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SUMMARY

In the increasingly digital world, enterprises are generating more data than ever
before. Additionally, data is being stored for longer periods of time for both business
intelligence and regulatory compliance. The enterprise storage infrastructures are tasked
with not only storing this large amount of data, but also having to deal with increasing
reliance on anytime and anywhere access to data. As a result, storage management has
become increasingly complex and expensive.

For cost-effective data storage and management, enterprises are beginning to look at
the new paradigm of Networked Storage Services, also referred to as Storage-as-a-Service.
In this model, enterprises store their data at a remote site managed by an external storage
service provider (SSP) and access it over a high speed network. The SSP not only manages
the storage systems, but also provides superior backup and disaster recovery solutions. It
also enhances data availability and content dissemination abilities of the enterprise.

The networked storage services model, however, faces unique challenges before its widespread
acceptance. The foremost challenge in this model is that of preserving data confidentiality
and enforcing access control over SSP-stored data. By outsourcing storage to an external
service provider, enterprises have to adopt new security mechanisms for their multiuser en-
vironments, without placing an inordinate amount of trust in the SSP. Such access control
and security mechanisms have to be efficient in performance and able to be easily integrated
into existing enterprise infrastructures.

The second important challenge in this model is that of efficient storage management
of SSP data centers. The SSPs not only have to manage large amounts of data in a cost-
effective manner, but they also have to provide an on-demand infrastructure in which client
enterprises can easily grow or shrink their storage requirements. Maintaining such large
dynamic storage environments is a complex challenge and new technologies are required for

efficient change management and resource allocation.
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This dissertation addresses many of the challenges described above. First, we have
developed security mechanisms that efficiently provide access control for the outsourced
storage services model. Our primary contribution in this domain is the development of
novel techniques for embedding access control into data. Instead of relying on a trusted
reference monitor for access control, we use efficient cryptographic techniques to embed
access control into the stored data itself and thus, no enforcement is trusted with the

storage service provider. Using this technology, we have made the following contributions:

o Filesystem Access Control: We introduce a new access control system, called xAC-
CESS, that embeds expressive UNIX-like access control semantics into SSP-stored
data. Using novel cryptographic access control primitives and completely in-band
key management, xACCESS can be easily integrated into existing enterprise environ-
ments. We also analyze the privacy characteristics of its data sharing mechanisms and

propose enhancements that allow users to share data more securely and conveniently.

o Secure Filesystem Search: We also use the access control embedding concept to provide
secure keyword search over SSP-stored data. Multiuser search services need to enforce
access control even during search and many current enterprise search approaches are
prone to inference attacks, that extract unauthorized information about the under-
lying filesystem. Our access control technique is resilient towards such attacks and

provides greater indexing efficiency due to its distributed architecture.

This dissertation also addresses the challenge of managing large dynamic SSP data
centers. The theme of our contributions in this domain is to develop autonomic management
techniques that assist SSP administrators to quickly and efficiently integrate client-initiated
changes. We have developed techniques that analyze the impact of a change and can plan to
efficiently accommodate the change, with minimal administrator involvement. The former,
Zodiac is a “what-if’ analysis framework that proactively analyzes the impact of a proposed
change on the storage area network, before actually applying the change. This prevents
expensive change related operational errors and reduces downtimes. The latter, SPARK, is

a novel resource allocation framework, that can quickly re-assign resources to applications

xvi



in response to a client workload surge, device failure or planned growth and downtime.
SPARK is unique in its ability to provide coupled storage and CPU resource allocation and
effectively exploits the heterogeneity of storage area networks for greater efficiency.

In summary, this thesis addresses two important technical challenges facing the net-
worked storage services model. By using our access control embedding schemes, enterprises
can secure their data without placing trust in the storage service provider and the service
providers can use our change management and resource allocation techniques for adequately

dealing with their infrastructure dynamics.

xvii



CHAPTER 1

INTRODUCTION

With continued advances in communications and computing, the amount of digital data
continues to grow at an astounding rate, doubling almost every eighteen months [65]. Not
just in size, the role of data in modern enterprises has increased in significance as well.
Enterprises are now storing more data and also keeping it for a longer period of time for both
business intelligence and regulatory compliance purposes. This trend has put tremendous
strain on enterprise storage infrastructures.

While the cost of storage hardware has dropped, storage management has become in-
creasingly complex. A storage administrator has to perform many complex tasks like pro-
visioning, performance bottleneck analysis, change analysis, disaster recovery planning and
security analysis. As a result, managing enterprise storage has become very expensive and
is actually estimated to be 75% of the total cost of ownership [25]. In contrast, enterprise
IT budgets have grown only slightly over the years [99]. This has forced enterprises to look
for new ways to effectively manage their data.

One paradigm finding success in alleviating storage management costs is that of Net-
worked Storage Services or as more commonly known Storage-as-a-Service. Much like an
email or a web hosting service, this paradigm delivers raw storage as a service over a net-
work. In this model, as shown in Figure-1, enterprises use an external storage service
provider (SSP) to store their data at a remote SSP-managed site and access it over a
high-speed network (public or private)!. The use of an external party as a storage service
provider is often highlighted through the term outsourced storage.

This Storage-as-a-Service paradigm offers various advantages to an enterprise:

1. Storage Management: Obtaining storage as a service frees the enterprise from

expensive and expertise-intensive storage management task. The storage devices are

!When the network is the public internet, this model is also referred to as internet storage.
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Figure 1: Networked Storage Services Paradigm

owned and managed by the SSP which uses economies of scale to amortize costs and
efficiently manage large amounts of data. In fact, this model is highly suitable for
enterprises that are considering expanding their storage infrastructures to a SCSI
based Storage Area Networks (SANs) which cause a significant rise in management
complexity. Hasan et al [77] cite a study by Goldman-Sachs that estimates over 350%

cost savings by outsourcing storage to SSPs.

. On-demand Storage Infrastructure: Through Storage-as-a-Service, enterprises
obtain an adaptive storage infrastructure. Their storage infrastructure can now grow
or shrink according to their needs using on-demand storage provisioning and de-
commissioning. Enterprises pay only for the amount of storage that they use and

only for the duration that they use it. This avoids expensive over-provisioning.

. Disaster Recovery: Most SSPs package their raw storage services with superior dis-
aster recover (DR) and backup solutions. SSPs use multiple geographically-separated
sites to store backups and can even provide a hot standby. This offers great value to
enterprises especially those that are mandated by regulations to maintain such back-
ups, for example, health care and medical facilities. Many SSPs like [12, 93] nowadays
also provide versioning support, in which every write to data is versioned and users

can go back to any previous version in history.

. Content Dissemination: Enterprises can also use superior bandwidth and availabil-

ity characteristics of SSPs for more efficient content dissemination to its users. This



is especially useful when handling temporary surges in workloads without buying new

hardware/bandwidth or acquiring more management capabilities.

Interestingly, this paradigm gained substantial popularity (and subsequent notoriety)
during the dot-com era. Many internet companies, that did not have adequate IT staff and
budgets used external storage service providers for their data storage needs. However, as
the dot-com companies failed, so did most storage service providers. We refer the reader to
[77] for an interesting historical analysis of the storage-as-a-service paradigm.

With improved economic climate, continued data growth and increasing reliance on
any-time access to data, this model is re-emerging and many big and small companies
offer storage-as-a-service products like Amazon S3 [6], SUN Grid [171], Arsenal Digital [12]
and Iron Mountain Digital [93]. However, a widespread acceptance of this model within
enterprises has been impeded due a number of technical challenges. We discuss some of
these challenges in the following section.

Note that an enterprise can outsource its storage in many forms — (a) block storage, (b)
filesystems, or even (c) structured databases (Database-as-a-Service [74]). In this disserta-
tion, we primarily address outsourcing of enterprise filesystems which, according to industry

estimates, contain nearly 85% of all enterprise data [27].
1.1 Challenges

In this section, we describe some of the important challenges facing the storage-as-a-service
paradigm. In Section-1.1.1, we describe security and access control issues associated with
storing confidential data at an external service provider. Section-1.1.2 describes the service
provider’s challenge of managing large data centers, while providing an on-demand storage
infrastructure to enterprises. We describe the enterprise-to-SSP network connectivity and
performance complexities in Section-1.1.3 and finally, few non-technical challenges faced by

this model are briefly described in Section-1.1.4.

1.1.1 Security and Trust

By outsourcing storage to the SSP, enterprises trust it to reliably store data and provide high

availability access to it. However, this trust can not be translated to critical security issues



like data confidentiality and access control? and pressing questions need to be addressed:

e Data Confidentiality — Can the SSP be trusted to respect data confidentiality?
If yes, data can be stored in plaintext at the SSP (and thus can be read by SSP and
its employees). Most enterprises today do not like to associate this trust in the SSP.
This could be due to the requirement to protect intellectual property or to comply
with government regulations, for example, regulations protecting privacy of patients
in handling medical data. To preserve data confidentiality from the SSP, enterprises
would have to employ cryptographic techniques and integrate them with their exist-
ing storage infrastructures. This can raise complex key management challenges for

multiuser environments where different users have different privileges to data.

e Access Control Enforcement — Can the SSP be trusted to enforce access control
policies on enterprise users?
Another form of security issue raised in this model is whether the SSP should be
trusted to enforce access control. As an example, an enterprise can choose to encrypt
its data (to preserve confidentiality) using a single symmetric key. It can then give
this encrypted data to the SSP along with access control policies on how different
files (encrypted) can be accessed by different users. Many enterprises find this form
of trust to be unacceptable as well. Other than the core issue of trusting a third
party for enforcing your access control, this also raises an issue of verifiability — it
is tough to verify and monitor the SSP on its ability to enforce access control. Sec-
ondly, if an insider user (who possesses the encryption key) colludes with the SSP, all
enterprise data can be compromised. Such insider attacks are increasingly becoming
common [29] and enterprises aim to prevent such drastic confidentiality breaches.?
These no-trust environments in the storage-as-a-service model are a significant de-

parture from traditional access control architectures that rely on a trusted reference

2A useful guideline for identifying trusted or non-trusted attributes is verifiability. If an enterprise can
detect and verify an attribute then that can be entrusted to the SSP by inclusion in the Service Level
Agreement (SLA) with penalties if inadequately delivered.

3Even the SSP could prefer a no-trust security model as it rids them of all liability that a potential data
confidentiality breach could cause.



monitor and new access control techniques need to be developed.

e Data Integrity — How to ensure integrity of stored data?
A related security issue is detection of unintentional or malicious attempts at modi-
fying stored data. As the SSP is not fully trusted, new cryptographic integrity and
signing protocols are required that can detect unauthorized modifications to data and
resist replay or rollback attacks, in which a malicious user or SSP attempts to replay
(appropriately-signed) old data contents. Recently, there have been a number of re-
search efforts that have proposed techniques [106, 94, 67] and can provide high levels

of integrity and consistency.
1.1.2 Storage Management

The security challenge described above addressed complexities associated with the client-
enterprise side of the storage-as-a-service model. On the service provider’s side, primary
complexity is involved in efficiently managing large amounts of data. SSPs could be required
to manage petabytes of storage, while providing an on-demand infrastructure to enterprises,
for example, immediately able to provision a terabyte of storage. While significant work
has been done recently to improve overall storage management including techniques like
policy-based management [3] and autonomic computing [5, 9, 10, 64], one characteristic
distinguishes the SSP infrastructure from typical enterprise environments — the highly dy-
namic nature of its environment.

Changes to storage infrastructures are typically dreaded as they are highly error-prone.
In fact, estimates by Gartner indicate that 70% - 80% of changes resulting in downtimes are
initiated within the organization [114]. As a result, introducing changes requires significant
lead-time for adequate planning by storage administrators. This planning involves tasks
like “what-if” analysis, resource allocation/de-allocation planning and network and security
analysis. Enterprises managing their own data can control introduction of changes into
their environment and also usually overprovision their systems in order to quickly integrate
changes.

In contrast, for a SSP providing an on-demand storage infrastructure, long lead-times



for integrating changes are unacceptable as clients would immediately require access to a
modified environment. Secondly, SSPs are typically under greater pressure to manage their
resources as efficiently as possible since that is their core specialty and revenue earner. As a
results SSPs can not afford to grossly overprovision their systems. To support these highly
dynamic environments in an efficient manner, development of new change-management
techniques are required that eliminate or at the least minimize manual planning and provide

efficient resource allocation plans.
1.1.3 Network Connectivity and I/O Performance

The next challenge relates to the interface between the client-enterprise and the SSP. Client
enterprise access to data stored at the SSP site would typically go over a Wide Area Network
(WAN) or atleast a Metropolitan Area Network (MAN). Traditional Fibre-channel based
Storage Area Neworks (SANs) can not go over long distances, and it requires use of channel
extenders or other technologies like Wavelength Division Multiplexing (WDM) [175] and
Synchronous Optical Networking (SONET) [160] for low-latency data transfer. Most of
these technologies are in use today though primarily for disaster recovery and long-distance
replication. Integrating them into primary storage access paths and to provide filesystem like
access over these could require new mechanisms. Additionally, OS and filesystem caching

work like [131, 139] needs to be adopted to provide efficient wide area file services (WAFS).
1.1.4 Business Challenges

For greater acceptance of the Storage-as-a-Service model, certain non-technical challenges
also need to be resolved. Enterprises may find it unacceptable to lock-in their data with
a single storage service provider and their long term storage needs linked to the service
provider’s business success. Another tricky issue is negotiation of the Service Level Agree-
ments (SLAs) with appropriate monitoring and penalties built into the agreement. Addi-
tionally, as many enterprises are mandated by government regulations to store their data
for a long time, issues relating to legal liabilities in case of a disaster and data loss, need to
be resolved as well.

These challenges manifest themselves in different forms and severity depending upon



the architecture and model used for providing storage as a service. We discuss some of the

important storage-as-a-service models in the next section.
1.2 Storage-as-a-Service Models

Storage can be delivered as a service in a multitude of ways, with each model offering
distinct set of advantages and challenges. The design of models varies depending upon the
I/0O path chosen for data and metadata, centralized or decentralized access and complexity
of key management. In this section, we discuss a number of service models and give our
recommendation for a model, that we believe offers superior advantages. However, first we

begin by differentiating storage-as-a-service from a related application services model.
1.2.1 Comparison with Application Service Provider Model

It is important to distinguish storage-as-a-service from the known application service provider
(ASP) model. Figure-2 contrasts the two paradigms. In the ASP model, enterprises not
only outsource their data, but also certain applications to the service provider. Users of
the enterprise can then access these applications through internet based frontends. Various

companies like IBM [92], HP [79], Salesforce.com [154] provide such application hosting

services.
Storage-as-a-Service Application Service Provider

File system —z

Applications
Storage Service Application Service
Provider (SSP) Provider (ASP)

Enterprise
Enterprise

Figure 2: SSP vs. ASP model

The ASP model helps enterprise offload application deployment and management com-

plexities along with their storage. However, it suffers from two main disadvantages:

1. Security: Because of application deployment at the service provider, data needs to

be stored in plaintext as well. This is unacceptable for many enterprises that aim



to protect their intellectual property or to comply with government regulations. In
contrast, the SSP models can store encrypted data at the SSP and thus preserve data

confidentiality.

2. Flexibility: By outsourcing applications to the service provider, any custom applica-
tion deployment requires service provider’s approval and co-operation which can limit
an enterprise’s flexibility to modify its environment. In contrast, in the SSP model
applications continue to run at the enterprise’s site and the environment closely re-

sembles a local storage model from an application perspective.

In this dissertation, we consider the requirements of security-conscious enterprises and
use the secure Storage-as-a-Service model. In the next three sections, we discuss different

models for providing storage as a service.
1.2.2 Storage Services using Enterprise Proxies

The first service model uses a single point of access to store and retrieve data stored at
the SSP. As shown in Figure-3, the enterprise location uses an encryption filesystem to
encrypt/decrypt data stored at the SSP and uses a proxy gateway file server that serves
data requests from users that are accessing from other locations* .

To transition from a local storage to this model, enterprises only need to set up an
encryption filesystem [19, 197] that encrypts all data before writing it to SSP and corre-
spondingly decrypts data when reading. Users are oblivious to the SSP and only communi-
cate with the gateway file server through commonly used protocols like *nix based Network
File System (NFS) or Windows based Common Internet File System (CIFS) protocol. In
this model, it is easy to preserve data confidentiality, with easy key management (in fact,
all data can be encrypted with a single key only accessible by the enterprise encryption
filesystem). Also, access control is enforced by the trusted enterprise. However, this model

has the following undesirable characteristics:

“In fact, as a general practice, filesystems that are exported through file servers are exclusively used in
that mode and local direct access is less frequent. Thus, in that case, even users within that enterprise
location would access data through the gateway server.
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Figure 3: Proxy Storage Services model

o (Centralization: The proxy services model uses a central gateway for all data and
metadata I/O. This would cause I/O bottlenecks and not scale well for large workloads.
It also becomes a single point of failure and eliminates the potential usage of SSP as

a content dissemination service.

e Additional Network Hop: Since only the enterprise file system accesses data from the
SSP directly, file accesses by users from other locations would require an additional
network hop. This would adversely impact I/O performance, though data caching

can mitigate some of these costs.

o Two Cryptography Steps: For every data access, this model requires additional cryp-
tographic operations. For example for a read by a user, the enterprise filesystem
would first decrypt the data when accessing from the SSP (since only the enterprise
filesystem knows the master encryption key) and then re-encrypt it for sending it
over-the-network to outside users, who would have to decrypt it again. If users were

allowed to access the SSP directly, additional cryptographic costs can be avoided.



o Gateway Management: Finally, in this model the enterprise is responsible for manag-

ing the gateway file server, which would also have administration costs.

In summary, this model is more appropriate if the access to enterprise data occurs only
at a single enterprise location. The centralization and cryptographic costs make it less

suitable for distributed access to data.
1.2.3 Metadata Services using Enterprise Proxies

The second service model aims to reduce the data centralization impact of the first model
by splitting data and metadata I/O paths. In this model, shown in Figure-4, the enterprise
gateway serves as a metadata server and only provide information about data like address
for data blocks and encryption key for the requested file. Data is then obtained directly
from the SSP. Similar (non-encryption) out-of-band filesystems [117, 140] are in use today
and a recent standardization effort for parallel NFS (pNFS) [141] is developing protocol
standards for clients.
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Figure 4: Metadata-Proxy Storage Services model

While this model removes some data bottlenecks, metadata I/O continues to be cen-

tralized and the costs of opening two network connections (for data and metadata) can be
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expensive, especially while accessing small files. Secondly, the encryption strategy is differ-
ent from the previous model in the following manner. Since clients access data directly from
the SSP and we do not trust the SSP for access control enforcement, we have to ensure that
no user obtains decryption keys for data that he/she can not access. As a result, we have to
encrypt each file with a different key and only users that have permissions to access that file
can obtain that key from the metadata server. Thus, there are greater number of keys to
manage now and clients have to perform encryption/decryption as well. Additionally, the

management of gateway metadata servers continues to be the enterprise’s responsibility.
1.2.4 Decentralized Storage Services Model

The decentralized services model considers an environment where client-enterprise and its
users access data directly from the storage service provider (Figure-5). This eliminates
any data or metadata I/O bottlenecks and is most suitable for using the SSP as a content
dissemination service. Additionally, there are no management requirements for a gateway

server.
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Figure 5: Decentralized Storage Services model

Similar to the metadata proxy model, each file would need to be encrypted with a

different key, but distribution of keys to users has to be managed in a decentralized manner.
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Table 1: Comparing Storage-as-a-Service Models

Feature Enterprise Proxy | Metadata Proxy | Decentralized
Model Model Model

Centralization | Data and metadata Metadata none

I/O  Perfor- | Two N/W hops Two N/W connections | Single hop and connec-

mance tion

Cryptography | Additional crypto Regular crypto Regular crypto

Costs

Management | Gateway management | Gateway management | No gateways

Key Manage- | Easy (can use one key) | Many keys Many keys

ment

Some related work in this area [67, 2] has addressed the key management problem by
using public key cryptography schemes [115], which are known to have poorer performance.
However, faster symmetric key cryptography based designs are possible and we describe our
system, xACCESS, in Chapter-2. Another complexity involved in this model would be the
usage of decentralized locking techniques to ensure data integrity and consistency. Recent

work in this area [106, 67] have addressed many of these concerns.
1.2.5 Model Recommendations

In this section, we summarize various storage-as-a-service models and provide our recom-
mendations for choosing a particular model. Table-1 summarizes various aspects of the
three models.

We believe that by centralizing data and metadata I/O through an enterprise proxy,
many of the original benefits of the Storage-as-a-Service model are lost — both in terms of
performance and management costs. While the metadata proxy model alleviates data cen-
tralization, it still centralizes metadata requests, which will have an impact on performance.
It also requires continued management of the proxy gateway by the client enterprise and
can be a single point of failure. We prefer the decentralized service model as it provides
the best environment to exploit all benefits of the Storage-as-a-Service model. Addition-
ally, we have developed efficient in-band key distribution techniques that mitigate the key
management complexity of the decentralized model.

Next, we describe the research hypothesis for our security and storage management work
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for the decentralized model in this dissertation.
1.3 Research Hypothesis

This dissertation research is based on the following three hypothesis:

o Access Control Embedding: In the decentralized storage-as-a-service model, there is
no trusted access control engine in data access path that can enforce access control
on enterprise users. To enforce access control in this model, enterprises can embed
access control into the stored data itself using cryptographic mechanisms, which ensure
that users can only decrypt data that they had been authorized to access. Secondly,
using efficient symmetric key cryptographic operations and in-band key management
techniques, it is possible to build an efficient access control system that provides

expressive semantics over the decentralized storage-as-as-service model.

o Access Control Embedding for Applications: The access control embedding concept
can be extended to support other access control aware applications that require a
trusted enforcement engine at runtime, for example, multiuser filesystem search. For
such a service, access control needs to be enforced during search ensuring that no
user can search through data that he/she is not authorized to access. Most common
enterprise search approaches rely on a trusted access control monitor at runtime for
filtering of query results. Additionally, such techniques are prone to various inference
attacks that leak private information to unauthorized users. In contrast, by embedding
access control into indices, enterprise search can be secured against common inference

attacks and the search service can be securely hosted at an untrusted service provider.

o Autonomic Management: As the storage service provider aims to provide an on-
demand storage infrastructure to clients, complexity is introduced in its management
due to manual administrator involvement in change analysis and resource allocation.
For efficient management of such environments, autonomic techniques can be used to
(a) proactively analyze the impact of a change on the infrastructure, and (b) obtain

high quality resource allocation plans for improved utilization and performance. Such
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techniques will reduce costs and provide quicker integration of client initiated changes

into the SSP infrastructure.

In the next section, we describe the specific contributions of this thesis.
1.4 Thesis Contributions

To the best of our knowledge, this dissertation is a first comprehensive attempt at ad-
dressing core challenges encompassing the enterprise storage-as-a-service paradigm. In this
dissertation, we have proposed novel techniques along two dimensions — (a) security and
access control, and (b) SSP storage management. Specifically, we have made the following

contributions:

1. Access Control with xACCESS: We have developed an access control system,
called xACCESS, that uses novel cryptographic access control primitives (CAPs) to
embed access control into stored data and not rely on the SSP for enforcement of
security policies. xACCESS is able to support an expressive UNIX-like access control
model and its in-band key management technology ensures a seamless transition from
local storage to the storage-as-a-service model with negligible user involvement. We
have also analyzed the privacy characteristics of the access control model and devel-
oped enhancements that provide better privacy support to users while sharing their
data. To the best of our knowledge, xACCESS is the first such system that provides
an expressive access control model in the decentralized storage services model and it

also outperforms related proposals by over 40% on a number of benchmarks.

2. Secure Multiuser Filesystem Search: We use a similar concept of access control
embedding to develop secure multiuser keyword-search for SSP-stored data without
trusting the service provider. Our approach uses a novel access control barrel (ACB)
primitive to support access control aware search ensuring that users can only search
through files that are accessible to them. Unlike existing enterprise search techniques
our approach is resilient to common attacks that can leak private information. Qur
access control embedding architecture is a first such technique in which a search service

can be hosted at an untrusted service provide for multiuser environments.
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3. Efficient Management of SSP Data Centers: To efficiently handle client-initiated
changes into SSP storage area networks (SAN), we have developed techniques for (a)
analyzing the impact of a change (Zodiac) and (b) to plan for efficiently accommo-
dating that change (SPARK). Zodiac is a proactive impact analysis engine, that can
autonomically analyze the impact of a change on the system before actually applying
that change. This provides a useful tool for enterprises to prevent change related
operational errors. In case the proposed change requires re-allocation of resources, we
have also developed a resource allocation framework, called SPARK. It uses modern
virtualization technologies to quickly re-assign resources to applications in response
to client workload surges, planned growth, failures or scheduled downtimes. SPARK
is a first resource allocation engine that provides integrated allocation of application

storage and CPU, accounting for affinities between CPU and storage nodes.
1.5 Thests Organization

This thesis is organized as follows:

Chapter-2 describes the design of our access control system, xACCESS for enterprise
storage-as-a-service environments, including the architecture and implementation of the
xACCESS prototype. We also analyze its data sharing mechanisms and propose enhance-
ments for more secure and convenient data sharing. In Chapter-3, we describe the design
and architecture of our secure multiuser search scheme that provides keyword search over
SSP-hosted data without trusting the SSP.

Next, we describe efficient change management and resource allocation techniques for
managing dynamic storage area networks (SANs) of the storage service provider. In Chapter-
4, we describe Zodiac, the “what-if’ analysis engine for policy enabled SANs. Chapter-5
describes our new resource allocation mechanism for integrated storage-CPU placement in
SSP SANs.

We conclude the thesis with directions for future work and open problems in Chapter-6.
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CHAPTER II

ACCESS CONTROL WITH XACCESS

In the decentralized storage-as-a~service model, all users access data directly from the stor-
age service provider. Also, as mentioned earlier, in our security model the service provider
is not trusted for access control enforcement. This lack of a trusted server in the I/0O
path makes security and access control, a particularly challenging problem. In this chapter,
we will describe our novel access control system called xACCESS that can provide an ex-
pressive UNIX-like access control model over outsourced data. It has additional desirable
properties of in-band key management and superior performance. We will also analyze the
privacy support in its data sharing mechanisms and propose enhancements using a novel
view primitive.

It is important to note that the xACCESS system is a solution for data confidentiality
and access control for the decentralized storage-as-a-service model. These are but only
two key pieces of the overall security strategy for any enterprise. For example, issues like
intrusion detection, firewalls and protection against denial of service (DoS) attacks still
need to be addressed. We continue to investigate unique challenges posed by such security
technologies in the decentralized storage-as-a-service models as part of our future work.

We start with some background information relating to UNIX access control, filesystems

design and cryptographic operations.
2.1 Background Information

In this section, we describe key background concepts, the knowledge of which is important

for understanding xACCESS.
2.1.1 TUNIX Access Control Model

The UNIX access control model [148], also supported by Linux and other flavors (together

called *nix) is a discretionary access model in which each file system object (file, directory,
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links) has an associated owner who controls the access to that object. This access can be
granted to three kinds of users: (1) owner, (2) group, and (3) others. The owner is the
object owner, the group is a set of users to which the owner belongs (for example, a user
group for students, faculty) and others are all other users. In notation, the permissions bits
are listed in the {owner, group, others} order.

Further, the granted access is of three types:

1. Read: For a file, this means that a user can read a file. For a directory, this means
that a user can list its contents using 1s [107]. For links, the permissions are for the
object that are pointed-to by the link and the link’s permissions are not used. The

read permission is represented by a ’r’.

2. Write: For a file, the write permission allows a user to write to a file. For a directory,
it allows a user to add/delete/rename directory contents. For links, the permissions

are again for the pointed-to object. The write permission is represented by 'w’.

3. eXecute: For a file, the execute permissions allows running the file as a program
(for example, a shell script). For directories it allows users to traverse that direc-
tory and if the directory contents have appropriate permissions, the user can then
access those contents. For example, to access directory grand-child with path
dir/child/grand-child, both dir and child need to have execute permissions. The

execute permission is represented by a 'x’.

To improve the granularity of user permissions, lately POSIX Access Control Lists
(ACLs) [72] have been introduced into many *nix variants. These allow setting permissions
at individual user levels as opposed to group or others. However, the {owner, group, others}
is still the most dominant paradigm and many *nix installations do not even have ACLs

enabled.
2.1.2 Filesystem Data Structures
In this section, we describe important data structures used in filesystems. While many

concepts are similar in most filesystems, our discussion specifically is based on the Linux
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Ext2 file system and we refer the reader to [30] for a more detailed description.

A filesystem is composed of various objects like files, directories, symbolic links and
hard links. Each of these filesystem objects is stored using two data structures — metadata
and data. The metadata contains information about various attributes like a unique inode
number, owner ID, access permissions, and size. It also contains pointers to data blocks for
that object. The metadata objects are stored indexed by the inode number.

The data blocks for a file contain its content. For a directory, the data blocks contain a
directory table with two columns containing the names and inode numbers of all subfiles and
subdirectories contained within that directory. Using these inode numbers, the metadata for
those subfiles and subdirectories can be looked up (traversing the directory). For a symbolic
link, the data blocks contain the path of a target filename to which the link points. A hard
link to a file or directory is only a different entry into the directory table but uses the same
inode number, thus pointing to the same metadata object.

For xACCESS, we need to design similar data structures in the decentralized storage-

as-a-service model.
2.1.3 Symmetric and Public-key Cryptography

Cryptographic operations on data can vary significantly in performance based on the form
of cryptography. In symmetric key cryptography, a single key is used to both encrypt
and decrypt data. Examples of such schemes include AES [115, 133] and DES [115, 134].
Symmetric key cryptography is known to be very efficient and can provide throughputs
greater than 70 MB/s on a regular desktop machine [2].

In public key cryptography, there are a pair of keys associated with a user — (a)
public key that is openly published and (b) private key that is held private by a user. These
keys are asymmetric in nature such that any data encrypted with the public key can only
be decrypted with the private key and vice versa. The most common public key scheme is
RSA [115, 150]. Public key schemes are known to have worse performance. Additionally,
encryption/decryption with the private key is much more expensive than with the public key

as the private key is longer in size. Thus, it is preferable to use symmetric key cryptography
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as much as possible in all filesystem operations.
2.2 Access Control Challenges

Next we describe various challenges involved in enforcing access control in the decentralized

storage services model. We illustrate these challenges using an example shown in Figure-6.
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Figure 6: Challenges in Access Control Enforcement

Consider an enterprise with a filesystem consisting of the directory structure as shown
in bottom left corner of Figure-6. It includes multiple files and directories with different
sets of permissions for different users (figure shows UNIX-based permissions). Assume that
administrators decide to outsource this filesystem by sending data to the SSP!. Without a
trusted access control engine at the time of data access, access control can only be enforced
by “embedding” control information into the data. This is accomplished by encrypting each
file with a unique key and controlling the distribution of these keys, ensuring that users can
only obtain keys for files that they are authorized to access. For example, data owner alice
possesses all four keys that allow her to access all data, whereas bob does not have the key

for the file “pwds” since it did not have read permissions for users other than alice.

!This decision could be based on various reasons. For example, it could be that the utility of this data
has dropped and it is better to use expensive local storage for sometime more important. Or on the opposite
end of the spectrum, it could be that too many users are accessing this data and the enterprise wishes to
use better dissemination abilities of the SSP.
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This access control embedding is complex due to the following reasons:

e Key Distribution: In the decentralized storage service model, each user requires
keys for all files that he/she can access. Distributing this large number of keys to
users in a decentralized manner is a challenging problem. Some related work in this
area [94, 76] proposed using out-of-band channels for distribution. For example, if
alice wishes to share a file with cathy, she would have to email the key for that file
to cathy. We believe that a good solution to this problem should ensure that user
involvement is minimal in managing keys. This will ensure that the transition from
local storage to the storage-as-a-service model is the least disruptive. Our xACCESS
system accomplishes this by completely hiding key management details from users.
Instead the xACCESS filesystem handles key management in-band and users continue

to access the system using regular mechanisms.

e Access Control Expressiveness: Another important challenge in the decentralized
service model is to provide an expressive access control model like the ones used in
typical local systems (for example, UNIX permissions [148]). Most of the related
work [94, 67, 2, 126] provides only a restricted access control model with few permission
settings. We believe this to be a critical limitation for two reasons — (a) users are
accustomed to using typical access control models and changing the model requires
re-education, and (b) in the process of transitioning from local storage to the storage-
as-a-service model, if users want to provide equivalent security semantics on their
data, they would have to be manually involved in mapping permissions to the new
model. This would again cause greater disruption and slow the transition process. Our
xACCESS system is able to provide an expressive access control model by carefully
manipulating filesystem metadata and key distribution. For example, in Figure-6,
user bob can only obtain keys for contents of directory “docs” if he knows the names
of the subfile or subdirectory (equivalent to the execute-only semantics for UNIX

directories [148]).
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e Performance: In the storage-as-a-service model, each data and metadata access re-
quires cryptographic operations — decryption for read and encryption for write. To
minimize its impact on performance, it is crucial that the system uses the efficient
symmetric key cryptography as much as possible. Most related work [67, 2] does use
symmetric key cryptography for file data encryption but relies on the expensive public
key cryptography [115] for metadata as it makes key distribution easier. For example,
by encrypting metadata objects (containing data decryption keys) with public keys
of users that are authorized to access those objects, it is easily ensured that only
those users obtain access. However, this comes with a performance penalty for ev-
ery metadata operation. In contrast, xACCESS predominantly uses symmetric key
cryptography for metadata operations and is able to outperform these comparable

approaches by over 40% on a number of filesystem benchmarks.

Next, we describe the basic concepts and data structures used in xACCESS.
2.3 Basic Concepts and Data Structures

Before we get into the detail of xACCESS design, we describe some of the basic concepts

and infrastructure requirements for xACCESS.
2.3.1 User and Group Keys

In xACCESS, each user has a public-private key pair denoted by < B,,, P, >, where B,, is the
public key and P, is the private key known only to user u. This key pair effectively serves as
the identity of the user. User groups also have a similar public-private key pair < By, P, >.
We also assume that each user knows the public keys for all other users. This would imply
existence of a public key infrastructure or usage of Identify-Based Encryption [22] schemes
in which the email address of the user is a valid public key. Also, the group keys are
distributed to users by storing them encrypted with the public keys of group members
(individually). Figure-7 shows the table structure for distributing keys for a user group
student (< Bgtud, Pstuqd >), which has two members joe and jane. Ex denotes encryption

using key K.
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Hash(uid) Encrypted Key Block

Hash(joe) EBjoe{<Bstudl PStud>}

Hash(jane) EBjane{<Bstudl Ptua™

Figure 7: Secure Group Keys Storage at SSP

These encrypted group keys are stored at the SSP. When a user, say jane, logs into the
system (that is, mounts the SSP file system), she obtains her encrypted group key blocks and
uses her private key to decrypt and thus obtain her group keys. The first column containing
hash of the user ID is used to index the key blocks, so that a user directly obtains only
his/her blocks. By hashing the user ID, identity of the users is held confidential from the

SSP. For hashing, any secure hash function such as SHA1 [53] or MD5 [149] can be used.
2.3.2 Encrypting Data and Metadata

As described earlier, all file and directory data is encrypted using distinct symmetric keys.
In order to handle large files efficiently, files are typically divided into multiple blocks and
each block is encrypted separately. This helps accommodate updates more efficiently by
avoiding the need to re-encrypt an entire file after a write. The number of blocks per file
does not impact xACCESS design in any manner and for ease of exposition, we will assume
that all file data fits into a single data block. Also recall that a directory’s data block
contains the directory-table structure (as described earlier in Section-2.1.2).

