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Abstract 

Identifying early signs of autism has been a challenging problem in the medical field. Many 
research studies aim to detect behavioral patterns of children with autism in the first three years 
of life. Early detection of autism allows early intervention to be initiated and thus is essential to 
achieving the best long-term outcomes for children with autism. 

Under the guidance of Drs. Jim Rehg and Agata Rozga, and mentored by PhD student Eunji 
Chong, I explored the challenge of developing automated measures to analyze children’s gaze 
behaviors during social interactions. We focused on using computer vision and deep learning 
techniques to analyze children’s attentions to objects and their social partner during play. In this 
thesis, I will first talk about related research works in the area of detecting autistic behaviors in 
children. I then introduce the two major pathways that I have taken to explore this problem, 
which are children’s head pose analysis and children’s gaze analysis. Details of the algorithm 
and the results are also presented and discussed. Finally, I will also address some failure cases 
and propose potential future works. 
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Introduction 

Research aimed at measuring early behavior in autism usually involves manual annotation of 
pre-recorded videos of children engaged in a variety of structured and semi-structured 
interactions (J. Hashemi et al., 2012). While this approach generates rich data, it is inefficient 
and tedious. To achieve more efficient and scalable means of analyzing children’s behavior, 
researchers have turned to sensors, machine learning techniques, as well as computer vision.  

In the study by Cheol-Hong Min (Min, C.-H. 2017), child behavior data are recorded by several 
wearable accelerometers, based on which the behaviors of children with autism are analyzed 
using a Hidden Markov Model (HMM). J. Hashemi et al. use a computer vision approach to 
analyze behaviors of children with autism (J. Hashemi et al., 2012). In another research by 
Abbas, H., et al., the behaviors of children with autism were measured by analyzing parent-
questionnaires and home recorded videos (Abbas, H., et al. 2017). The questionnaire data and 
video data are further fed into a Random Forest algorithm for the analysis of child behaviors. 
Rajagopalan, S. S. (n.d.) presents a method that utilizes computer vision to detect children’s 
repetitive motion patterns, which Rajagopalan believes are atypical child behaviors indicating a 
risk of autism (Rajagopalan, S. S. (n.d.) 2017).  

These aforementioned research projects provide great methods in detecting the behaviors of 
children with autism, but they all have some weaknesses. Cheol-Hong Min utilizes wearable 
sensors (Min, C.-H. 2017), which can be intrusive to the child. J. Hashemi et al.’s did not take 
advantage of modern deep learning (e.g. J. Hashemi et al. 2012). Traditional clinical methods, 
like filling questionnaires and analyzing videos (Abbas, H., et al. 2017), require time-intensive 
manual annotation, which is very inefficient and prone to human errors.  

Our research focuses on developing non-intrusive and efficient behavior measurement methods 
that leverage state-of-the-art computer vision and deep learning techniques. We have recorded 
over 100 videos sessions where children play with toys and interact with an experimenter during 
a semi-structured, standardized play protocol, the Early Social Communication Scales (ESCS; 
Mundy et. al 2003). The children are recorded with two cameras, a camera embedded in a pair of 
glasses worn by the experimenter and a tripod-mounted camera that captures the child upper 
body, the tabletop where the toys are presented, and the experimenter in profile. We use a tool 
called openpose, developed at Carnegie Mellon University, to detect the facial landmarks of each 
child in both types of videos (Z. Cao et. al.) (S.-E. Wei et. al.) (C. Qian et. al.) and developed an 
algorithm to determine the head pose based on landmark detections. Details of the algorithm and 
our results are discussed in later sections. We also designed a deep convolutional neural network 
to predict children’s gaze target by extracting their gaze angles and saliencies during these 
interactions. Finally, we show visual results of our gaze detection method, and discuss future 
work.  
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Literature Review 

Past research on automated measurement of behaviors in autism can be categorized roughly into 
three types: methods with wearable devices, methods with interactive software, and methods 
with computer vision techniques.  

i. Wearable Device Based Methods 

The work of Cheol-Hong Min introduces a method that automatically detects and labels 
self-stimulatory behavior patterns, which are commonly observed in children with 
Autism Spectrum Disorder (ASD) (Min, C.-H. 2017). Min places wearable sensors on 
children’s wrists, waist, torso, legs, and ankles to record movements produced when 
children engage in these behaviors. With a Hidden Markov Model, Min is able to classify 
and identify the children’s self-stimulatory activity patterns from the recorded behavior 
data. This research introduces an HMM model to detect behaviors often observed in 
autism. However, the use of wearable sensors can be intrusive to the children, something 
our work is trying to eliminate. 

