
DEEP LEARNING FOR BUILDING AND VALIDATING
GEOMETRIC AND SEMANTIC MAPS

A Dissertation
Presented to

The Academic Faculty

By

John W. Lambert

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Interactive Computing

College of Computing

Georgia Institute of Technology

May 2022

© John W. Lambert 2022

DEEP LEARNING FOR BUILDING AND VALIDATING
GEOMETRIC AND SEMANTIC MAPS

Thesis committee:

Dr. James Hays, Co-Advisor
Georgia Institute of Technology &
Argo AI

Dr. Frank Dellaert, Co-Advisor
Georgia Institute of Technology & Google
Research

Dr. Zsolt Kira
Georgia Institute of Technology

Dr. Cedric Pradalier
Georgia Institute of Technology

Dr. Simon Lucey
University of Adelaide & Australian Insti-
tute for Machine Learning

Date approved: March 21, 2022

For my wife Hayoung

ACKNOWLEDGMENTS

This thesis would not have been possible without my PhD co-advisors, James Hays and

Frank Dellaert. They have both invested a great deal of time in mentoring and teaching me,

and my time spent as a teaching assistant for their courses has added layers of depth to my

technical understanding.

I’m grateful to James, for his ability to look far ahead into the future when considering

meaningful research directions. He’s taught me to be very careful about choosing research

topics, which often entail years of effort. I’ve learned a great deal from him about the

value of open collaboration and team-building. Our lab meetings and get-togethers have

been something I’ve always enjoyed, and his lab is a uniquely friendly and enjoyable place.

Without his funding and support, this work simply would not have come about.

I’m grateful for Frank’s return to Georgia Tech, and for his willingness to say difficult

truths. He has always emphasized to me that without crystal-clear communication, tech-

nical depth and progress are lost in translation. This advice continues to be invaluable for

me. His willingness to embrace and lean in to the bleeding edge of computer vision is also

inspiring. Frank’s focus on research that is both practical and theoretical has resounded

with me from the first time I encountered his work, before coming to Georgia Tech. As a

programmer, I continue to learn from Frank; his emphasis on test-driven design has proven

invaluable for my research over the past few years.

Thank you also to my labmates in James’ group – Samarth Brahmbhatt, Amit Raj,

Cusuh Ham, Sean Foley, Patsorn Sangkloy, and Ben Wilson. They have been invaluable as

friends for support throughout the PhD. Thanks to my other collaborators in Frank’s lab:

Akshay Krishnan, Ayush Baid, Fan Jiang, Jing Wu, Adi Singh, Sushmita Warrier, Xiaolong

Wu, Travis Driver, and Ren Liu, who have taught me a great deal from their technical depth.

Thank you to the other students I’ve been able to mentor at Georgia Tech – Alex Butenko,

Vivek Vanga, Hemanth Chittanuru, Chen Liu, Andrey Pak, Jeevanjot Singh, Shubhangi

iv

Upasani, and Anshul Ahluwalia – as we’ve explored challenging new problems.

Any success I’ve enjoyed has been a product of amazing collaborations and mentorship.

Thank you to Ozan Sener, for getting me started on my research journey and teaching me

the basics of successful research. I’m grateful to my collaborators from my time at Argo AI

– Allie Chang, Jagjeet Singh, Tanmay Agarwal, Will Qi, Andrew Hartnett, Jhony Pontes,

Peter Carr, Deva Ramanan, Simon Lucey, Rob Keelan, Matt Gilson, Xiaoyan Hu, Kunal

Desai, Ben Xinjilefu, Guillaume Binet, Ersin Yumer, Arjuna Ariyaratne, and Josh Manela.

I owe thanks to my collaborators from my time at Intel Labs – Zhuang Liu, Ozan Sener,

and Vladlen Koltun. I enjoyed the friendships I built at Zillow with Sing Bing Kang, Ivo

Boyadzhiev, Yuguang Li, Lambert Wixson, Manju Narayana, Will Hutchcroft, Ethan Wan,

and Naji Khosravan, and am grateful for the deep domain knowledge they shared with me

in order to help mentor my project.

I would like to thank the members of my thesis committee for their help in preparation

of this work – James, Frank, Simon, Cedric, and Zsolt. I am honored to have them serve

on my committee.

Finally, I acknowledge the love and support of my wife Hayoung. She has been instru-

mental in my PhD journey and my best friend.

The author gratefully acknowledges the support for this work offered by Georgia Tech,

Argo AI, Intel Labs, and Zillow Group. Any views and conclusions contained herein are

those of the author, and do not necessarily represent the official positions, express or im-

plied, of the funders.

v

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . xiii

List of Figures . xvii

Summary .xxvi

Chapter 1: Introduction and Motivation . 1

1.1 Unsolved Problems in Mapping . 1

1.1.1 Challenges in Building 2d Indoor Geometric Maps 1

1.1.2 Challenges in Creating Outdoor 3d Geometric Maps via SfM 3

1.1.3 Challenges in Validating Outdoor HD Maps 5

1.2 Thesis Statement . 6

1.3 Thesis Contributions . 6

1.4 Conclusion . 7

Chapter 2: Building 2d Indoor Geometric Maps: Semantic Alignment Verifica-
tion (SALVe) for Floorplan Reconstruction from Sparse Panoramas 8

2.1 Introduction . 8

2.2 Related Work . 9

vi

2.3 System Overview . 10

2.4 Approach . 12

2.4.1 Assumptions . 12

2.4.2 Generating Alignment Hypotheses 12

2.4.3 SALVe: Semantic Alignment Verifier 13

2.4.4 Global Pose Estimation and Optimization 13

2.4.5 Floorplan Reconstruction . 14

2.5 Experimental Results . 15

2.5.1 Use of ZInD [14] . 15

2.5.2 Implementation Details . 15

2.5.3 Evaluation Metrics . 16

2.5.4 Layout and W/D/O Estimation Accuracy 16

2.5.5 Relative Pose Classification . 16

2.5.6 Global Pose Estimation Results . 17

2.6 Discussion . 18

2.6.1 Floorplan Reconstruction Results 21

2.7 Conclusion . 22

2.8 Appendix . 22

2.9 Qualitative Results: Predicted vs. Oracle Poses 22

2.10 Additional Analysis of Relative Pose Classification Accuracy 25

2.11 Details on Layout Stitching for Floorplan Reconstruction 25

2.12 Details on W/D/O Detection Evaluation 25

2.13 Layout and W/D/O Failure Cases . 27

vii

2.14 Coordinate System Conventions . 28

2.15 Texture Mapping Procedure . 29

2.16 Vanishing Point Axis Alignment . 29

2.17 Details on Global Pose Estimation . 31

2.18 Ablation Experiments Using Oracle W/D/O Detection 32

2.19 Comparison with Extremal SfM [122] . 33

2.20 Analysis of Computational Complexity . 34

2.21 Details on Layout-Only Rasterization Baseline 35

2.22 Additional Discussion Points . 35

2.22.1 Accuracy vs. Amount of Visual Overlap 35

2.22.2 Additional Details on Evaluation Metrics 35

2.22.3 Model Learning . 35

2.23 Additional Examples of Illumination Changes 39

2.24 Ethical/Privacy/Transparency/Fairness/Social Impact Concerns 39

Chapter 3: Creating Outdoor 3d Geometric Maps via Global SfM 41

3.0.1 Deep Front-Ends . 41

3.0.2 GTSFM . 41

3.1 Introduction . 41

3.2 Related Work . 44

3.3 Detection (D) Benchmark . 45

3.4 Detection and Matching (DM) Benchmark 48

3.5 Detection, Matching, and Verification (DMV) Benchmark 50

viii

3.6 Additional Runtime Experiments . 58

3.7 Discussion: Deep Front Ends . 59

3.8 GTSFM: Incorporating the Deep Front End 60

3.9 Related Work . 61

3.9.1 Incremental SfM . 61

3.9.2 Global SfM . 62

3.9.3 Outlier Rejection for SfM . 63

3.9.4 Multi-View Stereo . 63

3.10 Approach . 64

3.10.1 Front-End . 64

3.10.2 Outlier Rejection . 64

3.10.3 Rotation Averaging . 66

3.10.4 Translation Averaging . 66

3.10.5 Data Association + Triangulation 67

3.10.6 Bundle Adjustment . 67

3.10.7 Multi-View Stereo . 68

3.11 Experimental Results . 69

3.11.1 Datasets . 69

3.11.2 Evaluation . 69

3.11.3 Quantitative Results . 70

3.12 Appendix . 72

3.13 Survey of Front-Ends . 72

3.13.1 Survey of Local Feature Detectors 72

ix

3.13.2 Survey of Local Feature Descriptors 74

3.13.3 Survey of Outlier Rejection Algorithms 75

3.14 Benchmark Evaluation Details . 76

3.14.1 Feature Detection Evaluation . 76

3.14.2 Detection, Description, and Matching (DM) Benchmark Evaluation 77

3.14.3 Additional DMV Evaluation Details 80

3.15 Implementation Details . 80

3.15.1 HarrisNet Implementation Details 82

3.15.2 SIFTNet Implementation Details 83

3.16 HPSequences Qualitative Results . 84

3.17 Tables of Results . 84

Chapter 4: Validating Outdoor HD Maps . 94

4.1 Problem Introduction . 94

4.2 Related Work . 95

4.3 The TbV Dataset . 97

4.3.1 Annotation . 97

4.3.2 Sensor Data . 99

4.3.3 Map Data . 100

4.3.4 Dataset Taxonomy . 101

4.4 Approach . 101

4.4.1 Learning Formulation . 101

4.4.2 Synthesis of Mismatched Data . 101

x

4.4.3 Sensor Data Representation . 104

4.4.4 Map Data Learning Representation 104

4.5 Experimental Results . 104

4.5.1 Implementation Details . 105

4.5.2 Evaluation . 105

4.6 Conclusion . 108

4.7 Appendix . 108

Chapter 5: Conclusion . 120

5.1 Reflection and Lessons Learned . 120

5.1.1 Contrasting Indoor and Outdoor Reconstruction 120

5.1.2 SLAM vs. SfM . 121

5.2 Future Work . 121

5.2.1 Accelerating Semantic SfM Indoors 121

5.2.2 End-to-End Optimization via Differentiable Rendering 122

5.2.3 Semantic SfM: Joint Optimization 122

5.2.4 Learning for SfM . 122

5.2.5 Mapping with SfM + MVS . 123

5.2.6 Improving the Accuracy of Map Change Detection 124

5.2.7 Scalable HD Map Creation and Maintenance: Looking to the future 124

!

Appendices . 125

References . 145

xi

Vita . 173

xii

LIST OF TABLES

1.1 Thesis contributions towards building and validating maps. 6

2.1 Results of global pose estimation on the ZinD test set. Two global aggre-
gation methods are evaluated: spanning tree (‘ST’), and pose graph opti-
mization (‘PGO’), with axis-alignment (‘AA’). ST and PGO both use the
same largest connected component of G as input, and thus localize an equal
number of panoramas. 18

2.2 Results of ablation experiments on how inputs to SALVe affect global pose
estimation accuracy and completeness. Pose graph optimization and van-
ishing point-based axis alignment (‘PGO + AA’) are utilized for all entries
below. 19

2.3 Comparison of results with and without axis-alignment (‘AA’) of relative
poses (via vanishing angles) before global aggregation. The amount of
panoramas localized is unaffected, as adjacency is maintained during the
correction. For this comparison, ‘oracle’ layouts are used to isolate the
effect of pose error. With vanishing point (VP) information, the difference
between PGO and Spanning Tree is not statistically significant (1 cm and
0.04◦ error on average). 21

2.4 Floorplan reconstruction results against the ground truth manually anno-
tated floorplan. Floorplan 2D IoU is measured in the bird’s eye view. The
IoU is measured on the largest connected component. ‘AA’ represents axis-
alignment. 21

2.5 Relative pose classification accuracy on the ZInD test split with different
inputs and architectures. Precision, recall, and mean accuracy are reported.
Extreme class imbalance means that with more expressive model architec-
tures, gains in mean accuracy are minor, but gains in precision are significant. 25

2.6 Additional W/D/O detection accuracy results. 25

xiii

2.7 Ablation experiments on global pose estimation, comparing performance
with estimated W/D/O locations and estimated layout, vs. performance
with ground truth W/D/O locations and ground truth layout (oracle). 33

2.8 Summary of comparison of our method vs. that of Extremal SfM by Sha-
bani et al. [122]. 33

2.9 A more detailed comparison of our input, method, and evaluation vs. those
of Shabani et al. [122]. 34

3.1 “Front End” Search Space. Open-source methods of each group are listed
in chronological order. All classical front-end implementations (not deep
nets) are from OpenCV or VLFeat, all dating to 2014 or earlier. Methods
that lacked publicly available models and source code at the time of exper-
iments included: Quad-Networks [77], Self-Improving Visual Odometry
[210], Epipolar Adaptation [93], KeyPointNet + IO-Net [83], Reinforced
SuperPoint [33] (five detectors), and the SuperGlue matcher (Source code
has since been made publicly available for SuperGlue). 48

3.2 Quantitative results on the Lund Door-12 dataset. As the dataset is quite
simple, all methods (except SIFT + Mutal Nearest Neighbor Matcher +
OANet + RANSAC) localize all 12 images in the largest connected com-
ponent with very low error. Global rotation and global translation angular
errors are below 2 degrees for all methods, in both mean and median. “Mu-
tual NN” indicates a mutual nearest-neighbor matcher. 70

3.3 Quantitative results on the Notre-Dame-20 dataset, a medium-difficulty
dataset. Many methods localize with low error, but SuperGlue yields the
highest recall (most number of images localized in the largest connected
component) while maintaining low global pose angular errors. The oracle
is not needed for SuperGlue, but for SIFT, the oracle reduces global trans-
lation angular errors from 20◦ to 2◦ (a massive 10x reduction in this error
metric). Metrics essential for qualitatively good scene reconstructions are
shown in red. “Mutual NN” indicates a mutual nearest-neighbor matcher. . 71

3.4 Quantitative results on the Skydio-Crane-Mast-32 dataset, a medium-difficulty
dataset. Superpoint+SuperGlue+Ransac-E alone recovers global transla-
tion angular errors of < 14◦ in mean, SIFT+Mutual-Nearest-Neighbor-
Matcher+Ransac-E has double the error at 26◦. This is evident in the re-
construction: SuperGlue’s poses are accurate, while SIFT’s are catastroph-
ically poor. Metrics essential for qualitatively good scene reconstructions
are shown in red. “Mutual NN” indicates a mutual nearest-neighbor matcher. 71

xiv

3.5 Quantitative results on the Skydio-Crane-Mast-501 dataset, an extreme-
difficulty dataset. All non-oracle methods with high recall (i.e. the abil-
ity to estimate at least 90 of the 501 cameras) fail catastrophically, with
average global translation angular errors over 50◦. Metrics essential for
qualitatively good scene reconstructions are shown in red. “Mutual NN”
indicates a mutual nearest-neighbor matcher. 71

3.6 Results of hD - illumination variant scenes (HP-Sequences) as a function
of the number of keypoints (150, 300, 600, 1200, 2400). The results are
sorted by the repeatability @ 150 keypoints on the combined viewpoint
variant and illumination variant scenes. For those methods that can only
produce a limited number of keypoints, we consider the cutoff threshold a
budget, and copy those numbers to the rightmost columns. (Corresponds to
Figure 3.3 of section 3.3). 87

3.7 Results of hD - viewpoint variant scenes (HP-Sequences) as a function
of the number of keypoints (150, 300, 600, 1200, 2400) (Figure 3.3(b)).
The results are sorted by the repeatability @ 150 keypoints on the com-
bined viewpoint variant and illumination variant scenes. For those methods
that can only produce a limited number of keypoints, we consider the cut-
off threshold a budget, and copy those numbers to the rightmost columns.
(Corresponds to Figure 3.3(b) of section 3.3). 88

3.8 Results of wD (YFCC-100M) as a function of the number of keypoints
(150, 300, 600, 1200, 2400) (Figure 3.3(c)). For those methods that can
only produce a limited number of keypoints, we consider the cutoff thresh-
old a budget, and copy those numbers to the rightmost columns. (Corre-
sponds to Figure 3.3(c) of section 3.3). 89

3.9 Results of the hDM (HP-Sequences) benchmark (corresponding to Fig-
ure 3.4(a) of section 3.4), sorted by the Usable Image Fraction-Upper Bound
for Homography estimation. We show only the first 10 methods, and 8 rep-
resentative baselines, from 101 methods. 90

3.10 Results of the hDM (HP-Sequences) benchmark (corresponding to Fig-
ure 3.4 (b) of section 3.4), sorted by the inlier ratio over all the scenes.
V and I denote the viewpoint and illumination variant scenes from HP-
Sequences. 91

3.11 Results of the wDM (YFCC-100M) benchmark (Figure 3.5). Top ranking
methods by UIF-UB and Inlier Ratio are shown in the table with their ranks.
Results are sorted by their UIF-UB score. 92

3.12 Results of the wDMV (YFCC-100M) benchmark (Figure 3.10), sorted by
Usable Image Fraction for Essential Matrix (UIF E-Matrix). 93

xv

4.1 We describe the statistics of the map deviation data in our test set, and the
types of deviations we observe. We define each BEV frame as a pose where
the egovehicle has moved at least 5 meters since the previous pose. Lane
geometry changes extend over far more frames than crosswalk changes. . . 98

4.2 Probability of a 30m × 30m region that has been visited at least 5 times in
5 months undergoing a lane geometry or crosswalk change within the same
time period. These statistics apply only to surface-level urban streets, not
highways. 98

4.3 Entities included in our HD map representation. 98

4.4 Training dataset statistics and types of synthetic changes generated from
799 logs. Not all scenes can support all synthetic change types. For exam-
ple, in order to delete a crosswalk from a local map, a crosswalk must be
present of local vicinity of the egovehicle. 102

4.5 Controlled evaluation of the influence of fusion architecture and scene ren-
dering viewpoint (ego-view vs. BEV). Rows marked with an asterisk rep-
resent an expected mean accuracy based on randomly flipped labels, rather
than results from a trained model. 104

4.6 Controlled evaluation of the influence of data modalities. Rows marked
with an asterisk represent an expected mean accuracy based on randomly
flipped labels, rather than results from a trained model. 104

4.7 Controlled evaluation of the benefit and influence of dropout of data modal-
ities. Rows marked with an asterisk represent an expected mean accuracy
based on randomly flipped labels, rather than results from a trained model. . 105

4.8 Controlled evaluation of the influence of input crop size (for ego-view and
BEV). 109

4.9 Across six particular cities, we analyze the probability of change for a
30m× 30m spatial area. Since we can likely only catch changes for spatial
areas that are somewhat frequently visited, we require that an area is visited
by fleet at least n = 5 times. We provide n = 1 as well as a lower bound. . 114

xvi

LIST OF FIGURES

1.1 A scene of downtown Pittsburgh, USA, as featured in the Argoverse 2.0
Sensor Dataset, as captured by LiDAR and cameras, with an overlaid vector
map. 2

1.2 Example ground truth floorplans from the Zillow Indoor Dataset (ZInD)
[14], and the Zillow 3D Home user interface. 2

1.3 Two modern hardware options for indoor reconstruction: the Matterport
Pro2 3D camera (left) and the Ricoh Theta V 360 camera (right). 3

1.4 Examples of good (left) and poor (right) matches from a deep feature de-
tector/descriptor (SuperPoint [42]) and deep matcher (SuperGlue [76]) for
two image pairs, from Skydio’s Crane Mast dataset. False positives (right)
occur because of repetitive structures. 4

1.5 Examples of HD map changes, i.e. scenarios when sensor data and map
data are no longer in agreement with one another due to real-world changes. 5

2.1 A challenging wide-baseline scenario where traditional SfM systems that
rely upon keypoint feature matches struggle, but where we succeed by
exploiting semantic features such as doors, windows, and openings, or
W/D/O). We infer layout and hypothesize plausible pairwise relative poses,
which are then accepted or rejected, by feeding top-down aligned render-
ings into our learned SALVe verifier. Our global pose estimation has high
completeness, leading to dramatic improvements in floorplan reconstruc-
tion (indicated by colored regions) vs. state-of-the-art systems such as
OpenMVG [19] and OpenSfM [121]. For this hallway/entryway pano pair,
SALVe easily validates a relative pose that was generated by grounding on
a hallway opening feature. 9

xvii

2.2 Overview of our floorplan reconstruction system. “BEV” = “bird’s eye
view”. Blue boxes are processing components, gray boxes are data. Trape-
zoids denote components based on deep networks; lighter blue networks
are trained by us. ‘Image Room Layout’ represents the image coordinates
of the floor-wall boundary (at each panorama column). n is the number of
panoramas and k is the average number of detected windows/doors/openings
per panorama. We show rendered floor and ceiling texture maps for a
consistently-aligned pair of panoramas. 11

2.3 Generating training samples. Orthographic BEVs of given panoramas, af-
ter semantic alignment proposal. Red arrows indicate the W/D/O, used to
generate the pose proposals. Column 1: Example of extreme baseline pair.
Column 2: overlaid floor (top) and ceiling (bottom). Column 3: Example
of a wide baseline pair. Column 4: overlaid floor (top) and ceiling (bottom). 13

2.4 An example of different stages of floorplan reconstruction: Left: Estimated
positions of panorama centers. Center: Grouped panoramas with estimated
dense room layouts. Panorama centers with the same color are part of the
same group. Notice that each open space is grouped together. Distinct
groups correspond largely to physical rooms separated by doors. Right:
The final floorplan after highest-confidence contour extraction is applied to
each group. Each contour is filled with a unique color. 14

2.5 Precision-recall analysis of SALVe. Left: curve for SALVe under differ-
ent inputs (‘layout-only’ refers to a model with access only to estimated
room geometry, but no floor or ceiling texture). Center: Comparison of
confidence thresholds versus their effect on precision and recall. The pur-
ple line indicates our operating point (93% confidence). Right: Classifica-
tion accuracy vs. visual overlap for the GT positive class only from SE(2)
alignments generated from predicted W/D/O’s. Small visual overlap often
corresponds to “extreme” baselines. 17

2.6 Left: Distribution of localization percentage in the first 5 connected compo-
nents, averaged over all test tours. Right: Topology of global pose graphs
for various different homes. 17

xviii

2.7 Qualitative comparison of floorplan results. Column 1: OpenSfM. Column
2: OpenMVG. Column 3: Ours. Column 4: Ground truth floorplan. All
results are superimposed on the ground truth floorplan. Colored regions in-
dicated the reconstruction result; at times, the baselines localize no panos.
Our floorplan recall is significantly better than the state-of-the-art. Each
row corresponds to a single floor of a different home. Colored lines rep-
resent W/D/O objects – doors, openings and windows. The multiple cyan
edges in the overlaid graph correspond to verified W/D/O alignment hy-
potheses. For an open layout, a successful case often involves edges from
panoramas in many different rooms to a single pano. These examples are
intended to offer an even-handed selection of reconstructions that indicate
both good performance as well as areas for improvements. Rows 1 and 6
illustrate good reconstructions. Row 2 illustrates a more challenging case
with only 1-2 panos in most rooms. Rows 3-5 are more challenging as they
include bottlenecks in the actual physical layout, which is critical in joining
connected components. 20

2.8 Example floorplan results of varying completeness, comparing SALVe’s
performance vs. an upper bound (perfect global pose estimation). Left:
predicted poses of the largest connected component and predicted room
layout. Middle: oracle (ground truth) poses and predicted room layout.
Right: ground truth floorplan with positions of captured panoramas. 23

2.9 Additional comparison between SALVe’s performance and an upper bound
(perfect global pose estimation). Each row corresponds to a single floor of
a different home. Left: predicted poses of the largest connected component
and predicted room layout. Middle: oracle poses and predicted room lay-
out. Right: ground truth floorplan with positions of captured panoramas.
Colored lines represent W/D/O objects – doors, openings and windows. . . 24

2.10 Visualization of room shape reconstruction using localized panoramas grouped
by room. (a) Predicted room layout and predicted panorama locations (blue
dots). (b) Predicted room layout with contour confidence (transparency)
and predicted panorama locations (blue dots). (c) Overlay of room con-
tours generated by voting on the highest confidence contour point at each
panorama column from each panorama view. The final room layout is the
union of these view-dependent contours of highest confidence. (d) Ground
truth room shape and ground truth panorama positions. 27

xix

2.11 Mistakes made by the joint HorizonNet + W/D/O model. Vertical lines
indicate start and end columns for each W/D/O object – window, door,
and opening. The yellow contour indicates the predicted floor-wall bound-
ary, and dots indicate corner predictions (floor-wall corners in green, and
ceiling-wall corners in red). Left and right images are panoramas across
which we seek to match W/D/O objects. Top: A circuit breaker panel
is mistakenly identified as a door (top left), but redundancy still allows
matching of the true garage door. This allows a relative pose hypothesis to
be generated between the foyer and garage panoramas, that have very little
visual overlap. Bottom: A false negative window prediction and inaccurate
opening prediction (bottom left) makes matching with the (bottom right)
panorama impossible using W/D/O. 27

2.12 Coordinate system conventions. 28

2.13 Visualization of the sparse to dense interpolation scheme. Top: sparse tex-
ture map from mono-depth. Middle: linearly interpolated texture map.
Bottom: result after removing interpolation artifacts. 30

2.14 Starting with sparse panoramas (1-3 per room), in (a) we infer layout and
semantic elements (Windows, Doors, Openings, or W/D/O). From these,
in (b) we generate birds eye view (BEV) renderings of floors and ceilings
(ceilings not shown here). Next, plausible pairwise relative poses are hy-
pothesized based on matching W/D/O. Each is accepted or rejected (c), by
feeding the hypothesis-aligned renderings into our learned SALVe verifier.
This example shows two aligned renderings computed by hypothesizing
that a window can be used to align both shapes Brighter areas indicate
overlap regions. SALVe is trained to evaluate these aggregated overlap re-
gions and output an accept/reject decision about whether the hypothesized
relative pose is plausible. From the plausible relative poses, a pose graph
is created and optimized (d). This allows room layouts to be positioned in
a world coordinate system and fused into a final reconstructed raster floor-
plan (e). 31

2.15 Examples of layout-only rasterized input. Each row represents an align-
ment pair. Left: rendering for panorama 1. Middle: rendering for panorama
2. Right: blended images (for visualization only). 36

xx

2.16 (Row 1) Classification accuracy vs. overlap for the GT positive class only
(left) and negative class only (right) for ResNet-152 model. (Row 2) Rel-
ative pose rotation error (left) and translation (right) vs. amount of visual
overlap for GT positive examples. (Row 3) Relative pose rotation error
(left) and translation (right) vs. amount of visual overlap for GT nega-
tive examples. (Row 4) Distribution of visual overlap (IoU) over rendered
buildings for positive pairs (left) and negative pairs (right) from SE(2)
alignments generated from predicted W/D/O’s. 37

2.17 Example of an extreme illumination change, as the carpet color appears to
shift from brown to grey (middle), and ceiling from warm yellow to light
blue (bottom). 40

3.1 Competing objectives for a front-end – speed vs. accuracy – suggest a
Pareto front. We illustrate several top-performing methods within each
frame-rate range, and mark the rest with light gray dots. Accuracy is
measured by the Usable Image Fraction (UIF) for the Essential matrix on
YFCC-100M. 42

3.2 We graphically describe our sparse local feature matching framework that
accepts either a pair of different images or patches. We denote the stages
as DMV: Detection- Description and Matching- Verification. 43

3.3 D-stage results depicting repeatability as a function of keypoint budget.
Top: hD, on the two splits of a homography dataset (HP-Sequences), one
with illumination-variant image sequences, and the other with viewpoint-
variant image sequences. Below: wD, on the test split of a wide-baseline
stereo dataset (YFCC-100M). 47

3.4 Homography DM (hDM) results on HP-Sequences. (top) From left-to-
right, we show the top-10 performers on usability for homography estima-
tion (UIF-UB), and other representative entries. (bottom) Top-10 perform-
ers according to Inlier Ratio. We note that viewpoint-variant sequences are
more challenging than illumination-variant sequences. We provide the full
table in the Appendix. 52

3.5 Wide-baseline stereo descriptor matching (wDM) results (YFCC-100M).
From left to right, the 20 top-ranking methods (of 102 methods) are pre-
sented, (top) sorted according to their E-Matrix estimation usability, or
(bottom) according to inlier ratio. It appears that high PMR may help boost
E-Matrix estimation usability. We provide the full table in the Appendix. . . 53

xxi

3.6 Performance of six DMV systems on YFCC-100M. Rows 1-2: Grand
Place Brussels, Rows 3-4: Paris Opera, Rows 5-6: Florence Cathedral
Dome Interior, Rows 7-8: Pantheon Interior. 54

3.7 Performance of six DMV systems on YFCC-100M. Rows 1-2: Grand
Place Brussels, Rows 3-4: Paris Opera, Rows 5-6: Florence Cathedral
Dome Interior, Rows 7-8: Pantheon Interior. 55

3.8 Performance of six DMV systems on YFCC-100M. Rows 1-2: Westminster
Abbey, Rows 3-4: Sacre Coeur, Rows 5-6: Notre Dame Front Facade,
Rows 7-8: Grand Central Terminal. 56

3.9 Performance of six DMV systems on YFCC-100M. Rows 1-2: Westminster
Abbey, Rows 3-4: Sacre Coeur, Rows 5-6: Notre Dame Front Facade,
Rows 7-8: Grand Central Terminal. 57

3.10 Wide-baseline stereo DMV (wDMV) results. (From left to right): the
top-10 entries out of 808, sorted by E-matrix usability fraction (UIM-LB).
Rightmost 11 entries: a representative sampling of other methods in the
remaining 808− 10 = 798 methods . 58

3.11 wDMV (YFCC-100M) combined runtime analysis. 59

3.12 wDMV (YFCC-100M) per-stage runtime analysis. Runtime comparison of
the top-10 performing methods, and a sampling of other methods from the
808 tested. At VGA resolution (shorter image size is 480 px) 60

3.13 Qualitative results of GTSFM on the Lund Door dataset, consisting of 12
images. (Left) Depth maps, generated by PatchmatchNet [215]. (Right)
Multi-view stereo output (aggregation of backprojected depth maps). . . . 61

3.14 System diagrams of Incremental vs. Global SfM. 62

3.15 Qualitative results of GTSFM on the Skydio-Crane-Mast-32 dataset (top
row), and NASA asteroid data, as captured by a telescope during the RC-3
of the Dawn spacecraft as it entered an Rotation Characterization 3 (RC3)
orbit around the asteroid Vesta (middle and bottom rows). 65

3.16 Qualitative results on Lund-Door-12 dataset, before (left) and after (right)
bundle adjustment and filtering of 3d points by reprojection errors. 67

3.17 GTSFM system architecture. 68

xxii

3.18 Different scenarios where the Matching-Score achieves 100%, but clearly
the feature matching is of poor quality. (a) w/o 1:1 matching constraint,
with same viewpoint, same # covisible keypoints. (b) w/ 1:1 matching con-
straint, different viewpoint, same # covisible keypoints. (c) w/ 1:1 match-
ing constraint, same viewpoint, differing # keypoints. (d) w/ 1:1 matching
constraint, different viewpoint, differing # keypoints. In (a-b), we have an
equal number of ground truth correspondences and keypoints points in the
shared viewpoint region, yielding a Matching-Score of 100%. (b) illustrates
that M-Score is not an ideal metric. In (c-d) the Matching-Score is simply
undefined, if a minimum of # covisible keypoints is chosen, the M-Score
would also achieve 100%. 79

3.19 Performance of six DM systems on HPSequences. Rows 1-2: Woman,
Rows 3-4: Coffee House, Rows 5-6: Autannes, Rows 7-8: Objects. The
keypoints are randomly subsampled by 8. 85

3.20 Performance of six DM systems on HPSequences. Rows 1-2: Woman,
Rows 3-4: Coffee House, Rows 5-6: Autannes, Rows 7-8: Objects. The
keypoints are randomly subsampled by 8. 86

4.1 Examples from the test split of our TbV dataset. Left to right: BEV sensor
representation, onboard map representation, blended map and sensor rep-
resentations. Rows, from top to bottom: deleted crosswalk (top row), and
painted lane geometry changes (bottom three rows). 99

4.2 Examples of lane graphs and pedestrian crossings (a), drivable areas (b),
lane marking annotations (c) raster ground surface height data (d, e), found
in both TbV and the Argoverse 2.0 Sensor Datasets. 100

4.3 Learning architectures we explore for the map change detection problem. . 102

4.4 Examples of our 6 types of synthetic map changes (zoom in for detail).
Each row represents a single scene. Left: bird’s eye view (BEV) sensor data
representation. Center: rasterized onboard map representation (positive).
Right: synthetic perturbation of onboard map (negative). We use red to
denote implicit lane boundaries. 103

4.5 Guided GradCAM. 6 figures are shown for frames from various test set
logs. Clockwise, from top-left: ego-view sensor image, rendered map in
ego-view, blended combination of sensor and map, seamseg label map,
GradCAM activations for the map input, GradCAM activations for the sen-
sor input. White color shows maximal activation, and red color shows zero
activation in the heatmap palette. Label maps from seamseg are at times
quite noisy. 107

xxiii

4.6 Example of a dense depth map interpolated from sparse LiDAR returns. . . 110

4.7 For a number of ‘negative’ logs, our TbV dataset includes corresponding
logs captured before the map change was implemented, such that we obtain
“before and after” imagery. 117

4.8 Examples from the test split of our TbV dataset. Left to right: BEV sensor
representation, onboard map representation, blended map and sensor repre-
sentations. Rows, from top to bottom: inserted crosswalks (a), and painted
lane geometry changes (b-h). 118

4.9 Scenes with temporary object-related map changes collected in Argo AI’s
fleet data. Such scenes are not the focus of our work; rather, we believe
such changes should be addressed by onboard object recognition systems. . 119

5.1 A possible incremental variant of SALVe. Rather than exhaustively evalu-
ating O(n2k2) alignments from n panoramas, each panorama containing k
W/D/O’s, one could sort the pairs by image similarity, and keep any align-
ment if SALVe’s confidence estimates exceeds a certain threshold. 121

5.2 A potential architecture for an end-to-end trainable floorplan reconstruction
system. 122

5.3 (Left): 50 most confident keypoint matches from LoFTR [82], a state-of-
the-art image matching system, on an image pair from ZInD [14]. (Right):
Ground-truth (hand-annotated) keypoint matches for the same image pair.
50 out of 50 LoFTR matches are incorrect, each with estimated confidence
over 0.9. 123

5.4 Annotated HD maps overlaid on front-center camera imagery captured in
the Argoverse 2.0 Sensor Dataset. 124

A.1 Iterations towards convergence of the Weiszfeld algorithm. (Left): (1) ini-
tialization. (Center): intermediate iteration. (Right): convergence. 131

A.2 A panorama provided in the Zillow Indoor Dataset (ZInd) [14]. 136

B.1 A scene with non-planar ground surface. The colored LiDAR returns have
been classified as belonging to the ground, based on the map. Points outside
the driveable area are also discarded. This simple distance threshold against
a map works well, even on the road to the left which goes steeply uphill. . . 142

xxiv

B.2 (a) Lane centerlines and hallucinated area are shown in red and yellow, re-
spectively. Argoverse 1.0 provides lane centerlines because simple road
centerline representations cannot handle the highly complicated nature of
real world mapping, as shown above with divided roads. (b) Lane seg-
ments within intersections are shown in pink, and all other lane segments
in yellow. Black shows lane centerlines. (c) Example of a specific lane
centerline’s successors and predecessors. Red shows the predecessor, green
shows the successor, and black indicates the centerline segment of interest. 143

B.3 Examples of centerlines, driveable area, and ground height projected onto
a camera image. 144

xxv

SUMMARY

Mapping the world is an essential tool for making spatial artificial intelligence a reality
in our near future. Spatial AI, or embodied intelligence for 3D perception, enables aware-
ness and understanding of our surroundings. Maps serve as a core workhorse of motion
prediction and motion planning for modern autonomous vehicles. Maps also enable human
users to interact with novel 3D spaces remotely via virtual reality (VR) or convey useful
information about an environment through augmented reality (AR).

Current methods for building and validating geometric and semantic maps are limited
in several ways. For example, floorplan maps constructed from sparse camera views within
indoor environments generally suffer from low completeness. In other domains, such as
city streets, the world is ever-changing, making online validation of high-definition (HD)
maps a requirement for today’s self-driving vehicles; however, many current map change
detection methods suffer from high-storage costs or limited accuracy.

This dissertation research introduces new algorithms for building and validating geo-
metric and semantic maps using deep learning, with three original contributions. I first
develop a new learning-based algorithm, SALVe, for creating complete and accurate 2d
geometric maps (floorplans) under very wide baselines and occlusion. Second, I explore
the role of the deep “front end” in Structure-from-Motion (SfM), and analyze its use in
GTSFM, a new system for global SfM. Finally, I introduce learning-based formulations for
solving the HD map change detection task in a bird’s eye view and ego-view. Because real
map changes are infrequent and vector maps are easy to synthetically manipulate, we lean
on simulated data to train such models. Perhaps surprisingly, we show that such models
can generalize to real world distributions. Along the way, in order to satisfy the demands
of these data-driven, deep learning approaches, I contribute several large-scale datasets to-
wards solving these problems – the Argoverse 1.0 Datasets, the MSeg Dataset, the Trust
but Verify (TbV) Dataset, and the Argoverse 2.0 Datasets.

xxvi

CHAPTER 1
INTRODUCTION AND MOTIVATION

Maps bring order to a chaotic world. Computer vision offers the promise of both creating
ubiquitous, accurate maps from low-cost, lightweight, low-power devices, and of validating
such maps in real-time to make them dynamic. However, many significant challenges
remain.

Mapping has more applications today than perhaps ever before, as mapping the world is
a requirement for spatial intelligence applications [1]. Indoor geometric maps enable real
estate professionals and virtual home buyers to create and experience immersive user ex-
periences online. Outdoor semantic maps have wide applications in mobile robotics. Maps
are especially important for safe robot operation for autonomous vehicles, where robots
must reason with high accuracy about large portions of the world that are completely oc-
cluded or that are governed by strict laws that may be difficult to estimate on-the-fly. Safety
is the key obstacle to deployment of self-driving vehicles, and detailed maps provide strong
priors that can improve safety and adherence to laws during navigation, especially in clut-
tered urban environments. Even once created, such maps become stale quickly with out-
of-date information. As the world is a highly dynamic place, if maps are used as hard
priors, this could lead to confident but incorrect assumptions about the environment. Once
built and validated, maps can be leveraged in myriad ways, from perception [2, 3, 4], to
highly accurate motion forecasting [4, 5, 6, 7, 8], safe motion planning outdoors [9, 10]
or indoors, and simulation [11, 12, 13]. Maps are key tools to unlocking the potential for
robots to function effectively and safely in our world. Robotics applications that can benefit
the lives of people all over the world are numerous, from home delivery of goods, to au-
tomation in agriculture, mining, infrastructure inspection, defense, warehouse automation,
to much more. Perhaps the most impactful of all such applications will be autonomous
transportation.

1.1 Unsolved Problems in Mapping

1.1.1 Challenges in Building 2d Indoor Geometric Maps

Today, creation of 2d floorplans, a type of 2d, overhead geometric map of an indoor en-
vironment, requires costly hardware or very dense sampling of images. Availability of 2d
floorplans has become one of the dominant factors in the modern real estate market, with
60% of buyers said that viewing a schematic floor plan was very or extremely important in
choosing a home 1. In order to support virtual tours with paired maps, precise localization
of panoramas to this type of map is required, moving indoor mapping from a side project
for consumers or amateur enthusiasts, to a high-stakes, competitive endeavor. While the
market for very high-end homes can support high costs, the market for low- and mid-range
homes cannot support expensive capture, and the development of lower cost techniques are

1https://www.zillow.com/z/3d-home/floor-plans/

1

https://www.zillow.com/z/3d-home/floor-plans/

Figure 1.1: A scene of downtown Pittsburgh, USA, as featured in the Argoverse 2.0 Sensor
Dataset, as captured by LiDAR and cameras, with an overlaid vector map.

Figure 1.2: Example ground truth floorplans from the Zillow Indoor Dataset (ZInD) [14],
and the Zillow 3D Home user interface.

2

(a) (b)

Figure 1.3: Two modern hardware options for indoor reconstruction: the Matterport Pro2
3D camera (left) and the Ricoh Theta V 360 camera (right).

required.
Current techniques for building 2d indoor maps, i.e. floorplans, require expensive,

heavyweight hardware such as Matterport cameras and protracted, tedious captures to ful-
fill spatial density requirements needed for registration. For example, reconstruction using
Matterport Pro2 requires scanning with a tripod placed every 1.5 to 2.5 meters throughout
a home, easily requiring 50-75 separate scans, and the hardware itself costs thousands of
dollars [15]. On the other hand, consumer-grade cameras cost just hundreds of dollars,
and offer the promise of inexpensive, immersive capture. However, reconstruction and
localization from a sparse set of views with very wide-baselines, using consumer-grade
panoramic cameras, is yet an unsolved problem [14]. Single-family homes present sev-
eral unique challenges, among them highly variable lighting conditions between scenes,
repetitive features such as windows and doors [16], and omnipresent occlusion.

1.1.2 Challenges in Creating Outdoor 3d Geometric Maps via SfM

The ability to create 3d structure for maps with image-based methods is still limited in
both accuracy and scale today [17]. While self-driving applications can support LiDAR
hardware for mapping that may cost a few thousand dollars, for other domains this is not
true. For example, image-based reconstruction is increasingly attractive from a power con-
sumption and hardware weight perspective, especially in the era of consumer and delivery
drones. While visual SLAM is a mature field, without loop closures, it leads to inevitable
drift.

The current state of affairs for SfM suggests a surprising paradox within the computer
vision community. State-of-the-art SfM systems [18, 19, 20] today still use SIFT feature
detectors and descriptors [21, 22], developed in 1999, coupled with RANSAC verifiers, de-
spite over 20 years of subsequent research dedicated towards improving feature detectors,
feature descriptors, and correspondence verifiers [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,

3

Figure 1.4: Examples of good (left) and poor (right) matches from a deep feature detec-
tor/descriptor (SuperPoint [42]) and deep matcher (SuperGlue [76]) for two image pairs,
from Skydio’s Crane Mast dataset. False positives (right) occur because of repetitive struc-
tures.

82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102]. At a
first glance, this trend suggests deep learning is not useful for SfM.

Incremental SfM represents the state-of-the-art [17] and is the accepted practice for
image-based reconstruction (e.g. COLMAP [18]), but is slow and relies upon greedy “ini-
tial view selection” and “next best view selection” decisions when adding image pairs to
a scene using PnP. Accordingly, it also offers no guarantees against drift over city-scale
reconstruction, limiting its scale. Such methods require running bundle adjustment re-
peatedly. On the other hand, Global SfM, with implementations available in open-source
libraries such as OpenMVG [19] and Theia [20], is known to be fast, but less accurate. Per-
haps this is not surprising, however, as wide-baseline stereo matches are known to suffer
from low signal-to-noise ratio, leaving batch optimization vulnerable to the impact of even
a few punishing outliers (see Figure 1.4). These outliers can often overpower one of the
benefits global SFM provides – the ability to exploit redundancy in measurements. For a
dataset of N images, there can be up to N(N−1)

2
pairs for which the relative motions can be

estimated, potentially providing a highly redundant set of observations can be efficiently
averaged [103]. However, the community has yet to find techniques to use this redundancy
to provide an advantage in accuracy.

Identifying trustworthy and dense correspondences, i.e. the “front-end” of SfM and
SLAM, is widely considered to be the most challenging part of any such SfM system, and
is generally unsolved in the wide-baseline case, with state-of-the-art approaches achieving
only 60% mean average accuracy at a generous 10◦ pose error threshold [104], and achiev-

4

(a) Washington, D.C., USA (b) Palo Alto, CA, USA

(c) Pittsburgh, PA, USA (d) Miami, FL, USA

Figure 1.5: Examples of HD map changes, i.e. scenarios when sensor data and map data
are no longer in agreement with one another due to real-world changes.

ing just 22% AUC on indoor scenes with low-texture at a 5◦ error threshold [82]. For a
real-world mobile robot system, 10◦ pose error could lead to disastrous consequences.

1.1.3 Challenges in Validating Outdoor HD Maps

Semantic maps are defined as geometric maps endowed with semantic labels. However,
building and validating highly-accurate semantic maps in the wild, at-scale, without ex-
pensive human annotation, is yet an unsolved problem [105, 14, 17]. A particular type
of semantic map, named a high-definition map (HD map), is particularly important for
self-driving vehicles. The most important semantic labels of HD maps describe lane-level
geometry, which allows such vehicles to take advantage of city infrastructure. These maps
may also include possible attributes like semantic attributes, pedestrian crosswalks, all of
which exhibit broad variation [4, 106, 107].

Generating vector map data in urban environments, such as lane-level geometry, is well-
known to be an unsolved problem in the mapping community [105], although progress is
being made (HDMapNet [108], Tesla AI [109], STSU [110]).

Semantic maps, especially HD maps, are usually valid for only a limited period of
time before they become stale due to real-world changes (see Figure 1.5). Accordingly,
validating such maps is in general an unsolved problem and little is known about how to
perform it without massive human effort. To solve the task in a data-driven fashion, a large
training dataset is necessary. However, capturing data before and after a real-world change
occurs is difficult because changes occur as part of a stochastic process, making it difficult
to know when and where to record data. Accordingly, a large fleet of vehicles operating
continuously in the real world is required to capture a sufficient quantity of training data. In

5

addition, no public data has ever been released for the problem, leaving the research com-
munity without the ability to fully understand and approach the problem. Some researchers
have presented heuristics for data association between map elements and real world entities
captured on-the-fly, but they rely upon many heuristics, making these methods brittle and
unable to generalize [111, 112, 113]. Other approaches store huge amounts of past sensor
data in the form of a high-definition infrared image [114], requiring gigabytes, if not ter-
abytes, at city scale, and heuristics, with a difficult trade-off between recall and precision.
Accordingly, humans are required to manually sift through petabytes of data to identify lo-
cations where maps may have been stale. This is an error-prone process, as it is hard even
for humans to recognize these changes. Validating HD maps requires comparing dozens
of semantic map entities with dozens of map entities in the real world, to see if any have
changed.

1.2 Thesis Statement

In this work, we demonstrate how deep learning enables substantial improvements in com-
pleteness and accuracy over the state-of-the-art for building and validating maps from im-
age input, across three domains: 2d geometric indoor maps (i.e. floorplans), 3d geometric
outdoor maps, and 3d semantic HD maps.

Machine learning today is fundamentally a data engineering problem [115]. It can be
well-defined as “programming by data”. To make meaningful progress in machine learning
research for autonomous robotics today, sourcing vast amounts of diverse, real-world data
is essential. One cannot simply write a few lines of code and train a neural network on a
small-scale dataset, as one might have been able to do in an academic setting several years
ago. Training data requirements often range in size from terabytes to petabytes, introducing
large infrastructure challenges.

1.3 Thesis Contributions

Table 1.1: Thesis contributions towards building and validating maps.

DOMAIN BUILDING MAPS VALIDATING MAPS

2D GEOMETRY INDOORS SALVE: SEMANTIC ALIGNMENT VERIFICATION FOR

FLOORPLAN RECONSTRUCTION FROM SPARSE PANORAMAS

3D GEOMETRY OUTDOORS DEEP FRONT ENDS
-

AND GTSFM

3D SEMANTICS OUTDOORS

-
TRUST, BUT VERIFY:

CROSS-MODALITY FUSION FOR

HD MAP CHANGE DETECTION

My thesis work is focused on developing methods that can improve the accuracy and
efficiency of semantic and geometric understanding of 3D environments by exploiting

6

learned priors. In this thesis, I present a number of new problem formulations, algorithms,
and deep-learning based methods for building and validating maps. I also carry out a num-
ber of experiments to demonstrate the advantages of these data-driven, deep-learning based
methods. In my work, I build and validate maps in the following ways, which advances the
state-of-the-art:

For creating 2d indoor geometric maps, e.g. floorplans, I introduce a new system for
automatic 2D floorplan reconstruction that is enabled by SALVe, our novel pairwise learned
alignment verifier. This verifier validates putative bird’s eye view (BEV) submaps while
building the floorplan. The inputs to our system are sparsely located 360◦ panoramas,
whose semantic features (windows, doors, and openings) are inferred and used to hypoth-
esize pairwise room adjacency or overlap. SALVe initializes a pose graph, which is subse-
quently optimized using GTSAM [116]. Once the room poses are computed, room layouts
are inferred using HorizonNet [117], and the floorplan is constructed by stitching the most
confident layout boundaries. We validate our system qualitatively and quantitatively on the
Zillow Indoor Dataset (ZinD) [14], as well as through ablation studies, showing that it out-
performs state-of-the-art SfM systems in completeness by over 200%, without sacrificing
accuracy. Our results point to the significance of our work: poses of 81% of panoramas are
localized in the first 2 CCs connected components (CCs), and 89% in the first 3 CCs.

For creating outdoor 3d structure, I show how deep-learning can be used in the “front-
end” to improve the accuracy of global SfM, and to improve the runtime over incremental
SfM [118, 119]. We call this system “Georgia Tech Structure from Motion” (GTSFM).

For validating outdoor semantic/HD maps, I show how deep models can be used to
effectively predict and localize map changes. This requires building new datasets for the
problem, which I did [120].

1.4 Conclusion

In conclusion, taking a deep-learning based approach to mapping yields a host of benefits.
In the indoor scenario, our approach enables mapping with cheap hardware, few views,
and very wide baselines, representing a significant breakthrough. In the outdoor case, our
approach shows promising steps towards understanding the place of deep learning in a
modern global SfM system. Finally, our approach to building and validating HD maps
can make them dynamic, an important missing part of mapping research today, mitigating
the danger associated with a host of unsafe scenarios for mobile robots and autonomous
driving.

7

CHAPTER 2
BUILDING 2D INDOOR GEOMETRIC MAPS: SEMANTIC ALIGNMENT
VERIFICATION (SALVE) FOR FLOORPLAN RECONSTRUCTION FROM

SPARSE PANORAMAS

We propose a new system for automatic 2D floorplan reconstruction that is enabled by
SALVe, our novel pairwise learned alignment verifier. The inputs to our system are sparsely
located 360◦ panoramas, whose semantic features (windows, doors, and openings) are in-
ferred and used to hypothesize pairwise room adjacency or overlap. SALVe initializes a
pose graph, which is subsequently optimized using GTSAM [116]. Once the room poses
are computed, room layouts are inferred using HorizonNet [117], and the floorplan is con-
structed by stitching the most confident layout boundaries. We validate our system quali-
tatively and quantitatively as well as through ablation studies, showing that it outperforms
state-of-the-art SfM systems in completeness by over 200%, without sacrificing accuracy.
Our results point to the significance of our work: poses of 81% of panoramas are localized
in the first 2 connected components (CCs), and 89% in the first 3 CCs.