Each data block has two sets of keys associated with it:

1. Data Encryption Key (DEK): The DEK is a unique symmetric encryption key
used to encrypt the data block. The symmetric nature implies that the data block is
encrypted and decrypted using the same key. As an example, DEK could be a 128-bit
AES [133] key.

2. Data Signing (DSK) and Data Verification Key (DVK): The DSK and DVK
are a pair of asymmetric keys such that any content signed (that is, encrypting the hash
of content) with the DSK, can only be verified (decrypting signature and comparing

with actual hash of content) with the DVK and conversely, verification with DVK only
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succeeds if content was signed with the DSK. Signing and verification is required to
differentiate readers from writers. Note that we use symmetric keys for data encryption
for performance reasons. So any user who has read permissions on a file, thus possesses
the DEK, can attempt to write to that file as well (by encrypting new content with
DEK). Since in our security model, we do not trust the SSP for enforcing access
control, we have to develop mechanisms to detect any such malicious attempts at
writing (by users or even the SSP). Signing and verification is one such technique.
We ensure that only writers can obtain the DSK and whenever a file is modified by
a writer, they sign the hash of the file content with the DSK. Now, all readers, who
possess DVK, can verify whether the file was written by an authorized user. This
provides us a mechanism of distinguishing writers from readers without trusting the
SSP. Note that while public key schemes like RSA [150] can be used for signing and
verification, there are other techniques like ESIGN [135, 136] that are over an order

of magnitude faster [106].
2.8.2.1 Metadata

In xACCESS, we use symmetric key cryptography for metadata objects as well. Thus, we

have a similar set of keys:

e Metadata Encryption Key (MEK): MEK is a unique symmetric key used for

encrypting metadata objects, for example, 128-bit AES.

e Metadata Signing Key (MSK): Similar to the data signing key, the MSK is dis-

tributed only to users that can write to the metadata object. In our current imple-

mentation, we limit this to the object owner?.

e Metadata Verification Key (MVK): MVK is used by readers of metadata to

verify whether it was written by an appropriate user.

Table-2 summarizes the basic infrastructure and the notation used in xACCESS.

2There are certain metadata attributes that can be modified by readers or data-writers as well, for
example, last-access-time and size. We describe how we handle those attributes in the next subsection.
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Table 2: xACCESS Basic Concepts

For Concept Notation Usage
User Public Key B, Serves as identity and aids in
Private Key P, exclusive information exchange
User Group | Public Key B, Serves as identity and aids in
Private Key P, exclusive information exchange
Data Block | Data Encryption Key DEK Encrypts/decrypts data
Data Signing Key DSK Writers sign data with DSK
Data Verification Key DV K Readers verify data with DVK
Metadata | Metadata Encryption Key MEK Encrypts/decrypts metadata
Metadata Signing Key MSK Owners sign metadata with MSK
Metadata Verification Key MV K Readers verify metadata with DVK

Next, we describe the internal data structures for xACCESS filesystem. This design
plays a key role in providing an expressive access control model, while primarily using

symmetric key cryptography for metadata objects.
2.3.3 Key Data Structures

There are two key data structures in the xACCESS filesystem — (a) metadata, and (b)

directory table.
2.8.8.1 Metadata

As described in Section-2.1.2, traditionally a metadata object consists of various attributes
for a file (or directory) like inode number, owner, group, permissions, size and it also contains
pointer to the data block for that object. To read a file (or directory), the user first looks
up the metadata object for that file’s inode number and then follows the pointer to the data
block. In xACCESS, data blocks are encrypted and appropriate keys to read/sign/verify
need to be distributed to appropriate users.

To do this key distribution in-band, conceptually, we rely on the same semantics of
metadata leads to data and add three new fields to the metadata structure for DEK, DSK
and DVK for the data block of that object. The idea is that now metadata not only points
to the data block but also provides knowledge (keys) to appropriately read/write to that
data block. Of course, not all users will have the DSK field populated (only writers do) and

this selective availability of keys is what gives us an expressive access control model. We
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discuss this issue further in Section-2.4.

inode# type owner | group | perms sizex_‘

+ DEK DSK DVK MSK

Figure 8: xACCESS Metadata

Figure-8 shows the modified metadata structure. There are additional modifications
to the metadata structure as well. First, the MSK is also included within the metadata.
For owners of the file or directory, the MSK will allow them to sign the metadata object
when they update it, for example, while changing permissions of the file. The second
modification is to remove the size field from the structure. Since we do not want any user
who has permissions to write to a file (thus modify its size), to have an equivalent permission
to write to the metadata structure, we take out the size field and store it within the first

data block®.
2.8.8.2  Directory Table

As mentioned in Section-2.1.2, the data block for a directory contains a table structure
that consists of two columns containing the inode numbers and names of the subfiles and
subdirectories contained within that directory. For a user accessing the contents of the
directory, the inode number corresponding to the name of desired subfile or subdirectory is
looked up and the metadata object for that inode number is obtained. From that metadata,
the data block of subfile or subdirectory can then be accessed as described above.
Consistent with these semantics of a directory-table leading to metadata of subfiles/directories,

we add two new columns to the directory table structure, containing the MEK and MVK for
the subfiles/directories. Thus, now the directory table not only provides information about
how to obtain the metadata object for subfiles/directories, but also provides the keys to

decrypt/verify that metadata object. Figure-9 shows the modified directory table structure.

3Similar treatment is required for last-modify-time. The nlinks attribute is also removed since any user
with the metadata read permission can create a link to that object, so we do not want to allow that user to
modify the metadata structure.
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inode# name MEK MVK

1001 file-a [file-a-MEK] [file-a-MVK]

Figure 9: xACCESS Directory Table Structure

Note that fields containing keys in metadata and directory-table structures (new fields
denoted by '+’ in Figure-8 and Figure-9) are not always accessible to all users. In fact, their
selective accessibility is what accomplishes access control over this data. This selective
accessibility is enforced according to the access control model being supported using a
novel concept called Cryptographic Access control Primitive (CAP). In the next section, we

describe CAPs for the UNIX access control model.
2.4 Cryptographic Access Control Primitives

A Cryptographic Access control Primitive (CAP) for a filesystem object tries to replicate
a particular access control setting (for example, a read-only permission) in the storage-
as-a-service model by manipulating accessibility of keys in metadata and directory-table
structures and using cryptographic schemes when required. As an example, to support a
read-only permission for a file, its CAP ensures that the DEK and DVK fields are accessible
in the metadata structure, but not the DSK (possession of data signing key allows writes).
In some cases, these fields may be further encrypted to achieve access control objectives.
Below, we describe the design of CAPs for UNIX directories and files. We will also provide

a complete example later in Section-2.4.3.
2.4.1 UNIX Directory CAPs

In the UNIX access control model [148], a directory can have three kinds of permissions —
(a) read: allows listing the contents of the directory (that is, the command “1s” [107]),
(b) write: allows adding/deleting contents of the directory (equivalent to modifying the

directory-table structure) and (c) eXecute: allows traversal of the directory and accessing
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its contents.

Figure-10 shows the CAPs for directories. The left column shows the permission being
designed, the middle column shows the keys fields of metadata and right column shows
the data blocks (that is, directory table). To support zero permissions, the metadata
object has all fields inaccessible (denoted by dark shade)?. Consequently data block for
the directory (that is, the directory-table structure) is inaccessible (since DEK contained
within the metadata is inaccessible). Read-only permissions on a directory allow listing its
content, but neither modification nor traversal. For this permission, the CAP design is to
make the DEK and DVK accessible in the metadata. Now, using DEK the data block for
this directory (containing the directory-table) can be decrypted. Further, only the “name”
column is accessible in the directory-table structure. This implies that a user can only
obtain the names of the contents of this directory and not the inode numbers or keys - the

equivalent semantics of the read permission.

read-exec: |DEK,,|DVK,, [DSKms| [inode#] name | MEK | MVK ]

read-write-exec: |DEK,,.|DVK, |DSK,,.| [inode#| name | MEK | MvK |

exec-only: [DEK,[DVK,,,|DSKes| (XJinode#| MEK| MVK @ [name]|

Encrypted with key: Hpg,,. .(name)

Figure 10: UNIX Directory CAPs

For UNIX, the read-write directory permission has the same semantics as read since
write does not work without an execute permission. As a result, its CAP design is the

same as read. With a read-exec permission, a user is allowed to traverse the directory and

4The subscript “this” in the figure indicates that the keys are for the current directory, different from the
keys contained in its directory-table structure, which are for the subfiles/directories of this directory.
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access its contents, but modification is not allowed. The CAP design for this permission
is to make both DEK and DVK accessible in the metadata structure (thus allowing de-
cryption of the directory-table). Within the directory-table, all four columns are accessible
since with the exec permission, users are allowed traversal and access to the metadata of
all subfiles/subdirectories. Using the inode number, users can then obtain the metadata
objects of a subfile and using the MEK decrypt that metadata object (and verify with
MVK). With a read-write-exec permission, users can also modify the directory-table
(add/delete contents) and to allow that, the DSK field in the metadata is also made acces-
sible. Next, the write-only permission has the same semantics as zero permissions since
write for directories does not work without exec; therefore, its CAP is the same as having
no permissions.

The most interesting CAP design is for the exec-only permissions. The semantics of
the UNIX exec-only permissions are that users can not list the contents of the directory,
but can traverse it and access subfiles/directories if they know their names. In other words,
a user can not do an “1s” on the directory, but can “cd” into it and access contents by
using their exact name. This is a widely used permission in UNIX systems and our study at
two large organizations showed that greater than 70% of users use exec-only permissions
on directories [164]. To support this permission in xACCESS, the directory-table structure
requires further manipulation using cryptographic primitives. We accomplish this in the
following manner.

First note that since users are allowed to traverse the directory, we have to provide
access to the directory-table. In order to do so, the DEK and DVK field in the metadata
are made accessible. Next, since a user is not allowed to list the contents, the name column
in the directory-table is made inaccessible. Finally, a user is allowed to lookup the metadata
of a subfile/directory if he/she knows the name. This is accomplished by encrypting the
inode number, MEK and MVK fields row-wise with new keys derived from the name of the
subfile/directory. This new key is derived by using a keyed hash function like MD5 [149] or
SHA1 [53] with DE Ky, as the key and taking the hash of the name. These hash functions

are secure hash functions ensuring that it is highly unlikely that two different names will
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hash to a same value. Now, any user who knows the name of the subfile/directory can
derive this new key and then use this key to decrypt the appropriate row in the directory-
table, thus getting access to the metadata of the subfile/directory. This provides equivalent
exec-only semantics in the storage-as-a-service model.

One UNIX permission not supported in xACCESS is the write-exec permission due to
the use of symmetric keys for encrypting data blocks. Any user who has write permissions,
and so has the encryption key, can decrypt the data blocks using the same key and thus
can read its contents. However, this permission setting is extremely rare in real systems; in
fact, our study of two real enterprise UNIX systems actually found no directory with this
permission. As part of our future work, we are looking at using asymmetric mechanisms

for supporting this permission. Next, we describe the CAPs for UNIX files.

2.4.2 UNIX File CAPs

In the UNIX access control model, files also have three permissions — (a) read: allows
reading the content of a file, (b) write: allows modifying the content and (c) execute:
allows running the file as a program. Figure-11 shows the design of the CAPs for UNIX
files. In case of files, data blocks are not used in access control design and thus have been

omitted from the figure.

read: | DEK | DVK -

read-write: | DEK | DVK | DSK

read-exec: | DEK | DVK -

read-write-exec: | DEK | DVK | DSK |

Figure 11: UNIX File CAPs

For zero permissions, all key fields in the metadata are inaccessible. For read permis-
sions, the DEK and DVK are accessible which will allow decryption and verification of the
data block. Read-write permission is supported by making the DSK accessible as well.

The read-exec permission has the same semantics as read since once the file has been
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decrypted the client filesystem can execute it as a program. As a result it has the same
CAP design as read. Similarly, the read-write-exec has the same CAP as read-write.

Similar to directories, we cannot support write-only permissions because of the fact
that we use symmetric keys to encrypt data. Also, no storage-as-a-service model can enforce
exec-only permissions for a file since it would imply that the file can be executed as a
program without decrypting (equivalent to reading) it.

Using these file and directory CAPs, we can support different permissions individually
on SSP-stored files and directories. Next, we describe a complete example that illustrates

the design for a directory structure with both files and directories.
2.4.3 CAPs Example

Using our earlier filesystem example of Figure-6, we illustrate the complete design of meta-
data and other data structures for supporting UNIX permissions in the storage-as-a-service
model. Figure-12 shows the complete design with the directory structure and permissions

being supported in the top left corner.
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Figure 12: CAPs Example

First, to support read-exec permission on the zAC directory, according to the CAP
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design for this permission (Section-2.4.1), all four columns of its directory-table are acces-
sible. These columns contain the inode numbers, names, MEK and MVK for the contents
of zAC, namely files design and pwds and directory docs.

To access the file design with read-write permissions, the user would obtain the en-
crypted metadata object from the SSP using its inode number, decrypt it using M E Ky,
and verify it with MV K5, (inode number and keys are obtained from the zA C directory-
table). From the metadata of the file, the user can obtain the DEK 4., to read the file,
DV K 45y, to verify it and DS K 4e4, to write to it.

File pwds has a similar structure except that the DSKp,qs is inaccessible — the CAP
for read-only permission (Section-2.4.2).

For directory docs with exec—only permission, first its metadata object can be decrypted
using M EK4,.s available from the directory-table of zAC. From the decrypted metadata
object, DEKj,.s is obtained which is used to decrypt the directory-table structure. In-
ternally, the directory-table structure is built using the exec-only CAP design described
earlier, that is, the name column is inaccessible and the inode number, MEK, MVK fields
for subfiles/directories are encrypted using keys derived from their names. A user with
knowledge of the name can derive the key and decrypt the structure.

This completes the example and demonstrates how the CAP based design is able to sup-

port an expressive UNIX-like access control model. Later in Section-2.5.1, we will describe
specifically how different filesystem operations (like stat, mkdir) are implemented in our
prototype.
Note: Observe that our key distribution mechanism exploits the hierarchy of the file system.
For example, to access a file or directory, its metadata keys are obtained from its parent
directory’s directory-table. The parent directory would have been accessed by obtaining
keys from the grand-parent directory and so on. This will lead all the way up to the
namespace root (for example, “/”). Now the question remains — how do users obtain access
to this root element?

In traditional filesystems, the metadata for the root is contained with a data structure

called the superblock [30]. We describe the superblock structure for xACCESS next.
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2.4.4 Filesystem Superblock

A superblock contains description of the basic structure and attributes of the filesystem
like number of free blocks, number of free inodes and importantly the inode number of
the first inode in the filesystem, that is, the namespace root (“/” for ext2). In case of
xACCESS, along with the inode number, we also store the M EK, o+ and MV K, that
allow decrypting the metadata for the filesystem namespace root directory.

We could potentially distribute this superblock (with root encryption keys) out-of-band
to authorized users. However, we can accomplish its distribution using completely in-band
mechanisms by using the following technique. For each authorized user u, we store the
superblock encrypted with the public key of u (B,) and store it at the SSP. That is, we
store Eg, {Superblock} for all authorized users of the filesystem. Now, when a user mounts
the filesystem, he/she decrypts the superblock using private key P, and obtains access to
the metadata structure of the namespace root. This way, no out-of-band distribution is
required and only a one-time public key cryptographic operation is required (at mount

time).
2.4.5 Multiple CAPs per Object

So far, we have described how a user can mount a filesystem by decrypting the superblock
and then access the filesystem using hierarchical CAPs based design. However, different
users will have different access rights to filesystem objects, for example, users alice and bob
have different access rights to the directory docs in Figure-6. We need to devise mechanisms
such that alice can access her CAPs (with read-write-exec permissions), whereas bob
only gets access to a CAP with ezec-only permissions.

We have developed two schemes to allow different users access to different CAPs for the
same filesystem object. These schemes differ in the amount of storage overheads, update

costs and metadata access costs.
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2.4.5.1 Scheme-1: Different Metadata Structures

The first scheme separates metadata structures for different users, that is, the filesystem tree
structure (metadata and directory-table components) is replicated for each user with CAP
design based on the access permissions for that particular user. For example, alice will
have her own metadata objects starting from the namespace root to all files that she can
access, with intermediate directory-table objects containing keys that access appropriate
CAPs for alice. User bob will have a similar separate filesystem tree.

Clearly, this scheme has additional storage overheads. Based on our prototype imple-
mentation, for a filesystem with one million files, it will cost nearly $0.60 per user per month
according to storage prices of the Amazon S3 [6] storage service. Additionally, this scheme
has update overheads, since whenever a new object is created or existing metadata object
modified, updates need to be made to the filesystem tree of each user that can access that
object. As a result this scheme is more suitable for scenarios when writes to metadata
objects are infrequent.

It is worthwhile to note that most related work uses public key cryptography for meta-
data [67, 106, 2] which is equivalent to this scheme since every metadata object is separately
encrypted with the public keys of all users that can access that object, thus replicating it
for all such users.

Next, we describe another scheme in which users can share CAPs if they have similar

access rights to objects.
2.4.5.2 Scheme-2: Sharing of CAPs

The second scheme avoids replicating metadata structures by observing that number of
CAPs per object is typically a much smaller number than the number of users that can access
that object. For example, for our access control model described above, there are only five
unique CAPs per directory and four per file. Using this observation, this scheme replicates
metadata structures only for the number of CAPs that are required to be supported and
includes indirection from users’ metadata and directory-table structures to point to the

correct CAP for their individual permissions. Figure-13 shows this scheme for our running
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example of Figure-6 with users bob and john able to share CAPs since they have same

access permissions on those objects. This results in low storage and update overheads.

rWXI xAC | ||F=X [ xAC WS i

-

N

Bob and John share CAPs
Alice

Figure 13: Handling multiple users by sharing CAPs

It is possible that users that share CAPs for a certain part of the directory structure
may split at a certain point, that is their permissions diverge at a certain file/directory.
One typical cause of this divergence is POSIX ACLs [72] when permissions for specific users
or groups are added to the traditional UNIX {owner, group, others} model [148]. It is
important to note that the total number of such splits is a small number, as they typically
occur at a higher level directory (for example, “/home/”) and children directories later
inherit permissions from the parent directory. Thus, once a split occurs, users continue to
use their separate CAPs. In order to accommodate these few split points, we use public
key cryptography technique, similar to the one used for the superblock. More specifically,
the metadata structures for split-point objects are encrypted with the public keys of users
that can access it and internally these metadata structures point to the specific CAPs as
dictated by the new access control permissions. Thus, Scheme-2 offers a tradeoff of reduced

storage and updated costs at slightly higher access costs.
2.4.6 Design Summary and Overheads

In this section, we summarize some of the key points in the xACCESS design and concretely
describe overheads of providing such expressive access control over the decentralized storage-

as-a-service model.
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e xACCESS provides in-band key management (users only manage their public-private
key pair). We accomplish this by exploiting the hierarchy of filesystems and storing
data encryption keys in metadata objects and metadata encryption keys in parent

directory’s directory-table structures.

e xACCESS predominantly uses symmetric key cryptography for metadata objects.
Only the namespace root and few split-points are accessed using public key cryptogra-
phy. As we show in Section-2.9, use of symmetric key cryptography helps outperform

comparable approaches by over 40% on a number of benchmarks.

e xACCESS is also able to support an expressive UNIX-like access control model through

the novel use of cryptographic access control primitives.

Next, we concretely discuss various overheads in xACCESS and other similar storage-

as-a-service access control systems.

o Encryption Overheads: A common overhead for any encryption based access con-
trol system like xACCESS is the cost of encrypting data and metadata. All sys-
tems [94, 67, 119, 76, 2] store encrypted data at the SSP, but differ in the choice
of cryptographic operations used. While symmetric key cryptography is generally
used for data encryption, only xACCESS, Plutus [94] and CNFS [76] use symmetric
key cryptography for metadata as well, with most other systems [67, 119, 2] using

expensive public key cryptography.

o Key Management QOuverheads: Another overhead with encryption based storage-as-a-
service models is the cost of managing keys. For example, Plutus [94] and CNF'S [76]
requires owners to email keys to users that are authorized to access their files. Such
out-of-band key management has additional overheads with significant user involve-
ment required for every metadata or permissions update. In contrast, xACCESS’s

in-band key management functionality drastically reduces these management costs.
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e Key Revocation and Re-encryption QOuverheads: Another important overhead occurs
due to revocation of a user’s permissions (for example, removing a user’s read per-
mission). Such revocations require re-encryption of files as the revoked user could
have cached the data encryption key (DEK) for that file. This overhead is also
common to all encryption based access control systems and exists due to the access
control embedding methodology. In traditional local storage systems, such revocation
is handled through the trusted access control engine like an OS or Kerberos based key

distribution center’s revocation lists. We discuss this issue further in Section-2.5.

o Access Control Expressiveness Querheads: Since all other proposed systems provide
only minimal read and write permission settings, one overhead unique to xACCESS
design is its cryptographic access control primitives based operations. Such CAPs
based design incurs costs in order to provide expressive access control semantics
over the decentralized storage-as-a-service model. For example, the design of the
exec-only CAP for UNIX directories requires an additional row-wise encryption of
the directory-table structure in addition to the core data and metadata encryption.
Secondly, creating multiple CAPs for various permission settings that need to be

supported (Scheme-2 above) requires multiple metadata objects to be created.

Next, we describe the architecture and implementation details for xACCESS and later

experimentally evaluate its overheads in comparison to other approaches in Section-2.9.1.
2.5 Architecture and I'mplementation
The xACCESS system is composed of three main components, as shown in Figure-14.
e Migration Tool: This component is responsible for the initial setup and migration
of data from local storage to the storage-as-a-service model. It can perform more
efficient bulk data transfers (by using compression and other optimization techniques)

and create the cryptographic infrastructure, if required (that is, generating user and

group keys).
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Figure 14: xACCESS Architecture

e SSP Server: The SSP server receives data from the migration tool (or client writes)
and is responsible for serving data/metadata requests from all clients. There is no
computation involved on the data at the SSP and it simply maintains a large hashtable
for encrypted metadata objects and encrypted data blocks, both indexed by the inode
numbers and either hash of user/group ID (for Scheme-1 above) or CAP ID (Scheme-
2).

e xACCESS Filesystem: The most important component in the architecture is the
xACCESS filesystem that will be installed at every client accessing data from the
SSP. It provides filesystem access to the data stored at the SSP and performs all
cryptographic operations to serve client requests. We discuss the architecture of the

filesystem in greater detail next.
2.5.1 xACCESS Filesystem

The xACCESS filesystem provides a regular filesystem-like access over remotely stored SSP
data to the clients. It is this component that is responsible for navigating through the

cryptographic CAPs based design and encryption/decryption of metadata and data blocks.
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To the user, it will appear as a regular filesystem. Figure-15 shows the architecture of our

prototype filesystem.

xACCESS fs <:£::>
Client process
file requests

TCP/IP

7Y

[ libfuse Storage Service Provider

userspace

kernel

\[ FUSE

ext2

VFS

nfs

Figure 15: Architecture of xACCESS Filesystem

We developed the xACCESS filesystem in userspace using the FUSE [173] library for
Linux. FUSE consists of a kernel module that acts as a filesystem to the Linux Vir-
tual Filesystem Layer (VFS). On receiving filesystem requests, this kernel module passed
those requests to a userspace library (libfuse), on which the xACCESS filesystem is based.
Even though compared to kernel filesystems, there are additional kernel-userspace context
switches, these costs are not significant especially since most of our data access goes over
a wide area network. Also, we use TCP/IP sockets for the filesystem communication with
the SSP.

To mount this filesystem, the client would access the superblock for the user mounting
that filesystem and decrypt it using the user’s private key (stored at a standard directory
location). On decryption, the filesystem obtains the inode number, MEK and MVK for the
namespace root. Next, it obtains the metadata for that namespace root element which is
the same as the traditional getattr filesystem command. We describe the implementation

of various such filesystem commands below.
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2.5.1.1 Filesystem Operations Implementation

All POSIX compliant filesystems implement a number of filesystem operations like getattr,
mkdir, read, close. For the xACCESS filesystem, these function implementations are
required to handle communication with the SSP over the network and perform all encryption
and decryption operations for both metadata and data blocks. Figure-16 shows how some
of these functions are implemented within the xACCESS filesystem. The last column also

shows different components of cost involved in implementing the function.

COSTS
(0] PROCESSING
Crypto Network
getattr obtain metadata and decrypt I;jn;éj— merg:;\jlata
mkdir create new file/dir; encrypt it; 1'm‘i' meta?jata
) ) ) . enc 1- send;
mk:od modify parent directory; encrypt it; parent- parent-dir
[*] send both to server dir-enc send
chmod | modify metadata, encrypt it and send to 1-md- metadata send
[*] server enc
read obtain data and decrypt dlc_e(i?yt/g; data recv
write write into local cache
close encrypt file; send to server 1-data- data send
encrypt

[*] per required CAP

Figure 16: xACCESS Filesystem Operations

First, the getattr function is executed in response to a stat request [107]. This function
is required to return various attributes like owner, group and permissions for the filesystem
object being stat’ed. In xACCESS, it implies obtaining the encrypted metadata object
from the SSP and decrypting it to obtain the attributes. Thus, it has the costs of one
network receive of encrypted metadata and one symmetric decryption.

The mkdir function is executed when creating a new directory. In xACCESS, this implies
creating a new metadata object, encrypting it with a unique symmetric key, modifying
the parent directory’s directory-table to include the new directory and re-encrypting the

modified table. Finally the encrypted metadata and parent directory’s directory-table are
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sent to the SSP. It is important to note that multiple metadata objects and parent directory-
table modifications are required (one for each supported CAP, if using Scheme-2 described
in Section-2.4.5). Intuitively, these added costs are due to the fact that we are not only
creating new data, but also embedding access control into it. The mknod function is similar
in design, except that a new file is created and not a directory.

The chmod function is used to change permissions for a file or directory. For the xAC-
CESS filesystem, this could simply require creating a new CAP and modifying metadata
keys to point to the new CAP (for example, changing the permissions for user from zero to
read). However, in scenarios when permissions are revoked, it could require re-encryption
of files. For example, changing the permissions of a user from read to zero; since the user
could have cached the encryption key and later try to access file data using that key, it is
required that the file is re-encrypted using a new key. In related research on this topic, sys-
tems support one of the two revocation schemes — (a) immediate revocation [67], in which
case a new key is created and file re-encrypted immediately during the chmod operation,
or (b) lazy revocation [94], in which the file is re-encrypted only when its content is up-
dated. The motivation for the latter is that the user whose permissions have been revoked,
could have cached the file when he/she had access to it, thus it is only important to change
the keys if and when the file is updated. While the xACCESS design can support both
techniques, our prototype currently uses immediate revocation.

For data I/O functions, a file read obtains the encrypted data block for the file and
decrypts it. In our current implementation, we cache all writes locally and only encrypt
the file before sending it to the SSP as the result of a file close.

This completes the xACCESS filesystem implementation design. Next, we take a closer

look at its data sharing mechanisms from a privacy angle.
2.6 Priwvacy Analysis for Data Sharing

The xACCESS filesystem provides a UNIX-like access control model over SSP-stored data
and using this model, users can share their data with other users of the system. In fact,

one of the important advantages of the storage-as-a-service model is that it encourages this

40



sharing of data between geographically distributed users as it eliminates the need of setting
up file servers. In this section, we take a critical look at our access control model and
analyze the privacy support in its data sharing mechanisms. For example, how does the
system assist a user to share data only with desired users and prevent private information
from being leaked to unauthorized users?

In order to successfully do this, we also take a look at the convenience of using data
sharing mechanisms in typical situations. This is due to the fact that lack of convenience
leads to users compromising (intentionally or mistakenly) their security requirements to
conveniently fit the specifications of the underlying access control model. Please note that
we use the seemingly oxymoronic phrase “private sharing” to indicate the desire of sharing
data only with a select set of authorized users.

As part of our analysis, we looked at how users use the access control mechanisms for
their data sharing needs in practice. We conducted experiments at two *nix installations
(SunOS and HP-UX that follow UNIX access control model like x ACCESS) of a few hundred
computer-literate users each. Surprisingly, we found that large chunks of private data was
accessible to unauthorized users. At one organization of 836 users, over 84 GB of data
was accessible, including more than 300,000 emails and 579 passwords to websites like
bankofamerica.com and medical insurance record websites. The reason for this surprisingly
large privacy breach without exploiting technical vulnerabilities like buffer overflows or
gaining elevated privileges, is the combination of lack of system support and user or even
applications’ privacy-indifferent behavior either mistakenly or for lack of anything better.
Later in Section-2.7, we describe enhancements to the access control model that provide
more secure and convenient data sharing.

The attack used in this work is a form of an insider attack, in which the attacker
is inside the organization. The attacker could be a disgruntled employee, contractor or
simply a curious employee trying to access the salaries chart in the boss’s home directory.
According to a study by the US Secret Service and CERT [31], such attacks are on a rise

with 29% of the surveyed companies reporting® having experienced an insider attack in a

°It is believed that such attacks are usually much under-reported for lack of concrete evidence or fear of
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single year [29]. Also, in complete congruence to our attack, the report finds that:

“Most incidents were not technically sophisticated or complex - that is

they typically involve exploitation of non-technical vulnerabilities”

Next, we discuss various issues that lead to privacy breaches and present the results of
our case studies. This analysis will provide us insights into desirable privacy and convenience

characteristics.
2.6.1 Privacy Breaches

In this section, we discuss various privacy breaches that occur in *nix systems. The dis-
cussion below primarily explores the popular {owner, group, others} *nix paradigm [148].
The advanced mechanisms like POSIX ACLs [72] enhance privacy in only a few cases and

we will demonstrate a clear need of a new, more complete solution.
2.6.1.1 Selective Data Sharing

The first kind of privacy breach occurs due to the need to “selectively” share data. The

selectivity can be of two kinds:

e Data Selectivity: Data selectivity is when a user wants to share only a few (say
one) of the subdirectories in the home directory. So, an authorized user is allowed
to access only the shared subdirectory, but not any of the sibling directories. In
order to do this correctly, the owner needs to follow two steps - (a) set appropriate
permissions to the shared subdirectory (at least execute permissions on the entire path
to the subdirectory and the sharing permissions on the subdirectory), and (b) remove
permissions from the sibling subdirectories. The second step is unintuitive, since the
user needs to act on secondary objects that are not the focus of the transaction. Also,

any new file being created needs to be protected.

e User Selectivity: In many situations, users need to share data with an adhoc set of

users that do not belong to a single user group or are only a subset of a user group,

negative publicity [177]
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and are not the entire others set. In this situation, the permissions for group or others
are not sufficient. Also, creating a new user group requires administrative assistance

which is not feasible in all cases.

In order to do selective data sharing, currently owners mostly use execute-only permis-
sions on the home directories. The perception is that since users can not list the contents
of the directory, they cannot go any further than traversing into the home directory unless
they know the exact name of the subdirectory. Now, the owner can authorize desired users
by giving them the names of the appropriate subdirectories. Those authorized users can
traverse into the home directory and then use the subdirectory name to “cd” into it (with-
out having to list the contents of the home directory). From data selectivity perspective,
it is assumed that they cannot access the rest of the contents and from user selectivity
perspective, unauthorized users cannot access any contents.

However, the underlying system cannot distinguish between such authorized or unau-
thorized users. Any user who can guess the subdirectory name can actually access the
data. For an attacker inside the organization, even without a dictionary attack, this is not
a herculean task. For example, for a computer science graduate school, it is highly likely
that users will have directories named research, classes or thesis. An easy way of creating
such a list of names is by collecting names from users that actually have read permissions
on the home directories. Within the context of a single organization, or in general human
psychology, it is likely that many users have similar directory names. This is essentially a
form of social engineering [120] in which users and not systems are manipulated to reveal
confidential information®. Of course, one simple solution is to use cryptic directory names
unlikely to be guessed (security-by-obfuscation). This is inconvenient as it impacts the
owner’s semantics of file names.

Secondly, many times directory names do not need to be guessed at all. The names can
be extracted from history files (like .history or .bash_history), that contain the commands

last executed by the owner, like cd, which will include real directory names. In fact, in

5A well-know hacker, Kevin Mitnick said “... social engineering was extremely effective in reaching my
goals without resorting to using a technical exploit ...” [167]
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our experiments we found around 20-30% of all users had readable history files and around
40% of the total leaked data was obtained from the directory names extracted from these
history files.

Thirdly, it is not always user created directories that leak information. Many applica-
tions use standard directory names and fail to protect critical information. For example,
the Mozilla web browser [122] stores the profile directory in ~/.mozilla and had that
directory world-readable [123] in many cases, till as late as 2003. Many *nix installations
with the browser installed before that have this vulnerability and we were able to obtain
579 password to financial and private websites (because users saved passwords without en-
crypting them). In addition, their browser caches, bookmarks, cookies and histories were
also available. The browser Opera [137] also has a similar vulnerability, though to a lesser
extent. While it can be argued that it is the responsibility of application developers to
ensure that this does not happen, we believe that the underlying system can assist users
and applications in a more proactive manner.

The POSIX ACLs [72], if used help in achieving only user selectivity. They do not

address the data selectivity requirements or prevent leaking of application data.
2.6.1.2 Metadata Privacy

So far, we have only talked about the privacy breach for file data. However, there are many
situations in which users are interested in protecting even the metadata of the files. The
metadata contains information like ownership, access time, update time, creation time and
file sizes. There are scenarios where a user might obtain confidential information by just
looking at the metadata. For example, an employee might be interested in knowing how big
is his annual review letter or did the boss update it after the argument he had with her?
The *nix access control does not provide good metadata privacy. Even if users only have
execute permissions on a directory, as long as they can guess the name of the contained file,
its metadata can be accessed even if the file itself does not have any read, write or execute
permissions on it. Thus, if a user has to share even a single file/directory within the home

directory (thus, requiring atleast execute permissions), all other files contained in the home
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directory have lost their metadata privacy.

