of

operations)(),...,(),()(21 fofofofO n= , 1>n , if 11, −≤≤∃ nii ,)(fresolve is not invariant

 11

between)(foi and)(1 foi+ , i.e.,)()(
1

fresolvefresolve
ii oo +

≠ ,)(fO is an unsafe sequence of

AbsFS operations.

2.2.2. The CUU Model

2.2.2.1.Exclusion of Careless Programming

 Before we start the discussion of the TOCTTOU problem, we point out that the

TOCTTOU vulnerability is not due to a naively careless programming style. Consider

the sendmail example. Hypothetically, the sendmail could simply open the file name that

is the user’s mailbox by naming convention (e.g., /usr/mail/username) and then append

emails to that file. This simplistic approach fails immediately because the naming

convention may or may not hold for all names (e.g., a user may have created a symbolic

link from /usr/mail/username to /etc/passwd). To avoid this kind of problems, many

system programmers have adopted a more careful programming style. In case of files,

this careful programming style establishes a predicate on the file before using it. For

example, sendmail establishes the predicate bfresolve =)(, where b belongs to a regular

file, not a symbolic link, before appending messages to f. The predicate bfresolve =)(is

an invariant that should remain true as long as the sendmail keeps appending messages.

We call the predicate an invariant instead of pre-condition, because the normal

connotation of pre-condition is that it must be true before entering a function, but it may

become false after the function has started. In contrast, our invariant must remain true

through the duration of file usage.

 In the rest of this dissertation we exclude the careless programming style and

assume that all system utilities of interest will establish an invariant on a pathname before

using it. This is represented in our notation by dividing a sequence of AbsFS

operations)(),...,(),(),...,()(11 fofofofofO nii += into two subsequences. The first

subsequence)(),...,(1 fofo i is called the “Check” part, and the second subsequence

 12

)(),...,(1 fofo ni+ is called the “Use” part. The “Check” part establishes the invariant

)(fresolve
io and the “Use” part of the sequence relies on the invariant remaining true,

i.e.,)(fO is a safe sequence of AbsFS operations.

2.2.2.2.TOCTTOU Attacks in AbsFS

 Definition 7: A TOCTTOU (Time-Of-Check-To-Time-Of-Use) attack on file

object f consists of two concurrent processes, victim v and attacker a, with interleaved

AbsFS operations that make v’s sequence unsafe. Consider the victim v executing the

sequence)()...,(),(),...,()(11 fofofofofO v
n

v
i

v
i

vv
+= , divided into the “Check” and “Use” parts.

Concurrent with v, attacker a is able to change the mapping)(fresolve
io established by v

during the execution of the sequence)(fOv , transforming it into an unsafe sequence. This

is achieved by inserting the sequence)(),...,(),()(21 fofofofO a
k

aaa = between the

“Check” and “Use” parts of)(fOv . The result becomes:

)()...,(),(),...,(),(),(),...,(1211 fofofofofofofo v
n

v
i

a
k

aav
i

v
+ .

 To illustrate the definition with concrete scenario, we temporarily move from

AbsFS to a Unix-style file system environment. Suppose the invariant established by v is

bfresolve
io =)(, the attack sequence)(fOa of a can be: first remove f and then create a

symbolic link named f which points to another file object t (',')(bbbtresolve ≠=), resulting

in ')(bfresolvea
ok

= . If the invariant established by v is ∅=)(fresolve
io , a possible attack

sequence)(fOa is to create the file object f, making ∅≠)(fresolvea
ok

.

 The TOCTTOU attack is successful if)()(fresolvefresolve a
o

v
o ki

≠ and victim v

continues execution without realizing the invariant created by the subsequence

)(),...,(1 fofo v
i

v (the “Check” part) has been violated. Consequently, the subsequence

)()...,(1 fofo v
n

v
i+ (the “Use” part) will execute under the assumption of the original invariant,

which is no longer true.

 13

 The side effect of v executing the “Use” subsequence)()...,(1 fofo v
n

v
i+ after a

successful TOCTTOU attack is that v is actually working on some other unintended file

object. For example, if t = /etc/passwd in the sendmail example, emails may be

appended to /etc/passwd.

 Proposition 1: Violation of an invariant is a necessary condition for a successful

TOCTTOU attack.

 The proposition 1 follows from Definition 7. If there is no violation of invariants,

the sequence)(fOv is a safe sequence, so there would be no TOCTTOU attack.

Consequently, through the entire duration of)(fOv , we can prevent TOCTTOU attacks

by preserving the invariant established by)(fOv and making the sequence a safe

sequence.

2.2.2.3. An Enumeration of TOCTTOU pairs

 Definition 8: Consider an unsafe sequence of AbsFS operations

)(),...,(),()(21 fofofofO n= , where)()(
1

fresolvefresolve
ii oo +

≠ . The two operations

surrounding the violation of the original invariant (the last operation of the “Check” part

and the first operation of the “Use” part),)(foi and)(1 foi+ , are called a TOCTTOU pair.

 It is useful to identify the TOCTTOU pairs explicitly, since the combinations that

yield such pairs are non-trivial but manageable. The diagram in Figure 1 shows all the

AbsFS operations and the two states in which a file may be. On the left side of diagram

is the non-existent state, denoted by ∅=)(fresolve and on the right side of the diagram is

the existent state, denoted by bfresolve =)(.

 Let us consider first the non-existent state and the invariant ∅=)(fresolve . The

first term of a TOCTTOU pair is an operation that results in the non-existent state of f.

From the state transition diagram in Figure 1, we see that two operations lead to the non-

existent state: {check, removal}. The removal operation explicitly makes f non-existent,

 14

while the check operation also ends in the non-existent state if it does not find the

pathname mapping. The second term of the TOCTTOU pair is an operation that starts

from the invariant ∅=)(fresolve (the non-existent state). The two operations that start

from the non-existent state are: {check, creation}. Therefore, the TOCTTOU pairs

associated with the non-existent state are contained in the set produced by the Cartesian

product of {check, removal}×{check, creation}.

 While the Cartesian product contains all the TOCTTOU pairs, we will refine the

second term, which corresponds to the “Use” part of the TOCTTOU pair. For an attacker

to exploit a TOCTTOU vulnerability for some gain (e.g., escalation of privileges), the

victim must be tricked into doing something useful for the attacker in the “Use” part.

Examples of useful actions are: (1) set or modify the status information of an existing file

object (e.g. make /etc/passwd world-writable); (2) modify the runtime environment of the

victim application (e.g. change the current directory); and (3) release the content of a

sensitive file object (e.g. read the content of /etc/shadow into memory). Since the check

operation does not produce any useful results for the attacker, we define exploitable

TOCTTOU pairs by eliminating the check operation from the second term of TOCTTOU

pairs.

 Now we consider the existent state of f, characterized by the invariant

bfresolve =)(. The state transition diagram in Figure 1 shows that the set of operations

that lead into the existent state is {creation, check, normal use}, and the set of operations

that start from the existent state is {check, normal use, removal}. So the TOCTTOU

Table 2: Exploitable TOCTTOU pairs (AbsFS)
Invariant TOCTTOU Pairs

∅=)(fresolve <check, creation>
<removal, creation>

bfresolve =)(<creation, normal use>
<check, normal use>
<normal use, normal use>
<creation, removal>
<check, removal>
<normal use, removal>

 15

pairs associated with this invariant are in the set {creation, check, normal use}×{check,

normal use, removal}. As a second term of the TOCTTOU pairs, check will not produce

useful results for the attacker. Consequently, we also eliminate check from the list of

exploitable TOCTTOU pairs.

 By deleting check from the second terms, the exploitable TOCTTOU pairs are

{check, removal}×{creation} for the first invariant and {creation, check, normal

use}×{normal use, removal} for the second invariant. Since there are only two invariants

in AbsFS, we have enumerated all the exploitable TOCTTOU pairs in Table 2.

 Proposition 2: The enumeration of TOCTTOU pairs in Table 2 is complete, i.e.,

it contains all the exploitable TOCTTOU pairs in AbsFS.

Proof: by construction we have enumerated all the exploitable TOCTTOU pairs in Table

2. There are only two invariants in the state diagram in Figure 1, and we have analyzed

all the state transitions in Figure 1.

2.2.2.4. Prevention of TOCTTOU Attacks

 In the rest of this section, we will focus on the preservation of invariants across

the exploitable TOCTTOU pairs. This protection will be done in two steps. First, we

will maintain explicitly the invariant holder for each file object. Second, for every file

system operation that may change the invariant, we check whether the invoker of the

operation is the holder. The operation is allowed if it’s invoked by the holder. It is

disallowed if it belongs to another process/user.

 In Figure 1, we described the state transitions of a file with a single process/user.

Figure 2 shows the state transitions of a file under concurrent access by multiple

processes/users. Without loss of generality, we adopt the policy that the first process/user

accessing the file object becomes the invariant holder. (Intuitively, we consider the

invariant as an exclusive lock.) The goal of our protection mechanism is to reject any

changes to the invariant except by the invariant holder.

 16

Figure 2: The Enhanced State Transition Diagram with Two Users

 The main difference between Figure 1 and Figure 2 is the addition of three states.

Two of the states (on the top part of Figure 2) are due to the explicit representation of the

cases of invariants with a holder (same as Figure 1) and without a holder (new states).

These transitions are allowed, since the pathname is free and the invariant holder is not in

competition with any other process/user. The third new state is at the bottom of Figure 2,

representing a potential attack since those transitions would change the invariant for the

holder. These transitions are rejected as an error. The original invariant holder maintains

the hold on the invariant and the invariant remains unchanged.

 The implementation of invariant holder lock relies on a lock table and maps the

invariant holder id to the invariant across all TOCTTOU pairs. Consider a TOCTTOU

pair < 21,oo >. When a process u accesses a pathname f through)(1 fo , u becomes the

invariant holder, moving from the top states of Figure 2 to one of the middle states.

(Note that all four AbsFS operations are allowed in this step.) Our protection mechanism

uses the lock table to remember this invariant/holder mapping. The lock is released when

 17

the invariant holder process ends. These state transitions are denoted as exit(u), in which

case u releases the invariant.

 While the pathname f is in one of the middle states, with invariant holder u,

another process/user (u’) may attempt to change the invariant, which will result in

“error”. Other operations that do not affect the invariant (e.g., check and normal use) are

allowed, as shown in Figure 2. Thus this mechanism implements the assumption

required in Proposition 2 to protect the invariants across TOCTTOU pairs.

 For practical purposes, we note that our protection mechanism does not require

explicit request and release of invariant-related locks. The management of invariant

locks can be done automatically on behalf of applications. Furthermore, the

implementation can be simplified with the following proposition.

 Proposition 3: Blocking the creation and removal of a file object f across a

sequence)(),...,(),(21 fofofo n is sufficient to make the sequence safe.

 By Definition 5, a sequence of execution)(),...,(),(21 fofofo n is safe if

11, −≤≤∀ nii ,)(fresolve is an invariant between)(foi and)(1 foi+ . If we forbid any creation

or removal of f across)(),...,(),(21 fofofo n , we forbid creation or removal of f

between)(foi and)(1 foi+ , and since creation and removal are the only operations that can

change)(fresolve ,)(fresolve must be an invariant between)(foi and)(1 foi+ . So

)(),...,(),(21 fofofo n is guaranteed to be a safe sequence of execution.

 This proposition is the basis for the EDGI defense in Section 2.5.

 Proposition 4: Making all exploitable TOCTTOU pairs safe is sufficient to make

all file access sequences safe and prevent TOCTTOU attacks.

 Proof: Proposition 3 shows the preservation of invariants through a file operation

sequence suffices in making the sequence safe. Proposition 2 shows that all exploitable

TOCTTOU pairs have been enumerated. Combining the two propositions we have the

 18

assurance that making all file operation sequences safe (for each process/user) can

prevent all TOCTTOU vulnerabilities from being exploited.

2.2.3. Concrete File System Examples

2.2.3.1. Exclusion of Careless File Attribute Settings

 The AbsFS contains a simplified model of file system objects, with a very simple

mapping of pathname to logical disk blocks, without any additional file system attributes

such as access permission. In concrete file systems, appropriate access control attributes

need to be set to prevent trivial unauthorized file access. For example, Unix files with

world writable settings can be easily exploited by many kinds of attacks. In our modeling

and analysis of TOCTTOU attacks, we assume that appropriate file access control

settings are being used by careful system administrators.

2.2.3.2. Unix-Style File Systems

 Table 2 gives a complete list of TOCTTOU pairs in AbsFS. Now we map the

AbsFS into Unix-style file systems. The first observation in the mapping is that Unix-

style file systems have several kinds of file system objects: regular files, directories, and

links. The second observation is that the abstract operations of check, creation, normal

use, and removal may be implemented by several system calls. Therefore, we map these

abstract operations into sets of system calls (CreationSet, NormalUseSet, RemovalSet

and CheckSet) and divide these sets into operations on each kind of file system objects.

CreationSet = FileCreationSet ∪ DirCreationSet ∪ LinkCreationSet

NormalUseSet2 = FileNormalUseSet ∪ DirNormalUseSet

2 On Unix-style file systems, the normal use of a link (symbolic or hard) is actually on the regular file or directory that
the link refers to, so we do not need to define a separate NormalUseSet for link.

 19

RemovalSet = FileRemovalSet ∪ LinkRemovalSet ∪ DirRemovalSet

CheckSet = FileCheckSet ∪ LinkCheckSet ∪ DirCheckSet

Table 3: Enumeration of exploitable TOCTTOU pairs (Unix-Style file systems)
Invariant Exploitable TOCTTOU Pairs

∅=)(fresolve

(FileCheckSet × FileCreationSet) ∪ (FileRemovalSet ×
FileCreationSet) ∪
(DirCheckSet × DirCreationSet) ∪ (DirRemovalSet ×
DirCreationSet) ∪
(LinkCheckSet × LinkCreationSet) ∪ (LinkRemovalSet ×
LinkCreationSet)

bfresolve =)(

(FileCheckSet × FileNormalUseSet) ∪ (FileCreationSet ×
FileNormalUseSet) ∪ (LinkCreationSet × FileNormalUseSet) ∪
(FileNormalUseSet × FileNormalUseSet)∪
(DirCheckSet × DirNormalUseSet) ∪ (DirCreationSet ×
DirNormalUseSet) ∪ (LinkCreationSet × DirNormalUseSet) ∪
(DirNormalUseSet × DirNormalUseSet)

 The third observation is that the removal operation in Unix-style file systems does

not produce any useful results for the attacker. This is because in Unix-style file systems,

under the assumption of careful file attribute settings (Section 2.2.3.1), there are only two

ways for the attacker to make)()(tresolvefresolve = in a TOCTTOU attack (t is an existing

security sensitive file object such as /etc/passwd and f is the file object accessed by a

TOCTTOU pair >< 21 , oo in the victim application): via symbolic link or hard link. If the

attacker replaces f with a symbolic link to t, then the victim’s removal operation on f only

removes f itself, but not t; If the attacker replaces f with a hard link to t, this will increase

the number of hard links of t by 1, and when the victim performs the removal operation

on f, it decreases the number of hard links of t by 1 (restores the original hard link

number of t, but never decreases it). Since t is physically removed only when its hard link

number becomes 0, given t’s initial hard link number is nonzero, the attacker can not

cause t to be removed.

 Thus for Unix-style file systems we can eliminate those TOCTTOU pairs with

removal as the second term from Table 2. The remaining AbsFS TOCTTOU pairs can be

 20

mapped to Unix-style file systems as shown in Table 3. For an actual file system, we can

map the actual file system calls to these sets to obtain the concrete TOCTTOU pairs.

Figure 3: POSIX File Operations

Figure 4: Linux File Operations

2.2.3.3. Study of POSIX and Linux

 We focus on POSIX [30] and Linux as representative examples of Unix-style file

systems with TOCTTOU vulnerabilities. We believe the same mapping can be done with

the other flavors of Unix file systems. The POSIX mapping is shown in Figure 3 and the

Linux mapping is shown in Figure 4. Compare Figure 4 to Figure 3 we can see that the

sets are almost the same due to the fact that Linux is POSIX-compliant. We do see some

discrepancy though, notably the FileNormalUseSet. For example, POSIX has 6 different

system calls on executing a program (execl, execle, execlp, execv, execve, execvp), but

Linux only has one (execve). A closer look at the Linux implementation reveals that

Linux implements only execve as a system call and uses library calls to implement the

remaining 5 POSIX interfaces, which are different wrappers on top of this basic system

call.

FileCreationSet = {creat, open, mknod,
rename}
DirCreationSet = {mkdir, rename}
LinkCreationSet = {link, symlink,
rename}
FileNormalUseSet = {chmod, chown,
truncate, utime, open, execve}
DirNormalUseSet = {chmod, chown,
utime, mount, chdir, chroot, pivot_root}
FileRemovalSet = {unlink, rename}
DirRemovalSet = {rmdir, rename}
LinkRemovalSet = {unlink, rename}
FileCheckSet = {stat, access}
DirCheckSet = {stat, access}
LinkCheckSet = {stat, access}

FileCreationSet = {creat, open, mknod, mkfifo,
rename}
DirCreationSet = {mkdir, rename}
LinkCreationSet = {link, symlink, rename}
FileNormalUseSet = {chmod, chown, truncate,
utime, open, fopen, fdopen, popen, execl, execle,
execlp, execv, execve, execvp, pathconf}
DirNormalUseSet = {chmod, chown, utime,
chdir, pathconf}
FileRemovalSet = {remove, unlink, rename}
DirRemovalSet = {remove, rmdir, rename}
LinkRemovalSet = {remove, unlink, rename}
FileCheckSet = {access, stat}
DirCheckSet = {access, stat}
LinkCheckSet = {lstat, readlink}

 21

 Applying the mapping of Figure 3 to the mapping in Table 3, we have identified

485 exploitable TOCTTOU pairs for POSIX. Similarly, by applying Figure 4 to the

mapping in Table 3, we get 224 exploitable TOCTTOU pairs for Linux

 Proposition 5: If the classification of a concrete file system’s operations is

complete, then the enumeration of exploitable TOCTTOU pairs is complete for the

concrete file system. By complete we mean the classification contains all the concrete

file system calls that operate on file objects, and all the concrete file system calls are

classified into check, creation, normal use, and removal functions on the file objects.

(File system calls that have multiple functions appear in multiple categories.)

 Proof: The Proposition 2 guarantees the completeness of exploitable TOCTTOU

pairs for the AbsFS. Assuming that we have exhaustively analyzed the concrete file

system calls and classified them, Proposition 5 follows from Proposition 2.

 By exhaustively analyzing the POSIX file system calls (Figure 3), we can apply

Proposition 5 to the enumeration of exploitable TOCTTOU pairs based on Table 3 and

Figure 3 and conclude that we have enumerated all the exploitable TOCTTOU pairs in

POSIX. Analogously, we apply Proposition 5 to the enumeration of exploitable

TOCTTOU pairs in Linux, based on Table 3 and Figure 4, and the result is in Table 28 of

the Appendix.

2.2.3.4. Example of TOCTTOU Attacks

 We have studied some real world programs with known TOCTTOU

vulnerabilities on Unix-style systems. The results are shown in Table 4. For example, in

sendmail, the TOCTTOU vulnerability is a <stat, open> pair, the invariant is

bumboxresolve =)(, and the attack is first removing umbox and second creating a

symbolic link under the name umbox.

 Logwatch Vulnerability. logwatch is an open-source script for monitoring log

files in Linux. logwatch 2.1.1 running as root was reported [52] to allow a local attacker

 22

to gain elevated privileges, e.g., write access to /etc/passwd. This attack consists of the

following steps:

1) Get the running process ID {pid} of logwatch;

2) Create a temporary directory named /tmp/logwatch.{pid};

3) Create a symbolic link with a specific name in the temporary directory, which

points to /etc/log.d/scripts/logfiles/samba/`cd etc;chmod 666 passwd #`

4) Wait for logwatch to use the temporary symbolic link. Although logwatch

only opens it for writing, the tricky file name causes the shell to execute it as a

command line later.

Table 4: Some existing TOCTTOU vulnerabilities on Unix-style systems
Applications TOCTTOU pair Classification and Invariant
BitKeeper, Cscope 15.5, CUPS,
getmail 4.2.0, glint, Kerberos 4,
openldap, OpenOffice 1.0.1,
patchadd, procmail, samba,
Xinetd

<stat, open> FileCheckSet × FileCreationSet
∅=)(fresolve

Rational ClearCase, pppd <stat, chmod> FileCheckSet × FileNormalUseSet
bfresolve =)(Sendmail <stat, open>

logwatch 2.1.1 <stat, mkdir> DirCheckSet × DirCreationSet
∅=)(fresolve

bzip2-1.0.1, gzip, SAP <open, chmod> FileCreationSet × FileNormalUseSet
bfresolve =)(Mac OS X 10.4 – launchd <open, chown>

StarOffice 5.2 <mkdir, chmod> DirCreationSet × DirNormalUseSet
bfresolve =)(

 The TOCTTOU pair in logwatch is <stat, mkdir>. logwatch first checks whether

the directory /tmp/logwatch.{pid} exists (stat) before creating it. However, an attacker

may create that directory (as shown above) between the stat and mkdir system calls. In

this case, logwatch’s mkdir fails, but since logwatch does not check the return value of

its mkdir, it continues blindly and uses the temporary directory. The invariant in

logwatch is ∅=)(tmpdirresolve and the attack is a creation operation (mkdir) by the

attacker. (Here the tmpdir is /tmp/logwatch.{pid})

 23

 Table 4 summarizes the TOCTTOU pairs and their associated invariants for a

number of known TOCTTOU vulnerabilities.

2.3. Detection of TOCTTOU Vulnerabilities

 In this part of the dissertation, we implement CUU model-based software tools

that systematically search for potential TOCTTOU vulnerabilities in Linux system utility

programs. They are able to detect previously reported TOCTTOU vulnerabilities as well

as finding some unknown ones (e.g., in the rpm software distribution program, the vi/vim

and emacs editors). We conduct a detailed experimental study of successfully exploiting

these vulnerabilities and analyze the significant events during a TOCTTOU attack against

the native binaries of rpm and vi. By repeating the experiments, we also evaluate the

probability of these events happening, as well as the success rate of these non-

deterministic TOCTTOU attacks. These analyses provide a quantitatively better

understanding of TOCTTOU attacks.

2.3.1. Model-Based TOCTTOU Detection

2.3.1.1. Components of Practical Attacks

 An actual TOCTTOU vulnerability consists of a victim program containing a

TOCTTOU pair (described in Section 2.2.2.3) and an attacker program trying to take

advantage of the potential race condition introduced by the TOCTTOU pair. The attacker

program attempts to access or modify the file being manipulated by the victim through

shared access during the vulnerability window between the “Check” call and the “Use”

call. For example, by adding a line to an unintentionally shared script file in the rpm

attack (Section 2.3.2.2), the attacker can trick the victim into executing unintended code

at a higher privilege level (root). In general, we say that a TOCTTOU attack is profitable

if the victim is running at a higher level of privilege. In Unix-style OSs, this means the

victim running as root and the attacker as normal user.

 24

 An important observation is that even though the victim is running at a higher

level of privilege, the attacker must have sufficient privileges to operate on the shared file

attributes, e.g., creation or deletion. This observation narrows the scope of potential

TOCTTOU vulnerabilities. Table 5 shows a list of directories owned by root in Linux.

Since normal users cannot change the attributes or content of files in these directories,

these files are safe.

Table 5: Directories immune to TOCTTOU
/bin
/boot
/dev
/etc
/lib
/misc
/mnt
/opt

/root
/proc
/sbin
/usr/bin
/usr/etc
/usr/include
/usr/lib

/usr/dict
/usr/kerberos
/usr/libexec
/usr/sbin
/usr/src
/usr/X11R6
/var/cache

/var/db
/var/empty
/var/ftp
/var/lock
/var/log
/var/lib
/var/run

2.3.1.2. CUU Model-Based Detection Tools

 Based on the CUU model, we design a software framework and implement

software tools to detect actual TOCTTOU vulnerabilities in Linux. Figure 5 shows the

four components of our detection framework, based on dynamic monitoring of system

calls made by sensitive applications (e.g., those that execute with root privileges). The

first component of our framework is a set of plug-in Sensor code in the kernel, placed in

file-related system calls such as those in Figure 4. These Sensors record the system call

name and its arguments, particularly file name (full path for unique identification

purposes). For some system calls, other related arguments are also recorded to assist in

later analysis, e.g., the mode value of chmod(path, mode). Some environmental variables

are also recorded, including process id, name of the application, user id, group id,

effective user id, and effective group id. This information will be used in the analysis to

determine if a TOCTTOU pair can be exploited. We do not use standard Linux trace

facilities such as strace for two reasons: First, strace does not output full pathname for

 25

files referred to using relative pathnames; second, strace does not give enough

environmental information such as effective user id.

Figure 5: Framework for TOCTTOU detection

 The Sensors component also carries out a preliminary filtering of their log.

Specifically, they identify the system calls on files under the system directories listed in

Table 5 and filter them out, since those files are immune to TOCTTOU attacks. After

this filter, remaining potentially vulnerable system calls are recorded in a circular FIFO

ring buffer by printk.

 The second component of our framework is the Collector, which periodically

empties the ring buffer (before it fills up). The current implementation of the Collector is

a Linux daemon that transforms the log records into an XML format and writes the

output to a log file for both online and offline analysis.

 The third component of our framework is the Analyzer, which looks for

TOCTTOU pairs (listed in Table 3) that refer to the same file pathname. For offline

analysis, this correlation is currently done using XSLT (eXtensible Stylesheet Language

Transformations) templates. This analysis proceeds in several rounds as follows.

 26

 Round 1: First, the Analyzer sorts the log records by file name, grouping its

operation records such as the names and locations (sequence numbers) of system calls.

 Round 2: Second, system calls on each file are paired to facilitate the matching of

TOCTTOU pairs.

 Round 3: Third, system call pairs are compared to the list in Table 3. When a

TOCTTOU pair is found, an XSLT template is generated to extract the corresponding log

records from the original log file.

 Round 4: Fourth, the log records related to TOCTTOU pairs found are extracted

into a new file for further inspection.

