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ABSTRACT

We explore the effectiveness of the random projection method, a biologically plausible,

computationally efficient, and data-independent method of dimensionality reduction in dis-

tinction between categories of visual stimuli. We observe that a neural network tasked with

approximating the original stimulus from the reduced domain generally excludes informa-

tion not useful in distinguishing visual categories. This suggests that random projection

may be useful in the efficient recall and recognition of visual concepts even though the

projections only contain small fractions of the original information. Our findings indicate

that the reconstruction of visual stimuli from the random projected domain preserves best

the features most typical of that particular category of stimuli.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Humans are able to organize massive amounts of data into concepts that they can

later recognize and recall. Infants can form categorical representations of dogs and cats, for

example, from just a few exposures to images of these animals [7]. In order to process mas-

sive amounts of information from visual stimuli as quickly as they do, humans must process

the stimuli in a manner that reduces the complexity of those stimuli. Previous work in the

field of neuroscience has developed models for the processing of high-dimensional natu-

ral stimuli through low-dimensional representations and corresponding neural responses.

However, these methods are typically computationally expensive and data-dependent [1].

The Johnson-Lindenstrauss lemma [2] is the basis for a method of dimension-

ality reduction called random projection, which projects points from a high-dimensional

vector space into a random, low-dimensional, orthogonal vector space. It does this by

drawing an k-by-n matrix A from a Gaussian distribution. This matrix is then multiplied

with all samples x, of the form Ax = b. b is then a low-dimensional representation of the

original samples. The lemma guarantees that the relative distances between the points is

approximately preserved during this process. Furthermore, the random projection method

is completely independent of the structure of the data being projected.

Arriaga and Vempala proposed random projection as a means by which robust

concept classes can be learned efficiently and from few examples with a biologically plau-

sible neuronal mechanism called neuronal random projection [3]. This is simply a version

of the random projection method that can be implemented with a neural network layer of

static weights. The existence of a simple neuronal structure that can perform random pro-
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jection on an input suggests that the method could be a biologically plausible means of the

reduction of dimensionality of stimuli. The biological plausibility of this method has been

previously explored. [5].

1.2 Sample Robustness

A robust concept is one that is immune to attribute noise to some extent. Arriaga

and Vempala define a concept C as `-robust over some distribution D if

PrD[x | ∃y : label(x) 6= label(y), ‖x− y‖ ≤ `] = 0 (1.1)

If we consider the visual domain to be an array of pixels of varying intensities, concepts

of natural visual stimuli do not strictly adhere to this definition, as there may be no real,

positive ` for which this definition applies. For example, it is possible that a picture of a

donkey and a picture of a horse are nearly or completely indistinguishable in the visual

domain. To quantify this, Arriaga et al. introduced the notion of sample robustness [4].

Given two categories A and B, the sample robustness of a particular sample x with respect

to A and B is defined as

RAB(x) =
‖x− µA‖
‖x− µB‖

− ‖x− µB‖
‖x− µA‖

(1.2)

where µA and µB are the means of categories A and B, respectively. This metric tends

towards +∞ when the sample x is closer to µB, and towards −∞ when the sample x is

closer to µA. Euclidean and Manhattan distance are both acceptable metrics to use. This

paper uses Euclidean distance throughout.
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1.3 Previous Human Experiment

Arriaga et. al (2015) explored the binary categorization performance of humans

and simple neural networks on novel, artificially generated stimuli with respect to sample

robustness. They found that both humans and neural networks were more likely to correctly

classify samples with greater |RAB(x)|, both before and after the application of visual

structure preserving random projection methods. Additionally, the performance of humans

in classification did not significantly degrade after random projection [4].

The methods chosen for the Arriaga et. al (2015) experiment were not random

projection in the literature sense as described above. In order to present the reduced stimuli

to humans, the projections maintained the visual structure of the image and did not simply

vectorize its pixel intensity values. For example, one method that was used performed

random projection on a sliding window across the image to generate macro-pixels that

were a random combination of colors in the window.

This suggests that random projection could be responsible for efficient catego-

rization of visual stimuli by humans, but does not suggest anything about the influence

of random projection on visual concept learning, or how humans cognitively perform that

categorization.