Of course, a solution is to put such files in a separate directory and protect them.
However, in many cases these files might be accessed by standardized applications making
it infeasible to move (for example, how to protect metadata privacy of shell initialization
files (.profile), or history files, which are always created in the home directory). Also, from
our experience, many users like to keep their active files in the home directory itself.

Again, lack of convenient support from the system leads to privacy breaches, in this case

leaking file metadata.
2.6.1.8 Data Sharing Convenience

User convenience is an important feature of an access control implementation. If users
find it tough to implement their security requirements, they are likely to compromise the
security requirements to easily fit the underlying access control model. From our analysis
of the *nix access control, along with some of the issues discussed earlier, we found the

following two data sharing scenarios in which there is no convenient support for privacy.

e Sharing a Deep-Rooted Directory: For a user to share a directory that is multiple
levels in depth from the home directory, there needs to be at least execute permis-
sions on all directories in the path. This in itself (a) leaks the path information, (b)
puts sibling directories at risk and (c) leaks metadata information for sibling directo-
ries. In order to prevent this, since most operating systems do not allow hard links
to directories anymore, a user would have to create a new copy of the data, which
raises consistency issues. Also, since users are more careless with permissions for deep
rooted directories (they protect a higher level directory and that automatically pro-
tects children directories), a copy of such a directory could have privacy-compromising

permissions.

e Representation of Shared Data: In many circumstances the way one user repre-
sents data might not be the most suitable way for another user. For example, while
an employee might keep his resume in a directory named “job-search”, it is clearly not

the most apt name to share with his boss. The employee might want her to see the
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directory simply as “C'V”. Changing the name to meet the needs of other users is not
an ideal solution. This again shows the lack of adequate system support for private

and convenient data sharing.

It is important to recognize that even an extremely privacy-conscious user can not
protect data at all times. Exhaustive user efforts to maintain appropriate permissions on
all user and application created data will still be insufficient to protect metadata privacy
or allow private sharing of deep rooted directories with user-specific representation.

In the next subsection we present actual results from two *nix installations to see if the

*nix shortcomings actually lead to privacy breaches in real situations.
2.6.2 Case Studies

As part of our study, we conducted experiments at two geographically and organizationally
distinct *nix installations. Users at both installations (CS graduate schools) are highly

computer literate and can be expected to be familiar with all available access control tools.

For our analysis, we consider the following data to be private:
e All user emails are considered private.
e All data under an execute-only home directory is considered private.

e Browser profile data (including saved passwords, caches, browsing history, cookies) is

considered private.

The second assumption above merits further justification. It can be argued that not ev-
ery subdirectory under an execute-only home directory is meant to be private (for example,
a directory named public). However, we believe our definition to be a practical one. The
semantics of the execute-only permission set dictate that any user other than the owner
cannot list the contents of the directory and since the owner never broadcasts the names of
the shared directories, an unauthorized user should not be able to access that data. And
since we do not include in our measurements any obviously-private data from home directo-

ries of users with read permissions (for example, world-readable directories named personal,
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or private), we believe the two effects to approximately cancel out.
2.6.2.1 Attack Methodology

Next, we describe the design of our attack” that scans user directories and measures the
amount of private data accessible to unauthorized users. This discussion is also important
since the design is eventually used to develop an auditing tool discussed later.

The attack works in multiple phases. The first step is to obtain directory name lists
which can be tried against users with execute-only home directories. Three strategies are

used to obtain these lists:

e Static Lists: These are manually entered names of directories likely to be found in
the context of the organizations - CS graduate schools. For example, “research”,

“classes”, “papers”, “private” and their variants in case (“Research”) or abbreviations
( “p,Ut” ) i

e Global Lists: These lists are generated by obtaining the directory names from home

directories of users that have read permissions.

e History Lists: These are user specific lists generated by parsing users’ history files,
if readable. We used a simple mechanism, parsing only cd commands with directory
names. It is possible to do more by parsing text editor commands (like vim) or

copy/move commands.

In the next step the tool starts a multi-threaded scanning operation that attempts to
scan each user directory. For users with no permissions, no scanning is possible. For
users with read-and-exec permissions, as discussed earlier, since there is no precise way of
guessing which data would be private, we only measure email and browser profile statistics.
Finally, for users with execute-only permissions, along with email and browser profile
statistics, we also attempt to extract as much data as possible using the directory name

lists prepared in the first step.

"We took precautions to ensure that our study does not violate user privacy by collecting only aggregate
statistics and randomizing order of scans.
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Evaluating Email Statistics

This is done by attempting to read data from standard mailbox names - “mail”, “Mail”,
“mboz” in the home directory and the mail inboxes in /var/mail/userName. A grep [107]
like tool is used to measure (a) number of readable emails, (b) number of times the word

“password’ or its variants appeared in the emails.

Evaluating Execute-only Data Statistics

For users with execute-only permissions on the home directory, the scanner uses the combi-
nation of static, global and the user’s history lists to access possible subdirectories. Double
counting is avoided by ensuring that a name appearing in more than one list is accounted
for only once and by not traversing any symbolic links. While scanning the files, counts

are obtained for the total number of files and the total size of the data that could be accessed.

Evaluating Browser Statistics

The mozilla browser [122] stores user profiles in the ~/.mozilla directory. This directory
used to be world-readable till as late as 2003 when the bug was corrected [123]. Within
that profile directory, there are subdirectories for each profile that has been used by that
user. The default profile is usually named “default” or “Default User”. So even in case
the .mozilla directory had execute-only permissions, it is possible to access default profile
directories (unless a user specifically removed permissions). Within the profile directory,
there is another directory with a randomized name ending in “.sl#’8. Since the parent
directories had read permissions, the randomization provides no security and the name is

visible. Within this directory, the following files exist and (with this bug) were readable:

¢ Password Database: A file with the name of type “12345678.s”. This contains user
logins and passwords saved by mozilla when the user chooses to save them. Ideally,
users should use a cryptographic master key to encrypt these passwords, but as our

results will show many users do not encrypt their passwords. For such cases, mozilla

8Please see [124] for complete profile directory contents and their location.
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stores the passwords in a base-64 encoding (indicated by the line starting with a ~ in

the passwords file), which can be trivially decoded to get plaintext passwords.

e Cookies: The cookies.txt file contains all browser cookies. Many websites including
popular email services like Gmail [71], Hotmail [118] allow users to automatically login
by keeping their usernames and passwords (encrypted) in the cookies file. Hijacking
these cookies can allow a malicious user to login into these accounts. For many other

cookies related attacks, see [166].
e Cache: This is a subdirectory that contains the cached web pages visited by the user.

¢ History Database: Web surfing history, which many sophisticated viruses and spy-

ware invest resources to collect, are also readable.

e Forms Database: Mozilla allows users to save their form data, stored in a file of
type “23456789.w”, that can be automatically filled. This could include credit card
numbers, social security numbers and other potentially sensitive information. Here

again, users should use a master key to encrypt this information.
2.6.2.2 Results

The complete characteristics of the two organizations are shown in Table-3, where # ReadX
is the number of users with read and execute permissions to their home directories, #
NoPerms are users with no permissions and # X-only are the users with only execute
permissions. Both organizations are computer science graduate schools at two different
geographical locations within the United States. At both the organizations, a significant

number of users (68% and 77%) used execute-only permissions on their home directories.

Table 3: Case Study Organization Characteristics
Org. | # Users | # ReadX | # NoPerms | # X-only
Org-1 836 198 54 573 (68%)
Org-2 768 136 39 593 (77%)
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Table-4 lists the amount of data extracted from execute-only home directories at Organization-
1 and 2, where # Hit Users is the number of users that leaked private information, # Hits is
the total number of directory name hits against all X-only users and # Files is the number

of leaked files and Data-Size is the total size of those files

Table 4: Data extracted from X-only home directory permissions
Org. | # Hit Users | # Hits | # Files | Data Size
Org-1 462 2409 | 983086 82 GB
Org-2 380 911 364932 25 GB

As can be seen, a large fraction of users indeed leaked private information - 55% and
49% of total users respectively. Recall that we do not extract any data from users with read
permissions on their home directories; so a more useful number is the fraction of X-only
users that revealed private information. That number is 80% and 64% respectively. Also,
on an average, 2127 files and 177 MB of data is leaked in the first organization for each
X-only user and 960 files and 65 MB of data is leaked in the second organization. A partial
reason for the lower numbers in the second organization could be the fewer number of users
with read permissions, which would have impacted the global name lists creation. Overall,
we believe this to be a very significant privacy breach.

As mentioned earlier, many times the names of the subdirectories do not need to be
guessed and can be obtained from the history files in the user home directories. Table-5
lists the success rate of the attack in exploiting history files, where # History Hits is the
number of users with readable history files, # Files is the number of private files leaked due
to directory names obtained from history files and Data-Size is the size of the leaked data.
As it shows, around 40% of X-only users had readable history files which led to 40-50% of

total leaked data in size.

Table 5: Exploiting History Files
Org. | # History Hits | # Files | Data Size
Org-1 253 561254 35 GB
Org-2 237 155826 14 GB
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Email Statistics

Table-6 presents the results of the email data extracted from users in both organizations,
where # Folders is the number of leaked email folders, # FEmails is the total number of
leaked emails. Size is the size of leaked data and # Password is the number of times the
word “password’ or its variants appeared in the emails. Recall that this data is obtained

for both X-only users and the users with read permissions on their home directories.

Table 6: Leaked email Statistics
Org. | # Folders | # Emails Size # Password

Org-1 2509 315919 4.2 GB 6352
Org-2 505 38206 120 MB 237

As can be seen, a large number of emails are accessible to unauthorized users (especially at
Organization-1). Also, the number of times the word “password” or its variants appear in
these emails is alarming. Even though we understand that some of these occurrences might
not be accompanied by actual passwords, by personal experience, distributing passwords

via emails is by no means an uncommon event.

Browser Statistics
The second organization did not have the mozilla vulnerability since they had a more
recent version of the browser installed, by which time the bug had been corrected. So the
results shown in Table-7 have been obtained only from the first organization. Looking at the
results, the amount of accessible private information is enormous. Table-8 contains a sample
of the websites that had their passwords extractable and clearly most of these websites are
extremely sensitive and a privacy breach of this sort is completely unacceptable.

Also as seen from Table-8, some obtained passwords were for accounts in other insti-
tutions and a few of them are likely to be *nix systems. Thus, it is conceivable that this
password extraction can be used to expand to other *nix installations and thus be

much more severe in scope than a single installation.
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Table 7: Leaked browser Statistics at Organization-1

# Users with accessible .mozilla 311
# Users with readable password DB 149
# Passwords Retrievable 579
# Users with readable cookies DB 207
# Cookies Retrievable 19456
# Users with accessible caches 233
# Cached Entries 20907
# Users with readable browsing histories 256
# URLs in History 130,503

Table 8: Sample accounts with retrievable passwords

Financial Websites Personal Websites
www.paypal.com adultfriendfinder.com
www.ameritrade.com www.hthstudents.com

www.bankofamerica.com www.icers91l.org

Email Accounts Other Institutions

mail.lycos.com cvpr.cs.toronto.edu
my.screenname.aol.com | e8.cvl.iis.u-tokyo.ac.jp
webmail.bellsouth.net | systems.cs.colorado.edu

Miscellaneous Statistics

Among few other applications at Organization-1, 17 users had their Opera [137] browser’s
cookies file readable and 497 users had their email address books, used by the Pine email
client [142] and stored in ~/.addressbook readable. 18,308 email addresses could be ob-

tained from these address books which can be potentially used for highly targeted spam!
2.6.3 Attack Severity

It is important to highlight the severity of this attack:

e Low Technical Sophistication: The attack is extremely low-tech; the commands
used in a manual attack would be cd, 1s and such. This aspect makes the threat

significantly more dangerous than most other vulnerabilities.

e Low Detection Possibility: A version of the attack that targets only a few users a
day and thus keeps overall disk activity normal has a very low probability of detection.
Typical *nix installations do not keep extensive user activity logs and it is highly likely

that such an attack will go unnoticed. Even if an individual user notices an unusual
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last-access time on one of the files, without extensive logging, it is impossible to pin

point the perpetrator.

e No Quick Fix: Unlike other security vulnerabilities like buffer overflows, this at-
tack uses a design shortcoming combined with user/application carelessness and no

patches would correct this problem overnight.

e High Success Rate: It is important to notice that the attack had a high success rate
at installations where most users are computer literate. With increasing mainstream
penetration of *nix systems, most users in the future would be ordinary users who
cannot be expected to fully understand the vulnerabilities. This makes this attack a

very potent threat.
2.7 Privacy Enhancements

In this section, we present two solutions that can be used independently or together to
facilitate stronger privacy protection in xACCESS and other *nix systems. The first solution
is a Privacy Auditing Tool that monitors the privacy health of an organization and can
alert users/administrators of potential threats. The second solution is a new access control
model, View-Based Access Control, that modifies the data sharing mechanisms for stronger

protection. Using the two solutions together provides an excellent data sharing environment.
2.7.1 Privacy Auditing Tool

The aim of the privacy auditing tool is to periodically monitor user home directories and
identify potential private data exposures. A similar approach is used by most enterprise
security applications like [172] that audit user systems and enforce compliance to security
policies, for example, requiring laptop owners to keep a boot-up password, or system ad-
ministrators to enforce stricter password rules and so on. In a similar vein, the privacy
auditing tool will scan user home directories and alert administrator or the users directly if
their private data can be accessed by unauthorized users.

The design of such a tool is very similar to the design of the attack described in Section-

2.6.2.1. A number of test accounts are created on the monitored system with different
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group memberships, since it is possible that some user group might have access to more
private data than others. The tool is then run from these test accounts to identify exposed
private data. The auditing tool can be used either to obtain only higher level statistics, as
described in the attack or more user-specific information which can alert users directly of
their private directories that can be accessed by unauthorized users. A variant would be
allowing users to themselves invoke an audit of their home directory. Yet another variant
would be to allow the tool to automatically correct some of the obvious mis-configurations
like emails.

Even though this solution does not solve the underlying access control problem, it has

the following advantages:

e The privacy auditing tool does not require operating system or file system changes and
so can be easily incorporated into enterprise infrastructures. The auditing solution is

the quickest way of mitigating this vulnerability.

e Since existing security auditing tools operate in a similar mode, this tool can be easily

added on as a privacy protection module to such tools.

e Even with a better access control model, the unavoidable and error-prone human
involvement in protecting private data makes such a tool an important component of

a secure enterprise.

Next, we discuss a more proactive solution to address the shortcomings.
2.7.2 View-Based Access Control (VBAC)

Our second solution is the design of a new access control mechanism called View-Based
Access Control (VBAC). Similar to the *nix access control, VBAC is also a discretionary
access control model, thus keeping security within the control of the data owner. VBAC is

based on following design goals:

e Act only on primary objects: Private sharing in *nix in its current form requires a two

step approach of (a) sharing desired data, and (b) protecting other unrelated data.
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The second step, adequately protecting sibling directories or newly created directories,

is unintuitive and should be removed.

e Keep application data only in the owner’s view: A severe privacy breach occurred due
to improper handling of application profile data. Such data should be viewed only by

the owner and unless specifically allowed, should not be visible to other users.

o Allow hiding of sibling directories from other users: The POSIX ACLs increase gran-
ularity of protection for users, allowing data to be shared with individual users. Com-
bining this with an approach that can completely hide sibling data from other users,

thus protecting file metadata.

e Allow extracting deep rooted directories: In order to share deep rooted directories, it
should be possible to simply pluck them from the file system tree and put them in the
view of desired users. Also, it should be possible to share a different representation

of the data without impacting the owners’ view of the file system.

Based on these design goals, the VBAC access control model creates a new file system
primitive called a “view”. Informally speaking, a data owner can define a view of her home
directory, dictating what another user gets to see when he attempts to access it. By adding
only the data she wants to share into this view, other data remains protected. Also, it
is possible to add a deep rooted directory directly to this view and it can be represented
differently. Using such a mechanism, unless the owner explicitly adds her application data
into a shared view, it will be always hidden from other users. More details follow in the

next section.
2.8 VBAC: Design and Implementation

VBAC extends the *nix access control model by adding a view primitive, that presents a
different file system structure to different users. For every user, there is one owner-view of

the home directory®, which is the same as the standard home directory in current systems.

9Not just home directories, any directory can be protected using VBAC, though its most relevant use for
a multiuser enterprise setting appears to protect private data in home directories.
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In addition, the owner can define new views of the home directory for other individual
users, user groups or the others set. For example, a user bob can create a view of his home
directory for a user alice and another view for his user group faculty and yet another view
for all other users. He can then add desired data to appropriate views depending on what
he wants to share. The added data could be a deep rooted directory and can be shared
using a different name. Other users can access their view of bob’s home directory using the
same ~bob or /home/bob. The underlying system automatically routes them to their
appropriate view and users continue to see the view directory as ~bob

The VBAC model uses the same permission types as baseline *nix - read, write and
ezecute and they have the same semantics. VBAC only adds another layer of access control
by making a higher level decision of what a user gets to see or not. After that decision,
whatever a particular user has in his/her view, it is access controlled using the baseline *nix
permissions. We believe that this feature makes VBAC an elegant extension of the *nix
model.

Also, a user can decide to switch off the additional VBAC layer providing other users
with the same view as the owner-view (of course, access to data is controlled by the lower
layer of *nix access control). This implies that VBAC can be incrementally introduced into
a system without forcing all users to migrate to it immediately.

To avoid managing views at the granularity of individual users, we provide a technique
for doing selective sharing of data by using the group views. Recall that we mentioned that
in order to do selective sharing under an execute-only directory, a simple solution was to use
tough-to-guess directory names. However, it was deemed infeasible since the owner would
have to keep tens or hundreds of cryptic names. With the separation of views, an owner can
now share a particular directory with a tough-to-guess name in the view, while keeping the
original name in the home directory (owner-view). To achieve this, the other users’ view
is set to execute-only permissions and while adding a directory to the view, the owner also
gives a passphrase which is used to encrypt the name of the directory being added. The
encrypted cipher text is appended to the directory name and the resulting string is used

as the target name in the view. Now, the owner authorizes a user to access this directory
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by giving that user the original directory name and the passphrase. Notice the similarity
with the authorization mechanism in original execute-only *nix - only one extra piece of
information, the passphrase, is delivered using the same out-of-band channels like email. By
using cryptographically tough-to-guess names, we are able to bring this user authorization
definition much closer to the underlying system’s definition, a shortcoming in the original

*nix model.
2.8.1 In-kernel Implementation

In this section, we first describe our in-kernel filesystem implementation of the VBAC access
control model. This in-kernel implementation can be used for general *nix systems and the
centralized enterprise proxy storage-as-a-service model. Later in Section-2.8.2, we describe
how xACCESS supports similar view based design for decentralized storage-as-a-service
model.

Our in-kernel file system is called viewfs and is based on the Linux ext2 filesystem [30].
Most of ext2 functions like disk placement of data blocks are reused. viewfs is developed as
a loadable kernel module and can be loaded into the kernel without kernel recompilation.
viewfs was implemented on a Linux 2.6 kernel. Next, we explain the implementation of

important VBAC features.
2.8.1.1 VIEW

The foremost VBAC concept is that of a view. From an implementation perspective, a
view is a regular directory within the directory containing the owner’s home directory
(like /home). In other words it is a sibling directory to the owner home directory. How-
ever, the view directory has a special name of the form: “.owner.uview.username”’ or
“.owner.gview.groupname” or “.owner.oview”. This name is restricted, that is, users cannot
use this name for naming other directories. This restriction helps to identify a directory
being a view of another directory and is used to do automatic routing of users to their
views. The restriction is enforced in the file system mkdir function implementation. The

4

first type of name “.owner.uview.username” is used to create a view for an individual user.

For example, if bob creates a view for alice, the view will be called “.bob.uview.alice”. The
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second type is for a user group and the third is for other users. Access is controlled to these
views, for example, to prevent user cathy from accessing a view for alice, by ACLs set at
view creation. The period (’.”) before the view names keeps them hidden from plain view.

Next, we concretely describe the automatic routing to views. A directory lookup ocurrs
in the following manner. Given a name to look up, the directory entry (or dentry) cache (or
dcache) is looked up for the desired directory name. The dcache indexes cached dentries by
hashes of their names. If there is a cache miss, the call passes onto the underlying filesystem
for looking up that name. That is followed by the inode number lookup to find the inode
number corresponding to the name and if it exists, the inode lookup that gets the object
metadata.

We modify this filesystem lookup procedure by first checking if there exists an appro-
priate view directory. For example, if alice is looking for a directory bob, we check for the
existence of a directory called “.bob.uview.alice”. At this stage, we have the complete state
necessary for completing this lookup (since view is the sibling to the home directory). If
the view exists then the dentry associated with the view directory is returned and is cached
in the dentry cache on return. In order to work with different user views in the cache, we
modify the hash of the dentry by hashing the view name as opposed to the original directory
name. This is feasible since the VFS hash function can be overridden by the underlying
filesystem.

An important point to note is that this implementation does not interfere with the
I/O paths at all, that is when file data blocks are being read or written. One potential
performance impact of the implementation is that a single directory name lookup can cause
multiple view name lookups. However, as our initial experiments with benchmarks show,
the total overheads are still minimal. Secondly, we foresee *nix installation using viewfs
only for user home directories. Therefore the vast majority of system lookups that are to
standard OS and other infrastructure files contained in /usr, /etc, /bin are not affected
at all.

As mentioned before, an individual owner can choose to switch off the VBAC model
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for users accessing her home directory. This is accomplished by keeping an extended at-
tribute [108] with the user home directory. The lookup described above first checks for this
extended attribute and in case the user chooses to switch off VBAC, the normal ext2 file

system lookup is performed providing the basic *nix model.
2.8.1.2 SHARING DATA

The next important viewfs implementation is its mechanisms for adding data to views. It
allows adding deep rooted directories directly to user views and possibly with a different
name. Also, changes made to the directory in one view should be immediately reflected in
all other views. The first idea that comes to mind to facilitate this is directory hard links.
A directory hard link is the same inode as the original directory but can have a different
name and can be created at any location within the filesystem without worrying about the
access along the path to the original directory (unlike a symbolic link). In fact there is no
way to distinguish a hard link from the original directory.

However, directory hard links are not allowed by most operating systems including
Linux even though it is not mandated by the POSIX standard. The reason is that many
OS mechanisms like reference counting and locking consider the file system to be an acyclical
tree and hard links can cause cycles. For example, for a/b/c, commands “link e a/b” and
“link e/c @’ cause a cycle. This will also break many existing applications that traverse
the file system assuming it to be a tree. Symbolic links can also cause a cycle but they are
easily identifiable since the link is a different inode that stores the complete path to the
original pointed-to location. Hard links, as mentioned before, are unidentifiable and cycle
detection for hard links can be expensive.

In the context of viewfs however, we can very easily prevent any cycle formation. We
can do this by only allowing users to create a link from inside the view pointing outside
and never in the other direction. This can be checked while adding data to a view (creating
the hard link) and since views have restricted name, such a check would not be expensive.
Even though we had a working implementation of this approach, there is an additional issue

specific to the linux operating system and its implementation of the VFS dentry cache. This
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view implementation can break in certain situations, for example, when a directory and its
hard link are both cached and one is deleted [147]. It is unclear if the same holds for other
variants like FreeBSD. However, we preferred linux and opted to take an alternate path.
Similar objectives can be achieved in linux using a bind mount [107]. A bind-mount
mounts one portion of the filesystem tree at another location. Since it is a separate file
system mount, the linux implementation issue discussed earlier does not apply [147]. This
allows both sharing the deep rooted directory and sharing it with a different name. For
viewfs, an additional requirement is to first create the mount point which will be the desired

directory name in the view and is done while adding data to the view.
2.8.2 Integration with xACCESS

The viewfs design is easy to support in xACCESS based storage-as-a-service models. xAC-
CESS, using its metadata and directory-table structures can support manipulation of file
objects linked at different directory locations, similar to the bind mount and hardlinks as

described above.
2.8.2.1 Views in tACCESS

From an implementation perspective, a view is just like any other directory. The in-kernel
viewfs implementation only modified the lookup procedure so that users obtain access to
the appropriate view. A similar technique already exists in the design of xACCESS because
of the Cryptographic Access Control Primitives (CAPs) based design. In xACCESS, each
user has a different view of any filesystem object based on the CAP associated with that
user’s access privileges. Thus, extending xACCESS to support views does not require design
modifications. Now, when a user tries to access a particular directory (for example, ~bob),
the x ACCESS filesystem would access the view directory associated with that user. In fact,
only the appropriate view’s metadata encryption keys would be accessible to that user, thus
providing complete security.

The only modification pertains to the location of the view directory. In the in-kernel
viewfs design, the view directory is contained as a sibling directory (for example, view

directory for /home/bob is contained within /home). Users use a setuid command to create

60



views, as it requires modifying the parent directory’s directory table to which the user might
not have write permissions (for example, /home). Since setuid’s cannot be supported in the
storage-as-a-service model, we use a different location for view directories. In the modified
scheme, all views are contained within a single sibling .uname.views directory which is owned
by the user uname. Thus, creating views requires modifying this directory’s directory-table
which is owned by the user creating the view and hence, in possession of the data signing
key (DSK) that allows writes. The lookup process is also slightly modified to look for a

particular user’s view in this directory.
2.8.2.2 Sharing Data with Views in xtACCESS

The viewfs filesystem defines new commands that allow users to create views, add data to
views and so on. These commands can also be individually implemented for xACCESS.
For example, to add a directory to a group view using the passphrase mechanism described
above, we store the directory’s metadata key encrypted with a keyed hash function [103]
derived from the passphrase. This ensures that an authorized user who knows the passphrase
can derive the key that decrypts the view directory’s metadata key, thus obtaining access

to its contents, if authorized.
2.9 Experimental Evaluation

In this section, we perform a detailed evaluation of xACCESS and the viewfs filesystems
based on a number of filesystem benchmarks. First, we evaluate the xACCESS filesystem
comparing it other related proposals for access control in decentralized storage services
model in Section-2.9.1. Next, we evaluate the privacy enhanced filesystem based on view-

based access control in Section-2.9.2.
2.9.1 xACCESS Evaluation

The core strengths of xACCESS design lie in its ability to provide an expressive UNIX-
like access control model, using symmetric key cryptography for metadata operations and
complete in-band management of keys. Through our experiments we want to evaluate the

following two aspects:
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o Efficiency of secure decentralized storage-as-a-service model: First, we want to eval-
uate how our choice of design features and aggressive security assumptions (of not
trusting the SSP) impact the efficiency of the overall storage service model. Our de-

sign requires encryption and decryption for every metadata and data access and the

CAP based design could also add overheads.

e Impact of choice of cryptography: Other proposals for access control in this area use
public key cryptography for metadata operations [67, 2, 119]. We want to evaluate if
using symmetric key cryptography in xACCESS provides significant benefits, else the

public key approaches, which are easier to implement and understand, could be used.

In lieu of these two goals, we compared the xACCESS implementation with the following

four implementations:

1. NO-ENC-MD-D: This implementation does not encrypt any metadata or data, and
thus represents the baseline performance for the networking and other implementation
overheads for a wide area file system. It is equivalent to a storage-as-a-service model
in which the SSP is fully trusted for data confidentiality as well as access control

enforcement.

2. NO-ENC-MD: This implementation does not encrypt metadata but encrypts data
with symmetric key cryptography. This is equivalent to a system where the SSP is
not trusted for data confidentiality but is trusted for metadata and access control

enforcement.

3. PUBLIC: This implementation encrypts data using symmetric key cryptography and
metadata objects with public key cryptography. This is representative of most other

access control proposals for storage-as-a-service [67, 2, 119].

4. PUB-OPT: This is an optimized PUBLIC implementation which instead of encrypt-
ing the complete metadata object with public key cryptography, encrypts metadata
objects with a symmetric key and then encrypts that (shorter) symmetric key with

public key cryptography. As we discuss later, this optimization provides much better
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performance than the original PUBLIC implementation. The data continues to be

encrypted using symmetric key cryptography.

Next, we describe our experimental setup.
2.9.1.1 Setup

For most of our xACCESS evaluation, we set up the SSP in College of Computing, Georgia
Tech, Atlanta, GA, USA. The server is a shared departmental SunOS server with four
1GHz processors and 8GB RAM. The client was set up in Birmingham, AL, USA, which is
nearly 150 miles from Atlanta. The client machine is a Dell Inspiron 8200 laptop running
Linux Fedora Core-5 with Pentium-4 1GHz processor and 512 MB RAM. The network
connection is a regular DSL home connection with measured upload and download speeds
of 850 Kbits/sec and 350 Kbits/sec respectively. This setup is a good exemplification of
an actual storage-as-a-service usage scenario - with a non-exclusive SSP server and user
accessing data remotely over a wide area network from a home DSL connection. We also
evaluated xACCESS performance with different network characteristics (especially high
bandwidth connections, representative of better connectivity between client enterprise and
SSP) on Planet Lab [145] and results are described in Section-2.9.1.6.

For cryptographic operations, we used National Institute of Standards and Technology
(NIST) [127] approved standards used for protecting personal information of federal em-
ployees [132]. Specifically, we use 128-bit AES [133] for symmetric key cryptography and
2048-bit RSA [150] for public key cryptography'®. Finally, all experiments were repeated
ten times and results were averaged.

In the next four sections, we present our results on comparing different implementations

on a number of micro and macro benchmarks.

Y0 A recent work by Shamir and Tomer [161] points out that only 3072-bit public key crypto schemes are
equivalent to 128-bit symmetric key schemes. Therefore, by using 128-bit symmetric keys for metadata,
xACCESS provides a greater level of security than the PUBLIC and PUB-OPT schemes that use 2048-bit
public key cryptography.
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2.9.1.2 Create-and-List Benchmark

In our first benchmark, we evaluate the core costs of encryption and decryption of metadata
objects in the storage-as-a-service model. Metadata is encrypted when new objects are
created and decrypted when a stat is performed on a filesystem object (which in turn
executes the filesystem getattr function). For the encryption phase, we created 500 empty
files in 25 directories and for the decryption phase we performed a recursive listing using
a “Is -IR” operation, which stats all files and directories. Figure-17 shows the results of
this Create-And-List microbenchmark, with five implementations on the X-axis and time

to create/list on Y-axis.
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Figure 17: Create-And-List Benchmark

First, we would like to point out the extremely poor performance of the PUBLIC im-
plementation proposed in [67, 119, 2]. For creating 500 files, it took 245 seconds, almost
twice as much as the NO-ENC and xACCESS approaches. And importantly, for listing 500
files, it took 2253 seconds as compared to only 60 seconds for NO-ENC approaches. The
reason for this huge disparity is the cost of using the private key during the list phase.
Recall that in this approach, metadata is encrypted with the public keys of users that can
access this object. Thus, for a stat operation, the metadata needs to be decrypted with
the user’s private key. As mentioned earlier in Section-2.1.3, operations with the private

key are much more expensive. It is this asymmetry that makes the list phase prohibitively
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expensive in the PUBLIC implementation.

The PUBLIC implementation can be optimized by avoiding encrypting and decrypting
entire metadata objects. Instead, we use the PUB-OPT implementation which uses a
symmetric key for encrypting metadata and then encrypts the symmetric key with the
public keys of users that can access the object. Thus, now only a small 16-byte key is
encrypted and decrypted using public key cryptography. However, as shown in Figure-17,
even for this optimized implementation, the create phase is over 30% more expensive and
the list phase is over 225% more expensive than the NO-ENC approaches.

In contrast, xACCESS has only 5-8% overheads as compared to NO-ENC approaches.
This shows the superior efficiency of symmetric key cryptography in metadata operations.
Between NO-ENC-MD-D and NO-ENC-MD approaches that differ in data encryption, the
list phase is similar as only 25 data blocks are additionally decrypted (the directory-tables
for 25 directories). In the create phase, for every new file created, the parent directory’s
directory-table is re-encrypted and sent to the SSP. This results in a 5% overhead for NO-
ENC-MD approach.

This micro benchmark shows that xACCESS is highly efficient for metadata encryption
and decryption operations. Next, we take a took at two macro benchmarks that evaluate

the filesystem with different operations including data I/0O.
2.9.1.3 Postmark Benchmark

Our second benchmark is the popular filesystem benchmark, called Postmark [95]. In this
benchmark, 500 small files are created and then 500 randomly chosen transactions (read,
write, create, delete) are performed on these files. It is a metadata intensive workload
representative of web and mail servers. We used the default settings of file sizes ranging
between 500 bytes and 9.77 KB. Figure-18 shows the results with varying sizes of the local
cache (in percentage of total data size, on X-axis). The size of the cache influences the
amount of cryptographic overheads, since for every metadata or data miss, encrypted data
is obtained from the SSP and it is decrypted again. We do not compare the PUBLIC

implementation and instead use its optimized version, PUB-OPT.
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Figure 18: Postmark Benchmark

From the graph, notice that the optimized public key scheme is competitive only for an
infinite cache size (100%). As the cache size becomes smaller (typical caches sizes would
be in 10-20% range for individual clients), it quickly becomes much more expensive. For
example for a 10% cache size, it is 64% more expensive than the NO-ENC-MD-D approach
and 43% more than xACCESS. In contrast, xACCESS is always within 15% of the NO-
ENC-MD-D approaches. This demonstrates he superior performance of xACCESS for a
metadata intensive workload.

Also note that the NO-ENC-MD approach is very close to the NO-ENC-MD-D approach
in performance (2-3%). This illustrates high performance of symmetric key cryptography
as the two approaches only differ in data encryption. Through xACCESS, we are expecting
a similar performance boost by using symmetric key cryptography for metadata objects.

Next, we evaluate xACCESS with a more generic filesystem benchmark — the Andrew

Benchmark.
2.9.1.4 Andrew Benchmark

The widely used Andrew Benchmark [80] simulates a software development workload for
filesystems. It has five phases: (1) creates subdirectories recursively; (2) copies a source

tree; (3) examines the status of all the files in the tree without examining their data; (4)
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Table 9: Cumulative performance for Andrew Benchmark

Implementation | Total Time (sec) | Overheads
NO-ENC-MD-D 239 -
NO-ENC-MD 248 3.7%
xACCESS 266 11%
PUB-OPT 384 60%

examines every byte of data in all the files; and (5) compiles and links the files. Phase-2 and
Phase-4 are I/0 intensive workloads, Phase-3 is similar to the recursive listing, evaluating
the costs for the stat operation. Phase-5 is a computationally intensive workload in which
the benchmark compiles some of the files in the source tree. Figure-19 plots the results for

each individual phases and Table-9 lists the cumulative performance for all five phases.
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Figure 19: xACCESS Andrew Benchmark Results

From Figure-19, Phase-2 and Phase-4 results show that I/O overheads for xACCESS
are minimal. This is because of the use of symmetric key cryptography for both data
and metadata. In contrast, for the PUB-OPT approach, even though it uses symmetric
key cryptography for data encryption, the metadata overheads are significant. In fact, the
PUB-OPT overheads for Phase-2 and Phase-4 are almost equal to the Phase-3 overheads,
which is the stat operation overheads. Thus, decryption with the private key during the

stat operation is what makes PUB-OPT approach so expensive.
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Cumulatively, xACCESS is only 11% more expensive than the NO-ENC-MD-D ap-
proach, which demonstrates that xACCESS delivers good performance for a generic filesys-

tem workload as well.