 The fourth component of our framework is the Inspector, which identifies the

actual TOCTTOU vulnerability in the program being monitored. The Inspector links the

TOCTTOU pair with associated environmental information, including file pathname,

related arguments, process id, program name, user id, group id, effective user id, and

effective group id. The Inspector decides whether an actual exploitation can occur.

 For each TOCTTOU pair, the Inspector does the following steps:

 Check the arguments of the calls to see if these calls can be profitable to an

attacker. For example, if the “Use” call is chmod, then a value of 0666 for the

mode argument falls into this category because this chmod can be used to make

/etc/passwd world-writable. On the other hand, a mode value of 0600 is not

profitable because it will not give the attacker any permission on a file that

he/she does not own. In this case the TOCTTOU pair in question is not a

TOCTTOU vulnerability.

 Check the file pathname. For the chmod example, if the file is stored under a

directory writable by an ordinary user, like his/her home directory, then

continue to the next step; otherwise the TOCTTOU pair is not a TOCTTOU

vulnerability.

 27

 Check the effective user id. Continuing with the chmod example, if the

effective user id is 0 (root), then report this TOCTTOU pair as a vulnerability;

otherwise, the TOCTTOU pair is not a vulnerability.

 It should be noted that the steps described above give only an outline of the

Inspection process based on one attack scenario for one particular TOCTTOU pair. For

different TOCTTOU pair and different attack scenario, the details of these checks can be

different. For example, the same TOCTTOU pair as the above with a mode value of 0644

and the same other conditions is also considered a vulnerability because it can be

exploited to make /etc/shadow readable by an attacker. Thus the Inspector requires a

template (or signature) for each kind of attack scenario. Table 6 shows the set of

templates used by the current implementation of the Inspector. For brevity, this table does

not show the file pathname and effective user id which are checked in every template.

This set may be expanded as new attack scenarios are found.

Table 6: Templates used in the Inspector

“Use” call Arguments to check Sample attack scenarios
chmod mode Gain unauthorized access rights to

/etc/passwd
chown owner, group Change the ownership of /etc/passwd
chroot Access information under a restricted

directory
execve Run arbitrary code
open mode, flag Mislead privileged programs to do things for

the attacker, or steal sensitive information
truncate length Erase the content of /etc/passwd

2.3.2. Analysis of Real TOCTTOU Attacks

2.3.2.1. Experimental Setup

 We applied our detection framework and tools to find previously unreported

TOCTTOU vulnerabilities in Linux. Although the CUU model describes all the

TOCTTOU pairs in Linux file systems, it is impractical to test all the execution paths of

 28

all the system software (or even a single program of any complexity). Our intent is to

learn as much as possible about real TOCTTOU vulnerabilities through a detailed

analysis. The experiments show that significant weaknesses can be found relatively

easily using our framework and tools.

 From the discussion in Section 2.3.1.1, we focus our attention on system software

programs that use file system (outside the directories listed in Table 5) as a root. Each

program chosen is downloaded, installed, configured, and deployed. Furthermore, we

also build a testing environment which includes the design and generation of a

representative workload for each application, plus the analysis of TOCTTOU pairs

observed. Although this is a laborious process that requires high expertise, one could

imagine incorporating such testing environments into the software release of system

programs, facilitating future evaluations and experiments.

 Our tools were implemented on Red Hat 9 Linux (kernel 2.4.20) to find

TOCTTOU vulnerabilities in about 130 commonly used utility programs. The script-

based experiments consist of about 400 lines of shell script for 70 programs in /bin and

/sbin. This script takes about 270 seconds to gather approximately 310K bytes of system

call and event information. The other 60 programs were run manually using an interactive

interface. From this sample of Linux system utilities, we found five potential TOCTTOU

vulnerabilities (see Table 7).

 The experiments were run on an Intel P4 (2.26GHz) laptop with 256M memory.

The Collector produces an event log at the rate of 650 bytes/sec when the system is idle

(only background tasks such as daemons are running), 11KB/sec during the peak time a

large application such as OpenOffice is started, and 2KB/sec on average. The Analyzer

processes the log at the speed of 4KB/sec.

 From the list in Table 7, we wrote simple attack programs that confirmed the

TOCTTOU vulnerabilities in rpm, emacs and vi. We discuss the attack on rpm and vi in

 29

detail (Sections 2.3.2.2 and 2.3.2.3, respectively), and outline the others in Section

2.3.2.4.

Table 7: Potential TOCTTOU vulnerabilities
Application TOCTTOU errors Possible exploit
vi <open, chown> Changing the owner of /etc/passwd to an

ordinary user
rpm <open, open> Running arbitrary command
emacs <open,chmod> Making /etc/shadow readable by an

ordinary user
gedit <rename, chown> Changing the owner of /etc/passwd to an

ordinary user
esd (Enlightened
Sound Daemon)

<mkdir, chmod> Gaining full access to another user’s
home directory

2.3.2.2. rpm 4.2 Temporary File Vulnerability

 rpm is a popular software management tool for installing, uninstalling,

verifying, querying, and updating software packages in Linux. When rpm installs or

removes a software package, it creates a temporary script file in directories such as

/var/tmp or /var/local/tmp. This shell script is used to install or remove help

documentation of the software package. Since the access mode of this file is set to 666

(world-writable), an attacker can insert arbitrary commands into this script. Given the

privileges required for installing software (usually root), this is a significant vulnerability.

The TOCTTOU pair involved is <open, open>: the first open creates the script file for

writing the script; and the second open is called in a child process to read and execute the

script.

2.3.2.2.1 Baseline Analysis of rpm

 In our evaluation of the TOCTTOU vulnerability in rpm, we start by measuring

the total running time of rpm (denoted by t) and the window of vulnerability (the time

interval between the two opens, denoted by v). We ran rpm (as root) 100 times,

alternatively installing and uninstalling a package named sharutils-4.2.1-14.i386.rpm,

and measured t and v for each invocation. From Table 8 we can see that the window of

 30

vulnerability is relatively narrow (less than 5%), since the two opens are separated only

by a few milliseconds.

Table 8: Baseline vulnerability of rpm
Package Operation Install (rpm -i) Uninstall (rpm -e)

Average Stdev Average Stdev
t (μsec) 125,188 9,930 110,571 10,961
v (μsec) 5,053 20 4,218 102

v/t 4.1% --- 3.8% ---

2.3.2.2.2 An Experiment to Exploit rpm

 The second part of our evaluation is to measure the effectiveness of an attack

trying to exploit this apparently small window of vulnerability. This experiment runs a

user-level attack process in a loop. It constantly checks for the existence of a file name

with the prefix “/var/tmp/rpm-tmp”. A victim process (rpm run by root) installs a

software package and creates a script file of that name. Note that rpm inserts a random

suffix as protection against direct guessing, but a directory listing command bypasses the

need to guess the full pathname. If a file name of the expected prefix appears, the

attacker appends the command “chown attacker:attacker /etc/passwd” to it. If the append

happens during the window of vulnerability, then the child process of rpm will execute

the script and the inserted command line, making the attacker the owner of /etc/passwd.

When rpm finishes, the test program checks whether the attacker has become the owner

of /etc/passwd.

 Due to the non-deterministic nature of these experiments, we ran the experiment

100 times in a batch. After running several batches, we found a surprisingly high average

number of 85 successful attacks per batch, considering the apparently narrow window of

vulnerability shown in Table 8.

2.3.2.2.3 Event Analysis of rpm Exploit

 To fully understand what happened during the TOCTTOU attack, we analyze the

important system events during the experiment. Figure 6 shows the events in a successful

 31

exploit of rpm. In Figure 6, the dark (upper) line shows the events of the rpm process,

and the lower line shows the events of the attacker process. The attacker process stays in

a loop looking for file names of interest. When the rpm process creates the file (just

before the 200 msec clock tick), the attacker detects it and appends the chown line to the

temporary script and goes back to the loop.

Figure 6: Event Analysis of rpm Exploit

 The two timelines show that even though the CPU consumption during the

window of vulnerability is relatively small, the rpm process causes interrupts that

lengthen the window, represented by dotted upper line. Specifically, there are at least two

scheduling actions within the rpm vulnerability window: rpm creates a new process to

execute bash, which creates another new process to execute an external executable file

(/sbin/install-info). Each process creation causes rpm to yield CPU to the scheduler.

Figure 6 shows that the attacker process is scheduled as a result and the attack succeeds.

0 50 100 150 200 250 300 350

Time (milliseconds)

rpm starts

ls –l … ls –l … ls –l ; grep

rpm creates
rpm-tmp.49755;

vulnerability
begins

bash reads
rpm-tmp.49755

install-
info

bash reads
rpm-tmp.49755

bash
ends

rpm
ends

ls; grep;
grep

ls; grep;
grep

append to rpm-
tmp.49755

rpm rpm vulnerability window attacker attack

chown

 32

Consequently, the two scheduling actions created by rpm make the attack more likely to

succeed because rpm yields the CPU in the window of vulnerability.

 In our experiments, we also found another reason more attacks succeed than

indicated by the short window of vulnerability. Specifically, we observed that in some

cases the appending to the script file by the attacker happened after the second open of

rpm (outside the window), but the attack still succeeds. In these cases, we believe that

append started after bash opened the script file (the second open of rpm), but it finished

before bash reached the end of the script. Since bash interprets the script line by line,

there is a good chance of executing the newly appended line. These two explanations

(CPU yielding and slow interpretation of the script) help explain the lengthening of the

window of vulnerability and the high attack success rate of 85%.

2.3.2.3. vi 6.1 Vulnerability

 The Unix “visual editor” vi is a widely used text editor in many UNIX-style

environments. For example, Red Hat Linux distribution includes vi 6.1. Using our tools,

we found potential TOCTTOU vulnerabilities in vi 6.1. Specifically, if vi is run by root

to edit a file owned by a normal user, then the normal user may become the owner of

sensitive files such as /etc/passwd.

while ((fd = mch_open((char *)wfname, …)
……
chown((char*)wfname, st_old.st_uid,
st_old.st_gid);

(a)

if (rename (temp_filename, real_filename) != 0)
{ … }
chmod (real_filename, st.st_mode);
chown (real_filename, st.st_uid, st.st_gid);

(b)
Figure 7: (a) vi 6.1 vulnerability (fileio.c), (b) gedit 2.8.3 vulnerability (gedit-document.c)

 The problem can be summarized as follows. When vi saves the file being edited,

it first renames the original file to a backup, then creates a new file under the original

name (wfname in Figure 7(a)). The new file is closed after all the content in the edit

buffer has been written to it. If vi is running as root, the initial owner and group of this

new file is root, so vi needs to change the owner and group of the new file to its original

 33

owner and group. This forms an <open, chown> window of vulnerability every time vi

saves the file (Figure 7(a)). During this window, if the file name can be changed to a

link to /etc/passwd, then vi can be tricked into changing the ownership of /etc/passwd to

the normal user.

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11

File size in MB

M
ili

se
co

nd
s

Vi vulnerability window size
Vi save window size

Figure 8: Vulnerability and Save Window
Sizes of vi

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 1 2 3 4 5 6 7 8 9 10

File size in MB

Figure 9: Window of Vulnerability Divided
by Total Save Time, as a Function of File
Size

2.3.2.3.1 Baseline Analysis of vi

 Using the same method of the rpm study, we measured the percentage of time

when vi is running in its vulnerability window as it saves the file being edited. In vi, this

depends on the edited file size. In our experiments, we bypass the user typing time to

avoid the variations caused by human participation.

 We define the save window t as the time vi spends in processing one “save”

command, and the vulnerability window v during which TOCTTOU attack may happen.

We measured 60 consecutive “saves” of the file for t, and timestamp the open and chown

system calls for v. Since the “save” time of a file depends on the file size, we did a set of

experiments on different file sizes. Figure 8 shows the time required for a “save”

command for files of sizes from 100KB to 10MB. We found a per file fixed cost that

takes about 14msec for the small (100KB) file and an incremental cost of 9msec/MB (for

files of size up to 10MB).

 34

 Since chown happens after the file is completed, the window of vulnerability v

follows approximately the same incremental growth of 9msec/MB (see Figure 8). Figure

9 shows the window of vulnerability to be relatively long compared to the total “save”

time. It gradually grows to about 80% of the “save” total elapsed time for 10MB files.

This experiment tells us that vi is more vulnerable when the file being edited is larger.

For a small file (100KB size) the window of vulnerability is still about 5% of the “save”

time.

Figure 10: A program to attack vi

2.3.2.3.2 An Experiment to Exploit vi

 Unlike a batch program such as rpm, which is easily run from a script, vi is

designed for interactive use by humans. To eliminate the influence of human “think time”

in the experiments, we wrote another program to interact with vi by sending it commands

that simulate human typing. This reduces the runtime and the window of vulnerability to

minimum. The experiment runs a vi (as root) editing a file owned by the attacker in the

attacker’s home directory. The editing consists of either appending or deleting a line

from the file and the experiment ends with vi exiting.

 The attack (Figure 10) consists of a tight loop constantly checking (by stat-ing)

whether the owner of the file has become root, which signifies the start of the window of

vulnerability. Once this happens, the attacker replaces the file with a symbolic link to

/etc/passwd (as shown in Figure 10 and Figure 11). When vi exits, it should change the

1 while (!finish){
2 if (stat(wfname, &stbuf) == 0){
3 if ((stbuf.st_uid == 0) && (stbuf.st_gid == 0))
4 {
5 unlink(wfname);
6 symlink(“/etc/passwd”, wfname);
7 finish = 1;
8 }
9 }
10 }

 35

ownership of /etc/passwd to the attacker. If vi finishes and /etc/passwd is still owned by

root, the attack fails.

 Contrary to the surprisingly high probability of success in the rpm case, we found

a relatively low probability of success in the vi case (see Figure 12 and Figure 13),

despite a relatively wide window of vulnerability. This leads to a more careful analysis

of the system events during the attack.

Figure 11: Event Analysis of the vi Exploit

2.3.2.3.3 Event Analysis of vi Exploit

 Although the window of vulnerability may be wide, an attack will succeed only

when:

1. vi has called open to create the new file,

2. vi has not called chown,

3. vi relinquishes CPU, voluntarily or involuntarily, and the attacker is scheduled

to run, and

4. the attacker process finishes the file redirection during this run.

0 20 40 60 80 100

stat; …

write write; close chown

stat
unlink;
symlink

write; … open

stat stat; …

vi vi vulnerability window attacker attack

Time (miliseconds)

 36

 The first two conditions have been studied in the baseline experiment. The fourth

condition depends on the implementation of the attacker program. For example, if the

attacker program is written in C instead of shell script, it will be less likely to be

interrupted.

 The third condition is the least predictable. In our experiments, we have found

several reasons for vi to relinquish CPU. First, vi may suspend itself to wait for I/O. This

is likely since the window of vulnerability includes the writing of the content of the file,

which may result in disk operations. Second, vi may use up its CPU slice. Third, vi may

be preempted by higher priority processes such as ntpd, kswapd, and bdflush kernel

threads. Even after vi relinquishes CPU, the second part of the condition (that the attacker

process is scheduled to run) still depends on other processes not being ready to run.

 This analysis illustrates the highly non-deterministic nature of a TOCTTOU

attack. To achieve a statistically meaningful evaluation, we repeat the experiments and

compute the probability of attack success. To make the experimental results

reproducible, we eliminated all the confounding factors that we have identified. For

example, in each round of experiments, we ran vi at least 50 times, each time on a

different file, to minimize file caching effects. We also observed memory allocation

problems after large files have been used. To relieve memory pressure, we added a 2-

second delay between successive vi invocations.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

100 200 300 400 500 600 700 800 900 1000

File size in KB

Baseline vulnerability

500 rounds attack success rate

Figure 12: Success Rate of Attacking vi
(small files)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

File size in MB

100 rounds attack success rate, 5 neighbors average

Baseline vulnerability

100 rounds attack success rate

Figure 13: Success Rates of Attacking vi
(large files)

 37

 Figure 12 shows the success rate for file sizes ranging from 100KB to 1MB

averaged over 500 rounds. We see that for small files, there is a rough correlation

between the size of window of vulnerability and success rate. Although not strictly

linear, the larger the file being edited, the higher the probability of successfully attacking

vi.

 Figure 13 shows the results for file sizes ranging from 2MB to 4MB, with a

stepping size of 20KB, averaged over 100 rounds. Unlike the dominantly increasing

success rate for small file sizes, we found apparently random fluctuations on success rates

between file sizes of 2MB and 3MB, probably due to race conditions. For example, files

of size 2MB have success rate of 4%, which is lower than the 8% success rate of file size

500KB in Figure 12. The growing success trend resumes after files become larger than

3MB.

2.3.2.4. Other Vulnerabilities

 In our experiments, we identified 5 TOCTTOU pairs (see Table 7) and confirmed

3 of them through direct attacks (rpm, vi, and emacs). Due to its similarity to the vi

experiments (Section 2.3.2.3), the analysis of the attack of emacs is omitted here.

 We also tried to attack gedit, the fourth vulnerability discovered. gedit [25] is a

text editor for the GNOME desktop environment, and version 2.8.3 of gedit has a

<rename, chown> TOCTTOU vulnerability (See Figure 7(b)). Like vi, gedit becomes

vulnerable when it is run by root to edit a file (real_filename) owned by a normal user

(also the attacker), and it saves the file. Unlike vi, gedit writes to a temporary scratch

file, then renames the scratch file to the original file name, and calls chown. Thus the

window of vulnerability is between the rename and the directly following chown, a very

short time that reduces the probability of successful attack. Not surprisingly, our attack

experiment (using the program in Figure 14) found no success on a uniprocessor.

 38

However, as we will discuss in more detail in section 2.4.4, this is not the case once gedit

is running on multiprocessors.

 The fifth vulnerability is the Enlightened Sound Daemon (esd), which creates a

directory /tmp/.esd and then changes the access mode of this directory to 777, giving full

permissions (read/write/execute) to all users. Besides, this directory is under /tmp, a place

where any user can create files or directories. So a possible attack is to create a symbolic

link /tmp/.esd before the mkdir call of esd and let the link point to some directories

owned by the running user (such as his/her home directory). If esd does not check

whether its mkdir call succeeds, then it will change the access mode of the running

user’s home directory to 777. Then an attacker has full access to the running user’s home

directory. We postponed our experiments on esd since this TOCTTOU vulnerability has

been reported in BUGTRAQ [12].

Figure 14: gedit attack program version 1

 Overall, we consider the CUU model-based detection framework to be a success.

With a modest number of experiments, we confirmed known TOCTTOU vulnerabilities

and found several previously unreported ones. However, this offline analysis only covers

the execution paths exercised by the workloads, so it cannot guarantee the absence of

TOCTTOU vulnerabilities when none is reported.

2.3.3. Evaluation of Detection Method

2.3.3.1. Discussion of False Negatives

1 while (!finish){
2 if (stat(real_filename, &stbuf) == 0){
3 if ((stbuf.st_uid == 0) && (stbuf.st_gid == 0))
4 {
5 unlink(real_filename);
6 symlink(“/etc/passwd”, real_filename);
7 finish = 1;
8 }
9 }
10 }

 39

 As mentioned in Section 2.3.2.1, our tools are not designed for exhaustive testing.

While we attempted to generate representative workloads for the 130 programs tested, we

cannot guarantee coverage of all execution paths. The coverage problem may be

alleviated by improvements in the testing technology and documentation.

 More fundamentally, the CUU-Model covers pairs of file system calls, assuming

that a precondition is established by the “Check” call before the “Use” call relies on it. In

programs where preconditions are not explicitly established (a bad programming

practice), e.g., a program creates a temporary file under a known name without first stat-

ing the existence of the file, exploits may happen outside the CUU model. The problem

of complex interactions among more than a pair of system calls is an open research

question. (Currently, there are no known examples of such complex vulnerabilities.)

2.3.3.2. Discussion of False Positives

 Tool-based detection of vulnerabilities typically does not achieve 100% precision.

The framework described in Section 2.3.1 is no exception. There are some technical

sources of false positives:

1. Incomplete knowledge of search space: The list of immune directories (Table 5) is

not complete because of the dynamic changes to system state (e.g. newly created

root-owned directories under /usr/local), which leads to false positives.

2. Artifacts of test environment: If the test cases themselves uses /tmp or the home

directory of an ordinary user, our tools have to report related TOCTTOU pairs, which

are false positives. For example, the initial test case for cpio uses a temporary

directory /tmp/cpio, so the tools reported a <stat, chdir> on this directory.

3. Coincidental events: Because our tools do system-wide monitoring, they capture file

system calls made by every process. Sometimes two unrelated processes happen to

make system calls on the same file that appear to be a TOCTTOU pair.

 40

4. Incomplete knowledge of application domain: Not every TOCTTOU pair is profitably

exploitable. For example, the application rpm invoked by “--addsign” option contains

a <stat, open> pair, which can open any file in the system for reading, such as

/etc/shadow. However, rpm can not process /etc/shadow because it is not in the

format recognizable by rpm. So it is unlikely that this pair can be exploited to

undermine a system.

 By improving the kernel filter (source 1), re-designing test cases (source 2), and

reducing concurrent activities (source 3), we reduced the false positive of our tools; for

example, in one experiment testing 33 Linux programs under /bin, the false positive rate

fell from 75% to 27%. However, source 4 is hard to remove due to the differences

among application domains.

2.3.3.3. Overhead Measurements

 To evaluate the overhead of our detection framework, we ran a variant of the

Andrew benchmark [28]. The benchmark consists of five stages. First, it uses mkdir to

recursively create 110 directories. Second, it copies 744 files with a total size of 12MB.

Third, it stats 1715 files and directories. Fourth, it greps (scan through) these files and

directories, reading a total amount of 26M bytes. Fifth, it does a compilation of around

150 source files. For every stage, the total running time is calculated and recorded. We

run this benchmark for 20 rounds and get the average. To mitigate the interference from

other processes during the run, we start Red Hat Linux in single-user mode (without X

window system and daemon processes such as apmd, crond, cardmgr, syslogd, gpm, cups

and sendmail). To get an estimation of the overhead of our system, we run this

experiment on a Linux box without modifications to get the baseline results, and then a

Linux box with our monitoring tools (without the Analyzer and the Inspector which are

used offline). For the latter case, we ran the experiment under two different directories to

 41

see the influence of file pathname to the overhead. The total running time of these five

stages for the experiments is shown in Figure 15 and Table 9.

Table 9: Andrew Benchmark Results (msec)

Functions

Original
Linux

Modified Linux
Immune Dir

Modified Linux
Vulnerable Dir

Time Overhead Time Overhead
mkdir 2.8

±0.06
3.0

±0.10 7.1%
4.1

±0.05 46%
copy 59.2

±0.49
64.8
±2.2 9.5%

80.8
±0.46 36%

stat 61.1
±0.55

69.4
±0.41 14%

149.3
±3.5 144%

grep 543.1
±2.4

576.2
±5.9 6.1%

645.3
±3.7 19%

compile 20,668
±66

20,959
±90 1.4%

21,311
±195 3.1%

Figure 15: Andrew Benchmark Results

 The results show a relatively higher overhead for mkdir, copy and stat when the

benchmark is run under an ordinary user’s home directory (denoted Vulnerable Dir in

Figure 15 and Table 9). But when the benchmark is run under /root (denoted Immune

Dir in Figure 15 and Table 9), the overhead becomes much lower (dropping from 144%

to 14% for stat). This difference shows that printks in the kernel and the Collector

daemon process contribute significantly to the overhead, because the filter in kernel

suppresses most log messages caused by the benchmark when it runs in a directory

 42

immune to TOCTTOU (Table 5), therefore the printks and Collector have much less

work to do. The other source of overhead comes from the Sensor (including the filter and

a query of the internal /proc file system data structure to map a process id to the complete

command line to assist the Inspector). However, the overhead of our detection tools is

amortized by application workload, as shown for compilation.

 PostMark benchmark [43] is designed to create a large pool of continually

changing files and to measure the transaction rates for a workload approximating a large

Internet electronic mail server. Since mail server software such as sendmail had well

known TOCTTOU problems, PostMark seems to be another representative workload to

evaluate the performance overhead of our software tools.

 When PostMark benchmark is running, it first tests the speed of creating new

files, and the files have variable lengths that are configurable. Then it tests the speed of

transactions. Each transaction has a pair of smaller transactions, which are either

read/append or create/delete.

 On the original Linux kernel the running time of this benchmark is 30 seconds.

On our modified kernel, with all the same parameter settings, the running time is 30.35

seconds when the experiment is run under /root (an immune directory), and 35 seconds

when the experiment is run under a vulnerable directory. So the overhead is 1.17% and

16.7% for these two cases, respectively. This result also shows that the printks and the

Collector contribute significantly to the overhead.

2.4. Probabilistic Analysis of TOCTTOU Attacks

 Traditionally, attacks exploiting race conditions such as TOCTTOU have been

condidered rare and “low risk”. Our TOCTTOU attack experiments against vi on

uniprocessors (Section 2.3.2.3) seem to support this belief. However, one major reason

for the low attack success rate is that the CPU is a bottleneck – the attacker simply cannot

get a chance to run. Once the CPU is no longer the bottleneck, the situation may change.

 43

For example, a multiprocessor will give the attacker the option of running on a dedicated

processor and actively seeking attack opportunities. So the attacker may achieve a higher

rate of success on a multiprocessor.

 In this section, we present a probabilistic analysis of TOCTTOU attacks taking

multiprocessors into account. We first propose a probabilistic model which shows that

multiprocessors increase the success rate of TOCTTOU attacks, especially when the

victim program is rarely suspended in the vulnerability window. Then we perform a

detailed experimental and event analysis of TOCTTOU attacks on multiprocessors, to

confirm the applicability of our model. We use vi and gedit as the victim programs in the

attack experiments, which contain new TOCTTOU vulnerabilities that were found by our

detection tools (Section 2.3.2).

2.4.1. A Probabilistic Model for Predicting TOCTTOU Attack Success Rate

2.4.1.1. The Basic General Model

 A TOCTTOU attack succeeds when the attacker is able to modify the mapping

from file name to disk block within the vulnerability window. In order to succeed, the

attacker must first find the vulnerability window, and then change the file mapping.