1.4 Stimulus Reconstruction Experiment

The effectiveness of a simple neural network in the task of approximating the

original signal over a dataset of natural visual signals after random projection was ex-

plored. For samples strongly belonging to a particular category, the robustness of those

samples generally increased when reconstructed from the reduced domain by the neural

network. This may suggest that random projection enables computationally efficient learn-

ing of natural visual concepts by reducing the complexity of the visual stimulus. By apply-

ing random projection, the distinction between two categories of visual stimuli is efficiently
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represented in a low-dimensional neuronal encoding and the neural network’s weights by

minimization of the error in the reconstruction of those stimuli.
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CHAPTER 2

LITERATURE REVIEW

2.1 Neuronal Random Projection

In 1999, Arriaga and Vempala proposed random projection as a biologically plau-

sible method for dimensionality reduction [3]. This method takes a set of high-dimensional

data, and embeds it into a low-dimensional vector space. It does this by drawing an k-by-n

matrix A from a Gaussian distribution. This matrix is then multiplied with all samples x, of

the form Ax = b. b is then a low-dimensional representation of the original samples. John-

son and Lindenstrauss proved that random projection preserves the Euclidean distances

between all pairs of points in x within some error bound [2]. In other words, the random

projection of a set of data is a noisy sketch of the original set, but is represented with far less

information. Arriaga and Vempala additionally proposed a method called neuronal random

projection. This is simply a version of the random projection method that can be easily

implemented with a neural network of static weights. The existence of a simple neuronal

structure that can perform random projection on an input indicates that the method could

be a biologically plausible means of the reduction of dimensionality of stimuli. Allen-Zhu,

Gelashvili, Micali, and Shavit, for example, explored a sparse and sign-consistent version

of the Johnson-Lindenstrauss transform, with the motivation that sparsity is necessitated by

the large majority of real neurons being inhibitory, and sign-consistency is necessitated by

the existence of a minimum neuronal activation potential [5]. Much more analysis has been

performed on variations of this method that better lend themselves to biological plausibility.
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2.2 Relation to Compressed Sensing

This work is related to the well-explored method of compressed sensing, de-

scribed by Olshausen and Field [6]. They posit that the compressed sensing method shares

some important properties with certain groups of visual receptive neurons. In this method,

a set of images is reduced into a sparse dictionary which represents a set of distinct, iden-

tifying visual features. They are found by attempting to reconstruct the images from the

set of features with the constraints that information is preserved, and the coefficient matrix

multiplied by the feature dictionary for a given image is as sparse as possible. Essentially,

the compressed sensing method represents a set of images with individual features that

span the image space but are combined to recreate the image with only a fraction of those

features. This work demonstrates that the result of random projection is a partially suf-

ficient dictionary for recreation of prototypical samples, without actually considering the

distribution or sparseness of features of the stimuli. In this sense, random projection is very

computationally efficient and data-independent. While it does not necessarily meet the

hypothesized sparsity criteria that arises from Olshausen and Field’s analysis of the mam-

malian visual system [17], it does take some advantage of the redundancy of natural visual

scenes by preserving inter-category variance across distinct visual categories by projecting

onto non-redundant dimensions.

2.3 Human Categorization of Stimuli After RP-based Methods

In 2015, Arriaga et al [4] performed an experiment on human subjects relating

to random projection. The participants were shown a sample image from two distinct cat-

egories. These categories were novel and natural, meaning that they contained features

consistent with real objects such as lines and contiguous groups of similarly colored pixels,

but they were not anything the participant could have seen before. They were artificially

generated with this goal in mind. After presentation of one sample from each category, the
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participant was then asked to categorize unlabeled examples from the same two categories.

The experiment was also performed after the application of two random projection-based

methods: corner projections, which randomly scale and average the pixel values surround-

ing all detected corners in the image, and sliding-window projections, which slides across

the image and generates a mega-pixel from a random combination of the colors in the win-

dow. Once the human results were collected, a neural network was trained to perform the

same task. Arriaga et al found that classification performance did not degrade with the

use of these information removing random projection-based methods. Furthermore, hu-

man classification performance almost exactly mirrored the performance of neural network

on the same samples. Lastly, and most importantly, the performance of both humans and

neural networks had a strong positive correlation with |RAB(x)|, defined in equation (2).

Samples with greater absolute value of sample robustness strongly belonged to one of the

categories more than the other. Both humans and neural networks were able to categorize

these samples more accurately. This indicates that the intensities of the pixels representing

natural images are inherently correlated with the categories to which they belong, for both

human and machine recognition tasks. However, this is not a particularly interesting result

by itself; in order to distinguish objects visually, they must have distinct visual features.