2.1 Introduction

Indoor geometry reconstruction enables a variety of applications that include virtual tours,
architectural analysis, virtual staging, and autonomous navigation. There are solutions for
image-based reconstruction based on inputs ranging from dense image capture to sparser
capture using specialized imaging equipment (e.g., Matterport Pro2). For scalability of
adoption, however, data bandwidth, equipment costs, and amount of labor must be consid-
ered.

We reconstruct floorplans from sparsely captured 360◦ panoramas, as provided by
ZInD [14]. Currently, this problem is far from solved. Traditional Structure-from-Motion
(SfM) [19, 121] suffers from very limited reconstruction completeness [14, 122]. Semantic
SfM has been proposed [123, 124, 16], but accuracy is still limited, typically requiring a
human in the loop [14].

Indoor floorplan reconstruction from unordered panoramas is a discrete instance of the
wide-baseline SfM problem. Unlike traditional SfM, which is associated with a continuous
estimation problem, for indoor residential floorplan reconstruction, discrete room pieces
must align at specific junction points (such as doors and walls), similar to solving a jigsaw
puzzle [125]. We show how objects with repetitive structure, such as windows and doors,
can be used to hypothesize room adjacency or overlap. Each hypothesis, i.e. a matched
semantic element, provides a relative 2D room pose. The main innovation of our work is
SALVe, a learned pairwise room alignment verifier. Given a room pair alignment hypoth-
esis, SALVe uses the bird’s eye view (BEV) of floors and ceilings to predict the likelihood
score of adjacency or overlap. Our use of a discrete combinatorial proposal step, followed
by a learned deep verifier, is akin to recent trends in language models, for tasks requiring
multi-step reasoning [126, 127], as “Verifiers benefit both from their inherent optionality

8

SALVe Ground Truth

Figure 2.1: A challenging wide-baseline scenario where traditional SfM systems that rely
upon keypoint feature matches struggle, but where we succeed by exploiting semantic fea-
tures such as doors, windows, and openings, or W/D/O). We infer layout and hypothesize
plausible pairwise relative poses, which are then accepted or rejected, by feeding top-down
aligned renderings into our learned SALVe verifier. Our global pose estimation has high
completeness, leading to dramatic improvements in floorplan reconstruction (indicated by
colored regions) vs. state-of-the-art systems such as OpenMVG [19] and OpenSfM [121].
For this hallway/entryway pano pair, SALVe easily validates a relative pose that was gen-
erated by grounding on a hallway opening feature.

and from verification being a simpler task than generation in general.” [126].
Once the relative poses are computed and verified, we perform global pose graph op-

timization using GTSAM [116]. Using the estimated poses and room layouts generated
using HorizonNet [117], we construct the floorplan by stitching these layouts.

Our contributions are:

• To our knowledge, the first system for creating floorplans from unaligned panora-
mas with small to extremely wide baselines. These baselines can be so large that
traditional SfM techniques fail.

• SALVe, a novel learning-based approach for validating discrete pairwise alignment
proposals between panoramas in polynomial time.

• We show how our network verifies measurements with a high enough signal-to-noise
ratio to directly apply global aggregation and optimization techniques.

2.2 Related Work

We briefly review approaches in floorplan reconstruction, SfM, and pose estimation under
extreme baselines. While single-room layout estimation and depth estimation are also rel-
evant, we do not claim novelty in these areas. Good surveys of such methods can be found
in [128] and [129].
Floorplan Reconstruction. Early systems require a human in the loop [130, 131]. One
notable manual approach is that of Farin et al. [131], which uses sparsely located 360◦

panoramas for joint floorplan and camera pose estimation.
For more automated solutions, SfM is used on densely captured perspective images [132]

or 360◦ panoramas [133]. Both use SfM and MVS output to formulate graph optimization
problems on a regular grid, through either graph cuts [132] or shortest-path problems [133],
from which a rough 2D floorplan can be extracted. For sparser image inputs, semantic in-
formation such as floors, ceilings, and walls are used as additional cues [134]. Pintore et

9

al. [135] cluster panoramas by room using photo-consistency at the central horizon line
and plane sweeping with superpixel object masks to model clutter and floorplans in 3D.
There are also methods on floorplan reconstruction from known camera poses [136, 137,
125, 138, 139] or RGBD data [136, 137, 125, 138, 139, 140, 141, 142, 143].
Structure from Motion (SfM). Much work has been done on SfM, and we refer readers
to surveys such as [144]. Recently, deep learning with graph-based attention [76] or trans-
formers [82] for deep, differentiable key point matching has been exploited to learn and
match features from data. These “deep front-ends” offer a promise of less noisy input to
back-end optimization [76]. Our system can be viewed as a deep verifier network (a deep
front-end) that feeds measurements to global SfM [145, 20]; however, instead of requiring
complex outlier rejection schemes typical of global SfM [146, 145, 19, 147, 20, 148], we
show that outlier rejection can simply be based on predicted scores.

Semantic information has been used to overcome the limitation of keypoint matching
for large baselines or scenes with little detail or repetitive textures [123, 149]. Cohen et
al. [124] first introduced a combinatorial approach for 3D model registration by aligning
semantic objects such as windows [16]. More recent work [14, 122] exploits this same idea
to assemble floorplans from room layouts.
Extreme Pose Estimation. This refers to computing relative pose with little to no visual
overlap. On localizing RGBD images, Yang et al. [150, 151] demonstrate scan completion
to a 360◦ image, followed by feature-based registration can be useful. Chen et al. [152]
introduce DirectionNet to estimate a distribution of relative poses in 5 DOF space, i.e.,
when scale is unknown. SparsePlanes [153] uses planar surface estimation from perspective
views within a single room for relative pose estimation. Other CNN-based approaches on
perspective image re-localization include [154, 155, 156].

In concurrent work, Shabani et al. [122] use semantic information to generate global
pose hypotheses by synthesizing Manhattan-only floorplans. The hypotheses are then
scored by ConvMPN [157] and used to produce plausible room layout arrangements along
with camera poses. They assume each panorama is captured in separate but connected
rooms. Another key difference from our work is that their learning-based verifier is trained
to evaluate the final floorplan arrangements, after using heuristics to enumerate many pos-
sible solutions. This is exponential in the number of input panoramas. Their approach
is expected to produce several layout arrangements. In contrast, SALVe matches semantic
elements between pairs of panoramas in polynomial time. Our model is then trained to
verify the individual pairwise arrangements, allowing our approach to be substituted as a
front-end in any pose-graph optimization and producing a single reconstruction with higher
reliability.

2.3 System Overview

We address the problem of global pose estimation of sparsely located panoramas, for the
purpose of floorplan reconstruction. Formally, we define the global pose estimation prob-
lem as, given an unordered collection of n panoramas {Ii}, determine poses {wTi}ni=1 ∈
SE(2) of each panorama in global coordinate frame w. Similar to [139], we define the
floorplan reconstruction problem as generating a raster (1) floor occupancy and (2) per-
room masks.

10

Renderer

Alignment
generator

Spherical to Cartesian

Global Pose Estimation
& Optimization

Floor Plan Reconstruction

Estimated Floor Plan

Global Camera Poses

Match Score per
Hypothesis

Relative Pose
Hypotheses

Estimated BEV
W/D/O & layouts

Known Camera
Height

O(n²k²)
alignment
hypotheses

Depth Maps

W/D/O Image locations Image Room Layout

Panoramas

Front-end Semantic Alignment Verification (SALVe)

Aligned BEV Texture Maps

<for each
hypothesis>

Relative Pose
Verifier

floor A

ceiling A

floor B

ceiling B

CNN

Mono-depth
estimation

network

Layout
estimation
network

Figure 2.2: Overview of our floorplan reconstruction system. “BEV” = “bird’s eye view”.
Blue boxes are processing components, gray boxes are data. Trapezoids denote components
based on deep networks; lighter blue networks are trained by us. ‘Image Room Layout’ rep-
resents the image coordinates of the floor-wall boundary (at each panorama column). n is
the number of panoramas and k is the average number of detected windows/doors/openings
per panorama. We show rendered floor and ceiling texture maps for a consistently-aligned
pair of panoramas.

Global pose estimation inherently relies on methods that build up global information
from local signals. In our work, these local signals are estimated relative poses between
pairs of panoramas. Our system for generating the floorplan from sparsely located panora-
mas is shown in Figure 2.2. The system consists of a front-end designed to hypothesize
and compute relative pairwise poses, and a back-end designed to optimize global poses
using these measurements.

The front-end (SALVe, or Semantic Alignment Verifier) first generates hypotheses of
relative pose between the input pair of panoramas using their estimated room layout and
detected semantic objects (specifically windows, doors, and openings, or W/D/O).1 A hy-
pothesis consists of pairing the same type of object across the two panoramas. Each pair
of hypothesized corresponding W/D/O detections generates two relative pose hypotheses,
by solving for the 2D translation that aligns their centers (on the ground plane), and the
two possible rotation angles α, 180◦ + α that align their extents. Each pairing allows us to
compute the relative SE(2) pose.

A main novelty in this paper is how we test whether a hypothesis is plausible with
SALVe. For a hypothesized relative pose, the system renders bird’s-eye views of the floor
and ceiling for both panoramas in the same BEV coordinate system, which produces over-
lapped top-down renderings. The rendering is computed with per-panorama depth distri-
bution estimation using HoHoNet [158]. Then we use a deep CNN with a ResNet [159]
backbone to generate a likelihood score that the overlapped images are a plausible match.

Implausible matches are discarded, and from the remaining plausible matches we con-
struct a pose graph. The back-end then globally optimizes the constructed pose graph

1Openings are constructs that divide a large room into multiple parts [14].

11

using GTSAM [116]. Finally, floorplans are created by clustering the panoramas by room,
extracting the most confident room layout given predicted panorama poses, and finally
stitching these room layouts.

2.4 Approach

In this section, we detail the steps taken to generate a 2D floorplan from sparsely dis-
tributed 360◦ panoramas. The first step is to generate alignment hypotheses between pairs
of panoramas.

2.4.1 Assumptions

We assume the inputs are a set of unordered 360◦ panoramas, captured from an indoor
space. The images cover the entire space and the connecting doors between different rooms.
Neighboring images may or may not have visual overlap. We assume the panoramas are
in equirectangular form, i.e., their fields of view are 360◦ (horizontal) and 180◦ (vertical).
The camera is assumed to be of known height and fixed orientation parallel to the floor2, so
pose is estimated in a 2D bird’s-eye view (BEV) coordinate system.

2.4.2 Generating Alignment Hypotheses

Since our floorplan is 2D, alignment between pairs of panoramas has 3 DOFs (horizontal
position and rotation). Scale is not a free parameter, assuming known, fixed camera height
and a single floor plane (see [161] or our Appendix for a derivation). To handle wide
baselines, we use semantic objects (windows, doors, and openings, or W/D/O) to generate
alignment hypotheses. While this is similar to the W/D/O-based room merge process in
[14], we additionally make use of estimated room layout. Each room layout is estimated
using a modified HorizonNet model [117]; it is trained with partial room shape geometry
to predict both the floor-wall boundary with an uncertainty score and locations of W/D/O.

Each alignment hypothesis is generated with the assumption that W/D/O being aligned
are in either the same room or different rooms. The outward surface normals of W/D/O
are either in the same or opposite directions; we assume a window can only be aligned
in the direction of its interior normal, while a door or opening could be aligned in either
direction. The hypothesis for rotation is refined using dominant axes of the two predicted
room layouts.

Exhaustively listing pairs of W/D/O can produce many hypotheses for alignment ver-
ification. We halve the combinatorial complexity by ensuring that each pair of matched
W/D/O have widths with a ratio within [0.65, 1.0], i.e. a door that is 2 units wide cannot
match to a door that is 1 units wide. Once the alignment hypotheses are found, they need
to be verified.

2We achieve this orientation assumption via pre-processing that straightens the panoramas using vanishing
points [160].

12

Figure 2.3: Generating training samples. Orthographic BEVs of given panoramas, after
semantic alignment proposal. Red arrows indicate the W/D/O, used to generate the pose
proposals. Column 1: Example of extreme baseline pair. Column 2: overlaid floor (top)
and ceiling (bottom). Column 3: Example of a wide baseline pair. Column 4: overlaid
floor (top) and ceiling (bottom).

2.4.3 SALVe: Semantic Alignment Verifier

While domain knowledge of indoor space such as room intersections and loop closure can
be helpful in constructing the floorplan [14], visual cues can also be used to verify pairwise
panorama overlap [162]. We use bird’s eye views (BEVs, which are orthographic) of the
floor and ceiling as visual cues for alignment verification. Given the significant variation in
lighting and image quality across panoramas, traditional photometric matching techniques
may not be very effective. Instead, we train a model to implicitly verify spatial overlap
based on these aligned texture signals.

We extract depth using HoHoNet[158], which is used to render the BEVs. Example
views can be found in Figure 2.3. Given an alignment hypothesis, we map the BEVs of
the floor and ceiling for both panoramas to a common image coordinate system. The four
stacked views are then fed into our deep-learning based pairwise alignment verification
model to classify 2-view alignment. Given n panoramas, each with k W/D/O, O(n2k2)
alignments are possible and thus need to be verified.

SALVe uses a ResNet [159] ConvNet architecture as the backbone for verification. Its
input is a stack of 4 aligned views (2 from each panorama), with a total of 12 channels.
It is trained with softmax-cross entropy over 2 classes, representing the “mismatch” and
“match” classes. We generate these classes by measuring the deviation of generated relative
poses (alignments from window-window, opening-opening, or door-door pairs) against the
ground truth poses. Those below a certain amount of deviation are considered “matches”,
and all others are considered “mismatches”.

2.4.4 Global Pose Estimation and Optimization

SALVe is used to generate a set of pairwise alignments, which are used to construct a pose
graph; its nodes are panoramas and edges are estimated relative poses. The pose graph has

13

Figure 2.4: An example of different stages of floorplan reconstruction: Left: Estimated
positions of panorama centers. Center: Grouped panoramas with estimated dense room
layouts. Panorama centers with the same color are part of the same group. Notice that
each open space is grouped together. Distinct groups correspond largely to physical rooms
separated by doors. Right: The final floorplan after highest-confidence contour extraction
is applied to each group. Each contour is filled with a unique color.

an edge between any two panoramas Ii1 and Ii2 where pairing a detection di1k1 with detection
di2k2 yields a plausible (according to SALVe) alignment. A detection may participate in
multiple edges e.g., pairing (di1k1 ,d

i2
k2

) may add an edge between i1 and i2, and pairing
(di1k1 ,d

i3
k3

) may add an edge between panos i1 and i3. Although conflicting relative pose
hypotheses are possible, in practice SALVe is a sufficiently accurate verifier that they are
quite rare.

When multiple disjoint graphs result, we only consider the largest connected compo-
nent. We experiment with two algorithms for global localization: spanning tree pose ag-
gregation and pose graph optimization (PGO) with a robust noise model, detailed in the
Appendix.

2.4.5 Floorplan Reconstruction

Figure 2.4 shows the progression of floorplan reconstruction, from estimated panorama
poses and room layouts to the output. There are three steps: panorama room grouping,
highest confidence room contour extraction, and floorplan stitching. To refine a room lay-
out, we first identify all the panoramas within that room; this is done using 2D IoU. Since
each panorama has its own layout with local shape confidence (subsection 2.4.2) within a
room, we extract a single global layout by searching for the most confident contour points.
The search is done by raycasting from panorama centers and voting for the most confident
contour point along each ray. The final floorplan is found by taking the union of (stitching)
all room layouts. Details are in the Appendix.

14

2.5 Experimental Results

In this section, we explain why we use ZInD [14], provide implementation details, and
describe our metrics before showing results for different global pose estimation techniques.
We also describe ablation studies that show how different types of inputs affect the results.

2.5.1 Use of ZInD [14]

In order to evaluate every part of our approach, as well as the entire system, we use the
recently released Zillow Indoor Dataset (ZInD) [14]. ZInD has all the required components:
(1) large scale with 67, 448 panoramas taken in 1, 575 real homes; (2) multiple localized
panoramas per-room with 42 panoramas over 15 rooms per-home on average; (3) layout
and W/D/O annotations including complex, non-Manhattan layouts and (4) 2D floor-plans
with 1.8 number of floors per-home on average. We use the official train, val, and test
splits that contain 1260, 157, and 158 homes, and 2168, 278, 291 floors respectively. We
acknowledge that in ZInD most rooms are unfurnished, but this is a frequent scenario in the
domain of real estate floor plan reconstruction. While there are other real [163, 164, 122]
and synthetic [165, 166] indoor datasets, none of them have all the required components.
Structured3D [165] is a synthetic dataset with only one panorama per room and doors in
almost all rooms are closed (uncommon in real estate capture scenarios); these factors result
in a significant change of modality.

2.5.2 Implementation Details

Layout and W/D/O estimation. We use a modified version of HorizonNet [117], trained
to jointly predict room layout as well as 1D extents of W/D/O. We trained the joint model
on ZInD, and will share the predictions upon publication.
Verifier supervision. We consider a pair-wise alignment to be a “match” if ground truth
relative pose (x, y, θ) ∈ SE(2) and generated relative pose (x̂, ŷ, θ̂) ∈ SE(2) differ by less
than 7◦ (θ) for doors and windows, and less than 9◦ for openings. A larger threshold is
used for openings because there is more variation in their endpoints. We also require that∥∥[x, y]> − [x̂, ŷ]>

∥∥
∞ < 0.35 in normalized room coordinates (i.e., when camera height is

scaled to 1).
Texture mapping. When texture mapping an orthographic view using the monocular esti-
mated depth map from [158], we use all 3D points ≥ 1m below the camera for rendering
the floor, and all points ≥ 0.5m above the camera for rendering the ceiling. We render a
10× 10m region, using a resolution of 0.02 m/pixel, creating a 500× 500 image.
Verifier data augmentation. We resize BEV texture maps to 234×234 resolution, sample
random 224×224 crops, randomly flip them, and then normalize crops using the ImageNet
mean and standard deviation.
Verifier training. We use a ResNet-152 architecture with ImageNet-pretrained weights,
training for 50 epochs, with an initial learning rate of 1 × 10−3, polynomial learning rate
decay with a decay factor of 0.9 per iteration, and a weight decay of 1 × 10−4. We use a
batch size of 256 examples on 3 NVIDIA Quadro RTX 6000 GPUs.

15

2.5.3 Evaluation Metrics

In order to evaluate our entire system, we measure the performance of each portion of the
system separately.
Layout estimation and W/D/O detection accuracy. To evaluate the quality of the layout
estimation, we report 2D IoU between the predicted and ground truth room layouts per
panorama. Because we project 1D W/D/O on the predicted layout, we use 1D IoU to
measure the accuracy of those semantic elements, with F1 score evaluated at a true positive
1D IoU threshold of 70%.
Relative pose classification accuracy. We report intermediate metrics of the system, such
as how accurate the model is at discerning between correct and inaccurate alignments. We
use mean accuracy over two classes, as well as precision, recall, and F1 score.
Global pose estimation accuracy and completeness. We first align an estimated pose
graph {T̂i}Mi=1 to a ground truth pose graph {Ti}Ni=1 where Ti ∈ SE(2) ∀i ∈ 1, . . . , N , by
estimating a Sim(2) transformation between them, where M ≤ N , since not all poses may
be estimated. To reduce the influence of outliers for mostly-correct global pose estimates,
we perform pose graph alignment in a RANSAC loop, with a randomly selected subset (2/3

of theM estimated poses) used to fit each alignment hypothesis, over 1000 hypotheses. We
then measure the distance between the predicted and true i’th camera location ‖ti − t̂i‖2,
and difference between true and predicted i’th camera orientation |θi− θ̂i|. Completeness is
essential to floorplan reconstruction, so we also report the percent of panoramas localized
in the largest connected component.
Floorplan reconstruction accuracy and completeness. We measure the 2D IoU between
a rasterized binary occupancy map of the ground truth and the predicted floorplans. This
metric measures the quality of our end-to-end system, as it encapsulates the accuracy of
our pair-wise relative pose proposal in combination with the accuracy and completeness
of the global pose estimation and the fusion of the room layouts (see Appendix for more
details).

2.5.4 Layout and W/D/O Estimation Accuracy

The layout estimation module used in the system yields an average of 85% IoU with ground
truth shape. W/D/O detection is accurate; at a 70% 1D IoU threshold, we correctly iden-
tify W/D/O with F1 scores of 0.91, 0.89, and 0.67, respectively. Our model is the least
accurate in predicting openings. As discussed in [14], there are issues with annotator error
and possibly ambiguous tagging of rooms in open spaces that cover different room types,
making locations of openings less clear. We speculate that these contribute to the errors,
especially for openings. In the Appendix, we provide qualitative examples of the various
types of failure modes of the model.

2.5.5 Relative Pose Classification

We first measure the performance of the SALVe “front-end”. These trained models achieve
92-95% accuracy on the test split (see Appendix). We show that a larger capacity model
than ResNet-50 (i.e. ResNet-152) further improves performance. We also note that the
accuracy is limited by noisily-generated ‘ground truth’. We train on 587 number of tours

16

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

ceiling + floor
floor-only
ceiling-only
layout-only

0.0 0.2 0.4 0.6 0.8 1.0
CNN probability for 'positive' class

0.0

0.2

0.4

0.6

0.8

1.0

ceiling + floor: precision
ceiling + floor: recall
floor-only: precision
floor-only: recall
ceiling-only: precision
ceiling-only: recall
layout-only: precision
layout-only: recall

[0.0-0.1)
[0.1-0.2)

[0.2-0.3)
[0.3-0.4)

[0.4-0.5)
[0.5-0.6)

[0.6-0.7)
[0.7-0.8)

[0.8-0.9)
[0.9-1.0)

Floor-Floor Texture Map IoU

0

20

40

60

80

100

M
ea

n
Ac

cu
ra

cy
 (%

)

Figure 2.5: Precision-recall analysis of SALVe. Left: curve for SALVe under different
inputs (‘layout-only’ refers to a model with access only to estimated room geometry, but no
floor or ceiling texture). Center: Comparison of confidence thresholds versus their effect
on precision and recall. The purple line indicates our operating point (93% confidence).
Right: Classification accuracy vs. visual overlap for the GT positive class only from SE(2)
alignments generated from predicted W/D/O’s. Small visual overlap often corresponds to
“extreme” baselines.

0 1 2 3 4
i'th Connected Component

0

20

40

60

80

100

%
 o

f P
an

or
am

as
 L

oc
al

ize
d

p.d.f.
c.d.f.

Figure 2.6: Left: Distribution of localization percentage in the first 5 connected compo-
nents, averaged over all test tours. Right: Topology of global pose graphs for various
different homes.

from ZInD, and use the official train/val/test splits.
In Figure 2.5, we show a PR curve, indicating the precision of the model at different

recall thresholds. We choose a 93% confidence threshold as our operating point, as it
maximizes precision just before a precipitous drop in recall.
How does the amount of visual overlap affect relative pose classification accuracy?
More overlap yields higher accuracy for the ground truth positive class, but lower accuracy
for the ground truth negative class. In Figure 2.5, we analyze the performance of our
relative pose classification method under varying amounts of visual overlap. 100% overlap
would indicate that two panoramas were captured in exactly the same position, with the
scene unchanged between the two captures. On the other hand, 0% overlap would indicate
that the panoramas were captured in completely different locations, i.e. in two rooms,
on opposite sides of a closed door (an example of an “extreme” baseline). We use a proxy
metric, IoU of the texture map generated using HoHoNet-estimated [158] monocular depth,
which introduces some amount of noise.

2.5.6 Global Pose Estimation Results

Next, we measure performance of both the “front-end” along with some form of global
aggregation (“back-end”). We compare with two baselines from state-of-the-art structure

17

Table 2.1: Results of global pose estimation on the ZinD test set. Two global aggregation
methods are evaluated: spanning tree (‘ST’), and pose graph optimization (‘PGO’), with
axis-alignment (‘AA’). ST and PGO both use the same largest connected component of G
as input, and thus localize an equal number of panoramas.

METHOD LOCALIZATION % TOUR AVG. ROTATION TOUR AVG. TRANSLATION
ERROR (DEG.) ERROR (METERS)

MEAN MEDIAN MEAN MEDIAN MEAN MEDIAN

OPENSFM [121] 27.62 22.22 9.52 0.36 1.88 0.12
OPENMVG [145, 19] 13.94 8.70 3.84 0.37 0.41 0.10

OURS (W/ ST + AA) 60.70 57.10 3.69 0.03 0.81 0.26
OURS (W/ PGO + AA) 60.70 57.10 3.73 0.17 0.80 0.25

from motion systems that support optimization from 360◦ images.

OpenMVG [145, 19]. We use the recommended setting for 360◦ image input, with incre-
mental SfM using an upright SIFT feature orientation, an upright 3-point Essential matrix
solver with A-Contrario RANSAC, following the planar motion model described by [161,
167, 168], with an angular constraint for matching.

OpenSfM [121]. Incremental SfM system that uses the Hessian-Affine interest point de-
tector [61], SIFT feature descriptor [22], and RANSAC [169].

In Table 2.1, we show the results of global pose estimation on the ZInD test set. We out-
perform OpenMVG by 656% and OpenSfM by 257% in the median percentage of panora-
mas localized (their 8.7% and 22.2% vs. our 57.1%), with even lower median rotation
error (our 0.17◦ vs. their 0.37◦ and 0.36◦). Our median translation error is comparable
(our 25 cm vs. their 12 cm and 10 cm). PGO is significantly more accurate than spanning
tree when VP estimation is not employed (see Table 2.3). However, when using vanishing
point-based dominant axis-alignment, both spanning trees and pose graph optimization on
SALVe-verified measurements produce similar global aggregation results. In the left col-
umn of Figure 2.7, we show the topological structure of the largest component of the pose
graph for a few homes.

2.6 Discussion

Is deep learning necessary for verification, or can heuristics be used? To verify pairwise
alignment, matching texture is necessary but hard to feature engineer. Using geometry
alone is insufficient (See Figure 2.5(a-b) and Table 2.2), motivating others to explore graph
neural networks for the task [122]. We implemented several classifying BEV image pairs
via cross-correlation scores, including FFT cross-correlation [170], and they do not work
well due in part to difficulty in choosing thresholds. We implemented such a rule-based
baseline, and found the results to be near random. Previous works such as LayoutLoc
[14] have explored rule-based checking, but found that it only can be successful when
given access to oracle within-room pano grouping information; estimation of such within-
room grouping (i.e. adjacency) is itself one of the fundamental challenges of global pose
estimation in an indoor environment.
What type of semantic object is most useful for alignment in this semantic SfM prob-

18

Table 2.2: Results of ablation experiments on how inputs to SALVe affect global pose
estimation accuracy and completeness. Pose graph optimization and vanishing point-based
axis alignment (‘PGO + AA’) are utilized for all entries below.

W/D/O INPUTS RASTER INPUTS LOCALIZATION % TOUR AVG. ROTATION TOUR AVG. TRANSLATION
Doors Windows Openings Floor Ceiling Layout ERROR (DEG.) ERROR (METERS)

Texture Texture MEAN MEDIAN MEAN MEDIAN MEAN MEDIAN

X X X X X 60.70 57.14 3.73 0.17 0.80 0.25
X X X 43.30 40.00 2.41 0.07 0.59 0.20

X X X 15.57 13.33 2.20 0.00 0.74 0.11
X X X 23.87 23.08 0.66 0.05 0.34 0.18

X X X X 60.64 58.33 3.75 0.15 0.91 0.25
X X X X 60.93 64.58 10.94 0.28 2.12 0.35
X X X X 19.19 16.67 3.43 0.03 0.53 0.11

lem? Doors, but all are essential. Openings are the second-most effective object type to
achieve complete localization, and windows are least effective. Among the alignments
that the model predicts to be positives with confidence ≥ 97%, we find that 63% origi-
nate from door-door hypotheses, while 24% originate from opening-opening hypotheses,
and 20% originate from window-window hypotheses. While rooms in residential homes
are very rarely connected by a window, these window alignments can provide additional
redundancy, or ground alignments in very large open spaces when doors are not visible as
in Figure 2.3, pair 2. In Table 2.2, we report global pose estimation results when only one
type of semantic object is used to create the edges E of the relative pose graph G.
To what extent is the pose graph shattered into multiple clusters? Typically, the first
three connected components contain 61%, 20%, and 7% of all panoramas (See Figure 2.6a).
We measure the distribution of connected components (CCs), as global pose estimation re-
lies upon a single CC (we use the largest), and we find that often the second and third
largest CCs are also large, indicating the potential for merging, e.g. combining ideas from
[122] or [171]. We compute an average probability density function and cumulative density
function by averaging per-floor distributions across the test set.

Is the RGB photometric signal from panoramas actually necessary, as opposed to
solely using geometric context? Yes, the RGB texture is essential. In Table 2.2, we show
that using a layout-only rasterization as input to the CNN, instead of a photometric texture
map, leads to severe performance degradation.

Does floor or ceiling texture provide a more useful signal for alignment classification?
Floor texture. However, using both signals jointly improves performance. In Table 2.2, we
show the results of using as input to the network only the floor texture maps, or only the
ceiling texture maps, as opposed to reasoning about both jointly.

Is a Manhattan world assumption helpful? For pose estimation, yes, but for shape esti-
mation, no. Many rooms at critical junctures in the floorplan are non-Manhattan in shape,
and ‘Manhattanizing’ them would be destructive when chaining together. However, room
organization in a home is usually tied to three dominant, orthogonal directions. In Table 2.3,
we show that using vanishing point estimation to align relative poses up to a 15◦ correction
significantly improves both global pose estimation accuracy and slightly improves floor-
plan reconstruction accuracy. Both vanishing point relative rotation angle correction and

19

OpenSfM OpenMVG SALVe Ground Truth

Figure 2.7: Qualitative comparison of floorplan results. Column 1: OpenSfM. Column 2:
OpenMVG. Column 3: Ours. Column 4: Ground truth floorplan. All results are superim-
posed on the ground truth floorplan. Colored regions indicated the reconstruction result; at
times, the baselines localize no panos. Our floorplan recall is significantly better than the
state-of-the-art. Each row corresponds to a single floor of a different home. Colored lines
represent W/D/O objects – doors, openings and windows. The multiple cyan edges in the
overlaid graph correspond to verified W/D/O alignment hypotheses. For an open layout, a
successful case often involves edges from panoramas in many different rooms to a single
pano. These examples are intended to offer an even-handed selection of reconstructions
that indicate both good performance as well as areas for improvements. Rows 1 and 6
illustrate good reconstructions. Row 2 illustrates a more challenging case with only 1-2
panos in most rooms. Rows 3-5 are more challenging as they include bottlenecks in the
actual physical layout, which is critical in joining connected components.

20

Table 2.3: Comparison of results with and without axis-alignment (‘AA’) of relative poses
(via vanishing angles) before global aggregation. The amount of panoramas localized is
unaffected, as adjacency is maintained during the correction. For this comparison, ‘oracle’
layouts are used to isolate the effect of pose error. With vanishing point (VP) information,
the difference between PGO and Spanning Tree is not statistically significant (1 cm and
0.04◦ error on average).

METHOD TOUR AVG. ROTATION TOUR AVG. TRANSLATION FLOORPLAN
ERROR (DEG.) ERROR (METERS) IoU

MEAN MEDIAN MEAN MEDIAN MEAN MEDIAN

Spanning Tree 5.41 1.92 0.86 0.33 0.55 0.52
Spanning Tree + AA 3.69 0.03 0.81 0.26 0.56 0.52
PGO 4.93 1.53 0.81 0.29 0.56 0.52
PGO + AA 3.73 0.17 0.80 0.25 0.56 0.53

Table 2.4: Floorplan reconstruction results against the ground truth manually annotated
floorplan. Floorplan 2D IoU is measured in the bird’s eye view. The IoU is measured on
the largest connected component. ‘AA’ represents axis-alignment.

METHOD GLOBAL POSES LAYOUT FLOORPLAN IOU
ORACLE ESTIMATED ORACLE ESTIMATED MEAN MEDIAN

OPENSFM X X 0.29 0.26
OPENMVG X X 0.16 0.07
OURS X X 0.94 0.95
OURS (PGO + AA) X X 0.56 0.53
OURS (PGO + AA) X X 0.49 0.45

pose graph optimization are effective means of decreasing the rotation error. In the Ap-
pendix we show how using ground truth layout (near-perfect shape) and W/D/O locations
affects performance, as an upper-bound on performance of the first module in our system.

2.6.1 Floorplan Reconstruction Results

Next, we compare performance of the entire floorplan reconstruction system. In Table 2.4,
we demonstrate that compared to traditional SfM with oracle room layout and oracle scale,
our end-to-end system is able to produce more accurate floorplans with estimated room lay-
outs (our 0.49 mean IoU vs. OpenSfM’s 0.29 and OpenMVG’s 0.16). The 0.56 mean IoU
score using our estimated global poses and oracle layout primarily reflects the complete-
ness of our final floorplan. With oracle pose and estimated room layouts, the 0.94 mean
IoU reflects the accuracy of our layout estimation and stitching stages. This baseline has
significantly larger IoU in part because the ‘oracle’ poses are provided for all panoramas
(see the Appendix for comparison visualizations).
Qualitative Results. Figure 2.7 provides qualitative results for a number of different
homes. For floors of some homes, our method produces nearly complete reconstructions,
while for others, the results are more sparse. As shown by the third column of Fig. Fig-
ure 2.7, the topology of the pose graph directly affects the completeness of the reconstruc-
tion; when multiple large connected components appear, the reconstruction is shattered
apart. For several homes, OpenMVG and OpenSfM fail to converge, localizing no panora-
mas.

21

2.7 Conclusion

We present a new system for automatic 2D floorplan reconstruction from sparse, unordered
panoramas. This work represents a breakthrough in the completeness of reconstructed
floorplans, with over two times more coverage than previous systems [121, 19], without
sacrificing accuracy. We demonstrate how SALVe, our novel pairwise learned alignment
verifier, capitalizes on the mature field of semantic detection of features (W/D/O) to handle
a tractable number of alignment hypotheses and generate high-quality results. A human
annotator may use it to accelerate labeling by automatically generating the majority of
necessary decisions before making the final choices about glueing connected components.
Figure 2.7 only illustrates the largest CC; other CCs are also generated, but not shown
(Figure 2.6, a CDF of 89% for the first 3 CCs).
Limitations. Because the number of pairwise alignments is combinatorial in the num-
ber of W/D/O, the runtime of the current system is limited, although we have not heavily
optimized it. As ZInD [14] contains only unfurnished homes, our system has not yet been
evaluated in a furnished home regime, due to dataset availability. Camera localization com-
pleteness is still in the 55-60% range. With future improvements to each part of the system,
especially omnidirectional depth estimation and layout estimation, we expect floorplan re-
construction performance to continue to improve.

2.8 Appendix

In this Appendix, we provide additional analysis and implementation details. In section 2.9,
we provide qualitative comparisons of our floorplan reconstructions, vs. an upper-bound
oracle baseline that uses ground-truth global pose estimation. In section 2.10, we provide
quantitative analysis of SALVe’s relative pose classification accuracy with various input
modalities. In section 2.11, we provide pseudo-code for our layout stitching algorithm. In
section 2.12 and section 2.13, we report detailed quantitative analysis of W/D/O detection
accuracy, and W/D/O and layout estimation failure cases. In section 2.14, we describe the
coordinate systems used in our work. In section 2.15, section 2.16, section 2.17, we provide
additional implementation details about rendering, vanishing-point based axis alignment,
and pose graph optimization and spanning tree aggregation. In section 2.18, we describe
ablation experiments that compare the use of ground truth W/D/O and ground truth lay-
out, vs. estimated W/D/O and estimated layout. Insection 2.19, we provide additional
discussion about our evaluation procedures versus those of concurrent work [122]. In sec-
tion 2.20, section 2.21, section 2.22, section 2.23, and section 2.24, we provide additional
analysis and further examples of positive and negative training examples.

2.9 Qualitative Results: Predicted vs. Oracle Poses

In this section, we provide qualitative comparisons with a baseline that stitches predicted
layouts placed at ‘oracle’ global pose locations (referred to by subsection 2.6.1 of the main
paper). For this baseline, the high fidelity of reconstructed shapes (middle column of Fig-
ure 2.8 and Figure 2.9) demonstrates the maturity of modern layout estimation networks.
This baseline also illustrates the impact of global pose estimation on the entire system.

22

Figure 2.8: Example floorplan results of varying completeness, comparing SALVe’s per-
formance vs. an upper bound (perfect global pose estimation). Left: predicted poses of
the largest connected component and predicted room layout. Middle: oracle (ground truth)
poses and predicted room layout. Right: ground truth floorplan with positions of captured
panoramas.

23

Figure 2.9: Additional comparison between SALVe’s performance and an upper bound
(perfect global pose estimation). Each row corresponds to a single floor of a different
home. Left: predicted poses of the largest connected component and predicted room lay-
out. Middle: oracle poses and predicted room layout. Right: ground truth floorplan with
positions of captured panoramas. Colored lines represent W/D/O objects – doors, openings
and windows. 24

Table 2.5: Relative pose classification accuracy on the ZInD test split with different inputs
and architectures. Precision, recall, and mean accuracy are reported. Extreme class im-
balance means that with more expressive model architectures, gains in mean accuracy are
minor, but gains in precision are significant.

MODEL CEILING FLOOR PREC. REC. MACC.
ARCHITECTURE TEXTURE MAP TEXTURE MAP

RESNET-50 X X 0.77 0.91 0.96
RESNET-152 X X 0.85 0.91 0.95
RESNET-152 X 0.70 0.88 0.93
RESNET-152 X 0.84 0.91 0.95

Table 2.6: Additional W/D/O detection accuracy results.

0.5 IoU 0.7 IoU 0.9 IoU
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

DOOR 0.88 0.92 0.90 0.87 0.91 0.89 0.86 0.81 0.84
WINDOW 0.94 0.91 0.92 0.94 0.89 0.91 0.93 0.82 0.87
OPENING 0.79 0.65 0.72 0.78 0.59 0.67 0.72 0.43 0.54

2.10 Additional Analysis of Relative Pose Classification Accuracy

Here we provide a more comprehensive quantitative analysis of the influence of input
modalities and CNN backbone architecture on SALVe’s relative pose classification accu-
racy (referred to in subsection 2.5.5 of the main paper). We compare ceiling-only texture
map input, vs. floor-only texture map input, vs. using both as input.

2.11 Details on Layout Stitching for Floorplan Reconstruction

This section provides additional details about the reconstruction algorithm mentioned in
subsection 2.4.5 and Figure 2.4 of the main paper.

Floorplan reconstruction involves three steps: (1) panorama room grouping, (2) high-
est confidence room contour extraction, and (3) floorplan stitching. Please see Algorithm
Algorithm 1 for implementation details. In Figure 2.10, we demonstrate the process of gen-
erating final room layout using estimated panorama poses grouped by step (1). Comparing
plot (b) to plot (a), we can see that room contour confidence provide useful guidance in
selecting the high confidence contour point among different views. In plot (c), each view-
dependent room contour largely will agree with each other. In the end, we take the union of
different view-dependent room contours to account for the occlusions from each panorama
view.

2.12 Details on W/D/O Detection Evaluation

In subsection 2.5.4 of the main paper, we report W/D/O detection results of our HorizonNet
[117] model at a 70% IoU threshold. For completeness, we provide here an evaluation of
1d IoU at 50%, 70%, and 90% true positive thresholds (see Table 2.6).

25

Algorithm 1 Floorplan Reconstruction for a Connected Component in Pose Graph
Inputs:
{Ii}: A list of the input panorama images in the connected component.
{Ti}: Estimated panorama poses from pose graph, in top-down global 2D coordinates.
{(Ci, σi)}: Estimated room contour points and contour point confidence for panorama
Ii, in top-down global 2D coordinates. (One point per panorama column.)

Output:
Soptfloorplan: Optimized floor plan polygon shape.

Solution:
% Step 1: Group panoramas that come from the same room
Initialize panorama connectivity graph Γ with one node per pano Ii and no edges
for (Ti,Tj) ∈ {Ti} × {Ti} do

IoU ← ComputeContourIoU(Ti, Ci,Tj, Cj)
if IoU > Threshold then

Γ.AddEdge(i, j)
end if

end for
% Each connected component in Γ is a room
G = {Gr, r = 1, ..., Nrooms} ← Γ.GetConnectedComponents()

% Step 2: Extract highest confidence contour for each room
for Gr ∈ G: do

Let optimized room shape Soptr = ∅
for Ii ∈ Gr do
P i = {(P i

j , σ
i
j)} ∀ Ij ∈ Gr, where (P i

j ,σ
i
j) are the projections of (Cj, σj) onto

pano i’s image
In each image column of pano i, choose the most confident contour point from

P i.
Si ← the selected points, projected back into the 2D global coordinates using Ti

end for
Soptr =

⋃
Ii∈Gr polygon(Si)

end for

% Step 3: Floorplan stitching
Soptfloorplan =

⋃Nrooms

l=0 Soptr

26

(a) (b)

(c) (d)

(a)(a) (b)

(c) (d)

(b)

(a) (b)

(c) (d)
(c)

(a) (b)

(c) (d)
(d)

Figure 2.10: Visualization of room shape reconstruction using localized panoramas
grouped by room. (a) Predicted room layout and predicted panorama locations (blue dots).
(b) Predicted room layout with contour confidence (transparency) and predicted panorama
locations (blue dots). (c) Overlay of room contours generated by voting on the highest con-
fidence contour point at each panorama column from each panorama view. The final room
layout is the union of these view-dependent contours of highest confidence. (d) Ground
truth room shape and ground truth panorama positions.

2.13 Layout and W/D/O Failure Cases

Section subsection 2.5.4 of the main paper discusses the accuracy of W/D/O detection.
Here we offer, in Figure 2.11, two examples of some the failure modes of the Layout and
W/D/O model that provides the input to SALVe.

(a) (b)

Figure 2.11: Mistakes made by the joint HorizonNet + W/D/O model. Vertical lines in-
dicate start and end columns for each W/D/O object – window, door, and opening. The
yellow contour indicates the predicted floor-wall boundary, and dots indicate corner pre-
dictions (floor-wall corners in green, and ceiling-wall corners in red). Left and right images
are panoramas across which we seek to match W/D/O objects. Top: A circuit breaker panel
is mistakenly identified as a door (top left), but redundancy still allows matching of the true
garage door. This allows a relative pose hypothesis to be generated between the foyer and
garage panoramas, that have very little visual overlap. Bottom: A false negative window
prediction and inaccurate opening prediction (bottom left) makes matching with the (bot-
tom right) panorama impossible using W/D/O.

27

2.14 Coordinate System Conventions

Figure 2.12 shows the coordinate systems used in our work: panoramic spherical coordinate
system, room Cartesian coordinate system, world-normalized Cartesian coordinate system
(with camera height set to 1.0), and the world-metric coordinate system. These are also the
coordinate conventions used by ZInD3.

y

z

x
! ⋅ sin&

!

!
"

"

#

(a) Panoramic Spherical

y

z

x

(0, 0, -1)

(b) Room Cartesian

z

y

x

(c) World-metric Cartesian

floor plane

camera ray

=1

(d)

floor plane

dx

dy (camera height)
camera ray

(e)

Figure 2.12: Coordinate system conventions.

Scaling to Metric Space. With known camera height, a predicted floor-wall boundary in
pixel space with vertices {(u, v)k}Kk=1 can be mapped to 3D by first converting each vertex
to spherical coordinates, and then to Cartesian coordinates, as follows:

θ =
(
u · 2π

(w − 1)

)
− π, θ ∈ [−π, π]

ϕ = π
(

1− v

(h− 1)

)
− π

2
, ϕ ∈

[
− π

2
,
π

2

]
,

(2.1)

where h and w is the height and width of input image in pixels.
We next obtain ray directions (x, y, z) in Cartesian space by assuming that all points

3ZInD is publicly available under the following license: https://bridgedataoutput.com/zillowterms.

28

https://bridgedataoutput.com/zillowterms

(θ, φ, ρ) lie on the unit sphere (see Figure 2.12d), i.e., ρ = 1, and

x = cos(ϕ) sin(θ)

y = sin(ϕ)

z = cos(ϕ) cos(θ).

(2.2)

Finally, we rescale the length of each ray such that it intersects the ground plane at y = 0,
i.e., the magnitude of its y coordinate is equal to the camera height hc (see Figure 2.12e).
These rescaled ray directions are now coordinates in meters.

2.15 Texture Mapping Procedure

In this section, we discuss the interpolation procedure we use when creating bird’s eye view
(BEV) texture maps, as mentioned in subsection 2.5.2 of the main paper. When generating
the orthographic imagery, the raw signal from pixel values at all backprojected depth map
locations is sparse and insufficient. We rely upon interpolation to generate a dense canvas
from the sparse canvas (see Figure 2.13, top). This interpolation also adds unwanted and
undesirable interpolation artifacts (See Figure 2.13, middle subfigure). We design another
step to identify the regions where the signal was too sparse to interpolate accurately. We
convolve the canvas that is populated with sparse values with a box filter. We zero-out
portions of an interpolated image where the signal is unreliable due to no measurements. If
a K ×K subgrid of an image has no sparse signals within it, and is initialized to a default
value of zero, then convolution of the subgrid with a box filter of all 1’s will be zero. In
short, if the convolved output is zero in any ij cell, then we know that there was no true
support for interpolation in this region, and we should mask out this interpolated value.
We multiply the interpolated image with binary unreliability mask to zero out unreliable
values. Convolution with a large kernel, e.g., 11 × 11 pixels in size on a 500p image, can
be done on the GPU. We populate the canvas from bottom to top.

2.16 Vanishing Point Axis Alignment

Here we provide details about how we refine the hypothesized relative alignment described
in Section 4.2 of the main paper.

To correct minor errors of W/D/O vertex localization, we compute vanishing points
and convert them to a vanishing angle θvp with direction voting from line segments [160].
The vanishing angle θvp is defined as the horizontal angle between left edge of panorama
and the first vanishing point from the left side of the panoramic image. We then refine the
panorama horizontal rotation by aligning the pair of vanishing angles, while maintaining
the distance between the matching W/D/O. The angular adjustment can be represented by:
θcorrection = (θvp,1 − θvp,2) − 2θ1, where θvp,1, θvp,2 are the vanishing angles of panorama
1 and panorama 2, and 2θ1 corresponds to the relative rotation of panorama 1’s pose in the
room Cartesian coordinate system of panorama 2, i.e. of 2T1. We then rotate panorama
1’s room vertices (in panorama 2’s frame) about the W/D/O midpoint, and recompute T̂ =
(x̂, ŷ, θ̂) by least-squares fitting between point sets to obtain T̂corrected = (x̂′, ŷ′, θ̂′) with
fixed wall thickness.

29

Figure 2.13: Visualization of the sparse to dense interpolation scheme. Top: sparse texture
map from mono-depth. Middle: linearly interpolated texture map. Bottom: result after
removing interpolation artifacts.

30

2.17 Details on Global Pose Estimation

Estimated shape &
semantic features

Derived
renderings

Evaluate discrete relative
pose hypotheses

Optimize
pose graph

(a) (b) (c) (d) (e)

Figure 2.14: Starting with sparse panoramas (1-3 per room), in (a) we infer layout and
semantic elements (Windows, Doors, Openings, or W/D/O). From these, in (b) we gen-
erate birds eye view (BEV) renderings of floors and ceilings (ceilings not shown here).
Next, plausible pairwise relative poses are hypothesized based on matching W/D/O. Each
is accepted or rejected (c), by feeding the hypothesis-aligned renderings into our learned
SALVe verifier. This example shows two aligned renderings computed by hypothesizing
that a window can be used to align both shapes Brighter areas indicate overlap regions.
SALVe is trained to evaluate these aggregated overlap regions and output an accept/reject
decision about whether the hypothesized relative pose is plausible. From the plausible
relative poses, a pose graph is created and optimized (d). This allows room layouts to be
positioned in a world coordinate system and fused into a final reconstructed raster floorplan
(e).

Here we provide details on the pose estimation and optimization referred to in Section
4.4 of the main paper.
No optimization (unfiltered spanning tree). For N images, the global motion can be
parameterized by N − 1 motions. In the pose graph G = (V , E), when the graph G has a
single connected component, the spanning tree is a set of edges such that every vertex in
V is reachable from every other vertex in V . For a graph with N vertices, the minimum
spanning tree always has N − 1 edges. However, global pose estimation with this method
is inherently susceptible to error due to contamination by outliers. To describe the method
to compute a spanning tree, we assume the images are randomly ordered. Starting from
the first image as the root, we incrementally include images in sequence, adding each next
image into the current tree at its shortest path from the root.
Pose Graph Optimization. Spanning tree solutions are susceptible to outlier edges in the
tree. In order to exploit redundancy and utilize all the available information in the graph,
we use pose graph optimization.

MAP inference for SLAM problems with Gaussian noise models is equivalent to solv-
ing a nonlinear least squares problem [172]. MAP inference comes down to maximizing

31

the product of all factor graph potentials:

TMAP = arg max
T

∏
(i,j)∈E

φij(Ti,Tj), (2.3)

where φij(Ti,Tj) is a factor graph potential:

φij(Ti,Tj) ∝ exp

{
− 1

2
‖hij(Ti,Tj)− zij‖2

Σij

}
, (2.4)

with hij(Ti, Tj) = Ti
−1 · Tj and zij is the estimated relative pose between images i and j

from the alignment step described earlier.
The following objective function is then optimized using GTSAM:

arg min
T

∑
(i,j)∈E

ρ
(
‖hij(Ti,Tj)− zij‖2

Σij

)
, (2.5)

making updates Ti⊕ξ := Ti ◦exp(ξ̂), where ξ ∈ se(2). Here, ρ(·) is a Huber noise model.
MAP inference over the pose graph with Gaussian noise models [172] is done by max-

imizing the product of all factor graph potentials. We initialize the solution from a greedy
spanning tree and then optimize using GTSAM [116].

We follow the official GTSAM’s PGO implementation example 4.
Once the pose graph is optimized, we use the estimated poses and room layout to create

the final floorplan.