Therefore, our model divides the attacker program into two parts: (1) a detection part that

finds the beginning of the vulnerability window, and (2) an attack part that modifies the

file mapping.

 One of the critical issues is whether the victim is suspended within the

vulnerability window, since the suspension increases substantially the success rate.

Based on the law of total probability, the attack success rate:

P(attack succeeds) = P(victim suspended) * P(attack succeeds | victim suspended) +
P(victim not suspended) * P(attack succeeds | victim not suspended)

 44

 In addition, in order for the attack to succeed, the attacker program must be

scheduled within the vulnerability window and the attack must finish within the

vulnerability window, so

 We can derive P(attack succeeds | victim not suspended) in a similar way and get

the refined probability in Equation 1.

 In Equation 1, all the events are under the context of the victim vulnerability

window. e.g. “attack finished” means “attack finished within the vulnerability window”.

Equation 1: The probability of a successful TOCTTOU attack

2.4.1.2. Attack Success Rate on a Uniprocessor

 On a uniprocessor, P(attack scheduled | victim not suspended) = 0 since it is

impossible to schedule the attacker when the victim is running. Therefore on a

uniprocessor the second part of Equation 1 contributes nothing to the success rate. I.e.,

P(attack succeeds) = P(victim suspended) * P(attack scheduled | victim suspended) *

P(attack finished | victim suspended).

 Several observations can be made about P(attack succeeds) on a uniprocessor:

• P(attack succeeds) ≤ P(victim suspended). This means that the probability

that the victim is suspended within its vulnerability window gives an upper

bound for the attack success rate. If the victim is always suspended (e.g. rpm

in 2.3.2.2), the attacker can achieve a success rate as high as 100%. In

contrast, if the victim is rarely suspended (e.g. gedit in Section 2.3.2.4), the

attack success rate can be near zero.

P(attack succeeds | victim suspended) = P(attack scheduled * attack finished | victim
suspended)
= P(attack scheduled | victim suspended) * P(attack finished | victim suspended)

P(attack succeeds) = P(victim suspended) * P(attack scheduled | victim suspended) *
P(attack finished | victim suspended)
+ P(victim not suspended) * P(attack scheduled | victim not suspended) * P(attack
finished | victim not suspended)

 45

• P(attack scheduled | victim suspended) is the probability that the attacker

process gets scheduled when the victim relinquishes CPU. This value depends

on several factors such as the readiness of the attacker, the system load (if

round-robin scheduling is used), or the priority of the attacker (if priority-

based scheduling is used). Typically in a lightly loaded environment this value

can be nearly 100% if the attacker program uses an infinite loop actively

looking for the exploit opportunity.

• P(attack finished | victim suspended) is the probability that the attacker

successfully modifies the file mapping while the victim is suspended. Since

there is only one CPU, as long as the attack part is not interrupted, this

probability can be 100%. Typically this is the case because modifying the file

mapping requires very short processing time and needs not block on I/O.

 Based on the above analysis, the attack success rate is mainly determined by

P(victim suspended) on a uniprocessor system, and the implementation of the attack part

is relatively less critical.

2.4.1.3.Attack Success Rate on Multiprocessors

 On multiprocessors, the attacker can run on a different processor than the victim

when the victim is running within its vulnerability window. This makes the second part

of Equation 1 non-zero, i.e., P(attack scheduled | victim not suspended) > 0. This fact

increases the success rate of TOCTTOU attacks on multiprocessors as compared to

uniprocessors. If P(victim suspended) is relatively large, then the success rate on

multiprocessors may not increase significantly. However, if P(victim suspended) is very

small (approaching 0), then P(victim not suspended) approaches 1, and the gain due to

the second part of P(attack succeeds) may become very significant.

 46

 Therefore for an attacker, the benefit of having multiprocessors is maximized

when the victim is rarely suspended in the vulnerability window. An analysis of the

second part of Equation 1 shows that:

• P(attack scheduled | victim not suspended) is similar to P(attack scheduled |

victim suspended) discussed in Section 2.4.1.2. The conclusion is that it can

be as high as 100%.

• P(attack finished | victim not suspended) is the probability that the attack is

finished within the vulnerability window. Since the victim is running

concurrently with the attacker, the result of the attack depends on the relative

speed of the attacker and the victim, a more detailed analysis is needed (next

Section).

2.4.1.4. Probabilistic Analysis of P(attack finished | victim not suspended)

 In order to predict P(attack finished | victim not suspended) in more detail, we

analyze the race condition at different levels: the first level is CPU, which is the main

contention in uniprocessor attacks; the next level is file object, because the file system

already has a synchronization mechanism to regulate shared accesses. In Unix-style file

systems, the modifications to an inode are synchronized by a semaphore. Since the

operations of the victim and the attacker on the shared file modify the same inode, they

both need to acquire the same semaphore. In this case, the race is reduced to the

competition for the semaphore and we can model the success rate of the attack in the

following way.

 In this model, we assume that the attacker runs in a tight loop (the detection part),

waiting for the vulnerability window of the victim to appear. Let D be the time consumed

by each iteration of detection part, and let 1t be the earliest start time for a successful

detection and 2t be the latest start time for a successful detection followed by a

 47

successful attack (e.g. the attacker acquires the semaphore first). 1t and 2t are determined

by the victim process. Some observations can be made as follow (Figure 16):

Figure 16: Different attack scheduling on a
multiprocessor

 A successful attack starts with a successful detection as its precondition. This

successful detection may start as early as 1t (Figure 16, case (a)), and as late as Dt +1

(Figure 16, case (f)). Then the interval),[11 Dtt + is our sample space. Out of this interval

),[11 Dtt + , if the detection is started before 2t , the attack succeeds (Figure 16, cases (a)

through (c)); otherwise the attack fails (Figure 16, cases (d) through (f), because the

attack is launched too late). Let’s assume a uniform distribution for the start time of the

detection part, the success rate is thus
D

tt 12 − .

 In Figure 16 we assume that),[112 Dttt +∈ . Two other cases are:

• If 12 tt < , then the success rate is 0;

• If Dtt +≥ 12 , then the success rate is 1.

 Let 12 ttL −= , and we get:

 The success rate =
⎪
⎩

⎪
⎨

⎧

≥
<≤

<

)(,1
)0(,/

)0(,0

DLif
DLifDL

Lif

 (1)

 In formula (1), L measures the laxity of the successful attacks, which is a

characterization of the victim: the larger L, the more vulnerable the victim. D is a

characterization of the detection part of the attacker: the smaller D, the faster the attacker,

Failed detection Successful detection
Failed attack Successful attack

(f)

(a)
(b)
(c)
(d)
(e)

Dt −1 1t Dt +12t

 48

and the higher success rate. So L/D gives a very useful measurement of the relative speed

of the victim and the attacker.

 It should be noted that L and D in formula (1) are not strictly constant, because

the executions of the victim as well as the attacker are interleaved with other events (e.g.

kernel timers) in the system. That is, the running environment imposes variance on these

parameters. So formula (1) only offers a statistical guidance about the attack success rate.

2.4.2. Baseline Measurements of TOCTTOU Attacks on Uniprocessors

 For comparison purposes, in this section we summarize the measured success

rates of vi and gedit TOCTTOU attacks on uniprocessors from Section 2.3.2.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

100 200 300 400 500 600 700 800 900 1000

File size in KB

500 rounds attack success rate

Figure 17: Success rate of attacking vi (small files) on a uniprocessor

2.4.2.1. vi Attack Experiments on Uniprocessors

 Since the vi vulnerability window includes the writing of a whole file, the size of

the window naturally depends on the file size. The measured success rates for file sizes

ranging from 20KB to 10MB are the following:

• When the file size is small (from 100KB to 1MB), there is a rough correlation

between attack success rate and file size, as shown in Figure 17. However,

the correlation disappears for larger file sizes (e.g., between 2MB to 3MB),

showing that file size alone does not determine the success rate completely.

 49

• Besides file size, we studied other factors (e.g., I/O operation, CPU slicing,

and preemption by higher priority kernel threads) that corroborate the non-

deterministic nature of TOCTTOU attacks on a uniprocessor (Section 2.3.2.3).

 From Figure 17 we can see that for normal file sizes (Using vi to edit a 2MB text

file is considered rare in real life), the success rate can be as low as 1.5% and as high as

18%. Furthermore, when the file size approaches 0, the success rate also approaches 0.

2.4.2.2. gedit Attack Experiment on Uniprocessors

 The experiments in which a TOCTTOU attack was carried out against the gedit

vulnerability saw no successes. This is because the gedit vulnerability window (Figure

7(b)) does not include the writing of the new file as in vi, so it is much shorter and bears

no relationship to the file size. These factors reduced the success rate for gedit attacks to

essentially zero on a uniprocessor.

2.4.3. vi Attack Experiments on SMP

 We repeated the vi attack experiments described in Section 2.3.2.3 on a SMP

machine (2 Intel Xeon 1.7GHz CPUs, 512MB main memory, and 18.2GB SCSI disk with

ext3 file system).

 First we tried different file sizes ranging from 20KB to 1MB with a stepping size

of 20KB, and observed the success rate of 100% for all file sizes. This confirms the

probabilistic predictions in Section 2.4.1.3 and shows that a multiprocessor greatly

increases the attacker’s chance of success compared to a uniprocessor (Figure 17 in

Section 2.4.2.1). We did a detailed event analysis to confirm the attacker and victim

processes ran on separate CPUs during the vulnerability window. We also eliminated the

possibility that the attack success is due to the victim being blocked on I/O operations

(which would have made the attack easier). Consequently, we conclude that the attack

 50

success is due to the length of vi vulnerability window being much larger than the time it

takes the attacker to finish the attack steps (file name redirection).

 Figure 18 shows the L and D values (Section 2.4.1.4) for the vi attack experiments

that we conducted on the SMP. We can see that L >> D when the file is large (e.g.1MB);

and the difference (L – D) decreases as the file size decreases. But (L – D) is always

positive, even when the file size becomes very small. Therefore we can say with almost

certainty that for vi attack experiments, L > D. By formula (1) we know that the success

rate of vi attacks is almost 100% all the time.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 100 200 300 400 500 600 700 800 900 1000 1100
File size in KB

Ti
m

e
in

 m
ic

ro
se

co
nd

s

L D
Figure 18: The L and D values for vi SMP attack experiments

 One thing to notice from Figure 18 is that as the file size approaches 0, the

difference (L – D) also approaches 0. Is it possible that L becomes smaller than D? Then

according to formula (1) the attack success rate will be smaller than 100%.

 To see this we run the experiment again with the smallest files (only 1 byte each).

And the success rate we get is around 96%. Again we did a detailed event analysis of this

experiment. We measure the average L and D values and put them in Table 10. We can

see that although L > D in these attacks, they have become very close. If we consider the

fact that the values for L and D are not strictly constant due to the environmental

influence, we realize that whether L > D all the time becomes questionable when they are

close enough (When L >> D the inaccuracy introduced by the environment does not

 51

change the relationship). This helps to explain why the success rate can not be 100%

when the file contains only 1 byte.

Table 10: The average L and D values (in microseconds) for vi SMP attack experiments
(file size = 1 byte)

 Average Stdev
L 61.6 3.78
D 41.1 2.73

 Another point is that so far we actually treat P(attack finished | victim not

suspended) in Section 2.4.1.4 as the sole basis for predicting the success rate, which is

not always accurate (Equation 1). The justification is that when the vi vulnerability

window is large enough, the effect of other factors in Equation 1 is negligible. For

example, P(attack scheduled | victim not suspended) < 100% in general which means that

the attacker may not be scheduled during sometime in the vulnerability window.

However, if the vulnerability window is very large, the attacker is still within it when

he/she is scheduled eventually. That is, the temporary suspension does not affect the

result of the attack. However, when the vulnerability window becomes small enough (e.g.

L and D become close enough), the suspension may cause the attacker to miss the

vulnerability window. In such a case the attack fails, thus the suspension changes the

attack result.

 In several of the failed 1-byte vi experiments, we find that some other processes

prevents the attacker from being scheduled on another CPU during the vi vulnerability

window.

 This analysis tells us that although using a multiprocessor can greatly increase the

attack’s chance of success, the success is still not guaranteed: the attack is still influenced

by other environmental factors such as kernel activities and system load. However, 96%

is more than enough for an attacker.

2.4.4. gedit Attack Experiments on Multiprocessors

 52

2.4.4.1. gedit SMP Attack Event Analysis

 As mentioned in Section 2.4.2.2, our attack experiments against gedit on

uniprocessors saw no successes. However, when we try this attack on a SMP (the same

machine as in Section 2.4.3), we get roughly 83%, a surprisingly high success rate. A

detailed event analysis is thus conducted to understand this result.

 For the gedit attack, we have observed that if the attacker’s unlink is invoked

before gedit’s chmod (Figure 7(b) and Figure 14), then attack succeeds. This is because

these two system calls compete for the same semaphore, so if unlink wins, chmod as

well as the following chown will be delayed. As a result the attacker’s unlink and

symlink can have enough time to finish before gedit’s chown. On the other hand, if

unlink loses, unlink and the following symlink of the attacker will be delayed, so the

attack will fail. So there is an interesting cascading effect in gedit attack experiment.

Therefore, for gedit attacks, 1t is somewhere within the execution of rename (the

attacker does not need to wait until the end of rename to see that real_filename has been

created), D is the interval between the start of stat and the start of unlink. Let 3t be the

start of chmod, then Dtt −= 32 , and 1312 tDtttL −−=−= . We experimentally get the L

and D values as in Table 11.

Table 11: L and D values for gedit attacks on a SMP (in microseconds)
 Average Stdev
L 11.6 3.89
D 32.7 2.83

 The calculation of L here is not accurate because the estimation of 1t is not

accurate. Currently 1t is established as the earliest observed start time of stat which

indicates a vulnerability window. So it may not be optimal. An earlier (thus smaller)

1t will result in a larger L. So the success rate indicated by Table 11 (35%) may be overly

conservative compared to the observed success rate.

 53

 An important contributing factor to L is the computation time between the end of

rename and the start of chmod. The average length of this computation is 43

microseconds. As we will see in Section 2.4.4.2, this factor is very important for the high

success rate of gedit attack on the SMP.

 There is another contributing factor. Usually when gedit’s chmod is blocked, the

Linux kernel will try to schedule something else to run (e.g. internal kernel events such as

soft IRQs, kernel timers and tasklets), which further lengthens gedit vulnerability

window (but this contributes just a little to the delay compared with that due to the

semaphore).

2.4.4.2. gedit Multicore Attack Experiment

2.4.4.2.1 Attack one

 We repeat the gedit attack (Figure 14) on a multi-core (Dell Precision 380 with 2

Intel Pentium D 3.2 GHz dual-core and Hyper-Threading CPUs, 4GB main memory, and

80GB SCSI disk with ext3 file system). We get very different result: now we see almost

no success in the same attack experiment. The main change in the situation is that the

victim spends much less time between rename and chmod (3 microseconds vs. 43

microseconds), so chmod happens before unlink of the attacker, but in the SMP

experiment (Section 2.4.4.1) situation is the opposite.

Figure 19: Failed gedit attack (program 1) on a multi-core

0 50 100 150 200

gedit

attacker

Wake up
the attacker

stat symlinkunlinktrap

Time in microseconds

rename gedit comp chmod chown

Blocked on the
semaphore

attacker comp

 54

 Figure 19 shows the important system events during one failed attack on the

multi-core. The upper bar corresponds to the execution of gedit (rename, chmod,

chown) and the lower bar corresponds to that of the attacker (stat, unlink, symlink).

Notice that the gap (the computation) between rename and chmod of gedit is only 3

microseconds, but the gap between stat and unlink of the attacker is 17 microseconds. It

is because of this relatively larger gap that the attacker’s unlink is called later than the

victim’s chmod. Actually we can see that unlink is called later than chown and as a

result unlink has to wait on the semaphore during its execution. The 17 microsecond gap

of the attacker includes 11 microseconds of computation and 6 microseconds of system

trap processing (page fault). Speaking in terms of D, these 17 microseconds are counted

so D is around 22. On the other hand L is around 193 −=− D , so according to formula

(1) the attack success rate is probably 0. Putting this in another way, the victim is now

much faster than the attacker, so it is very difficult for the attacker to win the race.

2.4.4.2.2 Attack Two

 We think that the 17 microsecond gap in Figure 19 is mainly responsible for the

low success rate. If we could reduce the length of this gap then the situation may change.

A source code analysis tells us that before the vulnerability window the true branch of

statement 3 in Figure 14 (statements 5 to 7) is never taken. Once the vulnerability

window starts, the true branch of statement 3 is taken, and then statement 5 (unlink) is

about to be executed. Right at this point the attacker program encounters a trap (page

fault). We figure out that this effect is due to the memory management for shared

libraries in Linux. Specifically, in Linux all system calls are through libc, which is a

dynamic library shared among user-level applications. To save physical memory, Linux

kernel keeps only one copy of libc in physical memory, and its virtual memory

mechanism maps the pages of this copy to the address space of an application on demand.

For example, the physical page containing the wrapper for unlink is mapped into an

 55

application’s address space when this application first invokes unlink. This mapping is

preceded by a trap (page fault) and the corresponding handler routine carries out the

mapping. This is exactly what happens in Figure 14, where unlink is first invoked when

the true branch of statement 3 is taken. As a consequence, if we intentionally invoke

unlink (and symlink although it seems to be on the same page as unlink) before the true

branch of statement 3 is taken, we may remove the trap (page fault).

 So we re-implement the attacker program as shown in Figure 20. Now unlink and

symlink are called no matter the vulnerability window appears or not. The only trick is to

switch in the correct file name when it does appear.

 Then we perform the gedit attack experiment again using the program in Figure

20. And we begin to see many successes!

Figure 20: gedit attack program version 2

 We plot the important system events during one successful gedit attack in Figure

21, similar to Figure 19. We can see that now the gap between stat and unlink of the

attacker has decreased to 2 microseconds: the trap has disappeared. On the other hand,

the gap between rename and chmod of gedit is 2 microseconds. So the attacker has a

very narrow chance of winning the race. In this particular case, the attacker wins because

his/her stat starts well before the end of rename, so he/she identifies the vulnerability

1 while (!finish){ /* argv[1] holds real_filename */
2 if (stat(argv[1], &stbuf) == 0){
3 if ((stbuf.st_uid == 0) && (stbuf.st_gid == 0))
4 {
5 fname = argv[1];
6 finish = 1;
7 }
8 else
9 fname = dummy;
10
11 unlink(fname);
12 symlink(“/etc/passwd”, fname);
13 }//if stat(argv[1] ..
14 }//while

 56

window at the first moment, and invokes unlink ahead of chmod. Has the attacker been

2 microseconds later, the attack would fail.

Figure 21: Successful gedit attack (program 2)
on a multi-core

 Notice that during this attack the running time of stat has been lengthened to 26

microseconds (typically it needs 4 microseconds), probably due to some other more

complicated race condition (For example the contention for directory entries along the

path name). We are not quite clear about the reason but this does not change the

applicability of formula (1) because now we have a much earlier 1t (27 microseconds

into rename), which makes a L value of at least 1 microseconds.

 This experience tells us that on multiprocessors the implementation of the attacker

program can be very critical in determining the attack success rate, especially when the

vulnerability window is very narrow.

2.4.5. Pipelining Attacker Program

 The multi-core gedit experiment highlights the importance of the implementation

of the attacker program. Concretely, we found that among the three steps of the attack

(stat, unlink, symlink), unlink is the most time-consuming. A closer look into the file

system source code shows that actually symlink needs not wait on the completion of

unlink. Instead symlink can begin once the inode has been detached from the directory

by unlink, which happens relatively early. (The main part of unlink is spent physically

0 20 40 60 80 100 120 140 160
Time in microseconds

rename gedit comp chmod chown stat

Wake up
the victim

gedit

symlink

attacker

Blocked on the
semaphore

attacker comp unlink

 57

truncating the file.) This observation shows that on a multiprocessor, the attacker can

distribute its attack steps to multiple CPUs to speed up the attack part and increase its

success rate.

Figure 22: The effect of parallelizing the attack program

 To confirm this hypothesis, we implemented a multithreaded gedit attack program

with two threads: the first thread carries out the stat, unlink steps and the second thread

carries out the symlink step asynchronously. Figure 22 shows the effect of parallelizing

the attack program for three different file sizes. For each file size (e.g. 500KB), there are

three bars: the first two bars correspond to the execution of the two threads in a

parallelized attack program, and the third bar corresponds to the execution of the normal

sequential attack program. In the parallelized attack, symlink can finish (and so does the

attack) well before the end of unlink. This is in contrast to the sequential attack, where

symlink has to wait until unlink finishes. The comparison between the end times of

symlink shows that leveraging on the parallelism provided by a multiprocessor can

greatly reduce the amount of time needed for a successful attack. This is especially

important when the vulnerability window is very narrow so the attacker needs to be very

fast. This experiment shows one feasible way of doing it.

2.5. A Methodical Defense against TOCTTOU Attacks: The EDGI Approach

 In this part of the dissertation, we present the design, implementation, and

evaluation of an event-driven defense mechanism (called EDGI) that prevents

0 100 200 300 400 500 600 700 800

sequential

blocked
Time in microseconds

stat symlink

File
size
(KB)

20

100

500

parallel

sequential

parallel

sequential

unlink

 58

exploitation of TOCTTOU vulnerabilities. The EDGI defense has several advantages

over previously proposed solutions. First, based on the CUU model (Section 2.2), EDGI

is a systematically developed defense mechanism with careful design (using ECA rules)

and implementation. Assuming the completeness of the CUU model, EDGI can stop all

TOCTTOU attacks. Second, with careful handling of issues such as inference of

invariant scopes and time-outs, EDGI allows very few false positives. Third, it does not

require changes to applications or file system API. Fourth, our implementation on Linux

kernel and its experimental evaluation show that EDGI carries little overhead.

2.5.1. The Design of EDGI

2.5.1.1.Overview

 We propose an event driven approach, called EDGI (Event Driven Guarding of

Invariants), to defend applications against TOCTTOU attacks. The design requirements

of EDGI are:

1. It should solve the problem within the file system, and does not change the API, so

that existing or future applications need not be modified.

2. It should solve the problem completely, i.e., no false negatives.

3. It should not add undue burden on the system, i.e., very low rate of false positives.

4. It should incur very low overhead on the system.

 EDGI consists of three design steps (described in the rest of this section), a

concrete implementation (Section 2.5.2), and an experimental evaluation (Section 2.5.3).

The first design step is to map the CUU model into invariants in a concrete file system

(Linux in our case) and the kernel calls that preserve the invariants. The second design

step uses ECA (event-condition-action) rules [26, 36] to model the concrete invariant

preservation methods, so we can have reasonable assurance the invariants are indeed

preserved. The third design step completes the design by addressing the remaining issues

 59

such as the automated inference of invariant scope and inheritance of invariants by

children processes.

 Under the CUU model’s assumption, the “Check” part of a sequence of

operations on a file object creates an invariant that should be preserved through to the

corresponding “Use” part. Specifically, a file certified to be non-existent (∅=)(fresolve)

by the “Check” operations should remain non-existent until the “Use” operations create

it. Similarly, a file certified to be existent (bfresolve =)() by the “Check” operations

should remain the same file until the “Use” part (by the same user) accesses it.

Identifying and preserving these two invariants (∅=)(fresolve or bfresolve =)() are the

main goals of EDGI approach.

 The EDGI design treats an invariant as a sophisticated lock. The user invoking a

“Check” call becomes the owner of the lock, and the lock is usually held by the same user

through the “Use” call. Due to the complications of Unix file system, the invariant

handling is more complicated than a normal lock compatibility table. Therefore, we

represent the invariant handling using ECA rules, as explained in the following section.

We note that we only use ECA rules as a model, since our implementation does not

support general-purpose rule processing.

2.5.1.2. Invariant Maintenance

 The EDGI approach adopts a modular design and implementation strategy by

separating the EDGI invariant processing from the existing kernel. The invariant-related

information is maintained as extra state information for each file object. When an

invariant-related event is triggered, the corresponding set of conditions is evaluated and if

necessary, appropriate actions are taken to maintain the invariant.

 The invariant-related information for each file object includes its state (free or

actively used), a tainted flag, invariant holder user id and a process list. In detail:

 60

• refcnt – the number of active processes using the file object. When refcnt = 0, the file

object is free.

• tainted – when refcnt > 0, this flag means whether the name to disk object binding

can be trusted.

• fsuid – the user id of the processes that are actively using the file object.

• gh_list – a doubly-linked list, in which each node contains a process id and the

timestamp of the last system call made by the process on the file object.

 Two kinds of events trigger condition evaluation:

• File system calls such as access, open, and mkdir.

• Process operations: fork, execve, exit.

 The conditions evaluated by each event and their associated actions are

summarized in Table 12 (f denotes the file object). The conditions refer to the file object

status (whether the invariant is ∅=)(fresolve or bfresolve =)(), and actions include the

creation, removal and potentially more complex invariant maintenance actions.

2.5.1.3. Inferring Invariant Scope

 EDGI prevents TOCTTOU attacks by making the sequence of system calls on a

file object safe. As suggested by Proposition 3 (Section 2.2.2.4), the invariant

maintenance rules in Table 12 are not restricted to a TOCTTOU pair, but extend to a

sequence of file system calls. During the time such a sequence of accesses exists, the file

object is said to be actively used. Otherwise the file object is said to be free.

 The interval during which the file object is actively used forms the scope of its

invariant. The scope varies in length, depending on the number of consecutive “Use”

calls made by the application. Consequently, a significant technical challenge is to

correctly identify this scope - the boundaries of the TOCTTOU vulnerability window of

the application. Since current Unix-style file systems are oblivious to such application-

 61

level semantics, we need to infer the scope, so no changes are imposed on the

applications or the file system interfaces.

Table 12: Invariant Maintenance Rules in EDGI

 The inference of invariant scope is guided by the CUU model, which specifies the

initial TOCTTOU pair explicitly. The “Use” call of the initial pair becomes the “Check”

call of the next pair, completed by the following “Use” call. According to Proposition 2,

the CUU model correctly captures the TOCTTOU problem. The invariant of the initial

pair is maintained from the “Check” call through the “Use” call, and then to the

additional “Use” calls. The sequence continues until the program ends, a time-out or

Name Event Condition Action
Incarnation rule Any system

call on f
refcnt == 0 Set f’s state as actively used (refcnt++); set its

tainted flag as false, fsuid as current user id, record
current pid and current system time in the gh_list.