ii. Interactive Software Based Methods 

In the research by Mohamed, A. O., et al., a system consisting of an interactive computer 
game and several autism experts is introduced. (Mohamed, A. O., et al. 2006). Though 
the final goal of this system is to help children with autism in their rehab processes, this 
paper focuses a robust method of attention measurement. During experiment sessions, 
children play the computer games, while being observed by experts who assess the 
children’s attention. The computer system allows experts to see when and for how long 
the children are looking at. Thus, the experts can measure the levels of attention by 
estimating the correlation between the children’s gaze and the trajectories of objects 
presented to the children by the computer system. If the gaze and the trajectories are 
correlated, the child is considered attentive. Otherwise, the child is inattentive. Though 
this work provides a robust measurement of children’s attention, computer technology 
only plays a small part in the measurement pipeline. Their approach heavily relies on 
human observation, and is thus error prone and time consuming. This is also something 
that my research aims to avoid. 

The work by Abbas, H. et al (Abbas, H., et al. 2017) presented a machine learning 
approach that leverages parent-questionnaires and home recorded videos to measure the 
behavior of children with autism early in life. Abbas, H., et al develop software platform 
that guides parents to fill out a survey and record videos of their children. The survey 
data is then sent to the researchers and fed into a Random Forest Classifier. The video is 
viewed by expert analysts who then fill out another data survey, which is also fed into the 
Random Forest Classifier algorithm. Finally, Abbas, H., et al run the learning algorithm 
to estimate the likelihood of autism for the participating children. In the video analysis 
portion of their work, classifiers are trained based on the ADOS (Autism Diagnostic 
Observation Schedule) assessment, which is considered a gold standard of clinical 
methods to diagnose autism. This work suggests several great aspects of detecting autism, 
such as utilizing ADOS modules. However, significant human effort is still required.  

iii. Computer Vision Based Methods 
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In the paper “Computational Behavior Modeling for Autism Diagnosis” (Rajagopalan, S. 
S. 2013), Rajagopalan introduces a computer vision approach to detect repetitive motion 
patterns of children with autism. Rajagopalan uses a clustering algorithm to cluster 
motion trajectories in prerecorded videos based on the mean positions of the trajectories, 
and then trains a Support Vector Machine to determine if a motion is repetitive. The 
biggest strength of the method is that a detailed algorithm is provided for classifying 
repetitive behaviors, which can be useful in diagnostics of autism. However, identifying 
the relevant portions of children’s motions is still done by hand. 

J. Hashemi et. al. proposes another method that also uses computer vision to analyze 
children’s faces and body poses (J. Hashemi et al 2012). The paper also provides useful 
metrics for detecting relevant behaviors such as Shared Interest (“ability to use eyes to 
reference and share interest in an object or event with another person”), Visual Tracking 
(“ability to visually follow a moving object laterally across the midline”), Disengagement 
of Attention (“ability to disengage and move eyes/attention from one of two competing 
visual stimuli”), and Atypical Motor Behavior (“behaviors like atypical gait, locomotion, 
motor mannerisms/postures or repetitive motor behavior”). Though it is one of the most 
related work to our research, this work is not leveraging much of the modern deep 
learning techniques.  

As described in the previous paragraphs, there are many related works in the field of detecting 
behaviors in children with autism. Some provide concrete descriptions of how to estimate 
repetitive motion patterns in a given video, and others give insights into how to integrate clinical 
gold standard instruments into machine learning.  

Despite these strengths, the drawbacks of these methods lie in substantial manual effort, 
wearable devices that can be intrusive and not tolerated by many children, and inadequate 
integration with modern deep learning techniques. Our research aims to fill in the gap by using 
non-intrusive sensors and computational methods that leverage modern deep learning techniques 
to study a class of behavior (attention to eyes and toys during play interactions) that have been 
found to capture the earliest signs of autism.  
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Methods and Materials 

i. Head Pose Analysis 

a. Data 

In collaboration with researchers at Weill Cornell, we invited children with Autism 
Spectrum Disorder (ASD) and Typically Developing (TD) to come to our labs and 
participate in Early Social Communication Scales assessment (ESCS; Mundy et al., 
2003).  The ESCS is a semi-structured, play protocol that assesses children’s nonverbal 
communication. An examiner presents different toys to the child that are intended to 
elicit nonverbal behaviors such as gaze shifts and gestures. Children’s interaction with 
the examiner is recorded by two cameras, a tripod-mounted camera and a wearable 
camera that the examiner wears. Figure 1 shows our recording setup (E. Chong et. al.). 
Trained annotators use specialized software to review the videos and mark the onset 
and offset of each instance of the child making eye contact with the examiner or 
attending to the toy.  