2.18 Ablation Experiments Using Oracle W/D/O Detection

In this section, we perform ablation experiments comparing global pose estimation and
floorplan reconstruction results with estimated W/D/O locations and estimated layout, vs.
a baseline that has access to ground truth W/D/O detections and ground truth layout.
How much worse is performance with predicted W/D/O and predicted layout vs. an-
notated D/W/O and annotated layout? In Table 2.7, we compute an upper bound for the
completeness of our method, by using human-annotated W/D/O and human-annotated lay-
out as input to the system. This measures the ability of the CNN to reason about photomet-
ric signal in a less noisy setting (there is still noise from HoHoNet). Note that annotations
are not perfect.

The results indicate the already-strong localization precision of our system, with roughly
similar camera pose estimation errors (in rotation and translation). We provide no vanishing-
point axis-alignment post-processing to these generated relative poses, which leaves the
ground-truth (GT) based system susceptible to higher rotation errors. However, the trans-
lation error of the model with access to GT W/D/O is still lower on average (22 cm vs. 25
cm).

With GT layout and GT W/D/O, the floorplan IoU is 91% higher – 0.86 median IoU
vs. 0.45 IoU with our predicted poses and layout. The percentage of cameras localized is

4https://github.com/borglab/gtsam/blob/develop/python/gtsam/examples/Pose2SLAMExample.py

32

https://github.com/borglab/gtsam/blob/develop/python/gtsam/examples/Pose2SLAMExample.py

Table 2.7: Ablation experiments on global pose estimation, comparing performance with
estimated W/D/O locations and estimated layout, vs. performance with ground truth
W/D/O locations and ground truth layout (oracle).

INPUT LOCALIZATION % TOUR AVG. ROTATION TOUR AVG. TRANSLATION FLOORPLAN IOU
ERROR (DEG.) ERROR (METERS)

MEAN MEDIAN MEAN MEDIAN MEAN MEDIAN MEAN MEDIAN

PREDICTED WDO + PREDICTED LAYOUT 60.70 57.14 3.73 0.17 0.80 0.25 0.49 0.45
GT WDO + GT LAYOUT 88.58 93.44 5.02 0.21 0.98 0.22 0.78 0.86

Table 2.8: Summary of comparison of our method vs. that of Extremal SfM by Shabani et
al. [122].

Extremal SfM [122] Ours

Computational Complexity Exponential Time O(n!) Polynomial Time O(n2k2)
Panoramas / Room 1 ≥ 1
Panoramas / Floor 3.4 23.2
Floors in Test Set 46 291
Door Configuration Opposite facing surface normals Any configuration
Supported Room Type Small size, Little self-occlusion Any
Home Type Apartment Residential Home
Wall Assumption Manhattan None
Evaluated Error Types Translation Rotation and translation
Input Signal BEV mask BEV (image)
Verifier Type GNN on tree-structured graph CNN on pairwise renderings

also much higher (93.44% vs. 57.14%) than the system without access to GT. These results
are extremely promising, underscoring the significant potential for further improving the
floorplan reconstruction completeness of our system by improving the layout estimation
and W/D/O detection network.

2.19 Comparison with Extremal SfM [122]

In this section, we provide additional comparisons with concurrent work by Shabani et al.
[122] (See Table 2.8 and Table 2.9).
Differences in Assumptions.

• Shabani et al.’s one-panorama-per-room assumption limits the number of door hy-
potheses, as they assume door surface normals must point in opposite directions,
whereas we consider twice as many hypotheses, i.e. when surface normals may also
point in the same direction. The restricted door hypotheses would be analogous to
querying a ZInD oracle for ground truth adjacency, which we do not do.

Differences in Method.

• They do not use openings. Accordingly, the rooms cannot be too large or complex
enough to have significant amounts of self-occlusion.

33

Table 2.9: A more detailed comparison of our input, method, and evaluation vs. those of
Shabani et al. [122].

COMPARISON TYPE EXTREMAL SFM (SHABANI ET AL. [122] OURS

INPUT

• Assumes no room shape overlap in dataset.

• Requires exactly one panorama per room.

• Requires each input panorama to see most of the room, including W/D.
This would be problematic for complex rooms where one panorama sees
only a fraction of the room.

• Demonstrated on apartments.

• Handles any amount of overlap, but not zero overlap.

• Requires one or more panoramas per room.

• Has no requirement on panorama capture locations.

• Evaluated on ZInD with complex room layouts, including open floor-
plans.

METHOD

• Uses W/D alignment, but not openings.

• Uses HorizonNet [117] for layout and separately predicted W/D objects
at test time.

• Uses room topologic information and BEV semantic masks (with no pho-
tometric information) directly as input to GNN.

• Relies on a tree-type graph topology. They verify on all possible global
graph configurations (room snapping combinations) with graph neural
network Conv. MPN [157].

• Runs in exponential time with number of rooms.

• Uses W/D/O alignment to generate pairwise initial pose hypotheses.

• Uses predicted room layout from HorizonNet [117] with joint W/D/O
predictions and wall-floor boundary uncertainty.

• Uses BEV photometric signal in panorama pairwise pose verification.

• Uses global filtering and optimization similar to traditional Global SfM.
Our method is also able to refine coarse panorama poses.

• Runs in polynomial time with number of rooms.

EVALUATION

• Evaluated on a small dataset of 46 apartments. The dataset contains 3.4
panoramas per apartment with all Manhattan room layouts.

• Generates top-5 possible floorplans.

• Localization is considered a success if any of K possible solutions has es-
timated global poses with mean positional error below δ meters. Rotation
error is not considered.

• Evaluated on the test split of ZInD with 291 floorplans of residential
homes. ZInD contains 23.2 panoramas per floorplan with Manhattan and
non-Manhattan room layouts.

• Generates 1 final floorplan.

• Evaluated by per-panorama average pose rotation and translation error,
and localization completeness.

• Exponential time: They rely upon a tree-type graph topology. They verify on all pos-
sible global graph configurations (room snapping combinations) with graph neural
network. Conv MPN [157] machinery (follows up on HouseGAN [173] and House-
GAN++ [174] machinery). This requires exponential time.

Differences in Evaluation.

• Instead of computing a mean error per pano, they just count the successes. This
does not take into account catastrophic failures (see their Figure 9). We have been
evaluating as “you get one shot, and for every pano you try to localize, it will go into
your mean error”. By comparison, they find the minimum subset out of all panos
they localized that are good.

Unfortunately, at the time of our submission their code and dataset used were not pub-
licly available, so a comparison of accuracies on a common dataset is not possible at this
time.

2.20 Analysis of Computational Complexity

We compute over the ZInD train/val/test sets putative estimates of these constants n, k. On
average for each ZInD tour, we find n ≈ 23.2. When evaluatingO(n2k2), we find that each
floor has on average 10795 (mean) and 8188.0 (median) putative alignments.

34

After pruning away impossible hypotheses via width ratios, n is unchanged but k is
reduced, leaving O(n2k2) ≈ 5804.5 (mean) and 3441.0 (median). Although there are just
as many panoramas to match with, we effectively have fewer instances of each W/D/O type
we can feasibly match with (thus reducing k).

This leads to a highly imbalanced classification problem, with negative-to-positive ra-
tios of 18:1 on average, when using predicted layout and predicted W/D/O locations.
Oracle Layout Generator Baseline. For alignments generated from GT W/D/O and
GT layout, we halve the computational complexity by discarding those with penetrated
freespace (an average negative-to-positive ratio of 7:1). For predicted layout, we cannot
prune alignments by freespace penetration heuristics due to arbitrary predicted locations of
openings in large rooms.

2.21 Details on Layout-Only Rasterization Baseline

In Table 2.2 of the main paper, we reported results of a model that has no access to pho-
tometric information as input, but only to rasterized BEV layout. In Figure 2.15, we show
examples of such input.

2.22 Additional Discussion Points

2.22.1 Accuracy vs. Amount of Visual Overlap

Poor accuracy for examples with small support in the dataset (see Figure 2.16) shows the
potential for hard negative mining in future work. Negative examples with high IoU (see
Figure 2.16d, right) are few in the dataset, and present high error (see Figure 2.16a, right).

2.22.2 Additional Details on Evaluation Metrics

To compute both the ground truth mask and estimated binary mask for IoU computation,
we rasterize the scene to a grid resolution of 10×10 centimeters per cell (we found an even
finer resolution did not affect results significantly).

Error Rate in Supervision Generation. Noisy generation of ground truth is susceptible
to false negatives. In other words, the generator falsely assumes that there are no ‘positive’
alignments for certain panorama pairs, due to errors just above the maximum tolerated
rotation or translation thresholds. At inference time, these lead to false positive predictions,
as the model identifies these pairs as positives, conflicting with the ground truth. We find
that for spatially adjacent rooms, no putative ‘positive’ hypothesis is generated for less than
9.67% of panorama pairs, due to layout estimation or W/D/O prediction errors.

2.22.3 Model Learning

Previous work has proven that domain-knowledge of indoor space, such as room intersec-
tions, loop closure, and multi-view alignment, can be helpful in solving the ‘room merge’
problem [14]. On the other hand, visual overlap of floor and ceiling areas from different
texture images provides helpful clues, such as light source reflections, paneling direction

35

(a) Positive example pair 1.

(b) Positive example pair 2.

(c) Negative example pair 1.

(d) Negative example pair 2.

Figure 2.15: Examples of layout-only rasterized input. Each row represents an alignment
pair. Left: rendering for panorama 1. Middle: rendering for panorama 2. Right: blended
images (for visualization only).

36

[0.0-0.1)
[0.1-0.2)

[0.2-0.3)
[0.3-0.4)

[0.4-0.5)
[0.5-0.6)

[0.6-0.7)
[0.7-0.8)

[0.8-0.9)
[0.9-1.0)

Floor-Floor Texture Map IoU

0

20

40

60

80

100

M
ea

n
Ac

cu
ra

cy
 (%

)

[0.0-0.1)
[0.1-0.2)

[0.2-0.3)
[0.3-0.4)

[0.4-0.5)
[0.5-0.6)

[0.6-0.7)
[0.7-0.8)

[0.8-0.9)
[0.9-1.0)

Floor-Floor Texture Map IoU

0

20

40

60

80

100

M
ea

n
Ac

cu
ra

cy
 (%

)

(a) Classification Accuracy vs. Visual Overlap (for GT Posi-
tives vs. Negatives)

[0.0-0.1)
[0.1-0.2)

[0.2-0.3)
[0.3-0.4)

[0.4-0.5)
[0.5-0.6)

[0.6-0.7)
[0.7-0.8)

[0.8-0.9)
[0.9-1.0)

Floor-Floor Texture Map IoU

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ro
ta

tio
n

Er
ro

r (
de

gr
ee

s)

[0.0-0.1)
[0.1-0.2)

[0.2-0.3)
[0.3-0.4)

[0.4-0.5)
[0.5-0.6)

[0.6-0.7)
[0.7-0.8)

[0.8-0.9)
[0.9-1.0)

Floor-Floor Texture Map IoU

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Tr
an

sla
tio

n
Er

ro
r

(b) Rotation and Translation Error vs. Visual Overlap (for GT
Positives)

[0.0-0.1)
[0.1-0.2)

[0.2-0.3)
[0.3-0.4)

[0.4-0.5)
[0.5-0.6)

[0.6-0.7)
[0.7-0.8)

[0.8-0.9)
[0.9-1.0)

Floor-Floor Texture Map IoU

0

20

40

60

80

100

Ro
ta

tio
n

Er
ro

r (
de

gr
ee

s)

[0.0-0.1)
[0.1-0.2)

[0.2-0.3)
[0.3-0.4)

[0.4-0.5)
[0.5-0.6)

[0.6-0.7)
[0.7-0.8)

[0.8-0.9)
[0.9-1.0)

Floor-Floor Texture Map IoU

0

1

2

3

4

Tr
an

sla
tio

n
Er

ro
r

(c) Rotation and Translation Error vs. Visual Overlap (for GT
Negatives)

[0.0-0.1)
[0.1-0.2)

[0.2-0.3)
[0.3-0.4)

[0.4-0.5)
[0.5-0.6)

[0.6-0.7)
[0.7-0.8)

[0.8-0.9)
[0.9-1.0)

Floor-Floor Texture Map IoU

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pe
rc

en
t o

f P
os

iti
ve

 Im
ag

e
Pa

irs

[0.0-0.1)
[0.1-0.2)

[0.2-0.3)
[0.3-0.4)

[0.4-0.5)
[0.5-0.6)

[0.6-0.7)
[0.7-0.8)

[0.8-0.9)
[0.9-1.0)

Floor-Floor Texture Map IoU

0

5

10

15

20

25

Pe
rc

en
t o

f N
eg

at
iv

e
Im

ag
e

Pa
irs

(d) Visual Overlap Distribution in ZinD (for GT Positives vs.
Negatives)

Figure 2.16: (Row 1) Classification accuracy vs. overlap for the GT positive class only
(left) and negative class only (right) for ResNet-152 model. (Row 2) Relative pose ro-
tation error (left) and translation (right) vs. amount of visual overlap for GT positive
examples. (Row 3) Relative pose rotation error (left) and translation (right) vs. amount of
visual overlap for GT negative examples. (Row 4) Distribution of visual overlap (IoU) over
rendered buildings for positive pairs (left) and negative pairs (right) from SE(2) alignments
generated from predicted W/D/O’s.

37

of wood flooring, and shared ceiling features, to verify panorama registration [162]. We
extract undistorted floor and ceiling orthographic views from each panorama using inferred
depth and register each view using an estimated W/D/O alignment hypothesis. While in-
ferred depth signal alone suffers from inaccuracies at very close or far range and near
reflective objects such as mirrors, the orthographic views still contain small distortion and
therefore provides a strong signal for alignment verification. We train a model to implic-
itly verify the aligned texture signals (such as light source reflections, paneling direction
of wood flooring, and shared ceiling features), as well as model other priors on room adja-
cency, such as the fact that bathrooms and bedrooms are often adjacent.

While ceiling features on a mosaiced ceiling image have been used for robot localiza-
tion for at least two decades [162], success of registration using traditional explicit image-
based matching is highly dependent on significant appearance similarity. This is typically
not the case for our work, due to the large baselines and potentially very different times of
capture.

Aligned orthographic views can help identify shared floor texture around room open-
ings, identifying common objects (i.e. refrigerators), or known priors on room adjacency,
such as the fact that bathrooms and bedrooms are often adjacent. axis-alignment of walls
between two layouts. Because floorplan adjacency is governed by strong priors, such as
primary bedrooms are attached to primary bathrooms, such signals can be learned.

Whereas previous works have employed domain-knowledge to manually define features
for room-merge costs to employ in ranking [14], we set out to learn such features from data.
Previous work has defined costs that aim to minimize room intersections, maximize loop
closure, maximize multi-view alignment of semantic elements, and produce the most axis-
aligned floorplans [14]. However, some of these costs are only applicable if an annotator
can identify which panoramas were captured in different rooms, as layouts within the same
room should instead maximize room intersection, while those captured in separate rooms
should minimize room intersection. Each window from panorama Ia should reproject onto
a window in panorama Ib only if the panoramas were captured in the same room, which is
an unknown latent variable. IoU should be high between the two overlaid room-layouts;
however, this is not true if they are in separate rooms (cross-room). If, on the other hand,
we knew a “same-room” label, then layout-IoU would be useful during localization.
Available Signals for Learning Priors. Many possible complementary signals can be em-
ployed in the reconstruction problem. The 360◦ image suffers from significant distortion,
while inferred depth suffers from inaccuracies at very close or far range and near reflective
objects such as mirrors. Taken together, however, undistorted texture can be extracted in
an orthographic manner. As the floor alone can have highly homogeneous texture or varied
lighting, the ceiling can also provide helpful clues. Registration of inferred layout alone,
with consideration of the image content, can lead to implausible arrangements. No single
signal is sufficient.

Human annotators use a variety of different cues to solve the merge task, most of them
grounded in visual features within the image. For example, they often rely upon identifying
shared floor texture around room openings, identifying common objects (i.e. refrigerators),
or known priors on room adjacency, such as the fact that bathrooms and bedrooms are
often adjacent. axis-alignment of walls between two layouts. Because floorplan adjacency
is governed by strong priors, such as primary bedrooms are attached to primary bathrooms,

38

such signals can be learned. Additional such relationships include hallway-to-bedroom
adjacency.

2.23 Additional Examples of Illumination Changes

In Figure 2.17, we provide an example of extreme illumination changes in ZInD [14], which
prevent the use of classical image alignment algorithms for BEV image registration.

2.24 Ethical/Privacy/Transparency/Fairness/Social Impact Concerns

Floor plan reconstruction, in general, could potentially lead to privacy issues. However,
schematic floorplans are able to abstract away details of the real interior space, thereby
revealing the layout and functionality of a home while hiding personal information (PI) and
personally identifiable information (PII) information from the images used to reconstruct
it. In other words, we can build the floorplan from 360 panos and then immediately use
the floorplan as a medium (to convey the space), while suffering from fewer privacy issues
compared to releasing all the 360 images used to create it.

39

(a) Input panorama pair.

(b) Orthographic floor texture maps, with an extreme illumination change.

(c) Orthographic ceiling texture maps.

Figure 2.17: Example of an extreme illumination change, as the carpet color appears to
shift from brown to grey (middle), and ceiling from warm yellow to light blue (bottom).

40

CHAPTER 3
CREATING OUTDOOR 3D GEOMETRIC MAPS VIA GLOBAL SFM

In this chapter, we transition from the creation of 2d geometric maps to the construction of
3d geometric maps, via Structure-from-Motion. We first analyze the performance of recent
“deep front-ends” for SfM and SLAM by comparing them with classical front-ends on two
datasets – HPSequences and YFCC. Afterwards, we put the best-performing methods to
the test on several real-world “in-the-wild” datasets by using them in a new global SfM
system that we design, called GTSFM.

3.0.1 Deep Front-Ends

In the first portion of this chapter, we introduce comprehensive benchmarks for the analysis
of “Deep Front-Ends.” We design a novel framework for benchmarking sparse local feature
matching and we provide the most comprehensive study to date of such methods. We focus
on methods suitable for the “front-end” of 3D computer vision applications and exhaus-
tively test over 800 combinations of detection, matching, and verification methods. We
standardize evaluation metrics from the literature and provide a uniform way of evaluating
varied approaches to learning keypoint detectors, encoding feature descriptors, and outlier
filtering with convolutional neural networks (CNNs). While homography-based datasets
are preferred in the literature for detector and descriptor evaluation because of their ground
truth pixel-to-pixel mappings, such datasets are not representative of the real 3d world.
Accordingly, we experiment not only with a homography dataset (HP-Sequences) but also
with a diverse wide-baseline stereo dataset (YFCC-100M) and discover unusual combi-
nations of methods that are extremely effective. We develop new metrics based around
the needs of practitioners and find, surprisingly, that many recent joint detector-descriptor
methods are not competitive.

3.0.2 GTSFM

In the latter portion of this chapter, we introduce the Georgia Tech Structure from Mo-
tion (GTSFM) system, a distributed, global SfM system that incorporates state-of-the-art
practices from dozens of recent works in SfM. We demonstrate the several new “Deep
Front-Ends” increase the signal-to-noise ratio in Global SfM over classical methods, but
most do not permit a signal-to-noise ratio sufficient for challenging large-scale datasets.

3.1 Introduction

Local feature matching systems remain a fundamental building block for camera calibra-
tion [175, 176], panorama stitching [177], image retrieval [178], visual localization [179],
visual SLAM [180], and wide-baseline stereo applications such as Structure from Motion
(SfM) [181, 182, 183]. These systems generally consist of three main stages: (1) identi-
fying salient points (“features”) inside each image to track, and (2) finding potential cor-

41

0 10 20 30 40 50
FPS

0.0

0.1

0.2

0.3

0.4

Us
ab

le
 Im

ag
e

Fr
ac

tio
n

DoG+ConvOpt+OA-Net
DoG+RootSIFT+OA-Net
DoG+OpenUCN+OA-Net
DoG+SIFTNet+OA-Net
Key.Net+SIFTNet+OA-Net
BRISK+OA-Net
SuperPoint+OA-Net
BRISK+EigFree

BRISK+LearnedCorr
BRISK+N^3Net
ORB+OA-Net
ORB+LearnedCorr
BRIEF+OA-Net
ORB+N^3Net
ORB+LMedS
ORB+EigFree

Figure 3.1: Competing objectives for a front-end – speed vs. accuracy – suggest a Pareto
front. We illustrate several top-performing methods within each frame-rate range, and mark
the rest with light gray dots. Accuracy is measured by the Usable Image Fraction (UIF)
for the Essential matrix on YFCC-100M.

respondences between these salient points across different images (in order to track them),
and (3) identifying and discarding incorrect correspondences.

We refer to these three steps as D, M, and V, i.e. (1) Feature Detection, (2) Fea-
ture Description and Matching, and (3) Putative Correspondence Verification (See Figure
Figure 3.2). In short, the D stage provides detections, the M stage provides putative corre-
spondences, and the V stage provides verified correspondences. When considering SLAM
or SfM “front-ends”, one could argue that descriptor matching should be viewed as a sep-
arate stage to descriptor extraction. We recognize this viewpoint, but in this work, we will
associate the descriptor algorithm with descriptor matching as a single stage, rather than
considering them in isolation. Specific matching criteria have almost always been associ-
ated with a descriptor; SIFT uses a one-way KNN ratio test [22], RootSIFT is SIFT with
a Hellinger kernel [28]. Binary descriptors such as BRISK are to be matched using Ham-
ming distance [54]. Convnet-based descriptors follow a similar protocol; D2-Net [43] uses
a reciprocity-based matching test and GLAMPoints [87] uses the ratio test.

In this work, we perform a comprehensive evaluation of subsystems through five ma-
jor experiments: feature detection on a wide-baseline dataset (wD) and homography dataset
(hD), feature matching on a wide-baseline dataset (wDM) and homography datasets (hDM),
and combined detection, matching, and verification on a wide-baseline dataset (wDMV).
In addition, we take this opportunity to standardize several metrics, and also discover cor-
relations between intermediate performance measures and final error metrics. Surprisingly,
we find that a classical detector, DoG [22], provides the most effective final system per-
formance. Many deep detectors optimized for intermediate metrics such as detector re-
peatability cannot compete with DoG on the usability of the system for epipolar geometry
estimation. We find that although detector and descriptor implementations are abundant,
no standard, accepted evaluation framework is readily found. In fact, most works evalu-
ate their method with their own definitions of metrics and private implementations. For
example, the proper definition of the repeatability rate and matching score is not agreed

42

Figure 3.2: We graphically describe our sparse local feature matching framework that ac-
cepts either a pair of different images or patches. We denote the stages as DMV: Detection-
Description and Matching- Verification.

upon in current works. We believe the lack of a standard evaluation protocol for modern
feature-matching implementations is a significant hindrance to comparing and understand-
ing their relative performance. Practically every state-of-the-art feature matching method
uses a different set of metrics to gauge its quality (see Appendix).

In recent literature, a large number of new data-driven methods have been introduced
for individual stages of a DMV system, but the optimal pairing of detector, descriptor, and
verifier is poorly understood. Advances in convnet-based detectors and convnet-based de-
scriptors have been measured without regard to the final verification stage, focusing mainly
on the repeatability and matching precision of the detector-descriptor pair. This is a limited
view, as epipolar geometry provides simple techniques to improve the purity of putative
correspondences. Advances in convnet-based verifiers have been focused on verifying spe-
cific algorithms, such as SIFT, rather than on benefiting all-purpose system-performance.
This is also a limited view, as the verifier may be designed and trained for a non-optimal
detector-descriptor pair.

We tackle this problem with a combinatorial search for the best-performing feature
matching system, exhaustively evaluating 808 possible combinations. Accordingly, we de-
velop an notion of “final error” – system-based performance measures over a proxy task that
we believe benefits a variety of downstream applications – numerous completely outlier-
free verified matches. We do not directly measure SfM reconstruction error or visual local-
ization performance.

In concurrent work, Jin et al. [104] also present a benchmark to measure the impact of
pairing detectors, descriptors, and verifiers according to downstream performance. We have
a much more comprehensive study, so we identify a different pipeline as most performant,
but in line with their findings.

In our experience, SLAM/SfM practitioners often use the following rule of thumb: for
each image pair, a front-end should provide five times as many correct correspondences
as the minimal inlier set, and there should be zero outliers. The reasons are threefold: (1)
least square residuals on outliers will cause significant problems for downstream bundle
adjustment, thus purity is essential; (3) a minimal set alone of correspondences may provide
insufficient support to RANSAC; (3) there is measurement noise in the image, so a minimal
set is still too noisy for estimation in practice. For Essential matrix estimation, these criteria
boil down to two measurable quantities that foretell the usability of the system for SfM: (1)
after DM, the system should embed at least 5 × 5 = 25 correct correspondences in the
putatives; (2) after DMV, the system should provide at least 25 inliers per image pair, with
zero outliers.

We provide three lessons from our analysis, one about D, one about DM, one about

43

DMV:

• D: Highest performance on Repeatability doesn’t directly correlate to highest DMV
performance. Surprisingly, classical detectors take 8 of the top 9 ranks according to
usability of the front-end system.

• M: We find no overlap in the top-15 methods by inlier ratio and the top-15 meth-
ods according to front-end system usability for SfM. In addition, classical and deep
descriptors have surprising parity for system usability.

• DMV: If numerous image pairs usable for Essential matrix estimation is desired,
DoG+ConvOpt+OA-Net, DoG+RootSIFT+OA-Net appear to be two of the best cur-
rent options.

Our contributions are as follows:

• We perform a comprehensive evaluation of subsystems through five major experi-
ments, placing performance on homography and wide-baseline stereo datasets on a
uniform footing through our empirical study.

• We introduce two new metrics for downstream performance suited for practitioner’s
needs – the Usable Image Fraction Upper Bound and Usable Image Fraction.

• We perform the most exhaustive study to date of the optimal pairing of methods
for a feature matching system. As part of an exhaustive combinatorial search, we
discover a novel feature matching system – DoG+ConvOpt+OA-Net that can provide
a guaranteed 25 correspondences with zero outliers on 42% of our sampled image
pairs from 72 scenes in YFCC-100M.

3.2 Related Work

As we described above, SFM front-ends involve DMV: combined detection (D), descriptor
matching (M), and verification (V). Due to the extremely extensive literature, we refer the
reader to the Appendix for a survey where we describe the following methods in more
detail.

Detection There has been a significant amount of progress in learning feature detectors
from data but these methods are only evaluated only on homography datasets. Local feature
detectors date back 40 years [184]. Originally hand-crafted [185, 186, 187, 59, 58, 22,
32, 89] feature detectors were eventually learned from data [188, 52, 73] and in the recent
literature are all convnet-based [90, 95, 27, 42, 53, 98, 77, 189, 72, 87, 93, 33, 31, 93]. Over
the years, many have worked to compare the relative performance of different detectors and
place them on a uniform footing. In 2000, Schmid [190] presented an evaluation framework
for interest point detectors to measure their repeatability and in 2004 [61] and 2005 [63]
Mikolajczyk et al. presented benchmarks for the D stage. More recently, Lenc and Vedaldi
[191] presented an empirical study of feature detectors in 2018.

44

Matching (including Descriptors) Similarly, deep learning has impacted descriptors
and matching, but such methods are only evaluated on homography or patch-based datasets,
which are not fully general to the 3d world. Local feature descriptors were also originally
hand-crafted [184, 192, 21, 193, 22, 32, 28, 62, 86, 38, 54, 75, 194] then learned from
data [51, 92, 91, 75, 78], and in the recent literature are also completely convnet-based [50,
47, 96, 96, 79, 40, 30, 64, 84, 95, 68, 42, 67, 49, 39, 43, 57, 72, 85, 44]. Several bench-
marks for measuring DM have been proposed: two in 2005 by Mikolajczyk et al. [62]
[63], one in 2012 by Heinly et al. [195] focused on the use of binary descriptors. Several
benchmarks have measured the M stage without considering the D stage, such as two patch-
based datasets: UBCPatches [91, 37] and HPatches [196]. Indeed, patch-level datasets led
to seminal breakthroughs [91] for the field, as they enabled the earliest learning-based
approaches, which now represent the dominant paradigm. While correctly matching or re-
trieving patches is certainly helpful, it discards the impact of the the detector, which plays
a vital role in a DMV system. In addition, most modern methods no longer operate on
patch input, but rather on image-input. For example, UCN [40] [197], SuperPoint [42],
D2-Net [43], Key.Net [31] and R2D2 [72] accept full-images to their fully-convolutional
backbones. Accordingly, we believe the current focus of benchmarks involving the M
stage should measure image-level metrics image-level datasets, such as HP-Sequences or
YFCC-100M.

Deep Matching [76]

DMV Systems that use combined local feature detection, descriptor matching and geo-
metric verification (DMV) for wide-baseline stereo date back to [198, 88] and were used
in the well-known PhotoTourism project [199]. Geometric verification using robust esti-
mation techniques [169, 200, 201] has been replaced with deep putative correspondence
verifiers [35, 94, 70, 41, 102, 202, 69, 97, 36]. The jury is still out on deep architectures for
the verification stage. Schonberger et al. [203] performed an end-to-end DMV evaluation
specifically for SfM and measured the reconstruction quality by reprojection error. Their
finding was surprising – advances in raw matching performance from learned descriptors
did not necessarily lead to superior reconstruction results.

3.3 Detection (D) Benchmark

In this section, we discuss the “D” stage of our Deep Front-Ends benchmark, corresponding
to feature detection. We define the task, evaluation metrics, and present an analysis of
experimental results.
Problem Description Given two images of a scene, the D-stage task is to identify numer-
ous small 2d features in both images that are equivariant to viewpoint [63, 53, 98, 42, 204],
invariant to photometric transformations [21, 90], and are highly spatially distributed over
the image [205, 206, 26, 87].
Datasets Because wide-baseline stereo represents many applications in the 3d world and
homography datasets are the de facto choice in the literature, we select datasets that cover
both regimes. For wide-baseline stereo, we select the test split of YFCC-100M [207, 208];

45

since it provides relative poses between each image pair as would be obtained by Structure
from Motion or visual SLAM, it can be employed for the D, DM, and DMV benchmarks.
While several other suitable datasets exist, such as Wilson and Snavely’s 1dSfM (e.g. Ro-
man Forum) [209], we note that YFCC-100M has seen adoption in several works [94, 197,
69, 97]. YFCC-100M has significant diversity of scenes throughout the world (72 scenes)
and large size: the visibility graph of several scenes exceeds 10,000 edges with at least 100
covisible keypoints per image pair. However, due to its large size, we are forced to reduce
the size of the evaluation split; we randomly sampling 5 image pairs from the edges of the
visibility graph of each scene (with at least 100 covisible keypoints). For each of YFCC-
100M’s 72 scenes, we take these five image pairs from the scene’s test split, providing 360
image pairs in total.
Methods and Evaluation We evaluate nine method detector-only methods and also scrape
the detections from 10 joint detector-descriptors methods, leading to an evaluation of 19
methods (see Column 1 of Table 3.3). In order to measure the D-stage, we use keypoint
distance-based repeatability between each image pair, i.e. the ratio of corresponding key-
points and covisible keypoints [190, 42, 87], with a 3 pixel true positive threshold. Because
(YFCC-100M) does not provide per-keypoint covisibility information, we use two slightly
different repeatability metrics for our wide-baseline stereo dataset (YFCC-100M) and ho-
mography dataset (HP-Sequences); while for HP-Sequences we set the ratio’s denominator
to the number of covisible-keypoints, for YFCC-100M we use the number of all keypoints.
We refer the reader to the Appendix for additional evaluation details. As many of noted
[53, 191], repeatability tends to increase with additional feature detections; accordingly, we
sort keypoints by confidence and compute repeatability with cardinality thresholds of 150,
300, 600, 1200, 2400 keypoints, in accordance with [77, 72]. Due to the very large size of
YFCC-100M, we randomly sample five image pairs from each of the 72 scenes for evalu-
ation. In order to accelerate computation, we resize YFCC-100M images from an original
average resolution of 444 × 625 px to 267 × 375 px, preserving aspect ratio. We resize
HP-Sequences images from an original average resolution of 768 × 1078 px to 307 × 431
px, also preserving aspect ratio.

Analysis

We present a graphical representation of results on both datasets in Figure 3.3; due to space
constraints we provide the two full tables in the Appendix. We also provide comparisons of
methods according to feedforward runtime in the Appendix. We note that the top-achieving
method differs among homography datasets and wide-baseline stereo datasets: SuperPoint
and FAST for illumination-invariance on homography, Harris and FAST for viewpoint-
invariance on homography; D2-Net performs poorly on homography and well on wide-
base line; SuperPoint follows the opposite trend. Notably, the FAST detector appears to
perform well in both regimes. R2D2 and LF-Net have a rapid increase in repeatability as
the number of keypoints increase.

46

150 300 600 1200 2400
Keypoints (log scale)

0.1

0.2

0.3

0.4

0.5

0.6

Re
pe

at
ab

ilit
y

(a) HPSequences: Viewpoint

BRIEF
BRISK
ContextDesc
D2-Net

FAST
GLAMPoints
Harris
Harris-Laplace

HarrisNet
KAZE
Key.Net
LF-Net

LIFT
MSER
ORB
R2D2

SIFT
SuperPoint
SURF

150 300 600 1200 2400
Keypoints (log scale)

0.2

0.3

0.4

0.5

0.6

Re
pe

at
ab

ilit
y

(b) HPSequences: Illumination

150 300 600 1200 2400
Keypoints (log scale)

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Re
pe

at
ab

ilit
y

(c) YFCC: Test

Figure 3.3: D-stage results depicting repeatability as a function of keypoint budget. Top:
hD, on the two splits of a homography dataset (HP-Sequences), one with illumination-
variant image sequences, and the other with viewpoint-variant image sequences. Below:
wD, on the test split of a wide-baseline stereo dataset (YFCC-100M).

47

DETECTORS DESCRIPTORS MATCHERS VERIFIERS

HARRIS [186], MSER [58] SIFT DESC. [21, 22] ONE WAY W/O RATIO TEST W/O BIJECTION RANSAC [169], LMEDS [200]
HARRIS-LAPLACE [59, 61], FAST [73] PCA-SIFT DESC. [51], SURF DESC. [32] ONE WAY W/O RATIO TEST W/ BIJECTION DEEP FUNDAMENTAL MATRIX [70]

DOG [22], ROOTSIFT DESC. [28], CONVOPT [78] ONE WAY W/ RATIO TEST W/O BIJECTION LEARNEDCORR [94], MLESAC [201]
DDET/COVDET [53], KEY.NET [31] DEEPDESC [79], BRIEF [38] ONE WAY W/ RATIO TEST W/ BIJECTION EIG-FREE [41], N3 NET [69]

GLAMPOINTS [87], TFEAT [30], UCN [40, 197] TWO WAY W/O RATIO TEST ORDER-AWARE NET [97]
HARRISNET (OURS) SPREAD-OUT HARDNET [99] TWO WAY W/ RATIO TEST NG-RANSAC [36]

SIFTNET (OURS), BRISK DESC. [54] SUPERGLUE [76] combinations of Deep + classical
ORB DESC. [75]

JOINT DETECTOR-DESCRIPTORS

BRISK [54], CONTEXTDESC [57] D2-NET [43], KAZE [25], LF-NET [68],
ORB [75], R2D2 [72], ROOTSIFT [28] SIFT [22], IMIPS [39],

PCA-SIFT DESC. [51], LIFT-TF [95], SUPERPOINT [42], SURF [32]

Table 3.1: “Front End” Search Space. Open-source methods of each group are listed
in chronological order. All classical front-end implementations (not deep nets) are from
OpenCV or VLFeat, all dating to 2014 or earlier. Methods that lacked publicly available
models and source code at the time of experiments included: Quad-Networks [77], Self-
Improving Visual Odometry [210], Epipolar Adaptation [93], KeyPointNet + IO-Net [83],
Reinforced SuperPoint [33] (five detectors), and the SuperGlue matcher (Source code has
since been made publicly available for SuperGlue).

[76].

3.4 Detection and Matching (DM) Benchmark

In this section, we present the combinatorial DM stage of our Deep Front-Ends benchmark,
corresponding to descriptor description and matching (M) using detections from the (D)
stage. We define the problem and discuss the choice of suitable evaluation metrics and
evaluation datasets. For the DM benchmark, we use the same splits of YFCC-100M and
HP-Sequences as employed in the D benchmark.
Problem Description and Evaluation The DM task is defined as, given an image pair,
detect features, form a fixed dimensional descriptor vector to describe each feature, and
then match their descriptors, providing putative correspondences. We evaluate four metrics
(described below: Inlier Ratio, PMR, MMA-AUC, UIF-LB) on both homography (HP-
Sequences) and wide-baseline (YFCC-100M) datasets, but can compute another two met-
rics (MCovFrac and M-Score) only on the homography dataset due to the lack of per-point
co-visibility information on YFCC-100M [207], which these two additional metrics re-
quire.
Inlier Ratio Measures the precision of matching and the descriptor’s discriminative ability
as (#Correct Matches/#Putative Matches). We define correct matches (true positives) as
putative correspondences with 3 px deviation from a pixel-pixel mapping (homography)
[62] or 3 px from a pixel-to-line mapping (symmetric distance from the epipolar line) [40].
The Inlier Ratio has significant performance consequences for robust estimation modules
that use feature matches, such as RANSAC, where execution times increase exponentially
as the inlier ratio decreases [195].
Putative Match Ratio (PMR) PMR is the quantity of features useful for generating matches:
(#Putative Matches/#Covisible Features Proposed) [195].
Matching Score (M-Score) [63, 195, 43, 31, 95] The matching-score is the product of
PMR and the Inlier Ratio [195]. In other words, it is the ratio of ground-truth correspon-

48

dences that can be recovered by the two detection-description stages, over the number of
features proposed by the detector in the shared viewpoint region, per LIFT [95].
Mean Matching Accuracy Area-Under-the-Curve (MMA-AUC) Since the 2.5 or 3 pixel
true positive (TP) threshold in Inlier Ratio and M-Score is arbitrary, MMA instead evalu-
ates the Inlier Ratio (matching-precision) at different thresholds from 1 to 10 px [43, 72],
averaged over many image pairs. We define MMA-AUC as the area under this curve, pro-
viding a single scalar with information about how inlier ratios fluctuate with the choice of
TP threshold.
Matching Coverage Fraction (MCovFrac) Measures the coverage of the covisible por-
tion of an image by correctly matched key points. A coverage mask is generated from true
positive keypoints, each one adding a disk of fixed radius (25px) [26, 87]. Because YFCC
does not provide co-visibility information, we report MCovFrac only on HP-Sequences.
Usable Image Fraction Upper Bound (UIF-UB) Given nc correct correspondences em-
bedded in np putative correspondences for a single image pair, and given the size of a
minimal inlier set nmi, the feasible usability of this i’th image is ζi = 1{nc ≥ 5 · nmi}. In
other words, an accepted practice is to require 5x correct correspondences as the number
of minimal correspondences. Thus, an upper bound on the verifier’s performance (given
a perfect verifier) is formed by averaging ζi over nD images in the dataset D: 1/nD

∑
i ζi.

For a homography, this is the number of image pairs that have at least 4 × 5 = 20 correct
correspondences retrieved by the DM stages; for an Essential matrix [176], 5 × 5 = 25,
and for a Fundamental matrix, 8× 5 = 40.
Combinatorial Search Problem for Methods Our combinatorial search space for DM
consists of 9 detectors, 10 descriptors, 11 detector-descriptors (see the first two columns of
Table 3.3). This provides 9×10 = 90 pairwise combinations by combining a detector-only
and descriptor-only method, and another 11 from joint detector-descriptors. In practice, a
novel pair is formed by using a detector-only pair to detect m keypoints, which are then
passed to the descriptor-only method for description. For many models, the detector and
descriptor are not advertised as separable, e.g. SIFT [22] and SURF [32], but can be sepa-
rated in practice, e.g. by using Harris keypoints with the SIFT descriptor.

Of course, there is varied input for different methods at intermediate stages. For exam-
ple, we note that several descriptor-only methods accept as input entire images, e.g. UCN
[40] and SIFTNet (see Appendix). Therefore, in such scenarios, when a detector passes m
keypoints to a descriptor-only method, instead of feeding in local patches, an entire image
is passed to the descriptor-method, and then embeddings are selected at all m keypoints.
When the descriptor requires a scale or orientation which the detector cannot provide, we
use a default value (see Appendix).

We aim to preserve the fidelity of the original authors’ implementation (including pre-
scribed matching strategy) as much as possible; additional details about the matching
schemes employed are provided in the Appendix.

Results

We present the M-stage results on a homography dataset (HP-Sequences) in Figure 3.4 and
M-stage results on a wide-baseline stereo dataset (YFCC-100M) in Figure 3.5. We pro-
vide a comparison of relative feedforward runtimes for different methods in the Appendix.

49

Across both datasets, we find a number of common trends. First we discover that the inlier
ratio (matching-precision) is directly correlated to MMA AUC, intuitive because the inlier
ratio is a single point on the MMA curve. Second, surprisingly, we find no correlation
between UIF-UB and the inlier ratio. However, when examining usability, we discover that
even if the inlier ratio is low, a high PMR can drive up the UIF-UB metric (see Figure 3.5).
When PMR is high, a larger amount of feature detections are converted to matches, provid-
ing a balancing force even if they are incorrect.

In the homography setting of the M-stage, we make a number of discoveries. First,
viewpoint-variant images are more challenging than illumination-variant images for all
detector-descriptor pairs. Since Inlier Ratio is more interpretative, we report Inlier Ratio in
Figure 3.4. We find that the usability of the top methods are nearly identical: A classical
detector like FAST/Harris combined with OpenUCN/SpreadOut HardNet achieve greater
than 97% usability. Joint methods like R2D2 and ConvOpt make an appearance in top-10
ranks by usability in the homograpy dataset, unlike their absence in wide base line methods.
No other metric demonstrates a high correlation with UIF-UB: low PMR is bad but high
PMR does not guarantee a good usability. Methods like SuperPoint and MSER+SURF have
high inlier ratio but lower usability. Matching Coverage Fraction surprisingly turns out to
be the most correlated with usability.

In the wide-baseline setting of the M-stage, we make a number of discoveries. Notably,
SIFT provides the highest inlier ratio of any method, outperforming the 2nd-ranked method
HarrisNet+TFeat by 11% (73% vs. 62%). When comparing usability of the method for
Essential Matrix or Fundamental Matrix estimation, we discover that the ability to estimate
one matrix is nearly identical with the other. Accordingly, we show only E-Matrix usability
in Figure 3.5. FAST+OpenUCN provides the most usability, outperforming ContextDesc
by 2% (100% vs. 98%). No single detector “wins” for usability (UIF-UB), and classical
and deep methods perform about as well; FAST, Harris, ContextDesc, and SURF perform
similarly on UIF-UB.

3.5 Detection, Matching, and Verification (DMV) Benchmark

In this section, we discuss the DMV system-wide benchmark, corresponding to all three
combined front-end stages. We define the task, evaluation metrics, and present experi-
mental results. This final benchmark measures the quality of the entire feature-matching
system. An end-to-end evaluation of front-ends is important because feature detectors in
and of themselves have little utility. Feature descriptors do have have utility, for example as
bags of visual word (BoW) elements for applications such as image database retrieval and
cross-time localization [179]. Most 3D computer vision applications cannot afford high
descriptor outlier rates and thus require all three of the DMV phases.
Problem Description The DMV task is defined as, given an image pair, detect features,
match their descriptors, verify the putative correspondences by providing binary labels, and
present the final, verified correspondences. In other words, the verification stage shatters
the putative correspondences into two sets – inliers and outliers – by performing binary
classification. If the user cannot provide such binary labels, but can only estimate an E or
F matrix, this is also acceptable, as we will immediately classify each putative correspon-
dence according to a fixed epipolar constraint violation threshold ρ. Indeed, after DMV,

50

one should be able to assume the verified correspondences are practically noise-free and
directly employ them in the Normalized 8-Point [175] or 5-Point [176] algorithms, with-
out any further filtering. After DMV, the “front-end” is considered completed, and the
“back-end” [211] begins its work.
Method Combinations We present a large combinatorial search problem for DMV: iden-
tifying the three most effective detectors, descriptors, and verification algorithms to use
together for a specific end-to-end task. Our combinatorial search space for DMV consists
of 808 possible (detector, descriptor, verifier) triplet combinations: (9 × 10) + 11 = 101
from the DM stage, and and 8 verifiers (see Table Table 3.3, giving (90 + 11)× 8 = 808 ,
which represents a non-trivial amount of evaluation computation. Several verification (V)
methods require specific side information [70, 102] from specific detectors and cannot be
paired with arbitrary detection-descriptor pairs. Accordingly, we exclude them from our
benchmark. We discuss evaluation and implementation details in the Appendix.
Datasets In the DMV benchmark, we exclusively use the YFCC-100M dataset. Homog-
raphy based datasets are not suitable for such a verification benchmark for a number of
reasons, mainly because the scenes are not representative of the real 3d world and while
at least two deep homography estimation models [212, 213] have been proposed, the pre-
trained models are not publicly available. In addition, several deep verifiers [94, 69] re-
quire knowledge of camera intrinsics for normalization of image coordinates, which HP-
Sequences cannot provide.
Evaluation We define a new metric, the Usable Image Fraction (UIF). Significantly more
stringent than its upper-bound, UIF-UB, the UIF states that for each image pair, a method
must generate at least 5x the number of minimal correspondences, with 100% purity. The
UIF is the fraction of image pairs in the dataset that are “usable” for E- or F-matrix estima-
tion. Others have defined metrics to measure F-matrix estimation using virtual points [70];
however, we find that these metrics are less interpretable for practitioners than the UIF.

Analysis

51

(a) Top 10, sorted by UIF-UB (forH), and other representative entries

(b) Top 10, Sorted by Inlier Ratio

Figure 3.4: Homography DM (hDM) results on HP-Sequences. (top) From left-to-right,
we show the top-10 performers on usability for homography estimation (UIF-UB), and
other representative entries. (bottom) Top-10 performers according to Inlier Ratio. We
note that viewpoint-variant sequences are more challenging than illumination-variant se-
quences. We provide the full table in the Appendix.

52

Figure 3.5: Wide-baseline stereo descriptor matching (wDM) results (YFCC-100M). From
left to right, the 20 top-ranking methods (of 102 methods) are presented, (top) sorted ac-
cording to their E-Matrix estimation usability, or (bottom) according to inlier ratio. It
appears that high PMR may help boost E-Matrix estimation usability. We provide the full
table in the Appendix.

53

DoG+ConvOpt BRISK Key.Net+SpreadOutHardNet SIFT FAST+SpreadOutHardNet DoG+OpenUCN
+OA-Net +OA-Net +OA-Net +LMedS +NG-RANSAC +RANSAC
42.22% 25.56% 25.28% 24.44% 7.50% 0.00%

Figure 3.6: Performance of six DMV systems on YFCC-100M. Rows 1-2: Grand Place
Brussels, Rows 3-4: Paris Opera, Rows 5-6: Florence Cathedral Dome Interior, Rows
7-8: Pantheon Interior.

54

SIFT R2D2 SuperPoint D2Net LIFT SURF+BRIEF
+RANSAC +OA-Net +OA-Net +OA-Net +OA-Net +MLESAC

14.44% 12.22% 3.89% 0.56% 0.56% 0.00%

Figure 3.7: Performance of six DMV systems on YFCC-100M. Rows 1-2: Grand Place
Brussels, Rows 3-4: Paris Opera, Rows 5-6: Florence Cathedral Dome Interior, Rows
7-8: Pantheon Interior.

55

DoG+ConvOpt BRISK Key.Net+SpreadOutHardNet SIFT FAST+SpreadOutHardNet DoG+OpenUCN
+OA-Net +OA-Net +OA-Net +LMedS +NG-RANSAC +RANSAC
42.22% 25.56% 25.28% 24.44% 7.50% 0.00%

Figure 3.8: Performance of six DMV systems on YFCC-100M. Rows 1-2: Westminster
Abbey, Rows 3-4: Sacre Coeur, Rows 5-6: Notre Dame Front Facade, Rows 7-8: Grand
Central Terminal.

56

SIFT R2D2 SuperPoint D2Net LIFT SURF+BRIEF
+RANSAC +OA-Net +OA-Net +OA-Net +OA-Net +MLESAC

14.44% 12.22% 3.89% 0.56% 0.56% 0.00%

Figure 3.9: Performance of six DMV systems on YFCC-100M. Rows 1-2: Westminster
Abbey, Rows 3-4: Sacre Coeur, Rows 5-6: Notre Dame Front Facade, Rows 7-8: Grand
Central Terminal.

57

DoG
+Con

vO
pt+

OA-Net

DoG
+Roo

tSI
FT+

OA-Net

DoG
+Ope

nU
CN+OA-Net

DoG
+SIF

Tn
et+

OA-Net

Ke
y.N

et+
SIF

Tn
et+

OA-Net

Harr
isN

et+
Roo

tSI
FT+

OA-Net

BRISK
+OA-Net

Ke
y.N

et+
Sp

rea
dO

utH
ard

Net+
OA-Net

SIF
T+

LM
ed

S

DoG
+Sp

rea
dO

utH
ard

Net+
OA-Net ...

SIF
T+

RANSA
C

SIF
T+

NG-RANSA
C

DoG
+SIF

T+
LM

ed
S

FA
ST

+Sp
rea

dO
utH

ard
Net+

NG-RANSA
C

DoG
+Roo

tSI
FT+

Eig
-Fr

ee

SU
RF+

Ope
nU

CN+Eig
-Fr

ee

DoG
+Sp

rea
dO

utH
ard

Net+
Lea

rne
d-C

orr

Harr
isN

et+
Sp

rea
dO

utH
ard

Net+
Lea

rne
d-C

orr

SU
RF+

Con
vO

pt+
N^3-N

et

Harr
isN

et+
Ope

nU
CN+N^3-N

et

Harr
is+

SIF
T+

RANSA
C

FA
ST

+Roo
tSI

FT+
MLES

AC

FA
ST

+Con
vO

pt+
MLES

AC
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40 E-Matrix Usability Fraction
F-Matrix Usability Fraction

Figure 3.10: Wide-baseline stereo DMV (wDMV) results. (From left to right): the top-10
entries out of 808, sorted by E-matrix usability fraction (UIM-LB). Rightmost 11 entries:
a representative sampling of other methods in the remaining 808− 10 = 798 methods .