2.9.1.5 Filesystem Operation Costs

We also analyzed the micro costs of various filesystem operations in xACCESS. We broke
the costs into three components — (a) NETWORK: the network traffic costs, (b) CRYPTO:
costs for cryptographic operations and (c) OTHER: all other costs. Figure-20 shows these
costs for the getattr, mkdir (for different CAPs), and large file I/O (read and write+close

of 1 MB files).
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Figure 20: Filesystem Operation Costs

The getattr function obtains encrypted metadata from the SSP and decrypts it to
access metadata attributes (see Figure-16). This operation completes in a little over 100
ms, with majority of the cost coming from the network component. In fact, the CRYPTO
component is less than 7% for all filesystem operations. As seen from the figure, mkdir
operation is slightly more expensive and its costs can vary based on the CAP required to
be created. For example, creating an exec-only CAP is more expensive as it requires
an additional encryption for the inner directory-table structure (Section-2.4.1). It is also
possible that a single mkdir operation creates multiple CAPs and we show the costs of
creating read-write-exec and exec-only CAPs. As mentioned earlier, these costs are the

result of access control “embedding” in addition to core costs of data creation. Fortunately,

68



the maximum number of CAPs ever required is a small number (5 for UNIX directories).
We also evaluate xACCESS performance for large file I/O. As part of the experiment we

read and wrote (+closed) 1 MB files. As the graph shows, xACCESS cryptographic costs

are low (less than 7%) of the total costs and the majority of the cost is due to the wide area

network communication.
2.9.1.6 Varying Network Characteristics

All experiments described above are representative of an enterprise user accessing data
stored at the SSP through a home DSL connection. It is likely that many enterprise locations
would have high bandwidth connections with the SSP. As the cryptographic costs and other
filesystem overheads are constant, we need to measure the impact of network connectivity on
overall xACCESS performance. To evaluate the impact of xACCESS for such connectivity,
we evaluated various filesystem operation costs using Planet Lab [145].

For these experiments, we set up the client at a Planet Lab node hosted by Georgia Tech,
Atlanta, GA, USA. Since the Linux kernel available with Planet Lab nodes was incompatible
with our userspace filesystem toolkit, FUSE, we modified our client filesystem to operate
completely in userspace - filesystem calls were simulated using direct function calls. We
set up the SSP server at three different locations representing different network conditions.
The first setup was a local area network (LAN) with the SSP server also on a Georgia Tech
hosted Planet Lab node. For the second setup, we used a high-bandwidth wide area network
(WAN) by setting up the SSP server at Duke University, Durham, NC, USA. The third
setup was inter-continental (IC) with SSP server at ETH Zurich, Switzerland. Figure-21
and 22 plot the results of our experiments for various xACCESS filesystem operations.

Figure-21 shows the results of the metadata getattr and mkdir'! operations. The
X-axis shows the different Planet Lab setups, the Y-axis plots the percentage of costs as
network, cryptographic and other overheads. The top of the figure also shows the total
latencies of the operations in milliseconds.

Notice that the xACCESS cryptographic costs are significant only for the LAN setup.

creating read-write-exec and exec-only CAPs
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Figure 21: Core Metadata Operations

This is expected as the Planet Lab nodes running the client filesystem and the SSP server
nodes are connected through a high speed ethernet connection which has high bandwidth
and low latency. This reduces the total cost of the operation, for example 8ms for a getattr
operation, thus increasing the contribution of cryptographic overheads. For the WAN and
IC setups the cryptographic costs again form a small percentage of the total costs even
though the total latencies are lower as compared to our earlier home connectivity based
experiments. This demonstrates that xACCESS metadata cryptographic costs are minimal
for high bandwidth wide area connectivity as well.

We also evaluated xACCESS performance for large file I/Os for the Planet Lab setups.
Figure-22 plots the results of reading and writing(+closing) 1 MB files.
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Figure 22: Large File I/Os

As earlier, the LAN setup has significant cryptographic overheads due to reduced overall
costs as a result of low network latencies. This illustrates that using encryption in a local

area network (co-located SSP) would have significant overheads as related to core data access
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costs. However, for more representative SSP environments with WAN and IC setups, the
cryptographic costs are a small percentage of the total cost. As a result, if it is acceptable
for an enterprise to outsource storage to a SSP based on I/O performance, adding security

through xACCESS cryptography adds little overheads to the overall cost.
2.9.2 Privacy Enhancements Evaluation

Next, we experimentally evaluate our privacy enhancements. Recall that xACCESS sup-
ports the view primitive automatically in its design and these enhancements do not add
overheads to xACCESS. Therefore, in these experiments, we evaluate our in-kernel viewfs
implementation and compare it with the baseline ext2 performance. The experiments were
conducted on a P4 1.6 GHz Dell Inspiron 8200 with 512 MB RAM running RedHat Linux
with kernel 2.6.11.3. All results were averaged over multiple runs. We used two viewfs sce-
narios - (1) viewfs-owner: when an owner is accessing her data, and (2) viewfs-other when
a user is accessing the data from an others view. Note that additional view name lookups
occur only in the latter scenario, so the former scenario is an indication of any other viewfs
overheads, for example, of using bind mounts and would also be an estimate of impact on

users with switched off VBAC model.
2.9.2.1 Andrew Benchmark

As for xACCESS, we evaluate viewfs on the Andrew benchmark [80], which emulates a
software development workload. In the viewfs-other implementation the benchmark was
run by an other user in the owner’s view directory. Figure-23 plots the times (in ms) on log
scale for each of the phases. Table-10 show the overheads of the viewfs-other implementation

over ext2.

Table 10: Andrew Benchmark overheads of viewfs-other over ext2

Phase # | Overheads
1 36%
2 41%
3 11%
4 9%
5 2%
TOTAL 3%
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Figure 23: Viewfs Andrew Benchmark Results

Note that the viewfs-owner implementation performs very similar to the ext2 implemen-
tation. This implies there is little impact on performance of owners or users with switched
off VBAC model. Also, the total overhead for viewfs-other over ext2 is only 3%, implying
reasonable overheads of additional view-name lookups under this workload. The overheads
in phases one and two are greater since their lookup costs are comparable to the total costs

(less than 100 ms). For the later phases, other costs are more dominant.
2.9.2.2 Bonnie Benchmark

In order to test our thesis that viewfs does not impact I/O performance, we evaluated
viewfs against ext2 on the Bonnie benchmark [23]. Bonnie tests the speed of file I/O using
standard C library calls. It does reads and writes of blocks in random or sequential order
and also evaluates updates to a file. The tests were run for a 400 MB file. Figure-24
shows the results for the three implementation for various I/O modes. The X-axis lists the
I/O modes and the Y-axis plots the speeds for those operations. As can be seen, for all
read/write modes, there is practically no difference between ext2 and viewfs. This proves

that viewfs does not have I/O overheads.
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Figure 24: Bonnie Benchmark

2.9.3 Summary of Results

The results of xACCESS and viewfs evaluation demonstrate the following:

e For metadata intensive workloads, where metadata cryptographic encryption and de-
cryption costs could play an important role, xACCESS adds little overheads as com-
pared to schemes with no security (within 10-15% for wide area home connectivity).
On the other hand, even the optimized version of the public key implementation
(PUB-OPT) had 50-220% overheads. This stems from the primary prohibitive cost

of stat operations, when decryption with a private key is required.

e Even for generic filesystem workloads with data I/O, xACCESS has low overheads.
For large file I/O operations, the total cost of xACCESS cryptographic operations
added less than 3% of the total costs for wide area home connectivity. For high
bandwidth connectivity emulated using Planet Lab, cost of cryptographic operations
is significant only for LAN setups. The low percentage of cryptographic costs for
other setups demonstrates xACCESS suitability even for dedicated enterprise and

SSP connectivity.
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Table 11: Comparing xACCESS with Related Work

Scheme Unstrusted SSP | Untrusted SSP Key Access | Metadata
(Confidentiality) | (Access Control) | Management | Control Crypto

(200, 197] Yes No In-band Expressive -
NASD [66]
SNAD [119] Yes Partial In-band Restrictive Public
Plutus [94] Yes Yes Out-of-band | Restrictive | Symmetric
Sirius [67] Yes Yes In-band Restrictive Public
Farsite [2] Yes Byzantine In-band Expressive Public
xACCESS Yes Yes In-band Expressive | Symmetric

e When new metadata is created, for example with an mkdir operation, there can be
additional costs for creating multiple CAPs. However, the total number of CAPs ever
required to be created is typically a small number (for example, < 5 for UNIX access

control model).

e The privacy enhancements add little overhead to the underlying filesystem. The
additional lookup operations add up to less than 3% overheads and the I/O overheads

are minimal as well.
2.10 Related Work

In this section, we survey other work related to xACCESS and its view based privacy en-
hancements. First, we differentiate xACCESS from the traditional encryption file systems,
where data is also stored in encrypted form (Section-2.10.1). We discuss the technology and
access control mechanisms supported by commercial storage service providers in Section-
2.10.2 and describe related research access control projects in Section-2.10.3. Next, in
Section-2.10.4 we compare our privacy enhancements to two pieces of related work in other
security-enhanced *nix access control models and use of views as access control tools in
other domains.

Table-11 shows a summary comparison of xACCESS with other approaches on a number
of attributes. In general, it can be seen that for systems with similar security models as
xACCESS, any system that provides in-band key management uses public key cryptography

for metadata operations and provide only a restrictive access control model.
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2.10.1 Encryption File Systems

There have been many encrypt-on-disk systems that store data on the media in an encrypted
form. Some of the popular encryption file systems include CFS [19], CryptFS [200] and
nCryptFS [197]. Most of such systems are local file systems usually aimed at protecting
against physical theft/loss of storage media, or protecting against superuser snooping of
data. Earlier systems like CFS [19] used a single key to encrypt an entire directory of files,
thus restricting OS-like data sharing and requiring out-of-band key management. This
would work only for the centralized enterprise proxy storage-as-a-service model discussed
in Chapter-1. Later systems like nCryptFS [197] provided support for key management.
However these systems always require a trusted kernel that is responsible for identifying
users and is also trusted with filesystem metadata. Other networked storage encryption
systems like NASD [66] also trust the storage device for authentication and authorization.

In contrast, xACCESS provides access control in the untrusted SSP model.
2.10.2 Storage Service Providers

The commercial storage service providers provide a storage medium and management of
stored data. Some of the popular enterprise storage service providers are Iron Mountain [93],
Arsenal Digital [12], eVault [55] and Amazon S3 [6]. So far, the most attractive feature
of these SSPs has been in the disaster recovery and continuous data protection (CDP)
space, where they provide techniques to continuously protect data by taking incremental
backups to the SSP sites. However, these systems do not provide any in-built access control
mechanisms without trusting the SSP. Users can create administrator accounts for greater
management functionality, but authentication and authorization is trusted with the SSP.
Also, while users can choose to encrypt their data and metadata stored at these SSPs, they
have to handle key management by themselves. This limits the usage for enterprises that
do not want to trust the SSP for access control enforcement, the threat model assumed in

this work.
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2.10.3 Security with Untrusted Storage

In recent years, a number of research efforts have developed techniques for security and
access control in the untrusted storage model. Plutus [94] describes a file system that
aggregates files with similar access privileges into filegroups and encrypts them with a single
key. Users are responsible for managing keys for different file groups that they can access and
for sharing data, users are required to distribute keys out-of-band. Additionally, the access
control semantics only provide read and write permissions at a file level and hierarchical
directory-based permissions are not supported. Similar techniques are used in CNFS [76].
In contrast, xACCESS provides an in-band key management technique that provides UNIX-
like access control semantics over untrusted SSP-managed storage. It provides full support
for hierarchical directory-based permissions and can seamlessly transition local storage to
the storage-as-a-service model.

Another effort, Sirius [67] described a filesystem that can provide access control in
the untrusted storage model without modifying the storage server. They use public key
cryptography for all metadata operations and for. This requires expensive private key
based computation for every metadata operation. Also, it does not support any directory-
level permissions. Similar public key cryptography technique was used in Farsite [2] which
provides a file system over untrusted P2P storage using Byzantine fault tolerance and
access control authorization. In contrast, xACCESS predominantly uses symmetric key
cryptography and provides complete UNIX-like access control semantics. SNAD [119] also
used a public key scheme for metadata key distribution and also trusted the SSP to perform
certain verification operations.

Recently, Naor et al [126] have proposed a cryptographic primitive based on the Leighton-
Micali [105] or Blom [20] schemes that can reduce public key cryptography costs in the
storage-as-a-service model. They have not evaluated the performance of their schemes and
also, do not provide an expressive access control model. Another important work in this
domain is that of SUNDR [106]. It describes the levels of consistency that can be sup-
ported in the untrusted internet storage model (fork-consistency [106]). Their work is a

complimentary contribution to our work and we are currently integrating their consistency
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mechanisms with the xACCESS prototype.
2.10.4 Privacy Enhancement

Most of the research in *nix access control model aims to either improve the granularity
of protection (for example, POSIX ACLs [72]) or counter the threat of malicious programs
exploiting the root (superuser) privileges. One variant of Linux developed by National Se-
curity Agency [128], called the Security-Enhanced Linux (SELinux) [159] supports a manda-
tory access control model [18], in which an administrator sets a security policy which is used
to determine the access granted to an object and users have limited control on their data.
Another access control model is the Role-Based Access Control (RBAC) model [56, 156],
supported by Sun Solaris operating system, in which security attributes can be assigned to
user roles (a process or task). This helps reduce the threat of malicious programs exploit-
ing the root privileges. In a similar vein, the Rule-Set Based Access Control (RSBAC)
model [138] aims to protect against root vulnerabilities and improve granularity of protec-
tion. There has also been work on a privacy model [57, 58, 59] in access control. However,
that work is aimed at guiding organizations on how to control their information flow to
ensure privacy of collected user-data (for example, healthcare records). To the best of our
knowledge this work is the first critical look at the privacy support for data sharing in a
multi-user *niz operating system. Our proposed View-Based Access Control (VBAC) model
is a specialized access control model aimed at providing stronger privacy protection in such
environments.

The use of views as an access control tool has been primarily researched in the area of
databases [162, 188]. Using database views, users are only shown the relevant data that
they have access to. This is similar in concept to VBAC in which only data that needs
to be shared is added to a user’s view. A view-based access control model has also been
used in networking to control access to management information in the Simple Network
Management Protocol (SNMP) [193]. There is also an attempt of creating a new operating
system called View-OS [180] that presents a different view of the system resources including

the filesystem, to an OS process. Also, chroot [107] can be used to present a different root
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(/) directory to a process. In contrast, our view based mechanism is a comprehensive
privacy protection mechanism preventing many kinds of privacy breaches and works with
existing *niz systems.

In summary, we consider xACCESS’s in-band key management, seamless transitioning
ability with an expressive UNIX-like access control and use of symmetric key cryptography
for metadata to be our unique attributes. Also, our access model enhancements based
on the view primitive are a first attempt at comprehensive improvements to the privacy

characteristics of the data sharing mechanisms of *nix systems.
2.11 Summary

In this chapter, we described xACCESS, an access control system for decentralized storage-
as-a-service model. xACCESS uses novel cryptographic access control primitives (CAPs)
to “embed” access control into stored data and does not rely on the SSP for enforcement of
security policies. xACCESS is able to support an expressive UNIX-like access control model
and its in-band key management technology provides a seamless transition ability from local
storage to the storage-as-a-service model with negligible user involvement. Additionally, by
primarily using symmetric key cryptography, xACCESS delivers greater efficiency outper-
forming other proposed systems by over 40% on a number of filesystem benchmarks. We
also analyzed our access control model for privacy support in its data sharing mechanisms
and proposed enhancements to ensure more secure and convenient data sharing.

In the next chapter, we look at a similar access control problem in a multiuser keyword

search application that provides filesystem search over SSP-hosted data.
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CHAPTER III

SECURE MULTIUSER FILESYSTEM SEARCH

One insight from the results in the previous chapter is that the primary contributor to
xACCESS filesystem operations cost is the wide area network latency. To minimize network
traffic, enterprises would like to access only relevant files. The commonly used “grep” [107]
operation to find a file that contains certain keywords, would be an extremely slow operation
as it would have to download all files and read their content. Other than latency, there is
an added incentive for enterprises to download only relevant content. The storage service
providers (SSP) charge clients for the amount of data that is accessed, for example, the
Amazon S3 [6] storage service costs $0.20 per month for every GB of data transferred. Thus,
keyword search for files stored at the SSP would be a valuable service to an enterprise.

For the decentralized services model, it is also best suited if the search service is hosted
at the SSP. Then, users can do keyword search for the files hosted at the SSP and based
on the results, download only the relevant files. Searching over encrypted data, however, is
a hard problem. Recent work in this area [169, 34, 21] have described some techniques for
keyword search, but they only work for single user environments, where all files are owned
and accessible to a single user. Enterprise filesystems, on the other hand, have multiple
users with different privileges to data and access control needs to be enforced even while
searching through the data. As a simple case in point, a user should not be able to search
through data that is not accessible to that user. There are additional subtle requirements
that surprisingly most of the enterprise search products do not satisfy. We will discuss these
requirements later in Section-3.1. Additionally, we do not want to trust the SSP for access
control enforcement during search.

We use a different scheme to address this problem. We require all data to be indexed
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within a trusted enterprise domain before it is encrypted and stored at the SSP!. Access con-
trol is “embedded” into these indices during the indexing process using encryption and other
techniques, ensuring that we do not have to rely on the SSP for access control enforcement
during search. The indices are then shipped to the SSP and with slightly modified runtime
search process, users can securely search over data. Figure-25 shows the architecture for

our approach.

Secured
Indices

Query / /Results Index/  Query Results
Updates

Encryption/Decryption Enc/Dec

T $

Indexing

Figure 25: Secure Search over SSP Data

Our technique, usable even in traditional enterprise environments (without outsourced
storage to SSP), couples keyword search and access-control into a unified framework to
provide secure search. We use a novel building block called access control barrel (ACB)
that ensures access control aware search. An ACB is a set of files that have the same
access privileges for users and groups in the system and by (logically) dividing filesystem
data into independent ACBs, we can ensure that the index for a user is only derived from
the data accessible to that user in the underlying filesystem, thus satisfying the access

control requirement. Further, by dividing data into independent barrels, data indexing can

!Similar technique is used by some data backup systems in which data is indexed before it is stored on
a slower magnetic tape device [90].
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be distributed to multiple machines for parallel processing. This can significantly reduce
total indexing time. We have also developed two optimization techniques that ensure the
scalability of our approach even in complex enterprise environments.

The rest of this chapter is organized as follows. We formally characterize the access
control aware search problem in Section-3.1. In Section-3.2, we describe current search
approaches and their limitations. We describe the design of our approach in Section-3.3
and its architecture and implementation in Section-3.4. We present a detailed experimental
evaluation of our approach in Section-3.5. In Section-3.6, we describe the related work in

this area. Finally, we summarize our contributions in Section-3.7.
3.1 Access Control Aware Search

As mentioned above, access control needs to be enforced while searching through filesystem
data and a user should not be able to search through data that is not accessible to that user.
There is an additional requirement. By looking at the results of a query, a user should not
be able to infer any information that could not have been inferred by that user by accessing
the filesystem directly. We refer to this principle as Access Control Aware Search or ACAS
in short. Simply put, ACAS requires that no additional information can be extracted about

the filesystem by using the search mechanism. More formally we define it as:

Definition: Access Control Aware Search (ACAS)

Let Ig be the information that a user U can extract from the filesystem F by accessing it
directly (dictated by access rights for U) and let Ig be the information that U can extract by
searching on the indices over F over any period of time (based on the search mechanism,).

The access control aware search (ACAS) property requires that Ig C I}[,{.
Surprisingly most enterprise search products in the market, like Google Enterprise [70],

Windows Enterprise Search [195], IBM OmniFind [89], do not satisfy the ACAS principle.

These tools treat search and access-control as two disjoint components. In their approach,
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a single system wide index is created for all users and it is queried using traditional in-
formation retrieval (IR) techniques (the search component). Finally the results (the list of
files containing query keywords) are filtered based on access privileges for the querying user
(access control). However, the ordering and relevance score of results, typically based on
Term-Frequency-Inverse-Document-Frequency (TFIDF) measures [196], reveal information
that violates the ACAS property. Intuitively, since the index was created based on the
lexicon and documents of the complete system, simple post-processing of results would fail
to adequately protect system-wide statistics against carefully crafted attacks. We describe
this issue and demonstrate an example attack in Section-3.2.

A technique that satisfies ACAS can be found in common desktop search products like
Google Desktop [69]. For multiple users on the desktop, these tools create distinct indices
for each user on the system, with each user index including all files accessible to that user
(the access-control component) and then querying only that index for the user (the search
component). While this satisfies ACAS, it is inefficient due to shared files. We discuss the

limitations of these existing search approaches in detail in the next section.
3.2 Limitations of Existing Approaches

In this section, we describe two existing search solutions for integrating access control and

analyze their pros and cons from security and performance perspectives.
3.2.1 Index-per-User (IPU) Approach

Most desktop search products like Google Desktop [69], Yahoo Desktop [199] and MSN
Toolbar [125] integrate access control during indexing. Each user has a separate index for
accessible files, with duplication for files that are shared with other users. This ensures that
each user has an index created only from data that was accessible to that user, satisfying the
ACAS requirement. These indices can then be securely stored at the SSP by associating
with each index a unique symmetric key made available only to that user (for example,
by writing to a file in the xACCESS filesystem with permissions only for that user). We
describe two technique for creating these secure indices later in Section-3.4.3.

However, this approach causes additional disk consumption (and thus monetary costs
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in the SSP model) of Y (n; — 1) * I; where n; is the number of users accessing file F; and I;
is size of index for F;. Additionally, each update to F; causes updates to n; indices. In an

enterprise, where n; could be in hundreds or thousands, such costs can be prohibitive.
3.2.2 Centralized Single Index (CSI) Approach

The enterprise search products like Google Enterprise Search [70], Coveo Enterprise Search [47]
and IBM OmniFind [89] integrate access control at query runtime by creating a single
system-wide index and filtering results based on access privileges of the querying user. This
provides maximum space and update efficiency. This, however, requires the presence of a
trusted access control engine at query run-time and thus would force the search service to
be hosted at the client enterprise.

Also importantly, these products do not satisfy the ACAS requirement and by carefully
crafting queries, a user can obtain information about the underlying filesystem which could
not have been inferred otherwise. Below, we describe an example attack that can determine
the total number of files containing a particular keyword even when the attacker does not
have access to all files containing that keyword. For example, an attacker could monitor the
enterprise filesystem to see the number of files containing the word “bankruptcy”’. A sudden
increase in the number of such files could alert him/her to sell off company stock, practically
amounting to insider trading. This violates the ACAS property, as this information could
not have been determined by the attacker through the underlying filesystem directly.

We assume that the relevance score of a result file f; is computed by the standard TFIDF

measure

rel(f;) = Z Wij * WQj (1)

t;eQ

where ¢; are the terms in the query () and w;; is the normalized weight of term ¢; in f;

given by

e loa (1N
0;j * log ne;

JEentonr (o (82

where o0;; is the number of occurrences of term ¢; in f;, |[N| is the total number of files in

(2)
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the system and n;; is the number of files that contain ;. wq; is defined similarly.

The attacker, Alice, wishes to know the number of documents that contain the term ¢,
(e.g. “bankruptcy”). The attack works in three steps. First, Alice picks two unique terms
t1, ta (no file contains these terms) and creates two new files: f; containing terms {t1, to}
and fo containing terms {9, t,}. Note that after creating the files, 011=012=020=024=1,
ny, =1 and ny,=2. In the second step, she queries for term ¢; and from (1) and (2) she can

calculate |N|
1

1— /1
|N‘ =2 rel(f1)? (3)
In the final step, Alice queries for term t, and calculates n;, from (1), (2), (3). This

completes the attack.
-1 (1_1)
1 _ 1 _
ny, = 2V rel)? VNN Vet T

Such attacks are possible on most TFIDF based measures including the popular measure
Okapi BM25 [151]. Additionally, even when relevance scores are not returned as part of the
result, good approximations to n;, can be obtained by exploiting ordering of the results [28].
A recent effort [28] describes an ACAS compliant approach that uses a complex (and trusted)
query transformation at runtime for access control. Using such an approach would require
a trusted search server implying that the service should be hosted at the client enterprise.
Additionally, it requires to maintain access control lists for all files in the filesystem in-
memory which is extremely inefficient for large enterprise environments.

Next, we describe our distributed enterprise search approach, which provides greater
efficiency than the IPU approach and ACAS compliance unlike the CSI approaches. Addi-

tionally, our approach allows indices to be hosted at the SSP.
3.3 Daistributed Secure Enterprise Search

The IPU approach is secure but inefficient for enterprise search, whereas CSI approaches
are insecure in terms of ACAS and require enterprises to host the search indices themselves.
In this section, we describe the design and implementation of our distributed approach to

enterprise search based on the concept of access control barrels (ACBs). Our approach
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provides security, efficiency and allows indices to be hosted at the SSP.
Before we get into the details of our approach, we briefly describe the access control
notion of searchability for the UNIX permissions model (also followed by various other

flavors like Linux and FreeBSD).
3.3.1 Searchability and Access Control

In an enterprise environment, not all data is accessible to all users. Access to data is
controlled through the underlying filesystem’s access control mechanisms. In this work, we
follow the UNIX permissions model [148], which is also closely followed by xACCESS.

In context of indexing and search, there is a need for a notion of searchability. Clearly
read permissions on a file allow it to be searched and write permissions do not influence
searchability (and are ignored in the process). The ezecute permissions for directories have
a non-obvious influence on searchability. Users with ezecute-but-not-read permissions on
a directory can access its contents only if they know the exact names of subdirectories or
files. As this out-of-band notion can not be adequately and safely captured, consistent with
the UNIX and Linux find/grep/slocate [107] paradigms, we consider such directories as

being not searchable. Formally, searchability is defined as:

Definition: Searchability — A file, F is searchable by user u; (or group g,) if there

erist read and execute permissions on the path leading to F' and read permissions on F,
for u; (or gm).

3.3.2 Design Overview

The main design principle of our approach is to efficiently integrate access control into
the indexing phase such that the indices used to respond to a user’s query are derived
only from the data accessible to that user. This will ensure that we satisfy the ACAS
requirement and do not have to do access control based filtering on query results. It also
helps in key management when these indices are eventually encrypted to be stored at the
SSP. We accomplish this goal with a pre-processing step that (a) constructs a user access

hierarchy for the users and user groups in the system (Section-3.3.2.2) and (b) logically
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divides data into access-privileges based access control barrels (ACB). We first provide a
brief description of ACBs and then describe in detail how they work in conjunction with

the user access hierarchy.
3.3.2.1 Access Control Barrels

An ACB is a set of files that share common searchability access privileges (as defined in
Section-3.3.1). That is, all files contained within an access control barrel can be accessed
(and thus searched) by the same set of users and user groups. For example, one barrel could
contain files accessible to user bob and another for a user group students. Intuitively, the
idea of barrels is that if we can efficiently create collections of files based on their access
privileges, to provide secure search to a user, we can pick the collections that this user has
access to and serve the query using only those indices.

This might sound similar to the index-per-user (IPU) desktop search approaches [69,
199, 125] where all files accessible to a user are grouped into a single collection and files
accessible to multiple users are duplicated in their collections. ACBs avoid their inefficiencies
by following an additional neat property of minimality. This property ensures that each file
can be uniquely mapped to a single barrel, avoiding duplicating them in multiple collections
(we defer the discussion of implementing such minimal ACBs to the next section). Now,
files accessible to multiple users are grouped into shared collections and secure search for a
user combines the user’s private collections with these shared collections using distributed
information retrieval [104]. This is efficiently accomplished using the user access hierarchy
which is described next. We will also compare the ACB based approach with the index-

per-user approach in detail in Section-3.5.5.
3.8.2.2 User Access Hierarchy

The user access hierarchy data structure has two main tasks: (1) provide a mechanism to
map files to access control barrels, and (2) provide techniques to efficiently determine all
barrels that contain files searchable by a user. In what follows, we first give a high level
description of the data structure and later detail how the hierarchy is constructed for UNIX

permissions model.
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For most access control models a user is associated with two types of credentials: (i) a
unique user identifier (uid), and (ii) one or more group identifiers (gid) corresponding to
the user’s group memberships. We represent the set of all such user and group credentials
as a directed acyclic graph called Access Credentials Graph or ACG in short. For example,
there could be a node for credential uidyyp Or gidsiydents- Every node V; in this graph is
associated with a corresponding barrel ACB;. Our example nodes uidpop, 9idstudents are
associated with barrels containing files with searchability privileges to user bob and group
students respectively. Now, mapping files to barrels is equivalent to assigning files to a node
in ACG (the first task mentioned above).

For a node, V,, (associated with the uid credential of a user u), let V,* denote the set of all
nodes in the directed graph ACG that are reachable from the vertex V,,. Our construction
of the graph AC'G will ensure that a file F' is searchable for a user u if and only if F is
assigned to some vertex v € V,*. With this property, the results for user u’s query can be
computed by combining indices from barrels associated with nodes in V7. The set V;; can
be efficiently determined using a simple depth or breadth first search on the graph ACG.
This accomplishes the second task of the user access hierarchy data structure.

Next, we explain in detail the process of constructing the graph ACG with aforemen-
tioned properties from UNIX-like user credentials. In a UNIX-like access control model a

credential C can be expressed in Backus Naur Form (BNF) as:

C = root|all|P

P = wid|gid| PN\P|PVP (1)

Note that root is a special user with super-user privileges and all indicates a credential
for all users and groups. We need the V operator on the principles to handle POSIX
Access Control Lists [72] that allow associating multiple users and groups with a file F'
(as opposed to the usual {owner, group, others} model [148]). We need the A operator on
the principles to handle the implicit conjunction operation that occurs while traversing the
directory hierarchy leading to file F' (for example, directory X/Y where X has access only

for user group students, and Y has access only for user group grad-students; only users that
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belong to both groups can access data under Y). We define an implication operator = which
specifies if one credential can dominate another. For example, Vu, root = u says that root
can access data that any other user can.

Permissions on a file can also be expressed based on a credential defined as above. For
example, for a file F' that allows access to users z, y and group z, we say that it has a
credential Cp={uid, V uidy V gid,} and is interpreted to say that access is allowed to users
who have a credential that dominates this file’s credential (user x has access to F' since
uidy = Cr). Now, if we can create a barrel for each such file credential in the system, we
can uniquely map a file to a barrel, achieving ACB minimality. While theoretically the total
number of barrels (one for each possible access control setting, thus exponential in number
of users and groups) can be very large, practically, this is hardly the case as many files in the
system share common file credentials. Other studies have also made similar observations,
for example, the filegroups concept of Plutus [94] uses this to ease key management for
encrypted data storage. Regardless, in Section-3.3.3, we will describe two optimization
techniques that address this potential scalability issue.

Finally, we construct the graph ACG as follows. First, the set of vertices and edges are
initialized by adding vertices for all user and group credentials and adding edges for the
simple = relationships: root = u Yu € U; u = g Vg € G(u); for any group g, g = all,

where G(u) denotes the set of all groups to which the user u belongs to. Formally,

VACG’ = {V;“ootavall} U {Vu ‘ Vu € U} U {‘/g | Vg € G}
Eacac = {Vioot = Vu |VueU}lU {V, =V, |VueUVgeGu)}

UA{Vy, = Vau | Vg € G}

where — indicates a directed edge in the graph.

Next, the V or A nodes are added when we encounter files with such credentials. This
is done during the pre-processing step while assigning files to their appropriate barrels
(as described in Section-3.4). For each such file, we insert a new vertex Vi for the file’s
credential C. Then, we find the set of all vertices whose credentials minimally dominate the

new credential C (say, minDom(C)) and for every such vertex, V' € minDom(C), we add

88



an edge from vertex V to V. Note that this guarantees that the vertex V¢ is reachable from
all vertices that have a dominating credential, by the transitive nature of the — operator on
the graph ACG. Similarly, we find the set of all vertices whose credentials are maximally
submissive to the new credential C (say, mazSub(C)). For every such maximally submissive
credential V' € mazSub(C), we add an edge from the vertex Vo to V. Additionally, we
remove redundant edges between vertices in Vi € minDom(C) and Vo € mazSub(C) if V,

is now reachable from V7 via the new vertex V. Formally, it can be represented as:
Dom(C) = {Vao|C' = C} (IT)
minDom(C) = {V € Dom(C)A-3V' € Dom(C),V € Dom(V")}
Sub(C) = {Vo |C=C"}
mazSub(C) = {V € Sub(C) A—-3V' € Sub(C),V € Sub(V')}
Eace = EacgU{V = Vo |VV € minDom(C)} U{Ve — V | VV € mazSub(C)}
Eace = Eucg—{Vi = V|V VWV, Vo, Vi €minDom(C) AV, € mazxSub(C)
AVi = C € Excg NC — Vo € Exca}
Figure-26 shows an example ACG graph for a system with three users, two groups and
group membership as shown in figure.
Using this access hierarchy, we can map all files to their appropriate barrels and also

identify barrels searchable by a particular user (equivalent to finding V,* — a simple depth

first search operation on ACG).
3.3.2.83 ACB Minimality

In this section, we formally state the minimality property satisfied by our ACB construction
in Section 3.3.2.1. We use this claim 3.3.1 in Section-3.3.3 to present optimization techniques

on our ACB approach.

Claim 3.3.1. [t is impossible to reduce the number of ACBs without either duplicating files

in barrel indices or violating the ACAS property.