Reinforcement
rule

Any system
call on f

refcnt > 0 and
fsuid == current user id and
tainted == false

Record current pid and current system time in the
gh_list.

Abort rule Any system
call on f

refcnt > 0 and
fsuid == current user id and
tainted == true

Record current pid and current system time in the
gh_list. Return an error.

Root
preemption rule

Any system
call on f

refcnt > 0 and
fsuid != current user id and
current user id == root

Remove all invariant holders information from the
gh_list; set f’s fsuid as current user id, set refcnt as 1,
tainted as false, record current pid and current
system time in the gh_list.

Owner
preemption rule

Any system
call on f

refcnt > 0 and
fsuid != current user id and
current user id != root and
fsuid != root and
current user is the owner of f

Remove all invariant holders information from the
gh_list; set f’s fsuid as current user id, set refcnt as 1,
tainted as false, record current pid and current
system time in the gh_list.

Invariant
maintenance
rule 1

Any system
call in the
RemovalSet
(Section
2.2.3.2) on f

refcnt > 0 and
fsuid != current user id

Traverse the gh_list to get the latest timestamp t,
compute the interval between t and current time, if it
is less than threshold MAX_AGE, deny the current
request, otherwise grant the current request and set
tainted as true.

Invariant
maintenance
rule 2

Any system
call in the
CreationSet
(Section
2.2.3.2) on f

refcnt > 0 and
fsuid != current user id

Traverse the gh_list to get the latest timestamp t,
compute the interval between t and current time, if it
is less than threshold MAX_AGE, deny the current
request, otherwise grant the current request and set
tainted as true.

Clone rule Fork (parent,
child)

True For each file object that has parent in its gh_list,
record child and current system time, and increment
the refcnt.

Termination
rule

Exit True Remove current pid from the gh_list of each file
object that has it on its gh_list, and decrement the
corresponding refcnt.

Distract rule Execve True Remove current pid from the gh_list of each file
object that has it on its gh_list, and decrement the
corresponding refcnt.

 62

preemption occurs (see Section 2.5.1.4). In summary, the scope of an invariant is a safe

sequence of system calls (Definition 5 in Section 2.2.1.2).

2.5.1.4. Remaining Issues

 There are some additional issues that need to be resolved for an actual

implementation. First, if we consider the invariants as similar to locks, then the question

of dead-lock and live-lock arises. For example, it is possible that an invariant holder is a

long-running process which only touches a file object at the very beginning and then

never uses it again. Consequently, a legitimate user may be prevented from

creating/deleting the file object for a long time, resulting in denial of service. This

problem can be addressed by a time out mechanism. If an invariant holder process does

not access a file object for an exceedingly long time, the invariant will be temporarily

disabled to allow other legitimate users to proceed. (Timeout is discussed in Section

2.5.3.2.)

 If the time-out results in simple preemption (i.e., breaking the lock), then this

method may be used to attack very long application runs. To prevent the preemption-

related attack, we use a tainted bit to mark the preemption. After a preemption-related file

creation or deletion, the invariant no longer holds. EDGI marks the file object as tainted,

so the next access request from the original invariant holder will be aborted.

 The second and related problem is the relationship between the current invariant

holder and the next process attempting to access the file object. Up to now, we have

assumed a symmetric relationship, without distinguishing legitimate users from attackers.

In reality, we know some processes are more trustworthy than others. Specifically, in

Unix environments we trust the file object owner and root processes completely.

Consequently, we allow these processes to “break the lock” by preempting other

invariant holders. Concretely, when the file object owner or root process attempt to

 63

access a file object, they immediately become the invariant holder, and the invariant for

the former holder is removed.

 The third issue is the inheritance of invariants by children processes. For

example, after a user process checks on a file object and becomes an invariant holder, it

spawns a child process, and terminates. In the mean time, the child process continues, and

uses the file object. In the simple solution, the invariant is removed when the owner

(parent) process terminates. In this case an attacker can achieve a TOCTTOU attack

before the child process uses the file. Thus we must extend the scope of invariants to the

child process at every process creation. This invariant inheritance extension is analogous

to the invariant scope extension discussed in Section 2.5.1.3.

 A final question is whether the EDGI approach is a complete solution, capable of

stopping all TOCTTOU attacks. For every file system call, the rules summarized in Table

12 are checked and followed. The first time a “Check” call is invoked on a file object,

that user becomes the file object’s invariant holder. At any given time there is at most one

invariant holder for each file object. Users other than the invariant holder are not allowed

to create or remove the file object (including changes to mapping between the name and

disk objects). Therefore, the EDGI defense is able to stop all TOCTTOU attacks

identified by the CUU model.

2.5.2. Linux Implementation of EDGI

 We have implemented the design described in the previous section in the Linux

file system. The implementation consists of modular kernel modifications to maintain

the invariants for every file object and its user/owner. We outline the process that

remembers the invariant holder of each file object (Section 2.5.2.1) and then the

maintenance of the invariants (Section 2.5.2.2).

2.5.2.1. Invariant Holder Tracking

 64

 Invariant holder tracking is accomplished by maintaining a hash table of

pathnames that keeps track of the processes that are actively using each file object. The

index to this hash table is the file pathname, and for each entry, a list of process ids is

maintained. Our modular implementation augments the existing directory entry (dentry)

cache code and extends its data structures with the fields introduced in Section 2.5.1.2:

fsuid, refcnt, tainted, gh_list.

 Before a system call uses a file object by name, it first needs to resolve the

pathname to a dentry. Our implementation instruments the Linux kernel to call the

invariant holder tracking algorithm after each such pathname resolution. There are two

possible approaches to implementing this algorithm. The first is to instrument the body

of every system call (e.g., sys_open) that uses a file pathname as argument. The second is

to instrument the pathname resolution functions themselves (in the Linux case,

link_path_walk and lookup_hash).

 The first approach has the disadvantage that instrumented code has to spread over

many places, making testing and maintenance difficult. Although techniques such as

Aspect Oriented Programming (AOP) [31] could help, we were unable to find a

sufficiently robust C language aspect weaver tool that can work on Linux kernel. The

second approach has the advantage that only a few (in the Linux case, exactly two) places

need to be instrumented, making the testing and maintenance relatively easy. We chose

the second approach for our implementation.

 The invariant holder tracking algorithm GH is shown in Figure 23. This algorithm

effectively implements the rules summarized in Table 12, and it is called right before

link_path_walk and lookup_hash successfully returns.

 Line 1-2 of the invariant holder tracking algorithm addresses the situation where a

new invariant holder is identified: invariant related data structure is initialized, including

the invariant holder user id (fsuid), the invariant holder process id, the tainted flag, and a

timestamp. After these steps, the invariant maintenance part (Section 2.5.2.2) will start

 65

applying this invariant. We can see that the same sequence also occurs in Lines 10 and

16, where a new invariant holder is decided due to preemption.

1
2

3
4
5
6
7
8
9
10

11
12
13
14
15
16

17

Input: dentry d
Output: 0 – succeed, -1 – the binding of d is tainted.
if d.refcnt = 0
then d.fsuid ← current user id, record current pid and current time in d.gh_list,
d.refcnt++, d.tainted ← false, return 0.
else
 if d.fsuid = current user id
 then record current pid and current time in d.gh_list, if d.tainted = false
 then return 0
 else return -1.
 else
 if current user id = root
 then remove all invariants on d.gh_list, d.fsuid ← root, record current pid
and current time in d.gh_list, d.refcnt ←1, d.tainted ← false, return 0.
 else
 if d.fsuid = root
 then return 0.
 else
 if current user id is the owner of d
 then remove all invariants on d.gh_list, d.fsuid ← current user id,
record current pid and current time in d.gh_list, d.refcnt←1, d.tainted ← false,
return 0.
 else return 0.

Figure 23: Invariant Holder Tracking Algorithm

 Lines 4-7 address the situation in which an existing invariant holder accesses the

file object again. Notice that the tainted flag is checked to abort the invariant holder

process if the name to disk binding of the file object has been changed by another user’s

process (Section 2.5.2.2).

 Lines 9-10 correspond to the preemption of invariant from a normal user to the

root discussed in Section 2.5.1.4. Similarly, lines 15-16 handle the preemption by file

object owner.

 The invariant holder tracking algorithm needs the current process id and current

user id runtime information, which are obtained from the current global data structure

maintained by the Linux kernel.

 66

2.5.2.2. Invariant Maintenance

 The second part of implementation is invariant maintenance by thwarting the

attacker’s attempt to change the name to disk binding of a file object, which in turn is

achieved by deleting or creating a file object. We instrumented two kernel functions to

perform invariant checks:

• may_delete(d): this function is called to do permission check before deleting a file

object d. We add invariant checking after all the existing checks have been passed: If

d.refcnt > 0 and the current user id is not the same as d.fsuid, traverse d.gh_list to get

the last access timestamp; if it is younger than MAX_AGE, return –EBUSY (file

object in use and cannot be deleted). Otherwise set d.tainted as true and return 0.

• may_create(d): this function is called to do permission check before creating a file

object, similar invariant checking is added after all the existing checks have been

passed.

 The may_create kernel function is called by all the system calls in the

CreationSet (Section 2.2.3.2) and the may_delete function is called by all the system

calls in the corresponding RemovalSet. These invariant checks implement the Invariant

Maintenance Rules 1 and 2 in Table 12.

2.5.2.3.Engineering of EDGI Software

 Table 13 shows the size of EDGI implementation in Linux kernel 2.4.28. The

changes were concentrated in one file (dcache.c), which was changed by about 55%

(LOC means lines of code). The other changes were small, with less than 5% change in

one other file (namei.c), plus single-line changes in three other files. This

implementation of less than 1000 LOC was achieved after careful control and data flow

analysis of the kernel, plus some tracing. We consider this implementation to be highly

modular and relatively easily portable to other Linux releases.

 67

 From top-down point of view, the methodical design and implementation process

benefited from the CUU model as a starting point. Then, the ECA rules facilitated the

reasoning of invariant maintenance. The rules were translated into the Invariant Holder

Tracking algorithm. These steps give us the confidence that the invariants are maintained

by EDGI software.

 Conversely, from a bottom-up point of view, the Linux kernel was organized in a

methodical way. For example, it has exactly two functions (may_delete and

may_create) controlling all file object status changes. By guarding these two functions,

we were able to guard all 224 TOCTTOU pairs identified by the CUU model. This kind

of function factoring in the Linux kernel contributed to the modular implementation of

EDGI.

Table 13: Linux Implementation of EDGI

Source File Modified
Places

Original
LOC

Added
LOC

fs/dcache.c 4 1,307 749
fs/namei.c 5 2,047 84
fs/exec.c 1 1,157 1
kernel/exit.c 1 602 1
kernel/fork.c 1 896 1

2.5.3. Experimental Evaluation of EDGI

2.5.3.1. Discussion of False Negatives

 The EDGI system design follows the CUU model. In Section 2.5.1.4 we included

an informal argument for the completeness of the CUU model, details of which can be

found in Section 2.2.2. If the ECA rules summarized in Table 12 captures all the

TOCTTOU pairs identified by the CUU model, and the invariant holder tracking

algorithm in Figure 23 implements all the rules in Table 12, and our Linux kernel

implementation (Section 2.5.2) is correct, then our implementation should have zero false

negatives.

 68

 We have run all the attack experiments we could find, including known

TOCTTOU vulnerabilities such as logwatch 2.1.1 [52] and new vulnerabilities recently

detected, including rpm, vi/vim, and emacs. In all the experiments the EDGI system is

able to stop the attacker program.

 One exception to the invariant maintenance rules is the preemption by programs

running as root, which are allowed to gain the invariant and change file object status at

will. We consider this exception to be safe, since if an attacker has already obtained root

privileges, there is no further gain for using TOCTTOU attacks.

2.5.3.2. Discussion of False Positives

 As mentioned in Section 2.5.1.4, our conservation maintenance of invariants may

introduce long delays, if an invariant holder runs for a long time. These long delays can

be considered a kind of false positives, since they may or may not be necessary. Our

implementation introduces a time-out mechanism to mitigate this problem. If another

user’s process wants to create/delete the file object and encounters the last access time by

the invariant holder to be older than the time-out period, the new process is allowed to

preempt the invariant and the file object is marked as tainted. If the original invariant

holder attempts to use the file object again, then we have found a real conflict. The

current implementation aborts the original invariant holder, although other design choices

are possible.

 The determination of a suitable time-out period, called MAX_AGE in Table 12, is

probably dependent on each specific workload and a research question. If it is too short,

an attacker may use it to abort a long running legitimate process by attempting to

create/delete a shared file. If it is too long, another legitimate process may be delayed for

a long time. We have experimentally chosen a MAX_AGE of 60 seconds.

2.5.3.3. Overhead Measurements

 69

 To evaluate the overhead introduced by our EDGI defense mechanism, we run the

same variant of the Andrew benchmark as used in Section 2.3.3.3. The experiments were

run on a Pentium III 800MHz laptop with 640MB memory, running Red Hat Linux in

single user mode. We report the average and standard deviation of 20 runs for each

experiment in Table 14, which compares the measurements on the original Linux kernel

and on the EDGI-augmented Linux kernel. The same data is shown as bar chart in Figure

24.

Table 14: Andrew Benchmark Results (in milliseconds)
Functions Original Linux Modified Linux Overhead
mkdir 6.35

±0.21
6.43

±0.19
1.3%

copy 217.0
±1.5

218.6
±1.4

0.7%

Stat 132.0
±1.9

193.6
±0.8

47%

grep 777.0
±4.3

870.1
±5.3

12%

compile 53,971
±434

55,615
±367

3.0%

Figure 24: Andrew Benchmark Results

 The Andrew benchmark results show that EDGI generally has a moderate

overhead. The only exception is stat, which has 47% overhead. The explanation is that

stat takes less time than other calls (such as mkdir), but the extra processing due to

 70

invariant holder tracking (now part of pathname resolution) has a constant factor across

different calls. This constant overhead weighs more in short system calls such as stat.

Fortunately, stat is used relatively rarely, thus the overall impact remains small.

 We also evaluate the overhead of EDGI using the PostMark benchmark

mentioned in Section 2.3.3.3. On the original Linux kernel the running time of this

benchmark is 40.0 seconds. On EDGI-augmented kernel, with all the same parameter

settings, the running time is 40.1 seconds (Again these results are averaged over 20

rounds). So the overhead is 0.25%. This result corroborates the moderate overhead of

EDGI.

2.6. Related Work

 Bishop and Dilger [6, 7] were the first to explore the TOCTTOU problem and

developed a prototype analysis tool that used pattern matching to look for TOCTTOU

pairs in the application source code. They suggested several solutions to the TOCTTOU

problem, including modifications of file system interfaces. Several research projects have

tried to prevent subsets of TOCTTOU vulnerabilities. RaceGuard [18] prevents the

temporary file creation race condition in UNIX systems, specifically the <stat, open>

TOCTTOU pair. Dean and Hu [19] proposed a probabilistic approach to another specific

TOCTTOU pair: <access, open>. Interestingly however, Borisov [8] described an

effective attack that can defeat Dean and Hu’s approach, which demonstrates the

challenging nature of the TOCTTOU problem.

 Tsyrklevich et al. proposed a more generic defense mechanism called pseudo-

transactions [57], which can be used to prevent some classes of TOCTTOU

vulnerabilities from being exploited. Pseudo-transactions work by wrapping known

susceptible TOCTTOU pairs inside pseudo-transactions. Their implementation of

pseudo-transactions supports a flexible specification of allowed and denied file system

call pairs. However, they were only able to generate a set of specifications from

 71

empirical refinement through practical use. The main difference between the CUU

model and pseudo-transactions is the complete enumeration of exploitable TOCTTOU

pairs by the CUU model. To the best of our knowledge, this complete enumeration has

not been achieved before.

 Static analysis of source code has recently shown some success in finding bugs in

systems software. For example, Meta-compilation [20] and RacerX [21] use compiler-

extensions to find software bugs, and MOPS [13, 51] uses model checking to verify that a

program preserves certain security properties. These static analysis tools could be used to

detect TOCTTOU pairs in programs. However, they are limited in the detection of real

TOCTTOU problems because of dynamic states (e.g., file names, ownership, and access

rights).

 In contrast to static analysis, dynamic detection monitors application execution to

find software bugs without access to source code. These tools can be further classified

into dynamic online analysis tools such as [34, 50] and post mortem analysis tools such

as the one proposed by Ko et al. [33]. However, [33] can only detect the result of

exploiting a TOCTTOU vulnerability, but not locate the error.

 The difficulty of detection contrasts with the simplicity of some of the technical

suggestions in advisories and reports on TOCTTOU exploits from US-CERT [58] and

BUGTRAQ [11], including setting proper file/directory permissions and checking the

return code of function calls. However, some other suggested programming fixes are

varied and non-trivial: using random numbers to obfuscate file names, replacing

mktemp() with mkstemp(), and using a strict umask to protect temporary directories.

More significantly, none of these fixes can be considered a comprehensive solution for

TOCTTOU vulnerabilities.

 72

2.7. Discussion

 Our solution to the TOCTTOU problem illustrates one example of para-

transactional invariants (PTIs) that the mapping from the file pathname to the disk block

number must remain invariant between the check call and the use call. The EDGI

defense against TOCTTOU attacks preserves this invariant by wrapping the check and

use operations into an atomic execution unit similar to a database transaction, which

guarantees that the invariant is preserved despite any concurrent processes (including the

attack process).

 73

CHAPTER 3

K-QUEUE DRIVEN TRANSIENT KERNEL CONTROL FLOW

ATTACKS

 The second contribution of this dissertation research is a solution to K-Queue-

driven transient kernel control flow attacks. We identify such attacks as a new hiding

technique that can be used by an attacker to maintain stealthy control of the kernel

(Section 3.1). Having addressed a representative subclass of such attacks (Section 3.3),

we solve the complete class of K-Queue-driven attacks as a final step of this thesis

(Section 3.4).

3.1. Overview

 Internet-scale attacks, such as botnets, often utilize malicious software (malware)

to hide their presence and extract information from their host systems. Rootkits, for

example, are a common type of kernel-level malware that intercept and modify system

events with the goal of hiding illicit activity [10, 29]. Other kernel-level malware can

collect sensitive data, cause a denial of service, or open backdoors into the system. In

this chapter we present an attack technique that allows an attacker to execute kernel-level

malware while evading detection from existing defensive tools. We then focus on

techniques for detecting and mitigating the attack.

 We divide attacks designed to maintain stealthy control of the victim kernel into

three broad and sometimes overlapping categories: (1) detour attacks, (2) persistent

kernel control flow attacks, and (3) transient kernel control flow attacks. The first

category consists of malware (malicious software) that changes code on a disk or in

memory. These changes can be detected by trusted security tools that compare the

current state of the system code against a known good state (e.g., a “gold” distribution

version). The second category consists of attacks that are capable of invoking malicious

 74

functions during execution by changing data (e.g., function pointers in the interrupt

handler table). The attacks in this category do not make any changes to the kernel code,

but they can be detected by control flow integrity (CFI) [1] and state-based control flow

integrity (SBCFI) [42]. However, the attacks in the third category are capable of evading

current defensive techniques.

 This category, transient kernel control flow attacks, can achieve continual

malicious function execution without persistently changing either kernel code or data

(from the “gold” distribution). One class of transient kernel control flow attacks is K-

Queue-driven attacks that use existing kernel interfaces (called K-Queues) to

dynamically schedule executions of malicious functionality in the kernel space. K-

Queues are dynamic schedulable queues in the kernel that can be used to inject transient

control flows. All instances of K-Queues share some common properties. For example,

they all provide APIs for submitting an execution request for some callback function, and

they all have a dispatch engine that takes the request from the queue and invokes the

callback function. A kernel level malware can abuse these APIs to request that its

malicious code be invoked as a callback function. We have confirmed that this is feasible

for the soft-timer queue, one type of K-Queue (Section 3.2.3). K-Queue-driven attacks

are difficult to detect because malicious requests of the malware are hidden among the

many other requests from legitimate kernel components, which prevents CFI and SBCFI

from detecting them in this scenario.

 To defend against K-Queue-driven transient control flow attacks, we verify and

preserve a class of para-transactional invariants (PTIs) at runtime: A legitimate K-Queue

callback function and its callees (functions it calls) should always target trusted code of

the kernel during the execution of the callback function. In other words, the control flow

resulting from a legitimate K-Queue request should never include the malware code. If

we can preserve these invariants, we can guarantee that control will never go to the

malware code as a result of invoking a K-Queue callback function, which suggests that

 75

K-Queue-driven transient control flow attacks can be defeated by preserving the related

invariants.

 Our defense encodes the PTIs associated with K-Queues into a whitelist of K-

Queue summary signatures. Each K-Queue summary signature is a two-element tuple:

<function, assertion>. function represents a legitimate K-Queue callback function, and

assertion represents properties of the legitimate data passed to the legitimate callback

function as input. We add a reference monitor to the system that verifies each pending

K-Queue request (represented by a function attribute and a data attribute) before invoking

the callback function. Specifically, the function attribute is used to look up a summary

signature database. If a matching signature is found and the data attribute satisfies the

matching assertion, the verification is successful, and the callback function is invoked.

Otherwise, the callback function is not invoked.

 Although our basic idea is straight-forward, completely implementing it is

challenging. The first challenge is the building of the summary signature database. In

order to find out all legitimate uses of a particular K-Queue, the entire code base of the

kernel, including device drivers, needs to be studied. However, a modern kernel is very

complex, which means that hundreds of places may submit requests to a particular K-

Queue. Obviously, it is impractical to find all such K-Queue uses manually. Fortunately,

significant amount of information is already embedded in the kernel source code

concerning the uses of K-Queues. For example, there are certain “contract” (e.g., calling

conventions, APIs, or helper functions) between the K-Queues and their requesters. So

we can infer K-Queue usage by searching for such “contract” patterns in the kernel

source code. By applying static code analysis, we perform this kind of inference in an

automated way.

 Another challenge is the development of a checker program based on the result of

the static analysis. Again it is impractical to write the code manually because the

verification can be very complex. For example, a top-level K-Queue callback function

 76

may need to be compared against hundreds of candidate functions, and depending on the

candidate function the data attribute may need to be tested in many different ways.

Obviously, manually writing and maintaining such code is tedious and error prone.

Fortunately, this tediousness can be alleviated by applying automated code generation.

The observation is that most of the checker code can be generated as a by-product of the

static analysis process.

 Our approach significantly reduces the amount of human labor in the summary

signature generation and coding of the K-Queue checker. For example, out of 46

legitimate soft timer callback functions in a particular kernel of 482,369 lines of code,

only one callback function is missed by the static analyzer. If the static analyzer is not

used, all 46 callback functions would have to be manually recognized and their checker

code manually written.

3.2. K-Queue Driven Transient Control Flow Attacks

3.2.1. Overview of Kernel Control Flows

 We use Linux as a concrete and representative multi-threaded kernel. The Linux

kernel can have a number of control flows (listed in Figure 25): exception handlers,

interrupt service routines, Softirqs, and kernel threads such as work queues [9].

 Of the various kinds of kernel control flows, exception and interrupt handlers

execute at the highest priority, usually with interrupts disabled. Exceptions such as

system calls are a result of process invocation. Interrupts are used by hardware (e.g., I/O

devices) to notify the kernel of urgent events (for example, arrival of a packet in the

network interface card that needs to be copied to kernel/user buffers).

 Some exception and interrupt handler operations are interruptible and executed in

Softirqs, for example, sending the keyboard line buffer to the terminal handler process.

Softirqs are invoked in interrupt context (e.g. when the service routine for an I/O interrupt

 77

is finished), but with interrupt enabled. Softirqs reduce the kernel response time to

exceptions and interrupts.

 Furthest from hardware, kernel threads execute in process context and are

therefore fully interruptible. They are interleaved with user processes, with the main

difference being that kernel threads execute in kernel context while user processes

execute in user process context.

Figure 25: Kernel Control Flows with Schedulable Queues (Linux Kernel 2.6)

3.2.2. K-Queues in the Linux Kernel

 The kernel control flows outlined in Figure 25 are executed by the kernel through

kernel schedulable queues or K-Queues for short. These K-Queues are implemented as

linked lists. Representative K-Queues (with descending execution priorities) include IRQ

action queues, tasklet queues, soft timer queues, and work queues.

 78

3.2.2.1. IRQ Action Queues

 When an interrupt happens, the Interrupt Descriptor Table (IDT) is used to find

the corresponding Interrupt Service Routine (ISR), which may in turn delegate the

interrupt handling to several IRQ actions. This is because multiple I/O devices can share

an interrupt pin; therefore each of them may have its own way of handling the shared

interrupt. The Linux kernel uses IRQ action queues to support such interrupt sharing.

Each element of an IRQ action queue is a structure irqaction (Figure 26), which contains

a handler field, a dev_id field, a pointer to the next element in the queue (the next field),

and other information. The handler field is a function pointer to the handler routine, and

the dev_id field is used to uniquely identify the device that provides the handler routine.

When an interrupt happens, the ISR invokes all handler routine in the corresponding IRQ

action queue.

3.2.2.2. Tasklet Queues

 Compared to Interrupt Service Routines, tasklets are the preferred way to

implement deferrable functions in I/O device drivers. For example, a gigabit network

interface card driver may dynamically adjust the size of receive buffers according to their

fill level (e.g., allocate more buffer space when the fill level exceeds certain threshold).