We provide a graphical representation of quantitative results in Figure 3.10. Because of
the huge amount of entries in each table, we provide a link1 to CSV files with the complete
results. Because performance comes at a cost, we additionally report the computational
cost (in feedforward runtime) per method in the Appendix. We also provide qualitative
examples of verified correspondences from our top method (DoG + ConvOpt+OA-Net)
and a traditional system (SIFT+RANSAC) in Figure 3.6. Surprisingly, none of the recently
proposed joint detector-descriptors [42, 72, 43, 39, 68] appear in the top-10 entries, when
ranked by usability for the F-matrix (UIF). While intuition might suggest that RANSAC
should provide a system with near 100% verification precision, we see in practice that this
is not the case. If there are insufficient inliers even to form a minimal set, one can expect
a degenerate E or F matrix estimate. Like Jin et al. [214], we note that simultaneously
increasing the strictness of the inlier threshold and number of iterations for RANSAC pro-
vides a significant performance boost; decreasing the inlier threshold from 3 px (OpenCV
default) to 0.5 px and increasing the correctness confidence from 0.99 (OpenCV default) to
0.999 increases the UIF of SIFT+RANSAC from 14% to 25%.

3.6 Additional Runtime Experiments

In this section, we perform a comprehensive evaluation of runtime requirements for each
DMV combination. We test each combination in isolation, averaging 50 passes over each
of 4 image pairs (200 forward passes per combination). We use a 4-core CPU (Intel(R)
Xeon(R) CPU @ 2.20GHz, 15 GB RAM) with a NVIDIA Tesla T4 GPU (14 GB RAM).

1https://github.com/deep-front-ends/deep-front-ends

58

https://github.com/deep-front-ends/deep-front-ends

(a)

Figure 3.11: wDMV (YFCC-100M) combined runtime analysis.

All methods that can utilize a GPU are executed on a GPU, else run on the CPU. We run
this timing analysis on two image resolutions: VGA (480× 640) and QVGA (240× 320).

In Figure 3.11, we show a comparison of combined DMV runtime for the top-10 meth-
ods, and a representative sampling of other methods. Although Dog+ConvOpt+OA-Net
has slightly higher Usable Image Fraction (UIF) than Dog+RootSIFT+OA-Net (42.22%
vs. 41.67%), its drastically higher runtime (2.551 sec. vs. 290 millisec.) demonstrates that
for practitioners with real-time requirements, instead Dog+RootSIFT+OA-Net is a superior
choice.

In Figure 3.12, we show a comparison of where performance costs are paid per stage in
a DMV pipeline. Key.Net [31] detection is exceptionally slow, dramatically slowing down
the Key.Net +SIFTNet+OA-Net combination. MLESAC [201] is the slowest verifier. We
see that RootSIFT’s performance costs are significantly cheaper for descriptor formation
and matching than ConvOpt [78] or Open-UCN [40, 197], leading to significant runtime
gains across the DMV system.

3.7 Discussion: Deep Front Ends

In the above sections of this chapter, we have given a snapshot of the state of the art in
the front-end for visual SLAM and SfM. We discover that deep detectors optimized for re-
peatability cannot beat a combination that includes a classical detector such as DoG when
it comes to usability for the Essential or Fundamental matrix. Our results suggest that opti-
mizing for repeatability may not be the optimal approach to building a front-end for SLAM
or SfM. We find a surprising parity between deep and classical descriptors for usability, and
find OA-Net [97] provides excellent verification performance for practitioners. We make

59

DoG
+Con

vO
pt+

OA-Net

DoG
+Roo

tSI
FT+

OA-Net

DoG
+Ope

nU
CN+OA-Net

DoG
+SIF

Tn
et+

OA-Net

Ke
y.N

et+
SIF

Tn
et+

OA-Net

Harr
isN

et+
Roo

tSI
FT+

OA-Net

BRISK
+OA-Net

Ke
y.N

et+
Sp

rea
dO

utH
ard

Net+
OA-Net

SIF
T+

LM
ed

S

DoG
+Sp

rea
dO

utH
ard

Net+
OA-Net ...

SIF
T+

RANSA
C

SIF
T+

NG-RANSA
C

DoG
+SIF

T+
LM

ed
S

FA
ST

+Sp
rea

dO
utH

ard
Net+

NG-RANSA
C

DoG
+Roo

tSI
FT+

Eig
-Fr

ee

SU
RF+

Ope
nU

CN+Eig
-Fr

ee

DoG
+Sp

rea
dO

utH
ard

Net+
Lea

rne
d-C

orr

Harr
isN

et+
Sp

rea
dO

utH
ard

Net+
Lea

rne
d-C

orr

SU
RF+

Con
vO

pt+
N^3-N

et

Harr
isN

et+
Ope

nU
CN+N^3-N

et

Harr
is+

SIF
T+

RANSA
C

FA
ST

+Roo
tSI

FT+
MLES

AC

FA
ST

+Con
vO

pt+
MLES

AC
0

1

2

3

4

Ti
m

e
(s

)

D (VGA)
M (VGA)
V (VGA)

(a) at VGA resolution

Figure 3.12: wDMV (YFCC-100M) per-stage runtime analysis. Runtime comparison of
the top-10 performing methods, and a sampling of other methods from the 808 tested. At
VGA resolution (shorter image size is 480 px)

our code (including a full suite of unit tests for each evaluation metric) publicly available
at https://github.com/borglab/gtsfm.

3.8 GTSFM: Incorporating the Deep Front End

Building accurate maps of the world is essential for spatial artificial intelligence (AI), with
applications from autonomous robots to AR/VR. Structure from Motion and multi-view
stereo (MVS) have proven to be effective methods for creating maps with vision-only in-
puts. For certain types of scenes with simple to medium complexity, high-fidelity world
models can be easily extracted with tools such as COLMAP [216]. This pseudo-ground
truth enabled new breakthroughs in machine learning, enabling methods such as NERF
[217], NerFormer [218], accurate monocular depth predictions for humans [219], and much
more.

However, state-of-the-art SfM techniques are incremental and accordingly are slow on
large datasets. Incremental SfM commences by finding a good first image pair, then tri-
angulating 3D points from two-views, then adding one additional image pair at a time,
registering it to the 3d points, then performing bundle adjustment, removing outliers, and
continuing until all possible image pairs have been registered. This is certainly not the only
possible approach; global SfM methods have also been explored for some time [220, 103,
221, 222, 146, 145, 223], but are known to suffer from poor accuracy [224].

Why is global SfM not sufficiently accurate? Without noise from ‘front-end’ measure-
ments, Global SfM would be exact. A single false positive can seriously degrade perfor-

60

https://github.com/borglab/gtsfm

-QEKI�� -QEKI�� -QEKI���

Figure 3.13: Qualitative results of GTSFM on the Lund Door dataset, consisting of 12
images. (Left) Depth maps, generated by PatchmatchNet [215]. (Right) Multi-view stereo
output (aggregation of backprojected depth maps).

mance. A key problem is that reasoning about outliers is challenging. Techniques from
sequential methods, such as filtering out measurements inconsistent with the current model
at each step, are not directly applicable in a global setting. It is harder to reason a priori
about which measurements are unreliable.

One way to think about the SfM or SLAM problem is to divide SfM into a front-end,
and a back-end (optimization). The hardest part of SfM is correspondence, and when to
trust correspondences, and of all the places where deep learning can be injected into the
geometric modeling of SfM, feature matching is the most apparent part.

In this work, we aim to overcome these accuracy shortcomings by injecting deep learn-
ing into the SfM front-end. Deep front-ends still produce some noisy measurements, so we
investigate new methods to make the system robust to this noise.

3.9 Related Work

A traditional SfM system computes keypoints, descriptors, matches, and verifies corre-
spondences. But very little, if any of 20 years of research on using machine learning for
the front-end, has been translated into practice or incorporated into libraries today, from
OpenSfM [19] to OpenMVG [19] to Theia [20] to COLMAP [216]. A generation of re-
search (two decades) in machine learning for the ‘front-end’, but no state-of-the-art SfM
system today uses deep learning. SfM systems were created before deep learning began to
show promise in this domain, thus all components are hand-crafted. Furthermore, end-to-
end methods for SfM aren’t accurate enough. Accordingly, we utilize local features and
well-modeled geometry in the back-end.

3.9.1 Incremental SfM

Incremental SfM traditionally uses point correspondences to iteratively establish camera
poses and global structure. Pollefeys et al. [225] introduced some of the modern frame-

61

Figure 3.14: System diagrams of Incremental vs. Global SfM.

work for incremental SfM, which was expanded to massive datasets in Bundler [226], Visu-
alSfM [227], and COLMAP [216]. Benchmarks such as Tanks and Temple [224] indicate
that COLMAP represents the state-of-the-art over both incremental and global SfM, but
COLMAP can be slow in practice. COLMAP has been extended in many ways, such as the
use of feature volumes to refine track measurements in Pixel-Perfect SfM [228].

3.9.2 Global SfM

In Global SfM, also known as non-sequential SfM or batch SfM, one matches all possible
image pairs, obtains a large number of two-view pose constraints, synchronizes all of these
binary rotation measurements with some form of least squares, then estimates the camera
positions, triangulate 3D points, and use a single bundle adjustment to refine points and
poses. Both incremental and global SfM are subject to a feature matching stage withO(n2)
complexity for n images. Global SfM is not new – Govindu introduced formulations for it
two decades ago [220, 103, 221].

An advantage of Global SfM is its ability to exploit redundancy. For a graph with nodes
as camera poses, and edges as two-view pose measurements, we can exploit all of the links
in a graph, to average out noise and distribute error evenly across the entire graph. For a
dataset of N images, there can be up to N(N−1)

2
pairs for which the relative motions can be

estimated, potentially providing a highly redundant set of observations can be efficiently
averaged [103]. However, the community has yet to find techniques to use this redundancy
to an advantage in accuracy.

Many global SfM systems rely upon rotation averaging for accurate bundle adjustment
initialization [229]. OpenMVG [19] uses Martinec and Pajdla’s least-squares rotation aver-
aging [230] technique. New rotation averaging methods have recently been proposed, such

62

as Shonan Rotation Averaging [119] and Rotation Coordinate Descent (RCD) [231].
DISCO [222] initializes a solution using a discrete Markov random field (MRF). Dis-

tributed SfM has been explored in HyperSfM [232, 233] and DAGSfM [234].
Other approaches to large-scale SfM rely upon external measurements, such as GPS,

IMU, and wheel encoders. For example, Google’s city-scale SfM project, Street View SfM,
uses 9.2 billion panoramic images [235] by combining local models. They avoid O(n2)
matching by using the natural linear path of the vehicle trajectory to establish potential
connectivity between images; only images within a fixed window of each other along the
path are considered for joint participation in image tracks. A window size of 1500 cameras
(a 100-panorama window of a 15-camera rosette) is used, and sub-centimeter accurate
relative poses come purely from IMU measurements, instead of from RANSAC.

3.9.3 Outlier Rejection for SfM

Outlier rejection is critical to successful SfM. Not only is it very difficult to triangulate
points from inexact camera positions, but Bundle Adjustment with Gaussian noise models
cannot deal with outliers. While incremental systems can reject outliers at each registration
stage via reprojection error, global SfM does not enjoy this privilege, and its performance
is heavily reliant upon low outlier rates. Global SfM systems instead utilize a number
of elaborate outlier rejection techniques to eliminate noisy measurements to prevent them
from playing a role in joint optimization.
Relative Pose Consistency The most common outlier rejection approaches rely upon cycle
consistency [236] of relative measurements within triplets. For example, [147] accumulat-
ing these deviations over a large set of loops one can obtain the statistics needed to infer the
the set of false positives. Likewise, Enqvist, Kahl, and Olsson [146] and Moulon et al. in
OpenMVG [145, 19] by composing rotations in a cycle and measuring the deviation from
identity. 1dSfM [209] rejects outlier translation directions based on consistent ordering on
1d projections. Theia [20] also uses filtering based on global-to-relative agreement heuris-
tics. Instead of using hand-crafted heuristics, Phillips [237] uses graph neural networks
(GNN) to introduce learning-based cycle consistency on the keypoint match graph, instead
of relative pose graph.
RANSAC Another technique for outlier rejection is to generate random spanning trees
from relative poses in a RANSAC-like scheme [229] for estimating global camera poses,
such that

wRi = wRj

(
jRi

)
(3.1)

roughly holds for as many relative rotations as possible.
Point Correspondence Consistency Other approaches reason about the consistency of
point correspondences. Sweeney et al. [223] optimizes a cost function that penalizes epipo-
lar transfer error [238] in each of 3 views for image triplets.

3.9.4 Multi-View Stereo

MVSNet [239] was a pioneering work, which showed how to use differentiable homogra-
phy warping to create a 3D cost volume. PatchmatchNet [215] removed the 3D cost volume
by introducing an iterative multiscale Patchmatch [240] in an end-to-end trainable archi-

63

tecture. Some MVS methods are scene-specific, e.g. NeRF and many of its variants. NeRF
[217] allows generated depth maps for rendered novel views as the expected termination
of each camera ray in the encoded volume. MVSNerf [241] combine NeRF and learning-
based MVS, and evaluate depth reconstruction error, instead of only view synthesis quality.

3.10 Approach

GTSFM is a new global SfM library that exploits the following modules:

3.10.1 Front-End

We use a deep detector, SuperPoint [42], with a deep matcher, SuperGlue [76], and a
RANSAC verifier. We optionally follow with two-view bundle adjustment as recom-
mended by [242].

3.10.2 Outlier Rejection

We experiment with a number of different outlier rejection types.
Rotation Cycle Consistency In a noise-free setting, we have a consistency criterion over
loops L of image pairs ek:

RL = Re|L| × · · · ×Re1 = I, ek ∈ L (3.2)

However, in a setting with noisy measurements Rek , we can find all loops L ∈ Lk that an
image pair ek participates in, i.e. Lk = {L | ek ∈ L} and accept those with a median cycle
error below a certain threshold εcycle. More formally, we assign a label {yk} ∈ {0, 1} for
each image pair edge ek according to:

yk = median
L∈Lk

{
‖ log(RL)‖2 | ek ∈ L

}
< εcycle (3.3)

where log is the logarithmic map, extracting the magnitude of the axis-angle representation.
We reject all image pairs that fall into Ereject = {ek | yk = 0}. In practice, we find that the
median operator provides a better tradeoff of precision and recall than the min operator,
which optimizes recall but not precision (as it allows false positives).
Epipolar Point Transfer Given known epipolar geometry between a triplet of images,
we can (in certain cases) know exactly where a corresponding keypoint should be found
within a 3rd image. This allows us to “transfer points” to a 3rd image, using intersection of
epipolar lines (via Fundamental matrices). Hartley and Zisserman [238] (on p. 380) show
how to do this. Suppose we know the three fundamental matrices F21, F31 and F32 relating
the three views, and let points x and x′ in the first two views be a matched pair. We wish
to find the corresponding point x′′ in the third image.

The required point x′′ matches point x in the first image, and consequently must lie
on the epipolar line corresponding to x. Since we know F31, this epipolar line may be
computed, and is equal to F31x. By a similar argument, x′′ must lie on the epipolar line

64

�

(a)

�

(b)

(c)

Figure 3.15: Qualitative results of GTSFM on the Skydio-Crane-Mast-32 dataset (top row),
and NASA asteroid data, as captured by a telescope during the RC-3 of the Dawn spacecraft
as it entered an Rotation Characterization 3 (RC3) orbit around the asteroid Vesta (middle
and bottom rows).

65

F32x
′. Taking the intersection of the epipolar lines gives:

x′′ = (F31x)× (F32x
′) (3.4)

Similar details can be found in Section 3.1 of [223]. However, this method suffers from
degeneracy near the trifocal plane, and we find it to be less effective.
Trifocal Tensor Point–point–point correspondence. Given point x in view 1, x′ in view 2,
and x′′ in view 3, ...

[x′]×

(∑
i

xiTi

)
[x′′]× = 03×3 (3.5)

We follow the implementation of Julia and Monasse [242], but instead of extracting
camera poses from T, we count the number of inliers.

3.10.3 Rotation Averaging

We solve for the rotations of global camera poses via multiple rotation averaging [243].
We use only the relative rotation measurements corresponding to image pair edges in the
largest connected component of the relative pose graph. The problem can be defined as:

argmin
R1,...Rn∈SO(3)

∑
(i,j)∈N

d(iRj,
iRw

wRj) (3.6)

(modifying Hartley’s notation).
We use Shonan [119]. In Shonan Averaging [119], the maximum likelihood problem is

posed as:

max
R∈SO(d)n

∑
(i,j)∈E

κijtr(wRi
iRj

jRw) (3.7)

In the paper’s notation,

max
R∈SO(d)n

∑
(i,j)∈E

κijtr(RiRijR
T
j) (3.8)

Shonan uses a convex relaxation based off of

f ∗MLE = min
R∈SO(d)n

tr
(
LRTR

)
(3.9)

where R = (R1, . . . ,Rn) is the d × dn matrix of rotations Ri ∈ SO(d), and L is the
connection Laplacian, a symmetric (d × d)-block-structured matrix constructed from the
measurements iRj .

3.10.4 Translation Averaging

Given camera rotations in a global frame, and pairwise translation directions, we recover
the position of each camera (translation in a global frame. We use 1dSfM [209], which

66

Figure 3.16: Qualitative results on Lund-Door-12 dataset, before (left) and after (right)
bundle adjustment and filtering of 3d points by reprojection errors.

optimizes a chordal error:

errch(T) =
∑

(i,j)∈E

dch

(
t̂ij,

tj − ti
‖tj − ti‖

)2

(3.10)

where dch is defined as:
dch(u,v) = ‖u− v‖2 (3.11)

3.10.5 Data Association + Triangulation

We triangulate points using DLT followed by non-linear refinement.

3.10.6 Bundle Adjustment

We refine the initial camera poses and triangulated point cloud using bundle adjustment
(see Figure 3.16). We use the Bundler camera model for calibration, with a single focal
length f , two radial distortion coefficients k1, k2 (quadratic and quartic), and a image cen-
ter (u0, v0) (principal point) in pixels. We initialize the 6-dof SE(3) camera poses from the
global camera rotations estimated from Shonan Rotation Averaging and the global cam-
era positions estimated from 1dSfM, and refine points and camera parameters using the
Levenberg-Marquardt algorithm [244, 245].

Bundle adjustment is an optimization problem that refines an initial estimate. It can be
formally defined as follows: Given sparse points {Pj ∈ R3}, intrinsic parameters Ci of
the cameras, and camera poses {(wRi,

wti) ∈ SE(3)}Ni=1 for each image, represented as
rotation matrices and translation vectors [1]:

EBA(·) =
∑
j

∑
(i,u)∈T (j)

‖Π(iRwPj + itw; Ci)− pu‖γ (3.12)

where T (j) is the set of images i and keypoints u in track j, Π(·) projects to the image
plane, and ‖ · ‖γ is a robust norm.

67

Figure 3.17: GTSFM system architecture.

3.10.7 Multi-View Stereo

We experiment with PatchmatchNet [215] and Instant NGP [246]. PatchmatchNet esti-
mates depth maps for each reference frame independently using source images are used as
evidence. For cameras with known intrinsics, e.g.u · dv · d

d

 = Kref ∗ pc (3.13)

Depth maps are then backprojected into a 3d point cloud via:

pc = K−1
ref ∗

uv
1

 · d (3.14)

and then brought into the world frame via:

pw = wTc ∗ pc = wTc ∗

xy
z

 (3.15)

Instant-NGP [246], on the other hand, estimates 3d structure jointly using a neural field.

68

3.11 Experimental Results

We now present results on 4 datasets – one of easy difficulty, two of moderate difficulty,
and one of extreme difficulty.

3.11.1 Datasets

Lund-Door-12 The first, the simplest, is Carl Olsson’s Lund Door 12 image dataset2, fea-
turing very small baselines and almost no occlusion. Exhaustive matching over the 12
images yields 66 image pairs.
Skydio-Crane-Mast-501 A dataset of extreme difficulty, consisting of 501 images cap-
tured in Crane Cove Park, San Francisco3, featuring object symmetry, repetitive features,
thin structures, and extreme depth ranges (from centimeters up to several miles). It is cap-
tured by a drone that makes multiple horizontal circular passes around a crane tower, and
then makes multiple sweeps over the top of the tower. Sequential image matching over the
501 images with a 20 frame lookahead yields 9790 image pairs.
Skydio-Crane-Mast-32 A medium difficulty dataset, representing a 32-image subset of the
aforementioned Skydio Crane Mast dataset, but with views of only a single face of the four
crane mast faces, limiting the effect of false positives due to object symmetry. Exhaustive
image matching over the 32 images yields 496 image pairs.
Notre-Dame-20 A medium difficulty dataset, representing a 20-image subset of the 715-
image Notre Dame PhotoTourism dataset4 [199]. Exhaustive image matching of the 20
images presents 171 image pairs.

3.11.2 Evaluation

We quantitatively measure the effect of different front-ends on GTSFM’s performance,
using as ground-truth the output of COLMAP [216] on each dataset, a high-quality incre-
mental SfM system. Each front-end that we analyze includes Essential matrix estimation
with RANSAC, using Nister’s 5-Point algorithm [247]. We do not employ any two-view
bundle adjustment postprocessing on the estimated relative pose, to avoid influencing the
performance of the front-end. In order to remove the effect of spurious image pair mea-
surements that would be rejected in a real SfM system, We report front-end relative pose
errors only after discarding any image pairs with an inlier ratio below 10% and any image
pairs with less than 15 absolute inliers (per COLMAP’s convention [216]).

For several methods, in order to disambiguate the errors from the front-end vs. back-
end optimization, we illustrate what access to a front-end ‘oracle’ provides. The oracle has
access to ground truth pose errors, and thus our ‘oracle’ baselines discard erroneous front-
end measurements if the relative rotation or relative translation angular error with respect
to ground truth exceeds a threshold (5◦ in our experiments).

We evaluate 9 metrics per each front-end combination:

2Available at https://www.maths.lth.se/matematiklth/personal/calle/dataset/dataset.html.
3Available on Sketchfab at [download link] with high-resolution images provided by Skydio [download

link].
4Available online at http://phototour.cs.washington.edu/datasets/.

69

https://www.maths.lth.se/matematiklth/personal/calle/dataset/dataset.html
https://sketchfab.com/3d-models/crane-mast-3b943b2211284d0cb0bbad32399be58c
https://drive.google.com/drive/folders/1SUlpJUwAgEsGaJwrq_WcDzvhKBTa1uY2
https://drive.google.com/drive/folders/1SUlpJUwAgEsGaJwrq_WcDzvhKBTa1uY2
http://phototour.cs.washington.edu/datasets/

Relative Rotation Angular Error: Defined as θrel.rot.error = ‖ log
(
i2R̂>i1 ◦

i2Ri1

)
‖2, mea-

sured in degrees, where (i1, i2) represent an image pair. We report both median and mean
values, over all image pairs.
Relative Translation Angular Error: Defined as θrel.trans.error = cos−1

(
i2 t̂i1 ·

i2ti1
‖i2 t̂i1‖‖

i2ti1‖

)
,

measured in degrees, where (i1, i2) represent an image pair. We report both median and
mean values, over all image pairs.
Relative Pose Error Deg.: Defined as max(θrel.rot.error, θrel.trans.error) the maximum of rel-
ative rotation angular error and relative translation angular error above, per the convention
of [104]. We report both median and mean values, over all image pairs.
Cameras Localized: The number of cameras for which a global pose is estimated, cor-
responding to the cameras located in the largest connected component of the relative pose
graph after outlier rejection.
Tracks (Unfiltered): Defined as the total number of keypoint tracks j over the entire
dataset.
3d Track Length (Unfiltered): Defined as the number of views in each keypoint track j.
We report both median and mean values, over all tracks.
Reprojection Error (Unfiltered): Defined as ‖Π(iRwPj + itw; Ci) − pu‖2, for 3d point
Pj from track j, view i, keypoint detection pu, and optimized camera pose (wRi,

wti), in
the notation of Equation 3.12. Reprojection error is measured in pixels. We report both
median and mean values, over all image pairs.
Global Rotation Angular Error: Defined as θglobal.rot.error = ‖ log

(
wR̂>i ◦ wRi

)
‖2, and

measured in degrees. We report both median and mean values, over all camera poses.
Global Translation Angular Error: Defined as θglobal.trans.error = cos−1

(
w t̂i·wti
‖w t̂i‖‖wti‖

)
, and

measured in degrees. We report both median and mean values, over all camera poses.

Table 3.2: Quantitative results on the Lund Door-12 dataset. As the dataset is quite simple,
all methods (except SIFT + Mutal Nearest Neighbor Matcher + OANet + RANSAC) local-
ize all 12 images in the largest connected component with very low error. Global rotation
and global translation angular errors are below 2 degrees for all methods, in both mean and
median. “Mutual NN” indicates a mutual nearest-neighbor matcher.

METHOD FRONT-END RESULTS BACK-END RESULTS
RELATIVE RELATIVE RELATIVE # CAMERAS # TRACKS 3D TRACK REPROJ. ERROR GLOBAL GLOBAL

DETECTOR MATCHER VERIFIER ROTATION TRANSLATION POSE LOCALIZED LENGTH (UNFILTERED) PX ROTATION TRANSLATION
+ DESCRIPTOR ANGULAR ERROR ANGULAR ERROR ERROR (DEG.) (UNFILTERED) (MED. / MEAN) ANGULAR ANGULAR

(MED. / MEAN) (MED. / MEAN) (MED / MEAN) (MED. / MEAN) ERROR (DEG.) ERROR (DEG.)
(MED. / MEAN) (MED. / MEAN)

ORB Mutual NN RANSAC 1.00 / 1.29 1.75 / 4.99 1.95 / 5.04 12 / 12 777 2 / 3.21 0.37 / 0.48 0.12 / 0.14 0.68 / 1.11
Brisk Mutual NN RANSAC 0.45 / 0.50 0.90 / 1.26 0.90 / 1.30 12 / 12 8493 3 / 3.67 0.22 / 0.31 0.02 / 0.01 0.05 / 0.08
KAZE Mutual NN RANSAC 0.30 / 0.43 0.75 / 1.03 0.82 / 1.06 12 / 12 5081 4 / 5.58 0.22 / 0.39 0.02 / 0.03 0.07 / 0.08
DoG + ConvOpt Mutual NN RANSAC 0.29 / 0.34 0.61 / 0.98 0.61 / 0.99 12 / 12 7148 4 / 4.73 0.16 / 0.27 0.01 / 0.01 0.03 / 0.04
DoG + ConvOpt Mutual NN OANet + RANSAC 1.21 / 2.08 1.97 / 7.06 2.17 / 7.23 12 / 12 3133 3 / 3.96 0.11 / 0.17 0.06 / 0.06 0.24 / 0.31
SIFT Mutual NN OANet + RANSAC 1.22 / 2.46 2.73 / 7.70 3.05 / 7.97 3 / 12 3037 3 / 3.91 0.07 / 0.10 0.48 / 0.33 0.89 / 0.80
SIFT Mutual NN RANSAC 0.29 / 0.34 0.54 / 0.90 0.58 / 0.92 12 / 12 10065 4 / 4.82 0.16 / 0.26 0.02 / 0.02 0.04 / 0.05
SuperPoint SuperGlue RANSAC 0.44 / 0.52 0.81 / 1.22 0.84 / 1.29 12 / 12 3125 4 / 4.16 0.46 / 0.60 0.04 / 0.04 0.13 / 0.16

3.11.3 Quantitative Results

In Table 3.2, Table 3.3, Table 3.4, and Table 3.5, we present quantitative results on the four
aforementioned datasets. In general, catastrophic front-end average errors (i.e. the presence
of significant outliers) indicates that a high quality solution will not be recoverable from

70

Table 3.3: Quantitative results on the Notre-Dame-20 dataset, a medium-difficulty dataset.
Many methods localize with low error, but SuperGlue yields the highest recall (most num-
ber of images localized in the largest connected component) while maintaining low global
pose angular errors. The oracle is not needed for SuperGlue, but for SIFT, the oracle re-
duces global translation angular errors from 20◦ to 2◦ (a massive 10x reduction in this error
metric). Metrics essential for qualitatively good scene reconstructions are shown in red.
“Mutual NN” indicates a mutual nearest-neighbor matcher.

METHOD FRONT-END RESULTS BACK-END RESULTS
RELATIVE RELATIVE RELATIVE # CAMERAS # TRACKS 3D TRACK REPROJ. ERROR GLOBAL GLOBAL

DETECTOR MATCHER VERIFIER ROTATION TRANSLATION POSE LOCALIZED LENGTH (UNFILTERED) PX ROTATION TRANSLATION
+ DESCRIPTOR ANGULAR ERROR ANGULAR ERROR ERROR (DEG.) (UNFILTERED) (MED. / MEAN) ANGULAR ANGULAR

(MED. / MEAN) (MED. / MEAN) (MED / MEAN) (MED. / MEAN) ERROR (DEG.) ERROR (DEG.)
(MED. / MEAN) (MED. / MEAN)

ORB Mutual NN RANSAC 0.23 / 0.30 76.29 / 65.02 76.29 / 65.02 3 / 20 285 2 / 2.08 0.15 / 0.23 0.14 / 0.16 74.48 / 70.22
Brisk Mutual NN RANSAC 2.32 / 3.42 5.71 / 16.85 5.71 / 17.13 7 / 20 930 2 / 2.61 0.28 / 0.55 1.30 / 1.80 1.85 / 15.11
KAZE Mutual NN RANSAC 2.72 / 3.36 7.11 / 19.66 7.11 / 19.75 12 / 20 2220 2 / 2.95 0.31 / 0.59 0.68 / 1.03 3.80 / 11.14
DoG + ConvOpt Mutual NN RANSAC 1.41 / 3.14 4.43 / 11.23 6.10 / 11.54 11 / 20 1915 2 / 2.91 0.28 / 0.51 0.57 / 0.66 2.07 / 7.62
DoG + ConvOpt Mutual NN OANet + RANSAC 2.64 / 3.63 14.27 / 30.13 14.27 / 30.18 5 / 20 539 2 / 2.23 0.16 / 0.24 2.03 / 3.17 15.74 / 22.51
SIFT Mutual NN OANet + RANSAC 3.62 / 8.51 9.84 / 26.90 10.00 / 28.60 10 / 20 1101 2 / 2.48 0.19 / 0.30 0.62 / 0.94 2.82 / 7.36
SIFT Mutual NN RANSAC 2.41 / 5.55 4.92 / 13.46 5.46 / 14.83 17 / 20 3724 2 / 3.11 0.30 / 0.78 0.57 / 0.96 1.64 / 20.01
SIFT + Oracle Mutual NN RANSAC 1.33 / 1.40 1.78 / 2.03 2.29 / 2.27 13 / 20 2509 3 / 3.25 0.29 / 0.66 0.25 / 0.33 0.97 / 1.71
SuperPoint SuperGlue RANSAC 2.12 / 3.11 3.50 / 7.39 4.17 / 7.69 19 / 20 2330 2 / 2.44 0.47 / 0.72 0.58 / 0.84 1.45 / 3.12
Superpoint + Oracle SuperGlue RANSAC 1.69 / 1.85 2.29 / 2.25 2.45 / 2.61 19 / 20 1517 2 / 2.81 0.65 / 0.96 0.47 / 0.58 1.11 / 2.50

Table 3.4: Quantitative results on the Skydio-Crane-Mast-32 dataset, a medium-difficulty
dataset. Superpoint+SuperGlue+Ransac-E alone recovers global translation angular errors
of < 14◦ in mean, SIFT+Mutual-Nearest-Neighbor-Matcher+Ransac-E has double the er-
ror at 26◦. This is evident in the reconstruction: SuperGlue’s poses are accurate, while
SIFT’s are catastrophically poor. Metrics essential for qualitatively good scene reconstruc-
tions are shown in red. “Mutual NN” indicates a mutual nearest-neighbor matcher.

METHOD FRONT-END RESULTS BACK-END RESULTS
RELATIVE RELATIVE RELATIVE # CAMERAS # TRACKS 3D TRACK REPROJ. ERROR GLOBAL GLOBAL

DETECTOR MATCHER VERIFIER ROTATION TRANSLATION POSE LOCALIZED LENGTH (UNFILTERED) PX ROTATION TRANSLATION
+ DESCRIPTOR ANGULAR ERROR ANGULAR ERROR ERROR (DEG.) (UNFILTERED) (MED. / MEAN) ANGULAR ANGULAR

(MED. / MEAN) (MED. / MEAN) (MED / MEAN) (MED. / MEAN) ERROR (DEG.) ERROR (DEG.)
(MED. / MEAN) (MED. / MEAN)

ORB Mutual NN RANSAC 4.14 / 9.97 24.80 / 55.31 24.80 / 55.99 3 / 32 33 2 / 2.15 0.41 / 0.54 1.55 / 1.78 120.76 / 100.82
Brisk Mutual NN RANSAC 1.78 / 3.80 4.86 / 33.17 5.68 / 33.68 26 / 32 2995 2 / 2.41 0.83 / 1.77 1.41 / 1.58 41.89 / 47.72
KAZE Mutual NN RANSAC 3.38 / 8.17 7.88 / 46.33 8.77 / 47.68 28 / 32 5440 2 / 2.91 0.69 / 2.07 0.92 / 2.46 30.09 / 36.19
DoG + ConvOpt Mutual NN RANSAC 1.28 / 2.92 2.10 / 24.91 2.49 / 25.28 32 / 32 3514 2 / 2.74 0.70 / 1.41 1.01 / 1.11 27.54 / 52.41
DoG + ConvOpt Mutual NN OANet + RANSAC 3.16 / 10.05 42.16 / 53.85 42.16 / 54.12 3 / 32 68 2 / 2.13 0.15 / 0.22 0.29 / 0.27 12.70 / 10.70
SIFT Mutual NN RANSAC 1.85 / 4.55 2.91 / 33.80 3.63 / 34.34 32 / 32 5498 2 / 2.82 1.01 / 26.13 1.50 / 1.87 9.93 / 26.16
SIFT + Oracle Mutual NN RANSAC 1.15 / 1.38 1.20 / 1.45 1.62 / 1.85 25 / 32 4666 2 / 2.86 0.67 / 1.48 0.76 / 0.75 0.66 / 6.17
SuperPoint SuperGlue RANSAC 2.24 / 13.93 4.14 / 32.74 4.93 / 36.50 31 / 32 7678 2 / 2.65 0.87 / 1.31 0.52 / 0.82 0.66 / 13.35
Superpoint + Oracle SuperGlue RANSAC 1.13 / 1.36 1.35 / 1.67 1.70 / 2.04 32 / 32 9088 2 / 2.79 0.84 / 1.23 0.21 / 0.21 0.35 / 0.46

Table 3.5: Quantitative results on the Skydio-Crane-Mast-501 dataset, an extreme-difficulty
dataset. All non-oracle methods with high recall (i.e. the ability to estimate at least 90 of the
501 cameras) fail catastrophically, with average global translation angular errors over 50◦.
Metrics essential for qualitatively good scene reconstructions are shown in red. “Mutual
NN” indicates a mutual nearest-neighbor matcher.

METHOD FRONT-END RESULTS BACK-END RESULTS
RELATIVE RELATIVE RELATIVE # CAMERAS # TRACKS 3D TRACK REPROJ. ERROR GLOBAL GLOBAL

DETECTOR MATCHER VERIFIER ROTATION TRANSLATION POSE LOCALIZED LENGTH (UNFILTERED) PX ROTATION TRANSLATION
+ DESCRIPTOR ANGULAR ERROR ANGULAR ERROR ERROR (DEG.) (UNFILTERED) (MED. / MEAN) ANGULAR ANGULAR

(MED. / MEAN) (MED. / MEAN) (MED / MEAN) (MED. / MEAN) ERROR (DEG.) ERROR (DEG.)
(MED. / MEAN) (MED. / MEAN)

DoG + ConvOpt Mutual NN RANSAC 1.82 / 3.62 10.09 / 40.88 10.47 / 41.07 31 / 501 3937 2 / 3.11 0.73 / 1.39 1.48 / 2.08 2.39 / 9.74
SIFT Mutual NN OANet + RANSAC 2.84 / 7.33 59.06 / 65.45 59.28 / 66.43 19 / 501 1132 2 / 2.49 0.58 / 1.07 2.74 / 3.20 35.60 / 43.25
SIFT Mutual NN RANSAC 2.8 / 5.41 13.30 / 45.98 13.79 / 46.34 137 / 501 21626 2 / 3.07 3.29 / 7.66 9.98 / 9.61 50.75 / 54.78
SIFT + Oracle Mutual NN RANSAC 0.92 / 1.26 1.55 / 1.84 1.88 / 2.14 59 / 501 10881 2 / 2.60 1.10 / 4.34 4.73 / 4.99 27.46 / 36.02
SuperPoint SuperGlue RANSAC 4.83 / 39.69 20.85 / 48.70 27.02 / 65.13 91 / 501 26191 2 / 2.52 1.57 / 3.88 70.21 / 83.99 57.14 / 61.37
Superpoint + Oracle SuperGlue RANSAC 0.87 / 1.22 1.27 / 1.61 1.62 / 1.93 193 / 501 68913 2 / 2.50 0.74 / 1.09 5.68 / 5.61 7.43 / 15.44

back-end optimization. Among the many back-end optimization metrics we compute and
analyze, we find that only two consistently correlate closely with the visual quality of
the reconstruction – (1) the average global translation angular error (indicating the correct
relative placement of cameras, as a measure of precision) and (2) the number of cameras

71

localized by Global SfM (recall). In practice, we find that global rotation angular error can
be low after bundle adjustment, even when the result is qualitative poor. However, the same
is not true for translation angular error, which is generally indicate of significant errors in
global pose estimation. We find that high relative pose error in the front-end is almost
always correlated with high global translation angular error after translation averaging
and bundle adjustment in Global SfM.

New deep front-ends that exploit learned matching [76] demonstrate superiority on
the medium-difficulty datasets, Notre-Dame-20 and Skydio-Crane-Mast-32 (see Table 3.3
and Table 3.4), but do not provide a high enough signal-to-noise ratio to solve the most
challenging of datasets, Skydio-Crane-Mast-501, where all front-ends perform poorly in a
global SfM framework (see Table 3.5). For Skydio-Crane-Mast-501, this is likely due to the
fact that most deep front-ends and deep matchers are trained to maximize recall on datasets
where covisibility is always guaranteed, which is not the case “in-the-wild,” leading to false
positives. Perhaps unsurprisingly, on an easy benchmark, Lund-Door-12, both classical and
deep-front-ends perform comparably and easily solve the task (see Table 3.2).

When comparing front-ends “in-the-wild”, we find that a newly released method, Su-
perPoint + SuperGlue + RANSAC-E [76] outperforms in recall and pose precision our best
performing D-M-V combination by UIF from an earlier snapshot in time (DoG + ConvOpt
+ Mutual Nearest Neighbor Matcher + OANet + RANSAC-E), which recovers only 3 of
32 and 5 of 20 camera poses on Skydio-Crane-Mast-32 and Notre-Dame-20, respectively.
Comparing against a classical SIFT-based front-end combination, we also see SuperGlue’s
advantages: on Skydio-Crane-Mast-32, the SuperGlue-based front-end has substantially
lower global translation angular error (0.66◦ / 13.35◦ in median / mean) than a SIFT-based
front-end (9.93◦ and 26.16◦), with comparable recall (31/32 vs. 32/32 of cameras local-
ized). It is also apparent on Notre-Dame-20, where the SuperGlue-based front-end achieves
much lower global translation angular error on average (1.45◦ / 3.12◦ in median / mean)
vs. a SIFT-based front-end (1.64◦ and 20.01◦), with comparable recall (19/20 vs. 17/20 of
cameras localized).

3.12 Appendix

3.13 Survey of Front-Ends

Deep front-ends for SLAM and SfM can be divided into two main categories: those based
on sparse local feature matching, and those based on dense, correspondence-free methods.
Methods of the latter category generally estimate either dense depth maps [248, 249, 250,
251, 252, 253] or relative poses (R, t) [254, 255, 256], or both [257, 258, 259, 260, 261].
Although dense, deep front-ends are promising, our focus is the former stream of work.

3.13.1 Survey of Local Feature Detectors

Handcrafted feature detection dates back at least 40 years to Moravec’s [184] corner de-
tector and the literature is extensive. Tuytelaars and Mikolajczyk [89] provide an early
survey. Although the earliest local features were represented as 2D points [186], oriented
circles from DoG [22], ellipses (Harris-Affine), and oriented ellipses (e.g. Harris-Affine

72

with orientation assignment) have been proposed [262]. While, deep methods, rather than
classical methods, are a primary focus of this work, we provide a brief summary of classical
endeavors towards invariance and equivariance.

Rotational invariance of detectors was an early requirement. Moravec [184] achieved
it by comparing a patch with small shifted versions of itself and assessing stability via
summed square differences (i.e. the auto-correlation function/surface). Harris [186] achieves
rotational invariance by approximating both the auto-correlation surface and eigenanalysis
of the auto-correlation matrix using combinations of cheap mixed derivatives IxIy, I2

x, I
2
y

with respect to shifts (x, y). Beaudet’s Hessian detector [185] is also rotationally invari-
ant, by using the determinant of the Hessian of image intensity, i.e. IxxIyy − I2

xy. Fast
approximations of these second derivatives needed for the Hessian were introduced in the
Difference-of-Gaussians (DoG) [22] and SURF [32], which used box filters with heavily
discretized 2nd order Gaussian derivatives and integral images.

Many of these handcrafted detectors sought keypoints based on simple heuristics, such
as strong two-dimensional signal change indicates a corner. Other handcrafted heuristics
were also introduced, such as the “SUSAN” principle, stating that if one were to place a
circle around a keypoint, the center pixel should be sufficiently different from the intensities
along the perimeter of the circle [187].

A transition from hand-crafted to machine learning-based feature detection has been a
longstanding goal of the community. Neural networks [188], SVMs [52], decision trees
(FAST) [73], or boosting were employed.

Detectors introduced in the recent literature [42, 77, 72, 87, 93, 33, 31] are all based on
convolutional neural networks (convnets). We briefly review their supervision paradigms
in chronological order below. While the earliest supervision paradigm for convnets was to
imitate hand-crafted detectors, per TILDE [90], LIFT [95], and others [27], this approach
is no longer seen as state-of-the-art: by imitating handcrafted detectors, one can never learn
to outperform them. Homography supervision emerged as the next supervision paradigm;
While datasets with homography two-view relations exist, such as OxfordMatching [62]
and HP-Sequences [196], these datasets are very limited in size and are better suited for
testing. Although homographies naturally arising from pairs of images are desirable for
their realistic nature, plentiful training data with significant diversity can be obtained by
generating synthetic homography pairs. Specifically, these may be created from any image
source by sampling random homographies and applying the warp [42, 72, 31]. A third
paradigm was to use synthetically rendered shapes such as triangles and checkerboards
where corners are easy to define [42]; unfortunately, models trained on this data are not use-
ful for real-world application unless subsequently fine-tuned. Fourth, epipolar constraints
were introduced as supervision. While homography is useful, the 3D world is governed
by epipolar constraints. In this paradigm, one uses datasets with Fundamental-matrix two-
view relations to create strong negatives and possible positives [93]. Finally, very recent
work foregoes domain-specific supervision above by using downstream performance as su-
pervision. While the previous paradigms directly optimize detection evaluation metrics, a
superior approach may be to instead optimize downstream matching performance via end-
to-end learning. Keypoint selection can be considered an action that generates a reward in a
reinforcement-learning paradigm [33, 87]; ground-truth labels, i.e. usefulness for accurate
matching, can be determined on the fly.

73

A trend in architecture design of such networks is to use fully-convolutional networks
over entire image input for simultaneous detection and description [42, 72], sharing param-
eters for both tasks. Earlier approaches required passing all patches of an image through
a convnet [77, 90]. Key.Net [31] showed how a FCN could not only differentiably extract
multiple maxima over a score map, but also use dramatically fewer parameters than others
by operating on image intensity derivatives input.

Equivariant5 detectors [53, 98, 42, 189, 31] have been a dominant area of research by
enforcing consistently high and low responses of a keypoint detector’s score map under
a geometric transformation of input image [77], or by determining ground-truth locations
with a pre-trained detector under equivariance [42].

3.13.2 Survey of Local Feature Descriptors

In the literature, many have designed handcrafted descriptors specifically for photomet-
ric, scale, and rotation invariance. The earliest hand-crafted feature descriptors date back
40 years to Moravec [184], a modified version of normalized cross-correlation of patches.
Schmid and Mohr [192] were the first to use differential invariants (the “local jet”) [263]
as keypoint descriptors. Lowe’s SIFT descriptor [21, 22] achieved invariance to constant
brightness changes by forming a 128-d vector from histograms of gradients in the local
keypoint neighborhood. Mahendran and Vedaldi [194] showed how SIFT could be com-
puted as a feedforward pass through a fully-convolutional network. RootSIFT [28] showed
how raising `1-normalized SIFT vectors to the 1/2’th power yields superior performance
for descriptor comparison; descriptor values are non-negative magnitudes of histograms by
definition. SURF [32] showed how a smaller 64-d descriptor could be formed by using
sums of derivatives and their absolute values, without orientation-based histograms. Miko-
lajczyk and Schmid [62] extended SIFT’s descriptor to form histograms over a log-polar
grid instead of a Cartesian one, which they name GLOH. A log-polar representation may
generate a better local representation by oversampling the immediate neighborhood of the
point [193, 44]. DAISY [86] extended the log-polar formulation of GLOH from a single
ring around the keypoint to multiple ring centers in a regular pattern around a keypoint.
BRIEF [38] aimed to speed up the matching by using binary descriptors instead of real-
valued ones, showing how simple intensity comparisons at randomly selected pixel-pairs
could approximate local gradients. BRISK [54] replaced BRIEF’s random pixel-pair sam-
pling with a deterministic sampling pattern, enforcing uniform density at any given radius
around a keypoint. Oriented FAST and Rotated BRIEF (ORB) [75] showed how the pixel-
pair sampling locations should be rotated before comparisons are computed.

Incorporating machine learning into feature descriptor methods has been a focus for
more than a decade. PCA-SIFT [51] learned a projection matrix from a rotated, scaled,
and flattened gradient image around a keypoint to a low-dimensional descriptor such that
variance is maximized in the new subspace. Winder and Brown [92, 91] used SfM to
create patch training data from collections of tourist photographs; derivative-free Powell
optimization [264] could then be used to optimize the parameters of a SIFT- or GLOH-
like descriptor algorithm. ORB [75] showed how to use greedy optimization to find less

5Equivariance: changes in the input lead to corresponding changes in output.

74

correlated pixel-pair comparisons in BRIEF. ConvOpt [78] showed how selection of spa-
tial pooling regions and a projection matrix for dimensionality reduction could be learned
sequentially as two convex optimization problems.

Recent local feature descriptors algorithms in the literature are all convnet-based and
learned from data using metric learning. Spatial proximity high-dimensional Euclidean
space should indicate geometric similarity. For a given query descriptor, distances to all
other descriptors should be ranked according to geometric similarity. While most early
methods optimized an upper bound on the true ranking (known as the Essential loss [265])
by the ranking of just two or three descriptors at a time, many recent works optimize over
the ranking of the entire list at once [49, 266, 72].

Patch input-based convnet architectures initially were predominant. Jahrer et al. [50]
use the two-tower (Siamese) architecture [267, 268, 269] to learn a metric space for local
feature descriptors. Seven years later, MatchNet [47] and DeepCompare [96] also adopted
a Siamese architecture, but rather than learning explicit descriptors, treated the matching of
local patch pairs as learning the binary classification decision boundary between matching
and non-matching pairs, producing a similarity score between two patches. DeepCompare
[96] showed how to introduce multi-resolution patch input to the Siamese architecture.
DeepDesc [79] showed how a Siamese architecture could be trained with a contrastive loss.
Triplet Feature Network (TFeat) [30] explored the use of a triplet loss, and HardNet [64]
and L2-Net [84] formulate novel losses for patch metric learning. LIFT [95] trained dif-
ferentiable orientation and keypoint selection modules to precede the DeepDesc descriptor,
but learned them separately. LF-Net [68] was the first jointly learned detection and descrip-
tion method. Log-Polar [44] incorporates classical log-polar patch formulations [193, 44,
86] into a deep network.

Most recent descriptor methods no longer accept patch input, but rather process an
entire image as input, reusing activations for overlapping regions and increasing the re-
ceptive field. UCN [40] showed how to generate dense descriptor embeddings fully-
convolutionally and apply the contrastive loss to an entire image simultaneously. Su-
perPoint [42] showed how the contrastive loss could be computed with cosine-similarity
instead of Euclidean-distance-based similarity. IMIPS [39] ... D2-Net [43] pushed joint-
detection and description to the extreme with a single loss function that combines the triplet
loss and a repeatability loss acting on different axes of a 3d tensor of embeddings; metric
space margin violations are weighted by their detection confidence scores, such that low
detection weight is assigned to keypoints involved in incorrect correspondences. R2D2
[72] showed how dilated convolution could be used instead of strided convolution to create
fully-dense, non-subsampled pixel embeddings.

3.13.3 Survey of Outlier Rejection Algorithms

Classical approaches to putative 2d correspondence verification involve robust estima-
tion of epipolar geometry using RANdom SAmple Consensus (RANSAC) [169]. Like
RANSAC, MLESAC [201] samples putative solutions, but maximizes the likelihood of
the solution rather than just the number of inliers. LMedS [200] provides robustness to
outliers by minimizing the median of squared residuals instead of their sum.

Several have now shown that robust estimation can now be performed by using deep

75

learning. D-SAC [35] extended RANSAC to a differentiable variant by employing policy
gradients [270] in order to backpropagate through hard decisions (choosing a maximum
over hypotheses). Recent approaches to correspondence outlier filtering instead rely upon
estimating inlier probabilities per each putative correspondence using deep nets. Given that
putative correspondences represent an unordered set, most approaches to modern deep-
learning correspondence verification use the permutation-invariant PointNet architecture
[271].

The earliest such architectures [94, 70] used deep nets to estimate inlier probabilities
per correspondence, establish a weighted homogeneous least squares problem [272, 175],
and then employed the differentiability of eigendecomposition or SVD to differentiably
estimate the essential or fundamental matrix, respectively. While [94] required curriculum
learning (adding a cross-entropy loss early training), Dang et al. [41] showed how one need
not produce an Essential matrix at training time, but rather only the inlier probabilities;
a loss function of the ground truth eigenvector (essential matrix) and predicted weights
applied to the data matrix can perform a suitable optimization.