Proof. We can prove this by a simple contradiction argument. Let ACB’ denote a set of

access control barrels such that the number of barrels in ACB’ is smaller than ACB and it

89



(ro0t)
el M/ .
- 17 J2 Q ( )

G(u;) = {9, 9>}
G(uy) = {g,}

G(us) = {g,} @
(&) (&)

Figure 26: Example Access Credentials Graph

contains exactly one copy of each file in a barrel index and it respects the ACAS property.
Since AC B’ has smaller number of barrels, there exists a barrel ¥ € ACB’ such that it has
two files f1, fo € b/, where f; and f; belong to two distinct barrels b; and by in ACB (by
pigeon hole principle). Since f; and fo are in different barrels in AC B, the files must have
different access control expressions. Hence, there may exist a user u such that u can access
only file f; but not file fs.

Now, for the file f; to be searchable by user u, there has to be some barrel bar in AC B’
such that f; € bar and the barrel bar is reachable from the vertex V,, on the ACG. Since
there is only one copy of the file index f; in ACB’, the barrel b’ must be reachable from V,
on the ACG for ACB’. Since the barrel ¥’ is reachable from V,, all the files in the barrel
b must be accessible to the user u. Clearly, allowing the user u to search file fy violates
the ACAS property. Thus, in order to reduce the number of ACBs, we have to allow either

duplication of files indices in barrel or compromise the ACAS property. O
3.3.3 Scalability Optimizations

In most real enterprise environments the number of barrels per user is typically very small

(68 on average in our observations for two enterprise filesystems; similar observation was
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made in [94]). However, theoretically this number is exponential in the number of users
and user groups. In this section we describe two optimization techniques that can preserve
the scalability of our approach even in such rare hostile setups.

Our optimizations are based on our ACB minimality claim 3.3.1. Our first optimiza-
tion trades off the number of barrels with the number of copies of a file index and the
second technique trades off the number of barrels while allowing controlled violation of the
ACAS property. Both techniques provide a control mechanism for administrators to choose
appropriate trade-offs. The optimizations transform the access control graph (ACG) with
the goal of decreasing the number of ACBs. However, such transformations must preserve
searchability, that is, if a file f is accessible to user u then the file f must be searchable.
Using ACBs this implies that if a file f is accessible to user u, then in any transformed
ACG, the file f belongs to some barrel b such that b is reachable from V,, on the ACG (b €

V.¥). We call this property reachability on the ACG.
3.3.3.1 File Index Duplication

Our first optimization reduces the number of ACBs and satisfies the ACAS property at the
cost of maintaining duplicate file indices. Let us consider any vertex V¢ in the ACG such
that the credential C' # wu, for any user u € U. One can eliminate the vertex V¢ from the
ACG (thereby decreasing the total number of barrels by one) by adding all the file indices
in Vi to every vertex v € minDom(V¢), where minDom is defined in Equation-(IT) above.
Note that if C # u, then minDom(Vy) # @, that is, there exists at least one vertex v €
minDom (V). If Vi is reachable from some vertex V,, (for user u and C' # u) then at least
one vertex v € minDom(V¢) is reachable from V,; thus the above construction satisfies
reachability on the ACG and thus preserves searchability. The construction preserves the
ACAS property since the credential domC' associated with any vertex v € minDom(V¢)
dominates the credential C' (domC = C). Hence any user u that satisfies the credential
dom(C' also satisfies the credential C. Hence, the above construction eliminates the vertex
Ve at the cost of retaining |minDom(V¢)| copies of file indices for each file in V.

In our implementation we define a tunable parameter minf — the minimum number of
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files per barrel such that if a larger minf is chosen the number of barrels decreases at the
cost of more duplication of files indices. Given the parameter minf we present a greedy

algorithm to reduce the number of barrels as follows:
1. Sort the barrels in increasing order of size (number of files) by, by, - -+ b.

2. Pick the smallest 7 such that b; < minf and the credential associated with barrel b; is

not equal to u for any user u € U. If there is no such barrel the procedure terminates.
3. Eliminate the barrel b; by suitably replicating all its file indices (as described above).

4. Barrel elimination may change the size of other barrels; so resort the barrels according

to their size and repeat the procedure.

Observe that by setting minf = oo, the above procedure would terminate with |U|
barrels where each barrel b, is the per-user index as generated by the index-per-user (IPU).
This ensures that for any finite min f, our algorithm would have fewer file index duplicates

when compared to the IPU approach.
3.8.8.2  Access Control Optimization

Our second technique reduces the number of ACBs while maintaining only one copy of
each file index at the cost of violating the ACAS property. Let us consider any vertex V¢
such that C' # all. One can eliminate the vertex V¢ from the ACG by adding all the file
indices in Vi to some vertex v € mazSub(Ve), where maxSub is defined in Equation-(II).
Note that if C # all, then mazSub(Vg) # @, that is, there exists at least one vertex v
€ mazSub(Ve). If Vi is reachable from some vertex V,, (for user u) then all vertices v €
maxzSub(V¢) is reachable from V,,; thus our construction satisfies reachability on the ACG
and thus preserves searchability. However, there may exist a user «’ such that a vertex v
€ mazSub(Ve) is reachable from V., but not the vertex V. This is possible because the
credential C dominates a credential subC associated with vertex v € mazSub(V¢). Hence,
the above construction maintains exactly one copy of every file index, but may violate

the ACAS property. Unlike the centralized single-index approach that violates the ACAS
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property for all the files in the file system, our approach allows us to control the number of
such violations.
Given the parameter min f, the minimum number of files per barrel, the following greedy

reduces the number of barrels:

1. Sort the barrels in increasing order on their size (number of files in the barrel) by, b1,

- bg.

2. Pick the smallest ¢ such that b; < minf and the credential associated with barrel b;

is not equal to all. If there exists no such barrel the procedure terminates.

3. Eliminate the barrel b; by copying the file indices in b; to at least one vertex v €

mazSub(Ve), where C is the credential associated with barrel b;.

4. Eliminating a barrel may have changed the size of other barrels; so we resort the

barrels according to their size and repeat the procedure.

If [mazSub(Ve)| > 1, one can randomly pick a vertex v from mazSub(V¢). However,
we heuristically pick a vertex v such that it satisfies the minf requirement while incurring
only a small number of access control violations. Our first heuristic picks the vertex v that
has the smallest barrel associated with it. This heuristic clearly favors our goal of achieving
at least minf files per barrel.

Our second heuristic attempts to reduce the number of files violating the ACAS property
by picking a vertex v whose credential is the least popular. For example, let us suppose that
the credential associated with v is a A-group cred = g;; A gi, A --- A g;,. We measure the
popularity of the credential cred as pop(cred) = Hle pop(gi; ), where popularity of a group
g is determined by the number of members in the group (normalized by the total number of
users |U|). Similarly, we measure the popularity of a V-user credential cred = u;, V u;, V
.-+ V uy, as pop(cred) = - Clearly, the less popular a credential cred, the smaller number
of users that satisfy cred; hence, fewer users can reach the vertex v from V, causing fewer

violations. Note that every user u can that reach V¢ can reach v € mazSub(V¢); hence the

approach does not compromise on searchability. This approach attempts to minimize the

93



number of users u’ that can reach v € mazSub(V¢), but not the vertex Vi itself, thereby
reducing the number of ACAS violations.

These two optimizations can be used to improve the scalability of the system in rare
environments where the variation in access control settings increases the number of ACBs
per user. Further, we allow an administrator to make an intelligent decision on the choice
of the optimization strategy. For instance, files with high update rates may use only the
second optimization technique. This ensures that we have only one copy of the file index
and thus keeps the update costs low. Similarly, files with lot of critical information may
use only the first optimization technique. This ensures that there are no ACAS violations
on the critical file data.

In the following section, we integrate our ACB based technique with the architecture of

our indexing and search system.
3.4 Architecture and System Implementation

So far, we have introduced the concept of access control barrels (ACBs) and the user access
hierarchy as a tool to (a) efficiently map files to ACBs and (b) determine accessible ACBs for
a querying user. In this section, we will explain the overall architecture of our indexing and
search system and how it fits into the enterprise infrastructure and the storage-as-a-service
model.

For management of the distributed search environment during the indexing and securing
phase, one enterprise machine is chosen as a global orchestrator. As mentioned earlier, the
distributed nature of our approach allows us to use other underutilized enterprise machines
as well. All such participating machines run a thin client version of the system and receive
commands from the global orchestrator for indexing of access control barrels. Figure-27

shows the workflow for the process.
3.4.1 Pre-processing: Creating ACBs

As part of the pre-processing step, we first create the basic ACG from the user and user
groups in the system as described in Equation-(I) above. For UNIX/Linux systems user

and group information is obtained from /etc/passwd and /etc/group. Next, we initiate a
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Figure 27: Secure Distributed Search Workflow

filesystem traversal for all data that needs to be indexed. This is required for mapping
files to ACBs (represented by a vertex in ACG). As mentioned earlier, this process occurs
before data is sent to the SSP, so we assume that all data is currently within the enterprise
location.

During the traversal, we associate each file with a vertex in the directed ACG graph
based on its searchability privileges. This mapping is done by finding the vertex that
has the same credential as the file (e.g. Viop for credential uidyep). If the file has a V/A
credential, a new node is added to the access hierarchy and the file is mapped to that node.
At the end of this filesystem traversal, we have all barrels in the system and the list of
files that are contained in each such barrel. These lists are written to per-barrel files, that
are securely stored in the enterprise filesystem namespace with access privileges only to the
superuser. This stored file is the embodiment of our abstract ACB concept. This completes
the pre-processing step and is usually performed by a single enterprise machine — the global

orchestrator, which stores the user access hierarchy.
3.4.2 Indexing

After creating ACBs, the next step is to index documents for each barrel. These ACBs
can be indexed independently unlike the single index approach where the computation of
TFIDF statistics requires centralized indexing of data. The global orchestrator distributes
this barrel indexing task to participating enterprise machines. As the barrels are stored in

a global namespace and accessible to all enterprise machines, the orchestrator only needs
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to pass the barrel IDs to these machines. The orchestrator can easily optimize available
resources by doing an intelligent distribution of barrels to machines (ensuring no single
machine is overly loaded). As we show later in Section-3.5, this indexing task distribution
provides excellent savings.

On receiving commands from the orchestrator, thin-client agents of enterprise machines
retrieve the barrels from the filesystem namespace and start indexing documents. An index
is typically comprised of: (a) vocabulary for words that appear in the documents and (b) a
words to filename mapping along with their TFIDF statistics used later for ranking. Once
indexed, these indices are stored back into the global namespace. Our access privileges
based design of barrels provides a natural way of storing indices securely in this namespace.
The index files are stored with the same privilege as the files contained in that barrel (all
files in a barrel have the same privileges)2. This allows only the users that had access to files
of a barrel (and thus can search through that barrel) to obtain these indices and provides a
natural security mechanism for storing these indices using the underlying filesystem access

control.
3.4.3 Secured Indices and Search

In order to secure the indices for hosting at the SSP, we need to encrypt the indices appro-
priately. There are two goals for this security process — (a) hide file names and vocabulary
information from the SSP and (b) ensure that users only obtain results from indices that
they can access (barrel indices associated with V,f in the ACG).

For a vocabulary of keywords, an index consists of multiple rows with a row for each
keyword w. The row for w includes its TFIDF statistics from the files in barrel ACB; and
a list of files that contain w. We can hide the file names and vocabulary from the SSP using
the following cryptography technique.

We associate each barrel AC B; with a randomly generated barrel encryption key BEK;.

2The (u; V u;) barrels are handled by using POSIX ACLs for (u;, u;) on the indices and (gi A gm) are
handled by keeping indices under directory hierarchy X/Y with X, Y having privileges for g, gm respectively.
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Only the users who have the required credentials to search the barrel ACB; have the knowl-
edge of BEK;. This can be done by writing the key to a file stored in the filesystem names-
pace using the same permission settings as the barrel itself. Only the users that can access
ACB; can get this key. Note that the xACCESS system described in the previous chapter
is the one that allows us to set such permissions on files in the storage-as-a-service model.

Now, given a barrel encryption key BEK;, we replace each keyword w in barrel AC'B;’s
vocabulary with a keyed hash value KHpgpg,(w), where KH denotes a pseudo-random
function like HMAC-MD5 or HMAC-SHA1 [103]. Next, we present two approaches that
differ in the the computation/communication overhead incurred at the client at the risk of
exposing certain information to the SSP.

As a first approach (referred to as BDI-T) we leave the TFIDF statistics unencrypted and
encrypt each file name separately with the barrel encryption key BEK;. Now, given a search
query with keyword w from a user u, the user’s client initiates a search for K Hgpx, (w) for
all 7 such that ACB; is searchable by the user u. Note that if a barrel j is not searchable
by the user u, then the user u does not know the barrel encryption key BEK; and thus
cannot even guess the keyword K Hppk; (w). The SSP performs a regular distributed IR
search over user-accessible barrels for K Hppg,(w) and returns a ranked list of encrypted
file names which the user can decrypt with BEK;. SSP can do this ranking as TFIDF
statistics were left unencrypted.

However, this approach is vulnerable to a frequency inference attack (on the frequency
of keywords in the index). A frequency inference attack attempts to infer a keyword from its
popularity, say the number of files that contain the keyword, information which is contained
within the unhidden TFIDF statistics. Such frequency inference attacks can be thwarted
using statistics hiding approaches or by multiple SSPs. Please refer to [165] for one such
technique.

A second approach, referred as BDI-U, is to hide the index statistics from the SSP as
well. Similar to the first approach, we replace each keyword w in barrel AC'B;’s vocabulary
with a keyed hash value KHpgk,(w), but instead of encrypting only the file names, we

encrypt the entire row (including the TFIDF statistics) with the barrel encryption key
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BEK,;. When the SSP receives a search query with keyword K Hppg,(w) from a user u, it
returns the encrypted rows in the index corresponding to the keyword K Hppk, (w). Now,
the client has to perform some computation to decrypt and merge the results obtained from
different barrels and present a final ranked list of files to the user. This approach preserves
the privacy of the index statistics along with file names and vocabulary by incurring some

computation and communication overhead at the client.
3.4.4 Handling Updates

In an enterprise environment, there will be regular updates to data files and access privileges
to data and the system needs to handle them appropriately. In the decentralized storage
service model, these updates could occur through multiple clients and would require modify-
ing indices stored at the SSP. As in x ACCESS, we expect this process to be little expensive
since we are not only modifying the data, but also “embedding” access control into it.

There are two options for this modification:

o Immediate Client Modification: In this scheme, the client that updates a file is respon-
sible for updating the barrel index that contains the file. Most indexers like [112]
can handle index updates in an incremental manner and not performing complete re-
indexing. This approach has a big drawback of the impact on overall performance of
data writes (requires modifying barrel indices) and the fact that the responsibility of
this modification lies on individual enterprise users. Thus, we prefer the lazy approach

described next.

o Lazy Orchestrator Modification: In the second scheme, the global orchestrator is re-
sponsible for handling all updates. All clients that update a file, add its name to a
barrel update list stored at the SSP. The barrel update lists are encrypted with the
barrel encryption key, thus ensuring that only users that have access to files in that
barrel can modify the update list. The enterprise orchestrator periodically updates in-
dices for all modified files. This approach eliminates index modification responsibility

from clients at the risk of maintaining old indices.
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Another operation requiring modification to indices is the case of user/group member-
ship modification, in which case the access hierarchy needs to be adjusted. A user/group
addition is handled by adding a new node and corresponding edges (as done during initial
ACG construction). Group membership modification is handling by changing the edges in
the directed graph. Finally, a user/group deletion is handled by removing the appropriate
node and all edges coming into or out of that node and possible re-encryption of barrels.
Since this operation is performed only by the root, the global orchestrator is responsible

for performing these operations.
3.5 Experimental Evaluation

In this section, we present a detailed evaluation of our approach. In Section-3.5.1, we
describe the datasets used in our indexing and querying experiments. Section-3.5.2 describes
the indexing experiments including barrels pre-processing and Section-3.5.3 describes the
querying and search related experiments. We compare our approach with the other ACAS-
compliant index-per-user approach that allows hosting indices at the SSP in Section-3.5.5.
Section-3.5.6 shows the effectiveness of our optimization algorithms.

All experiments were done on a Pentium-III Linux machine with 512 MB RAM and all

storage mounted via NFS and results have been averaged over multiple runs.
3.5.1 Datasets

The first data set, called T14m, is a publicly available cleaned subcollection [78] of TREC
Enterprise track (TREC 14) [176]. TREC 14 is a newly formed track specifically on en-
terprise search and includes data from the World Wide Web Consortium (W3C) enterprise
filesystems. The T14m dataset characteristics are shown in Table-12. It includes emails
(lists), web pages (www), wiki web pages (esw) and people pages (people). This dataset does
not include any access control information.

A significant portion of the efficacy of our approach depends on actual filesystem struc-
ture and access privileges in the enterprise. In order to measure this, we collected statistics
from a real multiuser enterprise installation, whose characteristics are shown in Table-13.

Barrels per user statistics were also computed at a second enterprise (shown by *). It shows
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Table 12: T14m dataset: Cleaned TREC 14 subcollections
Scope | Docs Size Avg. Doc Size
lists | 173,146 | 485 MB 2.9 KB
www | 45,975 | 1001 MB 23.8 KB
esw 19,605 80 MB 4.2 KB
people | 1,016 3 MB 3.1 KB
Total | 239,742 | 1569 MB 6.9 KB

the low average number of barrels per user which implies that our core ACB approach will
function well (without any optimization tradeoffs).

We collected anonymized directory structure and access privileges information for 339,466
files arranged in 23,741 directories and replicated the structure in our test environment. The

T14m data was used as content for the files (duplicating documents to fill all 339,466 files).

Table 13: Real Enterprise Dataset

Number of users 926
Number of user groups 1203
Number of files 339,466
Number of dirs 23,741
Max depth of dir structure 23
Size of data 2.05 GB
Number of barrels 2132
Max | Avg | Median
Barrels per user 25 6.31 4.26
21* | 5.78* | 3.96*

3.5.2 Indexing Experiments

Indexing is perhaps the most important component of our approach. It includes a pre-
processing step that creates the user access hierarchy and the access control barrels followed

by actual content indexing of the files contained in ACBs.
3.5.2.1 Pre-processing

As pre-processing performance is entirely dependent on the enterprise infrastructure (users/groups
and directory structure), we use the real enterprise dataset for these experiments. Table-14
shows the evaluation of our implementation.

Creating access hierarchy for 926 users and 1203 user groups took a total of 38.7 seconds,
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Table 14: Pre-processing Performance for real enterprise dataset

Task Performance
Access hierarchy creation 38.7 sec
Barrel creation 263.1 sec

# Files stat’ed 202,446 (60%)

# Dirs stat’ed 14,059 (59%)

which is a very small fraction of the total indexing time. It took another 263.1 sec to traverse
the filesystem and create all ACBs. One A-credential needed to be added to the access
hierarchy during barrel creation. Additionally only 60% of the filesystem tree needed to be
traversed to create all barrels as in many cases, a higher level directory was mapped to a
restrictive credential (e.g. only uidp.p, can access) in which case its contents are automatically
added to that barrel without deeper traversal. Overall, these costs are only 10% of the
distributed indexing approach and 6% of the centralized approach (shown later in Table-

15).
3.5.2.2 Content Indexing

For indexing of documents, we used the arrow indexing and search component of the Bow
Toolkit [112] developed at CMU. We modified the ranking algorithm of the toolkit to the
distributed IR algorithm of [104]. For our experiments, we compared two architectures: (1)
Centralized Single Index (CSI) - a centralized single index for the entire dataset analogous to
the available enterprise search products®, and (2) Barrel-based Distributed Indezing (BDI) -
our barrels based distributed indexing approach. BDI-m denotes the case when m machines
are used to index barrels in parallel. The Index-Per-User (IPU) approach is similar to the
BDI approach as it also allows distributed indexing. We perform a direct comparison with
the IPU approach later in Section-3.5.5.

Figure-28 shows the time to index different number of documents of the T14m dataset
ranging from 25K to 240K. For BDI architectures, the documents were equally divided
between the participating machines for indexing.

From the graph, CSI outperforms the BDI approaches when the number of documents is

3Recall that this architecture does not guarantee access control aware search
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Figure 28: Indexing T14m dataset

small. This occurs due to the pre-processing costs that the BDI approaches incur. How-
ever, as the number of documents increases, BDI approaches quickly outperform the CSI
approach. The distribution of data into ACBs has allowed us to exploit available enterprise
machines for faster indexing time (an 85% improvement for 240K files).

The results for the T14m dataset above are a little optimistic as it considers a uniform
size and distribution of barrels. However, in reality there could be a few barrels that are
significantly larger than the others and dominate the indexing times. To evaluate this, we
performed indexing for our real enterprise dataset. The results are reported in Table-15,
where #Max-Docs is the number of documents in the largest barrel. As shown in Table-15,
the barrel for the all node (files that can be read by all users) was significantly larger and
took longer than all other barrels combined (and thus total time does not vary with number
of machines). However, it was still 38% more efficient than the CSI approach. In general,
distribution is most helpful when there are many such large barrels and we expect that to
be true in an enterprise-scale environment.

Table 15: Indexing for real enterprise dataset
Type | #Max-Docs | Time (s) | Savings

CSI 339,466 4640 -
BDI 189,546 2902 38%

3.5.3 Searching Experiments

If the indices are hosted at the SSP, search would actually be performed by the SSP.

However, as we are comparing our approach to the centralized index approach (CSI) scheme,
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which does not support SSP index-hosting, we consider these experiments in the local
enterprise setup. We evaluate the SSP index hosting approaches in Section-3.5.4.

Recall that searching in our approach requires combining multiple barrels. However,
given the small number of barrels per user, overheads should not significantly deteriorate
query performance. Secondly, since our approach does not have to perform access control
at runtime (which the CSI approach does), there would be some savings in query runtime
performance.

For the querying experiments we used 150 queries obtained from TREC 14 Email search.
The queries had an average of 5.35 terms per query. The results for CSI and n-BDI (where
n is the number of barrels combined) are reported in Table-16, where loading time is the

time to load all indices in memory.

Table 16: Search Performance for TREC 14 lists

Type | Index size | Loading time | Avg. time / query
CSI 230 MB 25 s 131.12 ms
2-BDI 258 MB 3.37s 112.89 ms
5-BDI 269 MB 5.68 s 130.68 ms
10-BDI 280 MB 6.90 s 149.90 ms

First notice that the BDI approaches have slightly larger indices. This is due to the fact
that they have to store many words multiple times in different barrel vocabularies. Next,
the time to load indices into memory also increases with the number of barrels as there
are more file I/Os to gather the index data. However, this is only a one-time cost and
once indices are cached, queries proceed normally. Finally, the average query time for BDI
approaches is comparable to CSI with 2-BDI and 5-BDI even outperforming it by saving
on the privileges check required at runtime in the CSI approach.

We also compared the ranking of the BDI approaches to CSI ranking. For this we
evaluated the percentage of top-10 results of the CSI approach that occurred in top-100
of the distributed approach and their average ranks. Table-17 reports the results, where
10-in-100 is the percentage of CSI top-10 results in top-100 of x-BDI and avg-rank is the
average rank of CSI top-10 results in x-BDI top-100. For our average case of 5 barrels

per user, nearly 70% of top-10 results occurred in top-100 of the BDI approach with an
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average rank of 14. We believe that ranking can be further improved using more advanced

distributed ranking techniques.

Table 17: Ranking comparison for TREC 14 lists

Type | 10-in-100 | Avg. Rank
2-BDI 5% 13
5-BDI 68% 14
10-BDI 61% 15

3.5.4 SSP Search Evaluation

In our SSP experiments, we compare the two approaches discussed in Section-3.4.3 — (a)
BDI-T stores indices at the SSP with un-encrypted index statistics (TFIDF measures) and
only hides file names and words, (b) BDI-U also encrypts the TFIDF statistics, but incurs
higher communication and computation costs.

Figure-29 and 30 show the computation and communication overhead incurred by the

two approaches over an approach wherein the SSP is completely trusted (nothing is hidden

— used only for a baseline comparison).
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The indexing cost for BDI-T is higher since we encrypt each filename separately, unlike
BDI-U which encrypts the entire list of file names and index statistics for each keyword
(encrypting file names separately requires each file name to be padded such that its length
is an integer multiple of 16 bytes, a requirement of the encryption algorithms).

On the other hand BDI-U incurs a higher cost for search. Computation cost is higher
because BDI-U requires client side computation to decrypt and merge the results from
multiple barrels. Communication cost is high because in BDI-U the SSP sends the entire
list of file names for a keyword (along with the index statistics) to the client rather than
sending a short-listed set of ranked files. Note that the total number of files that match a
keyword can be significantly larger than the result set, hence, the communication overhead
in BDI-U is also larger than BDI-T.

We believe that the choice of approach would be a security based decision. In the BDI-
T approach, the range of attacks are probabilistic frequency inference attacks which can
be thwarted using techniques like multiple SSPs [165]. Thus, enterprises have to individ-
ually trade off this security issue with computation and communication costs with latter

influencing monetary costs as well.
3.5.5 Comparison with Index Per User Approach

In this section, we compare the performance and scalability of the ACB approach against
the index per user (IPU) approach. For a wider range of experiments and to better analyze
the impact of large number of files and users, we use synthetic data for these experiments.
The key parameters in our data are summarized in Table-18. Since the analysis is the same
for both A-groups and V-users, we consider only A-groups in this section. We use Zipf(a, b)
to denote a Zipf distribution with parameter v = 1 that is truncated to the range (a,b).
We choose ngu the number of groups a user is a member of using a Zipf distribution on
the range (2,10); we then choose ngu groups from the set G using Zipf(1, |G|) and without
replacements. Similarly, we choose ngf the number of A-groups per file using Zipf(2, 4); we
then choose ngf groups from the set G using Zipf(1, |G|). The access control rule for the

file is assumed to be an A over all the chosen groups. The number used in these experiments
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Table 18: Parameters for IPU-ACB Comparison

Notation Description Default

|F| Number of Files 107
|U] Number of Users 103
|G| Number of User Groups 32
pop Group Popularity Zipf(1, ng)
ngu Number of Groups per User | Zipf(2, 10)
ngf Number of A-groups per File | Zipf(2, 4)
nuf Number of V-users per File | Zipf(2, 4)
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Figure 31: TPU-ACB Scalability Comparison: # Users

are based on typical enterprise infrastructure as observed earlier.

For our evaluation, we measure the total number of ACBs and the number of ACBs
per user. We also compare the ratio of the size of indices maintained by the IPU and ACB
approach. Figure-31 shows the scalability of our approach with the number of users |U|. In
the IPU approach, the index size grows with the number of users in the system, typically
because more users share a file. On the other hand, the ACB approach maintains exactly
one copy of each file index and the total number of barrels (and thus the average number of
barrels per user) is independent of |U|. Figure-32 shows the scalability of our approach with
ngu the number of group memberships per user. As ngu increases, so does the number of
users that share a file and thus the index size in the IPU approach. In the ACB approach,
as ngu increases it results in a smaller increase in the number of ACBs per user.

One should observe that our core approach maintains exactly one copy of index for
each file. Hence, when a file is updated at most one index needs to be modified. The TPU

approach maintains multiple copies of each file index, one for every user who is permitted
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Figure 32: TPU-ACB Scalability Comparison: # Groups per user

to access that file. Hence, when a file is updated the IPU approach has to update several
indices (an average of 45.2 using default settings in Table 18) thereby incurring high data
access costs. In contrast the ACB approach incurs a small overhead of using distributed IR

solutions to merge search results from a small number of barrels.
3.5.6 Optimization Techniques

In this section, we show the effectiveness of our optimization techniques in decreasing the
number of barrels. Figure-33 shows the effectiveness of our first optimization technique
that preserves the ACAS property while maintaining multiple copies of each file index. We
plot the tunable parameter minf, the minimum number of files per barrel, on the x-axis.
As described in Section-3.3.3 our index size increases with minf and slowly reaches the
index size of the IPU approach as minf — |F|. This shows the flexibility of our technique
in reducing the number of barrels while incurring significantly lower costs than the ITPU
approach.

Figure-34 and Figure-35 show the effectiveness of our second optimization technique that
maintains exactly one copy of every file index while violating the ACAS property for some
files. We have evaluated the effectiveness of our algorithm using three heuristics: random
chooses a vertex v at random from mazSub(V¢), size picks the vertex v € mazSub(Ve)
that has the least number of files, and pop picks the vertex v € mazSub(V¢) that causes the
least number of ACAS violations. Figures 34 and 35 show that popularity based approach

performs best in terms of both minimizing the number of violations and the number of
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ACBs. As described in Section-3.3.3 the number of violations increases with minf and
finally equals that of the single-index approach. This shows the flexibility of our technique
in reducing the number of barrels while violating the ACAS property for far fewer files than

the single-index approach.

3.6 Related Work
3.6.1 Other Enterprise Search Approaches

We have already described existing work in enterprise search (Section-3.2) and how our
approach tackles the problem differently. Table-19 summarizes this discussion and compares
all approaches on various attributes. Specifically, our approach is unique in its ability to
provide access control aware search using a distributed approach that allows index hosting

at an untrusted SSP.
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Table 19: Comparison of search approaches

Desktop Enterprise | Wumpus [28] Our Approach
Search Search

ACAS  Require- | Satisfied Not satisfied | Satisfied Satisfied

ment

Architecture Distributed | Centralized Centralized Distributed &
& parallel parallel

Access Control In- | Indexing Query Run- | Query Runtime Indexing

tegration time

Service Provider | No No No Yes

Index Hosting

Qverheads High space | Runtime Runtime query | Barrels process-
& update | privileges transformation & | ing & runtime
costs check privileges check results merging

In the rest of this section, we discuss other related work in private search and keyword

based search over encrypted data, similar to our SSP environment.

3.6.2 Private Information Retrieval

Private information retrieval (PIR) was first introduced as a problem by Chor et al [39] — a

user wishes to retrieve the i** bit in a database without revealing any information about i.

PIR schemes often require multiple non-colluding servers, operate in multiple rounds, are

resource-intensive and do not support keyword search. Hence, several authors have focused

on efficient solutions and their security guarantees. Another direction of work has focused

on running queries over encrypted data at an untrusted server [73, 169, 34]. These schemes

require the user to know a secret key with which the searchable content of the document is

109




encrypted. They ensure that only the frequency profile of the queried keywords is revealed
to the search service provider (similar to our BDI-T approach). However, these approaches
do not consider a multiuser enterprise setting where in addition to keeping the data private
from the SSP, one needs to enforce access control rules on the users. Our approach cleverly
partitions the search problem into two parts: an access control problem that is handled
by our barrels-based secure indices, and a privacy problem if such indices are hosted by a
third-party search service provider. Indeed, we can leverage any approach [169, 21] that
provide privacy preserving search over an untrusted service provider hosted index.

Bawa et al [16] present techniques for constructing a privacy preserving index on docu-
ments in a multi-organizational setting. Their goal is to construct a centralized index that
can be made public without giving out any private information. Similar to other enterprise
search techniques they apply access control at query runtime and incur higher overheads
than our proposal. Our approach focuses on integrating access control with search in a

single enterprise setting and is more efficient.
3.7 Summary

In this chapter, we presented an efficient and secure approach to enterprise search. This is
a desired feature for data stored at a remote Storage Service Provider which charges client
enterprises for the amount of data they access. We demonstrated the inadequacy of existing
solutions at ensuring access control aware search for multiuser enterprise environments. We
developed distributed techniques that elegantly “embed” access control semantics into search
indices, using novel access control barrel (ACB) and user access hierarchy concepts. The
distributed and parallel nature of our solution helps improve indexing efficiency and allow
search indices to be hosted at the SSP. Our experimental evaluation on synthetic and real

datasets shows improved indexing efficiency and minimal overheads for ACB processing.
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CHAPTER IV

EFFICIENT IMPACT ANALYSIS WITH ZODIAC

The first part of the thesis addressed client security and privacy concerns in the storage-
as-a-service model. As discussed earlier, another important challenge to this model stems
from the complex management of the highly dynamic storage infrastructure of the ser-
vice provider. The storage service provider has to provide on-demand storage and needs
to accommodate client requests quickly and without adversely impacting the rest of the
environment.

To scale to large amounts of data, SSPs use a Storage Area Network (SAN), typically
based on Fibre Channel SCSI technology [43]. This SAN is hidden from client enterprises,
thus preventing any management complexity at their end. Inside the SSP however, a number
of administrators are required for managing such SANs, performing complex tasks like
change analysis, provisioning, performance bottleneck analysis, capacity planning, disaster
recovery planning and security analysis. In the context of an on-demand SSP infrastructure,
one of the most critical tasks becomes change analysis, which is to pro-actively analyze the
impact of an upcoming change on the rest of the storage area network. This is important
since it is estimated that over 70-80% of all changes resulting in downtimes are initiated by
people within the organization [114]. Such downtimes can be crippling for a storage service
provider.

Typically, administrators perform change impact analysis manually, based on their past
experience and rules of thumbs (best practices). For example, when a new host is added,
the administrators make sure that Windows and Linux hosts are not put into the same
logical zone or while adding a new workload, they ensure that the intermediate switches
do not get saturated. Manually analyzing the impact of a particular change does not scale
well as the size of the SAN infrastructure increases with respect to the number of devices,

best practices policies, and number of applications.
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Most change management tools have been reactive in their scope in that they keep
snapshots of the previous state of the system, and the administrators either revert to or
compare the current state with a previous state after encountering a problem. Only re-
cently has proactive change management analysis begun to receive its share of deserved
attention [157, 91, 97, 174]. In this chapter we describe our contribution in this area — the
Zodiac framework. Zodiac enables system administrators to proactively assess the impact
of changes on a variety of system parameters like resource utilizations and existing system
policies, before making those changes.

The key aspect of our analysis framework is that it is tightly integrated with policy
based storage management [3]. Policy-based management is being incorporated into most
vendor’s storage management solutions as it allows administrators to specify high level
goals and requirements and let the management software handle implementation details.
Zodiac allows administrators to specify their rules of thumb or best practices with respect to
interoperability, performance, availability, security as policies. It then assesses the impact
of user actions by checking which of these policies are being violated or triggered. Zodiac
also assesses the impact of creating new policies.

We have also developed a number of optimizations that help to reduce the amount of
SAN data examined during impact analysis, ensuring quick response and scalability for
large SANs and large number of policies. One of the interesting results of the optimization
design effort in Zodiac is that we have designed a new method for classifying SAN policies
based on the optimization techniques they employ. This, in turn, can also be used by
general SAN policy evaluation engines to optimize their evaluation mechanisms. During
policy specification, policy designers can specify the policy type (as per this classification)
as a hint to the policy engine to optimize its evaluation.

The rest of the chapter is organized as follows. Section-4.1 provides the necessary back-
ground with respect to policy definitions, and SAN operations. The overview of our architec-
ture is presented in Section-4.2 followed by the details of our implementation in Section-4.3.