The expansion of receive buffers can be time consuming due to allocation of more kernel

struct work_struct {
 unsigned long pending;
 struct list_head entry;
 void (*func)(void *);
 void *data;
 void *wq_data;
 struct timer_list timer;
 };

Figure 28: The Definition of
work_struct in Linux Kernel
2.6

struct tasklet_struct
{
 struct tasklet_struct *next;
 unsigned long state;
 atomic_t count;
 void (*func)(unsigned long);
 unsigned long data;
};

Figure 27: The Definition of
tasklet_struct in Linux Kernel
2.6

struct irqaction {
 irqreturn_t (*handler)(int,
void *, struct pt_regs *);
 unsigned long flags;
 cpumask_t mask;
 const char *name;
 void *dev_id;
 struct irqaction *next;
 int irq;
 struct proc_dir_entry *dir;
};

Figure 26: The Definition
of irqaction in Linux
Kernel 2.6

 79

memory, and it should be interruptible, being an optimization that does not affect the

correct reception of packets. Consequently, the device driver can request a tasklet to

expand receive buffers, instead of doing it in the receive interrupt handler.

 As Figure 27 shows, a tasklet request contains a callback function pointer (in the

func field) and a data pointer. In Linux, the tasklet request is inserted into one of two

tasklet queues, implemented by two Softirqs (numbers 0 and 5). When the do_softirq

function comes across a tasklet structure (Figure 27) during the traversal of the two

queues, it invokes the callback function and passes on the data field as the input

parameter.

3.2.2.3. Work Queues

 Work queues are used to schedule kernel threads that interleave with user

processes. Compared to tasklets, which execute in interrupt context, work queues

execute kernel threads in kernel context. Consequently, work queues run at lower

priority than tasklets.

 A work queue is a linked list of work requests (Figure 28), dynamically inserted

through functions such as queue_work. Similar to a tasklet, each work request has a

callback function (the func field) and a data field. The server for a work queue is a kernel

thread such as events/0, which executes each element in the list by invoking its callback

function with the data field passed on as the input parameter.

 Linux kernel may have multiple work queues. Two predefined work queues are

the events work queue that can be used by all device drivers and the kblockd work queue

used by the block device layer. Additional work queues can be created at runtime.

3.2.2.4. Soft Timer Queues

 Since the attack scenarios described in Section 3.2.3 use soft timer queues, we

provide more background information here. Dynamic soft timer is a well-established

 80

mechanism used by many kernel components to schedule the execution of timed-event

handling functions. Common uses of soft timers include retries when polling a physical

device, retransmission of data, and handling of network protocol timeouts. Figure 29

shows one concrete example in Linux kernel 2.6.16, where a soft timer interrupt is used

to implement the retransmission of data when the device is temporarily not ready.

Figure 29: Use of soft timer in Linux-
2.6.16/drivers/char/isicom.c; the function
isicom_tx may be periodically invoked as
a result.

Figure 30: A simplified view of the data
structures related to soft timers

 In the Linux kernel, the requester of a soft timer first prepares an instance of soft

timer interrupt request (STIR) of type struct timer_list (such as tx in Figure 29), which

contains information about the callback function (the function field), a data pointer (the

data field), and the expiration time, among others. The add_timer function is invoked to

add this instance of STIR into a linked list of pending timers: tvec_bases (Figure 30).

 The soft timer queue is implemented by a Softirq (number 1) and STIRs executed

in interrupt context (Figure 25). When a STIR in the linked list expires, it is removed

from the list, its callback function is invoked, and the data pointer is passed along to the

callback function as the input parameter. Typical callback functions also create the next

STIR at the end of request processing (e.g., isicom_tx in Figure 29).

function

data

next

expires

function

data

next

expires

function

data

next

expires

…

tvec_bases

… … …

static struct timer_list tx;
static void isicom_tx(unsigned long _data)
{ …..
 init_timer(&tx);
 tx.expires = jiffies + HZ/100;
 tx.data = 0;
 tx.function = isicom_tx;
 add_timer(&tx);
 return;
}
static int __devinit isicom_setup(void)
{
 ……
 init_timer(&tx);
 tx.expires = jiffies + 1; tx.data = 0;
 tx.function = isicom_tx;
 add_timer(&tx);
 ……
}

 81

3.2.3. Example Attacks Driven by K-Queues

 A common feature among the K-Queues described in Section 3.2.2 is that they all

contain some callback functions, and upon invocation such functions inject control flows

into the main kernel control loop. Under the assumption that everything in the kernel

space is equally trusted, such transfers of control are acceptable. However, if one of the

requesters is malicious, the K-Queue mechanism can be turned into a reliable way of

maintaining stealthy control: an attack can be divided into a sequence of K-Queue

requests and executed using successive callback functions. In this section, we

demonstrate that such an attack is possible by leveraging the soft timer queue (Section

3.2.2.4).

 For ease of presentation, we adopt a simple and informal model of kernel-level

malware that executes useful work for a botnet owner or renter. Under this model, the

malware’s lifecycle can be divided into three steps: (1) system penetration, (2) interpose

on the kernel control flow, and (3) continually execute malicious functionality.

Penetration methods (step 1) such as buffer overflows [17] are well known and omitted

from this discussion. Previous persistent kernel control flow attacks (e.g., the rootkits

listed in [42]) change kernel data structures (step 2) to force the kernel to branch/jump to

malicious functionality (step 3). Like persistent attacks, our new transient attacks

interpose on the kernel’s control flow (step 2) at the time of the attack. However, unlike

persistent kernel control flow attacks, which typically replace a permanent function

pointer in the kernel, a transient kernel control flow attack simply installs a malicious

STIR (Section 3.2.2.4). In our demonstration, malicious functionality is implemented

using a Linux loadable kernel module (LKM) initialization function that requests the first

STIR. When the malicious LKM is loaded, the kernel invokes its initialization function,

and step 2 is completed. The malware’s persistent execution (step 3) is possible because

each STIR can request the next STIR that references the callback function. For added

stealth, the location of this callback function can change with each STIR execution.

 82

 To understand the effectiveness of transient kernel control flow attacks, this

section outlines the design of three soft timer driven attacks to show that they can

perform a wide variety of malicious objectives. These attacks are implemented as LKMs

and run through the soft timer facility. More specifically, they invoke the kernel API

add_timer to request a STIR in their initialization function. add_timer takes as input a

parameter that points to a data structure of type struct timer_list, and the function field

of this structure is set to a callback function. A callback function is specific to the

corresponding malware, but all such functions request the next STIR before they return,

e.g., by calling add_timer.

 The three soft-timer based malware examples below demonstrate violation of the

three basic security properties: the stealthy key logger violates confidentiality, and the

cycle stealer and the alter-scheduler violate both availability and integrity.

3.2.3.1. Stealthy Key Logger

 A typical class of malware steals sensitive information from the host node. A

straightforward but easily detected malware implementation intercepts the kernel

functions that process such sensitive information. For example, a key logger [45] can

replace the keyboard interrupt handler (e.g., IRQ 1) with a malicious handler that records

the keyboard input. The following implemented example shows that persistent kernel

modifications are not needed for this type of malicious functionality.

 A timer-driven key logger keeps kernel code and interrupt-related data structures

intact. It periodically looks at various buffers in the kernel, where the keyboard input

information is stored. As Figure 31 shows, when a key is pressed, the keyboard hardware

TTY flip
buffer

line discipline
buffer

user
app.

keyboard

kernel space user space

Figure 31: Flow of keyboard input information in Linux

 83

generates an interrupt. The keyboard interrupt handler fetches the key stroke information

and temporarily stores it in the TTY flip buffer before transferring it into the TTY line

discipline buffer. Finally, when a user-level application reads from the standard input

device, the keystroke information is copied into the user’s buffer.

 The sampling rate determines whether or not a timer-driven key logger can

capture every keystroke. The key logger can obtain keystroke information from the TTY

flip buffer, the TTY line discipline buffer, or the user’s buffer. The TTY flip buffer has a

very short retention time relative to the TTY line discipline buffer, which is a large

circular buffer (normally 4096 bytes). Since each keystroke generates 2 bytes of

information, the TTY line discipline buffer can keep information on up to 2048

keystrokes. Since it can take several minutes for the average user to fill up the line

discipline buffer, the key logger malware only needs to inspect the buffer periodically

(e.g., once per minute should be good enough) to collect all of the user’s keystrokes. In

the event that more frequent sampling is required, the key logger can request faster soft

timer interrupts. In this case, techniques for hiding the higher resource consumption

should be employed (see Section 3.2.3.2) to keep the key logger stealthy.

 We have implemented the sampling key logger on Linux to collect key strokes

from an X Window desktop. It captures keystrokes entered into X Window applications,

including the gedit editor, the Firefox web browser, and terminal window emulators.

These applications handle many security-critical keystrokes including usernames,

passwords, and credit card numbers.

3.2.3.2. Stealthy Denial of Service Attack (CPU Cycle Stealer)

 A second common type of attack causes a denial of service (DoS) or lowered

quality of service. In a soft timer-driven attack, the call back function can perform

computationally intensive work to steal system resources thereby slowing down or

halting any legitimate application. One simple CPU cycle stealer has been implemented

 84

by inserting a program to compute the factorial of a given number in the call back

function. By adjusting the value of the number and the timer’s period, different

slowdown factor can be obtained. We measure the CPU usage during such an attack

where the timer's period is fixed at one second, as shown in Figure 32. When the value of

the number is below 25, the CPU consumption by the malware is negligible. As the value

becomes larger, there is an exponential increase in the CPU consumption by the malware.

For example, when the value is 36, the CPU consumption is about 54%, and when the

value grows to 42, the CPU consumption is close to 100%. Note that the actual algorithm

used to steal CPU cycles is irrelevant to the attack. Instead, this attack shows that a

resource-exhaustion attack can be stealthily deployed, preventing the system from

performing its intended tasks.

0
10
20
30
40
50
60
70
80
90

100

26 28 30 32 34 36 38 40 42

Level of DoS Attack Represented by the Number

%
C

PU

Malware Remaining Available

Figure 32: CPU Consumption by Computing
Factorials of Different Numbers

 The attack becomes effective when the malware is able to hide itself and its

effects from detection for a significant amount of time. One problem with typical DoS

attacks is that the wasted CPU cycles are detectable by system tools such as top. This is

because the kernel maintains performance accounting information for different sources of

computation. For example, the CPU time consumed by the above malicious call back

function is attributed to “software interrupt”. To hide this attack, the malicious call back

function further manipulates the kernel accounting data (e.g., kstat_cpu(0).cpustat) such

 85

that the CPU time used by the malicious STIR is attributed towards the idle CPU time.

Therefore, it is not immediately obvious why the system performance is degrading.

 Our CPU cycle stealer violates the availability of CPU resources and the integrity

of the performance accounting information. However, since the performance accounting

information is dynamic, there is no easy notion of what is normal. Under such attacks, a

system may report slowdown of a service, but there can be many other reasons for poor

performance (network congestion, server overload, retries due to device error, etc).

Therefore, this type of attack is not easily discovered.

3.2.3.3. Running a Hidden Process: the Alter-Scheduler

 A third kind of malware, called alter-scheduler, is capable of running a malicious

process without relying on the legitimate kernel scheduler. Some existing malware can

hide a malicious process by removing its entry from the all-task linked list of the kernel.

However, this malware must leave the malicious task structure in the run queue in order

for it to be scheduled. Therefore, a detection tool such as [41] that cross-checks the all-

task linked list and the run queue is able to detect the malicious process.

 The alter-scheduler malware implements a special scheduler exclusively for the

malicious process. It keeps a record of the malicious process structure and detaches it

from both the all-task list and the standard run queue. Within the STIR call back

function, the alter-scheduler preempts the currently running task, as if a higher-priority

process has become runnable. Then it forces a context switch to the malicious process, as

if the malicious process has been chosen as the new task to run. The standard scheduler

is resumed when the malicious process surrenders the CPU.

 This style of attack is very powerful because the malicious process is made

independent of (and thus invisible to) the legitimate kernel scheduler and other relevant

routines, and the malicious alter-scheduler instead supplies the missing functionality

 86

(e.g., giving the malicious process opportunities to run). Therefore, malware based on

the alter-scheduler can remain stealthy against state-of-the-art detectors such as [41].

3.3. A Specialized Defense against Soft-Timer-Driven Transient Kernel Control

Flow Attacks

3.3.1. Introduction

 In this section, we discuss the design, implementation, and evaluation of a static

analysis based tool that detects soft-timer driven attacks. Under our security

assumptions, this tool detects all soft-timer attacks with less than 7% performance

overhead.

 The static analysis tool uses summary signatures to differentiate STIRs from

legitimate and malicious software. Summary signatures characterize legitimate STIRs

using callback functions and other constraints, and are derived through automated static

analysis of the kernel source code. At runtime, a reference monitor mediates STIR

execution based on the summary signatures. We take several measures to protect the

reference monitor, including executing it in a different virtual machine and using memory

protections to prevent an attacker from bypassing the mediation step. Section 3.3.2

provides a complete discussion of our architecture and its security properties.

 In the rest of this section, we present our defense mechanism against such attacks.

We describe the Xen-based prototype implementation of the defense and its evaluation in

terms of effectiveness and performance overhead.

3.3.2. Soft Timer Attack Detection and Defense

 As described in Section 3.2.3, a soft timer based attack must usurp kernel control

flow in order to execute malicious code. Soft timers can be leveraged to do this in one of

two ways: (Type 1) supply a malicious timer callback function, or (Type 2) supply a

legitimate timer callback function but a malicious data pointer such that the control flow

 87

of the legitimate callback function is modified to invoke malicious functionality as a

subroutine (similar to the “jump-to-libc” style attacks [55]). The latter option is possible

because when a STIR callback function is invoked, a data pointer embedded in the STIR

is passed as the input parameter. In some cases, the STIR callback function may derive a

function pointer from this input, thereby allowing the data to alter the control flow.

3.3.2.1. Security Assumptions and Threat Model

 Our defensive techniques against soft timer attacks are based on four standard

security assumptions. First, since we use a virtualization-based architecture, we assume

that the virtual machine manager (VMM) and the security virtual machine (VM) are part

of the trusted computing base. This assumption is based on the idea that the VMM code

base can be small, and therefore auditable, and the interface between the guest VM and

the VMM can be narrow and protected. Our second assumption is that the legitimate

kernel code in the guest VM’s memory can not be tampered with by malicious code. In a

production setting, this must be enforced by existing security tools such as Copilot [40]

or SecVisor [53]. Third, we assume that the source code of the kernel and all kernel

extensions are available for the static analysis portion of our tool. Note that closed source

operating system vendors could perform the static analysis and make the results available

to the end-users. For open source operating systems, the entire procedure can be

performed by end-users. Lastly, in order to provide protections for this system, we

require that the system can be booted into a known good state (i.e., secure boot [3]). We

then perform a brief initialization phase to setup our defensive system and then the guest

VM is open to outside events and may be placed under attack at any time.

 Our threat model allows an attacker to install malicious code on this system

running at the highest privilege level. The attacker is able to perform kernel-level

attacks, but we assume that protections are in place to prevent tampering with kernel code

as described above. Under this model, the attacker is powerful and able to run soft timer

 88

attacks unless our defensive system prevents them. This is a realistic threat model and no

more constraining to an attacker than previous work in this space [42].

Figure 33: Illustration of a malicious STIR with a legitimate callback function
(dev_watchdog in Linux kernel 2.6.16) and a malicious data pointer (Shaded area means
malicious). Here dev_watchdog may invoke a function pointer derived from the data
field of the STIR.

3.3.2.2. Legitimate STIR Identification

 The basic idea of our proposed defense is to validate each STIR before its

execution, thereby preventing the execution of malicious STIRs. Based on the “fail-safe

defaults” principle [49], we use a white list of STIR summary signatures to distinguish

legitimate STIRs from malicious ones. An unknown STIR that does not have a matching

STIR summary signature is considered suspect and denied execution.

3.3.2.2.1 STIR Summary Signatures

 Recall that a malicious STIR can induce kernel control flow in two ways: (1)

supply a malicious timer callback function, or (2) supply a legitimate timer callback

function but a malicious data pointer. In order to detect type 1 malicious STIRs, we only

need to check their callback functions against a white list of legitimate timer callback

functions. However, in order to detect type 2 malicious STIRs, we must check the data

pointer in addition to checking the callback function. Figure 33 illustrates a type 2

malicious STIR (in shaded color). This figure shows that the tx_timeout field of the

data structure (in shaded color) referenced by the data pointer of the malicious STIR is

set to a malicious function (e.g., malicious_foo). Therefore, we can detect this

function

data

next

expires

function

data

next

expires

tx_timeout

…

tvec_bases

… …

dev_watchdog

tx_timeout

el000_tx_timeout malicious_foo

……

 89

malicious STIR by comparing the tx_timeout field against a white list of legitimate

functions (for example e1000_tx_timeout) that can be assigned to this field for the

legitimate STIRs.

 Consequently, we choose the STIR summary signature as a two-element tuple

<function, assertion>, where function represents a legitimate timer callback function

(e.g., dev_watchdog), and assertion represents properties of legitimate data passed to

the legitimate callback function as input. Specifically, an assertion is the logical AND of

0 or more parameterized predicates. Each predicate has the form “deref equals

functionlist”, where deref specifies a way to dereference a function pointer (e.g.,

data−>tx_timeout), and functionlist is the logical OR of one or more legitimate

functions that can be assigned to the dereferenced function pointer. An example assertion

associated with dev_watchdog is:

 Figure 34 shows the overall processing of the STIR summary signatures, divided

into three phases corresponding to compile time, initialization time and evaluation time,

respectively. In the first phase, Linux kernel source code is statically analyzed by the

STIR Analyzer to generate the symbolic STIR summary signatures. These signatures are

symbolic because the addresses of the functions in them may be unknown at compile

time (e.g., due to dynamic kernel module loading). The actual mappings of these

functions to their runtime addresses happen in the second phase, when the symbolic

summary signatures become resolved summary signatures. This process is in some way

similar to partial evaluation [16]. Finally, during the normal operation of the guest VM

(e.g., the evaluation time), the STIR Checker (Section 3.3.2.3) uses the resolved summary

signatures to prevent control transfers due to malicious STIRs.

 In the first phase, the STIR Analyzer performs a top-level analysis to derive the

function part of the STIR summary signatures and a transitive closure analysis to generate

the assertion part of the STIR summary signatures. The latter analysis identifies all

(data−>tx_timeout equals (el000_tx_timeout OR xircom_tx_timeout))

 90

function pointer dereferences of the input parameter in the legitimate STIR callback

functions, as well as all legitimate functions that they target.

Figure 34: Overall processing of the STIR summary signatures

3.3.2.2.2 Top-Level Analysis

 We first consider the collection of legitimate STIR callback functions, which we

call LegitTimerfuncs. These are the top-level functions that require validation

before execution. Each function in LegitTimerfuncs will become the function part

of a STIR summary signature after the transitive closure analysis.

Table 15: Different ways of assigning timer
callback functions in the Linux kernel

t.function = fn;
t = TIMER_INITIALIZER (fn, expires, data);
DEFINE_TIMER(t, fn, expires, data);
setup_timer(&t, fn, data);

 LegitTimerfuncs is constructed by scanning the kernel source code to

identify all legitimate instances of soft timer callback functions. Table 15 shows the four

techniques to link soft timer callback functions, denoted fn, to the timer_list

structure, denoted t. The first is by assignment. The second and third techniques are

macros that actually expand to assignment. Therefore the first three cases are analyzed in

Linux
Kernel
Source

Symbolic
STIR

Signatures
Resolved

STIR
Signature
Database

STIR Symbol
Resolver

STIR Symbol
Mapper

Guest VM

Security VM

Initialization TimeCompile Time

STIR
Checker

STIR
Dispatcher

Evaluation Time

STIR
Analyzer

Runtime
symbol

information

 91

the same way: the STIR Analyzer traverses each assignment statement (lval = rval)

of each function in the Linux kernel, and if lval ends with a field named function within

a structure of type timer_list, then rval is recognized as a soft timer callback

function. The last technique to link a soft timer callback function is to use the

setup_timer procedure. This technique is handled by traversing each function call to

setup_timer and collecting the second parameter in the function call.

 We assume that benign programmers follow the standard APIs in Table 15 to

request STIRs. Since the top-level analysis considers all 4 ways in Table 15, it can

capture all legitimate STIR callback functions.

3.3.2.2.3 STIR Callback Transitive Closure Analysis

 Verification of the top-level LegitTimerfuncs is insufficient to guarantee

defense because it only addresses type 1 malicious STIRs and not type 2. To detect

potential attacks in lower level subroutines, the second part of the STIR Analyzer checks

the function calls within each callback function in LegitTimerfuncs to see if any of

them allows indirect control transfers. Concretely, if function pointers are derived from

the input parameter of a callback function and the callback function further branches to

one of those pointers, then the analyzer raises a flag to indicate that the callback function

needs a transitive closure analysis of all such pointers.

 Figure 35 shows the high-level algorithm for the transitive closure analysis. Given

a callback function fn with parameter arg, the STIR Analyzer first traverses each

assignment statement of fn to compute the set of variables (tainted_vars) whose

value can be influenced by arg, directly or indirectly. Next, the STIR Analyzer searches

every function call statement of fn to see if the target function or its parameter is

influenced by any variable in tainted_vars. Existence of such a function call means

that control can go to places decided by arg, which could be exploited by malware.

 92

 If the STIR Analyzer does not raise a flag for a callback function in the transitive

closure analysis, a signature <function, assertion> is completed where function is the

name of the callback function, and assertion is simply the boolean value true (which

means that no further check is needed on the data parameter arg of the callback

function).

 If the STIR Analyzer raises a flag, a further step is performed to compute the

assertion. This step can be further subdivided into three cases.

 Case 1: Only the function name part of a function call statement (e.g. f in

f(params) of Figure 35) is influenced by the input parameter (arg), which means that

arg is used to derive a function pointer. In this case, the third step decides the legitimate

functions that can be assigned to the function pointer derived from arg. For each distinct

way of dereferencing arg, a predicate “deref equals functionlist” is generated, where

deref specifies the way to dereference arg, and functionlist is the logical OR of

legitimate functions that can be assigned to the dereferenced function pointer. The

assertion then is the logical AND of all such predicates. The process of deriving

legitimate functions in a predicate is similar to the top-level analysis (section 3.3.2.2.2)

which identifies the timer callback functions.

 Case 2: Only the parameter part of a function call statement (e.g. params in

f(params) of Figure 35) is influenced by the input parameter arg. In this case, the

same analysis in Figure 35 is applied to f, and all resultant predicates are appended

(ANDed) to the assertion.

Transitive closure analysis of fn(arg):
 - Initially arg is added to tainted_vars;

- For each assignment statement lval = rval or lval = f’(rval) in fn:
 If any part of rval is in tainted_vars, then lval is added to tainted_vars.

 - For each function call statements f(params) in fn:
 If any part of f(params) is in tainted vars, then raise a flag for fn.

Figure 35: Analysis of each STIR callback function

 93

 Case 3: Both the function name and the parameter of a function call statement are

influenced by arg. The third step treats this case as a composition of case 1 and case 2.

E.g., it first processes the function name part to derive the legitimate functions and then

processes the parameter part on each of the identified legitimate functions.

 The STIR Analyzer relies on accurate type information to recognize function

pointer dereferences. In the Linux kernel (written in C), addresses could be calculated by

pointer arithmetic operations. In practice, we have found no such unsafe pointer

arithmetic operations in all of the STIR related kernel functions we have inspected. Due

to the threat represented by kernel control flow attacks (both persistent and transient), we

encourage kernel developers to continue avoiding pointer arithmetic operations in

legitimate kernel functions. This will help to support comprehensive kernel code analysis

that depends on type information.

3.3.2.2.4 Generation of Resolved STIR Summary Signatures

 The outcome of the STIR Analyzer is the symbolic STIR summary signatures.

These contain symbols (e.g., STIR callback function names) whose runtime addresses

may not be determined statically. Specifically, Linux supports loadable kernel modules

(LKMs) that can be added to the kernel at runtime. If a legitimate LKM uses a soft timer,

the address of its callback function cannot be known until after the module is loaded (at

runtime). Therefore, we provide a mechanism for registering such symbol-address

mappings at runtime.

 Because we employ a VMM-based detection architecture (described in Section

3.3.2.3), the registration mechanism is split into two components: a guest VM component

(called a STIR Symbol Mapper) and a security VM component (called a STIR Symbol

Resolver), as shown in Figure 34. At the guest VM initialization time, the STIR Symbol

Mapper first generates mappings from function names in the symbolic STIR summary

signatures to virtual addresses in the guest kernel’s address space. It then informs the

 94

STIR Symbol Resolver about these mappings through an inter-VM communication.

When the STIR Symbol Resolver receives the mapping list, it merges the addresses with

the corresponding symbolic STIR summary signatures, which become resolved STIR

summary signatures that can be used to check the legitimacy of pending STIRs.

3.3.2.3. The STIR Checker

 Because soft timer attacks are at the kernel-level, a defense mechanism inside the

same kernel would be vulnerable to tampering by an attacker. Consequently, an effective

defense must be isolated from the victim kernel. Virtual machine managers (VMMs) are

one environment that provides such isolation, allowing us to run the defensive

mechanism in a VM that is isolated from the guest VM. Our implementation uses Xen [4]

for these isolation properties.

Figure 36: Defense against soft timer attacks

 As shown in Figure 36, our architecture places the STIR Checker outside of the

victim guest kernel in a separate domain (called the security VM). The purpose of the

STIR Checker is to prevent control transfers from the guest kernel to malicious

functionality such as those outlined in Section 3.2.3. Specifically, the software timer

dispatcher of the guest kernel is modified to inform the STIR Checker about the callback

function and related data when a pending STIR expires, and invoke the callback function

only if the STIR Checker returns true (yes). During the time when the STIR Checker is

Security VM Guest VM

STIR
Dispatcher

STIR
Checker

Resolved
STIR

Sig. DB

Xen

 95

making a decision, the guest kernel is suspended waiting for the decision. The

communication between the STIR Checker in the security VM and the guest VM is

facilitated by an inter-VM communication channel. The small modification to the guest

kernel is protected from tampering using the memory-protection capabilities from the

Lares architecture [39]; therefore the STIR Checking cannot be trivially bypassed.

 The STIR Checker module compares the next STIR to be dispatched against a list

of resolved STIR summary signatures (Section 3.3.2.2). As Figure 36 shows, all STIR

summary signatures are stored in a database, indexed by their function element (Section

3.3.2.2). Given a STIR, the STIR Checker first uses its function field as the index to look

up the summary signature database. If a signature is found, and the located assertion

evaluates to true on the data field, the STIR is considered legitimate. Otherwise it is

considered malicious.