Several have extended these early architectures to use nearest-neighbor context and
effective normalization [202]. Neighbors-Mining Network (NM-Net) [102] utilizes local
affine structure from the Hessian-Affine detector [61] as side information to identify suit-
able neighbors. However, NM-Net discards the epipolar-geometric aspect of the problem
entirely, treating outlier rejection only as binary classification. Neural Nearest Neighbor
Networks (N3 Net) [69] adds an additional differentiable k-nearest neighbor layer. Order-
Aware Net [97] adds additional local context for each point.

NG-RANSAC [36] also learns a PointNet architecture, but trains it using policy gradi-
ents such that it parameterizes an inlier probability distribution over all putative correspon-
dences. Rather than using these inlier probabilities in a weighted least squares problem,
they exploit the distribution for biased sampling of high-probability hypotheses under a
limited budget. Unlike all others, SuperGlue [76] poses the problem as a optimal partial
assignment problem between two sets of local features, wherein a graph neural network
predicts the cost function of the differentiable assignment optimization.

3.14 Benchmark Evaluation Details

In this section, we provide more details about the evaluation of the D, DM, and DMV
stages.

3.14.1 Feature Detection Evaluation

The repeatability rate is the percentage of the total observed keypoints that are detected in
both images, and was first formally defined by [190]. In order to measure the detector’s
repeatability, i.e. ability to repeatedly fire on the same 2d structures in two view, we use
keypoint distance-based repeatability, i.e. the number of corresponding keypoints divided
by the number of covisible keypoints. While several works [61, 63, 77, 191] have instead
used an ellipse-overlap based repeatability metric, we prefer keypoint-distance-based re-
peatability [42, 273, 87] for a number of reasons. While ellipse-overlap accounts for the
scale of a feature, most deep networks are fully convolutional and no longer estimate patch-

76

or ellipse-based regions. In addition, with ellipses, if we set the scale to be larger, we arti-
ficially increase the ellipse IoU. Finally, the calculation of the closed form overlap area of
two ellipses is computationally demanding [274].

Lenc and Vedaldi [53, 191] note that with an increased number of features, it becomes
easier to match features by accident. Accordingly, repeatability may be made arbitrarily
large simply by detecting enough features, making repeatability biased for settings that
produce more features, as R2D2 demonstrates empirically [72]. Thus, just as they do, we
compute repeatability and matching score as the feature detection threshold is increased.
We compute repeatability with keypoint cardinality cutoffs of 150,300, 600, 1200, 2400
keypoints, in accordance with Quad-Net [77] and R2D2 [72]. If the method cannot produce
3000 keypoints (e.g. IMIPS can only support 128), we use the maximum amount the
method can produce at higher thresholds (analogous to a budget) for every single threshold
≥ 128. We sort the keypoints by score, and like R2D2 [72], find that repeatability increases
with more keypoints.

3.14.2 Detection, Description, and Matching (DM) Benchmark Evaluation

The M stage produces putative correspondences: correspondences commonly accepted or
hypothesized to be correct, but without final verification. The output of a user’s algorithm
should be verified (potentially geometrically) correspondences which can be presented for
evaluation.

Suitable Matching Schemes

For the M Stage, we seek to preserve the fidelity of the original authors’ implementation,
such that the descriptor and matching algorithm they prescribe is used in our benchmark.
In practice, we see three matching regimes employed: one-way nearest neighbor match-
ing with ratio test [22, 62, 25], mutual nearest neighbor matching [43, 275, 276], greedy
matching. However, in order to fairly evaluate the intermediate stage and in keeping with
Heinly et al., for those methods that use 1-way NN matching, we convert the matching
to a greedy NN matching scheme, such that a 1:1 constraint for putative matches is met;
Accordingly, a cluster of keypoints in a 3 pixel radius in the source image Ia cannot all
count as true positive matches with a single keypoint in the target image Ib.

While earlier benchmarks have not addressed the impact of matching algorithms on
the fairness of evaluation metrics, we believe this aspect should not be overlooked (see
Figure 3.18. Like Heinly et al. [195], we desire a 1:1 constraint for putative matches:
a cluster of keypoints in a 3 pixel radius in the source image Ia should not all count as
true positive matches with a single keypoint in the target image Ib. There are two ways to
achieve this: mutual nearest-neighbor constraints (which not all methods use), or a greedy
matching strategy. For all methods that use mutual nearest-neighbor (NN) matching, we
proceed with their implementation; for others, such as SIFT that allow multiple matches per
keypoint, we convert their matching to a greedy NN matching scheme. We briefly review
how each matching algorithm operates on computed distance matrix ∈ Rma×mb between
keypoints in Ia and keypoints in Ib:

One-way nearest neighbor matching [22, 62, 25]: Does not provide 1:1 putative

77

matches. Proceed along row dimension, and select the argmin of each row. A single column
may be selected for multiple rows. An optional ratio test [22] is performed afterwards.

Mutual nearest neighbor matching [43, 275, 276]: Provides 1:1 putative matches
(when points are unique). Traverse each row i. The argmin j of row i is selected, and then
the argmin î is selected over the entire column j. If i = î, then the row and column are
mutual nearest neighbors, and a match is made.

Greedy matching: Provides 1:1 putative matches. Iteratively choose the lowest (i, j)
entry as a match, and remove row i and column j from consideration, and proceed, until no
entries remain.

Matching Evaluation Metrics

For homography-based datasets such as HP-Sequences [196], Matching-Score (M-Score)
and MMA have become the de facto gold standard for evaluating detector-descriptor pairs
[43, 31, 95]. However, M-Score suffers from a large number of problems, as we will
illustrate. M-Score was originally defined by [63] as the ratio between the number of
correct matches and the smaller number of detected features in the pair of images. Heinly
et al. [195] modified the denominator to include only the covisible number of features
and provided a decomposition of M-Score into putative match ratio (PMR) and inlier ratio.
PMR is the quantity of features useful for generating matches:

PMR =
#Putative Matches

#Covisible Features Proposed
(3.16)

and Inlier Ratio measures the precision of matching and the descriptor’s discriminative
ability as

InlierRatio =
#Correct Matches
#Putative Matches

(3.17)

Inlier Ratio is computed using the standard precision formula TP/(TP+FP), where a true
positive match has small deviation from pixel-pixel mapping (homography) [62] or pixel-
to-line mapping (epipolar geometry) [40].

The product of the two quantities above constitutes the matching score:

M-Score =
#Correct Matches

#Covisible Features Proposed
= PMR · InlierRatio (3.18)

In short, this is the ratio of ground-truth correspondences that can be recovered by the two
detection-description stages, over the number of features proposed by the detector in the
shared viewpoint region, per LIFT [95].

Matching-Score (M-Score) The shared viewpoint constraint is intuitive: a tiny amount
of the image is mutually visible (co-visible), the huge number of features in both images
(but few shared) shouldn’t hurt performance. When considering two views of the same
scene, with an identical viewpoint (covisibility of all points in the scene is 100%), and when
equal number of keypoints are detected in both images, this metric works as expected. In
reality, such a scenario arises rarely.

Unfortunately, this metric clearly does not address the case when a detector proposes

78

(a) PMR=4/4, Prec=4/4, M-Score=1 (b) PMR=5/1, Prec=1/5, M-Score=1

(c) PMR=1/7 or 1/1, Prec=1, M-Score=1/7 or 1/1 (d) PMR=6/1 or 6/6, Prec=1/6, M-Score=1 or 1/6

Figure 3.18: Different scenarios where the Matching-Score achieves 100%, but clearly the
feature matching is of poor quality. (a) w/o 1:1 matching constraint, with same viewpoint,
same # covisible keypoints. (b) w/ 1:1 matching constraint, different viewpoint, same #
covisible keypoints. (c) w/ 1:1 matching constraint, same viewpoint, differing # keypoints.
(d) w/ 1:1 matching constraint, different viewpoint, differing # keypoints. In (a-b), we
have an equal number of ground truth correspondences and keypoints points in the shared
viewpoint region, yielding a Matching-Score of 100%. (b) illustrates that M-Score is not an
ideal metric. In (c-d) the Matching-Score is simply undefined, if a minimum of # covisible
keypoints is chosen, the M-Score would also achieve 100%.

different number of features in a shared region (See Figure 3.18). Even if a standard num-
ber of keypoint detection are thresholded in every image, we have no guarantees about the
amount in any covisible region. When ma keypoints are detected in the shared viewpoint
region in image Ia, and mb keypoints in the shared region of image Ib, it becomes unclear
which should serve as the denominator. This arises from an ambiguity if PMR is computed
from Ia → Ib, or Ib → Ia, which is not defined. Ideally, the metric should be symmetric
to order. Three such symmetric functions are possible for the denominator – minimum,
average,or maximum, measuring best-case, average-case, and worst-case scenarios. We
compute the latter two metrics.
Matching Coverage Fraction (MCovFrac) As discussed in the main paper, MCovFrac
Measures the coverage of an image by correctly matched key points. A coverage mask is
generated from true positive keypoints, each one adding a disk of fixed radius (25px) [26,
87]. However, we slightly modify the original definition – instead of measuring MCov-
Frac as a fraction of the image covered by the coverage mask, we evaluate only over the
co-visible region. Although this amounts to multiplication of the prior metric only by a
constant, it modifies the score such that a dense distribution of correct feature matches pro-
vides a matching coverage fraction of exactly 1. Thus, the range is resolved to [0, 1], as
desired.

DM Pairings Several subtle challenges arise when testing detector/descriptor pairings.
First, when combining scale variant detectors (e.g. GLAMPoints, SuperPoint) with scale-
invariant descriptors (SURF, SIFT), it is not obvious which scale to provide, as these deep

79

detectors estimate no such scale. Heinly et al. [195] noted this issue in their own bench-
mark: combining a scale invariant descriptor with a detector that was not scale invariant,
and combining detectors and descriptors that are both scale invariant. In both such cases,
[195] discarded the scale information, and computed the descriptor at the native image res-
olution. We use a default scale of 2. Second, it is not always possible to preserve the fidelity
of the author’s original method; any method could be designed for a particular input image
size. In order to provide fair timing comparisons, we disregard the intended image size and
evaluate all methods at a common resolution.

3.14.3 Additional DMV Evaluation Details

Several constraints exists when selecting a suitable dataset to measure the entire system’s
performance. As discussed in the main paper, we use YFCC-100M [208, 207]. Homography-
based datasets are not suitable for the verification benchmark for a number of reasons.
First, their scenes generally do not have frames from wide baselines; while planar scenes
can be taken from wide baselines, camera rotations about a fixed camera center or static
webcams (a predominant fixture of HP-Sequences) would have a very narrow baseline.
Second, rather than involving epipolar geometry estimation, the model fitting step would
involve homography estimation, a task which the majority of deep verification methods do
not perform and do not provide pre-trained models for. Indeed, deep homography predic-
tion models such as MagicWarp [212, 213] are the rare exception for verification and their
pre-trained models are not publicly available. Third, these homographies are not emblem-
atic of the real 3D world. Thus, while HP-Sequences [196] is our preferred dataset for
the Detection-Description tasks, we exclude it from our verification task. In addition, HP-
Sequences does not provide camera intrinsic matrices, which prevents us from normalizing
the image coordinates which several deep methods require [94, 69].

We exclude several verifiers from our benchmark, as they cannot be used in an “all-
purpose” fashion. For example, pre-trained models publicly available for [70] require the
use of Difference of Gaussians (DoG) keypoint geometry as side information. NM-Net
[102] requires Hessian-Affine keypoint geometry as side information. Accordingly, we
cannot pair them with arbitrary detection-descriptor pairs, and we exclude them from our
benchmark. However, EigFree [41], OA-Net [97], LearnedCorr [94], N3 Net [69] , and
NG-RANSAC [36] can be run in a general-purpose fashion, even if trained with input
from a specific detector-descriptor pairing. RANSAC’s [169] fully general nature can be
considered a strength in our benchmark framework.

3.15 Implementation Details

In this section, we provide information regarding the origin of source code for each method’s
implementation.

Implementations of the following classical detectors and/or descriptors were mainly
obtained from OpenCV 4.2, compiled from source:

• BRIEF [38] (OpenCV)

• BRISK [54] (OpenCV)

80

• ConvOpt [78] (OpenCV)

• DoG [22] (OpenCV)

• FAST [73] (OpenCV)

• Harris-Laplace (OpenCV)

• KAZE [25] (OpenCV)

• MSER (OpenCV)

• ORB [75] (OpenCV)

• PCA-SIFT [51]
https://github.com/ahojnnes/local-feature-evaluation

• SIFT [21, 22] (OpenCV)

• SURF [32] (OpenCV)

• SIFT [21, 22] (VLFeat)

Implementations of the following deep convnet-based detectors and descriptors were ob-
tained from the original authors:

1. ContextDesc [57] https://github.com/lzx551402/contextdesc

2. D2-Net [43] https://github.com/mihaidusmanu/d2-net

3. CovDet/DDet [53] https://github.com/lenck/ddet

4. DeepDesc [79] https://github.com/etrulls/deepdesc-release

5. GLAMPoints [87] https://gitlab.com/retinai sandro/glampoints

6. IMIPS [39] https://github.com/uzh-rpg/imips open

7. Key.Net [31] https://github.com/axelBarroso/Key.Net

8. LIFT (Tensorflow) [95] https://github.com/cvlab-epfl/tf-lift

9. LF-Net [68] https://github.com/vcg-uvic/lf-net-release

10. OpenUCN [40, 197] https://github.com/chrischoy/open-ucn

11. R2D2 [72] https://github.com/naver/r2d2

12. Spreadout HardNet [99] https://github.com/ColumbiaDVMM/hardnet

13. SuperPoint [42]
https://github.com/MagicLeapResearch/SuperPointPretrainedNetwork

81

https://github.com/ahojnnes/local-feature-evaluation
https://github.com/lzx551402/contextdesc
https://github.com/mihaidusmanu/d2-net
https://github.com/lenck/ddet
https://github.com/etrulls/deepdesc-release
https://gitlab.com/retinai_sandro/glampoints
https://github.com/uzh-rpg/imips_open
https://github.com/axelBarroso/Key.Net
https://github.com/cvlab-epfl/tf-lift
https://github.com/vcg-uvic/lf-net-release
https://github.com/chrischoy/open-ucn
https://github.com/naver/r2d2
https://github.com/ColumbiaDVMM/hardnet
https://github.com/MagicLeapResearch/SuperPointPretrainedNetwork

14. TFeat [30] https://github.com/vbalnt/tfeat

15. TransformCovariant [98]
https://github.com/ColumbiaDVMM/Transform Covariant Detector

The implementations of HarrisNet and SIFTNet are described in subsection 3.15.1 and
subsection 3.15.2 of this appendix.

The implementations of the following putative correspondence verification algorithms
were obtained from the following sources:

• Eig-Free [41] https://github.com/Dangzheng/Eig-Free-release

• Learned-Corr [94]
https://github.com/vcg-uvic/learned-correspondence-release

• LMEDS [200] (OpenCV)

• MLESAC [201]
https://github.com/vcg-uvic/learned-correspondence-release/blob/master/tests.py

• NG-RANSAC [36] https://github.com/vislearn/ngransac

• N3 Net [69] https://github.com/visinf/n3net/

• Order-Aware Net [97] https://github.com/zjhthu/OANet

• RANSAC [169] (OpenCV)

3.15.1 HarrisNet Implementation Details

While modern convnet-based feature detectors may seem a far step away from the Harris
Corner detector, Harris [186] can be implemented as a convnet, which we entitle HarrisNet.
Harris provides information about the SSD curvature with determinant, trace, and mixed
derivatives (elementwise multiplication of channels), which a deep network could learn to
approximate with convolutions, non-linearities, and pooling over many layers; However,
such heavy computation could be considered wasteful when simple, closed-form expres-
sions exist and can be modeled with shallow architectures.

We implement HarrisNet, a shallow 5-layer architecture, with batch size N input:

1. Image Gradient Layer: Compute image intensity gradient [Ix, Iy]
T using 3× 3 Sobel

filters. With this convolution, we expand the grayscale image to a 2-channel feature
map, RN×1×H×W → RN×2×H×W .

2. Channel Product Layer, returns the three products I2
x, I

2
y and IxIy between the two

channels Ix, Iy of the previous layer. Lifts the feature map to three channels RN×2×H×W →
RN×3×H×W .

82

https://github.com/vbalnt/tfeat
https://github.com/ColumbiaDVMM/Transform_Covariant_Detector
https://github.com/Dangzheng/Eig-Free-release
https://github.com/vcg-uvic/learned-correspondence-release
https://github.com/vcg-uvic/learned-correspondence-release/blob/master/tests.py
https://github.com/vislearn/ngransac
https://github.com/visinf/n3net/
https://github.com/zjhthu/OANet

3. Second Moment Matrix Layer Convolution with a Gaussian kernel returns channels
containing the three values required for the Second Moment Matrix at each pixel:

Sxx = Gk(σ) ∗ I2
x,

Syy = Gk(σ) ∗ I2
y ,

Sxy = Gk(σ) ∗ IxIy
(3.19)

where ∗ represents convolution, and Gk(σ) ∈ Rk×k represents a Gaussian kernel.
The output dimension is unchanged from the input dimension RN×3×H×W

4. Corner Response Layer computes the corner response map R over the entire image,

R = det(M)− α(tr(M))2 M =

[
Sxx Sxy
Sxy Syy

]
(3.20)

converting RN×3×H×W → R
N×1×H×W

5. NMS Layer - performs non-maximum suppression to keep only the strongest corners
in local regions. RN×1×H×W . We utilize max pooling with a 7× 7 kernel. This will
fill every entry in the subgrids with the maximum nearby value. By binarizing the
image according to locations that are equal to their maximum, and and multiplying
the binary image with the cornerness response values, we can achieve NMS.

After NMS, the top K 2-d keypoint locations {xk}Kk=1 are returned, ranked by corner re-
sponse.

3.15.2 SIFTNet Implementation Details

Convnet patch-embeddings are now considered more powerful descriptors than SIFT, but
a rotation-variant, scale-variant (without trilinear histogram interpolation) SIFT can be im-
plemented as a single feedforward pass through a 5-layer fully convolutional convnet. We
extend several layers of Densely-Computed SIFT (DSIFT) [194] to a network which we
entitle SIFTNet. These layers are implemented as follows, producing feature map tensors
with indicated sizes:

1. Image Gradient Layer: Compute image intensity gradient [Ix, Iy]
T using 3× 3 Sobel

filters. With this convolution, we expand the grayscale image to a 2-channel feature
map, RN×1×H×W → RN×2×H×W .

2. Orientation Projection Layer: Geometrically compute gradient response within each
of 8 orientation bins. Rather than decoding the gradient orientation at each pixel with
tan−1(Iy/Ix), we project each gradient vector∇I onto eight 2-d orientation basis vec-
tors vi around the unit circle, corresponding to angles θi ∈ {π/8, 3π/8, . . . , 13π/8, 15π/8},
i.e. gradients in [0, π/4) have greatest projection onto the first orientation vector. In
order to later weight the best-aligned orientation vector with the gradient’s norm, we
also create two identity filters that copy over Ix, Iy to the next layer. With this 1× 1
convolution, we lift the feature map from RN×2×H×W → RN×10×H×W .

83

3. Parameter-Free Histogram Layer: Compute the weighted histogram using a non-
linearity. Computing a histogram requires knowing which basis bin to increment;
although an argmax along the channel dimension is one non-differentiable way
of doing so, a differentiable alternative is a softmax. Along the first 8 channel di-
mensions, at each pixel we have a vector of cosine similarity values c such that
ci = vi · ∇I = cos(θvi,∇I)‖vi‖‖∇I‖, and since ‖vi‖ = 1, we seek the largest value
ci = cos(θvi,∇I)‖∇I‖ along the channel dimension at each pixel. The per-pixel
histogram h ∈ R8 can be computed as

h = ‖∇I‖ · softmax
(

max
{

0, c− cos(π/8)‖∇I‖
}

1/τ
)

(3.21)

If the gradient vector falls within a basis vector v)i’s bin, it must lie within π/8 on ei-
ther side. Subtraction by cos(π/8)‖∇I‖ from all cosine similarities ensures that if any
value falls below cos(π/8), it could not lie within vi’s bin with arc π/4. By applying
the ReLU, all elements outside of the appropriate bin will be clamped to zero, and the
only entry left will have a positive value. Such a positive value can be driven back up
to 1 by a low-temperature softmax, effectively applying hard clamping to 0/1 values.
A vectorized implementation will elementwise multiply a 4d binary occupancy ten-
sor, one-hot at the appropriate orientation bin, with the per-pixel gradient magnitude,
increment its histogram bin by a certain weight. This layer returns a per-pixel 8-d
histogram RN×10×H×W → RN×8×H×W .

4. Sub-grid Accumulation Layer: Accumulate per-pixel histograms among 4 × 4 sub-
grids by group convolution (with 8 groups), meaning convolution with a 4×4 kernel,
filled with unit weights, to sum 8-d vectors along the height,width dimensions. Di-
mensions are preserved RN×8×H×W → RN×8×H×W .

5. Feature Stacking Layer: If every pixel represents a keypoint, we must pull out the
8-d histogram at the center of each 4 × 4 subgrid (representing subgrid summary
statistic), and stack them. This can be accomplished as à trous (dilated) convolution
with 128 filter banks, each with a different one-hot single cell inside a 8-channel,
4× 4 kernel. We convert the feature map from RN×8×H×W → RN×128×H×W .

6. `2-normalization Implemented by a standard local response normalisation layer to
bring each pixelwise descriptor to unit length [194].

After passing images through the network, we produce densely populated 128-d feature
vectors at each pixel. Postprocessing is limited to raising each feature vector to power-law
normalization, i.e. raising each descriptor a power less than 1, as in RootSIFT [28].

3.16 HPSequences Qualitative Results

3.17 Tables of Results

In the earlier sections of this chapter, we provided only visual representations on results on
five main benchmarks. We now provide tables of quantitative results on the hD (Table 3.6,

84

DoG+ConvOpt BRISK Key.Net+SpreadOutHardNet SIFT FAST+SpreadOutHardNet DoG+OpenUCN

Figure 3.19: Performance of six DM systems on HPSequences. Rows 1-2: Woman, Rows
3-4: Coffee House, Rows 5-6: Autannes, Rows 7-8: Objects. The keypoints are randomly
subsampled by 8.

85

SIFT R2D2 SuperPoint D2Net LIFT SURF+BRIEF

Figure 3.20: Performance of six DM systems on HPSequences. Rows 1-2: Woman, Rows
3-4: Coffee House, Rows 5-6: Autannes, Rows 7-8: Objects. The keypoints are randomly
subsampled by 8.

86

Detector Rep @150 Rep @300 Rep @600 Rep @1200 Rep @2400

HARRIS 0.54 0.58 0.58 0.59 0.59
HARRISNET 0.55 0.55 0.55 0.56 0.55
KEY.NET 0.54 0.55 0.56 0.56 0.56
FAST 0.52 0.57 0.60 0.63 0.64
KAZE 0.49 0.51 0.51 0.52 0.52
BRISK 0.49 0.53 0.55 0.56 0.57
SUPERPOINT 0.57 0.59 0.59 0.59 0.59
ORB 0.48 0.52 0.52 0.52 0.52
GLAMPOINTS 0.51 0.52 0.53 0.54 0.54
SURF 0.48 0.49 0.50 0.50 0.50
DOG 0.40 0.41 0.42 0.43 0.43
BRIEF 0.42 0.42 0.42 0.42 0.42
CONTEXTDESC 0.37 0.38 0.39 0.40 0.40
LF-NET 0.17 0.29 0.40 0.45 0.46
MSER 0.55 0.56 0.56 0.57 0.58
D2-NET 0.38 0.39 0.40 0.41 0.41
LIFT 0.33 0.34 0.35 0.35 0.35
HARRIS-LAPLACE 0.42 0.45 0.46 0.47 0.47
R2D2 0.20 0.29 0.39 0.48 0.52

Table 3.6: Results of hD - illumination variant scenes (HP-Sequences) as a function of the
number of keypoints (150, 300, 600, 1200, 2400). The results are sorted by the repeatability
@ 150 keypoints on the combined viewpoint variant and illumination variant scenes. For
those methods that can only produce a limited number of keypoints, we consider the cutoff
threshold a budget, and copy those numbers to the rightmost columns. (Corresponds to
Figure 3.3 of section 3.3).

Table 3.7), wD (Table 3.8), hDM (Table 3.9,Table 3.10), wDM (Table 3.11), and wDMV
(Table 3.12). The full tables are too large to display here, but are available in CSV format
at https://github.com/deep-front-ends/deep-front-ends.

87

https://github.com/deep-front-ends/deep-front-ends

Detector Rep @150 Rep @300 Rep @600 Rep @1200 Rep @2400

HARRIS 0.58 0.61 0.63 0.62 0.60
HARRISNET 0.55 0.56 0.54 0.54 0.54
KEY.NET 0.53 0.54 0.53 0.53 0.53
FAST 0.53 0.57 0.60 0.63 0.65
KAZE 0.48 0.51 0.54 0.55 0.55
BRISK 0.48 0.51 0.54 0.56 0.57
SUPERPOINT 0.38 0.41 0.42 0.42 0.42
ORB 0.45 0.48 0.48 0.48 0.48
GLAMPOINTS 0.39 0.43 0.43 0.43 0.43
SURF 0.42 0.44 0.45 0.45 0.45
DOG 0.43 0.45 0.47 0.47 0.48
BRIEF 0.35 0.34 0.34 0.34 0.34
CONTEXTDESC 0.36 0.40 0.44 0.46 0.46
LF-NET 0.17 0.29 0.40 0.45 0.46
MSER 0.33 0.35 0.36 0.36 0.37
D2-NET 0.22 0.24 0.28 0.30 0.30
LIFT 0.16 0.17 0.17 0.17 0.17
HARRIS-LAPLACE 0.03 0.05 0.08 0.09 0.10
R2D2 0.09 0.15 0.26 0.39 0.51

Table 3.7: Results of hD - viewpoint variant scenes (HP-Sequences) as a function of the
number of keypoints (150, 300, 600, 1200, 2400) (Figure 3.3(b)). The results are sorted
by the repeatability @ 150 keypoints on the combined viewpoint variant and illumination
variant scenes. For those methods that can only produce a limited number of keypoints, we
consider the cutoff threshold a budget, and copy those numbers to the rightmost columns.
(Corresponds to Figure 3.3(b) of section 3.3).

88

Detector Rep @150 Rep @300 Rep @600 Rep @1200 Rep @2400

HARRISNET 0.61 0.68 0.68 0.68 0.68
SUPERPOINT 0.59 0.59 0.59 0.59 0.59
HARRIS 0.58 0.65 0.72 0.73 0.73
CONTEXTDESC 0.57 0.64 0.68 0.68 0.68
KEY.NET 0.57 0.64 0.64 0.64 0.64
SURF 0.57 0.64 0.69 0.69 0.69
D2-NET 0.57 0.63 0.68 0.68 0.68
LIFT 0.56 0.56 0.56 0.56 0.56
GLAMPOINTS 0.55 0.55 0.55 0.55 0.55
FAST 0.54 0.61 0.66 0.70 0.72
KAZE 0.53 0.59 0.60 0.60 0.60
BRISK 0.52 0.60 0.64 0.66 0.66
LF-NET 0.52 0.58 0.65 0.66 0.66
DOG 0.51 0.60 0.66 0.66 0.66
R2D2 0.49 0.57 0.63 0.68 0.68
BRIEF 0.47 0.47 0.47 0.47 0.47
ORB 0.43 0.51 0.51 0.51 0.51
HARRIS-LAPLACE 0.34 0.41 0.44 0.44 0.44
MSER 0.33 0.35 0.35 0.35 0.35

Table 3.8: Results of wD (YFCC-100M) as a function of the number of keypoints (150,
300, 600, 1200, 2400) (Figure 3.3(c)). For those methods that can only produce a limited
number of keypoints, we consider the cutoff threshold a budget, and copy those numbers
to the rightmost columns. (Corresponds to Figure 3.3(c) of section 3.3).

89

Detector+Descriptor UIF-UB PMR Inlier M-Coverage M-Score
Ratio Fraction

FAST+OPENUCN 0.99 1.00 0.32 0.70 0.27
FAST+SPREADOUT-HARDNET 0.98 0.66 0.69 0.72 0.41
CONTEXTDESC 0.98 0.65 0.58 0.62 0.33
HARRIS+SPREADOUT HARDNET 0.97 0.60 0.52 0.75 0.34
SURF+SPREADOUT HARDNET 0.97 0.61 0.57 0.65 0.32
FAST+CONVOPT 0.97 0.64 0.63 0.69 0.37
R2D2 0.97 0.59 0.57 0.78 0.36
DOG+OPENUCN 0.97 1.00 0.37 0.60 0.31
HARRISNET+SPREADOUT-HARDNET 0.96 0.66 0.57 0.67 0.38
HARRIS+OPENUCN 0.96 1.00 0.22 0.73 0.22

...
GLAMPOINTS+SIFTNET 0.80 0.62 0.45 0.53 0.30
SUPERPOINT 0.80 0.75 0.61 0.46 0.43
GLAMPOINTS+SPREADOUT-HARDNET 0.79 1.00 0.28 0.52 0.28
MSER+OPENUCN 0.79 1.00 0.33 0.27 0.26
DOG+SIFT 0.79 0.21 0.71 0.43 0.15

...
MSER+SURF 0.21 0.10 0.47 0.10 0.04
MSER+TFeat 0.10 0.09 0.36 0.08 0.03
KAZE 0.00 0.36 0.01 0.02 0.00

Table 3.9: Results of the hDM (HP-Sequences) benchmark (corresponding to Figure 3.4(a)
of section 3.4), sorted by the Usable Image Fraction-Upper Bound for Homography es-
timation. We show only the first 10 methods, and 8 representative baselines, from 101
methods.

90

Detector+Descriptor Inlier Ratio (All) Inlier Ratio (V) Inlier Ratio (I)

SIFT 0.85 0.84 0.85
GLAMPOINTS+TFEAT 0.75 0.69 0.81
GLAMPOINTS+SIFT 0.75 0.68 0.82
HARRISNET+TFEAT 0.75 0.70 0.80
GLAMPOINTS+PCA-SIFT 0.75 0.67 0.82
FAST+SIFT 0.72 0.61 0.84
FAST+PCA-SIFT 0.72 0.62 0.83
HARRIS+TFEAT 0.72 0.67 0.78
HARRISNET+SIFT 0.71 0.59 0.84
DOG+SIFT 0.71 0.67 0.75
DOG+PCA-SIFT 0.71 0.66 0.75

Table 3.10: Results of the hDM (HP-Sequences) benchmark (corresponding to Figure 3.4
(b) of section 3.4), sorted by the inlier ratio over all the scenes. V and I denote the viewpoint
and illumination variant scenes from HP-Sequences.

91

Detector+Descriptor UIF-UB PMR Inlier Ratio Rank Rank
(UIF-UB) (Inlier Ratio)

FAST+OPENUCN 1.00 1.00 0.16 1 64
CONTEXTDESC 0.98 0.58 0.38 2 20
DOG+OPENUCN 0.97 1.00 0.22 3 48
FAST+SIFTNET 0.97 0.57 0.27 4 38
FAST+SPREADOUTHARDNET 0.96 0.55 0.44 5 12
FAST+CONVOPT 0.96 0.52 0.36 6 24
FAST+ROOTSIFT 0.95 0.46 0.41 7 15
SURF+OPENUCN 0.95 1.00 0.16 8 61
HARRIS+OPENUCN 0.93 1.00 0.10 9 76
BRISK 0.92 0.65 0.18 10 58
R2D2 0.92 0.48 0.32 11 29
HARRIS+SPREADOUTHARDNET 0.92 0.51 0.30 12 31
SURF+SPREADOUTHARDNET 0.91 0.52 0.37 13 22
DOG+SPREADOUTHARDNET 0.91 0.51 0.36 14 23
DOG+CONVOPT 0.90 0.51 0.26 15 40
D2-NET 0.89 0.50 0.32 16 21
DOG+ROOTSIFT 0.89 0.49 0.29 17 34
LF-NET 0.89 0.45 0.23 18 44
SURF+CONVOPT 0.88 0.48 0.32 19 27
HARRIS+ROOTSIFT 0.87 0.55 0.16 20 65
HARRIS+SIFTNET 0.87 0.48 0.18 21 59

...
SIFT 0.65 0.09 0.73 32 1
DOG+SIFT 0.44 0.07 0.58 40 5
DOG+PCA-SIFT 0.43 0.07 0.58 41 6
HARRIS+SIFT 0.38 0.04 0.43 43 16
HARRIS+TFEAT 0.38 0.03 0.60 44 3
HARRIS+PCA-SIFT 0.37 0.04 0.42 45 17
SURF+SURF 0.33 0.05 0.57 48 7
HARRISNET+TFEAT 0.29 0.08 0.62 50 2
SURF+TFEAT 0.26 0.04 0.56 54 4
DOG+TFEAT 0.22 0.04 0.51 55 8
FAST+PCA-SIFT 0.19 0.01 0.48 57 11
FAST+SIFT 0.19 0.01 0.50 58 10
HARRISNET+SIFT 0.18 0.07 0.45 59 13
HARRISNET+PCA-SIFT 0.18 0.07 0.44 60 14
KEY.NET+TFEAT 0.11 0.04 0.50 63 9
SURF+SIFT 0.07 0.01 0.40 65 19
SURF+PCA-SIFT 0.06 0.01 0.40 67 18

Table 3.11: Results of the wDM (YFCC-100M) benchmark (Figure 3.5). Top ranking
methods by UIF-UB and Inlier Ratio are shown in the table with their ranks. Results are
sorted by their UIF-UB score. 92

D+M+V UIF (E-matrix) UIF (F-matrix)

DoG+ConvOpt+OA-Net 0.42 0.39
DoG+RootSIFT+OA-Net 0.42 0.39
DoG+OpenUCN+OA-Net 0.33 0.33
DoG+SIFTnet+OA-Net 0.29 0.25
Key.Net+SIFTnet+OA-Net 0.26 0.16
HarrisNet+RootSIFT+OA-Net 0.26 0.17
BRISK+OA-Net 0.26 0.23
SIFT+RANSAC-0.5px 0.26 0.16
Key.Net+SpreadOutHardNet+OA-Net 0.25 0.18
SIFT+LMedS 0.24 0.20

...
SIFT+RANSAC-3px 0.14 0.11
SIFT+NG-RANSAC 0.11 0.04
FAST+SpreadOutHardNet+NG-RANSAC 0.08 0.05
HarrisNet+TFeat+LMedS 0.06 0.05
FAST+SpreadOutHardNet+Eig-Free 0.04 0.04
SURF+OpenUCN+Eig-Free 0.04 0.04
DoG+SpreadOutHardNet+Learned-Corr 0.04 0.04
HarrisNet+SpreadOutHardNet+Learned-Corr 0.04 0.03
SURF+ConvOpt+Nˆ3-Net 0.04 0.03
R2D2+Nˆ3-Net 0.04 0.04
Harris+SIFT+RANSAC-3px 0.03 0.02
FAST+RootSIFT+MLESAC 0.00 0.00
FAST+ConvOpt+MLESAC 0.00 0.00

Table 3.12: Results of the wDMV (YFCC-100M) benchmark (Figure 3.10), sorted by
Usable Image Fraction for Essential Matrix (UIF E-Matrix).

93

CHAPTER 4
VALIDATING OUTDOOR HD MAPS

In this chapter, we turn from a focus on building and validating geometric maps to a fo-
cus on validating semantic maps, especially in the self-driving domain. High-definition
(HD) map change detection is the task of determining when sensor data and map data
are no longer in agreement with one another due to real-world changes. We collect the
first dataset for the task, which we entitle the Trust, but Verify (TbV) dataset, by mining
thousands of hours of data from over 9 months of autonomous vehicle fleet operations. We
present learning-based formulations for solving the problem in the bird’s eye view and ego-
view. Because real map changes are infrequent and vector maps are easy to synthetically
manipulate, we lean on simulated data to train our model. Perhaps surprisingly, we show
that such models can generalize to real world distributions. The dataset, consisting of maps
and logs collected in six North American cities, is one of the largest AV datasets to date
with more than 7.8 million images. We make the data1 available to the public, along with
code and models2 under the the CC BY-NC-SA 4.0 license.

4.1 Problem Introduction

We live in a highly dynamic world, so much so that significant portions of our environment
that we assume to be static are, in fact, in flux. Of particular interest to self-driving vehi-
cle development is changing road infrastructure. Road infrastructure is often represented
in an onboard map within a geo-fenced area. Geo-fenced areas have served as an opera-
tional design domain for self-driving vehicles since the earliest days of the DARPA Urban
Challenge [277, 278, 279].

One way such maps could be used is to constrain navigation in all free space to a
set of legal “rails” on which a vehicle can travel. Maps may also be used to assist in
planning beyond the sensor range and in harsh environments. Besides providing routes for
navigation, maps can ensure that the autonomous vehicle (AV) follows local driving laws
when navigating through a city. They embody a representation of the world that the AV
can understand, and contain valuable information about the environment.

However, maps assume a static world, an assumption which is violated in practice;
although these changes are rare, they certainly occur and will continue to occur, and can
have serious implications. Level 4 autonomy is defined as sustained performance by an
autonomous driving system within an operational design domain, without any expectation
that a user will respond to a request to intervene [280]. Thus, constant verification that
the represented world, expressed as a map, matches the real world, a task which we name
map change detection, is a clear requirement for L4 autonomy. Because dedicated mapping
vehicles cannot traverse the world frequently enough to keep maps up to date [281], high-
definition (HD) maps become “stale,” with out of date information. If maps are used as
hard priors, this could lead to confident but incorrect assumptions about the environment.

1Data is available at Argoverse.org.
2Code and models are available at github.com/johnwlambert/tbv.

94

https://www.argoverse.org
https://github.com/johnwlambert/tbv

In this work, we present the first dataset for urban map change detection based on
actual, observed map changes, which we name TbV. Not only does no comparable dataset
exist, there also has not even been an attempt to characterize how often map changes occur
and what form they take. Collecting data for map change detection is challenging since
changes occur randomly and infrequently. In addition, in order to use data corresponding
to real changes to train and evaluate models, identified changes must be manually localized
in both space and time. Concurrent work [282] presents qualitative results on a handful
of real-world map changes, but depends upon synthetic test datasets for all quantitative
evaluation.

HD map change detection is a difficult task even for humans, as it requires the careful
comparison of all nearby semantic entities in the real world with all nearby map elements
in the represented world. In an urban scene, there can be dozens of such entities, many
with extended shapes. The task is sufficiently difficult that several have even questioned
the viability of HD maps for long-term autonomy, opting instead to pursue HD-map-free
solutions [283].

We concentrate on changes to two types of semantic entities – lane geometry and pedes-
trian crosswalks. We define the task as correctly classifying whether a change occurred at
evenly spaced intervals along a vehicle’s trajectory.

The task itself is relatively new, especially since HD maps were not made publicly
available until the release of the Argoverse, nuScenes, Lyft Level5, and Waymo Open Mo-
tion datasets [4, 284, 285, 286]. We present the first entirely learning-based formulation
for solving the problem in either a bird’s eye view (BEV), as well as a new formulation for
the ego-view (i.e. front camera frustum), eliminating several heuristics that have defined
prior work. We pose the problem as learning a representation of maps, sensor data, or the
combination of the two.

Our contributions are as follows:

• We present a novel AV dataset, with 799 vehicle logs in our train and synthetic vali-
dation splits, and over 200 vehicle logs with real-world map-changes in our real val
and test splits.

• We implement various learning-based approaches as strong baselines to explore this
task for the first time with real data. We also demonstrate how gradients flowing
through our networks can be leveraged to localize map changes.

• We analyze the advantages of various data viewpoint by training both models oper-
ating on the ego-view and others on a bird’s eye view.

• We show that synthetic training data is useful for detecting real map changes. At the
same time, we identify a considerable domain gap between synthetic and real data,
with significant performance consequences.

4.2 Related Work

HD Maps. HD maps include lane-level geometry, as well as other geometric data and se-
mantic annotations [287, 288, 289, 2, 290, 4, 105, 10, 291, 6, 292, 7, 13, 11, 12]. The Argo-
verse [4], nuScenes [284], Lyft Level 5 [285], and Waymo Open Motion [286] datasets are

95

the only publicly available sources of HD maps today, all with different semantic entities.
Argoverse [4] includes a ground surface height map, rasterized driveable area, lane center-
line geometry, connectivity, and other attributes. nuScenes [284] followed by also releasing
centerline geometry, pedestrian crossing polygons, parking areas, and sidewalk polygons,
along with rasterized driveable area. Lyft Level 5 [285] later provided a dataset with many
more map entities, going beyond lane marking boundaries, crosswalks to provide traffic
signs, traffic lights, lane restrictions, and speed bumps. Most recently, the Waymo Open
Motion Dataset [286] released motion forecasting scenario data with associated HD maps.
Their yet-richer HD map representation includes crosswalk polygons, speed bump poly-
gons, lane boundary polylines with marking type, lane speed limits, lane types, and stop
sign positions and their corresponding lane associations; their map data is most comparable
with our HD maps.
HD Map Change Detection. HD map change detection is a recent problem, with limited
prior work. Pannen et al. [293] introduce one of the first approaches; two particle filters
are run simultaneously, with one utilizing only Global Navigation Satellite System (GNSS)
and odometry measurements, and the other filter using only odometry with camera lane
and road edge detections. These two distributions and sensor innovations are then fed to
weak classifiers. Other prior work in the literature seeks to define hand-crafted heuristics
for associating online lane and road detections with map entities [294, 112, 281]. These
methods are usually evaluated on a single vehicle log [294].

Instead of comparing vector map elements, Ding et al. [114] use 2d BEV raster repre-
sentations of the world; first, IMU-motion-compensated LiDAR odometry is used to build
a local online “submap”. Afterwards, the submap is projected to 2d and overlaid onto a pre-
built map; the intensity mean, intensity variance, and altitude mean of corresponding cells
are compared for change detection. Rather than pursuing this approach, which requires
creating and storing high-resolution reflectance maps of a city, we pursue the alignment of
vector maps with sensor data. Vector maps can be encoded cheaply with low memory cost
and are the more common representation, being used in all four public HD map datasets.

In concurrent work, Heo et al. [282] introduce an adversarial metric learning-based
formulation for HD map change detection, but access to their dataset is restricted to South
Korean researchers and performance is measured on a synthetic dataset, rather than on
real-world changes. They employ a forward-facing ego-view representation, and require
training a second, separate U-Net model to localize changed regions in 2d, whereas we
show changed entity localization can come for free via examination of the gradients of a
single model.
Mapping Dynamic Environments. While “HD maps” are a relatively new entity, dy-
namic map construction is a more mature field of study. Semi-static environments are not
limited to urban streets; households, offices, warehouses, and parking lots are relatively
fixed environments that a robot may navigate, with changing cars, furniture, and goods
[295]. Mapping dynamic environments has been an area of study within the SLAM com-
munity for decades [296, 297, 298]. However, we focus purely on change detection, rather
than map updates.

Recently, machine learning for online mapping has generated interest. An alternative
to using an HD map prior is to rebuild the map on-the-fly during robot operation; however,
such an approach cannot map occluded objects or entities. In addition, these methods

96

are limited to producing raster map layers, such as a driveable area mask, with an output
resembling semantic segmentation. Raster data is significantly less useful than vector data
for path planning and generating vector map data with machine learning is generally an
unsolved problem. Raster map layers may be generated from LiDAR [2], accumulated
from networks operating on ego-view images over multiple cameras and timesteps [299,
300, 301], or from a single image paired with a depth map or LiDAR [302]. They all show
that automatic mapping is quite challenging.
Image-to-Image Change Detection. Image-to-image scene change detection over the tem-
poral axis is a well-studied problem [303, 304]. Scenes are dynamic over time in numerous
ways, and those ways are mostly nuisance variables for our purposes. We wish to develop
models invariant to season, lighting, the fading of road markings, and occlusion because
these variables don’t actually change the lane geometry. Wang et al. [303] introduced the
CDnet benchmark, a collection of videos with frame pixels annotated as static, shadow,
non-ROI, unknown, or moving. Alcantarilla [304] et al. introduce the VL-CMU-CD street
view change detection benchmark, from a subset of the Visual Localization CMU dataset.

4.3 The TbV Dataset

We curate a novel dataset of autonomous vehicle driving data comprising 1043 logs, over
200 of which contain map changes. The vehicle logs are on average 54 seconds in duration,
collected in six North American cities: Austin, TX, Detroit, MI, Miami, FL, Palo Alto, CA,
Pittsburgh, PA, and Washington, D.C. (See Table 4.1).

Our training set and validation set consist of real data with accurate corresponding on-
board maps (“positives”). Accordingly, synthetic perturbation of positives to create plau-
sible “negatives” is required for training. We release the data, code and API to generate
them. However, in the spirit of other datasets meant for testing only (i.e. not training) such
as the influential WildDash dataset [305], we curate our test dataset from the real-world
distribution. We do so since map changes are difficult to mine [282], thus we save their
limited quantity for the test set. We provide a few examples from our 133 “real” test logs
and 111 real “val” logs in Figure 4.1. Statistics of the test split are described in Table 4.1.
We separate 10% of the training data into the held-out “synthetic” validation split.

4.3.1 Annotation

In order to label map changes, we use three rounds of human filtering, where changes
are identified, confirmed, and characterized by three independent reviewing panels. We
assign spatial coordinates to each changed object within a city coordinate system. Cross-
walk changes are denoted by a polygon, and lane geometry changes by polylines. We
use egovehicle-to-changed-map-entity distance (point-to-polygon or point-to-line) to de-
termine whether or not a sensor and map rendering should be classified as a map-sensor
match or mismatch.
Analysis of Map Change Frequency We use our annotated map changes, along with 5
months of fleet data, to analyze the frequency of map changes on a city-scale across several
cities. Two particular questions are of interest: (1) how often will an autonomous vehicle
encounter a map change as part of its day-to-day operation? and (2) what percentage of

97

Table 4.1: We describe the statistics of the map deviation data in our test set, and the types
of deviations we observe. We define each BEV frame as a pose where the egovehicle has
moved at least 5 meters since the previous pose. Lane geometry changes extend over far
more frames than crosswalk changes.

DATA SPLIT
TRAIN/VAL TEST

NUM IMAGES 6,991,006 1,008,134
AVG. NUMBER OF IMAGES PER LOG (@20 HZ) 8,129 7,201
NUM LIDAR SWEEPS 511,208 74,937
AVG. NUMBER OF LIDAR SWEEPS PER LOG (@10 HZ) 594 535
NUM. RENDERED BEV FRAMES 25,363 4,945
(ONCE EVERY 5 METERS OF TRAJECTORY)
NUM. BEV FRAMES WITH NO CHANGES 25,363 2,159
NUM. BEV FRAMES WITH CHANGES 0 2,786
NUM. BEV FRAMES WITH CROSSWALK CHANGES ONLY 0 201
NUM. BEV FRAMES WITH LANE GEOMETRY CHANGES ONLY 0 2,105

NUM. BEV FRAMES WITH BOTH 0 120
LANE GEOMETRY AND CROSSWALK CHANGES

Table 4.2: Probability of a 30m × 30m region that has been visited at least 5 times in
5 months undergoing a lane geometry or crosswalk change within the same time period.
These statistics apply only to surface-level urban streets, not highways.

CITY NAME
PITTSBURGH DETROIT WASHINGTON, D.C. MIAMI AUSTIN PALO ALTO

PROBABILITY OF CHANGE 0.0068 0.0056 0.0046 0.0038 0.0009 0.0007
Up to T / 1000 TILES

7 6 5 4 0.9 0.7
WILL CHANGE IN 5 MO.

Table 4.3: Entities included in our HD map representation.
HD MAP ENTITY CORRESPONDING ATTRIBUTES

PEDESTRIAN CROSSINGS 2 EDGES ORIENTED ALONG ITS PRINCIPAL AXIS

LANES

BOUNDARIES: 3D LEFT AND RIGHT POLYLINES

COLOR: YELLOW, WHITE, OR IMPLICIT

BOUNDARY MARKING TYPE

CONNECTIVITY

LANE TYPE: BIKE OR VEHICLE LANE

IN INTERSECTION: TRUE OR FALSE

DRIVEABLE AREA POLYGONS

GROUND SURFACE HEIGHT FLOATING POINT HEIGHT VALUES AT 30 CENTIMETER RESOLUTION

98

Figure 4.1: Examples from the test split of our TbV dataset. Left to right: BEV sen-
sor representation, onboard map representation, blended map and sensor representations.
Rows, from top to bottom: deleted crosswalk (top row), and painted lane geometry changes
(bottom three rows).

map elements in a city will change each month or each year? For our analysis, we subdivide
a city’s map into square spatial units of dimension 30 meters× 30 meters, often referred to
as “tiles” in the mapping community. We find the probability p of an encounter at any given
time with a tile with changed lane geometry or crosswalk to be p ≈ 5.5174× 10−5. Given
the 3.225 trillion miles driven in the U.S. per year [306], this could amount to billions of
such encounters per year. We determine that up to 7 of every 1000 map tiles may change
in a 5-month span (see Table 4.2), a significant number. More details are provided in the
Appendix.

4.3.2 Sensor Data

Our TbV dataset includes LiDAR sweeps collected at 10 Hz, along with 20 fps imagery
from 7 cameras positioned to provide a fully panoramic field of view. In addition, camera

99

1450 1500 1550 1600 1650 1700

150

200

250

300

350

(a)

1450 1500 1550 1600 1650 1700 1750 1800 1850

100

200

300

400

500

(b)

Log 00a6ffc1-6ce9-3bc3-a060-6006e9893a1a
Ego-vehicle pose

(c)

(d)

0 200 400 600 800

0

100

200

300

400

500

600

700

Ground surface height (@ 30 centimeter resolution).

10

5

0

5

10

15

20

25

30

(e)

Figure 4.2: Examples of lane graphs and pedestrian crossings (a), drivable areas (b), lane
marking annotations (c) raster ground surface height data (d, e), found in both TbV and the
Argoverse 2.0 Sensor Datasets.

intrinsics, extrinsics and 6 d.o.f. AV pose in a global coordinate system are provided.
LiDAR returns are captured by two 32-beam LiDARs, spinning at 10 Hz in the same

direction (“in phase”), but separated in time by 180◦. The cameras trigger in-sync with both
of them, leading to a 20 Hz framerate. The 7 global shutter cameras are synchronized to the
LiDAR to have their exposure centered on when the LiDAR sweeps through the middle of
their fields of view. The top LiDAR spins clockwise in its frame, while the bottom LiDAR
spins counter-clockwise in its frame; in the ego-vehicle frame, they both spin clockwise.