In Section-4.4, we discuss three important optimization algorithms that help speed up the
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overall analysis process. The experimental framework and the results evaluating these op-
timizations are presented in Section-4.5. We describe related work in Section-4.6. Finally,

we summarize our contributions in Section-4.7.
4.1 Background

This section presents the necessary background material for this chapter. Section-4.1.1
contains a discussion on the type of SAN policies considered in this chapter. Section-4.1.2
provides the details of the storage resource models and Section-4.1.3 presents a list of what-if

operations that one can perform.
4.1.1 Policy Background

The term policy is often used by different people in different contexts to mean different
things. For example, the terms best practices, rule of thumbs, constraints, threshold viola-
tions, goals, rules and service classes have been referred to as policies by different people.
Currently, most standardization bodies such as IETF, DMTF, and SNIA refer to policy
as a 4-field tuple where the fields correspond to an if condition, a then clause, a priority
or business value of the policy and a scope that decides when the policy should be exe-
cuted. The then clause portion can generate indications, or trigger the execution of other
operations (action policies), or it can simply be informative in nature (write a message to
the log). [3] describes the various SAN policies found relevant by domain experts. In this
chapter, within the storage area network (SAN) domain, we deal with the following types

of policies:

e Interoperability: These policies describe what devices are interoperable (or not)

with each other.

¢ Performance: These policies are violation policies that notify users if the perfor-
mance of their applications (throughput, IOPs or latency) violate certain threshold
values. For a storage service provider this implies the performance guarantees given

to the client enterprise.
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e Capacity: These policies notify users if they are crossing a percentage (threshold) of

the storage space has been allotted to them.

e Security and Access Control: Zoning and LUN masking policies are the most
common SAN access control policies. Zoning determines a set of ports of host, switches
and storage controllers that can transfer data to each other. Similarly, LUN masking

controls host access (via its ports) to storage volumes at the storage controller.

e Availability: These policies control the number of redundant paths from the host to

the storage array.

¢ Backup/Recovery: These policies specify the recovery time and recovery point
objectives and copy frequency to facilitate continuous copy and point-in-time copy

solutions.
4.1.2 Storage Resource Model

In order to perform impact analysis, storage resource models are used to model the under-
lying storage infrastructure. A storage resource model consists of a schema corresponding
to various entities like hosts, host bus adapters (HBAs), switches, controllers, the entity
attributes (e.g. vendor, firmware level), container relationships between the entities (HBA
is contained with a host), and connectivity between the entities (fabric design). These enti-
ties and attributes are used during the definition of a policy as part of the if-condition and
the then clause. For a specific policy, the entities and the attributes that it uses are called
its dependent entities and dependent attributes respectively. The SNIA SMI-S [168] model
presents a general framework for naming and modeling storage resources.

In addition to the schema, a storage resource model also captures the behavioral aspects
of the entities. The behavioral aspects, called metrics, represent how a resource behaves
under different workload and configuration conditions. The behavioral models are either
analytically specified by a domain expert [178], or deduced by observing a live system [7]
or a combination of both.

The defined resource model gets populated by discovering and monitoring a real SAN.
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SMI-S utilizes the client-server CIM architecture [50] to allow for the retrieval of storage
management information from the storage resources. In this chapter we assume that we
have a CIM client that populates a SMI-S compliant SAN resource model database.
Figure-36 shows the basic SAN resource model that we consider in this chapter. A single
SAN path is highlighted and shaded ports represent zone containment. Qur resource model
consists of hosts, HBAs, ports, switches, storage controllers, zones, and volume entities,
and host to HBA, port to HBA, port to zone containment relationships and port to port
connection relationships. In addition, there exists a parent entity class called device, which
contains all the SAN devices. The device entity class can be used to define global policies

like all devices should have unique WWNs.
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Figure 36: SAN Resource Model

4.1.3 SAN Operations:

Using Zodiac, the following types of operations can be analyzed for impact.
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e Addition/Deletion of Physical Resources: Hosts, switches, HBAs, and storage arrays
can be added or removed (due to failure). Similarly, devices can be interconnected or

disconnected.

o Addition/Deletion of Logical Resources: Volumes and zones can be created and re-

moved. Ports belonging to storage devices can be made active or inactive.

o Access control operations: Adding or removing ports to zones to control which host
can access which storage ports. Similarly, LUN masking operations can be performed

to determine which host ports can access which storage volumes.

e Addition/Deletion of Workloads: The requirements (throughput, latency) of a work-
load can also be modified. We represent a workload as a set of flows. A flow can
be thought of a data path (Figure-36) between a host and a storage controller. A
flow starts at a host port, and goes through intermediate switch ports and ends at a

storage controller port.

e Addition/Deletion of Policies: Zodiac can also evaluate the impact of adding or delet-
ing a particular policy. However, please note that we do not perform conflict detection

analysis within policies, rather only simulate how the real system is likely to behave.
4.2 Architecture Overview

In this section, we provide an overview of the Zodiac architecture and its interaction with

other SAN modules. We start with an example illustration of the impact analysis process.
4.2,1 Impact Analysis Illustration

Consider an administrator trying to deploy 10 hosts, running a new application, to the
SAN. The SAN already has many critical applications deployed, with stringent performance
requirements. In addition, the SAN is also required to adhere to many best practices (e.g.
all hosts should be from the same vendor) and lab tested configuration guidelines ( Vendor-A
host with Vendor-H HBA works well with Vendor-S storage). These and many other policies

are stored in a policy database. Before applying the actual change, the administrator wishes
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to use Zodiac to analyze the impact of the change on existing infrastructure. The various

steps in the impact analysis process are as follows:

e First, the administrator would initialize a Zodiac impact analysis session, in which
operations can be “virtually” applied to the SAN to analyze their impact. Zodiac
starts off by taking a snapshot of the state of the SAN, which is used as the base state

for impact analysis.

e As part of the analysis, Zodiac would first identify the set of relevant policies
that need to be checked before adding the hosts. For example, it would check if the
hosts’ vendor is the same as the existing hosts in the SAN and if the host connections

are consistent with the lab configuration guidelines.

e It is possible that some of the policies get violated. Based on the actions defined in
the then clause of those policies, Zodiac could just indicate the violation (policy only
required notifying the administrator), or perform automatic operations (policy

initiates a migration job, on violation).

e These policy actions are treated as basic SAN operations (Section-4.1.3) and ana-
lyzed similarly. Such “chaining” actions might require many more policies to be
checked. For this reason, Zodiac incorporates many optimization algorithms that let
it efficiently recognize the set of relevant policies from the huge policy database and

the region of SAN relevant for evaluation (Section-4.4).

e After initial policy evaluation, Zodiac simulates the new network traffic generated
due to the workload and evaluates new metrics for the SAN resources using device
resource models. Such evaluation could also trigger various performance policies and

their actions are also analyzed for impact.

e The user can also analyze the impact at a future point in time. For example, if
all storage is backed up at 3 AM, the administrator might want to ensure that the

workloads are able to meet their performance requirements during that time.
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Figure 37: Zodiac Architecture

As evident from the example, impact analysis is a complex task and policy evaluation
is a very critical component in its performance (multiple policies can be triggered multiple

times in a single impact analysis operation). We believe Zodiac to be an important step in

solving this tough problem.

4.2.2 Zodiac: Big Picture Design

The goal of the impact analysis engine, like Zodiac, is to predict the state and behavior
of the SAN once a desired operation is performed. In order to evaluate the new state, the
engine needs to interact with various SAN modules to get the relevant information, like

device attributes, policies. The overall picture of such an eco-system is shown in Figure-37.

In this eco-system, Zodiac interacts with the following modules:

o SAN Monitor: The foremost input requirement is the state of the SAN, which is
obtained from a SAN Monitor like [54, 81, 88, 45]. It consists of the physical configu-
ration (fabric design), resource attributes (HBA vendor, number of HBAs in a host)

and logical information like Zoning/LUN-Masking.

o Workload Schedule: In order to predict the behavior of the SAN, Zodiac also needs
to know the schedule of the workload. For example, if a backup job is scheduled for 3
AM, then the engine needs to account for the additional traffic generated due to the

backup during that duration.
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e Policy Database: A unique characteristic of the Zodiac impact analysis engine is its
integration with policy based management. The policies are specified in a high level

specification language like Ponder [49] or XML [3] and stored in a policy database.

e Resource Models: As described earlier, Zodiac uses a model based approach to evaluate
the behavior of SAN resources. For this, we require a resource models database that
provides such behavioral models. There has been significant work in the area of
modeling and simulation of SAN resources [178, 7, 153, 189, 44, 121, 17, 26, 194] and
we leverage that. Note that the design of Zodiac is independent of the resource models

and can work with any approach.

Given these modules, Zodiac takes as input the operation that the administrator wants
to perform and the time at which the impact needs to be measured (immediate or after n

hours) and initiates the analysis.
4.2.3 Zodiac: Internal Design

Internally, Zodiac engine is composed of the following primary components:

e SAN-State: In Zodiac, the impact analysis occurs in a session, during which an
administrator can analyze the impact of multiple operations incrementally. So, a first
operation could be - what happens if I add two hosts? After the engine evaluates
the impact, an administrator can perform an incremental operation - what if I add
another two hosts? The SAN state component maintains the intermediate states of
the SAN, so that such incremental operations can be analyzed. When an analysis
session is initialized, the SAN state is populated by the current snapshot of the SAN,

obtained from the SAN Monitor.

e Optimization Structures: As mentioned earlier, for efficient policy evaluation, Zo-
diac maintains intelligent data structures that optimize the overall evaluation. These
three primary structures (caches, policy classes and aggregates) are explained in detail

in Section-4.4.
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e Processing Engine: The processing engine is responsible for efficiently evaluating
the impact of operations using the SAN state and the rest of the internal data struc-

tures. It is the main work horse of Zodiac.

e Visualization Engine: Another important component of Zodiac is its visualization
engine. The visualization engine primarily provide two kinds of output. First, it can
provide an overall picture of the SAN, with various entity metrics and can highlight
interesting entities, e.g. the ones that violated certain policies. Secondly, with the
incorporation of temporal analysis, an administrator can plot interesting metrics with

time.
4.2.4 Operation Modes

Zodiac uses a number of internal data structures, that are used to optimize impact analysis.
These data structures are derived from the actual SAN and it is important to keep them
consistent with the state of the SAN across multiple impact analysis sessions. This is

facilitated by Zodiac via the following modes of operation:

e SAN Management Software (SMS): The ideal setting for an impact analysis engine
is for it to be a part of the SAN management software. In this mode, the internal
data structures are automatically updated by the management software and thus, no

special operations are required.

e Distinct Component with Bootstrapping (DCB): Another mode could be the genera-
tion of all required data structures, every time the analysis engine is run. Though
this makes the bootstrapping process expensive, it keeps the impact analysis engine

completely independent of the SAN management software.

e Distinct Component with Event Listener (DCEL): 1t is also possible for the impact
analysis engine to contain an event listener which acts as a “sink” for events generated
by the SAN (standardized under SNIA SMI-S specification) and keeps its structures

updated. This would require the analysis engine to be running at all times.
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Our current prototype is implemented to operate in the SMS mode, though the design

does not have any inherent restrictions and can be modified to operate in any mode.
4.8 Zodiac: System Details

In this section, we provide the details about the internal data structures being used by
Zodiac to represent SANs (Section-4.3.1) and how the policy evaluation framework uses
these data structures (Section-4.3.2). In Section-4.3.3, we describe the inadequacy of the

current evaluation approach before proposing various optimizations in the next section.
4.3.1 SAN Representation

For efficient impact analysis, it is critical that SAN is represented in an optimal form. This
is because all policies and resource metric computations would obtain required data through
this SAN data structure. In Zodiac, the SAN is represented as a graph with entities as nodes
and network links or containment relationships (HBA is contained within a host) as edges.
A sample SAN as a graph is shown in Figure-36. A single SAN “path” has been highlighted.
Note that it is possible to have more than one switch in the path.

Each entity in the graph has a number of attribute-value pairs, e.g. the host entity
has attributes like vendor, model and OS. In addition, each entity contains pointers to its
immediate neighbors (Host has a pointer to its HBA, which has a pointer to its HBA-Port
and so on). This immediate neighbor maintenance and extensive use of pointers with zero
duplication of data allows this graph to be maintained in memory even for huge SANs (1000
hosts).

There are two possible alternatives to this kind of immediate-neighbor representation of

the SAN. We discuss the alternatives and justify our choice below:

1. Alternative-Paths: Assume a best practices policy requiring a Vendor-A host to be
only connected to Vendor-S controller. Its evaluation would require a traversal of the
graph starting at the host and going through all paths to all connected controllers. In
fact many policies actually require traversals along “paths” in the graph [3]. This could

indicate storing the SAN as a collection of paths and iterating over the relevant paths
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for each policy evaluation, preventing costly traversals over the graph. However, the
number of paths in a big SAN could be enormous, and thus, prohibitive to maintain
the path information in-memory. Also, the number of new paths created with an
addition of a single entity (e.g. a switch) would be exponential, thus making the

design unscalable.

2. Alternative-SC: Even without paths, it is possible to “short-circuit” the traversals
by keeping information about entities further into the graph. For example, a host
could also keep pointers to all connected storage. While this scheme does work for
some policies, many interoperability policies, that filter paths of the graph based on
some properties of an intermediate entity, cannot be evaluated. For example, a policy
that requires a Vendor-A host, connected to a Vendor-W switch, to be only connected
to Vendor-S storage, cannot be evaluated efficiently using such a representation, since
it is still required to traverse to the intermediate entity and filter based on it. However,
this idea is useful and we actually use a modified version of this in our optimization

schemes described later.
4.3.2 Policy Evaluation

In current policy evaluation engines, policies are specified in a high level specification lan-
guage like Ponder [49], XML [3]. The engine converts the policy into executable code that
can evaluate the policy when triggered. This uses an underlying data layer, e.g. based
on SMI-S, that obtains the required data for evaluation. It is this automatic code genera-
tion, that needs to be heavily optimized for efficient impact analysis and we discuss various
optimizations in Section-4.4.

In Zodiac, the data is obtained through our SAN data structure. For evaluating a
policy like all Vendor-A hosts should be connected to Vendor-S controllers, a graph traver-
sal is required (obtaining storage controllers connected to Vendor-A hosts). In order to
do such traversals, each entity in the graph supports an API that is used to get to any

other connected entity in the graph (by doing recursive calls to immediate neighbors). For
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example, hosts support a getController() function that returns all connected storage con-
trollers. The functions are implemented by looking up immediate neighbors (HBAs), calling
their respective getController() functions, aggregating the results and removing duplicates.
The neighbors would recursively do the same with their immediate neighbors until the call
reaches the desired entity (storage controller). Similarly for getting all connected edge
switches, core switches or volumes. This API is also useful for our caching optimization. It
caches the results of these function calls at all intermediate nodes for reuse in later policy
evaluations.

However, even this API suffers from the limitation of the Alternative-SC scheme pre-
sented above. That is, how to obtain controllers connected only through a particular vendor
switch. To facilitate this, the entity API allows for passing of filters that can be applied at
intermediate nodes in the path. For our example, the filter would be Switch. Vendor=“W".
Now, the host would call the HBA’s getController() function with the filter Switch. Vendor=“W".
When this call recursively reaches the switch, it would check if it satisfies the filter and only
the switches that do, continue the recursion to their neighbors. Those that do not satisfy
the filter return null.

The use of filters prevents unnecessary traversals on the paths that do not yield any
results (e.g. paths to the controllers connected through switches from other vendors). The
filters support many comparison operations like =, #, >, >, <, <, € and logical OR, AND
and NOT on filters are also supported. The caching scheme incorporates filters as well
(Section-4.4.2). The Alternative-SC presented above, can not use this filter based scheme
since the possible number of filters can be enormous and thus always storing information
in-memory for each such filter would be infeasible.

Notice that not all filters provide traversal optimizations. The filters that are at the
“edge” of a path do not help. For example, a best practices policy - if a Vendor-A host
connected to a Vendor-W switch accesses storage from a Vendor-S controller, then the con-
troller should have a firmware level > z. In this case, the policy requires getting controllers
with the filter Switch. Vendor=“W?” AND Controller. Vendor=“S”. While the first term

helps reduce the number of paths traversed, the second term does not — we still have to
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check every controller connected through the appropriate switches. Therefore, we prefer not
to apply the filters at the edge, instead obtaining all edge entities (controllers in this case)
and then checking for all conditions (Vendor and FirmwareLevel). This helps in bringing
more useful data into the entity caches.

It is also important to mention that the traversal of the graph can also be done only for
logical connections (due to zoning). This is facilitated by providing equivalent API functions
for traversing links with end-points in particular zone, e.g. getController Logical(Z) obtains
all connected controllers in Zone Z, i.e. all controllers reachable through a path containing
ports (HBA ports, switch ports, controller ports) in zone Z.

Given the above framework, we next discuss why the current policy evaluation approach

is inefficient for impact analysis.
4.3.3 Impact Analysis: Inadequacies of Current Approach

During impact analysis, a SAN operation can trigger multiple policies to be evaluated. For
example, a host being added into the SAN would require evaluation of intrinsic host policies
(policies on basic attributes of the host - all hosts should be from a single vendor), various
host interoperability policies with other connected devices, zoning policies, and so on. With
the popular policy-based autonomic computing initiative, it is highly likely that the number
of policies in a SAN would be very large. So it is imperative that only the relevant set of
policies are evaluated. For example, for the host-addition case, a switch and controller
interoperability policy should not be evaluated.

The current policy evaluation engines [3] use a coarse classification of scopes. In such
a scheme, each policy is designated a Scope to denote the class of entities, it is relevant to.
In addition, it is possible to sub-scope the policy as intra-entity - evaluation on attributes
of a single entity class or inter-entity - evaluation on attributes of more than one entity
class [3]. The motivation for such classification is to allow administrators, to do a policy
check only for a select class of entities and policies in the SAN. Unfortunately, this form of

classification is not efficient for impact-analysis due to the following reasons:
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e Lack of granularity: Consider the policy which requires a Vendor-A host to be con-
nected only to Vendor-S storage controller. Naively, such a policy would be classified
into the Host scope and the Storage scope. Thus, whenever a new host is added to the
SAN, it will be evaluated and similarly, when a controller is added. However, consider
the addition of a new link between an edge and a core switch. Such a link could
cause hosts to be connected to new storage controllers, and thus the policy would still
need to be evaluated and so, the policy also needs to be added to the Switch scope.
With only scope as the classification criteria, any switch related event would trigger
this policy. It is possible to further sub-scope the policy to be an inter-entity. How-
ever, it still will be clubbed with other switch inter-entity policies, which will cause

un-necessary evaluations.

e Failure to identify relevant SAN region: The current scoping mechanism fails
to identify the region of the SAN that needs to be traversed for policy evaluation.
Consider the two policies: (a) All Vendor-A hosts should be connected to Vendor-S
storage, and (b) All hosts should have atleast one and atmost four disjoint paths to
controllers. Both the policies would have identical scopes (host, controller and switch)
and sub-scopes (inter-entity). Now, when a switch-controller link is added to the SAN,
evaluation of (a) should traverse only the newly created paths — ensure that all new
host-storage connections satisfy the policy; there is no need to traverse a path that has
already been found to satisfy that policy. However, the same is not true for (b). Its
evaluation would require traversing many old paths. The current scoping mechanism
fails to identify policies of type (a) and would end up evaluating many old paths in

order to provide a correct and general solution.

The current policy evaluation engines also fail to exploit the locality of data across
various policies. For example, two distinct policies might require obtaining the storage
controllers connected to the same host. In such a scenario, it is best to obtain the results for
one and cache them to use it for the other. To the best of our knowledge, the current policy

engines do not provide such caching schemes and rely on the underlying SMI-S data layer [3]
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to do this caching (which could still require evaluating expensive join operations). This is,
in part, due to the low number of policies in current SANs and the fact that currently, the
policy checking process is primarily a non-real-time, scheduled task with periodic reporting
(typically daily or weekly reporting periods). As we show in Section-4.5, a caching scheme
has significant performance benefits and helps in interactive real-time analysis.

Such an efficiency is critical especially in the presence of action policies. Such policies
when triggered initiate automatic operations on the SAN (“then” clause of the policy).
These are typically designed as compensating actions for certain events and can do rezon-
ing, introduce new workloads, change current workload characteristics, schedule workloads
and more. For example, a policy for a write-only workload like if Controller-A wutiliza-
tion increases beyond 95%, write the rest of the data on Controller-B. When the policy is
triggered, a new flow is created between the host writing the data and Controller-B, and
policies related to that event need to be checked. The action might also do rezoning to put
Controller-B ports in the same zone as the host and so, all zoning related policies would
end up being evaluated. Overall, such a chain of events can lead to multiple executions of
many policies. The caching scheme, combined with the policy classification, significantly

helps in these scenarios.
4.4 Zodiac Impact Analysis: Optimizations

In this section, we present various optimizations in the Zodiac architecture that are critical
for the scalability and efficiency of impact analysis. Zodiac uses optimizations along three

dimensions.

1. Relevant Evaluation: Finding relevant policies and relevant regions of the SAN affected
by the operation. This is accomplished using policy classification and is described in

Section-4.4.1.

2. Commonality of Data Accessed: Exploiting data locality across policies or across eval-
uation for different entity instances. This is achieved by using caching, described in

Section-4.4.2.
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Figure 38: Zodiac Impact Analysis Process

3. Aggregation: Efficient evaluation of certain classes of policies by keeping certain ag-

gregate data structures. This scheme is described in Section-4.4.3.

All three optimizations are independent of each other and can be used individually. How-
ever, as we show later in our results, the best performance is achieved by the combination
of all three optimizations.

Figure-38 presents the flow of impact analysis process and how all optimizations fit in.
4.4.1 Policy Classification

The first policy evaluation optimization in Zodiac is policy classification. Policy classifica-
tion helps in identifying the relevant regions of the SAN and the relevant policies, whenever
an operation is performed. In order to identify the relevant SAN region affected by an oper-
ation, we classify the policies into four categories described below. Only the “if’ condition
of the policy is used for classification. Also, each policy class has a set of operations, which

are the ones that can trigger the policy. This mapping of operations to policies can be made

easily due to our classification scheme and is used to find the relevant set of policies.

1. Entity-Class (EC) Policies: These policies are defined only on the instances of

a single entity class. For example, all HBAs should be from the same vendor, and
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all Vendor-W switches must have a firmware level > z. Such policies do not require
any graph traversals, rather a scan of the list of instances of the entity class. The
relevant operations for this class of policies are addition/deletion of an entity-instance
or modification of a “dependent” attribute of an instance like changing the firmware
level of a switch (for our second example above). Additionally, EC policies can be

subdivided into two types:

— Individual (EC-Ind) Policy: A policy that holds on every instance of the entity
class. For example, all switches must be from Vendor-W. This class of policies has
the characteristic that whenever an instance of the entity class is added /modified,

the policy only needs to be evaluated on the new member.

— Collection (EC-Col) Policy: A policy that holds on a collection of instances of
the entity class. For example, the number of ports of type X in the fabric is less
than N and also all HBAs should be from the same vendor'. This class of policies

might require checking all instances for final evaluation.

2. Single-Path (SPTH) Policies: These policies are defined on more than one en-
tity on a single path of the SAN. For example, all Vendor-A hosts must be connected
to Vendor-S storage. Importantly, SPTH policies have the characteristic that the
policy is required to hold on each path. In our example, each and every path be-
tween hosts and storage must satisfy this policy. This characteristic implies that on
application of any operation, there is no need to evaluate this policy on old paths.
Only new paths need to be checked. The relevant operations for these policies are
addition/deletion/modification of paths or modification of a “dependent” attribute

(vendor name) of a “dependent” entity (storage controller) on the path.

3. Multiple-Paths (MPTH) Policies: These policies are defined across multiple

paths of the SAN. For example, all hosts should have atleast two and atmost four

!This policy is also a collection policy since in order to evaluate the policy for the new instance, it is
required to get information about existing instances.
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disjoint paths to storage, and a Vendor-A host should be connected to atmost five con-
trollers. MPTH policies cannot be decomposed to hold on individual paths for every
operation. For the examples, adding a host requires checking only for the new paths
created, whereas adding a switch-controller link requires checks on earlier paths as
well. We are working on developing a notion distinguishing between the two cases?.
In this chapter, we consider MPTH policy as affecting all paths. The relevant opera-

tions for these policies are addition/deletion/modification of paths or modification of

a “dependent” attribute of a “dependent” entity on the path.

4. Zoning/LUN-Masking (ZL) Policies: These policies are defined on zones or LUN-
Mask sets of the SAN. For example, a zone should have atmost N ports, and a zone
should not have both windows or linux hosts. For our discussion, we only use zone
policies, though the same approach can be used for LUN-Masking policies. Notice
that these policies are similar to EC policies with entity-class being analogously re-
placed by zones or LUN-Mask sets. Just as EC policies are defined on attributes of
entity instances, ZL policies are defined on attributes of zone instances. Also simi-
lar to EC policies, Zone policies can be collection policies, requiring evaluation over
multiple zones, (e.g. the number of zones in the fabric should be atmost N)* and indi-
vidual policies, requiring evaluation only over an added/modified zone (e.g. all hosts
in the zone must be from the same vendor). Also, within a zone, a policy might re-
quire evaluation over only the added/modified component (Zone-Member-Ind) or all
components (Zone-Member-Col). An example of a Zone-Member-Ind policy is all
hosts in the zone should be windows, and an example of Zone-Member-Col policy is a
zone should have atmost N ports. The relevant operations for this class of policies are
addition/deletion of a zone instance or modification of an instance (addition/deletion

of ports in the zone).

*Informally, typically an operation affecting only the “principal” entity of the policy (host in the examples)
does not require checking old paths.
3Such a policy is required since the switches have a limit on the number of zones they can handle
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Note that the aim of this classification is not to semantically classify all conceivable
policies, but rather to identify the policies that can be optimized for evaluation. Having
said that, using our classification scheme, it was indeed possible to classify all policies
mentioned in [3], the only public set of SAN policies collected from administrators and
domain experts. The basic difference between the classification scheme in [3] and our
scheme stems from the fact that it classifies policies based on specification criteria, while
we use the internal execution criteria for the classification. This helps us in generating
optimized evaluation code by checking only the relevant regions of the SAN.

As evident from our experiments (described in Section-4.5), the classification technique

helps in significantly reducing the total cost of policy impact analysis.
4.4.2 Caching

The second optimization we propose, uses a caching scheme to cache relevant data at all
nodes of the SAN resource graph. Such a scheme is extremely useful in an impact-analysis

framework due to the commonality of data accessed in the following scenarios:

o Multiple executions of a single policy: A single policy might be executed multiple
times on the same entity instance due to the chaining of actions, defined in the then

clause of the triggered policies. Any previous evaluation data can be easily reused.

o Ezecution of a single policy for different instances of entities: For example, consider
an operation of adding a policy like all Vendor-A hosts should be connected to Vendor-
S storage. For impact analysis, the policy needs to be evaluated for all hosts. In our
immediate-neighbor scheme, for the evaluation of this policy, a host, say Host-H,
would call its HBA’s getController() function, which in turn would call its ports’
getController() function, which would call the edge switch (say Switch-L) and so on.
Now, when any other host connected to Switch-L calls its getController() function,
it can reuse the data obtained during the previous evaluation for Host-H. Note that
with no replacement, the caching implies that traversal of any edge during a policy

evaluation for all entity instances is done atmost once. This is due to the fact that
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after traversing an edge {u,v} once, the required data from v would be available in

the cache at wu, thus preventing its repeated traversal.

o Locality of data required across multiple policies: 1t is also possible, and often the
case, that multiple policies require accessing different attributes of the same entity.
As mentioned earlier, we do not apply filters to the “edge” entities (e.g. controllers
for a getController() call) and retrieve the full list of entities. Now, this cached entry

can be used by multiple policies, even when their “dependent” attributes are different.

As mentioned earlier, the caching scheme incorporates filters as well. Whenever an API
function is called with a filter, the entity saves the filter along with the results of the function
call and a cache hit at an entity occurs only when there is a complete match, i.e. the cached
entry has the same API function call as the new request and the associated filters are also
the same. This condition can be relaxed by allowing a partial match, in which the cached
entry is for the same function call, but can have a more general filter. For example, assume
a cache entry for getController() with the filter Switch. Vendor=“W”. Now, if the new
request requires controllers with the filter Switch. Vendor=“W” AND Switch. FirmwareLevel
> 1z, the result can be computed from the cached data itself. We leave this for future work.

Also, the current caching scheme uses LRU for replacement.
4.4.3 Aggregation

It is also possible to improve the efficiency of policy execution by keeping certain aggregate
data structures. For example, consider a policy which mandates that the number of ports
in a zone must be atleast M and atmost N. With every addition/deletion of a port in the
zone, this policy needs to be evaluated. However, each evaluation would require counting
the number of ports in the zone. Imagine keeping an aggregate data structure that keeps
the number of ports in every zone. Now, whenever a port is added/deleted, the policy
evaluation reduces to a single check of the current count value.

We have identified the following three classes of policies that have simple aggregate data

structures:
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e Unique: This class of policies require a certain attribute of entities to be unique. For
example, policies like the WWNs of all devices should be unique, all Fibre Channel
switches must have unique domain IDs. For these class of policies, a hashtable is
generated on the attribute and whenever an operation triggers this policy, the policy
is evaluated by looking up that hashtable. This aggregate data structure can provide
good performance improvements especially in big SANs (Section-4.5). Note that such
an aggregate is kept only for EC and ZL policies (where it is easier to identify addi-
tion/deletion). However, there does not appear to be any realistic SPTH or MPTH

unique policies.

e Counts: These policies require counting a certain attribute of an entity. Keeping the
count of the attribute prevents repeated counting whenever the policy is required to be
evaluated. Instead, the count aggregate is incremented/decremented when the entity
is added/deleted. A count aggregate is used only for EC and ZL policies. While SPTH
and MPTH count policies do exist (e.g. there must be atmost N hops between host and
storage and there must be atleast one and atmost four disjoint paths between host and

storage respectively), maintaining the counts is tricky and we do not use an aggregate.

o Transformable: Tt is easy to see that the policy evaluation complexity is roughly of
the order EC-Ind = Zone-Member-Ind < EC-Col ~ Zone-Member-Col < SPTH
< MPTH. It is actually possible to transform many policies into a lower complexity
policy by keeping additional information about some of the dependent entities. For
example, consider a policy like all storage should be from the same vendor. This policy
is an EC-Col for entity class - Storage. However, keeping information about the current
type of storage (7') in the system, the policy can be reduced to an equivalent EC-Ind
policy — all storage should be of type T. Similarly, a Zone-Member-Col policy like
a zone should not be both windows and linuz hosts can be transformed into multiple

Zone-Member-Ind policies there should be only type T; hosts in zone Z;, where T; is
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the current type of hosts in the Z;. For these transformed policies, a pointer to the
entity that provides the value to aggregate is also stored. This is required, since when
the entity is deleted, the aggregate structure can be invalidated (can be re-populated

using another entity, if existing).

For all other policies, we currently do not use any aggregate data structures.
4.5 Experimental Setup and Results

In this section, we evaluate our proposed optimizations as compared to the base policy
evaluation provided by current engines. We start by describing our experimental setup

beginning with the policy set.
4.5.1 Microbenchmarks

With the policy based management being in a nascent state so far, there does not exist any
public set of policies that is used in a real SAN environment. The list of policies contained
in [3] is indicative of the type of possible policies and not an accurate “trace” for an actual
SAN policy set. As a result, it is tough to analyze the overall and cumulative benefits of
the optimizations for a real SAN. To overcome this, we try to demonstrate the benefits of
optimizations for different categories of policies individually. As mentioned earlier, since we
have been able to classify all policies in [3] according to our scheme, the benefits would be
additive and overall useful for a real SAN as well. In addition, this provides a good way of
comparing the optimization techniques for each policy class.

We selected a set of 7 policies (Figure-39) as our working sample. Four of them are EC
policies, two are path policies (SPTH and MPTH) and one is a zone policy. All 7 policies
are classified according to the classification mechanisms presented in Section-4.4.1. Any
aggregates that are possible for policies are also shown. For this set of policies, we will

evaluate the effectiveness of our optimizations individually.
4.5.2 Storage Area Network

An important design goal for Zodiac was scalability and ability to perform impact analysis

efficiently even on large SANs of 1000 hosts and 200 controllers. Since it was not possible to
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Ind (Transform)
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Zone-Member-
Col to Zone-

Member-Ind

Figure 39: Policy Set

construct such large SANs in the lab, for our experiments, we emulated four different sized
SANs. Please note that in practice, Zodiac can work with any real SAN using an SMI-S
compliant data store.

In our experimental SANs, we used hosts with two HBAs each and each HBA having
two ports. Storage controllers had four ports each. The fabric was a core-edge design with
16-port edge and 128-port core switches. Each switch left certain ports unallocated, to
simulate SANs constructed with future growth in mind. The four different configurations

correspond to different number of hosts and controllers:

e 1000-200: First configuration is an example of a big SAN, found in many data centers.
It consists of 1000 hosts and 200 controllers with each host accessing all controllers

(full connectivity). There were 100 zones.

e 750-150: This configuration uses 750 hosts and 150 controllers with full connectivity.

There were 75 zones.
e 500-100: This configuration has 500 hosts, 100 controllers and 50 zones.

e 250-50: This configuration is a relatively smaller SAN with 250 hosts, 50 controllers

and 25 zones.
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4.5.3 Implementation Techniques

For our experiments, we evaluate each of the policies in the policy-set with the following

techniques:

base: This technique is the naive implementation, in which there is no identification
of the relevant region of the SAN. Only information available is the vanilla scope of
the policy. Due to lack of classification logic, this implementation implies that the
evaluation engine uses the same logic of code generation for all policies (check for all
paths and all entities). Also, there is no intermediate caching and no aggregate data

structures are used.

class: This implementation uses the classification mechanism on top of the base
framework. Thus, it is possible to optimize policies by only evaluating over a relevant

SAN region, but no caching or aggregation is used.

cach: This implementation technique caching on top of the base framework. No

classification or aggregation is used.

agg: This implementation technique only uses aggregate data structures for the poli-

cies (where ever possible). There is no caching or classification.

all: This implementation uses a combination of all three optimization techniques.

Using these five classes of implementation, we intend to show (a) inadequacy of the base

policy, (b) advantages of each optimization technique and (c) the performance of the all

implementation. Zodiac is currently running on a P4 1.8 GHz machine with 512 MB RAM.