3.3.3. Linux Implementation and Evaluation

3.3.3.1. Implementation and Evaluation of the STIR Analyzer

 We use the Common Intermediate Language (CIL) [37] to implement a prototype

STIR Analyzer, which consists of several program analysis modules that implement the

algorithms in section 3.3.2.2. These modules receive high-level representations of the

kernel source files generated by CIL, analyze them, and output the results into a text file.

 The STIR Analyzer can analyze the entire Linux kernel 2.6.16 in about one hour

on our test system (a 2.4 GHz Intel Core 2 Duo with 2 GB of RAM). The analyzer found

a total of 365 legitimate STIR callback functions in the 3688 kernel source files analyzed.

 A majority of these STIR callback functions (333 out of 365) do not derive

function pointers from the input parameter; therefore they can not be used to construct

type 2 malicious STIRs (Section 3.3.2.2).

 96

 On the other hand, 32 of the 365 top-level callback functions do derive function

pointers from their input parameter. Transitive closure analysis was carried out for these

32 functions to identify the legitimate subroutines to which the derived function pointers

can point. We describe them in some detail, since they represent potential vulnerabilities

(e.g., type 2 malicious STIRs) that are difficult to defend against.

Table 16: Representative STIR callback functions that need transitive closure analysis
(Linux-2.6.16)
Source file Timer Callback Function Function Pointers Derived From Input

drivers/input/joystick/db9.c db9_timer(struct db9 *private)
private->pd->port->ops->read_data,
private->pd->port->ops->read_status,
private->pd->port->ops->write_control

drivers/input/gameport/gameport
.c

gameport_run_poll_handler(struct
gameport *d) d->poll_handler

drivers/isdn/hisax/isdnl3.c l3ExpireTimer (struct L3Timer *t) t->pc->st->lli.l4l3
drivers/scsi/scsi_debug.c timer_intr_handler (unsigned long indx) queued_arr[indx].done_funct
net/sched/sch_generic.c dev_watchdog (struct net_device *arg) arg->tx_timeout

 Table 16 lists some of the 32 STIR callback functions that derive function

pointers from the input parameter. From these functions, we can make the following

observations. First, the dereferences in some functions are complicated. For example, the

input parameter private in db9_timer goes through 4 layers of indirection before

reaching a function pointer (private−>pd−>port−>ops−>read_data). Second, it

is normal for a STIR callback function (such as db9_timer) to dereference the input

parameter in multiple ways. Correspondingly the assertion part of the STIR summary

signature for such a function will have multiple predicates (Section 3.3.2.2). Finally, most

of the callback functions interpret the input parameter as a pointer to a structure. The

only exception is timer_intr_handler in drivers/scsi/scsi_debug.c, which uses the

input parameter as an index into a global array of structures. A function pointer is in turn

retrieved from the array element indexed by the input parameter.

 When a callback function such as dev_watchdog is encountered, the STIR

Analyzer goes through a further step of transitive closure analysis. For

dev_watchdog, the STIR Analyzer reveals 113 functions in the Linux kernel that can

 97

be assigned to dev−>tx_timeout. Due to space limitations, only 4 of them are shown

in Table 17.

 Uses of the Symbolic STIR Summary Signatures. As shown in Figure 34, the

output of the STIR Analyzer is the symbolic STIR summary signatures. We use this

information to implement the rest of our defense. The usage falls into two categories:

first, the function names in the symbolic summary signatures are retrieved and

incorporated into the STIR Symbol Mapper in the guest kernel and the STIR Symbol

Resolver (Section 3.3.3.2) in the security VM; second, the function pointer dereference

information in the symbolic summary signatures are transformed into offsets within data

structures (through an offline type analysis) and then incorporated into the STIR Checker

(Section 3.3.3.2).

3.3.3.2. Implementation of the STIR Defense

 Our implementation uses the Lares architecture [39] to transfer control to the

STIR Checker in the security VM and to ensure that the STIR Dispatcher cannot be

circumvented. Lares provides the infrastructure needed to place hooks into the guest

kernel, which divert execution into the security VM. Lares also provides protections to

ensure that the hooks in the guest VM are not tampered or circumvented.

 This functionality is supported, in part, by a new hypercall (lares_op) that is

effectively a system call from an operating system kernel into the VMM. The security

VM first invokes lares_op to register a shared memory region for exchanging

information between itself and the VMM. When the hook in the guest VM is triggered, a

Table 17: A sampling of legitimate functions that can be assigned to dev−> tx_timeout in
dev_watchdog

Function Location
ace_watchdog drivers/net/acenic.c
ariadne_tx_timeout drivers/net/ariadne.c
arlan_tx_timeout drivers/net/wireless/arlan-main.c
e1000_tx_timeout drivers/net/e1000/e1000_main.c

 98

VMCALL to lares_op is made with input parameters that contain the hook’s location

and function arguments. Upon receiving the VMCALL, lares_op pauses the guest

VM, copies the parameters from the guest VM to the memory region shared with the

security VM, and triggers a virtual IRQ. The security VM handles the virtual IRQ by

copying the event context from the guest into its address space. It then performs its

monitoring function and places the response in the shared memory block. Next,

lares_op is invoked again to inform the VMM that the response is ready. Upon

receiving this hypercall, the VMM unpauses the guest and enforces the response from the

security VM in the guest VM.

 For this work, we extended Lares by defining a new parameter structure passed

through the VMCALL from the guest kernel to the security VM. Two commands are

defined in this structure: REGISTER_STIR_SYMBOLS, and CHECK_STIR. The first

command is used by the STIR Symbol Mapper, and the second command is used by the

modified soft timer dispatching logic.

3.3.3.2.1 Implementation of the STIR Symbol Mapper

 The STIR Symbol Mapper is implemented in the guest VM as a loadable kernel

module that notifies the STIR Symbol Resolver about symbol-address mappings through

a VMCALL with the command REGISTER_STIR_SYMBOLS, and the address and

length of an array of <symbol id, address> tuples. The return value of this VMCALL is a

boolean (success or failure).

 Our implementation of the Symbol Mapper first performs a filtering of available

kernel and module symbols before invoking the VMCALL, such that only STIR-related

symbol-address mappings are passed to the Symbol Resolver. In order to perform the

filtering, the STIR Symbol Mapper is initialized with a static list of STIR-related

symbols, which is derived from the symbolic STIR summary signatures generated by the

STIR Analyzer (Section 3.3.3.1).

 99

3.3.3.2.2 Implementation of the STIR Symbol Resolver

 The STIR Symbol Resolver is the security VM component to support STIR

related symbol registration. The main task of this component is to handle the

REGISTER_STIR_SYMBOLS command from the guest VM. It first copies the STIR-

related symbol mappings (in a list of <symbol id, address>) from the guest kernel using

the XenAccess [38] virtual machine introspection library. Next, it merges the addresses

in the mappings to the STIR summary signature database (Figure 34) for that guest, using

the symbol id as a search index.

 In our implementation, each guest has its own instance of the STIR summary

signature database. This database is initialized by a template generated from the STIR

Analyzer (Section 3.3.3.1), where the addresses of the function symbols are undefined

(therefore the signatures are initially symbolic signatures). When the

REGISTER_STIR_SYMBOLS command is executed, these symbols are resolved, and

the corresponding signatures become resolved STIR summary signatures.

 The symbol-address mapping registration must be carried out in a secure way, to

ensure that the malware is unable to register a malicious callback function. Therefore we

assume that some other measure is taken to ensure that this registration is performed only

when the guest OS is in a “known good” state. Since a guest OS is less likely to be

compromised in the early stage of its life (e.g., during a secure boot [3]), our current

implementation approximates this requirement by dividing the life time of a guest OS

into a symbol registration phase (e.g., the initialization time in Figure 34) followed by a

guarding phase (the evaluation time in Figure 34), where symbol mappings can be

registered only in the symbol registration phase (during this phase the guest OS is

assumed to be in a “known good” state). We further perform the phase transition

automatically for the guest kernel when it performs such registration for the first time,

which is intended to minimize the attack window where a malware can misuse the

VMCALL interface to insert malicious address mappings. However, a side effect of this

 100

particular implementation decision is that all legitimate LKMs that use soft timers must

be loaded prior to the registration phase.

 We note that this requirement may be undesirable for on-demand kernel module

loading, but it can be resolved by other implementation options, such as verifying the

runtime integrity of the guest kernel using Copilot [40] before allowing symbol mappings

to be registered for a second time. Addressing these issues would improve the usability

of the system, but security is already assured based on our assumptions. For these

reasons, the usability issues are beyond the scope of this dissertation, and we leave them

as future work.

3.3.3.2.3 Implementation of the STIR Checking

 As shown in Figure 36, the current STIR Checker is implemented in a security

VM running on Xen. Its core function is check_stir, which performs verification of

pending STIRs. As Figure 37 shows, check_stir takes as input two integer parameters:

function and data, and returns true (success) or false (failure). It uses the resolved STIR

summary signatures that are transformed from symbolic STIR Signatures by the STIR

Symbol Resolver.

 The function deref in Figure 37 uses the APIs provided by XenAccess [38] to

dereference the data pointer (data) passed from the guest kernel (e.g.,

Figure 37: Pseudocode of check_stir

boolean check_stir (unsigned long function, unsigned long data){
Use function as index to look up the resolved STIR summary signature database.
If no signature is located, return false.
Otherwise, if the assertion part of the located signature is empty, return true.
 Otherwise, return assertion (data).

}
boolean assertion (unsigned long data){
 for each predicate (deref equals functionlist){
 if deref(data) matches no address in functionlist
 return false.
 }
 return true.
}

 101

data−>tx_timeout). The offset information is statically computed by using the

output of the STIR Analyzer. For example, in order to dereference

data−>tx_timeout, where data is of type struct net_device *, we statically

compute the offset of the field tx_timeout by analyzing the definition of struct

net_device.

 Finally, the soft timer dispatching logic of the guest Linux kernel is modified to

make a VMCALL into Xen. Specifically, when a STIR in the pending timers queue

expires, the guest kernel invokes a VMCALL, with the command CHECK_STIR, plus

the function and data fields of the STIR as parameters. If the VMCALL returns true,

function is called as normal. Otherwise, a warning message is generated and function is

not invoked.

3.3.3.3. Evaluation of Linux Case Study

3.3.3.3.1 Effectiveness of Malicious STIR Detection

 To evaluate the efficacy of our approach, we experimentally confirmed that our

implementation of the STIR Checker is able to detect the key logger, the CPU cycle

stealer and the alter-scheduler discussed in section 3.2.3. We first installed our three

“malware” kernel modules into an unprotected guest Linux kernel and confirmed that

they are able to achieve their intended malicious purposes (e.g., stealing key strokes). We

then activated the STIR-Aware environment containing the modified guest kernel, the

Lares-patched Xen VMM, and the security VM running the STIR-Checker. We first

instructed the STIR Symbol Mapper in the guest kernel to register symbols with the STIR

Symbol Resolver; currently this is initiated by loading the Symbol Mapper LKM. Then

we installed the malware kernel modules. The STIR Checker is able to immediately

generate warnings about the suspicious STIRs used by the newly loaded modules, and the

malware functions are not invoked by the guest kernel as a result. The “malware”

 102

modules have been implemented using both attack techniques mentioned in Section 3.3.2.

These results confirm that our approach can stop both types of STIR attacks.

 False Positives. Under the assumption that the STIR Analyzer processes the

complete source code of the guest kernel (including all legitimate modules), the STIR

Analyzer correctly carries out function pointer analysis, and the guest kernel installs all

necessary and legitimate modules before registering symbol-address mappings, our

detection can have no false positives. This is because all potential legitimate STIRs have

been captured in the resolved STIR summary signature database before the guest Linux

enters the guarding phase (Section 3.3.3.2.2).

 False Negatives. Due to our detection methodology, in order to obtain control,

the malware must reuse legitimate STIR callback functions (such as dev_watchdog in

Figure 33), and manipulate the parameter passed to the STIR callback function in such a

way that control will eventually go to its malicious code. One way to leverage

dev_watchdog has been shown in Figure 33. However, our detection techniques

counter this type of attack by calculating and verifying the legitimate functions that can

be assigned to dev−>tx_timeout as shown in Table 17, thus closing this possibility.

 However, it is possible for the malware to search deeper in the control flow for

opportunities, such as looking at the function ace_watchdog in Table 17, since

ace_watchdog takes dev as the input parameter. This approach will also fail because

the transitive closure analysis covers this case.

 In summary, we believe that our detection can have no false negatives under the

threat model in Section 3.3.2.1. However, since we may be facing a powerful adversary,

our detection is not a panacea. A determined attacker may find a way not covered by our

threat model to evade detection, although the STIR checking clearly raises the bar for an

attacker.

 Attacks on the STIR checking mechanism and our counter-measures. We

anticipate that attackers may use either of two different kinds of attacks in an attempt to

 103

defeat the STIR checking. (1) The malware may disable the modification to the soft

timer dispatcher so that it does not make the VMCALL, or ignores the return value. We

protect against this by using Lares to make the code page of the soft timer dispatcher

read-only. (2) The malware may try to register false mappings for legitimate symbols.

By performing the phase transition (Section 3.3.3.2.2), such actions are ignored and

therefore have no effect.

3.3.3.3.2 Performance Overhead

 In order to measure the performance overhead of the STIR Checker, we ran a set

of synthetic workloads: cat - read and display the content of 8000 small files (with size

ranging from 5K to 7.5K bytes) in a complicated directory tree. ccrypt - encrypt a text

stream of 64M bytes, where ccrypt3 is an open source encryption and decryption tool.

gzip - compress a text file of 64M bytes using the --best option. cp - recursively copy a

Linux kernel source tree. make - perform a full build of the Apache HTTP server (version

2.2.2) from source.

Table 18: Overhead measurement of the STIR Checker in execution time
(seconds)

 cat ccrypt gzip cp make
Original 20.85 3.30 5.92 43.95 217.95
STIR-aware 20.96 3.30 6.01 46.61 218.58
Overhead 0.52% 0% 1.52% 6.05% 0.29%
Callbacks/Sec 46.9 46.3 47.3 61.4 81.6

 Table 18 shows the execution times of the workloads under the original Linux and

the modified Linux (denoted STIR-aware). The VMM used in these experiments is Xen

3.0.4, and the guest Linux kernel is version 2.6.16. The host CPU is an Intel Core 2 Duo

3 http://sourceforge.net/projects/ccrypt/

 104

running at 2.4 GHz with VT-x enabled. The host is allocated 1.5 GB of memory and the

HVM (i.e., fully virtualized) guest is allocated 512 MB of memory.

 From Table 18 we can see that the performance overhead of the STIR Checker on

the synthetic workloads is low (less than 7%). Our testing found that out of the 365 STIR

callback functions identified by the STIR Analyzer, only 74 are present in the guest

kernel at runtime, and the majority of these STIR callbacks are dormant most of the time

(although there may be multiple STIRs sharing the same call back function), therefore the

frequency that a STIR actually expires (e.g., the frequency of the callbacks) is not high.

For example, the baseline frequency of callbacks is around 45 per second. Table 18

shows the average frequency of callbacks during the experiment, which is similar to the

baseline frequency.

 We also evaluate the overhead of the STIR Checker by running the Iperf-2.0.2

benchmark4. In this experiment the security VM ran the Iperf server, and the guest VM

ran the Iperf client. Iperf is used to measure the maximum throughput between the

virtual NIC in the guest VM (the front end) and the virtual bridge in the security VM (the

backend). The experiment is run for 60 seconds, using 64KB buffers and 10 concurrent

connections. The average throughput in the original environment is 717.9 MB/s, and it is

688.4 MB/s in the STIR-Aware environment. This suggests a performance drop of 4.1%

(decrease in network throughput). In addition, we measured the frequency of STIR

callbacks during the Iperf experiment and found that it increased to 287 per second,

which explains the slightly higher overhead of the STIR Checker compared to the

synthetic workloads.

 In summary, the performance overhead for the STIR-Aware environment is small

compared to the added security benefit that it provides.

4 http://dast.nlanr.net/Projects/Iperf/

 105

3.4. A General Defense against K-Queue Driven Transient Control Flow Attacks

 While our defense in Section 3.3 addresses the soft-time-driven attacks, there are

other instances of K-Queues (Section 3.2.2) that can be leveraged in a similar way to the

soft timer by an attacker to maintain stealthy control of the victim kernel. Therefore, we

have extended our defense against soft-timer-based attacks to address the more general

class of K-qeueue-driven control flow attacks. Our contributions are (1) a unified static

analysis framework and a set of tools that can generate summary signatures and the

corresponding checking code for different K-Queue instances. (2) A runtime reference

monitor that validates K-Queue invariants and guards such invariants against tampering.

(3) A comprehensive experimental evaluation of our tools on a series of Linux kernel

configurations.

3.4.1. A Unified Static Analysis Framework and Tool Set

 We build a unified static analysis framework (Figure 38) and develop a set of

tools that can be used to derive specifications of legitimate K-Queue requests, based on

the following observation: although details of different K-Queues may vary, their

specifications can be derived by a common set of analysis tasks. For example, the top-

level legitimate K-Queue callback functions can be derived by a points-to analysis of the

function pointer embedded in the respective K-Queue request data structures (Figure 26 –

Figure 28); and every legitimate K-Queue callback function that takes a data parameter

needs to go through a transitive closure analysis. It is more scalable and efficient to

separate such analysis requirements out and allow the different K-Queue analyzers to

share them. This way, future K-Queue analyzers will not have to repeat the effort of

existing K-Queue analyzers. Therefore, we develop basic analysis tools and an analysis

engine that composes these basic tools to carry out the analysis for each K-Queue

instance.

 106

 Our analysis framework has the following advantages:

 General: the same framework engine can be used by any K-Queue instance,

with only different starting seed analysis tasks. Other than that, all K-Queue

analysis proceeds in a similar fashion. This ensures that our framework can

handle future K-Queue instances not covered in Section 3.2.2.

 Incremental: our framework uses a database to store basic analysis results.

This database enables accumulation of static analysis results over time, and

more importantly, it facilitates sharing of basic analysis results among the

different K-Queue analyzers.

 Automated: we develop a set of static analysis tools that can process the kernel

source code and generate stubs of the corresponding checker code. Such

automation greatly simplifies the job of a human analyzer.

 Tunable: our analysis framework leverage persistent data (e.g., a file-based

work list and database tables) that can be easily modified offline, which offers

an opportunity for correcting errors or omissions made by the analysis tools.

Then we can have improved analysis precision.

Figure 38: K-Queue static analysis framework

 107

3.4.1.1. Basic Analysis Tasks

 One of the basic analysis tasks is points-to analysis of function pointers, since our

defense needs to know the legitimate targets of function pointers. For example, the top-

level legitimate K-Queue call back functions can be recognized in this way. We observe

that there are certain “contracts” between a K-Queue and its requesters that enable

automated inference of legitimate K-Queue callback functions. Figure 26 – Figure 28

show the data structures in certain K-Queues that need to be initialized by a requester and

read by a K-Queue dispatcher. Among the fields that must be initialized is the callback

function. Table 19 summarizes possible ways that a callback function field can be

assigned for different K-Queues.

 Direct assignment (DA). This is an unstructured way of assignment. The

requester needs to be aware of the K-Queue data structure, allocate memory for

it, and initialize its fields. But here a callback function is directly assigned to

the appropriate field, as oppose to the indirect assignment case below.

 Indirect assignment (IA) through an intermediate variable. This way is also

unstructured, but different from the DA case above, a function pointer variable

is assigned to the callback function field. For example, do_floppy in Table

19 may point to several possible functions under different conditions.

 Assignment through a function parameter (PA). This is a structured way of

assignment in which a requester can call a wrapper function which in turn

initializes a K-Queue data structure. The actual callback function is passed in as

a parameter to the wrapper function. For example, the task queue callback

function can be assigned indirectly through a parameter to the function

schedule_bh, which in turn assigns it to the routine field of a task queue

structure. In order to capture this kind of functions, the analyzer must

recognize every function call to schedule_bh and record the corresponding

actual parameter.

 108

 Accordingly, we can decompose the points-to analysis task into three kinds of

simpler tasks: direct assignment analysis, indirect assignment analysis, and parameter

assignment analysis.

Table 19: Possible ways that a call back function can be assigned in different K-Queues
 Direct Assignment Parameter Assignment Indirect

Assignment Structure Field Function Index (from 0)
Soft timer timer_list function
IRQ action
queue

irqaction handler request_irq 1

Tasklet queue tasklet_struct func tasklet_init 1
Task queue5 tq_struct routine schedule_bh 0 do_floppy

 Another basic analysis tasks is transitive closure analysis, which identifies

constraints on the data parameters passed on to a legitimate target function. For example,

the K-Queue instances discussed in Section 3.2.2 all pass a requester-supplied data

parameter to the callback function. If the callback function makes control transfer

decisions based on the data parameter, we must make sure that the attacker cannot supply

a malicious data parameter to induce kernel control flow to the malware (e.g., via a type 2

attack as the one in Figure 33).

3.4.1.2. The Analysis Engine

 The heart of the K-Queue static analysis framework is the analysis engine, which

repeatedly consumes individual analysis tasks (Section 3.4.1.1) from a work list. This

work list is dynamically changing: on one hand, tasks are removed from it by the analysis

engine; on the other hand, new tasks may be appended to it as a result of performing an

analysis task. The analysis process is bootstrapped by some seed tasks inserted to the

work list by a human analyzer, and it finishes when the work list becomes empty.

5 Task queue in Linux kernel 2.4.32 is the predecessor of work queue found in Linux kernel 2.6

 109

 During each individual analysis task, the analysis engine runs one or more of the

basic tools on the merged kernel source file as necessary and generates three kinds of

output: (1) source code for the runtime checker to verify the integrity of a pending K-

Queue request, (2) static analysis results that are stored to a database for reuse, and (3)

detailed logs for in-depth diagnosis by a human analyzer.

3.4.1.3. The Work List

 The work list contains pending static analysis tasks. Each element in this list

specifies the type of analysis (direct assignment, parameter assignment, or transitive

closure) and the corresponding input parameters. One example is <DA, tasklet_struct,

func, 1>, which instructs the analysis engine to invoke the direct assignment collector for

the func field of kernel data structure tasklet_struct. This task can bootstrap an analysis

for the tasklet queue (section 3.2.2.2), one of the K-Queues.

3.4.1.4. Basic Tools

 These are the building-blocks of the static analyzer that carry out the basic

analysis tasks discussed in Section 3.4.1.1.

3.4.1.4.1 Direct Assignment Collector

 This tool takes as input the name of a structure (e.g., irqaction) and the name

of a field (e.g., handler) within that structure, and outputs kernel functions that can be

assigned to such a field. It traverses each assignment statement (lval = rval) of the

kernel. If lval ends with a field with the specified name, this field belongs to a structure

with the specified name, and rval is an actual function, the tool collects rval as a

legitimate function. If rval is not an actual function (e.g., a formal parameter), the tool

dumps the exact expression of rval to the log file, which can help a human analyzer

find corner cases that need other means of analysis (e.g., the Parameter Collector).

 110

3.4.1.4.2 Parameter Collector

 This tool collects target functions that are passed to a wrapper function as an

actual parameter and later assigned to a function pointer (i.e., in the PA case in Table 19).

It takes as input the name of a wrapper function and the index of the parameter of

interest. It traverses the entire kernel searching for each invocation to the specified

function, and collects the actual values of the parameter at the specified index.

3.4.1.4.3 Transitive Closure Analyzer

 This tool is a major component of the tool set. It takes as input the name of a

function and a list of its formal parameters that are tainted, i.e., these parameters can

influence the control flow of the given function. This tool performs a flow-sensitive and

intra-procedural transitive closure analysis, starting from the given function and

descending into functions called by the given function and so on. It is flow-sensitive

because it propagates taint to downstream functions through parameters. It is intra-

procedural because only downstream functions defined within the same source file as the

given function are analyzed. In case that a downstream function is located in a different

source file, an external transitive closure analysis task is scheduled for execution later.

 This tool builds a hash table of all functions defined in the given kernel source

file, so that it can quickly navigate to any function to continue the analysis. It also

maintains a list of functions that needs to be analyzed (called a work list). Initially, the

work list contains only the function given as the input of this tool. As this tool processes

the given function, it may recognize more functions that need to be analyzed; then it adds

such functions to the work list. The main body of this tool is a loop over the work list

until it becomes empty. For each function in the work list, this tool performs two kinds

of tasks: taint propagation and new analysis task recognition.

 Taint propagation. The tool traverses each assignment statement (lval =

rval) in the function and taints the variable lval if any part of rval is already tainted.

 111

 New analysis task recognition. The tool traverses each function call statement

fn(args) in the function to see if any part of fn or args or both is a tainted variable.

If fn is tainted, a new points-to analysis task is generated for fn after the corresponding

structure name and field name are derived from fn. If args is tainted and fn is an

actual function, a transitive closure analysis task is generated for fn with the list of

tainted arguments.

 The work list maintained by the transitive closure analyzer is called an internal

work list to differentiate it from the external work list used by the static analysis engine in

Figure 38. New points-to analysis tasks are added to the external work list. New

transitive closure analysis tasks are first added to the internal work list, and if they can

not be handled because the corresponding function is not defined within the given kernel

source file, they are added to the external work list with the hope that they will be found

in some other source file.

3.4.1.5. Kernel Merging

 One challenge of transitive closure analysis is how to continue analysis on

downstream functions invoked by the current function – if such downstream functions are

not in the current source file, the analysis task needs to be recorded somewhere and later

tried on a different source file. Although our external work list can satisfy this

requirement, this kind of interprocedural transitive closure analysis can be very

inefficient, because many kernel source files may need to be sifted through before the

body of a function is found. To optimize transitive closure analysis, we merge the entire

kernel (given a configuration) into a single source file, so that the interprocedural analysis

tasks are all turned into intraprocedural analysis. We test our analysis engine on a series

of merged kernel source files in Section 3.4.6.2.

3.4.1.6. Result Database

 112

 In our initial implementation, each kind of K-Queue analyzer runs independently.