4.3.3 Map Data

In Table 4.3, we list the semantic map entities we include in the TbV dataset. Previous
AV datasets have released sensor data localized within a single map per city [4, 284, 285].
This is not a viable solution for TbV, since the maps change over our long period of data
gathering. We instead release local maps with all semantic entities within 20 meters of
the egovehicle featured. Accordingly, single, incremental changes can be identified and
tested. We release many maps, one per vehicle log; the corresponding map is the map used
on-board at time of capture. Lane segments within our map are annotated with boundary
annotations for both the right and left marking (including against curbs) and are marked as
implicit if there is no corresponding paint (See Figure 4.2).

100

4.3.4 Dataset Taxonomy

Our dataset’s taxonomy is intentionally oriented towards lane geometry and crosswalk
changes. In general, we focus on permanent changes, which are far less frequent in urban
areas than temporary map changes. Temporary map changes often arise due to construction
and road blockades.

We postulate that temporary map changes – temporarily closed lanes or roads, or tempo-
rary lanes indicated by barriers or cones, should be relegated to onboard object recognition
and detection systems. Indeed, recent datasets such as nuScenes [284] include 3d labeling
for traffic cones and movable road barriers, such as Jersey barriers (see Appendix for exam-
ples). Even certain types of permanent changes are object-centered (e.g. changes to traffic
signs). Accordingly, a natural division arises between “things” and “stuff’ in map change
detection, just as in general scene understanding [307, 308]. We focus on the “stuff” as-
pect, corresponding to entities which are often spatially distributed in the BEV; we find
lane geometry and crosswalks to be more frequent than other “stuff”-related changes.

4.4 Approach

4.4.1 Learning Formulation

We formulate the learning problem as predicting whether a map is stale by fusing local
HD map representations and incoming sensor data. We assume accurate pose is known.
At training time, we assume access to training examples in the form of triplets (x, x∗, y),
where x is a local region of the map, x∗ is an online sensor sweep, and y is a binary label
suggesting whether a “significant” map change occurred. (x, x∗) should be captured in the
same location.

We explore a number of architectures to learn a shared map-sensor representation, in-
cluding early fusion and late fusion (see Figure 4.3). The late fusion model uses a siamese
network architecture with two input towers, and then a sequence of fully connected lay-
ers. We utilize a two-stream architecture [47, 309] with shared parameters, which has
been shown to still be effective even for multi-modal input [310]. We also explore an
early-fusion architecture, where the map, sensor, and/or semantic segmentation data are
immediately concatenated along the channel dimension before being fed to the network.
We take no credit for these convnet architectures, which are well studied.

4.4.2 Synthesis of Mismatched Data

Real negatives are difficult to obtain; because their location is difficult to predict a priori,
they cannot be captured in a deterministic way by driving around an urban area on any
particular day. Therefore, rather than using real negatives for training, we synthesize fake
negatives. While sensor data is difficult to simulate, requiring synthesis of sensor measure-
ments from the natural image manifold [311, 13], manipulating vector maps is relatively
straightforward.

Synthetic data generation via randomized rendering pipelines can be highly effective for
synthetic-to-real transfer [312]. In order to synthesize fake negatives from true positives,
one must be able to trust the fidelity of labeled true positives. In other words, one must

101

(a) Early Fusion (Sensor + Map) (b) Early Fusion (Sensor + Semantics + Map)

(c) Late Fusion (Siamese) (d) Map-Only Input

Figure 4.3: Learning architectures we explore for the map change detection problem.

trust that for true positive logs, the map is completely accurate for the corresponding sensor
data. We perturb the data in a number of ways (See Table 4.4). If such fidelity is assured,
vector map manipulation is trivial because map elements are vector entities which can be
perturbed, deleted, or added.

While synthesizing random vector elements is trivial, sampling from a realistic distri-
bution requires conformance to priors, including the lane graph, drivable area, and inter-
section. We aim for synthetic map/sensor deviations to resemble real world deviations, and
real world deviations tend to be subtle, e.g. a single lane is removed or painted a different
color, or a single crosswalk is added, while 90% of the scene is still a match. In order
to generate realistic-appearing synthetic map objects, we hand-design a number of priors
that must be respected for a perturbed example to enter our training set as a valid training
example (see Appendix). Figure 4.4 and Table 4.4 enumerate a full list of the 6 types of
synthetic changes we employ.

Table 4.4: Training dataset statistics and types of synthetic changes generated from 799
logs. Not all scenes can support all synthetic change types. For example, in order to
delete a crosswalk from a local map, a crosswalk must be present of local vicinity of the
egovehicle.

CHANGE CATEGORY DESCRIPTION OF CHANGE QUANTITY

OF EXAMPLES

BEV SENSOR IMAGES N/A 25,393

NO CHANGE NONE 25,263

LANE GEOMETRY CHANGES

DELETE LANE MARKING 19,870
CHANGE LANE MARKING COLOR 25,098
CHANGE LANE BOUNDARY DASH-SOLID 19,875
ADD BIKE LANE 21,529

CROSSWALK CHANGES
DELETE CROSSWALK 9,627
INSERT CROSSWALK 23,166

102

(a) Lane marking color is changed from implicit
to solid white (see bottom-center of image)

(b) A crosswalk is deleted from the map. Reflec-
tions off of windows create illumination varia-
tion on the road surface.

(c) A bike lane is added to the map (see center-
right of image)

(d) The structure of a lane boundary marking
is changed, from double-solid yellow to single-
solid yellow (see bottom-center of image). Its
color is preserved.

(e) A crosswalk is synthetically inserted into the
map.

(f) A solid white lane boundary marking is
deleted (see top-center of image).

Figure 4.4: Examples of our 6 types of synthetic map changes (zoom in for detail). Each
row represents a single scene. Left: bird’s eye view (BEV) sensor data representation.
Center: rasterized onboard map representation (positive). Right: synthetic perturbation of
onboard map (negative). We use red to denote implicit lane boundaries.

103

Table 4.5: Controlled evaluation of the influence of fusion architecture and scene rendering
viewpoint (ego-view vs. BEV). Rows marked with an asterisk represent an expected mean
accuracy based on randomly flipped labels, rather than results from a trained model.

MODALITIES VISIBILITY-BASED BEV PROXIMITY VISIBILITY-BASED

EVAL. @ 20M EVAL. @20M EVAL. @20M

BACKBONE ARCH. VIEWPOINT RGB SEMANTICS MAP VAL TEST IS CHANGED NO CHANGE TEST IS CHANGED NO CHANGE

MACC MACC ACC ACC MACC ACC ACC

- RANDOM CHANCE* - - - - 0.5000 0.5000 0.50 0.50 0.5000 0.50 0.50
RESNET-18 EARLY FUSION EGO-VIEW X X X 0.8417 0.6724 0.57 0.77 0.7234 0.67 0.78
RESNET-18 LATE FUSION EGO-VIEW X X 0.8108 0.4930 0.13 0.85 0.4956 0.13 0.86
RESNET-50 EARLY FUSION BEV X X X 0.9130 0.6728 0.58 0.77 - - -
RESNET-50 LATE FUSION BEV X X 0.8697 0.5761 0.43 0.72 - - -

Table 4.6: Controlled evaluation of the influence of data modalities. Rows marked with an
asterisk represent an expected mean accuracy based on randomly flipped labels, rather than
results from a trained model.

MODALITIES VISIBILITY-BASED BEV PROXIMITY VISIBILITY-BASED

EVAL. @ 20M EVAL. @20M EVAL. @20M

BACKBONE ARCH. VIEWPOINT RGB SEMANTICS MAP VAL TEST IS CHANGED NO CHANGE TEST IS CHANGED NO CHANGE

MACC MACC ACC ACC MACC ACC ACC

- RANDOM CHANCE* - - - - 0.5000 0.5000 0.50 0.50 0.5000 0.50 0.50
RESNET-18 SINGLE MODALITY* EGO-VIEW X 0.5000 0.5000 0.50 0.50 0.5000 0.50 0.50
RESNET-18 SINGLE MODALITY EGO-VIEW X 0.8444 0.5333 0.36 0.70 0.5431 0.38 0.71
RESNET-18 EARLY FUSION EGO-VIEW X X 0.8599 0.6463 0.52 0.77 0.6824 0.60 0.77
RESNET-18 EARLY FUSION EGO-VIEW X X 0.8632 0.6082 0.36 0.85 0.6363 0.42 0.85
RESNET-18 EARLY FUSION EGO-VIEW X X X 0.8417 0.6724 0.57 0.77 0.7234 0.67 0.78
RESNET-50 SINGLE MODALITY* BEV X 0.5000 0.5000 0.50 0.50 - - -
RESNET-50 SINGLE MODALITY BEV X 0.8900 0.5754 0.50 0.65 - - -
RESNET-50 EARLY FUSION BEV X X 0.9007 0.6543 0.57 0.74 - - -
RESNET-50 EARLY FUSION BEV X X 0.9153 0.6615 0.60 0.72 - - -
RESNET-50 EARLY FUSION BEV X X X 0.9130 0.6728 0.58 0.77 - - -

4.4.3 Sensor Data Representation

We experiment with two sensor data representations – ego-view (the front center camera
image) and bird’s eye view (BEV). Rather than using Inverse Perspective Mapping (IPM)
[313, 314, 315], we generate the BEV representation (i.e. orthoimagery) by ray-casting
image pixels to a ground surface triangle mesh. For ray-casting, we use a set of camera
sensors with a panoramic field of view, mounted onboard an autonomous vehicle. The
temporal aspect is exploited as pixel values from 70 ego-view images are aggregated to
render each BEV image (10 timesteps from 7 frustums) in order to reduce sparsity (see
Appendix).

4.4.4 Map Data Learning Representation

We render our map inputs as rasterized images; Entities are layered from the back of the
raster to the front in the following order: driveable area, lane segment polygons, lane
boundaries, pedestrian crossings (i.e. crosswalks). We will release the API to generate
and render these map images. Vector map entities are synthetically perturbed before raster-
ization.

4.5 Experimental Results

We frame the map change detection task as: given a buffer of all past sensor data at times-
tamp t, including camera intrinsics and extrinsics, 6 d.o.f. egovehicle pose cityTegovehicle
which we denote as Ti=0...t, image data Ici=0...t where c is a camera index, lidar sweeps
Li=0...t, onboard map data Mk=0...K , estimate whether the map is in agreement with the
sensor data.

104

Table 4.7: Controlled evaluation of the benefit and influence of dropout of data modalities.
Rows marked with an asterisk represent an expected mean accuracy based on randomly
flipped labels, rather than results from a trained model.

MODALITIES VISIBILITY-BASED BEV PROXIMITY VISIBILITY-BASED

EVAL @ 20M EVAL. @20M EVAL @20M

BACKBONE ARCH. VIEWPOINT RGB SEMANTICS MAP VAL TEST IS CHANGED NO CHANGE TEST IS CHANGED NO CHANGE

MACC MACC ACC ACC MACC ACC ACC

- RANDOM CHANCE* - - - - 0.5000 0.5000 0.50 0.50 0.5000 0.50 0.50
RESNET-18 EARLY FUSION EGO-VIEW X X X 0.8417 0.6724 0.57 0.77 0.7234 0.67 0.78
RESNET-18 EARLY FUSION EGO-VIEW dropout dropout X 0.8605 0.6581 0.51 0.81 0.6926 0.58 0.81
RESNET-18 EARLY FUSION EGO-VIEW X dropout dropout 0.8384 0.6850 0.63 0.74 0.7342 0.72 0.74
RESNET-18 EARLY FUSION EGO-VIEW X dropout X 0.8474 0.6483 0.51 0.78 0.6914 0.6 0.79
RESNET-18 EARLY FUSION EGO-VIEW X X dropout 0.8429 0.6617 0.51 0.82 0.6994 0.58 0.81

4.5.1 Implementation Details

Ego-view Models. Our ego-view models that operate on front-center camera images lever-
age both LiDAR and RGB sensor imagery. We use LiDAR information to filter out oc-
cluded map elements from the rendering. We linearly interpolate a dense depth map from
sparse LiDAR measurements, and then compare the depth of individual map elements
against the interpolated depth map; elements found behind the depth map are not ren-
dered. In our early fusion architecture, we experiment with models that also have access to
semantic label masks from the semantic head of a publicly-available seamseg ResNet-50
panoptic segmentation model [316]. For those models with access to the semantic label
map modality, we append 224 × 224 binary masks for 5 semantic classes (‘road’, ‘bike-
lane’, ‘marking-crosswalk-zebra’, ‘lane-marking-general’, and ‘crosswalk-plain’) as addi-
tional channels in early fusion.
Bird’s Eye View Models. We also implement camera-based models that accept orthoim-
agery as input, relying only upon RGB imagery and a pre-generated ground height field,
without utilizing online LiDAR. We generate new orthoimagery each time the ego-vehicle
moves at least 5 meters, and use each orthoimagery example as a training or test example.
We use 2 cm per pixel resolution for orthoimagery; all pixels corresponding to 3d points
up to 20 meters in `∞-norm from the ego-vehicle are included, generating a 2000 × 2000
px image.
Training. We use a ResNet-18 or ResNet-50 [159] backbone, with ImageNet-pretrained
weights, where a corresponding weight parameter’s size is applicable. We use a crop size of
224×224 from images resized to 234×234 px. Please refer to the Appendix for additional
implementation details and an ablation experiment on the influence of input crop size on
performance.

4.5.2 Evaluation

Comparable evaluation of the ego-view and bird’s eye view models is challenging since
they operate on different portions of the scene. The ego-view model should not be penalized
for ignoring changes outside of its field of view, especially those located behind the ego-
vehicle. Thus, we provide results for visibility-based evaluation (when the change is visible
in the ego-view), and a purely proximity-based comparison (when it is within 20 m. by `∞
norm). The area about which a model should reason is somewhat arbitrary; changes behind
and to the side may matter for fleet operation, but changes directly ahead of the AV are
arguably most important for path-planning [317]. In addition, changes visible to the rear

105

at some timestamp are often visible directly in front of the AV at a prior timestamp. We
consider the visibility-based evaluation to be most fair for ego-view models.

We use a mean of per-class accuracies to measure performance on a two-class problem:
predicting whether the real world is changed (i.e. map and sensor data are mismatched), or
unchanged (i.e. a valid match).
Comparison of Performance from Different Data Viewpoints and Architectures. Our
first finding is that models that operate on an ego-view scene perspective are more effective
than those operating in the bird’s eye view (5% more effective over their own respective
field of view), achieving 72.3% mAcc (see Table 4.5). We found a simpler architecture
(ResNet-18) to outperform ResNet-50 in the ego-view.

For both BEV and ego-view, the early fusion models significantly outperform the late
fusion models (+22.8% mAcc in the ego-view and +9.7% mAcc in BEV). This may be
surprising, but we attribute this to the benefit of early alignment of map and sensor image
channels for the early fusion models. Instead, the late-fusion model performs alignment
with greatly reduced spatial resolution in a higher-dimensional space, and is forced to make
decisions about both data streams independently, which may be suboptimal. While the map
and sensor images represent different modalities, a shared feature extractor is useful for
both.
Comparison of Performance from Different Input Modalities. We compare validation
and test set performance of various input modalities in Table 4.6. Early fusion of map and
sensor data is compared with models that have access to only sensor or map data, or a com-
bination of the two, with or without semantics. All models suffer a significant performance
drop on the test set compared to the validation set. While a gap between validation and test
performance is undesirable, better synthesis heuristics and better machine learning models
can close that gap.

We find semantic segmentation label map input to be quite helpful even, although it
places a dependency upon a separate model at inference time, increasing latency for a real-
time system. Mean accuracy improves by 4% in the ego-view and 2% in the BEV when
sensor and map data is augmented with semantic information in early fusion. In fact, early
fusion of the map with the semantic stream alone (without sensor data) is 1% more effective
than using corresponding sensor data for the BEV.

The map-stream-only models perform slightly better than random chance. Inspection
via Guided GradCAM demonstrates that the map-only baseline attends to onboard map
areas that are not in compliance with real-world priors, such as symmetry in crosswalk
layout, paint patterns, and lane subdivisions (see Appendix).
Ablation on Modality Dropout. We find random drop-out of certain combinations of
modalities to regularize the training in a beneficial way, improving accuracy by more than
1% of our best model (See Table 4.7). Given the wide array of modalities available to
solve the task, from RGB sensor data, semantic label maps, rendered maps, and LiDAR re-
flectance data, we experiment with methods to force the network to learn to extract useful
information from multiple modalities. Specifically, we perform random dropout of modal-
ities, an approach developed in the self-supervised learning literature [318, 319, 320].

Perhaps the most intuitive approach would be to apply modality dropout to one of the
sensor or semantic streams, forcing the network to extract useful features from both modal-
ities during training. However, we find this is in fact detrimental. More effective, we dis-

106

(a) New paint constricting the intersection and bollards are
added.

(b) A 3-lane road has been converted to a 2-lane road.

(c) Crosswalk paint has been removed.

Figure 4.5: Guided GradCAM. 6 figures are shown for frames from various test set logs.
Clockwise, from top-left: ego-view sensor image, rendered map in ego-view, blended com-
bination of sensor and map, seamseg label map, GradCAM activations for the map input,
GradCAM activations for the sensor input. White color shows maximal activation, and red
color shows zero activation in the heatmap palette. Label maps from seamseg are at times
quite noisy. 107

cover, is to randomly drop out either the map or semantic streams. In theory, meaningful
learning should be impossible without access to the map; however, since we drop-out each
example in a batch with 50% probability, in expectation 50% of the examples should yield
useful gradients in each batch. This approach improves accuracy by more than 1% of our
best model. We zero out all data from a specific modality as our drop out technique.
Interpretability and Localizing Changes. While accurately perceiving changes is impor-
tant, the ability to localize them would also be helpful. We use Guided Grad-CAM [321]
to identify which regions of the sensor, map, and semantic input are most relevant to the
prediction of the ‘is-changed’ class. In Figure 4.5, we show qualitative results on frames
for which our best model predicts real-world map changes have occurred.

4.6 Conclusion

Discussion. In this work, we have introduced the first dataset for a new and challenging
problem, map change detection. Our dataset is one of the largest AV datasets at the present
time, featuring 1043 logs with an average duration of 54 seconds. We implement various
approaches as strong baselines to explore this task for the first time with real data. Perhaps
surprisingly, we find that comparing maps in a metric representation (a bird’s eye view) is
inferior to operating directly in the ego-view. We attribute this to a loss of texture during
the projection process, and to a more difficult task of reasoning about a much larger spatial
area (85◦ f.o.v. instead of 360◦ f.o.v.). In addition, we provide a new method for localizing
changed map entities, thereby facilitating efficient updates to HD maps.

We identify a significant gap between validation accuracy and test accuracy – 10-20%
less on the test split – which supports the importance of testing on real data. If performance
is only measured on fake changes that resemble one’s training distribution, performance
can appear much better than what occurs in reality. Real changes can be subtle, and we
hope the community will use this dataset to further push the state-of-the-art we introduce.
Our data, models, and code to generate our dataset and reproduce our results will be made
publicly available.
Limitations. Rendering time. A second limitation of our work is that real-time rendering
requires GPU hardware; in the ego-view, map entity tesselation and rasterization are costly,
whereas in the BEV, ray-casting is computationally intensive. Perturbation diversity.
In our work, we introduce just 6 types of possible map perturbations, of which far more
types are possible; nonetheless, we prove that they are surprisingly useful. Accuracy.
Perhaps last of all, although our baselines have reasonable performance and by inspection
we demonstrate they are learning to attend to meaningful regions, a large gap still exists
before such a model would be accurate enough to be used on-vehicle.

4.7 Appendix

In this appendix, we provide additional details about our dataset and experiments. In Sec-
tion (A), we provide an ablation study on the influence of input crop size on model per-
formance. In Section (B), we discuss additional implementation details about our training,
data augmentation, and occlusion-based map rendering process. In Section (C), we discuss
the paired positive-negative logs we include. In Section (D), we describe our evaluation

108

Table 4.8: Controlled evaluation of the influence of input crop size (for ego-view and BEV).
MODALITIES VISIBILITY-BASED BEV PROXIMITY VISIBILITY-BASED

EVAL. @ 20M EVAL. @20M EVAL. @20M

RESOLUTION BACKBONE ARCH. VIEWPOINT RGB SEMANTICS MAP VAL TEST IS CHANGED NO CHANGE TEST IS CHANGED NO CHANGE

MACC MACC ACC ACC MACC ACC ACC

224x224 ResNet-18 Early Fusion Ego-View X dropout dropout 0.8384 0.6850 0.63 0.74 0.7342 0.72 0.74
448x448 ResNet-18 Early Fusion Ego-View X dropout dropout 0.8713 0.6331 0.38 0.88 0.6644 0.45 0.88
224x224 ResNet-50 Early Fusion BEV X no X 0.9007 0.6543 0.57 0.74
448x448 ResNet-50 Early Fusion BEV X no X 0.9072 0.6749 0.63 0.72

metric. In Section (E), we provide additional experimental analysis of different models and
rendering viewpoints. In Section (F), we provide additional details about how we generate
orthoimagery. In Section (G), we offer additional examples from our test set. In Section
(H), we give examples of other types of temporary map changes which we do not annotate
or evaluate within our dataset. In Section (I) we provide further analysis of the frequency
of map changes. Finally, in Section (J), we give additional details about our synthetic map
perturbation protocol.

3D point locations are quantized to float16. Ground height maps are quantized to 0.3
meter resolution from their full resolution. HD map polygon vertex locations are quantized
to .01 meter resolution.

Appendix A: Influence of Input Crop Size

In this section, we perform an ablation on input crop size, as discussed in subsection 4.5.1
of this chapter. Earlier in this chapter, we set our input crop size to 224 × 224 px for
all experiments mentioned therein. In this section, we present an ablation to measure the
influence of input crop size. Again, we find the ego-view model is the best-performing
model, as measured on its own field of view.

Perhaps surprisingly, we find that an RGB image at 234 × 234 px resolution (∼ 164K
pixel values/image) is sufficient to capture significant detail. In Table 4.8, we present an
ablation where we find that for BEV models, higher resolution (i.e. 468×468 px) does im-
prove mAcc by 2% mAcc, although requiring almost 4x the GPU memory during training
and significantly longer training times. However, for ego-view models, a higher crop size
is quite detrimental, reducing visibility-based mAcc by around 7%.

Appendix B: Additional Implementation Details

B.1. Training

We train our models for 90 epochs with the Adam [322] optimizer. We use a polynomial
learning rate decay strategy, starting at 1 × 10−3. We use a batch size of 1024 examples.
We start with pretrained ImageNet weights for ResNet-18 or ResNet-50 [159].

We train with multiple negative examples per sensor image, which we found to be more
beneficial than randomly sampling a single negative example (i.e. a synthetically perturbed
map). In other words, we perform multiple types of perturbations for a given scene, and
feed them to the network as separate negative examples (not necessarily in the same mini-
batch).

109

B.2. Data Augmentation

We employ a number of data augmentation techniques to improve the generalization of our
models and prevent overfitting. Input images are of dimension 2048 × 1550 for the front-
center camera, and 1550× 2048 for all other 6 cameras. For the ego-view models, we first
take a square crop from the bottom 1550 × 1550 of an ego-view image. Afterwards, we
resize to 234× 234, perform a random horizontal flip with 50% probability, take a random
224 × 224 crop, divide pixel intensities by 255, and then normalize both sensor and map
RGB channels by the ImageNet mean (µr, µg, µb) = (0.485, 0.456, 0.406) and standard
deviation (σr, σg, σb) = (0.229, 0.224, 0.225)

For BEV models, we resize input images from 2000×2000 px to 234×234 px, perform
a random horizontal and/or vertical flip with 50% probability each (independently), choose
a random 224× 224 crop, and normalize as described above.

We find other traditional data augmentation techniques from the semantic segmentation
literature [323], such as applying a random rotation to the input or randomly blurring the
input with a small kernel, to be ineffective.

B.3. Occlusion Reasoning

As discussed in subsection 4.5.1 earlier in this chapter, we use map occlusion reasoning
when generating the input for our ego-view models. Occluded map elements and map
elements that have been removed in the real world (“deleted”) are both not visible in camera
imagery. While the former is an expected everyday occurrence, and the latter is of interest
to us, we use occlusion reasoning in order to separate the two phenomena. We generate a
dense depth map from sparse LiDAR returns (see Figure 4.6) and the depth of map entities
is compared against the corresponding depth of its projection in the depth map.

(a) RGB Image (b) Interpolated Depth Map

Figure 4.6: Example of a dense depth map interpolated from sparse LiDAR returns.

B.4. Details about Semantic Label Map Input

As discussed in subsection 4.5.1 earlier in this chapter, we use semantic label maps gener-
ated from the semantic head of a publicly-available seamseg ResNet-50 panoptic segmenta-

110

tion model [316] 3. We create 5 binary mask channels from the semantic label map, for the
‘road’, ‘bike-lane’, ‘marking-crosswalk-zebra’, ‘lane-marking-general’, and ‘crosswalk-
plain’ classes. These are optionally provided as additional channels to the 3 RGB sensor
channels and 3 RGB map channels via early fusion. Seamseg’s semantic label maps on
their own do not capture sufficient granularity for the map change detection task we define,
since the Mapillary Vistas public dataset’s taxonomy does not differentiate between lane
color and or different marking types (e.g. double-solid, solid, dashed-solid), which are of
interest to autonomous vehicle operation.
Unsuitability of Per-Pixel Semantic Comparison. Directly comparing rendered map and
semantic label maps at a per-pixel level is not always useful since our HD map represen-
tation does not provide paint annotation for every single dashed longitudinal lane marking,
but rather provides a description lane marking pattern, polyline boundary, and other cor-
responding attributes (See Table 4.3 earlier in this chapter). Thus, we can simulate the
pattern of dashed lane markings, but not their exact, pixel-perfect location. As we show
earlier in this chapter, the network can abstract away the per-pixel details to provide more
meaningful features.

Appendix C: Data Selection

For a subset of the ‘negative’ logs in our TbV dataset, we provide a corresponding ‘positive’
log captured before the change occurred. Example images from pair positive-negative logs
are provided in Figure 4.7. This allows for non-learning based approaches (e.g. based upon
comparison of 3d reconstructed world models) for a limited amount of the test set.

Appendix D: Evaluation

As our primary accuracy metric, we use a mean of class accuracies over two classes. This
accounts for both precision and recall. If a confusion matrix is computed with predicted
entries on the rows and actual classes as the columns, and normalized by dividing by the
sum of each column, 2-class accuracy can be simply calculated as the mean of the diagonal
of the confusion matrix.

More formally, let ncl = 2 be the number of classes, ŷi be the prediction for the i’th
test example, and yi be the ground truth label for the i’th test example. We define per-class
accuracy (Accc) and mean accuracy (mAcc) as:

mAcc = 1/ncl

ncl∑
c=0

Accc, Accc =

N∑
i=0

1{ŷi = yi} · 1{yi = c}

N∑
i=0

1{yi = c}
(4.1)

Appendix E: Additional Experimental Analysis

Advantages of BEV. In principle, the bird’s eye view (BEV) representation (orthoimagery)
offers two main advantages: a single, dense, accumulated metrically-accurate representa-

3Available at https://github.com/mapillary/seamseg.

111

https://github.com/mapillary/seamseg

tion for a single pass through a network, rather than passing in 7 images through 7 separate
networks, trained on each frustum, in order to detect changes to the sides and rear of the
vehicle. This approach can be costly at inference time given the number of camera frustums
required to achieve a panoramic view with traditional cameras. Second, the BEV is gener-
ally free of distortion, compared to the ego-view. The ego-view can be seen as “spoiling”
the map data’s metric nature.
Advantages of Ego-view. However, an ego-view perspective also presents clear advan-
tages over the BEV. Rendering data in the BEV can be seen as “spoiling” the sensor data’s
texture. Importantly, there is less distraction and less overall content to reason about in the
egoview. Therefore, the ego-view task is arguably easier than the BEV task, needing only
to detect changes in a 85◦ f.o.v. instead of 360◦ f.o.v.
Analysis of Map-Only Baseline. The map-only baseline performs quite poorly when pre-
dicting real-world lane geometry changes, slightly over random chance (2% or 3% over
random chance in the ego-view and 7% over random change in the BEV). While the map-
only stream may seem doomed to fail without access to real-world sensor information, we
observe that a certain number of map changes exist to bring the real world into compli-
ance with certain priors, which are already encapsulated in the map. For example, we find
that upgrading a 4-way intersection from a single crosswalk to 4 crosswalks, or from a
single crosswalk to 0 crosswalks (after repaving) is a common map change, which would
agree with priors. Indeed, our experimental results suggest that the map-only baseline,
which is completely blind to the real-world, can occasionally succeed at predicting real-
world crosswalk changes by learning powerful priors. Inspection via Guided GradCAM
demonstrates that the map-only models attends to asymmetric paint patterns along the left
and right boundaries of a road, or asymmetric lane subdivisions along two sides of a road;
modifications to such map asymmetry which are common real-world map updates.
Analysis of Sensor-Only Baseline. The sensor-only model (see Table 4.6) sees randomly
perturbed labels, with only “positive” training data, and therefore is not a meaningful base-
line.

Appendix F: Orthoimagery Generation Implementation Details

In this section, we provide additional details about the orthoimagery generation process
described in subsection 4.4.3 and subsection 4.5.1 earlier in this chapter. In order to cre-
ate a metrically-accurate sensor data representation that is free of perspective distortion,
we generate orthoimagery using ray-casting. Orthoimagery from LiDAR suffers from ex-
treme sparsity, leading to an impoverished representation. To generate dense panoramic
orthoimagery, we use a set of high-definition camera sensors with a panoramic field of
view, mounted onboard an autonomous vehicle. We generate the BEV representation (i.e.
orthoimagery) by ray-casting image pixels to a ground surface triangle mesh. Our ground
height maps exploit LiDAR offline, and in this way our ego-view method incorporates the
strengths of LiDAR.
CUDA Ray-Casting Routine. We tesselate quads from a ground surface mesh with 1 me-
ter resolution to triangles; rays are cast to triangles up to 25 m away from the egovehicle.
For acceleration, we cull triangles outside of the left and right cutting planes of each cam-
era’s view frustum. We implement the Moller-Trombore ray-triangle intersection routine

112

[324] in CUDA.
Density. Ray-casting yields a vastly more dense set of image rays than LiDAR, on the order
of 2 orders of magnitude greater density; for a 1550× 2048 image, one can obtain ∼ 3.17
million rays per image, and across 7 camera frustums, this translates to over 22.19 million
rays with available RGB values per second. With 20 fps imagery per camera frustum, this
amounts to 440 million rays per second. Most conventional 10 Hz LiDAR sensors can
provide little more than 100k returns per sweep, and thus at most 1 million rays per second.
Aggregation. In order to prevent holes in the orthoimagery in the area underneath the egov-
ehicle, we aggregate pixels in ring buffer of length 10 sweeps, and wait 10 sweeps before
starting rendering. Future sensor data is not used to render the sensor data representation.
We use linear interpolation to account for sparsity at range.
Comparison with IPM. While Inverse Perspective Mapping (IPM) is the dominant ap-
proach in the literature, it is inaccurate as it cannot account for ground surface variation.
Geiger [313] model the image-to-ground plane mapping as a homography (IPM) and mo-
saics together monocular images, but requires scenes with an approximately-planar ground
surface. Zhang et al.[314] generate orthophoto ground imagery using fisheye cameras and
IPM. Rapo [315] explored the use of dashboard-mounted cell phones without access to
LiDAR or known calibration, instead relying upon SfM, optical flow, and vanishing point
estimation for online calibration and also use IPM for pixel-to-world correspondence.

Appendix G: Additional Examples from Test Set

In Figure 4.8, we show additional examples from our test set, as seen from a bird’s eye
view.

Appendix H: Map Changes from Construction

In Figure 4.9, we show examples of object-centric map changes inside our TbV dataset,
which we do not annotate and are not the focus of our work.

Appendix I: Additional Analysis of Map Change Frequency

In subsection 4.3.1 and Table 4.2 earlier in this chapter, we present an analysis of map
change frequency. In this section, we provide additional analysis, an extended table, and
derivations of our estimates. Map changes occur at random as part of a stochastic process.
While some changes are coordinated at a city-administration level, it is still difficult to pre-
dict to a specific date or time when construction crews will complete changes. As discussed
earlier in the chapter, we reason about square spatial areas of size 30 m× 30 m, which we
refer to as tiles, which cover 900 m2 each.
Derivation: Probability of an Encounter We consider the probability of entering a spa-
tial area that has undergone a crosswalk or lane geometry within it. In other words, it
is the probability of encountering a changed area, and thus we name it peca. In order
to estimate the probability of encountering a changed area, rather than computing the
ratio

(
num change-discovery miles

num fleet miles

)
, we compute the ratio

(
num. tiles where change is observed

num. tiles entered by fleet

)
. We do

113

Table 4.9: Across six particular cities, we analyze the probability of change for a 30m ×
30m spatial area. Since we can likely only catch changes for spatial areas that are somewhat
frequently visited, we require that an area is visited by fleet at least n = 5 times. We provide
n = 1 as well as a lower bound.

≥ 5 VISITS BY FLEET ≥ 1 VISIT BY FLEET

CITY NAME PROBABILITY UP TO T TILES PROBABILITY UP TO T TILES

OF CHANGE IN A THOUSAND OF CHANGE IN A THOUSAND

PER TILE WILL CHANGE PER TILE WILL CHANGE

IN 5 MONTHS IN 5 MONTHS

PITTSBURGH 0.0068 7 0.0052 5
DETROIT 0.0056 6 0.0049 5
WASHINGTON, D.C. 0.0046 5 0.0037 4
MIAMI 0.0038 4 0.0027 3
AUSTIN 0.0009 0.9 0.0006 0.6
PALO ALTO 0.0007 0.7 0.0006 0.6

not require that the autonomous vehicle directly drove over the changed tile, as an ob-
served change can very well still affect driving behavior. We model the probability as a
Bernoulli(p) r.v., with p ≈ 5.517× 10−5 across the more than 5 North American cities we
analyze. A visit would occur once per every 18,124 times a vehicle enters such areas.

While the change percentage may seem inconsequential, one must consider that drivers
in the United States are estimated to drive 3.225 trillion miles per year, according to the
U.S. Department of Transportation [306]. If one were to consider our rate of change equal
to the rate of change of any stretch of road within the United States, this would amount to an
upper bound of 9B encounters of spatial areas with changed lane geometry or crosswalks,
per year:

3.225 · 1012miles
1 year

· 1609 m
1 mile

· 1 tile
30 m

· 5.517 · 10−5 changes
1 tile

≈ 9.5B (4.2)

This derivation assumes that all roads (including highways) are changed as often as urban
roads (a generous estimate).
Derivation: Probability per Spatial Area We next estimate the probability of each unique
tile in a city seeing a crosswalk or lane geometry change, which we also model as a
Bernoulli(p) random variable, with p estimated as:

p =
unique changed tiles in city

unique tiles in city visited at least n times by fleet
(4.3)

where the numerator and denominator are both measured over k months.
In Table 4.9, we analyze the probability of change for a 30m× 30m spatial area across

six particular cities. Since we can likely only catch changes for spatial areas that are some-
what frequently visited, we require that an area is visited by fleet at least n = 5 times over
k = 5 months.

114

Appendix J: Synthetic Map Perturbation Technique

In subsection 4.4.2, Table 4.4, and Figure 4.4 earlier in this chapter, we enumerate a num-
ber of hand-designed priors we use to generate realistic-appearing synthetic maps. In this
section, we provide detailed descriptions of the generation process.

J.1. Priors on the Crosswalk Perturbation Procedure

Our main observations from studying mapped data are that crosswalks are generally located
near intersections, are orthogonal to lane segment tangents, and have little to no area over-
lap with other crosswalks. Accordingly, we first sample a random lane segment which will
be spanned by the generated, synthetic crosswalk. We perform this random sampling from
a biased but normalized probability distribution; lane segments within intersections achieve
4.5x the weight of non-intersection lane segments. In order to determine the orientation of
the synthesized crosswalk’s principal axis, we compute the normal to the centerline of the
sampled lane segment at a randomly sampled waypoint. This waypoint is sampled from
50 waypoints that we interpolate along the centerline. We ensure that the sampled way-
point is not within the outermost 1/8 of pixels along any border of the rendered map image
(i.e. within 15 m according to `∞ norm from the egovehicle). This measure is to allow
some perturbation of the random crop for data augmentation, without losing visibility of
the changed entity.

Next, in order to determine how many total lane segments the crosswalk must cross in
order to span the entire road, we must determine the road extent. We approximate it as
the union of all nearby lane segment polygons. The line representing the principal axis
of the crosswalk may intersect with this road polygon in more than two locations, since it
is often non-convex. We choose the shortest possible length segment that spans the road
polygon to be valid, and thus find the closest two intersections to the sampled centerline
waypoint. We randomly sample a crosswalk width w in meters from a normal distribution
w ∼ N (µ = 3.5, σ = 1), but clip to the range w ∈ [2, 4] meters afterwards, in accordance
to our empirical observations of the real-world distribution.

If the rendered synthetic crosswalk has overlap with any other real crosswalk above a
threshold of IoU = 0.05, we continue to sample until we succeed. The crosswalk is ren-
dered as a rectangle, bounded between two long edges both extending along the principal
axis of the crosswalk. We use alternating parallel strips of white and gray to color the
object. Crosswalks are deleted by simply not rendering them in the rasterized image.

J.2. Lane Geometry Perturbation Procedure

Our main observations from studying real-world map changes are that lane changes gener-
ally occur over a chain of lane segments, with combined length often over tens or hundreds
of meters, although at times the combined length is far shorter. Accordingly, we use the
directed lane graph to sample random connected sequences of lane segments, respecting
valid successors. We then manipulate either the left or the right boundary only (not both)
of this lane sequence.

Our general procedure is to start this sequence at a random lane well-within the field

115

of view of the BEV image. As before, we ensure that the sampled marking is not entirely
contained within the outermost 1/8 of pixels along any border of the rendered map image
(i.e. within 15 m according to `∞ norm from the egovehicle).

When deleting lane boundaries, we sample only painted yellow or white lane bound-
ary markings. When changing the color or structure of lane boundaries, we sample lane
boundary markings of any color (including those that are implicit). When adding a bike
lane, we sample a sequence of 5 lane segments. For marking deletion and changes to lane
marking color and structure, we sample a sequence of length 3.

We render these boundaries as colored polylines; we use red for implicit boundaries,
and yellow and white for lane markings of their respective color. Lane boundary markings
are deleted by simply not rendering them in the rasterized image.

Bike lanes generally represent the rightmost lane in the United States. Accordingly, we
synthesize a valid location for a new bike lane by iterating through the lane graph until there
is no right neighbor; by dividing this rightmost lane into half, we can create two half-width
lanes in place of one. We use solid white lines to represent their boundaries.

116

(a) Before (b) After

(c) Before (d) After
Figure 4.7: For a number of ‘negative’ logs, our TbV dataset includes corresponding logs
captured before the map change was implemented, such that we obtain “before and after”
imagery.

117

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.8: Examples from the test split of our TbV dataset. Left to right: BEV sensor rep-
resentation, onboard map representation, blended map and sensor representations. Rows,
from top to bottom: inserted crosswalks (a), and painted lane geometry changes (b-h).

118

(a) Traffic Cones (b) Jersey Barriers (c) Type III Traffic Barri-
cades

(d) Fallen Trees (e) Construction Signs (f) Traffic Bar-
rels/Drums

(g) Arrowboard Trail-
ers

Figure 4.9: Scenes with temporary object-related map changes collected in Argo AI’s fleet
data. Such scenes are not the focus of our work; rather, we believe such changes should be
addressed by onboard object recognition systems.

119

CHAPTER 5
CONCLUSION

In this thesis, I have demonstrated how deep learning can unlock new capabilities for map-
ping, a crucial building block for spatial artificial intelligence.

In the indoor domain, we demonstrate dramatic improvements over the state of the art
in completeness for 2d geometric indoor mapping, i.e. floorplan reconstruction. SALVe
enables mapping with cheap hardware, few views, and very wide baselines, representing
a significant breakthrough for virtual tours, architectural analysis, virtual staging, and au-
tonomous navigation.

In the outdoor domain, our work exploring the “deep front-end” of SfM and SLAM
demonstrates that the wide-baseline “correspondence problem” is far from solved in many
real-world scenarios that arise in robotics applications, such as drone navigation and off-
board scene reconstruction from drone photography. We introduce GTSFM, a new system
for global SfM, to further analyze the benefits of a “deep front-end” on batch-mode SfM,
and find that ensuing front-end signal-to-noise ratios are often insufficient to enable accu-
rate batch-mode SfM on many real-world datasets.

Finally, in the domain of mapping for self-driving, I introduce learning-based for-
mulations for solving the HD map change detection task in a bird’s eye view and ego-
view, demonstrating improvements over the state of the art in accuracy. Because real map
changes are infrequent and vector maps are easy to synthetically manipulate, we lean on
simulated data to train such models. Perhaps surprisingly, we show that such models can
generalize to real world distributions. Our approach to building and validating HD maps
can make such maps dynamic, an important missing part of mapping research today that
can mitigate the danger associated with a host of unsafe scenarios for mobile robots and
autonomous driving.

Along the way, in order to satisfy the demands of these data-driven, deep learning
approaches, I contribute several large-scale datasets towards solving these problems via
“programming by data” – the Argoverse 1.0 Datasets [4], the MSeg Dataset [325], the
Trust but Verify (TbV) Dataset [120], and the Argoverse 2.0 Datasets [326].

5.1 Reflection and Lessons Learned

5.1.1 Contrasting Indoor and Outdoor Reconstruction

In this work, we have explored vastly different algorithms for indoor versus outdoor re-
construction. Indoor, man-made environments offer a large number of valuable priors that
can simply reconstruction and remove degrees of freedom. For example, vertically aligned
lines allow us to straighten panoramas; in an upright configuration, global pose estimation
can be done in 2D, rather than in 3D. Furthermore, planar surfaces such flat floors and
generally flat ceilings allow us to texture map onto orthographic views through backpro-
jection. In additiona, common structures such as windows, doors, openings that determine
connectivity in residential buildings dramatically simplify the search space for features;

120

for example, semantic features can be used instead of keypoint features for panoramic im-
agery, eliminating up to 3 orders of magnitude of matches, as we move from thousands of
potential keypoint features per panorama, to a handful of door, window, and opening de-
tections. Using traditional keypoint-based SfM reconstruction pipelines that were designed
for narrow-f.o.v. outdoor imagery does not make sense for highly constrained indoor envi-
ronments, captured by panoramas.

5.1.2 SLAM vs. SfM

Today’s robotics research shows an emphasis on streams of data [327]. Mapping from
diverse internet user photo collections has become a less and less common use case in
computer vision [199, 208]. Nonetheless, wide-baseline still has a few unique use cases,
for examples in human-driven image capture certain scenarios, such as indoor capture by
real estate photographers. In other scenarios, SLAM a more frequent scenario for robotics;
SLAM has many distinct advantages over SfM today, as its smaller baselines can dramat-
ically simplify the correspondence problem, allowing the valuable use of photometric sig-
nals such as optical flow [327], and access to additional sensors such as IMU measurements
further eliminate uncertainty.

5.2 Future Work

In this work, we have explored some of the current limits for building and validating maps,
and shown avenues for progress via data-driven deep learning methods. However, the op-
portunities for future work in this domain are unbounded. Below, I share a few potentially
fruitful ideas for exploration.

Figure 5.1: A possible incremental variant of SALVe. Rather than exhaustively evaluating
O(n2k2) alignments from n panoramas, each panorama containing k W/D/O’s, one could
sort the pairs by image similarity, and keep any alignment if SALVe’s confidence estimates
exceeds a certain threshold.

5.2.1 Accelerating Semantic SfM Indoors

In SALVe, I introduced a new semantic SfM algorithm for automatic floorplan reconstruc-
tion from sparse panoramas. However, our implementation of SALVe is largely based
around exhaustive enumeration of all possible hypotheses, leading to difficult computa-
tional complexity. However, this matching is embarrassingly parallel, and could be per-
formed in a smart and efficient incremental fashion. For example, the pose graph could

121

be grown by selecting image pairs by relative likelihood, for example via pairwise image
similarity using techniques such as NetVLAD [328] (see Figure 5.1).

5.2.2 End-to-End Optimization via Differentiable Rendering

In this work, we demonstrated how 2 separately trained deep networks – HorizonNet [117]
and SALVe – can be used to first determine adjacency of a pose graph and initialize it, prior
to optimization. This was done because the adjacency matrix is unknown a priori, and
requires hard choices about which edges are reliable and should be thrown out. However,
in future work, these choices could be made by estimating weights on the edges, in order
to leverage differentiable rendering and differentiable alignment, like UnsupervisedR&R
[329]. One potential loss would be directly on the camera rotations and translations, using
backpropagation on transformation groups, using tools such as LieTorch [330]. This would
allow us to learn the entire system end-to-end (see Figure 5.2).

Figure 5.2: A potential architecture for an end-to-end trainable floorplan reconstruction
system.

5.2.3 Semantic SfM: Joint Optimization

Another key opportunity for floorplan reconstruction is to incorporate landmarks into the
global optimization of window, door, and opening features, rather than only optimizing a
relative pose graph. Not only do these landmarks represent crucial pieces of information
for a floorplan, but they may also be used to further improve accuracy.

5.2.4 Learning for SfM

While dramatic progress is being made for multi-view stereo, largely accelerated by NeRF
[217], learning-based methods for camera geometry estimation still lag behind. Even state-
of-the art methods such as SuperGlue [76] and LoFTR [82] can fail spectacularly under
repetitive features (see Figure 5.3). A critical missing capability today for deep features is
knowing when to trust them. Using learning to estimate this trustworthiness could be used
to eliminate heavily engineered methods in track management and outlier rejection, such
as those found in COLMAP [216]. A popular open-source tool, cloc, counts 304,993
lines of code in the COLMAP repository, scattered across 681 files. Fundamental ways of
re-thinking the learning formulation may be required. Replacing these lines in a “Software
2.0” framework, with a single model or multiple trained models, represents a grand chal-
lenge of vision research. A bitter lesson of SfM research is that decades of research have
yet to yield methods that can work with human-level robustness; under wide baselines or

122

https://github.com/AlDanial/cloc

repetitive structures, modern deep-feature matching techniques do not approach, let alone
surpass, a human-level ability to identify correspondences between two images (see Fig-
ure 5.3). Why is this? The programming by data paradigm suggests that the solution
lies in massively scaling up training datasets, and transitioning fully to attention-like archi-
tectures.

In Global SfM, a key opportunity is understanding which relative pose measurements
are trustworthy, and which represent false positives from over-confident matches on pairs
with no true covisibility. There are many features available per edge – inlier ratios, cycle
errors, inlier counts, point features, point errors – and more. Graph neural networks such as
Transformers [331] could be used to aggregate these features to discard erroneous edges,
or instead to learn other types of features. While Phillips and Daniilidis [237] explore
this direction for the keypoint match graph, there are many opportunities to explore this
direction on the relative pose graph.

(a) LoFTR (b) Ground Truth

Figure 5.3: (Left): 50 most confident keypoint matches from LoFTR [82], a state-of-the-art
image matching system, on an image pair from ZInD [14]. (Right): Ground-truth (hand-
annotated) keypoint matches for the same image pair. 50 out of 50 LoFTR matches are
incorrect, each with estimated confidence over 0.9.

5.2.5 Mapping with SfM + MVS

Exciting new works in real-time neural radiance fields [246], and large-scale NERF [332]
especially for entire city blocks, suggest that classical methods for Multi-view stereo will
become obsolete. Dramatic additional improvements are needed to lessen the requirement
for the number of input images, 3M images. However, obtaining accurate camera poses
across wide baselines is still very challenging, suggesting that visual inertial odometry
(VIO) and LiDAR-based pose estimation methods will stand the test of time. No global

123

Figure 5.4: Annotated HD maps overlaid on front-center camera imagery captured in the
Argoverse 2.0 Sensor Dataset.

SfM approach will be successful without some incremental reasoning, as the raw signal-
to-noise ratio even for learned descriptors and matchers remains limited.

5.2.6 Improving the Accuracy of Map Change Detection

In this thesis, we have largely explored image-centric map change detection algorithms.
However, LiDAR centric learning-based map-change detection is also a promising ap-
proach. In addition, we have experimented with accumulating sensor data over the tem-
poral dimension in the bird’s eye view, but not in the ego-view. Using a buffer of data in
the ego-view could further improve its accuracy, and there are many potential architectures
that could be explored.

5.2.7 Scalable HD Map Creation and Maintenance: Looking to the future

All who are familiar with self-driving know the immense logistical challenges associated
with long-term maintenance of HD maps. The tedious nature of maintaining maps as the
world changes around us suggests we should invest further into techniques for automatic
map updates, albeit with a trained annotator who can certify the final state of the map before
placed into production. Promising new architectures [108, 109, 110] suggest a path forward
for an order of magnitude increase in automation. Training such algorithms, however, re-
quires tapping into the “programming by data” paradigm. Our new datasets – the Argoverse
2.0 Sensor Dataset, Argoverse 2.0 LiDAR Dataset, and the Trust but Verify Dataset – pro-
vide tens of thousands of vehicle logs with high-quality HD map annotations in 3D to make
this possible (see Figure 5.4).

124

Appendices

APPENDIX A
GEOMETRY FUNDAMENTALS

A.1 Lie Groups and Algebras

Lie groups are essential and helpful tools for modeling rigid body kinematics and trans-
formations. Rigid bodies have a state which consists of position and orientation. When
sensors are placed on a rigid body (e.g. a robot), they provide measurements in the body
frame. Suppose we wish to take a measurement yb from the body frame and move it to
the world frame, yielding yw. We can do this via left multiplication with a transformation
matrix wTb, a member of the matrix Lie groups, that transports the point from one space to
another space: yw = wTb yb.

Group Definition

A group is a set G, with an operation ◦ of (binary) multiplication on elements of G which
is:

1. closed: If g1, g2 ∈ G then also g1 ◦ g2 ∈ G.

2. associative: (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3), for all g1, g2, g3 ∈ G;

3. unit element e: e ◦ g = g ◦ e = g, for all g ∈ G;

4. invertible: For every element g ∈ G, there exists an element g−1 ∈ G such that
g ◦ g−1 = g−1 ◦ g = e.