 
Figure 1. ESCS recording setup (E. Chong et. al.) 

b. Methodology 
We first focus on analyzing children’s head movements. This is done by calculating 
children’s head pose changes during the sessions. There are three steps to calculate the 
children’s head pose. First, we detect facial landmarks using openpose, a tool created at 
Carnegie Mellon University that uses deep learning to extract 68 facial landmarks from 
images (Z. Cao et. al.) (S.-E. Wei et. al.) (C. Qian et. al.). Next, once the facial 
landmarks (u, v) are obtained, we solve a 3D to 2D translation matrix using a generic 
3D child head model with 3D coordinates (x, y, z) of the corresponding 68 facial 
landmarks. Finally, we calculate the head pose based on the solved 3D to 2D translation 
matrix.  
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ii. Gaze Analysis 

The interactions between children and an adult are important in the diagnosis of 
developmental disorders such as autism (Rehg et. al.). To understand these interactions, one 
important element is gaze analysis. We designed a deep convolutional neural network to 
predict the child’s gaze (i.e. where a child is looking at) in an image. A non-intrusive, 
automatic gaze measurement, our method can predict not only the gaze of a child, but also 
that of a person in general.  

This part of our work is submitted to European Conference of Computer Vision (ECCV). 
Because our paper is still in the process of review, I will discuss our work at a high level 
and show some visual results. For details such as network implementation, network 
architecture, training scheme, and experiment design, please refer to our paper: 
“Connecting Gaze, Scene and Attention.” 

a. Data 

 
Figure 2. Example datasets used, NVIDIA SynHead (Left two) (Gu J. et. al.) , EYEDIAP (Middle 

Two) (Funes Mora et. al), MIT GazeFollow (Right Two) (A. Recasens et. al.) 

As shown in Figure 2, we use three main data sources: NVIDIA SynHead (Gu J. et. al.), 
EYEDIAP (Funes Mora et. al), and MIT GazeFollow (A. Recasens et. al.). The NVIDIA, 
SynHead, and EYEDIAP datasets contain images with ground truth gaze angle in yaw 
and pitch, and the MIT GazeFollow dataset contains images with gaze target annotations. 
The MIT GazeFollow dataset assumes that the people in the image are only looking 
inside the image frame. Even though a person is clearly looking at something that is 
outside the image frame, this dataset still labels a gaze target inside the frame. This 
annotation scheme could be potentially problematic because it does not distinguish 
between looking inside and looking outside cases, leading to wrong saliency predictions 
when a person is looking outside the image. We modify the MIT GazeFollow dataset by 
adding a binary label indicating whether a person is looking inside or outside the frame. 
Finally, our deep learning model uses the SynHead  dataset, the EYEDIAP dataset, and 
the modified MIT GazeFollow dataset to learn gaze angle prediction, visual saliency 
prediction, and the final gaze target prediction.  

When testing our model, we use the MIT GazeFollow as well as the Multimodal Dyadic 
Behavior (MMDB) dataset proposed by Rehg et. al. Similar to the ESCS dataset that we 
used to analyze head poses, the MMDB dataset contains footages of a child and a trained 
examiner participating in an interactive game session. Instead of using the ESCS, the 
MMDB dataset employs the Rapid-ABC play protocol (Ousley et. al. 2012), which 
contains five stages: Greeting: the examiner greets the child; Ball: the examiner plays a 
game where she rolls the ball back and forth; Book: the examiner presents a book and 
invites the child to read it with her; Hat: the examiner places the book over her head and 
pretends the book is a hat; Tickle: the examiner plays a tickling game with the child. In 
each play session, the child and the examiner sit at opposite sides of a tabletop where the 



 10 

ball and the book are presented. The child’s upper body movements are recorded by a 
tripod-mounted Basler camera with 1920x1080 resolution and 60 FPS. We perform gaze 
analysis on the video data on a frame-by-frame basis. 