We quickly find out that there are redundant analysis tasks among the K-Queue analyzers

that can be avoided. For example, the fact that the task queue analyzer has performed

points-to analysis on structure scsi_cmnd and field done is agnostic to the IRQ action

queue analyzer even if the latter needs to perform points-to analysis on the same pointer.

A more specific measurement of redundancy is presented in Table 20, which shows the

number of common analysis tasks among pairs of the K-Queue analyzers. When such

sharing is significant, an analyzer may waste much time processing analysis that has been

handled. As Table 21 shows, without sharing, the soft timer analyzer runs for 284

minutes on a kernel of 482,369 lines of code, but with sharing it only needs 127 minutes

on the same kernel. This means that enabling sharing among the K-Queue analyzers can

have significant time savings. Therefore, we introduce a database of individual points-to

and transitive closure analysis results that is shared among the different K-Queue

analyzers. This database contains two tables: pointsTo and transClosure, the formats of

which are shown in Table 22 and Table 23, respectively.

Table 20: Number of common analysis tasks among different K-Queues
 Transitive Closure Points-to
IRQ action queue vs. soft timer queue 97 51
IRQ action queue vs. task queue 4 2
Task queue vs. soft timer queue 4 3

Table 21: Benefit of sharing on the K-Queue analysis time
K-Queue Without sharing With sharing % time savings
Task queue 155 minutes 147 minutes 5.2
Tasklet queue 360 seconds 314 seconds 12.8
IRQ action queue 175 minutes 166 minutes 5.1
Soft timer queue 284 minutes 127 minutes 55.3

 When the analysis engine (Section 3.4.1.2) sees a points-to analysis task, it first

uses the structure and field names as a key to query the pointsTo table. If a row is found,

it directly uses the returned points-to set. Otherwise, it invokes the points-to analysis

 113

tools (e.g., the Direct Assignment Collector and the Parameter Collector) and inserts the

results to the pointsTo table. The analysis engine uses the transClosure table in a similar

fashion except that it uses the function name and the list of tainted arguments as search

keys.

Table 22: Format of the table pointsTo
Field Type Meaning
sname varchar[40] Structure name
fldname varchar[40] Field name
p2set blob Set of function names

Table 23: Format of the table transClosure
Field Type Meaning
Fname varchar[40] Function name
Arglist varchar[20] List of tainted arguments
pointer_set blob Set of function pointers used

3.4.2. Code Generation for the K-Queue Checkers

 The analysis tool generates code stub for the runtime checker. The generated

code includes two kinds of functions: those for verifying the control flow integrity of a

function pointer and those for verifying the control flow integrity of a real function.

Figure 39(a) shows the function pointer checker code for structure irqaction and field

handler, and Figure 39(b) shows the checker code for the real function rtl8139_interrupt.

 The main body of the code in Figure 39(a) performs a series of comparisons to

match the runtime value of a function pointer to a real function in its points-to set. If a

match is found, the integrity of the function pointer is reduced to that of the matching real

function. If no such match is found, the function pointer has no integrity because it

points to something unexpected (e.g., the malware code). In other words, the integrity of

a function pointer is the disjunction (logical OR) of the integrity of all its legitimate

targets (real functions).

 114

int check_pointer_irqaction_2_handler_01(unsigned
int data){
 unsigned int fp;
 int offs[1] = {-1};

/* Fetch the function pointer value into fp */
 fp = deref_data(offs, data);
 if (fp == 0) return 1;

 if (fp == 0xc010c6cc)
 return check_func_math_error_irq_01(data);
 …
 if (fp == 0xc01b4f50)
 return check_func_rtl8139_interrupt_01(data);
 …
 unlock_kqueue_regions();
 return 0;
}

int check_func_rtl8139_interrupt_01(unsigned int
data){

 return 1
 &&
check_pointer_mii_if_info_2_mdio_read_110(data)
 &&
check_pointer_pci_ops_2_read_word_100(data)
 &&
check_pointer_pci_ops_2_write_word_100(data);
}

(a) (b)
Figure 39: Generated code for a function pointer (a) and a real function (b)

 Similarly, the integrity of a real function is the conjunction (logical AND) of the

integrity of all function pointers that it transfers control to, and if no such function

pointers are used, the function has integrity by default. For example, rtl8139_interrupt in

Figure 39(b) invokes three function pointers. One of these function pointers has structure

name mii_if_info and field name mdio_read.

 Note from Figure 39(a) that the function pointer checker uses constant address

(e.g., 0xc010c6cc) to recognize actual target functions at runtime. This is an optimization

performed by the static analyzer to avoid address translation at runtime, which is possible

for target functions built into the kernel. Specifically, the code generator looks up the

kernel symbol map generated by the normal kernel compiler to carry out such

translations.

 Also note from Figure 39(a) that before comparison the code fetches the runtime

value of the function pointer by calling deref_data (Figure 40). deref_data takes

as input an array of integers (i.e., offsets) representing byte offsets. The exact content

of this array is not supplied by the current implementation, because the automatic

derivation of a function pointer expression by dereferencing the data variable is still an

 115

ongoing research problem. For now, the output of the transitive closure analyzer contains

enough information for a human analyzer to derive such an expression. Once that is

done, our offset analyzer (Section 3.4.3) can automatically analyze the given pointer

expression and generate offset information to fill in the offset array in Figure 39(a).

unsigned long deref_data(int *offsets, uint32_t data){
 unsigned long i = 0;
 uint32_t tmpval, uint32_t guest_p = data;

 while (offsets[i] != -1){ /*offsets array ends with -1*/
 if (guest_p == 0) return -1; /* refuse to dereference null pointer */

 lock_kqueue_region(guest_p + offsets[i], guest_p + offsets[i] + sizeof(uint32_t));

 if (lares_copy_from_guest(&tmpval, guest_p + offsets[i], sizeof(uint32_t)))
 return -1;

 guest_p = tmpval;
 i++;
 }
 return (unsigned long) guest_p;
}
Figure 40: Source code for retrieving the value of a function pointer from a guest VM

3.4.3. The Offset Analyzer

 Since our runtime K-Queue checker employs the same architecture as the STIR

Checker discussed in Section 3.3.2.3, there exists a semantic gap between the K-Queue

checker and the guest kernel that resides in a different address space. Specifically, before

the K-Queue checker can evaluate a pointer expression in the guest kernel, it needs to

convert the structure field information into byte offset information; because what the K-

Queue checker can access are just raw memory pages of the guest kernel. Therefore, we

provide an offset analyzer for this purpose.

3.4.3.1. Computing the Byte Offsets for Individual Fields

 Given the definition of a structure, in order to compute the byte offset of a

particular field within this structure, a naïve offset analyzer would just sum up the bytes

occupied by the fields preceding the given field. However, this approach may give wrong

 116

results because of the padding of structure fields by the compiler. Specifically, a modern

compiler can pad additional bytes between a field and its successor so that the latter will

be properly aligned in memory [47]. Normally, such padding is invisible to the

programmer. However, when we want to fetch the value of a field from the raw memory,

we must have the correct offset information taking the padding into account.

 Although the C standard6 specifies the expected way of structure alignment and

padding, statically computing the padding is error prone and non-portable because the

exact number of bytes to pad depends on several factors, mainly the compiler and the

machine architecture. On the other hand, at runtime, we can reliably get the offset of a

field by using the ‘&’ operator. I.e., to compute the offset of field f within a structure s,

we can simply compute &s.f-&s. Therefore, we take a hybrid approach which proceeds

in several steps:

 (1) Statically generate code that defines a variable for each structure type in the

kernel and calculates the offset of each field within its structure when running. For

example, for struct s and field f defined in Figure 41(a), our approach generates the code

snippet in Figure 41(b).

struct s{ … struct foo f; …};
struct foo{ … int bar; … };

(a)

struct s s_v;
printf(“s f %d foo 0\n”,
 (unsigned int) &s_v.f - (unsigned int) &s_v);

(b)
Figure 41: Code generation for offset analysis

 The code in Figure 41(b) also displays the type name of field f (i.e., foo) and

whether f is a pointer (“0” means “no”, and “1” means “yes”). Such information is used

to make further dereference starting from f (e.g., s.f.bar), which will be discussed in

more detail shortly;

6 ISO/IEC Standard 9899:1999

 117

 (2) Compile the generated code on the target architecture. The major caveat is to

include proper header files of the kernel in the generated code so that it can compile,

which can be tricky. We solve this problem by merging all type definitions of the kernel

into the generated code.

 (3) Run the generated code on the target architecture and collect the output.

 (4) Transform and store the output into the offset database table for future

inquiries. This table has five attributes: structure name, field name, field offset, field type

(structure name), and whether the field is a pointer.

3.4.3.2. Computing Offset Information for Arbitrary Pointer Expressions

 Given a function pointer expression nfffS 210 L , the offset analyzer returns an

array of non-negative offset integers using the information in the offset database table. It

first uses (10 , fS) to query the offset database table, if the result is not empty, it should

contain the byte offset of 1f within structure 0S , and the type name of 1f if it is a

structure type (let’s call the type 1S for now). If 1f is a structure type, the offset analyzer

uses (21, fS) to query the offset database table to obtain the byte offset of 2f within 1S .

This process continues until the offset of nf within structure 1−nS is found from the

database.

Figure 42: Dereferencing of complex function pointers

 118

 The offset database table records whether a field is a pointer, because this

attribute influences the number of memory accesses when we evaluate a function pointer

expression at runtime (i.e., the length of the array returned by the offset analyzer).

Consider the above example again, if 1f is a pointer as shown in Figure 42(b), in order to

retrieve the value of 2f we need to have two memory accesses, the first one retrieves 0S

to get 1f , and the second one retrieves 1S to get 2f . However, if 1f is not a pointer as

shown in Figure 42(a), we only need one memory access because 1f is a structure

embedded in 0S , so 2f can be obtained by reading directly from the byte offset

offset1+offset2 of structure 0S .

3.4.4. Guarding of K-Queue PTIs at Run-time

3.4.4.1. TOCTTOU Attack against the K-Queue Defense

 So far our defense validates (checks) a K-Queue PTI before the guest kernel uses

it (i.e., invokes a K-Queue callback function). However, if the guest kernel is multi-

threaded, which is the case for the current Linux kernel, such a defense is vulnerable to a

TOCTTOU (Time-Of-Check-To-Time-Of-Use) attack: right after the K-Queue PTI is

checked, but before the K-Queue call back function finishes, a malicious control flow in

the guest kernel can potentially modify a function pointer involved in the PTI, so that the

call back function transfers control to the malware. This constitutes a TOCTTOU race

condition. Such attacks may be hard to mount and succeed, but they are possible.

3.4.4.2. Countermeasures to the TOCTTOU Attacks

 To counter the TOCTTOU attack against our defense, we protect the function

pointers participated in a K-Queue PTI from tampering during the execution of the K-

Queue call back function. Specifically, we temporarily write-protect memory regions in

the guest domain that hold such function pointers until the guest kernel finishes the K-

 119

Queue call back function. To support this kind of write-protection, we extend the shadow

page table manager of the hypervisor so that it masks a memory page as read-only if it

contains a protected memory region. In case there is a legitimate write to the same page

but out of the protected region, we use emulations. We add a hyper call for the security

VM to request that a memory region for any guest VM be protected or unprotected.

 During the K-Queue PTI checking, each participating structure field is first write-

protected (i.e., locked by lock_kqueue_region in Figure 40) and then checked. The

addresses of the structure fields protected so far are recorded in an array, so that when the

checking fails at any point, the already protected structure fields can be unlocked (i.e. by

unlock_kqueue_regions in Figure 39(a)). If the checking succeeds, the unlocking

is deferred until an acknowledgement is received from the guest VM that the call back

function has finished.

 We take careful measures to unlock structure fields as soon as possible. This is

because of the performance penalty caused by page-level write-protection. Since

hardware support for fine-grained memory protection is not widely available, we have to

satisfy with a suboptimal page-level protection.

 Our memory region protection can defeat the TOCTTOU attacks mentioned

above. Since we lock a structure field before using it, the attacker cannot change the

verification result. If the attacker modifies a legitimate function pointer before it is locked

(and thus verified), the checker will discover this modification and not follow (use) the

function pointer. On the other hand, the attacker cannot modify the function pointer

immediately after it is verified, because it has been locked. By the time the attacker can

modify the function pointer, it has been used (i.e., the callback function has finished), so

the modification is harmless. Note that if we first verify then lock, then there is a

possibility that an attacker modifies the verified function pointer before it is locked, thus

the attack can still succeed. So verifying then locking is a wrong design.

 120

3.4.5. Implementation

3.4.5.1. The K-Queue Analyzers

 We implement the static analyzers for the IRQ action queue, the tasklet queue, the

task queue, and the soft timer queue based on our static analysis framework. Such

analyzers are extended from the STIR analyzer (Section 3.3.3.1), so they use the same

CIL [37] tool. We implement the analysis engine in Shell scripts, which invokes the CIL

modules that implement the basic analysis toos (Section 3.4.1.4). These modules are

written in Objective Caml7. We use MySQL8 (version 5.1.34) to store the result database

(Section 3.4.1.6), and write a Java program to insert into or query the result database.

3.4.5.2. The K-Queue Defense

 We implement runtime defense for the IRQ action queue, the tasklet queue, and

the task queue, based on the STIR Checker in Section 3.3.3.2, which includes a security

VM component and a guest VM component. The STIR Checker also has a better

implementation because of the code generation. We define several new commands in the

parameter structure passed through the VMCALL from the guest kernel to the security

VM; these commands correspond to invocations and completions of the new K-Queue

requests.

 The K-Queue checkers in the Security VM are implemented based on the code

stubs generated by the K-Queue analyzers. They inspect the runtime status of the guest

kernel via the XenAccess [38] library, and they use the offset information returned by the

Offset Analyzer (Section 3.4.3). We implement the Offset Analyzer in a mixture of CIL

module, Shell script, and Java program, and the offset result database is again MySQL.

7 http://caml.inria.fr/ocaml/index.en.html
8 http://www.mysql.com

 121

 Finally, we modify the dispatching logic of the IRQ action queue, the tasklet

queue, the soft timer queue, and the task queue in the guest kernel (version 2.4.32), so

that a VMCALL is made into Xen to start the K-Queue checking before a pending K-

Queue request is invoked. The guest kernel is suspended until the result comes back from

the security VM. Table 24 summarizes the modifications to the guest kernel.

Table 24: Modifications to the guest kernel
K-Queue instance Kernel function(s) modified Location
Tasklet queue tasklet_action,

tasklet_hi_action
kernel/softirq.c

IRQ action queue handle_IRQ_event arch/i386/kernel/irq.c
Task queue __run_task_queue kernel/softirq.c
Soft timer queue run_timer_list kernel/timer.c

3.4.6. Evaluation of the K-Queue Defense

3.4.6.1.Security Properties

 Our K-Queue defense has no false negatives because all function pointers

occurring in the control flow of the callback function are validated no matter if they are

actually invoked by the callback function or not. Specifically, the transitive closure

analyzer searches through every possible execution path (starting from the callback

function) and recognizes function pointers along the way. Some of the function pointers

may not be called in a particular invocation, but the analyzer conservatively reports all

such function pointers for points-to analysis.

 On the other hand, our implementation of the K-Queue defense may have false

positives, due to the limitations of the points-to analysis module in our K-Queue analyzer.

Our current implementation of the K-Queue analyzers covers direct assignment (DA) and

some cases of parameter assignment (PA), but not indirect assignment (IA). Therefore, a

real function assigned through IA is not collected into the points-to set by the tools

 122

automatically. This will result in a false alarm at runtime should such a function is

invoked.

 One example of IA is through do_floppy, a global function pointer variable

that can point to different functions (main_command_interrupt,

seek_interrupt, recal_interrupt, or reset_interrupt) under different

situations. To fully capture the IA case would require an alias analysis which is by itself

an open research area [27].

 Our current implementation does not support function pointer arrays, either. For

example, bh_action in kernel/softirq.c invokes bh_base[nr] where nr is the data

associated with bh_action in a tasklet request. Fortunately, the integrity of

bh_base[nr] can be verified by finding the known-good values of the global array

bh_base, which is assigned by the init_bh function call. By analyzing all calls to

init_bh and collect the second parameter, we can figure out the known-good values of

this array.

Table 25: Complicated function pointers encountered by the task queue analyzer
Pointer specification Parameter Assignment Indirect Assignment
Structure Field Function Index

(from 0)
acpi_os_dpc function acpi_os_queue_for_ex

ecution
1 n/a

ata_queued_cmd scsidone ata_scsi_qc_new 3 n/a
buffer_head b_end_io init_buffer 1 “callback” in fs/xfs/linux-

2.4/xfs_buf.c, function
_pagebuf_page_io

pci_socket handler pci_register_callback 1 n/a
scsi_cmnd done scsi_do_cmd 4 “SRpnt->sr_done” in

drivers/scsi/scsi.c, function
scsi_init_cmd_from_req

 Despite the limitations, our implementation can satisfy the majority of pointer

analysis tasks in the K-Queues that we found. For example, out of 55 points-to analysis

tasks for the task queue, 50 use direct assignment (DA). The corner cases include five

parameter assignments (PA) and two indirect assignments (IA), as listed in Table 25. The

 123

most complicated case is a PA analysis for ata_queued_cmd->scsidone, which

involves multiple levels of PAs. But our manual analysis only took several minutes to

find that the points-to set is {scsi_done, scsi_old_done, scsi_eh_done}.

3.4.6.2. Performance and Scalability of the K-Queue Static Analyzer

 We test the performance of our K-Queue static analyzer on a series of 10

configurations of a Linux kernel with increased complexity. The kernel version used in

the evaluation is 2.4.32. The first configuration is a minimal kernel that can boot the

guest virtual machine. It contains 482,369 lines of code, with essential support for IDE

disk, ext3 file system, and TCP/IP networking. Each successive configuration includes

more device drivers. The most complex kernel configuration contains 1,010,196 lines of

code. A summary of these 10 kernel configurations is presented in Table 26.

Table 26: Configurations and complexity of the kernels used in the evaluation
Configuration Description Lines of code (LOC)

1 Baseline, minimal configuration 482,369
2 + Multi-device support + Networking options +

Telephony Support
563,944

3 + ATA/IDE/MFM/RLL support 592,472
4 + SCSI support (part I) 633,021
5 + SCSI support (part II) 685,526
6 + SCSI support (part III) 765,729
7 + e100 network device support (part I) 820,610
8 + e100 network device support (part II) 882,138
9 + e1000 network device support 948,183
10 + wireless network device support 1,010,196

 Each experimental run covers four kinds of K-Queues in the following order: task

queue, tasklet queue, IRQ action queue, and soft timer queue. Initially the analysis result

database is empty. As the analysis proceeds the analysis results are accumulated in the

database. Each K-Queue instance takes advantage of analysis that has finished, including

its own analysis tasks and the K-Queue instance(s) ahead of it. For example, the analysis

 124

for the soft timer queue uses some results of the IRQ action queue, so it takes less time

than if it has no existing results to use.

 The experimental run for each kernel configuration proceeds as follows. Each K-

Queue analysis starts with a points-to analysis task. When the points-to set is determined,

a round of transitive closure analysis is performed, one for each function in the points-to

set. As the result of the transitive closure analysis, new points-to analysis tasks may be

recognized. If this is the case, another round of points-to analysis is performed, which

may lead to one more round of transitive closure analysis. This iterative process

continues until the last round of transitive closure analysis recognizes no new points-to

analysis tasks.

 All the experiments run on a 3.0 GHz Intel Pentium 4 with 1 GB of RAM.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

400 500 600 700 800 900 1,000

KLOC

Soft timer

IRQ action
Tasklet

Task queue

Figure 43: Cumulative Analysis Time (in minutes)

 The first thing that we measure is the execution time of the K-Queue analysis.

Figure 43 shows the cumulative execution time at four milestones for different kernel

configurations. For example, the curve marked as “IRQ action” represents the total

analysis time for the task queue, the tasklet queue, and the IRQ action queue. The X-axis

is the complexity of the kernel configurations measured in KLOC or “thousand lines of

code”, and the Y-axis is the cumulative execution time in minutes. The ten points on

each curve correspond to the measurements for the ten kernel configurations, the left-

 125

most point corresponds to configuration 1, and the right-most point corresponds to

configuration 10.

 From Figure 43 we can see that in general the analysis time increases as the

complexity of the kernel increases. However, it seems that the execution time is not a

simple function of the kernel size. In fact, we can see flat segments as well as steep

slopes on the curves, suggesting a non-uniform distribution of the K-Queue requesters in

the kernel. For example, the first steep slope occurs on the IRQ action queue curve from

configuration 2 to configuration 3. This is because configuration 3 requires more analysis

tasks. For example, from configuration 2 to configuration 3, the points-to analysis for

structure hwif_s and field ide_dma_test_irq returns six more actual functions.

These functions belong to the device drivers for several kinds of IDE controller chipsets

(including the CMD64 series of chipsets and the HPT36X/37X chipset) that are added in

configuration 3. These new actual functions demands more transitive closure analysis

than configuration 2. However, from configuration 3 to configuration 4 the IRQ action

queue curve is pretty flat, because there are few new analysis tasks.

 The way that the execution time curves look like is expected, because our choice

for new kernel configurations is agnostic to K-Queue usage.

0
100
200
300
400
500
600
700
800
900

1000

400 500 600 700 800 900 1,000

KLOC

Soft timer

IRQ action
Task queue

Tasklet

Figure 44: Number of External Transitive Closure Analysis

 Figure 44 shows the number of external transitive closure analysis for the four

kinds of K-Queues and different kernel configurations. Since we use merged kernel

 126

source files, all such analysis is due to new results from points-to analysis. Clearly, this

number increases as the kernel size increases. The reasoning is as follows. As the size of

the kernel grows, more source code is analyzed; then the number of requesters for a

particular K-Queue is potentially increased. This leads to a larger points-to set for the top

level function pointers, thus more functions that need transitive closure analysis. The

new transitive closure analysis may lead to new points-to analysis tasks, which result in

more transitive closure analysis, and so on.

0

50

100

150

200

250

400 500 600 700 800 900 1,000

KLOC

Soft timer

IRQ action
Task queue

Tasklet

Figure 45: Number of Points-to Analysis

 The above reasoning is supported by Figure 45, in which we show the

measurement of the number of points-to analysis during the experiments. We can see that

for all four kinds of K-Queues, the number of points-to analysis tasks indeed increases

with the size of the kernel.

0

5000

10000

15000

20000

25000

400 500 600 700 800 900 1,000
KLOC

Soft timer

IRQ action
Tasklet

Task queue

Figure 46: Number of Cumulative Internal Transitive Closure Analysis

 127

 Figure 46 shows the cumulative number of internal transitive closure analysis

during the experiments. The curves have a similar trend as the number of external

transitive closure analysis and points-to analysis, but at a much larger scale (20x). This

demonstrates the benefit of kernel merging: if it is not used, a large number of such

internal transitive closure analyses would become external transitive closure analyses;

then the total analysis time would increase dramatically. This is because an external

transitive closure analysis is more time-consuming than an internal transitive closure

analysis. Each external transitive closure analysis has a constant overhead of

preprocessing and parsing the entire kernel source code, while internal transitive closure

analysis does not incur such overhead. As the kernel becomes more complex, such

overhead becomes more and more significant.

 One interesting point on Figure 46 is that up until configuration 6 the soft timer

queue accounts for the most internal transitive closure analysis among the four K-Queues.

But starting from configuration 7, this dominance is lost to the IRQ action queue, and the

number of internal transitive analysis for the soft timer queue even drops from 4,457 in

configuration 6 to 2,715 in configuration 7. This is a correct behavior, because the

number of internal transitive closure analysis for the IRQ action queue increases

dramatically from 3,449 in configuration 6 to 9,485 in configuration 7, in such a way that

they cover a significant portion of the analysis for the soft timer queue. As a supporting

evidence, the analysis for the IRQ action queue took 1,548 minutes in configuration 7,

which is significantly longer than that for configuration 6 (630 minutes), as shown in

Figure 43.

 The Simplest K-Queue

 From the evaluation, it seems that the tasklet queue is the simplest K-Queue. The

numbers of points-to and transitive closure analysis stay very low until the nineth

configuration. The entire analysis can be finished in less than 15 minutes in most cases.

This suggests that tasklet is not heavily used in Linux kernel 2.4.32.

 128

3.4.6.3. Benefit of the Code Generation

 Our K-Queue static analysis tools generate the corresponding checker code as a

by-product. For example, they generate over 5,800 lines of code for kernel configuration

1 in Table 26. Without automated code generation, it would be very time-consuming to

develop such checker programs manually.

3.4.6.4. Performance Overhead of the K-Queue Checker

 To measure the runtime overhead of our K-Queue Checker, we run the five

benchmarks used to measure the overhead of the STIR Checker (Section 3.3.3.3.2).

These benchmarks run on a 2.66 GHz Intel Core 2 Duo with VT-x support, the security

VM (Domain 0) is allocated 512 MB of RAM, and the guest VM is allocated 256 MB of

RAM. The hypervisor is Xen 3.3.0, and the guest kernel is Linux 2.4.32 with

configuration 1 (Table 26). Each experiment is run 10 times and the mean and standard

deviation of the measurements are computed. Table 27 shows the preliminary results.

 Table 27 contains three kinds of results. The “Original” results are collected on

unmodified Xen and guest kernel and serve as the baseline. The results marked as “K-

Queue-aware, no lock” are collected on the modified Xen and guest kernel, but with the

page-level memory protection (Section 3.4.4.2) turned off. Finally, the results marked as

“K-Queue-aware, lock” are collected on the full-fledged defense mechanism including

the modified Xen, the modified guest kernel, and the page-level memory protection.

 From Table 27, we can see that our implementation of the K-Queue Checker

incurs performance overhead ranging from 11% to 25 times slow down. This is much

higher than the overhead measurement for the STIR Checker (Table 18).