This experiment had a few drawbacks that this work attempts to circumvent.

Firstly, the stimuli presented to the subjects were artificially generated, so even though they

consisted of natural features, it was unclear whether the results would extend to naturally

occurring stimuli. Secondly, the specific random projection methods used (sliding-window

and corner) are not random projections in the commonly used sense in the literature. My

experimentation will deal almost entirely with neuronal random projections that are true

projections of the data into a random lower-dimensional space, as opposed to algorithmi-

cally based sketches with a random component.
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2.4 Concept Learning via Random Projection

We look to find computationally efficient methods involving random projection

and simple neural networks that indicate some form of category learning of natural visual

stimuli without the use of semantic labels. What inherent structures in the stimuli lend

themselves to be easily learned with random projection as a preprocessing step?

8



CHAPTER 3

METHODS

3.1 Training

A simple feed-forward neural network, shown in Figure 3.1, was implemented.

The first layer of the network executes neuronal random projection [3] on the visual input

in the pixel-intensity domain, with static, random weights drawn from an approximately

Gaussian distribution. This reduces the stimulus from n dimensions to k dimensions. The

remaining neurons in the network were then trained to reconstruct the original image via

backpropagation, using a mean squared error loss function. This trained portion of the

network weights can be an arbitrarily complex generator, operating on a low-dimensional,

sample-specific coding that is the result of random projection. This model is somewhat

similar to a standard generator network, except that the samples in a generative network

would be multivariate unit Gaussian instead of the direct result of random projection. All

neurons in the network used a sigmoid activation function. The network attempts to learn

the identity function with an internal random projection step.

Figure 3.1: Neuronal-RP neural network architecture.
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In the context of modeling human concept learning, it is clear that presenting

a human with an object or other real category produces many 2-dimensional ”stimuli”

from which to learn. The existence of a neuronal structure similar to the one presented is

biologically plausible. It has been suggested that neuronal noise assists in the processing

of visual stimuli [10]. Work by Quinn, Eimas, and Tarr [7] has found that infants are able

to perceptually categorize real visual stimuli such as dogs and cats from very few examples

without prior category knowledge. Gallant has proposed, as evidenced by fMRI scans, that

much of the activity across the anterior visual cortex is influenced by learned categories of

natural visual scenes, and that the brain ”capture[s] the co-occurrence statistics of objects

in the world” [9].

3.2 MNIST Dataset

The network was trained to reconstruct 2-subsets of the MNIST handwritten digit

dataset categories [8], containing 1000 samples of one handwritten digit, and 1000 samples

of another digit. The two specific categories chosen are analogous to A and B from the 2015

human categorization experiment by Arriaga et al [4], except the categories are naturally

generated and, in practice, would be familiar to humans. Using only two categories at a

time allowed for direct analysis of the sample robustness metric.

3.3 Reconstruction of MNIST Samples After Random Projection

The images, which consisted of 784 pixels/dimensions (28 x 28), were projected

into k = 78 dimensions by the first layer of the network in Figure 3.1. The rest of the

network was trained to reconstruct the original n = 784 dimensions from the result of the

random projection. Some samples are shown in Figure 3.2a with the original stimulus on

the top and the reconstructed stimulus on the bottom. The experiment was repeated on all

pairs of digit categories (0 vs 1, 0 vs 2, 7 vs 9, etc) with relatively consistent results. For

the sake of brevity, the examples presented in this paper contain stimulus samples from the
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experiments on the ”0”s and ”3”s of the MNIST set.

(a) 6 samples from the MNIST dataset
(top) and their corresponding recon-
struction (bottom). (b) A 78 dimensional neuronal encod-

ing of a single ”0” stimulus.

Figure 3.2: The network, in this case, was trained to reconstruct both ”0”s and ”3”s. The
visual structure of a ”0” is not preserved in the neuronal random projection encoding .

This dataset was chosen specifically because the categories consist of completely

distinct symbols. In other words, there is an explicit, natural, visual concept to be learned.

We would expect these symbols to be approximately drawn from a bimodal multivariate

non-Gaussian distribution [16]. It was confirmed that, for all pairs of MNIST digit cat-

egories, there was a 783-dimensional separating hyperplane between the two categories’

members.

These results generally extend to concept learning of other types of visual stimuli,

such as animals and inanimate objects, whose categories in the pixel domain are clearly

distinct and are drawn from approximately bimodal distributions.