Lie Groups

When we are working with pure rotations, we work with Special Orthogonal groups, SO(·).
When we are working with a rotation and a translation together, we work with Special
Euclidean groups SE(·).

Lie Groups are unique because they are both a group and a manifold. They are contin-
uous manifolds in high-dimensional spaces, and have a group structure.

The Special Orthogonal Group SO(N)

Membership in the Special Orthogonal Group SO(N) requires two matrix properties:
RTR = I and det(R) = +1.

This gives us a very helpful property: R−1 = RT , obtaining the matrix’s inverse is
as simple as taking its transpose. We will generally work with SO(N), where N = 2, 3,
meaning the matrices are rotation matrices R ∈ R2×2 or R ∈ R3×3.

These rotation matrices R are not commutative.

126

Two-dimensional Special Orthogonal Group SO(2)

SO(2) is a 1-dimensional manifold living in a 2D Euclidean space, e.g. moving around a
circle. In other words, SO(2) is the space of orthogonal matrices that corresponds to rota-
tions in the plane. We will be stuck with singularities if we use 2 numbers to parameterize
it, which would mean kinematics break down at certain orientations.
A simple example: Let’s move from the body frame b to a target frame t:

Pt = tRb(θ)Pb[
5 cos(θ)
5 sin(θ)

]
=

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
∗
[
5
0

]
As described by Lavalle in [333], another way to think of this is to consider that a robot

can be rotated counterclockwise by some angle θ ∈ [0, 2π) by mapping every (x, y) as:

(x, y)→ (x cos θ − y sin θ, x sin θ + y cos θ). (A.1)

SO(3)

There are several well-known parameterizations of R ∈ SO(3):

1. R ∈ R3×3 full rotation matrix, 9 parameters – there must be 6 constraints.

2. Euler angles, e.g. (φ, θ, ψ), so 3 parameters.

3. Angle-Axis parameters (~a, φ), which is 4 parameters and 1 constraint (unit length).

4. Quaternions (q0, q1, q2, q3), 4 parameters and 1 constraint (unit length).

There are only 3 degrees of freedom in describing a rotation. But this object doesn’t live
in 3D space. It is a 3D manifold, embedded in a 4-D Euclidean space. Parameterizations
1,3,4 are overconstrained, meaning they employ more parameters than we strictly need.
With overparameterized representations, we have to do extra work to make sure we satisfy
the constraints of the representation. As it turns out, SO(3) cannot be parameterized by
only 3 parameters in a non-singular way.

Rotation Matrices

3D rotation matrices do not form a vector space. An easy way to see this is to try to add
the following two rotation matrices, I and R, where R is a 180◦ rotation about the z-axis:

I =

1 0 0
0 1 0
0 0 1

 , R =

−1 0 0
0 −1 0
0 0 1


I +R =

0 0 0
0 0 0
0 0 2

 (A.2)

127

which is not a rotation (as it squashes flat the x- and y- components).

Euler Angles

One parameterization of SO(3) is to imagine three successive rotations around different
axes. The Euler angles encapsulate yaw-pitch-roll: first, a rotation about the x-axis by
φ (roll). Then, a rotation about the pitch axis by θ (via right-hand rule), and finally we
perform a yaw via a rotation about the z-axis (yaw, ψ).

The sequence of successive rotations is encapsulated in wRb:

wRb = Rz(ψ)Ry(θ)Rx(φ) (A.3)

As outlined by Lavalle [333], these successive rotations by (ψ, θ, φ) are defined by:

Ryaw = Rz(ψ) =

cosψ −sinψ 0
sinψ cosψ 0

0 0 1

 (A.4)

Rpitch = Ry(θ) =

 cosθ 0 sinθ
0 1 0
−sinθ 0 cosθ

 (A.5)

Rroll = Rx(φ) =

1 0 0
0 cosφ −sinφ
0 sinφ cosφ

 (A.6)

Each rotation matrix ∈ R3×3 above is a simple extension of the 2D rotation matrix from
SO(2). For example, the yaw matrix Ryaw performs a 2D rotation with respect to the x and
y coordinates while leaving the z coordinate unchanged [333].

The Two-Dimensional Special Euclidean Group SE(2)

The real space SE(2) are 3 × 3 matrices, moving a point in homogenous coordinates to
a new frame. It is important to remember that this represents a rotation followed by a
translation (not the other way around). A rigid body which translates and rotates on a 2D
plane has 3 DOF, e.g. a ground robot.

T =

xwyw
1

 =

R2×2 t2×1

.
0 0 1

 ∗
xbyb

1

 (A.7)

By adding an extra dimension to the input points and transformation matrix T , the
translational part of the transformation is absorbed.

The Three-Dimensional Special Euclidean Group SE(3)

The set of rigid body motions, or special Euclidean transformations, is a (Lie) group, the
so-called special Euclidean group, typically denoted as SE(3). The real space SE(3) is a

128

6-dimensional manifold. Its dimensions is exactly the number of degrees of freedom of a
free-floating rigid body in space [3]. SE(3) can be parameterized with a 4 × 4 matrix as
follows:  R3×3 t3×1

0 0 0 1


What is the inverse of an SE(3) object? Consider a transformation of a point in the

body frame pb to a point in the world frame pw. Both points pb, pw must be in homogeneous
coordinates. We can invert it as follows:

pw = wTbpb

pw =
[
wRb | wtb

]
pb

pw = wRbpb + wtb

pw − wtb = wRbpb

(wRb)
−1(pw − wtb) = (wRb)

−1wRbpb

(wRb)
T (pw − wtb) = pb

(wRb)
Tpw − (wRb)

T wtb = pb[
(wRb)

T | −(wRb)
T wtb

]
pw = pb

pb =
[
(wRb)

T | −(wRb)
T wtb

]
pw

pb = wT−1
b pw

(A.8)

Thus if T =

[
R t
0 1

]
, then T−1 =

[
RT −RT t
0 1

]
.

A.1.1 Axis-Angle Representation, Lie Algebra, and Exponential and Log Maps

One of the most powerful representations of a 3d rotation is the axis-angle representation,
that will allow us to compute averages of multiple rotation matrices, smoothly interpolate
between two rotations, and much more. These tasks are hard to perform directly because
rotation matrices don’t form a vector space—for instance, adding two rotation matrices
doesn’t give you another rotation matrix.

We can convert rotation matrices into an axis-angle form where rotations are repre-
sented by ordinary vectors.The axis-angle representation consists of an angle θ ∈ R and an
axis u ∈ Rn. The direction of the vector gives the axis of rotation, and the magnitude of
the vector gives the angle of the rotation. They define a type of “screw” motion (spinning
around an axis).

We know that rotation matrices form a Lie group SO(n), and the associated vector
space is the Lie algebra so(3).
Logarithmic Map Mapping from manifold to tangent space: log : SO(3) → so(3). The
logarithmic map can be used to turn a rotation matrix R into an axis and angle.
Exponential Map Mapping from tangent space to manifold: exp : so(3) → SO(3). The

129

exponential map can be used to turn an angle θ and unit-length axis u into a rotation matrix
R.

The Exponential Map

The matrix exponential

eω̂t = I + ω̂t+
(ω̂t)2

2!
+ · · ·+ (ω̂t)n

n!
+ · · · (A.9)

defines a map from the space so(3) to SO(3), which we often call the exponential map
[334].

For any rotation matrix R ∈ SO(3), there exists a ω ∈ R3, ‖ω‖ = 1andt ∈ R such that
R = eω̂t. This theorem is quite powerful: it means that any rotation matrix can be realized
by rotating around some fixed axis by a certain angle. This map is not one-to-one.

Exponential Map Application: Interpolation of Rotation Matrices

A problem that arises in computer vision and robotics is interpolation of rigid body motions.
We can smoothly interpolate 3d rotations using the exponential and logarithmic maps

for 3D rotations. Euler angles are an inferior choice for interpolation. Given two rotations
R0 and R1, the smallest rotation between them (in axis-angle form) is given by

ω = log(R1R
−1
0) (A.10)

Hence, we can interpolate via R(t) = exp(tω)R0.
As before, this family of rotations starts at t = 0 with R0, and interpolates to R1 at

t = 1 with the minimal amount of additional “twisting” in-between.

A.1.2 Log / Exponential Map Application: Rotation Averaging

Another problem that arises in computer vision and robotics is single rotation averaging.
The Single Rotation Averaging problem is defined as follows: given a collection of

rotation matrices R1, . . . ,Rn ∈ R3×3, find the average rotation R̄. However, we can’t just

take an average of the matrices 1
n

n∑
i=1

Ri, since the average of rotation matrices will not in

general be a rotation matrix.
Analogy: Averaging Points. Instead, let’s first think about an unusual way to average
a bunch of points x1, . . . ,xn in the 2d plane. Instead of just directly taking the average
(which we can’t do with rotations), we’ll pick some initial guess x̄ for the average. We’ll
then compute, for each point, the smallest vector ui that takes us from x̄ to xi. In the case
of points in the 2d plane, this vector is just ui = xix̄. We’ll then compute the average

vector u := 1
n

n∑
i=1

ui that tries to pull us toward all the points, and take a little step in this

direction of size τ ∈ [0, 1]. If we reach a point where u = 0 – or at least, below some
very small ε > 0—then the algorithm stops and we know we’ve reached the average (see
Algorithm 2).

130

Figure A.1: Iterations towards convergence of the Weiszfeld algorithm. (Left): (1) initial-
ization. (Center): intermediate iteration. (Right): convergence.

Algorithm 2 Weiszfeld Algorithm
Inputs:
{xi}Ni=1: Point measurements.

Output:
x̄: Average point.

Solution:
Pick an initial guess x̄ ∈ R2

while true do
ui ← xix̄

u← 1
n

n∑
i=1

ui

x̄← x̄ + τu
if ‖u‖ > ε then

break
end if

end while

Single Rotation Averaging.

The algorithm for averaging rotations is nearly identical (see Algorithm 3).
The initial guess could be any rotation matrix – for example, the identity R̄ = I . Rather

than computing differences of rotation matrices, we compute the smallest rotation from R̄
to each of the Ri via the log map, yielding a bunch of skew-symmetric matrices ωi.

Since these matries belong to a common vector space, we can average them to produce
another skew-symmetric matrix, i.e., another axis-angle representation of a rotation. Ap-
plying the exponential map moves R̄ a little bit toward the average, and we repeat until
convergence.

This algorithm is essentially known as the Weiszfeld algorithm, and the notion of aver-
age we get in the end is referred to as the Karcher mean of the rotations. Multiple rotation
averaging uses the same sorts of ideas, as can be seen in [335] or [119].

131

Algorithm 3 Single Rotation Averaging
Inputs:
{Ri}Ni=1: Rotation measurements.

Output:
R̄: Mean rotation.

Solution:
Pick an initial guess R̄ ∈ R3×3

while true do
ωi ← log

(
RiR̄

−1
)

ω ← 1
n

n∑
i=1

ωi

R̄← exp(τ ω)R̄
if ‖ω‖ > ε then

break
end if

end while

Twists

A 4× 4 matrix of the form ξ̂ is called a twist. The set of all twists is denoted as se(3) [336,
334, 337]:

se(3) =

{
ξ̂ =

[
[ω]× v

0 0

]
| ω ∈ so(3), v ∈ R3

}
⊂ R4×4 (A.11)

se(3) is called the tangent space (or Lie algebra) of the matrix group SE(3).
Why do we care about twists? It turns out that a rigid body can be moved from one

position to any other by a movement consisting of (1) a rotation about a straight line (2)
followed by a translation parallel to that line. This type of motion is screw motion, and
its infinitesimal version is called a twist. The beauty of a twist is that it describes the
instantaneous velocity of a rigid body in terms of its linear and angular components, i.e.
the linear velocity v and angular velocity ω [334]. It is the matrix exponential that maps a
twist into its corresponding screw motion.

A.2 Epipolar Geometry

Epipolar geometry is the geometry of stereo vision. In this section, we will review the
two-view case. Many modern approaches for solving robotic computer vision tasks such
as Structure from Motion (SfM) and Visual Simultaneous Localization and Mapping (VS-
LAM) rely heavily on “feature matching,” or the ability to find accurate keypoint corre-
spondences between pairs of images. Tools from Epipolar geometry are a simple, and
often effective, way to discard outliers in feature matching and are widely used.

132

A.2.1 The Essential Matrix

Given point correspondences {(x0,x1)} respectively from two images I0, I1, and camera
intrinsics K, the 5-point algorithm solves for an Essential matrix 1E0:[

x1

1

]
K−T

(
1E0

)
K−1

[
x0

1

]
= 0 (A.12)

This equation can be derived from first principles if we consider a 3D point p being viewed
from two cameras (see Longuet-Higgins [272] or Szeliski [338], p. 704):

d1x̂1 = p1 = 1R0p0 + 1t0 = 1R0(d0x̂0) + 1t0 (A.13)

where x̂j = K−1
j xj are the (local) ray direction vectors. Note that 1R0 and 1t0 define an

SE(3) object that transforms p0 from camera 0’s frame to camera 1’s frame. We’ll refer to
these just as R and t for brevity in the following derivation.

We can eliminate the +t term by a cross-product. This can be achieved by multiplying
with a skew-symmetric matrix as [t]×t = 0. Then:

d1[t]×x̂1 = d0[t]×Rx̂0. (A.14)

Swapping sides and taking the dot product of both sides with x̂1 yields

d0x̂
T
1 ([t]×R)x̂0 = d1x̂

T
1 [t]×x̂1 = 0, (A.15)

Since the cross product [t]x returns 0 when pre- and post-multiplied by the same vector, we
arrive at the familiar epipolar constraint, where E = [t]×R:

x̂T1 Ex̂0 = 0 (A.16)

Recovering relative camera motion In order to recover (R, t) from E, we must verify
possible pose hypotheses by triangulating 3d points from each 2-view correspondence, and
by checking the cheirality of each 3d point (whether 3D points have positive depth). We
cannot recover the SE(3) object 1T0 = (1R0,

1t0) from the decomposed E matrix, as 1t0

provides a unit translation direction, not an actual translation direction with any meaningful
magnitude or scale.

A.2.2 The Fundamental Matrix and DLT

Suppose we don’t have access to camera intrinsic matrices K0, K1. The Fundamental
matrix allows us still to verify correspondences. We can use Equation A.12, and define
F = K−T1 (1E0)K−1

0 , leaving a new epipolar constraint of xT1 Fx0 = 0, where x0,x1 are
2D corresponding points in images I0, I1. To simplify notation in a later system of equa-
tions , we’ll use slightly different notation: let x0 = (u, v) and x1 = (u′, v′):

[
u′ v′ 1

] f11 f12 f13

f21 f22 f23

f31 f32 f33

uv
1

 = 0 (A.17)

133

Longuet-Higgins’ 8-Point Algorithm [272] provides the solution for estimating F if
at least 8 point correspondences are provided. A system of linear equations is formed as
follows:

Af =

u1u
′
1 u1v

′
1 u1 v1u

′
1 v1v

′
1 v1 u′1 v′1 1

...
...

...
...

...
...

...
...

...
unu

′
n unv

′
n un vnu

′
n vnv

′
n vn u′n v′n 1




f11

f12

f13

f21
...
f33


=

0
...
0

 (A.18)

The matrix-vector product above can be driven to zero by minimizing the norm, and
avoiding the degenerate solution that x = 0 with a constraint that the solution lies upon the
unit ball, e.g.

minimize
‖x‖=1

‖Ax‖2
2 = xTATAx = xTBx (A.19)

By the Courant-Fisher characterization, it is well known that if B is a n× n symmetric
matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn and corresponding eigenvectors v1, . . . , vn,
then

vn = arg min
‖x‖=1

xTBx (A.20)

meaning the eigenvector associated with the smallest eigenvalue λn of B = ATA is the
solution x?, which is equivalent to the smallest right singular vector v from the SVD of
A = UΣV T . The vector x? contains the 9 entries of the Fundamental matrix F ?.

DLT Proof: the SVD provides the solution

The proof is almost always taken for granted, but we will provide it here for completeness.
This is a specific instance of the extremal trace [339] (or trace minimization on a unit
sphere) problem, with k = 1, i.e.

minimize Tr(XTBX)
subject to XTX = Ik

(A.21)

where Ik denotes the k × k identity matrix. The unit ball constraint avoids the trivial
solution when all eigenvalues λi are zero instead of a single zero eigenvalue.

In our case, since U, V are orthogonal matrices (with orthonormal columns), then
UTU = I . Thus, the SVD of B yields

ATA = (UΣV T)T (UΣV T) = V ΣUTUΣV T = V Σ2V T . (A.22)

Since B = ATA, B is symmetric, and thus the columns of V =
[
v1 . . . vn

]
are eigen-

vectors of B. V can equivalently be computed with the SVD of A or B, since V appears in
both decompositions: A = UΣV T and B = V Σ2V T .

134

Because B is symmetric, there exists a set of n orthonormal eigenvectors, yielding an
eigendecomposition B = V TΛV . Thus,

arg min
‖x‖=1

xTBx = arg min
‖x‖=1

xTV TΛV x = arg min
‖x‖=1

(V x)TΛ(V x) (A.23)

Since V is orthogonal, ‖V x‖ = ‖x‖, thus minimizing (V x)TΛ(V x) is equivalent to

minimizing xTΛx. Since Λ is diagonal, xTBx =
n∑
i=1

λix
2
i where {λi}ni=1 are the eigen-

values of B. Let qi = x2
i , meaning qi ≥ 0 since it represents a squared quantity. Since

‖x‖ = 1, then
√∑

i

x2
i = 1,

∑
i

x2
i = 1,

∑
i

qi = 1. Thus,

min
‖x‖=1

xTBx = min
‖x‖=1

n∑
i=1

λix
2
i = min

qi

∑
i

λiqi = min
qi
λn
∑
i

qi = λn (A.24)

where λn is the smallest eigenvalue of B. The last line follows since qi ≥ 0 and∑
i

qi = 1, therefore we have a convex combination of a set of numbers {λi}ni=1 on the real

line. By properties of a convex combination, the result must lie in between the smallest and
largest number. Now that we know the minimum is λn, we can obtain the argmin by the
following observation:

If v is an eigenvector of B, then

Bv = λnv (A.25)

Left multiplication with vT simplifies the right side because vTv = 1, by our constraint that
‖x‖ = 1. We find:

vT (Bv) = vT (λnv) = vTvλn = λn (A.26)

Thus the eigenvector v associated with the eigenvalue λn is x?. �

A.2.3 Normalized 8-Point Algorithm

Hartley [175] proposes a simple modification to the classical 8-Point algorithm to make it
robust to noise. By preceding the algorithm with a very simple normalization (translation
and scaling) of the coordinates of the matched points, results are obtained comparable with
the best iterative algorithms.

The main idea is to replace coordinates ua in image a with ûa = Taua, and coordinates
ub in image b with ûb = Tbub.

If T is chosen to be invertible, then we can recover the original coordinates from the
transformed ones, as

ûa = Taua

T−1
a ûa = T−1

a Taua

T−1
a ûa = ua

(A.27)

135

Substituting in the equation uTb Fua = 0, we derive the equation

uTb Fua = 0

(T−1
b ûb)

TFT−1
a ûa = 0

ûTb T
−T
b FT−1

a ûa = 0

(A.28)

If we use the normalized points ua,u
T
b when fitting the Fundamental matrix, then we

will end up estimating F̂ = T−Tb FT−1
a . In other words, uTb Fua = ûTb F̂ ûa. If we want to

find out the original F that corresponded to raw (unnormalized) point coordinates, than we
need to transform backwards:

F̂ = T−Tb FT−1
a

T Tb F̂ = T Tb T
−T
b FT−1

a

T Tb F̂ Ta = FT−1
a Ta

T Tb F̂ Ta = F

(A.29)

A.3 3d Geometry for Panoramas

Panorama

A panoramic image offers a 360◦ view of the area. Panoramas are often mapped to an image
that covers a 360◦ field-of-view horizontally, but only 180◦ vertically (see Figure A.2). This
is often what we are used to when seeing a map of the world, as if a globe had been distorted
to a cylinder, and then unrolled to be flat. It is called an “equirectangular projection”. In
other words, it maps meridians to vertical straight lines of constant spacing.

Figure A.2: A panorama provided in the Zillow Indoor Dataset (ZInd) [14].

Spherical Coordinate System

In the spherical coordinate system, we use an ordered triple to describe the location of a
point in space. In this case, the triple (ρ, θ, ϕ) describes one distance and two angles.

If P = (x, y, z) is a point in space, and the x-y axes form the ground plane, and the
z-axis points upwards, then:

136

• ρ is the distance between P and the origin.

• θ is the angle component of a polar coordinate in the x-y plane

• ϕ is the angle formed by the positive z-axis and line segment OP , where O is the
origin.

Conversion of rectangular coordinates to spherical coordinates Since ρ is the distance
of a point on the sphere to the origin, then:

ρ = ‖

xy
z

 ‖2

ρ2 = x2 + y2 + z2

tan θ =
y

x
z

ρ
=

z√
x2 + y2 + z2

= cos(ϕ)

ϕ = arccos
(z√

x2 + y2 + z2

)
(A.30)

Conversion of spherical coordinates to rectangular coordinates We’ll now discuss how
to go in the opposite direction – from spherical to rectangular coordinates.

The sine of an angle is the length of the opposite leg, divided by the length of the
hypotenuse: sin(ϕ) = r

ρ
. Therefore ρ sin ϕ = r.

At this point, we can consider only triangles inside the x-y plane. If r is the hypotenuse
of a triangle in the x-y plane, then x = r cos θ and y = r sin θ.

To compute z, we can notice one more right triangle above, where cos ϕ = z
ρ
, meaning

z = ρ cos ϕ.
We have derived the following relationships:

1. x = ρ sin ϕ cos θ = r cos θ.

2. y = ρ sin ϕ sin θ = r sin θ.

3. z = ρ cos ϕ.

A.4 Raycasting

Unlike raytracing, raycasting seeks to find only the first intersection between a ray and
a surface (if it exists), rather than continuing to trace the path. It turns out the math for
this is quite simple to do naively, but the interesting part is figuring out how to make the
implementation very cheap and fast [324]. We’ll walk through the derivation from first
principles.

137

A.4.1 System of Equations for Ray/Triangle Intersection

Suppose we model the surface as a triangle mesh. In order to find this intersection point P ,
we need a parametric equation of a ray, and of a triangle. Suppose we define the ray by its
origin O and its direction R. The ray parametric equation is P = O + tR where t is the
distance from the ray origin O to point P . To find P , we need to compute distance t.

The three 3d vertices (v0, v1, v2) of a triangle define a plane, and we can compute the
plane’s normal vector with a single cross product. If the vertices are ordered counter-

clockwise, then we can compute the unit length plane normal vector N = (Nx, Ny, Nz) as:

N ′ = (v1 − v0)× (v2 − v0)

N =
N ′

‖N ′‖2

(A.31)

Now, we can form a system of equations. Suppose we have P = (x, y, z). We know
ray origin O and direction R, along with the plane normal N = (A,B,C) and distance D,
computed as D = N · v0. Our only unknowns are P = (x, y, z) and t:

P = O + tR

Ax+By + Cz +D = 0

A ∗ Px +B ∗ Py + C ∗ Pz +D = 0→ rewrite P = (x, y, z) as P = (Px, Py, Pz)
(A.32)

We’ll now substitute P (from the first equation) to (x, y, z) in equation 2 and solve for
distance t. Let O = (Ox, Oy, Oz) and let R = (Rx, Ry, Rz):

A ∗ (Ox + tRx) +B ∗ (Oy + tRy) + C ∗ (Oz + tRz) +D = 0

A ∗Ox +B ∗Oy + C ∗Oz + A ∗ tRx +B ∗ tRy + C ∗ tRz +D = 0

t ∗ (A ∗Rx +B ∗Ry + C ∗Rz) + A ∗Ox +B ∗Oy + C ∗Oz +D = 0

t ∗ (A ∗Rx +B ∗Ry + C ∗Rz) = −
(
A ∗Ox +B ∗Oy + C ∗Oz +D

)
t = −A ∗Ox +B ∗Oy + C ∗Oz +D

A ∗Rx +B ∗Ry + C ∗Rz

t = −N(A,B,C) ·O +D

N(A,B,C) ·R

(A.33)

The expression simplifies nicely, and shows how to find where the ray intersects a 3d

138

plane. There are at least 3 more conditions we need to check for, though:

1. Is the intersection point inside of the triangle’s perimeter, or outside?

2. Are the ray direction and the 3d plane parallel to one another?

3. Is the triangle “behind” the ray?

For condition (1), we’ll need another sub-routine, the “inside-outside test”. We can deter-
mine condition (2) easily. If |N · R| < ε, where ε is close to zero, then the ray and plane
are parallel.
Condition (3) is also easy to verify: after solving for t, we check the sign of t and ensure
that it’s non-negative.

A.5 Rotation averaging

The rotation averaging problem, also known as ”rotations averaging”, concerns the esti-
mation of one or more rotations in a global frame, given pairwise rotation measurements.
This problem is equivalent to the synchronization problem over the 3-dimensional Special
Orthogonal Group SO(3), and can serve as a useful initialization for bundle adjustment in
Global Structure from Motion (SfM).

Let wRi, sometimes written as Ri for brevity.
Often we we speak of rotation averaging, we are referring to the “multiple rotation

averaging” problem [243]:

argmin
R1,...Rn∈SO(3)

∑
(i,j)∈N

d(iRj,
iRw

wRj) (A.34)

In Shonan averaging [119], the maximum likelihood problem is posed as

max
R∈SO(d)n

∑
(i,j)∈E

κijtr(wRi
iRj

jRw)

Rotation averaging is a least squares problem in the tangent space of the SO(3) mani-
fold. Because iωj ≈ ωj−ωi (the equality only holds for Baker-Campbell-Hausdorff form),
a simple iterative algorithm [335] arises, by initializing global rotations {wRi}Ni=1

1. Compute residual: ∆jRi = wRj
jRi

iRw

2. Apply logarithmic map: ∆jωi = log(∆jRi)

3. Solve concatenated linear system: A∆ωglobal = ωrel

4. Apply exponential map: ∀k ∈ [1, N],Rk = Rkexp(∆ωk)

A.6 Translation Averaging

The translation averaging (also known as “translations averaging”) problem estimates global
translations of cameras in a world frame, given a number of pairwise 3 d.o.f. translation
directions and global rotation estimates.

139

Given translation direction measurements (rays) j t̂i, and global rotation estimates wRj ,
we can rotate these rays into a global frame via w

j t̂i = wRj
j t̂i. We can then establish

an optimization problem between directions (rays) in the global frame, and global camera
positions. 1dsfm [209] uses a sum of squared chordal distance:

E(·) =
∑

(i,j)∈E

dch

(
w
j t̂i,

wtj − wti
‖wtj − wti‖

)2

(A.35)

where dch(u,v) = ‖u− v‖2.

140

APPENDIX B
HIGH DEFINITION (HD) MAP FUNDAMENTALS

High-definition (HD) maps are representations of the world that are designed for use by
autonomous vehicles. They include lane-level geometry, as well as other geometric data
and semantic annotations [287, 288, 289, 2, 290, 4, 105, 10, 291, 6, 292, 7, 13, 11, 12].
In this section, we describe a one possible representation of an HD map, as used in the
Argoverse Datasets [4].

An HD map may include many distinct map components – such as (1) a vector map of
lane centerlines and their attributes; (2) a rasterized map of ground height, (3) a rasterized
map of driveable area and region of interest (ROI), as well as other possible components.

B.0.1 Vector Map of Lane Geometry

A vector map consists of semantic road data represented as a localized graph rather than
rasterized into discrete samples. In a vector map, the lane graph may be represented by
lane boundaries or instead by lane centerlines, split into lane segments. Vehicle trajectories
generally follow the center of a lane, so a centerline is a useful prior for tracking and
forecasting.

A lane segment is a segment of road where cars drive in single-file fashion in a single
direction. Multiple lane segments may occupy the same physical space (e.g. in an intersec-
tion). Turning lanes which allow traffic to flow in either direction are represented by two
different lanes that occupy the same physical space.

For each lane centerline, a number of semantic attributes are possible. In Argoverse
v1.0 [4], these lane attributes describe whether a lane is located within an intersection or
has an associated traffic control measure (Boolean values that are not mutually inclusive).
Other semantic attributes include the lane’s turn direction (left, right, or none) and the
unique identifiers for the lane’s predecessors (lane segments that come before) and suc-
cessors (lane segments that come after) of which there can be multiple (for merges and
splits, respectively). Centerlines are provided as “polylines”, i.e. an ordered sequence
of straight segments. Each straight segment is defined by 2 vertices: (xi, yi, zi) start and
(xi+1, yi+1, zi+1) end. Thus, curved lanes are approximated with a set of straight lines.

In the United States, lane segments adhere to certain priors. For example, in Miami,
lane segments that could be used for route planning are on average 3.84 ±0.89 m wide. In
Pittsburgh, the average width is 3.97 ±1.04 m. Other types of lane segments that would
not be suitable for self-driving, e.g. bike lanes, can be as narrow as 0.97 m in Miami and
as narrow as 1.06 m in Pittsburgh [4].

B.0.2 Rasterized Driveable Area Map

An HD map may include binary driveable area labels at some regular grid resolution, e.g.
1 meter resolution for Argoverse 1.0 and 30 centimeter resolution for Argoverse 2.0. A
driveable area is an area where it is possible for a vehicle to drive (though not necessarily

141

legal). Driveable areas can encompass a road’s shoulder in addition to the normal driveable
area that is represented by a lane segment. A dilated isocontour of the driveable area, e.g.
all areas within 5 meters of the driveable area, can be useful for reasoning about entities
of interest for self-driving. This larger area is sometimes referred to as a region of interest
(ROI).

B.0.3 Rasterized Ground Height Map

HD maps may also include real-valued ground height at some regular grid resolution, e.g.
1 meter resolution for Argoverse 1.0. Knowledge of ground height can be used to remove
LiDAR returns on static ground surfaces and thus makes the 3D detection of dynamic
objects easier. Figure B.1 shows a cross section of a scene with uneven ground height.

Figure B.1: A scene with non-planar ground surface. The colored LiDAR returns have
been classified as belonging to the ground, based on the map. Points outside the driveable
area are also discarded. This simple distance threshold against a map works well, even on
the road to the left which goes steeply uphill.

B.0.4 Coordinate System

HD maps require a global, world coordinate system. In Argoverse 1.0 and Argoverse 2.0,
the model of the world used within the maps is a local tangent plane centered at a central
point located within each city [4, 326]. This model has a flat earth assumption which is ap-
proximately correct at the scale of a city. In Argoverse 1.0 and 2.0, map objects are defined
in city coordinates. City coordinates can be converted to the UTM (Universal Transverse
Mercator) coordinate system by simply adding the city’s origin in UTM coordinates to the
object’s city coordinate pose. The UTM model divides the earth into 60 flattened, narrow
zones, each of width 6 degrees of longitude. Each zone is segmented into 20 latitude bands.

We favor a city-level coordinate system because of its high degree of interpretabil-
ity when compared with geocentric reference coordinate systems such as the 1984 World
Geodetic System (WGS84). While WGS84 is widely used by the Global Positioning Sys-
tem, the model is difficult to interpret at a city-scale; because its coordinate origin is located
at the Earth’s center of mass, travel across an entire city corresponds only to pose value
changes in the hundredth decimal place. The conversion back and forth between UTM and
WGS84 is well-known and is documented in detail in [340].

142

(a) (b) (c)

Figure B.2: (a) Lane centerlines and hallucinated area are shown in red and yellow, re-
spectively. Argoverse 1.0 provides lane centerlines because simple road centerline repre-
sentations cannot handle the highly complicated nature of real world mapping, as shown
above with divided roads. (b) Lane segments within intersections are shown in pink, and
all other lane segments in yellow. Black shows lane centerlines. (c) Example of a specific
lane centerline’s successors and predecessors. Red shows the predecessor, green shows the
successor, and black indicates the centerline segment of interest.

Figure B.2 shows examples of the centerlines which are the basis of the Argoverse 1.0
vector map. Centerline attributes include whether or not lane segments are in an intersec-
tion, and which lane segments constitute their predecessors and successors. Figure B.3
shows examples of centerlines, driveable area, and ground height projected onto a camera
image.

143

(a) Lane geometry and connectivity

(b) Driveable area

(c) Ground height

Figure B.3: Examples of centerlines, driveable area, and ground height projected onto a
camera image.

144

REFERENCES

[1] P. Lindenberger, P.-E. Sarlin, V. Larsson, and M. Pollefeys, “Pixel-Perfect Structure-
from-Motion with Featuremetric Refinement,” in ICCV, 2021.

[2] B. Yang, M. Liang, and R. Urtasun, “HDNET: exploiting HD maps for 3d ob-
ject detection,” in 2nd Annual Conference on Robot Learning, CoRL 2018, Zürich,
Switzerland, 29-31 October 2018, Proceedings, ser. Proceedings of Machine Learn-
ing Research, vol. 87, PMLR, 2018, pp. 146–155.

[3] S. Casas, W. Luo, and R. Urtasun, “Intentnet: Learning to predict intention from
raw sensor data,” in 2nd Annual Conference on Robot Learning, CoRL 2018, Zürich,
Switzerland, 29-31 October 2018, Proceedings, ser. Proceedings of Machine Learn-
ing Research, vol. 87, PMLR, 2018, pp. 947–956.

[4] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang, P.
Carr, S. Lucey, D. Ramanan, and J. Hays, “Argoverse: 3d tracking and forecasting
with rich maps,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), Jun. 2019.

[5] T. Phan-Minh, E. C. Grigore, F. A. Boulton, O. Beijbom, and E. M. Wolff, “Cover-
net: Multimodal behavior prediction using trajectory sets,” in CVPR, Jun. 2020.

[6] J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid, “Vectornet:
Encoding hd maps and agent dynamics from vectorized representation,” in CVPR,
Jun. 2020.

[7] M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Urtasun, “Learning
lane graph representations for motion forecasting,” in ECCV, 2020.

[8] H. Zhao, J. Gao, T. Lan, C. Sun, B. Sapp, B. Varadarajan, Y. Shen, Y. Shen, Y. Chai,
C. Schmid, C. Li, and D. Anguelov, “Tnt: Target-driven trajectory prediction,” in
4th Annual Conference on Robot Learning, CoRL 2020, 2020.

[9] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl, “Learning by cheating,” in Con-
ference on Robot Learning (CoRL), 2019.

[10] W. Zeng, W. Luo, S. Suo, A. Sadat, B. Yang, S. Casas, and R. Urtasun, “End-to-end
interpretable neural motion planner,” in CVPR, Jun. 2019.

[11] S. Tan, K. Wong, S. Wang, S. Manivasagam, M. Ren, and R. Urtasun, “Scenegen:
Learning to generate realistic traffic scenes,” in CVPR, Jun. 2021.

145

[12] S. Suo, S. Regalado, S. Casas, and R. Urtasun, “Trafficsim: Learning to simulate
realistic multi-agent behaviors,” in CVPR, Jun. 2021, pp. 10 400–10 409.

[13] Y. Chen, F. Rong, S. Duggal, S. Wang, X. Yan, S. Manivasagam, S. Xue, E. Yumer,
and R. Urtasun, “Geosim: Realistic video simulation via geometry-aware compo-
sition for self-driving,” in CVPR, Jun. 2021.

[14] S. Cruz, W. Hutchcroft, Y. Li, N. Khosravan, I. Boyadzhiev, and S. B. Kang, “Zil-
low indoor dataset: Annotated floor plans with 360deg panoramas and 3D room
layouts,” in CVPR, Jun. 2021, pp. 2133–2143.

[15] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva, S. Song, A.
Zeng, and Y. Zhang, “Matterport3d: Learning from rgb-d data in indoor environ-
ments,” International Conference on 3D Vision (3DV), 2017.

[16] A. Cohen, J. L. Schönberger, P. Speciale, T. Sattler, J.-M. Frahm, and M. Pollefeys,
“Indoor-outdoor 3D reconstruction alignment,” in ECCV, vol. 9907, 2016, pp. 285–
300.

[17] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun, “Tanks and temples: Bench-
marking large-scale scene reconstruction,” ACM Transactions on Graphics, vol. 36,
no. 4, 2017.

[18] J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,” in CVPR,
Jun. 2016.

[19] P. Moulon, P. Monasse, R. Perrot, and R. Marlet, “Openmvg: Open multiple view
geometry,” in International Workshop on Reproducible Research in Pattern Recog-
nition, Springer, 2016, pp. 60–74.

[20] C. Sweeney, T. Hollerer, and M. Turk, “Theia: A fast and scalable structure-from-
motion library,” in Proceedings of the 23rd ACM international conference on Mul-
timedia, 2015, pp. 693–696.

[21] D. G. Lowe, “Object recognition from local scale-invariant features,” in ICCV, Ieee,
vol. 2, 1999, pp. 1150–1157.

[22] ——, “Distinctive image features from scale-invariant keypoints,” International
Journal of Computer Vision, vol. 60, pp. 91–110, 2004.

[23] H. Aanæs, A. L. Dahl, and K. Steenstrup Pedersen, “Interesting interest points,”
Int. J. Comput. Vision, vol. 97, no. 1, pp. 18–35, Mar. 2012.

146

[24] A. Albarelli, E. Rodolà, and A. Torsello, “Robust game-theoretic inlier selection
for bundle adjustment,” in International Symposium on 3D Data Processing, Visu-
alization and Transmission, 2010.

[25] P. F. Alcantarilla, A. Bartoli, and A. J. Davison, “Kaze features,” in ECCV, 2012.

[26] J. Aldana-Iuit, D. Mishkin, O. Chum, and J. Matas, “In the saddle: Chasing fast
and repeatable features,” in 23rd International Conference on Pattern Recognition,
ICPR 2016, Cancún, Mexico, December 4-8, 2016, 2016, pp. 675–680.

[27] H. Altwaijry, A. Veit, and S. Belongie, “Learning to detect and match keypoints
with deep architectures,” in British Machine Vision Conference (BMVC), York, UK,
2016.

[28] R. Arandjelović and A. Zisserman, “Three things everyone should know to improve
object retrieval,” in CVPR, IEEE, 2012, pp. 2911–2918.

[29] B. Babenko, P. Dollár, and S. Belongie, “Task specific local region matching,” in
2007 IEEE 11th International Conference on Computer Vision, IEEE, 2007, pp. 1–
8.

[30] D. P. Vassileios Balntas Edgar Riba and K. Mikolajczyk, “Learning local feature
descriptors with triplets and shallow convolutional neural networks,” in Proceed-
ings of the British Machine Vision Conference (BMVC), E. R. H. Richard C. Wilson
and W. A. P. Smith, Eds., BMVA Press, Sep. 2016, pp. 119.1–119.11.

[31] A. Barroso-Laguna, E. Riba, D. Ponsa, and K. Mikolajczyk, “Key.Net: Keypoint
Detection by Handcrafted and Learned CNN Filters,” in ICCV, 2019.

[32] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (surf),”
Comput. Vis. Image Underst., vol. 110, no. 3, pp. 346–359, Jun. 2008.

[33] A. Bhowmik, S. Gumhold, C. Rother, and E. Brachmann, “Reinforced feature
points: Optimizing feature detection and description for a high-level task,” in CVPR,
2020, pp. 4948–4957.

[34] J. Bian, W.-Y. Lin, Y. Matsushita, S.-K. Yeung, T.-D. Nguyen, and M.-M. Cheng,
“Gms: Grid-based motion statistics for fast, ultra-robust feature correspondence,”
in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul.
2017.

[35] E. Brachmann, A. Krull, S. Nowozin, J. Shotton, F. Michel, S. Gumhold, and C.
Rother, “Dsac - differentiable ransac for camera localization,” in CVPR, Jul. 2017.

147

[36] E. Brachmann and C. Rother, “Neural-guided ransac: Learning where to sample
model hypotheses,” in The IEEE International Conference on Computer Vision
(ICCV), Oct. 2019.

[37] G. H. M. Brown and S. Winder, “Discriminative learning of local image descrip-
tors,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33,
pp. 43–57, Feb. 2010.

[38] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust independent
elementary features,” in Proceedings of the 11th European Conference on Com-
puter Vision: Part IV, ser. ECCV’10, Heraklion, Crete, Greece: Springer-Verlag,
2010, pp. 778–792.

[39] T. Cieslewski, M. Bloesch, and D. Scaramuzza, “Matching features without de-
scriptors: Implicitly matched interest points,” in British Machine Vision Conference
(BMVC), 2019.

[40] C. B. Choy, J. Gwak, S. Savarese, and M. Chandraker, “Universal correspondence
network,” in Advances in Neural Information Processing Systems 29, 2016.

[41] Z. Dang, K. Moo Yi, Y. Hu, F. Wang, P. Fua, and M. Salzmann, “Eigendecomposition-
free training of deep networks with zero eigenvalue-based losses,” in ECCV, Sep.
2018.

[42] D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superpoint: Self-supervised inter-
est point detection and description,” in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, Jun. 2018.

[43] M. Dusmanu, I. Rocco, T. Pajdla, M. Pollefeys, J. Sivic, A. Torii, and T. Sattler,
“D2-Net: A Trainable CNN for Joint Detection and Description of Local Features,”
in CVPR, 2019.

[44] P. Ebel, A. Mishchuk, K. M. Yi, P. Fua, and E. Trulls, “Beyond cartesian represen-
tations for local descriptors,” in ICCV, Oct. 2019.

[45] P. Di Febbo, C. Dal Mutto, K. Tieu, and S. Mattoccia, “Kcnn: Extremely-efficient
hardware keypoint detection with a compact convolutional neural network,” in
CVPR, Jun. 2018.

[46] P. Fischer, A. Dosovitskiy, and T. Brox, “Descriptor matching with convolutional
neural networks: A comparison to sift,” arXiv preprint arXiv:1405.5769, 2014.

[47] X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg, “Matchnet: Unifying
feature and metric learning for patch-based matching,” in CVPR, Jun. 2015.

148

[48] W. Hartmann, M. Havlena, and K. Schindler, “Predicting matchability,” in CVPR,
2014.

[49] K. He, Y. Lu, and S. Sclaroff, “Local descriptors optimized for average precision,”
in CVPR, Jun. 2018.

[50] M. Jahrer, M. Grabner, and H. Bischof, “Learned local descriptors for recogni-
tion and matching,” in Proceedings of the Computer Vision Winter Workshop 2008,
2008, pp. 39–46.

[51] Y. Ke and R. Sukthankar, “Pca-sift: A more distinctive representation for local
image descriptors,” in CVPR, IEEE, vol. 2, 2004, pp. II–II.

[52] W. Kienzle, F. A. Wichmann, B. Scholkopf, and M. O. Franz, “Learning an interest
operator from human eye movements,” in CVPRW, 2006.

[53] K. Lenc and A. Vedaldi, “Learning covariant feature detectors,” in ECCV Work-
shops (3), ser. Lecture Notes in Computer Science, vol. 9915, 2016, pp. 100–117.

[54] S. Leutenegger, M. Chli, and R. Y. Siegwart, “Brisk: Binary robust invariant scal-
able keypoints,” in ICCV, ser. ICCV ’11, USA: IEEE Computer Society, 2011,
pp. 2548–2555.

[55] W.-Y. Lin, F. Wang, M.-M. Cheng, S.-K. Yeung, P. H. S. Torr, M. N. Do, and J. Lu,
“CODE: coherence based decision boundaries for feature correspondence,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 40, no. 1, pp. 34–47, 2018.

[56] Z. Luo, T. Shen, L. Zhou, S. Zhu, R. Zhang, Y. Yao, T. Fang, and L. Quan, “Geodesc:
Learning local descriptors by integrating geometry constraints,” in ECCV, 2018,
pp. 168–183.

[57] Z. Luo, T. Shen, L. Zhou, J. Zhang, Y. Yao, S. Li, T. Fang, and L. Quan, “Con-
textdesc: Local descriptor augmentation with cross-modality context,” in CVPR,
Jun. 2019.

[58] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide-baseline stereo from
maximally stable extremal regions,” Image and vision computing, vol. 22, no. 10,
pp. 761–767, 2004.

[59] K. Mikolajczyk and C. Schmid, “Indexing based on scale invariant interest points,”
in ICCV, vol. 1, Vancouver, Canada, Jul. 2001, pp. 525–531.

[60] ——, “An affine invariant interest point detector,” in ECCV, Springer, 2002, pp. 128–
142.

149

[61] ——, “Scale & affine invariant interest point detectors,” Int. J. Comput. Vision,
vol. 60, no. 1, pp. 63–86, Oct. 2004.

[62] ——, “A performance evaluation of local descriptors,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 27, no. 10, pp. 1615–1630, Oct. 2005.

[63] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky,
T. Kadir, and L. V. Gool, “A comparison of affine region detectors,” Int. J. Comput.
Vision, vol. 65, no. 1-2, pp. 43–72, Nov. 2005.

[64] A. Mishchuk, D. Mishkin, F. Radenovic, and J. Matas, “Working hard to know
your neighbor’s margins: Local descriptor learning loss,” in Advances in Neural
Information Processing Systems, 2017, pp. 4826–4837.

[65] D. Mishkin, F. Radenovic, and J. Matas, “Repeatability is not enough: Learning
affine regions via discriminability,” in ECCV, Sep. 2018.

[66] A. Mukundan, G. Tolias, and O. Chum, “Explicit spatial encoding for deep local
descriptors,” in CVPR, Jun. 2019.

[67] H. Noh, A. Araujo, J. Sim, T. Weyand, and B. Han, “Large-scale image retrieval
with attentive deep local features,” in The IEEE International Conference on Com-
puter Vision (ICCV), Oct. 2017.

[68] Y. Ono, E. Trulls, P. Fua, and K. M. Yi, “Lf-net: Learning local features from im-
ages,” in Advances in Neural Information Processing Systems 31, S. Bengio, H.
Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., Cur-
ran Associates, Inc., 2018, pp. 6236–6246.

[69] T. Plötz and S. Roth, “Neural nearest neighbors networks,” in NeurIPS, 2018,
pp. 1087–1098.

[70] R. Ranftl and V. Koltun, “Deep fundamental matrix estimation,” in The European
Conference on Computer Vision (ECCV), Sep. 2018.

[71] R. Raguram, O. Chum, M. Pollefeys, J. Matas, and J.-M. Frahm, “Usac: A universal
framework for random sample consensus,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 2022–2038, Aug. 2013.

[72] J. Revaud, C. De Souza, M. Humenberger, and P. Weinzaepfel, “R2d2: Reliable
and repeatable detector and descriptor,” in NeurIPS, 2019, pp. 12 405–12 415.

[73] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,”
in ECCV, 2006.

150

[74] E. Rosten, R. Porter, and T. Drummond, “Faster and better: A machine learning
approach to corner detection,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 32, pp. 105–119, 2010.

[75] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient alternative
to sift or surf,” in ICCV, 2011, pp. 2564–2571.

[76] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “SuperGlue: Learning
feature matching with graph neural networks,” in CVPR, 2020.

[77] N. Savinov, A. Seki, L. Ladicky, T. Sattler, and M. Pollefeys, “Quad-networks:
Unsupervised learning to rank for interest point detection,” in CVPR, Jul. 2017.

[78] K. Simonyan, A. Vedaldi, and A. Zisserman, “Learning local feature descriptors
using convex optimisation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2014.

[79] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-Noguer,
“Discriminative learning of deep convolutional feature point descriptors,” in ICCV,
IEEE Computer Society, 2015, pp. 118–126.

[80] C. Strecha, A. Lindner, K. Ali, and P. Fua, “Training for task specific keypoint
detection,” in Joint Pattern Recognition Symposium, Springer, 2009, pp. 151–160.

[81] C. Strecha, A. Bronstein, M. Bronstein, and P. Fua, “LDAHash: Improved match-
ing with smaller descriptors,” IEEE transactions on pattern analysis and machine
intelligence, vol. 34, no. 1, pp. 66–78, 2011.

[82] J. Sun, Z. Shen, Y. Wang, H. Bao, and X. Zhou, “LoFTR: Detector-free local feature
matching with transformers,” in CVPR, Jun. 2021, pp. 8922–8931.

[83] J. Tang, H. Kim, V. Guizilini, S. Pillai, and R. Ambrus, “Neural outlier rejection
for self-supervised keypoint learning,” in International Conference on Learning
Representations, 2020.

[84] Y. Tian, B. Fan, and F. Wu, “L2-net: Deep learning of discriminative patch descrip-
tor in euclidean space,” in CVPR, Jul. 2017.

[85] Y. Tian, X. Yu, B. Fan, F. Wu, H. Heijnen, and V. Balntas, “Sosnet: Second order
similarity regularization for local descriptor learning,” in CVPR, Jun. 2019.

[86] E. Tola, V. Lepetit, and P. Fua, “Daisy: An efficient dense descriptor applied to
wide-baseline stereo.,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 5,
pp. 815–830, 2010.

151

[87] P. Truong, S. Apostolopoulos, A. Mosinska, S. Stucky, C. Ciller, and S. D. Zanet,
“Glampoints: Greedily learned accurate match points,” in ICCV, Oct. 2019.

[88] T. Tuytelaars and L. v. Gool, “Wide baseline stereo matching based on local, affinely
invariant regions,” in Proceedings of the British Machine Vision Conference, BMVA
Press, 2000, pp. 38.1–38.14.

[89] T. Tuytelaars, K. Mikolajczyk, et al., “Local invariant feature detectors: A survey,”
Foundations and trends® in computer graphics and vision, vol. 3, no. 3, pp. 177–
280, 2008.

[90] Y. Verdie, K. M. Yi, P. Fua, and V. Lepetit, “TILDE: A temporally invariant learned
detector.,” in CVPR, IEEE Computer Society, Jun. 2015, pp. 5279–5288.

[91] S. A. J. Winder, G. Hua, and M. A. Brown, “Picking the best DAISY,” in CVPR,
IEEE Computer Society, 2009, pp. 178–185.

[92] S. Winder and M. Brown, “Learning local image descriptors,” in CVPR, Minneapo-
lis, Jun. 2007.

[93] G. Yang, T. Malisiewicz, and S. Belongie, “Learning data-adaptive interest points
through epipolar adaptation,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, Jun. 2019.

[94] K. Moo Yi, E. Trulls, Y. Ono, V. Lepetit, M. Salzmann, and P. Fua, “Learning to
find good correspondences,” in CVPR, Jun. 2018.