 In order to understand the result, we carry out an event analysis of the K-Queue

runtime defense and identify three reasons for the high overhead: (1) the K-Queue

defense needs to protect more K-Queue instances (four instead of one) and some K-

Queue call backs happen at a high frequency. For example, IRQ action call back

 129

functions happen at the rate of roughly 136 per second, and tasklet call back functions

have a similar frequency, not to mention the other two K-Queues. (2) More importantly,

some K-Queue call back functions are very complicated, so they require a large number

of function pointer verification. For example, ide_intr, the IRQ action call back function

for the IDE disk, requires a total of 192 function pointers to be verified, which leads to

648 cross-domain introspections. On the other hand, the most complicated soft timer call

back function dev_watchdog needs only three function pointer verification and five cross-

domain introspections, and the second most complicated soft timer call back function

neigh_periodic_timer needs only two function pointer verification and two cross-domain

introspections. This explains why the overhead measurements in Table 18 are much

lower than those in Table 27. For example, the cp benchmark has the highest

performance penalty in Table 27, because cp demands frequent disk operations and

accordingly frequent callbacks to ide_intr (42 times per second), and we know that the

verification of ide_intr is very complicated. (3) The coarse-grain locking of memory

pages by our defense causes a large number of legitimate memory write operations to be

emulated in software, which adds more performance overhead. This is consistent with

the results in Table 27. For example, the cp benchmark sees a 25 times slowdown with

the memory protection turned on, but once the memory protection is turned off, the

slowdown drops to 14 times.

Table 27: Overhead of the K-Queue Checker
 cat ccrypt gzip cp make
Original 13.06

±1.61
3.05

±0.27
5.35

±0.10
50.00
±4.35

128.78
±3.91

K-Queue-
aware, no lock

16.66
±0.38

3.89
±0.50

5.93
±0.12

749.99
±42.97

175.92
±5.24

Overhead 28% 28% 11% 1,400% 37%
K-Queue-
aware, lock

17.15
±1.68

4.28
±0.99

6.12
±0.59

1,309.73
±100.03

210.44
±25.16

Overhead 31% 40% 14% 2,519% 63%

 130

 Complexity of the K-Queue Checker

 To further understand the performance overhead, we define and measure two

complexity metrics of the K-Queue Checker program: layer and fanout. First we give an

informal definition of the layer of verification: each layer is associated with a function

pointer. The checker starts in layer 1, where the associated function pointer is the top-

level K-Queue function pointers embedded in the K-Queue data structures. At layer i the

value of the function pointer is first verified against a white list; if the verification is

successful then the integrity of the target function itself needs to be verified, which may

require the checking of a new function pointer. In this case the verification enters a new

layer i + 1. When the verification for a target function completes, the checker returns to

the previous layer (i.e., layer i). We also define the fanout of a function as the number of

function pointers whose integrity needs to be checked for that function.

 For our K-Queue Checker program, the maximum layer during the verification of

the IRQ action queue is seven, which happens when the top-level call back function is

ide_intr (linux-2.4.32/drivers/ide/ide-io.c). And during the checking of the IRQ action

queue, the maximum fanout is 15 (for the function idedisk_error in linux-

2.4.32/drivers/ide/ide-disk.c).

3.5. Related Work

 Defenses against Stealthy Attacks. Defense techniques against attacks that

change kernel code include Tripwire [32], a file system integrity checker, IMA [48], a

load-time kernel and application code integrity checker, and Copilot [40] and Pioneer

[54], runtime kernel code checkers. Representative defenses for attacks that change

kernel data include CFI [1] and SBCFI [42].

 To the best of our knowledge, there have been few concrete instances of attacks

that do not change kernel code or data, but insert transient execution units into a

schedulable queue. The Blue Chicken [46] uses a KTIMER in a Windows Vista kernel to

 131

reinstall the Blue Pill hypervisor, which is an example of how a kernel-level malware can

use soft timer to maintain control of the victim platform. The “cheat” attack described in

[56] may be regarded as a user-level example, since it uses the to-be-scheduled task

queue. Known malware detection methods have difficulties with transient kernel control

flow attacks. For example, signatures of known malicious STIRs can be created by

reverse engineering the malware. This approach suffers from the same problems seen in

the anti-virus community. Specifically, they are unable to detect or prevent zero-day

attacks, and the process of finding appropriate signatures is difficult and error prone. For

these reasons, signature checking alone is insufficient to mitigate this threat.

 Another possible approach for detecting these attacks is to extend control flow

integrity techniques such as SBCFI [42] and CFI [1]. SBCFI is a checker for persistent

kernel control flow attacks. It starts by looking at kernel global variables and performs a

garbage-collection style traversal of kernel data structures to verify that all of the function

pointers target trusted addresses in the kernel. SBCFI can potentially catch a type 1

malicious STIR, since the function pointer targets can be validated when SBCFI scans the

kernel variables. However, SBCFI can not detect type 2 STIRs because it does not

follow the uninterpreted data field included as part of the callback: it is not defined as a

pointer type. The definition of data is intended to allow maximum flexibility for different

call back functions. In order to make SBCFI work on type 2 STIRs, accurate type

information for the data field in each call back function must be added, which would

require a static analysis of all STIR callback functions. Such an approach would then be

similar to our STIR Analyzer (Section 3.3.2.2).

 A more general approach, CFI [1] uses inline reference monitors [22] to compare

the dynamic execution flow of a program against a statically computed control flow

graph (CFG). CFI is a general framework that can be instantiated into an alternative

implementation of the STIR Checker, however the exact checks that must be performed

 132

against the STIR callback functions would still need to be constructed by tools such as

the STIR Analyzer.

 Secure Kernel Extensions. K-Queue driven malware exploits an interface

exposed by the core kernel to its extensions. There has been some effort to achieve finer-

grained divisions within a monolithic kernel, with the goal of improving security. For

example, Palladium [15] demotes the privileges of the kernel extensions so that

misbehaving or malicious extensions cannot harm the core portion of the kernel.

However, such approaches can only prevent the malicious extensions from corrupting the

core kernel, but cannot prevent sensitive information stealing (section 3.2.3.1) and denial

of service attacks (Section 3.2.3.2).

 Points-to analysis. There has been a large body of research work on points-to

analysis. However, this problem has not been completely solved yet because in general

points-to analysis is undecidable. As a result, a large number of approximation

algorithms have been proposed, with various trade-off between efficiency and precision.

Interested readers are referred to a survey by Hind [27]. Our K-Queue analyzer provides

specialized points-to analysis algorithms (e.g., direct assignment collector and parameter

collector) for the Linux kernel, which are not intended for a general solution to the

points-to analysis problem.

 Applications of Static Analysis in Systems and Security Research. In recent

years, static analysis of software has been used for many purposes including deriving

application behavior models for intrusion detection systems [60], building control flow

graphs of an application [1], and determining type and global variable information for the

Linux kernel [42]. This technique has also been applied to finding bugs in both kernel

and application code [13, 21, and 35]. In this dissertation, we add one more use case by

applying this technique to derive summary signatures for legitimate K-Queue requests.

 133

3.6. Discussion

 The K-Queue case study demonstrates another example of para-transactional

invariants (PTIs): that the control flow resulting from a legitimate K-Queue callback

function should always target trusted code of the kernel. The scope of such K-Queue

invariants is from the verification of the K-Queue request to the end of the execution of

the callback function.

 134

CHAPTER 4

CONCLUSION AND FUTURE WORK

 Attacks exploiting inherent shortcomings of today’s operating systems (e.g.,

missing transactional support) are the most difficult to defend because they are often

stealthy and non-obtrusive. Yet such attacks are on the rise to become a major security

threat. This dissertation argues that we can defend these attacks by identifying and

guarding specific correctness models. To exemplify our approach, we solve two classes

of important security problems: TOCTTOU and K-Queue. TOCTTOU is a file-based

race condition that represents a high security risk due to the wide-scale deployment of

multiprocessors, and K-Queue driven attacks misuse the schedulable queues interface to

inject transient and malicious control flows in the victim kernel and can evade the

detection of state-of-the-art kernel integrity checkers. We propose the CUU model that is

capable of enumerating all potential TOCTTOU vulnerabilities and our CUU-guided

defense mechanism and implementation are also complete. We apply automated static

analysis and code generation that infer the correct usage model of the K-Queues (called

summary signatures) and generate the corresponding guards that enforce the usage model

at runtime. Our work suggests that improving the correctness of operating systems

enable powerful defense against certain classes of malicious attacks, and that automated

software engineering techniques are very helpful in increasing the productivity of such

efforts.

4.1. Future Work

 Reduce the runtime overhead of the K-Queue Checker

 The current K-Queue Checker incurs unacceptable overhead in some cases. But

the overhead can be reduced in at least two ways. First, we can optimize the Checker

software to verify different function pointers in the same data structure together and

 135

avoid redundant pointer verifications. This is because the function pointers often cluster

in a small number of data structures (such as hwif_s and tty_driver), and different target

functions often require the same function pointer to be verified. Second, we can employ

architectural support for fine-grain memory protection (e.g., Mondrian [64]) once they

are available, to reduce the overhead of our defense against the TOCTTOU attacks on our

K-Queue Checkers.

 Support for polymorphic or obfuscated code. Our current design assumes that

there is a fixed memory layout for the guest kernel; therefore, it cannot support

obfuscated guest kernels which apply techniques such as address space randomization.

Under the current assumption, the runtime addresses of the kernel functions are known in

advance and therefore can be built into the K-Queue checker. However, when the

address space of the guest kernel is obfuscated, the runtime addresses of the kernel

functions can not be known in advance. In order to support such guest kernels, we need

to generate checker code that refers to kernel functions by name rather than address, and

we need to add a runtime service in the guest kernel that maps function names to their

actual addresses.

 Support for loadable kernel modules. Due to a constraint imposed by the CIL

merger, our current implementation of the K-Queue defense does not support loadable

kernel modules. We plan to make CIL merger run over individual kernel modules, so that

we can capture K-Queue requests made by them. These results can then be merged into

the result database for the core kernel.

 136

APPENDIX A

Table 28: Exploitable TOCTTOU Pairs in Linux
Invariant TOCTTOU Pairs

∅=)(fresolve

<stat, creat> <stat, open> <stat, mknod> <stat, rename> <access, creat> <access, open>
<access, mknod> <access, rename> <unlink, creat> <unlink, open> <unlink, mknod>
<unlink, rename> <rename, creat> <rename, open> <rename, mknod> <rename, rename>
<stat, mkdir> <stat, rename> <access, mkdir> <access, rename> <rmdir, mkdir> <rmdir,
rename> <rename, mkdir> <rename, rename> <stat, link> <stat, symlink> <stat, rename>
<access, link> <access, symlink> <access, rename> <unlink, link> <unlink, symlink>
<unlink, rename> <rename, link> <rename, symlink> <rename, rename>

bfresolve =)(

<stat, chmod> <stat, chown> <stat, truncate> <stat, utime> <stat, open> <stat, execve>
<access, chmod> <access, chown> <access, truncate> <access, utime> <access, open>
<access, execve> <creat, chmod> <creat, chown> <creat, truncate> <creat, utime> <creat,
open> <creat, execve> <open, chmod> <open, chown> <open, truncate> <open, utime>
<open, open> <open, execve> <mknod, chmod> <mknod, chown> <mknod, truncate>
<mknod, utime> <mknod, open> <mknod, execve> <rename, chmod> <rename, chown>
<rename, truncate> <rename, utime> <rename, open> <rename, execve> <link, chmod>
<link, chown> <link, truncate> <link, utime> <link, open> <link, execve> <symlink,
chmod> <symlink, chown> <symlink, truncate> <symlink, utime> <symlink, open>
<symlink, execve> <rename, chmod> <rename, chown> <rename, truncate> <rename,
utime> <rename, open> <rename, execve> <chmod, chmod> <chmod, chown> <chmod,
truncate> <chmod, utime> <chmod, open> <chmod, execve> <chown, chmod> <chown,
chown> <chown, truncate> <chown, utime> <chown, open> <chown, execve> <truncate,
chmod> <truncate, chown> <truncate, truncate> <truncate, utime> <truncate, open>
<truncate, execve> <utime, chmod> <utime, chown> <utime, truncate> <utime, utime>
<utime, open> <utime, execve> <open, chmod> <open, chown> <open, truncate> <open,
utime> <open, open> <open, execve> <execve, chmod> <execve, chown> <execve,
truncate> <execve, utime> <execve, open> <execve, execve> <stat, chmod> <stat, chown>
<stat, utime> <stat, mount> <stat, chdir> <stat, chroot> <stat, pivot_root> <access, chmod>
<access, chown> <access, utime> <access, mount> <access, chdir> <access, chroot>
<access, pivot_root> <mkdir, chmod> <mkdir, chown> <mkdir, utime> <mkdir, mount>
<mkdir, chdir> <mkdir, chroot> <mkdir, pivot_root> <rename, chmod> <rename, chown>
<rename, utime> <rename, mount> <rename, chdir> <rename, chroot> <rename,
pivot_root> <link, chmod> <link, chown> <link, utime> <link, mount> <link, chdir> <link,
chroot> <link, pivot_root> <symlink, chmod> <symlink, chown> <symlink, utime>
<symlink, mount> <symlink, chdir> <symlink, chroot> <symlink, pivot_root> <rename,
chmod> <rename, chown> <rename, utime> <rename, mount> <rename, chdir> <rename,
chroot> <rename, pivot_root> <chmod, chmod> <chmod, chown> <chmod, utime>
<chmod, mount> <chmod, chdir> <chmod, chroot> <chmod, pivot_root> <chown, chmod>
<chown, chown> <chown, utime> <chown, mount> <chown, chdir> <chown, chroot>
<chown, pivot_root> <utime, chmod> <utime, chown> <utime, utime> <utime, mount>
<utime, chdir> <utime, chroot> <utime, pivot_root> <mount, chmod> <mount, chown>
<mount, utime> <mount, mount> <mount, chdir> <mount, chroot> <mount, pivot_root>
<chdir, chmod> <chdir, chown> <chdir, utime> <chdir, mount> <chdir, chdir> <chdir,
chroot> <chdir, pivot_root> <chroot, chmod> <chroot, chown> <chroot, utime> <chroot,
mount> <chroot, chdir> <chroot, chroot> <chroot, pivot_root> <pivot_root, chmod>
<pivot_root, chown> <pivot_root, utime> <pivot_root, mount> <pivot_root, chdir>
<pivot_root, chroot> <pivot_root, pivot_root>

 137

REFERENCES

1 Abadi, M., Budiu, M., Erlingsson, U., and Ligatti, J. (Nov. 2005). Control-flow
integrity. In Proceedings of the 12th ACM Conference on Computer and
Communications Security (CCS).

2 Abbott, R. P., Chin, J.S., Donnelley, J.E., Konigs-ford, W.L., Tokubo, S., and Webb,
D.A. (April 1976). Security analysis and enhancements of computer operating
systems. NBSIR 76-1041, Institute of Computer Sciences and Technology, National
Bureau of Standards.

3 Arbaugh, W. A., Farber, D. J., and Smith, J. M. (May 1997). A secure and reliable
bootstrap architecture. IEEE Symposium on Security and Privacy, Oakland, CA.

4 Barham, P., Dragovic, B., Fraser, K., et al. (Oct. 2003). Xen and the art of
virtualization. ACM Symposium on Op-erating Systems Principles (SOSP), Bolton
Landing, NY.

5 Bisbey, R., Hollingsworth, D. (May 1978). Protection Analysis Project Final Report.
ISI/RR-78-13, DTIC AD A056816, USC/Information Sciences Institute.

6 Bishop, M. and Dilger, M. (1996). Checking for race conditions in file accesses.
Computing Systems, 9 (2), 131–152.

7 Bishop, M. (September 1995). Race Conditions, Files, and Security Flaws; or the
Tortoise and the Hare Redux. Technical Report 95-8, Department of Computer
Science, University of California at Davis.

8 Borisov, N., Johnson, R., Sastry, N. and Wagner, D. (2005). Fixing races for fun and
profit: how to abuse atime. In Proceedings of the 14th USENIX Security Symposium.

9 Bovet, D., Cesati, M. (Dec. 2002). Understanding the Linux Kernel, Second Edition.
O'Reilly.

10 Brumley, D. (Nov. 16, 1999). Invisible intruders: rootkits in practice. ;login:.
http://www.usenix.org /publications/login/1999-9/features/rootkits.html.

11 BUGTRAQ archives. Retrieved on May 30, 2009, from
http://securepoint.com/lists/html/bugtraq/

12 BUGTRAQ report RHSA-2000:077-03: esound contains a race condition. Retrieved
on June 16, 2009, from http://seclists.org/bugtraq/2000/Oct/0105.html.

13 Chen, H., Wagner, D. (November 2002). MOPS: an Infrastructure for Examining
Security Properties of Software. In Proceedings of the 9th ACM Conference on
Computer and Communications Security (CCS), Washington, DC.

14 Chen, S., Xu, J., Sezer, E. C., Gauriar, P., and Iyer, R. K. (August 2005). Non-
Control-Data Attacks Are Realistic Threats. USENIX Security Symposium, Baltimore,
MD.

15 Chiueh, T.-c., Venkitachalam, G., and Pradhan, P. (Dec. 1999). Integrating
segmentation and paging protection for safe, efficient and transparent software
extensions. 17th ACM Symposium on Operating Systems Principles (SOSP),
Charleston, SC.

 138

16 Consel, C., Danvy, O. (Jan. 1993). Tutorial notes on partial evaluation. 20th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), Charleston, SC.

17 Cowan, C., Pu, C., Maier, D., et al. (Jan. 1998). StackGuard: Automatic adaptive
detection and prevention of buffer-overflow attacks. 7th USENIX Security Symposium,
San Antonio, TX.

18 Cowan, C., Beattie, S., Wright, C., and Kroah-Hartman, G. (August 2001).
RaceGuard: Kernel Protection from Temporary File Race Vulnerabilities. In
Proceedings of the 10th USENIX Security Symposium, Washington DC.

19 Dean, D., and Hu, A. (August 2004). Fixing Races for Fun and Profit: How to use
access(2). In Proceedings of the 13th USENIX Security Symposium, San Diego, CA.

20 Engler, D., Chelf, B., Chou, A., and Hallem, S. (September 2000). Checking system
rules using system-specific, programmer-written compiler extensions. In
Proceedings of the 4th Symposium on Operating Systems Design and Implementation
(OSDI).

21 Engler, D., and Ashcraft, K. (2003). RacerX: effective, static detection of race
conditions and deadlocks. In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles (SOSP).

22 Erlingsson, U., Schneider, F. IRM enforcement of Java stack inspection. IEEE
Symposium on Security and Privacy, Oakland, CA, May 2000.

23 Espiner, Tom. (November 2007). Microsoft exec calls XP hack ‘frightenin’. In
CNET News. Retrieved on June 22, 2009, from http://news.cnet.com/Microsoft-exec-
calls-XP-hack-frightening/2100-7349_3-6218238.html.

24 F-Secure Weblog. Calculating the Size of the Downadup Outbreak. Retrieved on June
22, 2009, from http://www.f-secure.com/weblog/archives/00001584.html.

25 gedit. http://projects.gnome.org/gedit/
26 Harel, D. (June 1987). Statecharts: A visual formalism for complex systems. Science

of Computer Programming, 8(3):231–274.
27 Hind, Michael. (2001). Pointer analysis: haven't we solved this problem yet?

Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering, pp. 54-61

28 Howard, J. H., Kazar, M. L., Menees, S. G., Nichols, D. A., Satyanarayanan, M.,
Sidebotham, R. N. and West, M. J. (February 1988). Scale and performance in a
distributed file system, Transactions on Computer Systems, vol. 6, pp. 51-81.

29 Hultquist, S. (Apr. 2007). Rootkits: The next big enterprise threat?
http://www.cso.com.au/article/184125/rootkits_next_big_enterprise_threat, Retrieved
on July 3, 2009.

30 IEEE Std 1003.1, 2004 Edition. Retrieved on July 9, 2009, from
http://www.unix.org/single_unix_specification

31 Kiczales, G., Lamping, J., et al. (1997). Aspect-Oriented Programming. Proceedings
European Conference on Object-Oriented Programming.

 139

32 Kim, G. H. and Spafford, E.H. (1994). The design and implementation of Tripwire: A
file system integrity checker. 2nd ACM Conference on Computer and
Communications Security (CCS).

33 Ko, C., Fink, G., Levitt, K. (Dec. 1994). Automated Detection of Vulnerabilities in
Privileged Programs by Execution Monitoring. Proceedings of the 10th Annual
Computer Security Applications Conference, page 134-144.

34 Lhee, K., and Chapin, S. J. (2005). Detection of File-Based Race Conditions,
International Journal of Information Security.

35 Lu, S., Park, S., Hu, C., Ma, X., Jiang, W., Li, Z., Popa, R.A., and Zhou, Y. (Oct.
2007). MUVI: Automatically inferring multi-variable access correlations and
detecting related semantic and concurrency bugs. ACM Symposium on Operating
Systems Principles (SOSP), Stevenson, WA.

36 McCarthy, D. R., Dayal, U. (1989). The Architecture of an Active Data Base
Management System. SIGMOD Conference 1989: 215-224

37 Necula, G. C., McPeak, S., Rahul, S. P. and Weimer, W. (Apr. 2002). CIL:
Intermediate language and tools for analysis and transformation of C programs.
Conference on Compiler Construction (CC), Grenoble, France.

38 Payne, B. D., Carbone, M., and Lee, W. (Dec. 2007). Secure and flexible monitoring
of virtual machines. 23rd Annual Computer Security Applications Conference
(ACSAC). Miami, FL.

39 Payne, B. D., Carbone, M., Sharif, M., and Lee, W. (May 2008). Lares: An
architecture for secure active monitoring using virtualization. IEEE Symposium on
Security and Privacy, Oakland, CA.

40 Petroni, N., Fraser, T., Molina, J., and Arbaugh, W.A. (Aug. 2004). Copilot—a
coprocessor-based kernel runtime integrity monitor. In Proceedings of the 13th
USENIX Security Symposium.

41 Petroni, N., Fraser, T., Walters, A., Arbaugh, W. A. (2006). An architecture for
specification-based detection of semantic integrity violations in kernel dynamic data.
15th USENIX Security Symposium.

42 Petroni, N. and Hicks, M. (Oct. 2007). Automated detection of persistent kernel
control-flow attacks. In Proceedings of the 14th ACM Conference on Computer and
Communications Security (CCS).

43 PostMark benchmark. http://www.netapp.com/tech_library/3022.html
44 Pu, C. and Wei, J. (March 2006). A methodical defense against TOCTTOU attacks:

the EDGI approach. In Proceedings of the IEEE International Symposium on Secure
Software Engineering (ISSSE 2006).

45 rd. (June 2002). Writing Linux kernel keylogger. Phrack Vol. 11, Issue 59.
46 Rutkowska, J. and Tereshkin, A. IsGameOver() Anyone? Black Hat USA 2007.

Retrieved on June 16, 2009, from http://bluepillproject.org/stuff/IsGameOver.ppt
47 Saks, D. (June 2009). Padding and rearranging structure numbers. Design

Perspectives Blog.
http://www.techonlineindia.com/blog/news/archives/2009/06/padding_and_rea.html;j
sessionid=C1F2IHTEKRR4IQSNDLPCKHSCJUNN2JVN?loc=design_perspectives

 140

48 Sailer, R., Zhang, X., Jaeger, T., and Doorn, L. V. (Aug. 2004). Design and
implementation of a TCG-based integrity measurement architecture. 13th USENIX
Security Symposium, San Diego, CA.

49 Saltzer, J. H., and Schroeder, M.D. (Sept. 1975). The protection of information in
computer systems. Proceedings of the IEEE 63(9).

50 Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., and Anderson, T. (November
1997). Eraser: a dynamic data race detector for multithreaded programs. In ACM
Transactions on Computer Systems, 15 (4).

51 Schwarz, B., Chen, H., Wagner, D., Morrison, G., West, J., Lin, J., and Tu, W.
(December 2005). Model checking an entire Linux distribution for security violations.
In Proceedings of the 21st Annual Computer Security Applications Conference.

52 Security holes in logwatch. Retrieved on May 31, 2009, from
http://xforce.iss.net/xforce/xfdb/8652.

53 Seshadri, A., Luk, M., Qu, N., Perrig, A. (2007). SecVisor: A tiny hypervisor to
provide lifetime kernel code integrity for commodity OSes. ACM Symposium on
Operating Systems Principles (SOSP), 2007.

54 Seshadri, A., Luk, M., Shi, E., et al. (Oct. 2005). Pioneer: Verifying integrity and
guaranteeing execution of code on legacy platforms. ACM Symposium on Operating
Systems Principles (SOSP), Brighton, United Kingdom.

55 Solar Designer. (Aug. 1997). Getting around non-executable stack (and fix). Bugtraq.
56 Tsafrir, D., Etsion, Y., and Feitelson, D.G. (Aug. 2007). Secretly monopolizing the

CPU without superuser privileges. 16th USENIX Security Symposium, Boston, MA.
57 Tsyrklevich, E., and Yee, B. (2003). Dynamic detection and prevention of race

conditions in file accesses. In Proceedings of the 12th USENIX Security Symposium.
58 United States Computer Emergency Readiness Team. Retrieved on October 22, 2008,

from http://www.kb.cert.org/vuls/
59 U.S. Department of Energy Computer Incident Advisory Capability.

http://www.ciac.org/ciac/
60 Wagner, D., and Dean, D. (May 2001). Intrusion detection via static analysis. IEEE

Symposium on Security and Privacy, Oakland, CA.
61 Wei, J. and Pu, C. (December 2005). TOCTTOU vulnerabilities in UNIX-style file

systems: an anatomical study. In Proceedings of the 4th Usenix Conference on File
and Storage Technologies (FAST’05).

62 Wei, J. and Pu, C. (2007). Multiprocessors may reduce system dependability under
file-based race condition attacks. In Proceedings of the 37th IFIP/IEEE International
Conference on Dependable Systems and Networks (DSN 2007).

63 Wei, J., Payne, B. D., Giffin, J., and Pu, C. (December 2008). Soft-timer driven
transient kernel control flow attacks and defense. In Proceedings of the 24th Annual
Computer Security Applications Conference (ACSAC 2008).

64 Witchel, E., Cates, J., and Asanovic, K. (October 2002). Mondrian memory
protection. In Proceedings of the Tenth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-X).