b. Methodology 

We designed and trained a deep convolutional neural network to perform the gaze 
analysis. Our network takes in three inputs, which are an image containing the person 
whose gaze we want to predict, the face location of that person, and a close-up face 
image of that person. Our network has three outputs, a saliency heat map similar to that 
by (A. Recasens et. al.), a gaze angle prediction, and a final gaze target prediction 
indicating where the person is looking at. We use the three main sources of data 
described previously to train our neural network. Since our work is currently under 
review and pending publication, details related to implementation, network architecture, 
training, and experiments design etc. will not be discussed here.  
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Results 

i. Head Pose Analysis 

 
Figure 3. Example visualizations of head pose estimations 

Shown in Figure 3 are some visualizations of children’s head poses. The blue axis points in 
front of the children’s head, the green axis points upwards, and the red axis points to the right. 
There is also a cube shown, where the red edges constitute the base of the cube, blue edges are 
the pillars, and the green edges make up the top of the cube. These are some of the successful 
cases where the head poses are visually correctly captured. We can observe that these 
visualizations give a general prediction of where the children’s head is pointing to, though 
some errors still exist. For example, in the right most image, the child’s head is almost 
pointing directly into the camera, but the pose estimation tells us that she’s looking towards 
the bottom right. We notice this situation and believe that this is because there are few 
differences in facial landmark detections between looking directly into the camera and looking 
slightly towards the bottom right. In other words, it is inherently difficult to distinguish based 
on facial landmarks alone whether the child is looking straight into the camera or is looking 
only slightly away from the camera. Another limitation of our method is that it heavily 
depends on openpose facial landmark detections (Z. Cao et. al.) (S.-E. Wei et. al.) (C. Qian et. 
al.). Once openpose gives noisy detection results, our head pose estimation also suffers.  

These issues and limitations lead to potential future works. We are interested to explore other 
methods to predict head poses more accurately, potentially leveraging the state-of-the-art deep 
learning techniques. We also want to find ways to improve facial landmarks detections, which 
our currently method relies on. 

Overall, despite the issues, our method can capture the general direction along which a child’s 
head is pointing to.  
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ii. Gaze Analysis 

 
Figure 4. Gaze analysis results on MMDB dataset 

 
Figure 5. Gaze analysis results on MIT GazeFollow Dataset 

Figure 4 and Figure 5 show some of the successful results of gaze detection on both our 
MMDB dataset and the MIT GazeFollow Dataset. Our model generates a heat map where the 
red areas are the areas that the person is most likely looking at. The blue areas are the least 
likely ones that the person is looking at. When potential salient objects are present inside the 
frame, our model correctly gives these objects higher probabilities of being observed. When 
the person is looking outside the frame (left column in Figure 4), our model generates zero 
probabilities for all pixel inside the image. 

Moreover, Figure 4 shows three different cases: the child is looking outside; the child is 
looking at the examiner; the child is looking at the object presented. Under each of the cases, 
our model correctly predicts where the child is looking at. This shows that our method is 
robust in predicting children’s gazes under different circumstances, and thus will potentially 
be very useful for understanding child-adult interactions.  
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Figure 6. Failure cases  

There are some challenging cases as well, as shown in Figure 6. We can see that the person in 
the left image is actually looking somewhere behind the cow, instead of at the cow’s head. 
The lady in the right image is looking straight ahead instead of looking at the people in front 
of her. These cases are challenging because our model currently lacks the ability to understand 
depth, and there are some occlusions that can mislead our detector. However, this is a very 
exciting future work direction. Once we can incorporate depth understanding and deal with 
occlusions, it is very likely that the gaze detection accuracies will be greatly improved. 

In addition, another potential direction of future work is to use our gaze prediction model and 
compare gaze shifts between children with and without autism. We are interested to see 
whether there exist any differences of gaze shift patterns between these children.  
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Conclusions 

In this thesis, I focused on two areas of research, namely head pose detection and gaze detection. 
Under the guidance of Dr. Jim Rehg, Dr. Agata Rozga, and PhD student Eunji Chong, I took part 
in and assisted in developing novel methods to enable researchers to study and understand 
children’s social attention, which is highly relevant when it comes to studying and treating 
autism. We designed and tested an algorithm to determine children’s head pose using data 
generated from openpose. We also developed a deep learning model to predict where children 
are looking during a tabletop social interaction. I presented qualitative results of our methods and 
noted future directions for this work.  

This research experience is very meaningful to me as an undergraduate research assistant. Not 
only did I figure my research interest in human behavior analysis, I also learned many valuable 
skills, ranging from learning what research is all about to reading and digesting other people’s 
research work, from understanding basic computer vision topics such as stereo correspondences 
to using specific deep learning tools such as Caffe. This 1.5-year research experience sets the 
stage for my early research life, and will certainly be very helpful in my future research career.  
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