4.5.4 Policy Evaluation

In this section, we present our results of evaluating each policy 100 times to simulate

scenarios of chaining and execution for multiple instances (e.g. adding 10 hosts). The

policies are evaluated for all four SAN configurations (X-axis). The Y-axis plots the time

taken to evaluate the policies in milliseconds. The results have been averaged over 10 runs.
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4.5.4.1 Policy-1

“Fvery HBA that has a vendor name V and model M should have a firmware level either
nl, n2 or n3”

The first policy requires a certain condition to hold on an HBA entity class. We analyze
the impact of the policy when an HBA is added. The base implementation will trigger
the HBA scope and try to evaluate this policy. Due to its lack of classification logic,
it will end up evaluating the policy afresh and thus, for all HBA instances. The class
implementation would identify it to be an EC-Ind policy and only evaluate on the new
HBA entity. The cach implementation does not help since there is no traversal of the
graph. The agg implementation also does not help. As a result, all implementation is
equivalent to having only class optimization. Figure-40 shows the results for the different

SAN configurations.
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Figure 40: Policy-1. class, all provide maximum benefit

As seen from the graph, there is a significant difference between the best optimized
evaluation (all) and the base evaluation. Also, as the size of the SAN increases, the costs
for the base implementation increase, while the all implementation stays the same, since

irrespective of SAN size, it only needs to evaluate the policy for the newly added HBA.
4.5.4.2 Policy-2

“No two devices in the system can have the same WWN.”
The second policy ensures uniqueness of world wide names (WWNs). We analyze the

impact when a new host is added. The base implementation will trigger the device scope
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and evaluate the policy. Again, without classification logic, it will check that all devices
have unique WWNs. The class implementation will only check that the new host has a
WWN different from other devices. The cach implementation does not provide any benefit
and performs similar to base. The agg implementation will create a hashtable, and do
hashtbale lookups. The all implementation also uses the hashtable and checks only the new

host for uniqueness.
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Figure 41: Policy-2. agg, all provide maximum benefit

As Figure-41 shows, agg and all perform much better than the base implementation.

class performs better than base by recognizing that only the new host needs to be checked.
4.5.4.8 Policy-3

“The number of ports of type X in the fabric is less than N.”
The third policy limits the total number of ports in the fabric. We analyze the impact of
adding a new host with 4 ports to the SAN. For each added port, the base implementation
will count the total number of ports in the fabric. The class implementation performs no
better, since it is an EC-Col policy. The cach implementation also does not help. The agg
implementation keeps a count of the number of ports and only increments the count and
checks against the upper limit. The all implementation also exploits the aggregate counts.
As can be seen from Figure-42, agg and all perform significantly better due to the ability

of aggregating the required information for the policy evaluation.
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Figure 42: Policy-3. agg, all provide maximum benefit

4.5.4.4 Policy-4

“The SAN should not have mized storage type such as SSA, FC and SCSI parallel”

The fourth policy ensures that the SAN has uniform storage type. For this policy, we analyze
the impact of adding a new storage controller. The base implementation will trigger the
storage scope and evaluate the policy ensuring all controllers are the same type. The cach
implementation will not help. The class implementation only checks that the newly added
controller is the same type as every other controller. The agg implementation will transform
the policy to an EC-Ind policy by keeping an aggregate value of the current controller type,
T in the SAN. However, without classification, it would end up checking that all controllers

have the type T'. The all implementation combines the classification logic and the aggregate

transformation to only check for the new controller.
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Figure 43: Policy-4. all provides maximum benefit

Figure-43 shows the result with all performing the best, while class and all doing better
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than base and cach. The difference between the best and poor implementations is small

since the total number of controllers is small.
4.5.4.5 Policy-5

“An ESS array is not available to open systems if an iSeries system is configured to array.”
The fifth policy is an SPTH policy that checks that an iSeries open systems host does not
work if an ESS array is used with the controller. We analyze the impact of adding a new
host to the SAN for this policy. The base implementation ensures that all iSeries open
systems hosts do not have any ESS controllers connected to them. This requires calling the
getController() API functions of the host entities and will cause traversals of the graph for
all host-storage connections. The class implementation identifies that it being an SPTH,
only the new created paths (paths between the newly added host and the connected storage
controllers) need to be checked. The cach implementation will run similar to base, but will
cache all function call results at intermediate nodes (As mentioned before, it would mean
that each edge will be traversed atmost once). The agg implementation does not help and

the all implementation would use both the classification logic and the caching.
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Figure 44: Policy-5. Only all provides maximum benefit

As shown in Figure-44, the base and agg implementation perform extremely poorly
(multiple orders of magnitude in difference) due to multiple traversals for the huge SAN
graph. On the other hand, class and cach are able to optimize significantly and their com-
bination in the all implementation provides drastic overall benefits. It also scales extremely

well with the increasing SAN size.
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4.5.4.6 Policy-6

“A HBA cannot be used to access both tape and disk drives.”

The sixth policy is an MPTH policy which requires checking that each HBA is either
connected to tape or disk storage. We analyze the impact of adding a host with 2 HBAs to
the SAN. The base implementation would check the policy for all existing HBAs. The cach
implementation would do the same, except the caching of results at intermediate nodes. The
class implementation does not optimize in this case since it considers it an MPTH policy
and checks for all paths (Section-4.4.1). The agg implementation transforms the policy to
an SPTH by keeping aggregate for the type of storage being accessed, but checks for all
HBAs due to the lack of classification logic. The all implementation is able to transform
the policy and then use the SPTH classification logic to only check for the newly added

HBAs.
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Figure 45: Policy-6. Only all provides maximum benefit

Figure-45 shows the results. The base, class and agg implementation perform much
poorly then the cach implementation, since the cach implementation reuses data collected
once for the other. The all implementation performs the best by combining all optimiza-

tions.
4.5.4.7 Policy-7

“No two different host types should exist in the same zone.”
The eighth policy requires that all host types should be the same in zones. We analyze

the impact of adding a host HBA port to a zone. The base implementation would check
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that all hosts in each zone are of the same type. The class implementation would check
only for the affected zone. The cach implementation would be the same as base. The agg
implementation would keep an aggregate host type for each zone and check the policy for
all zones. The all implementation would combine the aggregate with the classification and
only check for the affected zone, that the new host has the same type as the aggregate
host type value. Figure-46 shows the results. Again all implementation performs the best,

though the difference between all implementations is small.
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Figure 46: Policy-7. all provides maximum benefit

4.5.5 Summary of Results

Through these micro-benchmarks, we have analyzed the performance of various optimiza-
tion implementations for a variety of real SAN policies. Based on the results, we find that
each optimization — classification, caching and aggregation — has a niche of evaluation sce-
narios where it is most effective. For example, caching helps the most during the evaluation
of path policies. Overall, a combination of the optimization techniques — al/l implementation
yields maximum benefits.

Our evaluation shows that use of optimizations allows our approach to scale to large
sizes of the SANs with thousand servers and hundreds of storage controllers. Additionally,
it maintains good performance and is able to obtain results quickly. Thus, it will serve as

an important tool for administrators to analyze impact of changes efficiently and quickly.
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4.6 Related Work

With the growth in amount of storage resources, there has been a strong initiative for
automating various management tasks and making systems self-sufficient [5, 9, 63, 36].
Most of this research has focused on various planning tasks - capacity planning, including
Minerva [5], Hippodrome [9], Ergastulum [10]; fabric planning like Appia [190, 191], and
disaster recovery planning [96, 97].

Impact analysis, also referred to as “what-if” or change-management analysis, is an-
other closely related management task. Some of the planning work described above can
actually be used for such analysis. For example, Ergastulum [10] can be used to analyze
storage subsystems and Keeton et al’s [97] helps in analyzing disaster recovery scenarios.
Another recent work by Thereska et al. [174] provides what-if analysis using the Self-*
framework [63]. There also exist tools and simulators like [91, 194] that provide impact
analysis for storage controllers. Most of the what-if approaches utilize device and behavioral
models for resources. Significant amount of research has been done both in developing such
models [178, 7, 153, 189, 194] and using those models [52, 44, 121, 17].

Zodiac is different from existing impact analysis work, due to its close integration with
policy based management. Using Zodiac, an administrator can analyze the impact of oper-
ations not only on system resources but also on system policies. In addition, the analysis
accounts for all subsequent actions triggered by policy executions. As we describe later,
efficient analysis of policies is non-trivial and critical for overall performance.

The Onaro SANscreen product [157] provides a similar predictive change management
functionality. However, from the scarce amount of published information, we believe that
they only analyze the impact for a small set of policies (mainly security) and do not consider
any triggered policy actions. We believe this to be an important shortcoming, since typically
administrators would specify policy actions in order to correct erroneous events and would
be most interested in analyzing the impact of those triggered actions. The EMC SAN
Advisor [155] tool provides support for policy evaluations, but is not an impact analysis
tool. Secondly, it pre-packages its policies and does not allow specification of custom policies.

In the policies domain, there has been work in the areas of policy specification [49,
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14], conflict detection [61] and resource management [111]. The SNIA-SMI [168] is also
developing a policy specification model for SANs. To the best of our knowledge, there does
not exist any SAN impact analysis framework for policies. [3] proposed a policy based
validation framework, which is typically used as a periodic configuration checker and is not

suitable for interactive impact analysis.
4.7 Summary

In this chapter, we presented Zodiac - an efficient impact analysis framework for storage
area networks. Zodiac enables system administrators to do proactive change analysis, by
evaluating the impact of their proposed change before actually applying it to the SAN. It
includes the impact on SAN resources, existing policies and also, due to the actions trig-
gered by any of the violated policies. For greater efficiency, we proposed three optimizations
- classification, caching and aggregation, for impact analysis. A combination of these opti-
mizations makes impact analysis fast and scalable, meeting the demands of dynamic and
large SSP SANs.

The objective of the Zodiac framework is only to perform impact analysis. For storage
service provider SANs, this would allow administrators to immediately analyze the effects
of a client-enterprise’s workload change and plan to integrate those changes adequately
without adverse impact on other workloads. However, Zodiac does not address this problem
of planning to integrate the proposed change. This could involve resource allocation or de-
allocation, for example, provisioning of new servers or storage and migration of applications
or storage. In the next chapter, we describe the SPARK framework which addresses this

problem using modern server virtualization technologies.
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CHAPTER V

EFFICIENT RESOURCE ALLOCATION IN VIRTUALIZED SANS

The primary advantage of the storage-as-a-service model for an enterprise is its ability to
reduce storage management costs. By offloading the storage hardware and management
tasks to a storage service provider (SSP), enterprises are freed of any involved complexities.
On the other hand, SSPs are able to use economies of scale to amortize the costs across
their various clients. However, they have to be very efficient in allocation of resources in
their data centers and can not rely on the usual technique of gross over-provisioning.

Resource allocation becomes a complex problem especially when dealing with a dynamic
environment, such as that of a SSP. Dealing with workload surges, node failures, downtimes,
growth and other typical data center pain points require manual planning and active ad-
ministrator involvement. This is prone to errors and can result in suboptimal placement
decisions when selecting nodes where affected applications can be placed. In addition, it is
a bottleneck in dealing with scenarios, where a quick response is required.

Doing fast, high quality placement planning autonomically in a modern data center is
a challenging problem. Unlike previous research, it requires handling storage and compu-
tational resources in a coupled manner. For example, moving an application to another
physical node in response to a workload surge needs to take into account the “affinity” of
the new node to application’s storage. Similar constraints exist when migrating applica-
tion storage. Complexity is introduced into this problem due to the heterogeneity in data
centers. The hardware and Storage Area Network (SAN) fabric in data centers are incre-
mentally built over time and disparate resources co-exist in the same environment. This
results in non-uniform affinities between computational and storage nodes.

Further contributing to this non-uniformity are the recent trends in SAN hardware.
Many vendors have introduced specialized SAN devices that include processing power at

non-traditional locations in the SAN. For example, Cisco MDS 9000 switches [41] and IBM
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DS8000 storage controllers [86] have available processing power that has been successfully
used for application deployment [40, 85, 87]. Using virtualization technologies, proximity
of these processing nodes to storage can be effectively exploited by careful placement of
applications (for example, an I/O intensive application at the controller processor can access
its storage faster).

In this chapter, we describe a framework to handle this challenging problem. We exten-
sively use server virtualization technologies to create an adaptive SAN data center environ-
ment. Advances in virtual machine (VM) technologies with the emergence of VMware [184]
and Xen [15] are playing an important role in shaping the modern data center. By isolating
applications into independent virtual containers that can run concurrently on a single phys-
ical machine, virtualization reduces hardware, space and maintenance costs and improves
resource utilization. Other recent innovations allow live migration of application VMs from
one physical machine to another without much downtime [129, 42]. By combining these
advancements with similar data migration technologies [110, 8, 75, 100], we aim to create
a highly adaptive data center environment, suitable for efficiently delivering storage as a
service to enterprises.

Our framework, called Stable-Proposals-And-Resource-Knapsacks or simply SPARK
aims to find an optimal placement of applications’ storage and CPU on the resource nodes
in the SAN. Its primary uniqueness lies in accounting for affinities (or lack thereof) between
storage and CPU nodes during placement decisions. In its design, SPARK is based on a
novel combination of two well-studied problems — the Stable Marriage problem and the 0/1
Knapsack problem. It yields high quality placement decisions, yet is intuitive and easy to
understand. In our synthetic experiments, SPARK is within 4% of the optimal values
(lower bounds) computed using LP formulation of the coupled placement problem for a
wide variety of workloads and SAN environments®. It also consistently outperforms natural
candidate algorithms by 30-40%. It is more scalable and fast — being an order of magnitude

faster than the next best quality candidate algorithm (PAIR-GR, ref. Section-5.3) for large

'Due to limits imposed on LP solvers [60] by large number of variable and constraints, LP solutions could
be obtained, and compared against, for small and medium problem sizes only.
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instances of the problem.

Its other most salient feature is its versatility. SPARK can naturally handle many
real-life data center constraints on SAN nodes that are suitable candidates for placing an
application, based on system policies and application preferences. It can also iteratively
improve any existing configuration by appropriately accounting for VM and data migration
costs (ref. Section-5.3.5). This built-in versatility makes SPARK a superior solution to
handle the coupled placement challenge in SSP environments.

The rest of the chapter is organized as follows. We describe relevant technologies and
related work in Section-5.1. In Section-5.2, we describe the model SAN environment con-
sidered in this work and the architecture of our solution framework. We describe the design
of the SPARK algorithm in Section-5.3. Detailed experimental evaluation of our algorithm
and its comparison with other techniques is presented in Section-5.4. We finally summarize

our contributions in Section-5.5.
5.1 Background and Related Work

In this section, we describe the necessary background and related research to our work. We
start with the recent advances in virtualization technologies and current hardware trends
that are shaping the modern SAN data center environment. Then, we describe the state of

the art for planning in virtualized data centers and articulate the uniqueness of our work.
5.1.1 Advances in Virtualization Technologies

The concept of Virtual Machine technology, first introduced in the 1960s [68], has been
widely exploited in recent years for consolidating an ever-expanding and unmanageable
hardware infrastructure in data centers [152]. New virtualization technologies like VMware [184]
and Xen [15] allow applications to run in isolated containers without interfering with each
other. Applications which run on single machines can now be moved to virtual machines;
these virtual machines in turn can be moved to fewer physical machines increasing resource
utilization and reducing space and hardware management costs. Table-20 lists the virtual-
ization technologies and the ongoing work in the area.

One most notable recent development is live migration technologies like VMotion [129]
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Table 20: Virtualization Advancements

Technology Related Work

Architecture

— Paravirtualization Xen [15], Denali [192]

— Hosted VMs VMware [184, 170]

Live Migration VMotion [129], Xen Migration [42]

VM Functioning and Optimizations Memory Management [187], VMM-bypass

tion in Xen [116]

I/O [109], Optimizing Network Virtualiza-

Software Deployment using VMs ( Virtual Ap- | Collective [33], Internet Suspend / Re-

pliances) sume [24]
Planning for VM environments VMware DRS (Distributed Resource Sched-
uler) [181]

and [42] for Virtual Machines. This enables applications to be moved from one machine
to the other in real-time with minimal service downtime. This can be an extremely useful
tool for administrators of data centers as it facilitates load-balancing, fault-tolerance and
system maintenance. The live migration technology is a critical enabler for the SPARK

framework discussed in this work.
5.1.2 Current Hardware Trends

Recent developments in hardware technology aim to make devices that can better use
virtualization technologies and vendors have begun rolling out innovative products. IBM
has implemented a pool of virtualization technologies on the POWERD servers [1] using the
Logical Partitioning (LPAR) technology in which multiple resources can be placed under the
exclusive control of a given logical partition. The IBM DS8000 storage controllers support
POWERS5 logical partitioning which makes them suitable for hosting applications [87]. IBM
recently demonstrated running a DB2 application in an LPAR, using which most of the
computation associated with ad-hoc queries in OLAP workloads can be offloaded to the
storage controller. [82] also describes a system that speeds up search of unindexed data by
running “searchlets” at the storage system.

Another similar application is the offloading of data access functions to switches. Cisco

MDS 9000 switches [41] have multiple Intel x86 processor blades and can be fitted with
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multiple application modules. Cisco has already displayed the feasibility of this idea by im-
plementing IBM TotalStorage SAN Volume Controller [84] and Veritas Storage Foundation
for Networks Solution [179] on the switches.

Such hardware innovations are increasing the level of heterogeneity in modern SAN en-
vironments by making available specialized processing power at non-traditional locations.
If used appropriately, this can have a significant impact on overall application performance.
These trends point towards the need of an intelligent application placement technique. The
SPARK algorithm described in this chapter exploits this specialization by doing coupled
placement of storage and CPU resources, accounting for application affinities for such spe-

cialized nodes.
5.1.3 Planning in Virtualized Data Centers: State of the Art

Current work in the area of planning deals either with storage resource optimization or
server performance optimization. Recent products like VMware Infrastructure-3 [182] and
its Dynamic Resource Scheduler (DRS) [181] continuously monitor CPU resource utilization
in a virtualized data center and based on certain policies can prioritize how CPU resources
are allocated to virtual machines. While it is a good starting point, it only concentrates
on optimization of CPU resources for virtual machines staying oblivious of the underlying
storage system. Oceano [11] and Muse [35] are also resource provisioning tools in data center
environments focusing on allocating CPU resources. However, they also do not account for
the underlying storage system and its affinity to a CPU node.

Similar tools at the storage end of the spectrum like Ergastulum [10], Hippodrome [9]
and Minerva [5], attempt to find optimized storage system configurations taking into ac-
count only the storage requirements of applications. In contrast, SPARK attempts to
optimize overall application performance taking storage as well as CPU requirements into
account. Qur experiments reveal how SPARK’s coupled placement is better than indepen-
dent storage and CPU placement.

Other related planning work includes algorithms for migrating data objects from one

configuration to another [110, 8, 75, 100]. Assuming that the final configuration is known,
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these systems attempt to reconfigure the storage system using minimum number of data
migration steps. Our work is complementary to theirs and seeks to identify appropriate
storage and CPU placement locations and can leverage these efforts while executing the

final plan.
5.2 SPARK Architecture

In this section, we describe the architecture of our framework and its various components.

We start with a description of a model SAN data center environment.

Host Host @Host @Host @Host @Host

High |
Bandwidth Edge Switch
Connect|V|ty ) g
Extra Hop

Edge Switch Edge Switch Edge Switch Edge Switch

AN

Multiple CPUs o ‘ ) cpru
> Core Switch Core Switch

@ @ Storage

/ \
@ Controller @ @ Controller @ JBOD 8

Figure 47: Modern SANs with heterogeneous resources

A storage area network in a data center consists of multiple devices — application servers,
edge and core switches, different types of storage devices from high end controllers to Just-
a-Bunch-Of-Disks (JBOD). These devices are connected through a high speed network,
usually referred to as the fabric. Figure-47 shows an example core-edge design SAN topology.
As mentioned earlier, modern SANs are heterogeneous in nature with resources differing
in bandwidth connectivity, resources capacities and capabilities. Additionally, many non-
traditional devices now include significant processing power (Figure-47 shows core switches
and storage controllers with CPU nodes). Note that these CPUs are as powerful as ones
available in traditional application servers, if not more.

An important characteristic of this modern SAN environment is its support for vir-

tualization platform deployment. Most CPU architectures today have been virtualized

149



including the ones available on storage controllers and switches. For example, Cisco MDS
9000 switches ship with Intel x86 processors, virtualized by VMware, Xen and IBM DS 8000
controllers have PowerPC processors, virtualized through the Logical Partitioning (LPAR)
technology [1]. With increasing push towards standardization of VM formats [183], these
processors are equal candidates for addition to virtualized resource pools that would nor-
mally contain only application servers. In fact, these nodes can be even more effectively
utilized when hooks exist for specialized applications that can communicate with fast-path
APIs available at these nodes. For example, an application running at the controller storing
its database, can significantly improve table scan performance by directly communicating
with the controller storage [86].

Such a virtualized environment can be used to realize utility computing, where all re-
sources are aggregated into pools and workloads are dynamically mapped to use resources

from these common pools. We discuss this goal in the next section.
5.2.1 Destination: Utility Computing

Consider the SAN environment in Figure-47 where a virtualization platform (say, VMware
Server [185]) has been installed at all CPU nodes and all applications have been encapsulated
into VMware virtual machines. Administrators can choose to run multiple application VMs
at each CPU node for efficient resource utilization. Now, suppose an application gets hit
with a sudden workload surge and its VM begins using extra CPU resources. This might
impact performance of all applications running on that node.

To correct this, the administrator simply moves one of the application VMs on this phys-
ical node (source) to another VMware server on a target node using the VMware migration
technology — VMotion [129]. The VM state is encapsulated into regular files and stored
in the SAN. The target server accesses these files concurrently and the active memory and
execution state of the VM is transmitted over a high speed network. Since the network is
also virtualized, the virtual machine retains its network identity and connections, ensuring
a seamless migration process. Please note that use of VMware technologies is for illustrative

purposes only and similar migration technology also exist for Xen [42], which can migrate
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VMs running interactive applications in only tens of milliseconds.

While this technology seemingly brings the utility computing dream within reach, the
human involvement in planning for selecting an appropriate VM to move and the appropri-
ate target node for migration can lead to errors, sub-optimal decision making and is also a
bottleneck in situations that require immediate response. As mentioned earlier, autonom-
ically performing such coupled placement decisions accounting for storage-cpu affinities, is

complex and SPARK aims at addressing this challenge.
5.2.2 Planner Architecture

In this section, we describe the architecture of our framework detailing its internal compo-

nents and its interaction with external entities. Figure-48 shows the framework.
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Figure 48: SPARK Planner Architecture

External Components: Planning requires detailed information of the underlying storage
SAN, which is obtained from SAN management tools like EMC Control Center [54] and
IBM Total Storage Productivity Center [88]. These tools keep real-time information for
all devices and events in the SAN. Additionally, information about the state of applica-
tion VMs is required to obtain utilizations and availabilities at processing nodes. This is
obtained from VM management suites like VMware Infrastructure-3 [182] and similar prod-
ucts [198, 4, 13, 146]. Relevant SAN and VM state information can also be input in an
offline mode, especially when doing what-if analysis (see below). Constraints and prefer-
ences for placing application VMs and storage on certain nodes are also provided as input to
the planning framework. Furthermore, the planning engine is connected to an Orchestrator

that can execute VM and data migration workflows using storage management and VM
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management tools.

Internal Components: Internally, the framework consists of a SAN State component that
maintains relevant SAN state required during planning, for example, SAN topology infor-
mation. Similarly relevant VM State information is maintained. The SPARK algorithm
takes this information along with placement constraints to generate a placement plan of
application storage and CPU on resource nodes. This plan can be viewed through a visual-
ization engine and can also be used as a what-if analyzer, through which an administrator
can proactively assess the behavior of the system in response to certain dynamic scenarios
(for example, what-if App-A’s workload surges by 20%?). Finally, the placement plan is

executed through the orchestrator (if desired, the plan can be verified by an administrator).

Modes of Operation: This framework can be deployed both in an offline and an on-
line setup. In an offline mode, an administrator can input relevant information (maybe
imported from a snapshot of a live system state) and visualize the plans generated by the
framework and perform what-if analysis for his/her current setup. In an online mode, the
framework can continuously monitor the SAN and VM state to identify workload surges or
failures, automatically initiate planning in response and actually execute the plan through

the orchestrator.
5.3 Solution

The previous sections have discussed how innovations in virtualization technologies and SAN
node specialization have laid the foundation for a utility computing platform. An important
missing piece in the current systems is the planning scheme that produces placement of
workloads to resources maximizing overall performance. Such a scheme has to be fast,
scalable and robust to handle a wide variety of workloads and SAN environments. In this
section, we describe a first step in this direction through our algorithm SPARK and start

with the mathematical problem formulation.
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5.3.1 Problem Formulation

A SAN in the data center has multiple types of nodes — application servers, switches, storage
controllers — with available CPU and storage resources. Let the set of CPU resource nodes
in the data center be denoted by P = {P; : 1 < k < |P|}. This includes all CPU resources
in the SAN where an application can be run — for example, an application server, a switch
with a virtualizable CPU or a high-end storage controller. Each such CPU resource Py
has an associated limit on how much processing capacity it has, say in processor cycles per
second, which we denote by cap(Fx)-

Similarly let the set of storage resource nodes in the data center be denoted by § =
{S; : 1 < j < |S|}. Each such storage resource S; has an associated limit on how much
storage capacity it has, say in GBs, denoted by cap(S;). These resources are connected to
each other directly or indirectly based on the SAN topology (for example, Figure-47).

Along with these, there is a set of applications, say A = {4; : 1 <7 < |A|} that need to
run in the data center. These applications are packaged into virtual containers and can be
executed on compatible virtualization platforms deployed at CPU nodes in the SAN. Each
such application VM has a cpu resource requirement and a storage resource requirement.
In general an application may require multiple cpu resources (for example, a cluster) and
multiple storage resources (different storage for log data and temp data). However for ease
of exposition we first present for the case of single cpu VM and single storage requirement
for each application. That illustrates several of the key aspects and challenges of the prob-
lem. We later show in Section-5.3.5 how the algorithm works for the multiple resource
case as well. We use App.StgReq, App.CpuReq, and App.IOV ol to denote the amount of
storage required (GB), the amount of CPU required (processor cycles per second), and the
data I/O volume between the storage and CPU (post-cache) for the application App. Also,
App.Stg and App.Cpu denote the storage and CPU nodes that host application data and

VM respectively.

Cost Function: Given these, the question is where to allocate cpu and storage for each

application, that is where should each application be run among the available CPU resources
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and where should its data be placed among available storage resources. For each application,
we use C'ost(A;, Sj, Py) to denote the cost of running application A; on storage resource
node S; and CPU resource node P;. We also refer to it as the “distance” between S; and
P, for A;.

This cost function is used to capture the affinities, or lack thereof, between various
application, storage and CPU groups. For example, if an application has preference for
storage nodes of a certain type (for example,, RAID5) then the costs of assigning it to that
storage node could be set lower. Also, if an application has a hard latency requirements then
all storage-CPU pairs that cannot satisfy the latency bound have their cost set to infinity.
In general, the cost function gives us a flexible way to account for multiple environmental

characteristics:

SAN Fabric Characteristics: The cost function can capture SAN characteristics like
high bandwidth connectivity (through fabric or being on the same physical resource,

for example, cpu and storage nodes on a controller).

o Application QoS Requirements: In order to restrict placement for an important appli-
cation to specific nodes, the cost function can be adjusted to allow only those nodes

that meet application QoS requirements.

o Application Preferences: For example, whether an application can use processors at a
node in a specialized manner or conversely, if application VM is not compatible with

the hypervisor available at a particular CPU node.

o (ost of Storage: The cost function can also be used to bias utilizing cheaper storage.

Many of these characteristics can be obtained automatically from the underlying SAN
infrastructure and policy databases. Even a distinct Cost Estimator Module can be used.
The SPARK algorithm and the framework presented below are flexible enough to work with
any cost function provided as input. This makes SPARK extremely versatile in dealing

with many peculiarities of a real SAN data center environment (see Section-5.3.5).
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Given this cost function for all applications and resources, the goal of the placement is
to select locations for the cpu and storage of each application so as to keep the overall cost

for all applications small, that is,
min Z Cost(A;, A;.Stg, A;.Cpu) (I)
1
while ensuring feasibility by not exceeding storage and CPU resource node capacities:

\Z] Z A;.StgReq < cap(S;)
1:A;.Stg=S;

vk Z A;.CpuReq < cap(Py)
i:A;.Cpu=P
As mentioned above, SPARK can work with any cost function, but for concreteness

in this chapter we use a cost function that captures desired features and complexity and
yet is easy to describe. It tends to keep applications with high I/O volume requirement on
storage-CPU pairs with small distances thus lowering the traffic on the SAN and increasing
room for surges and other traffic. It is based on the I/O volume of the application and the
distance between its cpu and storage nodes. It is given by A;. 10V ol xdist(A;.Stg, A;.Cpu),
where latter is the physical inter-hop distance between A;.Stg and A;.Cpu and is indepen-
det of applications. This function notably captures some of the desired features discussed
earlier. For example, if a CPU at a storage controller is available, it would have low distance
between its storage and cpu node, and thus an application with high I/O volume would be

favored to go there, which improves performance and reduces the load on the SAN network.

Complexity and Relation to Other Problems: This problem (I) captures the basic
questions inherent in placing CPU and storage in a coupled manner. The NP-Hard nature
of the problem can be established by reducing to the 0/1 Knapsack problem. Even if a
simpler case of our problem — involving two CPU nodes (one is a catch-all node of infinite
capacity and large cost) and fixed application storage — can be solved, it can be used to

2

solve the Knapsack problem“. Having to decide coupled placements for both storage and

cpu with general cost/distance functions makes the problem more complex.

*Basically by making the second cpu node correspond to the knapsack and setting the costs and cpu
requirements accordingly.
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If either CPU or storage locations are fixed and only the other needs to be determined
then there is related work along the lines of (a) File Allocation Problem [51, 32] placing
files/storage assuming CPU is fixed; (b) Minerva, Hippodrome [5, 9] assume CPU locations
are fixed while planning storage placement; (c) Generalized Assignment problems [158, 163]:
Assigning tasks to processors (cpus) — they have been well-studied with several heuristics
proposed but they do not consider the coupled storage and cpu allocation.

If the storage and cpu requirement for applications can always be split across multiple
resource nodes, then one could also model it as a multi-commodity flow problem [46] —
one commodity per application, introduce a source node for the cpu requirement of each
application and a sink node for the storage requirement, with the source node connected
to cpu resource nodes, storage resource nodes connected to the sink node and appropriate
costs on the storage-cpu resource node pairs. However multi-commodity flow problems are
known to be very hard to solve [102] in practice even for medium sized instances. And if the
splitting is not justifiable for applications (for example, it requires sequential processing at
a single server), then we would need an unsplittable flow [38] version for multi-commodity
flows, which becomes even harder in practice.

Another important aspect of the problem is non-uniform costs. In a modern virtual-
ized data center these costs vary depending on various factors like application preferences,
storage costs, node heterogeneity and distances. If these variations were not present, i.e.
costs for each application A; were the same for all (S;,P) pairs then the problem could be
simplified to placing storage and cpu independently without coupling. In the next section,
we discuss an algorithm INDV-GR that follows this approach. The evaluation and discus-
sion of its performance in the general data center environment is given in the experimental

section.
5.3.2 Algorithm

In this section, we begin by outlining two simpler algorithms — a greedy individual placement
algorithm INDV-GR that places cpu and storage of applications independently in a natural

greedy fashion and a greedy pairs placement algorithm PATR-GR that considers applications
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in a greedy fashion and places their cpu, storage pair simultaneously. The pseudocode for
these is given as Algorithm-1 and Algorithm-2.
The INDV-GR algorithm (Algorithm-1) first places application storage by sorting ap-

plications by ApI OVol__ and greedily assigning them to storage nodes sorted by BestDist,

p.StgReq
which is the distance from the closest CPU node. Intuitively, INDV-GR tries to place high-
est I/O volume applications (normalized by their storage requirement) on storage nodes

that have the closest CPU nodes. In the next phase, it will similarly place application VMs
on CPU nodes.

Algorithm 1 INDV-GR: Greedy Individual Placement

1: RankedAppsStg(Q) «+ Apps sorted by ég‘égé // decreasing order
2: RankedStg(Q «+ Storage sorted by BestDist // increasing order
3: while RankedAppsStgQ # O do
4:  App < RankedAppsStgQ.pop()
for (i=0; i<RankedStgQ.size; i++) do
Stg + RankedStgQ[i]
if (App.StgReq < Stg.AvlSpace) then
Place App storage on Stg
break
10: end if
11: end for
12:  if (App not placed) then
13: Error: No placement found
14: end if
15: end while
16: Similar for CPU placement

However, due to its greedy nature, a poor placement of application can result. For exam-
ple, it can place an application with 600 units storage requirement, 1200 units I/O volume
at a preferred storage node with capacity 800 units instead of choosing two applications
with 500 and 300 units storage requirement and 900, 500 units I/O volume (cumulative
volume of 1400). Also, INDV-GR does not account for storage-cpu affinities beyond using
a rough BestDist metric. For example, if A; storage is placed on S, INDV-GR does not
especially try to place A; cpu on the node closest to S;.

This can potentially be improved by a greedy simultaneous placement. The PAIR-GR

algorithm (Algorithm-2) attempts such a placement. It tries to place applications sorted by

I0OVol

Cpulteq-Sigheg O storage, cpu pairs sorted by the distance between the nodes of the pair.
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With this, applications are placed simultaneously into storage and cpu buckets based on

their affinity measured by the distance metric.

Algorithm 2 PAIR-GR: Greedy Pairs Placement

1: RankedApps@Q + Apps sorted by %

2: RankedPairsQ < {Storage x CPU} sorted by distance
3: while RankedAppsQ # @ do

4:  App < RankedAppsQ.pop()

5. for (i=0; i<RankedPairsQ.size; i++) do

6: Stg < RankedPairsQ[i].storage()

7: CPU ¢« RankedPairsQ[i].cpu()

8: if (App.StgReq < Stg.AvlSpace AND App.CpuReq < CPU.AvlCpu) then
9: Place App storage on Stg, App cpu on CPU

10: break

11: end if

12:  end for

13:  if (App not placed) then

14: Error: No placement found
15:  end if

16: end while

Notice that PAIR-GR also suffers from the shortcomings of the greedy placement where
an early sub-optimum decision results in poor placement. Ideally, each storage (and cpu)
node should be able to select application combinations that best minimize the overall cost
value of the system. This hints at usage of Knapsack-like algorithms [46]. Secondly, an
important missing component of these greedy algorithms is the fact that while applications
have a certain preference order of resource nodes they would like to be placed on (based
on the cost function), the resource nodes would have a different preference determined by
their capacity and which application combinations fit the best. Matching these two distinct
preference order indicates a connection to the Stable-Marriage problem [62] described

below.
5.3.3 The SPARK algorithm

The above discussion about the greedy algorithms suggested an intuitive connection to the
Knapsack and Stable Marriage problems. These form the basis for the design of SPARK.
So we begin by a brief introduction of these problems.