[95] K. M. Yi, E. Trulls, V. Lepetit, and P. Fua, “Lift: Learned invariant feature trans-
form,” in ECCV, vol. 9910, 2016, pp. 467–483.

[96] S. Zagoruyko and N. Komodakis, “Learning to compare image patches via convo-
lutional neural networks,” in CVPR, Jun. 2015.

[97] J. Zhang, D. Sun, Z. Luo, A. Yao, L. Zhou, T. Shen, Y. Chen, L. Quan, and H. Liao,
“Learning two-view correspondences and geometry using order-aware network,” in
ICCV, Oct. 2019.

[98] X. Zhang, F. X. Yu, S. Karaman, and S.-F. Chang, “Learning discriminative and
transformation covariant local feature detectors,” in CVPR, Jul. 2017.

[99] X. Zhang, F. X. Yu, S. Kumar, and S.-F. Chang, “Learning spread-out local feature
descriptors,” in ICCV, Oct. 2017.

[100] L. Zhang and S. Rusinkiewicz, “Learning local descriptors with a cdf-based dy-
namic soft margin,” in ICCV, Oct. 2019.

152

[101] ——, “Learning to detect features in texture images,” in CVPR, Jun. 2018.

[102] C. Zhao, Z. Cao, C. Li, X. Li, and J. Yang, “Nm-net: Mining reliable neighbors for
robust feature correspondences,” in CVPR, Jun. 2019.

[103] V. M. Govindu, “Lie-algebraic averaging for globally consistent motion estima-
tion,” in Proceedings of the 2004 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2004. CVPR 2004., IEEE, vol. 1, 2004, pp. I–I.

[104] Y. Jin, D. Mishkin, A. Mishchuk, J. Matas, P. Fua, K. M. Yi, and E. Trulls, “Image
matching across wide baselines: From paper to practice,” International Journal of
Computer Vision, vol. 129, no. 2, pp. 517–547, 2021.

[105] N. Homayounfar, W.-C. Ma, J. Liang, X. Wu, J. Fan, and R. Urtasun, “DAGMap-
per: Learning to map by discovering lane topology,” in ICCV, Oct. 2019.

[106] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y.
Pan, G. Baldan, and O. Beijbom, “Nuscenes: A multimodal dataset for autonomous
driving,” in CVPR, 2020, pp. 11 621–11 631.

[107] S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan, Y. Chai, B. Sapp,
C. Qi, Y. Zhou, Z. Yang, A. Chouard, P. Sun, J. Ngiam, V. Vasudevan, A. Mc-
Cauley, J. Shlens, and D. Anguelov, Large scale interactive motion forecasting for
autonomous driving : The waymo open motion dataset, 2021. arXiv: 2104.10133
[cs.CV].

[108] Q. Li, Y. Wang, Y. Wang, and H. Zhao, HDMapNet: An online hd map construction
and evaluation framework, 2021. arXiv: 2107.06307 [cs.CV].

[109] A. Karpathy. (2021). “Tesla AI Day Presentation,” Tesla.

[110] Y. B. Can, A. Liniger, D. P. Paudel, and L. Van Gool, “Structured bird’s-eye-view
traffic scene understanding from onboard images,” in ICCV, Oct. 2021, pp. 15 661–
15 670.

[111] D. Pannen, M. Liebner, W. Hempel, and W. Burgard, “How to keep HD maps for
automated driving up to date,” in 2020 IEEE International Conference on Robotics
and Automation, ICRA 2020, Paris, France, May 31 - August 31, 2020, IEEE, 2020,
pp. 2288–2294.

[112] D. H. Silver and D. I. F. Ferguson, Change detection using curve alignment, US
Patent 9,321,461, Apr. 2016.

153

https://arxiv.org/abs/2104.10133
https://arxiv.org/abs/2104.10133
https://arxiv.org/abs/2107.06307

[113] K. Jo, C. Kim, and M. Sunwoo, “Simultaneous localization and map change update
for the high definition map-based autonomous driving car,” Sensors, vol. 18, no. 9,
2018.

[114] W. Ding, S. Hou, H. Gao, G. Wan, and S. Song, “Lidar inertial odometry aided
robust lidar localization system in changing city scenes,” in 2020 IEEE Interna-
tional Conference on Robotics and Automation, ICRA 2020, Paris, France, May 31
- August 31, 2020, IEEE, 2020, pp. 4322–4328.

[115] J. Hawke, H. E, V. Badrinarayanan, and A. Kendall, “Reimagining an autonomous
vehicle,” CoRR, vol. abs/2108.05805, 2021. arXiv: 2108.05805.

[116] F. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,” Georgia Insti-
tute of Technology, Tech. Rep., 2012.

[117] C. Sun, C.-W. Hsiao, M. Sun, and H.-T. Chen, “Horizonnet: Learning room layout
with 1D representation and pano stretch data augmentation,” in CVPR, Jun. 2019.

[118] D. Rosen, L. Carlone, A. Bandeira, and J. Leonard, “SE-Sync: A certifiably correct
algorithm for synchronization over the special Euclidean group,” Intl. J. of Robotics
Research, vol. 38, no. 2–3, pp. 95–125, Mar. 2019.

[119] F. Dellaert, D. M. Rosen, J. Wu, R. E. Mahony, and L. Carlone, “Shonan rota-
tion averaging: Global optimality by surfing SO(p)n,” in ECCV, vol. 12351, 2020,
pp. 292–308.

[120] J. W. Lambert and J. Hays, “Trust, but Verify: Cross-modality fusion for hd map
change detection,” in Advances in Neural Information Processing Systems Track on
Datasets and Benchmarks, 2021.

[121] P. Gargallo, Y. Kuang, et al., OpenSfM, 2016.

[122] M. A. Shabani, W. Song, M. Odamaki, H. Fujiki, and Y. Furukawa, “Extreme struc-
ture from motion for indoor panoramas without visual overlaps,” in ICCV, Oct.
2021, pp. 5703–5711.

[123] S. Y. Bao and S. Savarese, “Semantic structure from motion,” in CVPR 2011, 2011,
pp. 2025–2032.

[124] A. Cohen, T. Sattler, and M. Pollefeys, “Merging the unmatchable: Stitching visu-
ally disconnected SfM models,” in ICCV, Dec. 2015.

[125] C. Lin, C. Li, and W. Wang, “Floorplan-jigsaw: Jointly estimating scene layout and
aligning partial scans,” in ICCV, Oct. 2019.

154

https://arxiv.org/abs/2108.05805

[126] K. Cobbe, V. Kosaraju, M. Bavarian, J. Hilton, R. Nakano, C. Hesse, and J. Schul-
man, “Training verifiers to solve math word problems,” ArXiv, vol. abs/2110.14168,
2021.

[127] J. Shen, Y. Yin, L. Li, L. Shang, M. Zhang, and Q. Liu, “Generate & Rank: A
multi-task framework for math word problems,” in Findings of the Association for
Computational Linguistics: EMNLP 2021, Punta Cana, Dominican Republic: As-
sociation for Computational Linguistics, Nov. 2021, pp. 2269–2279.

[128] G. Pintore, C. Mura, F. Ganovelli, L. Fuentes-Perez, R. Pajarola, and E. Gob-
betti, “State-of-the-art in automatic 3D reconstruction of structured indoor envi-
ronments,” Computer Graphics Forum, vol. 39, no. 2, pp. 667–699, 2020.

[129] G. Albanis, N. Zioulis, P. Drakoulis, V. Gkitsas, V. Sterzentsenko, F. Álvarez, D.
Zarpalas, and P. Daras, “Pano3D: A holistic benchmark and a solid baseline for
360° depth estimation,” 2021 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), pp. 3722–3732, 2021.

[130] P. E. Debevec, C. J. Taylor, and J. Malik, “Modeling and rendering architecture
from photographs: A hybrid geometry- and image-based approach,” in Proceedings
of the 23rd Annual Conference on Computer Graphics and Interactive Techniques,
ser. SIGGRAPH ’96, 1996, pp. 11–20.

[131] D. Farin, W. Effelsberg, and P. H. de With, “Floor-plan reconstruction from panoramic
images,” in Proceedings of the 15th ACM international conference on Multimedia,
2007, pp. 823–826.

[132] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski, “Reconstructing building
interiors from images,” in ICCV, 2009, pp. 80–87.

[133] R. Cabral and Y. Furukawa, “Piecewise planar and compact floorplan reconstruc-
tion from images,” in CVPR, Jun. 2014.

[134] G. Pintore, F. Ganovelli, R. Pintus, R. Scopigno, and E. Gobbetti, “3D floor plan
recovery from overlapping spherical images,” Computational visual media, vol. 4,
no. 4, pp. 367–383, 2018.

[135] G. Pintore, F. Ganovelli, A. J. Villanueva, and E. Gobbetti, “Automatic modeling of
cluttered multi-room floor plans from panoramic images,” Comput. Graph. Forum,
vol. 38, no. 7, pp. 347–358, 2019.

[136] C. Liu, J. Wu, and Y. Furukawa, “Floornet: A unified framework for floorplan re-
construction from 3D scans,” in ECCV, Sep. 2018.

155

[137] J. Chen, C. Liu, J. Wu, and Y. Furukawa, “Floor-SP: Inverse CAD for floorplans by
sequential room-wise shortest path,” in ICCV, Oct. 2019.

[138] S. Stekovic, M. Rad, F. Fraundorfer, and V. Lepetit, “Montefloor: Extending MCTS
for reconstructing accurate large-scale floor plans,” in ICCV, Oct. 2021, pp. 16 034–
16 043.

[139] S. Purushwalkam, S. V. A. Garı, V. K. Ithapu, C. Schissler, P. Robinson, A. Gupta,
and K. Grauman, “Audio-visual floorplan reconstruction,” in ICCV, Oct. 2021,
pp. 1183–1192.

[140] B. Okorn, X. Xiong, B. Akinci, and D. Huber, “Toward automated modeling of
floor plans,” in 3D DPVT, 2010.

[141] Y. M. Kim, J. Dolson, M. Sokolsky, V. Koltun, and S. Thrun, “Interactive acquisi-
tion of residential floor plans,” in 2012 IEEE International Conference on Robotics
and Automation, 2012, pp. 3055–3062.

[142] H. Fang, C. Pan, and H. Huang, “Structure-aware indoor scene reconstruction via
two levels of abstraction,” ISPRS Journal of Photogrammetry and Remote Sensing,
vol. 178, pp. 155–170, 2021.

[143] H. Fang, F. Lafarge, C. Pan, and H. Huang, “Floorplan generation from 3D point
clouds: A space partitioning approach,” ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 175, pp. 44–55, 2021.

[144] O. Ozyesil, V. Voroninski, R. Basri, and A. Singer, “A survey of structure from
motion,” Acta Numerica, vol. 26, May 2017.

[145] P. Moulon, P. Monasse, and R. Marlet, “Global fusion of relative motions for robust,
accurate and scalable structure from motion,” in ICCV, 2013, pp. 3248–3255.

[146] O. Enqvist, F. Kahl, and C. Olsson, “Non-sequential structure from motion,” in
2011 IEEE International Conference on Computer Vision Workshops (ICCV Work-
shops), 2011, pp. 264–271.

[147] C. Zach, M. Klopschitz, and M. Pollefeys, “Disambiguating visual relations using
loop constraints,” in 2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2010, pp. 1426–1433.

[148] K. Wilson and N. Snavely, “Robust global translations with 1DSfM,” in ECCV,
vol. 8691, Springer, 2014, pp. 61–75.

156

[149] S. Choudhary, A. J. Trevor, H. I. Christensen, and F. Dellaert, “SLAM with object
discovery, modeling and mapping,” in 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IEEE, 2014, pp. 1018–1025.

[150] Z. Yang, J. Z. Pan, L. Luo, X. Zhou, K. Grauman, and Q. Huang, “Extreme relative
pose estimation for RGB-D scans via scene completion,” in CVPR, Jun. 2019.

[151] Z. Yang, S. Yan, and Q. Huang, “Extreme relative pose network under hybrid rep-
resentations,” in CVPR, Jun. 2020.

[152] K. Chen, N. Snavely, and A. Makadia, “Wide-baseline relative camera pose esti-
mation with directional learning,” in CVPR, Jun. 2021, pp. 3258–3268.

[153] L. Jin, S. Qian, A. Owens, and D. F. Fouhey, “Planar surface reconstruction from
sparse views,” in ICCV, 2021.

[154] Z. Laskar, I. Melekhov, S. Kalia, and J. Kannala, “Camera relocalization by com-
puting pairwise relative poses using convolutional neural network,” in Proceedings
of the IEEE International Conference on Computer Vision (ICCV) Workshops, Oct.
2017.

[155] V. Balntas, S. Li, and V. Prisacariu, “Relocnet: Continuous metric learning relocal-
isation using neural nets,” in ECCV, 2018, pp. 751–767.

[156] M. Ding, Z. Wang, J. Sun, J. Shi, and P. Luo, “CamNet: Coarse-to-fine retrieval for
camera re-localization,” in ICCV, 2019, pp. 2871–2880.

[157] F. Zhang, N. Nauata, and Y. Furukawa, “Conv-MPN: Convolutional message pass-
ing neural network for structured outdoor architecture reconstruction,” in CVPR,
2020, pp. 2798–2807.

[158] C. Sun, M. Sun, and H.-T. Chen, “Hohonet: 360 indoor holistic understanding with
latent horizontal features,” in CVPR, Jun. 2021, pp. 2573–2582.

[159] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” in CVPR, 2016, pp. 770–778.

[160] Y. Zhang, S. Song, P. Tan, and J. Xiao, “Panocontext: A whole-room 3D con-
text model for panoramic scene understanding,” in ECCV, vol. 8694, Heidelberg:
Springer, 2014, pp. 668–686.

[161] M. Aly and J.-Y. Bouguet, “Street view goes indoors: Automatic pose estimation
from uncalibrated unordered spherical panoramas,” in 2012 IEEE Workshop on the
Applications of Computer Vision (WACV), 2012, pp. 1–8.

157

[162] F. Dellaert, W. Burgard, D. Fox, and S. Thrun, “Using the condensation algorithm
for robust, vision-based mobile robot localization,” in CVPR, IEEE, vol. 2, 1999,
pp. 588–594.

[163] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva, S. Song, A.
Zeng, and Y. Zhang, “Matterport3d: Learning from RGB-D data in indoor environ-
ments,” International Conference on 3D Vision (3DV), 2017.

[164] C. Zou, J.-W. Su, C.-H. Peng, A. Colburn, Q. Shan, P. Wonka, H.-K. Chu, and
D. Hoiem, “Manhattan room layout reconstruction from a single 360◦ image: A
comparative study of state-of-the-art methods,” International Journal of Computer
Vision, vol. 129, no. 5, pp. 1410–1431, May 2021.

[165] J. Zheng, J. Zhang, J. Li, R. Tang, S. Gao, and Z. Zhou, “Structured3d: A large
photo-realistic dataset for structured 3D modeling,” in ECCV, Springer, 2020, pp. 519–
535.

[166] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser, “Semantic
scene completion from a single depth image,” in CVPR, Jul. 2017.

[167] M. Oskarsson, “Two-view orthographic epipolar geometry: Minimal and optimal
solvers,” Journal of Mathematical Imaging and Vision, vol. 60, no. 2, pp. 163–173,
2018.

[168] S. Choi and J.-H. Kim, “Fast and reliable minimal relative pose estimation under
planar motion,” Image and Vision Computing, vol. 69, pp. 103–112, 2018.

[169] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography,” Com-
mun. ACM, vol. 24, no. 6, pp. 381–395, Jun. 1981.

[170] B. Reddy and B. Chatterji, “An fft-based technique for translation, rotation, and
scale-invariant image registration,” IEEE Transactions on Image Processing, vol. 5,
no. 8, pp. 1266–1271, 1996.

[171] K. Son, D. Moreno, J. Hays, and D. B. Cooper, “Solving small-piece jigsaw puzzles
by growing consensus,” in CVPR, Jun. 2016.

[172] F. Dellaert, “Factor graphs: Exploiting structure in robotics,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 4, pp. 141–166, 2021.

[173] N. Nauata, K.-H. Chang, C.-Y. Cheng, G. Mori, and Y. Furukawa, “House-gan: Re-
lational generative adversarial networks for graph-constrained house layout gener-
ation,” in ECCV, Springer, 2020, pp. 162–177.

158

[174] N. Nauata, S. Hosseini, K.-H. Chang, H. Chu, C.-Y. Cheng, and Y. Furukawa,
“House-gan++: Generative adversarial layout refinement network towards intelli-
gent computational agent for professional architects,” in CVPR, Jun. 2021, pp. 13 632–
13 641.

[175] R. I. Hartley, “In defense of the eight-point algorithm,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 19, no. 6, pp. 580–593, Jun. 1997.

[176] D. Nistér, “An efficient solution to the five-point relative pose problem,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 26, no. 6, pp. 756–777, Jun. 2004.

[177] R. Szeliski et al., “Image alignment and stitching: A tutorial,” Foundations and
Trends® in Computer Graphics and Vision, vol. 2, no. 1, pp. 1–104, 2007.

[178] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary tree,” in CVPR,
Ieee, vol. 2, 2006, pp. 2161–2168.

[179] J. L. Schönberger, M. Pollefeys, A. Geiger, and T. Sattler, “Semantic visual local-
ization,” in CVPR, Jun. 2018.

[180] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: A versatile and
accurate monocular slam system,” IEEE transactions on robotics, vol. 31, no. 5,
pp. 1147–1163, 2015.

[181] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm, “Pixelwise view se-
lection for unstructured multi-view stereo,” in ECCV, 2016.

[182] Mapillary, Open source structure from motion pipeline, 2013.

[183] C. Wu, “Towards linear-time incremental structure from motion,” in Proceedings
of the 2013 International Conference on 3D Vision, ser. 3DV ’13, 2013, pp. 127–
134.

[184] H. Moravec, “Obstacle avoidance and navigation in the real world by a seeing robot
rover,” Carnegie Mellon University, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-80-
03, Sep. 1980.

[185] P. Beaudet, “Rotationally invariant image operators,” in Proceedings of the 4th In-
ternational Joint Conference on Pattern Recognition (ICPR), 1978, pp. 579–583.

[186] C. Harris and M. Stephens, “A combined corner and edge detector,” in In Proc. of
Fourth Alvey Vision Conference, 1988, pp. 147–151.

[187] S. M. Smith and J. M. Brady, “Susan—a new approach to low level image process-
ing,” International journal of computer vision, vol. 23, no. 1, pp. 45–78, 1997.

159

[188] P. Dias, A. Kassim, and V. Srinivasan, “A neural network based corner detec-
tion method,” in Proceedings of ICNN’95-International Conference on Neural Net-
works, IEEE, vol. 4, 2005, pp. 2116–2120.

[189] S. Honari, P. Molchanov, S. Tyree, P. Vincent, C. Pal, and J. Kautz, “Improving
landmark localization with semi-supervised learning,” in CVPR, Jun. 2018.

[190] C. Schmid, R. Mohr, and C. Bauckhage, “Evaluation of interest point detectors,”
Int. J. Comput. Vision, vol. 37, no. 2, pp. 151–172, Jun. 2000.

[191] K. Lenc and A. Vedaldi, “Large scale evaluation of local image feature detectors
on homography datasets,” in BMVC, BMVA Press, 2018, p. 122.

[192] C. Schmid and R. Mohr, “Local grayvalue invariants for image retrieval,” IEEE
transactions on pattern analysis and machine intelligence, vol. 19, no. 5, pp. 530–
535, 1997.

[193] S. Belongie, J. Malik, and J. Puzicha, “Shape context: A new descriptor for shape
matching and object recognition,” in Advances in neural information processing
systems, 2001, pp. 831–837.

[194] A. Mahendran and A. Vedaldi, “Understanding deep image representations by in-
verting them,” in CVPR, 2015.

[195] J. Heinly, E. Dunn, and J.-M. Frahm, “Comparative Evaluation of Binary Features,”
in ECCV, 2012.

[196] V. Balntas, K. Lenc, A. Vedaldi, and K. Mikolajczyk, “Hpatches: A benchmark and
evaluation of handcrafted and learned local descriptors,” in CVPR, 2017.

[197] C. Choy and J. Lee, Open universal correspondence network, https://github.com/
chrischoy/open-ucn, 2019.

[198] P. Pritchett and A. Zisserman, “Wide baseline stereo matching,” in ICCV, 1998,
pp. 754–760.

[199] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism: Exploring photo col-
lections in 3D,” in ACM SIGGRAPH 2006 Papers, ser. SIGGRAPH ’06, Boston,
Massachusetts: Association for Computing Machinery, 2006, pp. 835–846, ISBN:
1595933646.

[200] P. J. Rousseeuw, “Least median of squares regression,” Journal of the American
statistical association, vol. 79, no. 388, pp. 871–880, 1984.

160

https://github.com/chrischoy/open-ucn
https://github.com/chrischoy/open-ucn

[201] P. H. S. Torr and A. Zisserman, “MLESAC: A new robust estimator with applica-
tion to estimating image geometry,” Computer Vision and Image Understanding,
vol. 78, pp. 138–156, 2000.

[202] W. Sun, W. Jiang, E. Trulls, A. Tagliasacchi, and K. M. Yi, “Attentive context nor-
malization for robust permutation-equivariant learning,” CoRR, vol. abs/1907.02545,
2019. arXiv: 1907.02545.

[203] J. L. Schönberger, H. Hardmeier, T. Sattler, and M. Pollefeys, “Comparative Eval-
uation of Hand-Crafted and Learned Local Features,” in CVPR, 2017.

[204] K. He, Mask r-cnn: A perspective on equivariance, URL: http://kaiminghe.com/
iccv17tutorial/maskrcnn iccv2017 tutorial kaiminghe.pdf, Nov. 2017.

[205] M. Brown, R. Szeliski, and S. Winder, “Multi-image matching using multi-scale
oriented patches,” in CVPR, 2005.

[206] A. Irschara, C. Zach, J.-M. Frahm, and H. Bischof, “From structure-from-motion
point clouds to fast location recognition,” in CVPR, IEEE, 2009, pp. 2599–2606.

[207] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth,
and L.-J. Li, “Yfcc100m: The new data in multimedia research.,” Commun. ACM,
vol. 59, no. 2, pp. 64–73, 2016.

[208] J. Heinly, J. L. Schonberger, E. Dunn, and J.-M. Frahm, “Reconstructing the world*
in six days *(as captured by the yahoo 100 million image dataset),” in CVPR, Jun.
2015.

[209] K. Wilson and N. Snavely, “Robust global translations with 1dsfm,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2014.

[210] D. DeTone, T. Malisiewicz, and A. Rabinovich, “Self-improving visual odometry,”
CoRR, vol. abs/1812.03245, 2018.

[211] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle adjust-
ment - a modern synthesis,” in Proceedings of the International Workshop on Vi-
sion Algorithms: Theory and Practice, ser. ICCV ’99, London, UK, UK: Springer-
Verlag, 2000, pp. 298–372, ISBN: 3-540-67973-1.

[212] D. DeTone, T. Malisiewicz, and A. Rabinovich, “Deep image homography estima-
tion,” arXiv preprint arXiv:1606.03798, 2016.

[213] ——, “Toward geometric deep slam,” arXiv preprint arXiv:1707.07410, 2017.

161

https://arxiv.org/abs/1907.02545
http://kaiminghe.com/iccv17tutorial/maskrcnn_iccv2017_tutorial_kaiminghe.pdf
http://kaiminghe.com/iccv17tutorial/maskrcnn_iccv2017_tutorial_kaiminghe.pdf

[214] Y. Jin, D. Mishkin, A. Mishchuk, J. Matas, P. Fua, K. M. Yi, and E. Trulls, Image
matching across wide baselines: From paper to practice, 2020. arXiv: 2003.01587
[cs.CV].

[215] F. Wang, S. Galliani, C. Vogel, P. Speciale, and M. Pollefeys, “Patchmatchnet:
Learned multi-view patchmatch stereo,” in CVPR, Jun. 2021, pp. 14 194–14 203.

[216] J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,” in CVPR,
Jun. 2016.

[217] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R.
Ng, “Nerf: Representing scenes as neural radiance fields for view synthesis,” in
ECCV, 2020.

[218] J. Reizenstein, R. Shapovalov, P. Henzler, L. Sbordone, P. Labatut, and D. Novotny,
“Common objects in 3d: Large-scale learning and evaluation of real-life 3d cate-
gory reconstruction,” in ICCV, 2021.

[219] Z. Li, T. Dekel, F. Cole, R. Tucker, N. Snavely, C. Liu, and W. T. Freeman, “Learn-
ing the depths of moving people by watching frozen people,” in CVPR, Jun. 2019.

[220] V. M. Govindu, “Combining two-view constraints for motion estimation,” in CVPR,
IEEE, vol. 2, 2001, pp. II–II.

[221] ——, “Robustness in motion averaging,” in Asian Conference on Computer Vision,
Springer, 2006, pp. 457–466.

[222] D. Crandall, A. Owens, N. Snavely, and D. Huttenlocher, “Discrete-continuous op-
timization for large-scale structure from motion,” in CVPR 2011, 2011, pp. 3001–
3008.

[223] C. Sweeney, T. Sattler, T. Hollerer, M. Turk, and M. Pollefeys, “Optimizing the
viewing graph for structure-from-motion,” in Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV), Dec. 2015.

[224] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun, “Tanks and temples: Bench-
marking large-scale scene reconstruction,” ACM Transactions on Graphics, vol. 36,
no. 4, 2017.

[225] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, and
R. Koch, “Visual modeling with a hand-held camera,” International Journal of
Computer Vision, vol. 59, no. 3, pp. 207–232, 2004.

[226] N. Snavely, S. M. Seitz, and R. Szeliski, “Modeling the world from internet photo
collections,” Int. J. Comput. Vision, vol. 80, no. 2, pp. 189–210, Nov. 2008.

162

https://arxiv.org/abs/2003.01587
https://arxiv.org/abs/2003.01587

[227] C. Wu, “Towards linear-time incremental structure from motion,” in 2013 Interna-
tional Conference on 3D Vision - 3DV 2013, 2013, pp. 127–134.

[228] P. Lindenberger, P.-E. Sarlin, V. Larsson, and M. Pollefeys, “Pixel-perfect structure-
from-motion with featuremetric refinement,” in Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, 2021, pp. 5987–5997.

[229] C. Olsson and O. Enqvist, “Stable structure from motion for unordered image col-
lections,” in Scandinavian Conference on Image Analysis, Springer, 2011, pp. 524–
535.

[230] D. Martinec and T. Pajdla, “Robust rotation and translation estimation in multiview
reconstruction,” in CVPR, 2007, pp. 1–8.

[231] A. Parra, S.-F. Chng, T.-J. Chin, A. Eriksson, and I. Reid, “Rotation coordinate
descent for fast globally optimal rotation averaging,” in CVPR, 2021, pp. 4298–
4307.

[232] K. Ni, D. Steedly, and F. Dellaert, “Out-of-core bundle adjustment for large-scale
3d reconstruction,” in ICCV, IEEE, 2007, pp. 1–8.

[233] K. Ni and F. Dellaert, “Hypersfm,” in 2012 Second International Conference on
3D Imaging, Modeling, Processing, Visualization & Transmission, IEEE, 2012,
pp. 144–151.

[234] Y. Chen, S. Shen, Y. Chen, and G. Wang, “Graph-based parallel large scale structure
from motion,” Pattern Recognition, p. 107 537, Jul. 2020.

[235] B. Klingner, D. Martin, and J. Roseborough, “Street view motion-from-structure-
from-motion,” in Proceedings of the IEEE International Conference on Computer
Vision (ICCV), Dec. 2013.

[236] G. Sharp, S. Lee, and D. Wehe, “Toward multiview registration in frame space,” in
Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automa-
tion, vol. 4, 2001, 3542–3547 vol.4.

[237] S. Phillips and K. Daniilidis, “All graphs lead to rome: Learning geometric and
cycle-consistent representations with graph convolutional networks,” arXiv preprint
arXiv:1901.02078, 2019.

[238] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Sec-
ond. Cambridge University Press, ISBN: 0521540518, 2004.

[239] Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan, “MVSNet: Depth inference for un-
structured multi-view stereo,” in ECCV, 2018, pp. 767–783.

163

[240] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman, “PatchMatch: A
randomized correspondence algorithm for structural image editing,” ACM Trans.
Graph., vol. 28, no. 3, p. 24, 2009.

[241] A. Chen, Z. Xu, F. Zhao, X. Zhang, F. Xiang, J. Yu, and H. Su, “MVSNeRF: Fast
generalizable radiance field reconstruction from multi-view stereo,” arXiv preprint
arXiv:2103.15595, 2021.

[242] L. F. Julià and P. Monasse, “A critical review of the trifocal tensor estimation,” in
Pacific-Rim Symposium on Image and Video Technology, Springer, 2017, pp. 337–
349.

[243] R. I. Hartley, J. Trumpf, Y. Dai, and H. Li, “Rotation averaging,” Int. J. Comput.
Vis., vol. 103, no. 3, pp. 267–305, 2013.

[244] K. Levenberg, “A method for the solution of certain non-linear problems in least
squares,” Quarterly of applied mathematics, vol. 2, no. 2, pp. 164–168, 1944.

[245] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parame-
ters,” Journal of the society for Industrial and Applied Mathematics, vol. 11, no. 2,
pp. 431–441, 1963.

[246] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics primitives
with a multiresolution hash encoding,” arXiv:2201.05989, Jan. 2022.

[247] D. Nister, “An efficient solution to the five-point relative pose problem,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 6, pp. 756–
770, 2004.

[248] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a single image
using a multi-scale deep network,” in Advances in neural information processing
systems, 2014, pp. 2366–2374.

[249] F. Liu, C. Shen, and G. Lin, “Deep convolutional neural fields for depth estimation
from a single image,” in CVPR, Jun. 2015.

[250] K. Tateno, F. Tombari, I. Laina, and N. Navab, “Cnn-slam: Real-time dense monoc-
ular slam with learned depth prediction,” in CVPR, Jul. 2017.

[251] J.-R. Chang and Y.-S. Chen, “Pyramid stereo matching network,” in The IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), Jun. 2018.

[252] M. Bloesch, J. Czarnowski, R. Clark, S. Leutenegger, and A. J. Davison, “Codeslam
— learning a compact, optimisable representation for dense visual slam,” in CVPR,
Jun. 2018.

164

[253] J. Czarnowski, T. Laidlow, R. Clark, and A. J. Davison, “Deepfactors: Real-time
probabilistic dense monocular slam,” IEEE Robotics and Automation Letters, pp. 1–
1, 2020.

[254] I. Melekhov, J. Ylioinas, J. Kannala, and E. Rahtu, “Relative camera pose esti-
mation using convolutional neural networks,” in International Conference on Ad-
vanced Concepts for Intelligent Vision Systems, Springer, 2017, pp. 675–687.

[255] R. Clark, S. Wang, H. Wen, A. Markham, and N. Trigoni, “Vinet: Visual-inertial
odometry as a sequence-to-sequence learning problem,” in Thirty-First AAAI Con-
ference on Artificial Intelligence, 2017.

[256] O. Poursaeed, G. Yang, A. Prakash, H. Jiang, Q. Fang, B. Hariharan, and S. Be-
longie, “Deep fundamental matrix estimation without correspondences,” in Euro-
pean Conference on Computer Vision Workshops (ECCVW), Munich, Germany,
2018.

[257] R. Garg, V. K. BG, G. Carneiro, and I. Reid, “Unsupervised cnn for single view
depth estimation: Geometry to the rescue,” in ECCV, Springer, 2016, pp. 740–756.

[258] S. Vijayanarasimhan, S. Ricco, C. Schmid, R. Sukthankar, and K. Fragkiadaki,
“Sfm-net: Learning of structure and motion from video,” CoRR, vol. abs/1704.07804,
2017. arXiv: 1704.07804.

[259] B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg, A. Dosovitskiy, and T. Brox,
“Demon: Depth and motion network for learning monocular stereo,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Jul. 2017.

[260] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised learning of depth
and ego-motion from video,” in CVPR, 2017.

[261] Z. Yin and J. Shi, “Geonet: Unsupervised learning of dense depth, optical flow and
camera pose,” in CVPR, Jun. 2018.

[262] K. Lenc, “Representation of spatial transformations in deep neural networks,” Ph.D.
dissertation, University of Oxford, 2017.

[263] J. J. Koenderink and A. J. van Doorn, “Representation of local geometry in the
visual system,” Biological cybernetics, vol. 55, no. 6, pp. 367–375, 1987.

[264] M. J. D. Powell, “An efficient method for finding the minimum of a function of
several variables without calculating derivatives,” The Computer Journal, vol. 7,
no. 2, pp. 155–162, Jan. 1964.

165

https://arxiv.org/abs/1704.07804

[265] T.-Y. Liu et al., “Learning to rank for information retrieval,” Foundations and
Trends® in Information Retrieval, vol. 3, no. 3, pp. 225–331, 2009.

[266] J. Revaud, J. Almazan, R. S. Rezende, and C. R. d. Souza, “Learning with average
precision: Training image retrieval with a listwise loss,” in ICCV, Oct. 2019.

[267] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature verification
using a” siamese” time delay neural network,” in Advances in neural information
processing systems, 1994, pp. 737–744.

[268] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric discrimina-
tively, with application to face verification,” in CVPR, IEEE, vol. 1, 2005, pp. 539–
546.

[269] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an
invariant mapping,” in CVPR, ser. CVPR ’06, Washington, DC, USA: IEEE Com-
puter Society, 2006, pp. 1735–1742, ISBN: 0-7695-2597-0.

[270] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, Second.
The MIT Press, 2018.

[271] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for
3d classification and segmentation,” CVPR, 2017.

[272] H. Longuet Higgins, “A computer algorithm for reconstructing a scene from two
projections,” Nature, vol. 293, 1981.

[273] P. H. Christiansen, M. F. Kragh, Y. Brodskiy, and H. Karstoft, “Unsuperpoint: End-
to-end unsupervised interest point detector and descriptor,” CoRR, vol. abs/1907.04011,
2019. arXiv: 1907.04011.

[274] G. B. Hughes and M. Chraibi, “Calculating ellipse overlap areas,” Computing and
visualization in science, vol. 15, no. 5, pp. 291–301, 2012.

[275] H. Jegou, H. Harzallah, and C. Schmid, “A contextual dissimilarity measure for
accurate and efficient image search,” in CVPR, IEEE, 2007, pp. 1–8.

[276] D. Qin, S. Gammeter, L. Bossard, T. Quack, and L. Van Gool, “Hello neighbor: Ac-
curate object retrieval with k-reciprocal nearest neighbors,” in CVPR 2011, IEEE,
2011, pp. 777–784.

[277] C. Urmson, J. Anhalt, J. A. (Bagnell, C. R. Baker, R. E. Bittner, J. M. Dolan,
D. Duggins, D. Ferguson, T. Galatali, H. Geyer, M. Gittleman, S. Harbaugh, M.
Hebert, T. Howard, A. Kelly, D. Kohanbash, M. Likhachev, N. Miller, K. Peter-
son, R. Rajkumar, P. Rybski, B. Salesky, S. Scherer, Y.-W. Seo, R. Simmons, S.

166

https://arxiv.org/abs/1907.04011

Singh, J. M. Snider, A. (Stentz, W. (L. Whittaker, and J. Ziglar, “Tartan racing: A
multi-modal approach to the darpa urban challenge,” Carnegie Mellon University,
Pittsburgh, PA, Tech. Rep., Apr. 2007.

[278] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger, D.
Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston, S. Klumpp, D. Langer,
A. Levandowski, J. Levinson, J. Marcil, D. Orenstein, J. Paefgen, I. Penny, A.
Petrovskaya, M. Pflueger, G. Stanek, D. Stavens, A. Vogt, and S. Thrun, “Junior:
The stanford entry in the urban challenge,” J. Field Robot., vol. 25, no. 9, pp. 569–
597, Sep. 2008.

[279] A. Bacha, C. Bauman, R. Faruque, M. Fleming, C. Terwelp, C. Reinholtz, D. Hong,
A. Wicks, T. Alberi, D. Anderson, S. Cacciola, P. Currier, A. Dalton, J. Farmer, J.
Hurdus, S. Kimmel, P. King, A. Taylor, D. V. Covern, and M. Webster, “Odin:
Team victortango’s entry in the darpa urban challenge,” J. Field Robot., vol. 25,
no. 8, pp. 467–492, Aug. 2008.

[280] S. International, “Taxonomy and definitions for terms related to driving automation
systems for on-road motor vehicles,” Tech. Rep. J3016, Jun. 2018.

[281] D. Pannen, M. Liebner, W. Hempel, and W. Burgard, “How to keep hd maps for
automated driving up to date,” in 2020 International Conference on Robotics and
Automation (ICRA), 2020, pp. 2288–2294.

[282] M. Heo, J. Kim, and S. Kim, “Hd map change detection with cross-domain deep
metric learning,” in 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), IEEE, 2020, pp. 10 218–10 224.

[283] A. Karpathy. (Jun. 15, 2020). “Workshop on scalability in autonomous driving:
Keynote talk.” CVPR 2020, Tesla Motors, (visited on 11/15/2020).

[284] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y.
Pan, G. Baldan, and O. Beijbom, “Nuscenes: A multimodal dataset for autonomous
driving,” in CVPR, 2020, pp. 11 621–11 631.

[285] J. Houston, G. Zuidhof, L. Bergamini, Y. Ye, A. Jain, S. Omari, V. Iglovikov, and P.
Ondruska, “One thousand and one hours: Self-driving motion prediction dataset,”
arXiv preprint arXiv:2006.14480, 2020.

[286] Waymo, Waymo open motion dataset, https : / /waymo .com/open /data /motion/,
2021.

[287] G. Mattyus, S. Wang, S. Fidler, and R. Urtasun, “Hd maps: Fine-grained road seg-
mentation by parsing ground and aerial images,” in CVPR, Jun. 2016.

167

https://waymo.com/open/data/motion/

[288] G. Mattyus, W. Luo, and R. Urtasun, “Deeproadmapper: Extracting road topology
from aerial images,” in ICCV, Oct. 2017.

[289] S. Wang, M. Bai, G. Mattyus, H. Chu, W. Luo, B. Yang, J. Liang, J. Cheverie,
S. Fidler, and R. Urtasun, “Torontocity: Seeing the world with a million eyes,” in
ICCV, Oct. 2017.

[290] N. Homayounfar, W.-C. Ma, S. K. Lakshmikanth, and R. Urtasun, “Hierarchical
recurrent attention networks for structured online maps,” in CVPR, Jun. 2018.

[291] N. Garnett, R. Cohen, T. Pe’er, R. Lahav, and D. Levi, “3d-lanenet: End-to-end 3d
multiple lane detection,” in ICCV, Oct. 2019.

[292] T. Phan-Minh, E. C. Grigore, F. A. Boulton, O. Beijbom, and E. M. Wolff, “Cov-
ernet: Multimodal behavior prediction using trajectory sets,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun.
2020.

[293] D. Pannen, M. Liebner, and W. Burgard, “Hd map change detection with a boosted
particle filter,” in 2019 International Conference on Robotics and Automation (ICRA),
2019, pp. 2561–2567.

[294] K. Jo, C. Kim, and M. Sunwoo, “Simultaneous localization and map change update
for the high definition map-based autonomous driving car,” Sensors, vol. 18, no. 9,
p. 3145, 2018.

[295] G. D. Tipaldi, D. Meyer-Delius, and W. Burgard, “Lifelong localization in changing
environments,” The International Journal of Robotics Research, vol. 32, no. 14,
pp. 1662–1678, 2013.

[296] N. Shaik, T. Liebig, C. Kirsch, and H. Müller, “Dynamic map update of non-static
facility logistics environment with a multi-robot system,” in Joint German/Austrian
Conference on Artificial Intelligence (Künstliche Intelligenz), Springer, 2017, pp. 249–
261.

[297] Chieh-Chih Wang and C. Thorpe, “Simultaneous localization and mapping with
detection and tracking of moving objects,” in Proceedings 2002 IEEE Interna-
tional Conference on Robotics and Automation (Cat. No.02CH37292), vol. 3, 2002,
2918–2924 vol.3.

[298] D. Hahnel, R. Triebel, W. Burgard, and S. Thrun, “Map building with mobile robots
in dynamic environments,” in 2003 IEEE International Conference on Robotics and
Automation (Cat. No. 03CH37422), IEEE, vol. 2, 2003, pp. 1557–1563.

168

[299] T. Roddick and R. Cipolla, “Predicting semantic map representations from images
using pyramid occupancy networks,” in CVPR, Jun. 2020.

[300] J. Philion and S. Fidler, “Lift, splat, shoot: Encoding images from arbitrary camera
rigs by implicitly unprojecting to 3d,” in ECCV, 2020.

[301] B. Pan, J. Sun, H. Y. T. Leung, A. Andonian, and B. Zhou, “Cross-view semantic
segmentation for sensing surroundings,” IEEE Robotics and Automation Letters,
vol. 5, no. 3, pp. 4867–4873, 2020.

[302] K. Mani, S. Daga, S. Garg, S. S. Narasimhan, M. Krishna, and K. M. Jatavallabhula,
“Monolayout: Amodal scene layout from a single image,” in Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Mar.
2020.

[303] Y. Wang, P.-M. Jodoin, F. Porikli, J. Konrad, Y. Benezeth, and P. Ishwar, “Cdnet
2014: An expanded change detection benchmark dataset,” in Proceedings of the
IEEE conference on computer vision and pattern recognition workshops, 2014,
pp. 387–394.

[304] P. F. Alcantarilla, S. Stent, G. Ros, R. Arroyo, and R. Gherardi, “Street-view change
detection with deconvolutional networks,” Autonomous Robots, vol. 42, no. 7, pp. 1301–
1322, 2018.

[305] O. Zendel, K. Honauer, M. Murschitz, D. Steininger, and G. F. Dominguez, “Wild-
dash - creating hazard-aware benchmarks,” in Proceedings of the European Con-
ference on Computer Vision (ECCV), Sep. 2018.

[306] U.S. Department of Transportation, Strong economy has americans driving more
than ever before, Press Release, https://www.fhwa.dot.gov/pressroom/fhwa1905.
cfm, Mar. 2019.

[307] E. H. Adelson, J. R. Bergen, et al., The plenoptic function and the elements of early
vision, vol. 2.

[308] H. Caesar, J. Uijlings, and V. Ferrari, “Coco-stuff: Thing and stuff classes in con-
text,” in CVPR, Jun. 2018.

[309] J. Zbontar and Y. LeCun, “Computing the stereo matching cost with a convolutional
neural network,” in CVPR, Jun. 2015.

[310] J. Lambert, O. Sener, and S. Savarese, “Deep learning under privileged information
using heteroscedastic dropout,” in CVPR, Jun. 2018.

169

https://www.fhwa.dot.gov/pressroom/fhwa1905.cfm
https://www.fhwa.dot.gov/pressroom/fhwa1905.cfm

[311] Z. Yang, Y. Chai, D. Anguelov, Y. Zhou, P. Sun, D. Erhan, S. Rafferty, and H. Kret-
zschmar, “Surfelgan: Synthesizing realistic sensor data for autonomous driving,” in
CVPR, Jun. 2020.

[312] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kip-
man, and A. Blake, “Real-time human pose recognition in parts from single depth
images,” in CVPR, Ieee, 2011, pp. 1297–1304.

[313] A. Geiger, “Monocular road mosaicing for urban environments,” in 2009 IEEE
Intelligent Vehicles Symposium, IEEE, 2009, pp. 140–145.

[314] H. Zhang, M. Yang, C. Wang, X. Weng, and L. Ye, “Lane-level orthophoto map
generation using multiple onboard cameras,” in 2014 IEEE International Confer-
ence on Robotics and Biomimetics (ROBIO 2014), 2014, pp. 855–860.

[315] L. Rapo, “Generating road orthoimagery using a smartphone,” M.S. thesis, Lappeen-
ranta University of Technology, 2018.

[316] L. Porzi, S. Rota Bulò, A. Colovic, and P. Kontschieder, “Seamless scene segmen-
tation,” in CVPR, Jun. 2019.

[317] J. Philion, A. Kar, and S. Fidler, “Learning to evaluate perception models using
planner-centric metrics,” in CVPR, Jun. 2020.

[318] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and com-
posing robust features with denoising autoencoders,” in Proceedings of the 25th
International Conference on Machine Learning, ser. ICML ’08, Helsinki, Finland,
2008, pp. 1096–1103.

[319] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual representation learn-
ing by context prediction,” in ICCV, Dec. 2015.

[320] R. Zhang, P. Isola, and A. A. Efros, “Split-brain autoencoders: Unsupervised learn-
ing by cross-channel prediction,” in CVPR, Jul. 2017.

[321] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra,
“Grad-cam: Visual explanations from deep networks via gradient-based localiza-
tion,” in ICCV, Oct. 2017.

[322] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[323] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in
CVPR, Jul. 2017.

170

[324] T. Möller and B. Trumbore, “Fast, minimum storage ray-triangle intersection,”
Journal of graphics tools, vol. 2, no. 1, pp. 21–28, 1997.

[325] J. Lambert, Z. Liu, O. Sener, J. Hays, and V. Koltun, “Mseg: A composite dataset
for multi-domain semantic segmentation,” in CVPR, Jun. 2020.

[326] B. Wilson, W. Qi, T. Agarwal, J. Lambert, J. Singh, S. Khandelwal, B. Pan, R. Ku-
mar, A. Hartnett, J. K. Pontes, D. Ramanan, P. Carr, and J. Hays, “Argoverse 2: Next
generation datasets for self-driving perception and forecasting,” in Proceedings of
the Neural Information Processing Systems Track on Datasets and Benchmarks
(NeurIPS Datasets and Benchmarks 2021), 2021.

[327] Z. Teed and J. Deng, “DROID-SLAM: Deep Visual SLAM for Monocular, Stereo,
and RGB-D Cameras,” in NeurIPS, 2021.

[328] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, “Netvlad: Cnn archi-
tecture for weakly supervised place recognition,” in CVPR, Jun. 2016.

[329] M. El Banani, L. Gao, and J. Johnson, “Unsupervisedrr: Unsupervised point cloud
registration via differentiable rendering,” in CVPR, Jun. 2021, pp. 7129–7139.

[330] Z. Teed and J. Deng, “Tangent space backpropagation for 3d transformation groups,”
in CVPR, Jun. 2021, pp. 10 338–10 347.

[331] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” in NeurIPS, vol. 30, 2017.

[332] M. Tancik, V. Casser, X. Yan, S. Pradhan, B. Mildenhall, P. P. Srinivasan, J. T. Bar-
ron, and H. Kretzschmar, Block-nerf: Scalable large scene neural view synthesis,
2022. arXiv: 2202.05263 [cs.CV].

[333] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.

[334] Y. Ma, S. Soatto, J. Košecká, and S. Sastry, An invitation to 3-d vision: from images
to geometric models. Springer, 2004, vol. 26.

[335] A. Chatterjee and V. M. Govindu, “Efficient and robust large-scale rotation aver-
aging,” in Proceedings of the IEEE International Conference on Computer Vision
(ICCV), Dec. 2013.

[336] F. Dellaert, Lie groups for beginners, https : / / github. com / borglab / gtsam / blob /
develop/doc/LieGroups.pdf, 2021.

[337] R. M. Murray, Z. Li, and S. S. Sastry, A mathematical introduction to robotic ma-
nipulation. CRC press, 2017.

171

https://arxiv.org/abs/2202.05263
https://github.com/borglab/gtsam/blob/develop/doc/LieGroups.pdf
https://github.com/borglab/gtsam/blob/develop/doc/LieGroups.pdf

[338] R. Szeliski, Computer vision: algorithms and applications, 2nd Edition. Springer
Science & Business Media, 2010.

[339] S. Boyd, Low rank approximation and extremal gain problems, http : / / ee263 .
stanford.edu/archive/low rank approx.pdf.

[340] J. P. Snyder, “Map projections: A working manual. u.s. geological survey profes-
sional paper,” p. 61, 1987.

172

http://ee263.stanford.edu/archive/low_rank_approx.pdf
http://ee263.stanford.edu/archive/low_rank_approx.pdf

VITA

John Lambert is a researcher in the fields of computer vision, robotics, and machine learn-
ing. He is currently a PhD student in the Computer Science program at the Georgia Institute
of Technology in Atlanta, GA, USA. His PhD thesis is supervised by Dr James Hays and
Dr Frank Dellaert. John holds both a masters degree and bachelors degree in Computer
Science from Stanford University, both with concentrations in Artificial Intelligence.

173

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction and Motivation
	Unsolved Problems in Mapping
	Thesis Statement
	Thesis Contributions
	Conclusion

	2 | Building 2d Indoor Geometric Maps: Semantic Alignment Verification (SALVe) for Floorplan Reconstruction from Sparse Panoramas
	Introduction
	Related Work
	System Overview
	Approach
	Experimental Results
	Discussion
	Conclusion
	Appendix
	Qualitative Results: Predicted vs. Oracle Poses
	Additional Analysis of Relative Pose Classification Accuracy
	Details on Layout Stitching for Floorplan Reconstruction
	Details on W/D/O Detection Evaluation
	Layout and W/D/O Failure Cases
	Coordinate System Conventions
	Texture Mapping Procedure
	Vanishing Point Axis Alignment
	Details on Global Pose Estimation
	Ablation Experiments Using Oracle W/D/O Detection
	Comparison with Extremal SfM Shabani21iccvExtremeSfM
	Analysis of Computational Complexity
	Details on Layout-Only Rasterization Baseline
	Additional Discussion Points
	Additional Examples of Illumination Changes
	Ethical/Privacy/Transparency/Fairness/Social Impact Concerns

	3 | Creating Outdoor 3d Geometric Maps via Global SfM
	Introduction
	Related Work
	Detection (D) Benchmark
	Detection and Matching (DM) Benchmark
	Detection, Matching, and Verification (DMV) Benchmark
	Additional Runtime Experiments
	Discussion: Deep Front Ends
	GTSFM: Incorporating the Deep Front End
	Related Work
	Approach
	Experimental Results
	Appendix
	Survey of Front-Ends
	Benchmark Evaluation Details
	Implementation Details
	HPSequences Qualitative Results
	Tables of Results

	4 | Validating Outdoor HD Maps
	Problem Introduction
	Related Work
	The TbV Dataset
	Approach
	Experimental Results
	Conclusion
	Appendix

	5 | Conclusion
	Reflection and Lessons Learned
	Future Work

	Appendices
	A | Geometry Fundamentals
	B | High Definition (HD) Map Fundamentals

	References
	Vita