Knapsack Problem[46, 143]: Given n items, a; through a,, each item a; has size s; and a

profit value v;. The total size of the knapsack is S. The 0-1 knapsack problem asks for the
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collection of items to place in the knapsack so as to maximize the profit. Mathematically:
n n
maxz v;xzj subject to Z sjr; <8
j=1 j=1
where z; = 0 or 1 indicating whether item a; is selected or not. This problem is known to
be NP-Hard and has been well-studied for heuristics of near optimal practical solutions [83].
Stable Marriage Problem [62, 113]: Given n men and n women, where each person has
a ranked preference list of the members of the opposite group, pair the men and women
such that there are no two people of opposite group who would both rather have each other
than their current partners. If there are no such people, then the marriages are said to
be “stable”. This is similar to the US residency-matching problem for medical graduate
applicants where each applicant submits his ranked list of preferred medical universities and
each university submits its ranked list of preferred applicants.

The Gale-Shapely Proposal algorithm [113] is the one that is commonly used in such
problems. It involves a number of “rounds” (or iterations) where each man who is not
yet engaged, “proposes” to the next most-preferred woman in his ordered list. She then
compares the proposal with the best one she has so far and accepts it if it is higher than
her current one and rejects otherwise. The man who is rejected becomes unengaged and
moves to the next woman in his preference list. This iterative process is proved to yield
stable results [113].

Notice that placing an application together on storage, cpu resource pair (S;, P) (as
done by PAIR-GR) would impact resource availability in all overlapping pairs (Sj, P;) and
(S, Pr). This overlap can have cascading consequences. This indicates that perhaps
placing storage and CPU separately, yet coupled through affinities would hold the key to
solving this problem. Combining this observation with knapsacks and the stable proposal
algorithm leads us to SPARK.

SPARK: Consider a general scenario where say, the cpu part of applications has been placed
and we have to find appropriate locations for storage. Each application A; first constructs
an ordered preference list of storage resource nodes as follows: Let Py be the processor node

where the CPU of A; is currently placed. Then all Sj, 1 < j < & are ranked in increasing
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order of Cost(A;, Sj, Py), or with our example cost funcation, A;.JOVol * dist(S;, P)>.
Once the preference lists are computed, each application begins by proposing to the first
storage node on its list (like in the stable-marriage scenario). On the receiving end, each
storage node looks at all the proposals it received. It computes a profit value for each such
proposal that measures the utility of that proposal. How to compute these profit values is
discussed in Section-5.3.4. We pick the storage node that received the highest cumulative
profit value in proposals and do a knapsack computation for that node 4. This computation
decides the set of applications to choose so as to maximize the total value without violating
the capacity constraints at the storage resource. These chosen applications are considered
accepted at the storage node. The other ones are rejected. The rejected ones move down
their list and propose to the next candidate. This process repeats until all applications are
accepted. The pseudocode for this part is given in Algorithm-3.

We assume a dummy storage node Sgymmy (and similarly a dummy cpu node Pyymmy)
of unlimited capacity and large distance from other nodes. These would appear at the end
of each preference list ensuring that the application would be accepted somewhere in the
algorithm. This catch-all node provides a graceful termination mechanism for the algorithm.

Given these storage placements, the algorithm then decides the cpu placements for
applications based on the affinities from the chosen storage locations. The pseudocode for
the CPU part is similar to the one in Algorithm-3.

An illustration for the working of the SPARK-Stg and SPARK-Cpu rounds is given in
Figure-49. SPARK-Stg brings As.Stg closer to A2.Cpu and SPARK-CPU further improves
by bringing A,.Cpu closer to As.Stg. Knapsacks help choose the A1+ Ao combination over
Aj during placement.

Though the combination of SPARK-Stg and SPARK-Cpu address many possibilities
well, they are not equipped to deal with scenarios like the one shown in Figure-50. Here a

move of one end during a round of placement (either storage or cpu) doesnt improve the

3In case CPUs have not been placed (for example, when doing a fresh placement) we use the BestDist
metric.

“Though knapsack problem is NP-Hard, there are known polynomial time approximation schemes for
it [37] which work reasonably well in practice to give not exactly optimal but close to optimal solutions. We
use one such package [144] here.
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Algorithm 3 SPARK-Stg: Storage placement in SPARK
1: for all App in Apps@) do

2:  Create storage preference list sorted by distance from current App CPU
3:  Propose to best storage
4: end for
5: while (All apps not placed) do
6: MaxStg + StgQ[0]
7. for all Stg in Stg@ do
8: Compute proposals profit
9: MaxzStg <+ mazx(MaxzStg.profit , Stg.profit)
10: end for
11: Knapsack MazStg
12:  for all Accepted apps do
13: Place App stg on MazxStg
14: end for
15:  for all Rejected apps do
16: Propose to next storage in preference list
17  end for

18: end while
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Figure 49: Placement in rounds.

placement but moving of both simultaneously does. This is where the SPARK-Swap step
comes in. It takes two applications A; and A; and exchanges their cpu and storage locations
if that improves the cost while still being within the capacity limits. For the scenario in
the figure, individual rounds cannot make this move - during STG placement, M and O are
equally preferable for A; as they have the same distance from A4-cpu (X). Similarly during
CPU placement. The SWAP step exchanges the STG/CPU pairs between A4 and As.
Combining these insights, the SPARK algorithm is summarized in Algorithm-4. Tt
proceeds iteratively in rounds. In each round it does a proposal-and-knapsack scheme for
storage, a similar one for CPU, followed by a Swap step. It thus improves the solution

iteratively, until a chosen termination criterion is met or until a local optimum is reached.
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Algorithm 4 SPARK: Proposals-and-Knapsacks

1: MinCost + oo, SolutionCfg <+ @
2: loop

3:

SPARK-Stg()

4:  SPARK-Cpu()

5:  SPARK-Swap()

6: Cost + 0

7. for all App in Apps@ do

8: Cost « Cost + App.IOVol * dist(App.Stg, App.Cpu)
9: end for
10:  if (Cost < MinCost) then
11: MinCost + Cost
12: SolutionCfg  current placement solution
13:  else
14: break // termination by local optimum
15:  end if
16: end loop

17: return SolutionCfg

5.3.4 Computing Profit Values

One of the key steps in the SPARK algorithm is how to compute the profit values for the
proposals. Recall that when a storage node S; receives a proposal from an application A4;

it first determines a profit value for that proposal which it then uses in the knapsack step

to determine which ones to accept.

not (for example, if it got kicked out of its location, or it has not found a location yet). If it
does, say at node Sj (S; must be below S; in A;’s preference list, otherwise A; would not
have proposed to S;.), then the receiving node S; would look at how much the system would
save in cost if it were to accept A;. This is essentially Cost(A;, Sy, Py) — Cost(A;, Sj, Py)

where Py is the current (fixed for this storage placement round) location of A;’s cpu. This

162

We distinguish two cases here based on whether A; currently has a storage location or



is taken as the profit value for A;’s proposal to S;.

On the other hand, if A; does not have any storage location or if A; has storage at S;
itself, then the receiving node S; would like to see how much more the system would lose
if it did not select A;. If it knew which storage node Sj:, A; would end up, if not selected
then the computation is obvious. Just taking a difference as above from S; would give the
necessary profit value. However where in its preference list A; would end up if S; rejects it,
is not known at this time.

In the absence of this knowledge, a conservative approach is to assume that if S; rejects
A;, then A; would go all the way to the dummy node for its storage. So with this, the profit
value can be set to Cost(A;, Sqummy, Pr) — Cost(A;, S, Py).

An aggressive approach is to assume that A; would get selected at the very next storage
node in its preference list after S;. In this approach, the profit value would then become
Cost(A;, Sy, P,) — Cost(A;, Sj, P,) where Sj is the node immediately after S; in the pref-
erence list for A;. The reason this is aggressive is that S;; may not take A; either because
it has low capacity or it has much better candidates to pick.

In this work we assume the conservative approach described above. Experiments show
that the solutions computed by the SPARK algorithm are very close (within 4%) to the
optimal with this approach for a range of scenarios. In future, we plan to examine sophis-
ticated approaches including estimating probabilities that a given item would be accepted

at a particular node based on history from past selections.
5.3.5 Features of Solution

In the previous section and examples of Figure-49, 50 we described how the proposals and
knapsacks framework addresses various combinations and scenarios. In this section we
discuss other salient features of this approach.

1. Being iterative: The SPARK algorithm proceeds in rounds iteratively improving the
solution, thus offering a natural time-quality tradeoff if one is desired for time-constrained
domains. The experimental section shows that even after one round SPARK yields better

results than other greedy algorithms and multiple rounds further improve the value.
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2. Flexible cost measure for (Application, Storage, CPU) triple: The algorithm
and the framework allows the cost for each triple to be set independently. At any internal
step, say if we have fixed the storage location S; for A; and trying to look for better
candidate locations for cpu, then the algorithm looks at the Cost(4;, Sj, P;) for all k, sorts
the CPUs by increasing order of that Cost and proceeds with the proposals. The profits
for the proposals are computed from these costs and the knapsacks are based on those
profits. Thus, the algorithm is not tied to a particular cost function. This allows the user
or administrator to capture special affinities between application, storage, CPU triples by
controlling the cost function.

3. Ability to improve existing configurations, accounting for migration costs:
Another important characteristic of SPARK is its ability to start from any existing config-
uration and account for migration costs in making placement decisions. This helps design
placement plans that do not require extensive data and VM migration. This is an extremely
desired feature and is in contrast to many other planning algorithms® that make decisions
oblivious to current setups. SPARK accommodates this by instrumenting the Cost func-
tion in the following manner. For each application A; with storage at S; and cpu at Py, we
add a factor (¢ x A;.StgReq * ng_)gj,) to every Cost(A;, Sjr, Py) value where 0 < 7 < 1
is a customizable parameter that modulates the bias in deciding to migrate or not (=0
implies no bias and each application is free to move) and Cs, Sy is the cost of migrating
storage from S; to Sy. Similarly for job migration costs from P;. We envision 1 to be
decided based on the desired speed of orchestrating the final SPARK plan. For example,
to handle a workload surge in a rapid manner, a high v value would prevent extensive VM
and data migration.

4. Handling dynamic scenarios: SPARK is extremely quick in generating placement
decisions (see Section-5.4). This makes it especially adept at handling SAN dynamic scenar-
ios. Below we briefly describe how it can plan to handle workload surges, planned downtime,

growth and node failures.

For example, for an LP formulation of this problem, the increased number of constraints would make
the tractable problem size even smaller.
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e Surges: Once a workload surge is identified using the VM and SAN management tools
(Section-5.2), SPARK is initiated to plan application storage and cpu placement with
the new amplified workload. The 9 can be set to a high value to limit the amount
of VM/data migration suggested by SPARK. Once SPARK outputs a placement
plan, the orchestrator can automatically execute necessary migrations stabilizing the

system.

e Planned Downtimes: If planning sufficiently in advance for scheduled downtimes
of hardware (for maintenance or upgrades), it might be preferable to have a more
optimized solution than to limit migration. For such planning, v is set low and the
SPARK is set to plan only with those SAN resources that will be up during that
time. This output plan can then be executed and the system adequately prepared for

the node downtimes.

e Planned Growth: Similar to downtimes, growth in application storage capacities

or CPU requirements can be planned adequately in advance.

e Node Failures: SPARK can also similarly handle node failures as long as informa-
tion about node state (for example, for a CPU resource node, the state of the VM)
can be recreated. For stateless applications and when technologies exist to recreate
state, SPARK can output a plan fast and minimize migration by setting a high

value.

5. Policy Constrained Placements: Typically data center administrators have many
policies dictating that certain kind of applications can or cannot be placed on certain types
of nodes. These constraints can be automatically encapsulated in the cost function by giving
such incompatible application, storage, cpu triples a very high cost value and conversely
highly preferred triples a low cost value. Incorporating such constraints in other algorithms
like INDV-GR, PAIR-GR is complex as their greedy approaches are not flexible enough to
account for such cost metrics.

6. Applications requiring multiple cpu and storage nodes: With the inherent

flexibility in SPARK, it is easy to incorporate applications with multiple cpu and storage
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node requirements. Such scenarios are common when multiple instances of an application
are run concurrently (say on CPU nodes C}, ...CI") and data is shared between these
instances. Further this data can also be split into multiple storage nodes (say Sjl-, —
for example, different locations for log and temp data. SPARK accounts for such situations
by computing an aggregated cost value for all instances of a single application, given by
Y ) Cost(A,81,CF)
pEl..mg€l..n

whenever any instance of the application is considered for placement. This aggregated cost
function captures the dependency across application instances as moving a single instance
can affect the affinities for the entire application group. The greedy algorithms will struggle
to account for this.

7. Based on well-studied problems: The fact that SPARK is fundamentally grounded
in well-studied problems gives us hope that it will work well in a variety of situations and
offer an opportunity for a more concrete theoretical analysis in future. The experimental
section discussed next validates the belief of superior performance of SPARK in optimiza-

tion quality as well as running time.
5.4 Experimental Evaluation

In this section, through a series of simulation based experiments, we evaluate the perfor-
mance of SPARK for various workload and SAN environments. We also compare it with
other candidate algorithms and Linear Programming based optimal solutions. Section-5.4.1
describes the experimental setup followed by the results. We summarize our findings in

Section-5.4.6.
5.4.1 Setup

To evaluate SPARK, we simulated storage area networks of varying sizes and application
workloads with different CPU, storage requirements and I/O volume rates.

As in any realistic SAN environment, the size of the SAN is based on the size of the ap-
plication workload. We used simple ratios for obtaining the number of application servers,

controllers and switches. For example, for a workload with 1000 applications (one CPU,
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storage node per application), we used 333 (Ratio=3) application servers, 50 (Ratio=20)
high end storage controllers (with CPUs) and 40 (Ratio=25) regular storage devices (with-
out CPUs). We used the popular core-edge design of the SAN with storage controllers
connected to application servers through three levels of core and edge switches. For the
above example, we had 111 edge switches, 16 mid level core switches and 5 core switches
(with CPUs). We used uniform CPU and storage capacities for nodes.

All these parameters are encapsulated into a single metric called Problem Size which
is equal to the product of number of applications, number of CPU nodes and number of
storage nodes. It roughly represents the complexity of the problem.

The CPU and storage requirements for applications are generated through a normal
distribution with varying mean and standard deviation. The I/O volume rates were also
varied using a normal distribution. We describe the exact mechanism used to obtain these
values in Section-5.4.1.2 and evaluate our algorithm with different values in Section-5.4.3
and Section-5.4.4.

Another important input is the application cpu-storage distance matrix. In our exper-
iments, we used same distance values independent of applications derived using an expo-
nential function based on the physical inter-hop distance; the closest CPU-storage pairs
(both nodes inside a high end storage controller) are set at distance 1 and for every subse-
quent level (core switch CPU and storage and then hosts and storage) the distance value
is multiplied by a distance-factor. We present experiments with varying distance factor in

Section-5.4.5.
5.4.1.1 Algorithms and Implementations

We compared the following algorithms in our evaluation. All algorithms were implemented
in C++ and run on a Windows XP Pro machine with Pentium (M) 1.8 GHz processor and

512 MB RAM. For experiments involving time, results were averaged over multiple runs.

e Individual Greedy Placement (INDV-GR): The greedy algorithm that indepen-

dently places application storage and cpus as shown in Algorithm-1 (ref. Section-5.3).
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¢ Pairwise Greedy Placement (PAIR-GR): The greedy algorithm that places ap-

plications into best available storage-cpu pairs — Algorithm-2 (ref. Section-5.3).

e OPT-LP: The optimal solution obtained by the LP formulation. We used CPLEX
Student [48] for obtaining integer solutions (it worked only for the smallest problem
size) and popular MINOS [130] solver (through NEOS [60] web service) for fractional
solutions in the [0,1] range for other sizes. We could only test upto 300 application
nodes (problem size = 1.1 M) as the number of variables grew past the limits of the

solvers after that.

e SPARK: Our SPARK algorithm as described in Section-5.3. It used the 0/1 knapsack

algorithm contained in [143] with source code available from [144].

e SPARK-R1: The solution obtained after only a single round of SPARK. This helps

illustrate the iteratively improving nature of SPARK.
5.4.1.2 Design of Experiments

We conducted the following set of experiments:

— Scalability Tests: An important requirement for SPARK is to be able to handle large
data center environments. For validating this, we measure its performance with increasing
size of the storage area network. As mentioned earlier, size of the SAN is computed based on
the total number of applications in the workload. We varied this number from 10 (problem
size 140) upto 2500 (problem size of 575 M). Please note that the OPT-LP implementa-
tion could only solve till 300 nodes (problem size 1.07 M). We report these experiments in

Section-5.4.2.

— Varying Mean: Any fitting algorithm would be influenced by the required “tightness”
of the fit. We varied the mean of the normal distributions used to generate workload CPU
and storage requirements. For CPU requirements, the mean () is varied through a param-

eter o € (0,1] using the formula p =

Q*CPUcap
N

, where cpu.qp is the capacity of the CPUs
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and N is the ratio of number of applications to available CPU nodes (similarly for storage
requirements). It is easy to see that o = 1 implies the strictest packing arrangement where
the average CPU requirement is equal to the cpu.qp divided by the number of applications

per CPU. Please note that high « values might not have any feasible solution for any solver.

— Varying Std-dev: Along with fitting tightness, uniformity of the workloads will also
play an important role in the performance of various fitting algorithms. To evaluate this,
we varied the standard deviation of the normal distribution as a function of 8 € [0, 1] using

the formula o = ’B*c”% where parameters are defined as above.

— Varying Distance Factor (DF): DF determines the distances between storage nodes
and CPU nodes at various levels. A higher distance factor implies a greater relative distance
between two levels of CPU nodes from the underlying storage nodes. For example, if a CPU
is accessing storage through a wide area network, its distance from the storage is much
higher than any CPU accessing through the SAN fabric. This set of experiments provides

interesting insights into placement characteristics of various algorithms (ref. Section-5.4.5).
5.4.2 Scalability Test: Varying SAN Size

In this experiment, we increased the size of the SAN with increasing number of applica-
tions in the workload. The problem size varied from 140 to 575M representing a small 10
applications workload increasing upto 2500. The other parameters were a=0.55, 5=0.55,
DF=2. We measured the quality of the optimization and solution processing time for all
implementations. Recall that quality is measured using the cost metric given by cumulative
sum of the application I/O volume times its storage-CPU pair distance.

Figure-51 shows the quality of optimization for INDV-GR, PAIR-GR, SPARK, SPARK-
R1. Since OPT-LP only works upto a problem size of 1.1 M (as the number of variables
in the LP formulation go past the limits of the solvers [60]), we show a zoomed graph for
small sizes in Figure-52 and give exact cost measures in Table-21.

First notice the separation between the greedy algorithms and SPARK in Figure-51. Of
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the two greedy algorithms, PATIR-GR does better as it places applications based on storage-
CPU pair distances, whereas INDV-GR’s independent decisions do not capture that. It is
interesting to see that SPARK-R1 performs better than both greedy algorithms. This is
because of using knapsacks (thus picking the right application combinations to place on
resources) and placing CPU based on the corresponding storage placement. With every
subsequent round, SPARK iteratively improves to the best value shown.

Figure-52 shows the quality of all algorithms including OPT-LP for small problem sizes.
While rest of the trends are similar, it is most interesting to see the closeness in curves of
OPT-LP and SPARK. Table-21 shows the exact values of OPT-LP and SPARK optimiza-
tion quality and SPARK is within 2% for all but one case where its within 4% of OPT-LP.

This validates excellent optimization quality of SPARK.

Table 21: Comparison with OPT-LP

Size | SPARK-R1 | SPARK | OPT-LP | Difference
0.00 M 986 986 986 0%
0.01 M 10395 9079 8752 3. 7%
0.14 M 27842 24474 24200 1.1%
0.34 M 37694 32648 32152 1.5%
0.62 M 52796 45316 45242 0.1%
1.08 M 67805 59141 58860 0.4%
251 M 91717 79933 - -

Figure-53 shows the time taken by implementations in giving a solution. As expected,
INDV-GR is extremely fast since it independently places application CPUs and storage, thus
complexity of |Apps| * (|STG| + |[CPU|). On the other hand PAIR-GR first generates all
storage-CPU pairs and places applications on pairs giving it a complexity of | Apps|*|STG| x
|CPU|. Each SPARK round would place storage and CPU independently. SPARK-R1
curve shows the time for the first round which is very small. The total processing time in
SPARK would be based on the total number of rounds and complexity of the knapsacks in
each round. As shown in the graph, it is extremely competitive taking only 333 seconds even
for the largest size of the problem (575 M). Because of its iterative nature and reasonable
quality of SPARK-R1, SPARK can actually be prematurely terminated if a quicker decision

is required and thus still provide a better solution than comparable algorithms.
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5.4.3 Varying Mean

Our next experiments evaluate the algorithms with varying mean of the normal distribution
used to generate CPU and storage requirements for the applications. As mentioned earlier,
this mean is varied using the a parameter; higher « increases tightness of the fit by increasing
the mean.

Figure-54 shows the results with «a from 0.1 to 0.7 for a problem size of 37 M (1000
applications), 8 = 0.55 and DF = 2. The costs of all algorithms increase with increasing
«a. This is expected since tighter fittings will have fewer combinations that fit, resulting in
overall increased cost.

Of the greedy algorithms, PATR-GR worsens at a faster rate which is due to increasing

impact of the overlap effect as mentioned in Section-5.3. Comparatively, SPARK continues
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to outperform other algorithms for all « values. Also, as earlier, we plotted a similar graph
for a smaller problem size of 0.14M (150 applications) to compare with OPT-LP in Figure-
55. SPARK remains close to OPT-LP throughout, validating its power to find solutions
with varying tightness of the fitting.

For processing time (Figure-56), the greedy algorithms remain constant with increasing
« values as they only traverse storage and cpu lists per application. On the other hand,
SPARK might need additional rounds of placements in order to converge to a local optimum
value. As seen in the graph, while SPARK-R1 remains small, the total time increases
overall due to increased number of rounds (varies between 3 and 7 in these experiments).
Note that due to convergence to a local optimum, there would not be a consistent pattern
with increasing . The objective of the time experiments is to ensure that varying fitting-

tightness does not significantly deteriorate SPARK in quality or processing time.
5.4.4 Varying Std-Dev

Similar to tightness of the fit, a relevant parameter is the uniformity of the workloads. For
example, if all workloads have same CPU and storage requirements and same throughout
rates, all solutions tend to have the same cost metric (as not much can be done with differ-
ent combinations of applications during placements). As workloads become less uniform,
there are different fittings that might be possible and different implementations will react
differently.

Figure-57 shows the performance of the algorithms when £ is varied from 0 to 0.55 for
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a problem size of 37 M (1000 applications workload), «=0.55 and DF=2. Notice that as
B and thus non-uniformity of workloads increases, costs drop for all algorithms. This is
because with availability of many applications with low resource requirements, it is possible
to fit more applications at smaller distances. However, SPARK reacts the best to this and
significantly drops in cost for higher 8 values. This is explained through the knapsacks
component of SPARK as in case of greedy algorithms, an early sub-optimum decision can
cause poor fitting (for example, choosing 6 before 5 & 3 were available for an 8 capacity
resource).

Figure-58 shows the graph with OPT-LP for smaller problem size of 0.14M (150 ap-
plications). Once again, SPARK is able to maintain its effectiveness in comparison to
OPT-LP. This means that SPARK adjusts superbly with various workload characteristics.
The times of different algorithms for the larger 37M problem with varying 8 are shown in
Figure-59. As mentioned earlier, greedy algorithms tend to maintain constant time based
on application and storage-cpu lists. In contrast, total time in SPARK is impacted by the
number of rounds required to converge to the local optimal and does not have a consistent
pattern. In this case, it used 3, 10, 6, 8, 5 and 7 rounds. However, it is important to
note that the total time is still small and does not compromise on SPARK'’s application to

addressing dynamic SAN events like workload surges.
5.4.5 Varying Distance Factor

The last set of experiments vary the distance factor (DF) that is used to obtain distance
values between CPU and storage nodes. As mentioned earlier, we used uniform distance
values across applications (that is, distance between a CPU and storage node is same for
all applications) and the distance value was obtained using the formula DFP where p is
the physical inter-hop distance between nodes. A higher DF value implies that distance
values increase much more rapidly with every hop, for example, due to increased latencies
at switches, or going over a LAN or WAN for farther nodes.

The objective of this experiment is to better understand the characteristics of the al-

gorithms as differences in fitting arrangements would be amplified at higher DF values
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(fitting an application at distance i vs. fitting it at distance j has the cost difference of
IOVol x (DFJ — DFY)).

Figure-60 plots the graph as DF is varied from 2 to 15 for a problem size of 37 M (1000
applications) and a=£=0.55 (due to small difference between SPARK and SPARK-R1
relative to the scale of the graph, they appear as if a single line). The most interesting, and
in fact surprising observation is the performance of INDV-GR. Not only does it outperform
PAIR-GR at higher DFs but it comes reasonably close to SPARK. On close inspection, we
found that INDV-GR was performing remarkably at placing applications at higher distances,
that is, even though it fit fewer applications (and I/O volume) at lower distances (p=0 and
p=1), it outperformed other algorithms by fitting more at p=3 and less at p=4. It requires
further analysis to fully explain this characteristic®, but we believe it can hint at improving
SPARK performance for higher DFs as well. For a smaller problem size of 0.14 M, shown
in Figure-61, the OPT-LP is able to separate itself from SPARK at higher DF values,
though SPARK still remains within 8%. This is due to the amplification as well. Finally,
Figure-62 shows that the processing time does not vary much with changing DF indicating

it does not impact the fitting.
5.4.6 Summary of Results

Below, we summarize our key findings:

¢ SPARK is very scalable in optimization quality and processing time. With increasing
size of the SAN and workloads, SPARK continues to perform (30-40%) better than
other candidate algorithms and is within 4% of LP based solutions (tested for
smaller problem sizes). It is also very fast to compute results taking 5.5 minutes for

the largest instance with 2500 applications.

e The iterative nature of SPARK and its good performance even after a single round
(SPARK-R1 in graphs) allows improving any initial configuration, and an attractive

property of trading off quality with speed.

81t is impacted by how applications are fit at lower distances, as only the ones that do not fit there are
candidates for fitting at higher distances
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e SPARK is incredibly robust with changing workload characteristics like tightness
of the fit and uniformity of workloads. For changing «, 8 and DF parameters, it
maintains its superior performance over other algorithms and closeness to the LP

solutions.
5.5 Summary

In this chapter we presented a novel algorithm, called SPARK that optimizes coupled place-
ment of application computational and storage resources on nodes in a modern virtualized
SAN environment. By effectively handling proximity and affinity relationships of CPU
and storage nodes, SPARK produces placements that are within 4% of the optimal lower
bounds obtained by LP formulations. Its fast running time even for very large instances of
the problem make it especially suitable for storage service provider environments that deal
with highly dynamic scenarios like workloads surges, scheduled downtime, growth and node
failures. Among its other features, SPARK can iteratively improve any existing resource
placement, accounting for migration costs and has inherent built-in flexibility to handle
various placement constraints that impact the choice of resources where an application can

be placed.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

As enterprises generate more and more data, they are faced with the complex task of man-
aging storage systems that store this data. Management of large storage infrastructures can
be very expensive, often accounting for nearly 75% of the total cost of ownership [25]. This
has forced enterprises to look for more cost-effective data storage models. One paradigm
finding success in alleviating these costs is the Storage-as-a-Service model, in which enter-
prises outsource their storage to an external storage service provider (SSP) by storing data
at a remote SSP-managed site and accessing it over a high speed network. The storage-as-a-
service model reduces storage management costs for enterprises and provides them with an
on-demand storage infrastructure, growing or shrinking according to their needs. Addition-
ally, storage service providers provide superior disaster recovery and content dissemination
solutions. However, this model faces many unique technical challenges.

In this dissertation, we have contributed to addressing two core challenges faced by the
storage-as-a-service model. The first and foremost challenge is that of security and access
control. Enterprises find it tough to trust the SSP for preserving data confidentiality and
enforcing access control over their stored data. To enforce access control in the absence of
a trusted reference monitor, we propose using efficient cryptographic techniques to embed
access control into the stored data, ensuring that users can decrypt only the data that
they are authorized to access. Along with core filesystem data access, we also propose a
similar embedding technique to support another access control aware application — mul-
tiuser filesystem search. Unlike traditional approaches that require a trusted access control
monitor to filter query results and are prone to inference attacks, our access control embed-
ding approach does not require a trusted engine at runtime and is more resilient to various
attacks.

The second important challenge addressed in this dissertation is the management of
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highly dynamic SSP storage data centers. To correctly integrate client-initiated changes,
SSP administrators have to carefully analyze the impact of the proposed change on the
rest of the system and also manually plan for resource allocation in response. This manual
process is error prone, inefficient and slow. In this dissertation, we propose two autonomic
techniques that proactively analyze the impact of a change on the storage area network
and perform efficient allocation of resources to client workloads in response to their new
requirements. This reduces administrator involvement in the process and aims to deliver a
true on-demand storage infrastructure.

Specifically, this dissertation has made following new contributions to the area of the

enterprise storage-as-a-service model:

e Access Control with ACCESS: We described xACCESS, an access control system
for enterprise storage-as-as-service environments. xACCESS uses novel cryptographic
access control primitives (CAPs) to embed access control into stored data, eliminating
the requirement of a trusted access control enforcement engine. We showed how an
expressive UNIX-like access control model can be supported using xACCESS with
completely in-band key management that minimizes user involvement. Further, we
demonstrated the greater efficiency of our filesystem achieved by using symmetric key
cryptography for metadata operations. In our initial experiments, we outperformed
related proposals by over 40% on a number of micro and macro benchmarks. We also
analyzed the privacy aspects of our access control model and developed enhancements

that provide more secure and convenient data sharing mechanisms.

e Secure Multiuser Filesystem Search: We also developed a new enterprise search archi-
tecture that provides access control aware search resilient to common inference attacks
over SSP-stored data. Similar in concept to xACCESS, our search architecture em-
beds access control into search indices using a novel technique of access control barrels
(ACB) and eliminates the requirement of a trusted monitor for filtering query results.
We also showed how the distributed architecture helps in achieving greater indexing

efficiency by using underutilized enterprise machines.
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e Autonomic Management of SSP Data Centers: To assist SSP administrators in man-
aging dynamic storage environments, we developed Zodiac, a proactive what-if anal-
ysis engine that can analyze the impact of a proposed change even before applying
that change, thus identifying potential configuration and performance errors. We
demonstrated how our three proposed optimizations allow Zodiac to scale well with
increasing size of the storage area network and complexity of storage policies. We also
developed SPARK, a unique resource allocation framework that efficiently re-allocates
storage and CPU resources in response of a client workload surge, node failures, growth
or planned downtime. Through our experiments, we also demonstrated its superior

allocation quality, speed and robustness with varying system parameters.
6.1 Open Problems and Future Directions

This thesis has made a number of contributions in security and management of enterprise
storage-as-a-service model. We believe that the techniques proposed in this dissertation
lend themselves well for many interesting extensions in future. In this section, we describe

some important directions for future work.
6.1.1 Access Control Models

The access control system proposed in this dissertation provided cryptographic access con-
trol primitives for the UNIX access control model. An important extension to this work
is support of other access control models, most notably Windows. Windows offers a richer
access control model with more permission settings. While the most frequently used per-
missions are similar in semantics to UNIX, there exist few unique permissions that can not
be supported by easy extensions to UNIX based CAPs, for example, only creating or only
deleting contents of a directory, taking ownership of a filesystem object or ability to change
access privileges. It requires further exploration of cryptographic literature or development
of new cryptographic schemes to provide equivalent semantics for such permissions. For ex-
ample, append-only signatures [101] might be used for supporting creation-but-not-deletion
of directory contents. Similarly, development of efficient schemes that provide asymmetric

data encryption to support write-only permissions is an important direction of future work.
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6.1.2 Access Control for Application Contexts

The proposed access control embedding approach provides techniques for enforcing access
control over SSP-stored data without placing undue trust in the service provider. An
interesting direction of future work is to use similar techniques for enforcing access control
for application contexts. In other words, can we support a setuid form of permission
that changes the effective user ID and thus, effective access privileges upon execution of
an application command? The effective ID is applicable only for the execution of that
command. In the storage-as-a-service model, this implies that a user can obtain access
to certain encryption keys only during the execution of a particular command. We are
investigating mechanisms in which virtualization based technologies can be used to enforce
such access control. For example, the owner of the setuid program can create an application
context inside a virtual machine (similar to a virtual appliance [186]) and embed encryption
keys into the virtual machine. Then the virtual machine can be stored as a regular file at
the SSP. Users can download the virtual machine and execute using the privileges (keys) of

the owner user without obtaining plaintext access to the keys.
6.1.3 Other Security Issues

This thesis has contributed towards addressing unique data confidentiality and access con-
trol challenges in the decentralized storage-as-a-service model. Notwithstanding that these
are two key components of an enterprise’s security strategy, other important challenges like
data integrity, intrusion detection and denial of service (DoS) attacks also need to be ad-
dressed for a comprehensively secure service environment. Data integrity solutions need to
prevent against unintentional or malicious tampering with data stored at the SSP, either
through an enterprise user or even the SSP [106, 67]. Intrusion detection may also re-
quire new methodologies as now the SSP is tasked with identifying unauthorized intrusion
attempts which might require isolation of user requests across different client enterprises.
Protection against DoS attacks is also crucial as a single SSP can impact various enterprise
storage access services, and it is also possible that the attack could be perpetrated by the

SSP itself. Investigation of such security solutions is a fertile area for future research.
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6.1.4 Search Integrity

Many research efforts have proposed techniques to ensure integrity of data stored at the
untrusted SSP [106, 67] by allowing users to detect unauthorized writes to data. Similar
techniques may be required to ensure integrity of results in the multiuser search hosted at
the SSP. A malicious SSP could return wrong files (that do not contain the query keywords)
or not-return correct files (that contained the keywords) or just incorrectly rank the results
(if using the BDI — T approach). Search integrity techniques would provide a mechanism

to detect such malicious behavior.
6.1.5 Autonomic Monitoring and Execution

In this dissertation, we proposed autonomic techniques that provide Analysis and Planning
capabilities for efficient management of SSP data centers. Along with these, traditional
autonomic computing consists of Monitoring and Ezecution capabilities as well (together,
these four capabilities form a part of the MAPE loop [98]). While many existing products
can be leveraged for monitoring and execution [88, 54, 181, 182], it still requires deeper
analysis for integrating these capabilities, especially under the performance and response

time requirements of the dynamic SSP data centers.
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