3.4 Reconstruction of Perturbed Samples

After training the network to reconstruct 2-subsets of MNIST digits, variants of

the original MNIST data set were fed forward through the network and the output was

observed. First, the stimuli were modified such that significant contiguous portions of the

image’s pixels were set to 0 intensity. Examples of these stimuli are shown in Figure 3.3.
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(a) Stimuli containing 0 and 3 MNIST digits with
left half of image pixels set to 0 intensity.

(b) Stimuli containing 0 and 3 MNIST digits with
bottom half of image pixels set to 0 intensity.

(c) Stimuli containing 0 and 3 MNIST digits with
middle 3 main diagonals set to 0 intensity.

(d) Stimuli containing 0 and 3 MNIST digits with
middle 3 antidiagonals set to 0 intensity.

Figure 3.3: The stimuli shown above are examples of inputs given to the network pre-
trained to reconstruct their unperturbed counterparts.

Additionally, the original MNIST samples were fed forward through the network,

but before reconstruction, some fraction (specifically, half) of the k = 78 random-projected

neuron values were chosen to be set to 0.
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CHAPTER 4

RESULTS

For all of the results hereinafter, the portion of the network that was trained con-

tained one hidden layer of 100 fully connected neurons, fully connected to a second hidden

layer of n = 784 neurons, all with sigmoid activation functions.

4.1 Reconstruction of Samples Projected into RP Domain

The samples that already had relatively high sample robustness generally had

increased sample robustness after projection and reconstruction. The distribution of each

category was concentrated towards the mean by this process. The sample robustness of the

samples in each category is shown in Figure 4.1, both before and after the reconstruction

process. The samples are sorted by sample robustness along the x-axis.

Figure 4.1: Reconstruction increased most samples’ robustness.

Figure 4.2 is a projection of the samples onto the first two principal components

of the dataset. The arrows indicate the coordinate change of each sample due to the re-

construction process. The arrows are colored by the change in sample robustness from the

reconstruction. Red dots indicate the means of the two original categories, while blue dots

indicate the means of the reconstructed categories.
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Figure 4.2: There is a clear separation between two groups of samples whose robustness
increased after random projection and reconstruction.

Figure 4.3: Positive median change in RAB(x) for all possible pairs of A and B in the set
of MNIST categories

Figure 4.3 illustrates the median change in sample robustness over all samples,

for all pairs of MNIST digit categories. The network was trained to reconstruct all pairs of

digit categories, and consistently concentrated most of the individual samples towards the

mean of their respective category, indicated by the positive median robustness change over

the corresponding samples.
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4.2 Addition of Gaussian Noise to RP-Neural Encoding

Figure 4.4 demonstrates how the addition of Gaussian noise to the projected

stimulus domain affects the median change in sample robustness (over ”0”s and ”3”s,

and averaged over 10 trials). In a standard Generative Adverserial Network model, the

generator draws from a multivariate unit Gaussian to construct plausible stimuli of a cer-

tain category, and is competitively trained to fool a learner that is trained to discriminate

real versus generated stimuli [14]. This result demonstrates that the prior distribution for

a GAN or other generative model could potentially be manipulated by sampling from a

lower-dimensional multimodal distribution to construct multiple classes of stimuli simulta-

neously, as this model does. GAN models that can construct multiple classes have recently

been explored by additionally providing the generator and discriminator with a conditional

input. [15]. Estimating a distribution for sampling that is the result of random projection

of real data may achieve a similar result.

Figure 4.4: Median ∆R03(x) is negative when Gaussian noise completely overwhelms the
random projection. When the signal dominates the added noise, ∆R03(x) > 0.5 with nearly
zero variance over the 10 trials. When noise largely, but not completely overwhelms the
random projection Psignal

Pnoise
≈ 10−1, the increase in median ∆R03(x) is positive on average,

but not reliably, as the variance over the 10 trials is high. For a few trials in this range,
∆R03(x) < 0.

The bimodal nature of the random projected neural coding is what causes the
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network to reconstruct stimuli towards their corresponding mean when multiple categories

are presented without labels. As noise collapses the projections to a unimodal Gaussian

distribution, the distribution of reconstructed stimuli also collapses to a single mean, which

is displayed in Figure 4.5. These plots are analogous to Figures 4.1 and 4.2, except the

projected neural signal was replaced with a multivariate unit Gaussian of the same dimen-

sionality (k = 78).

(a) Reconstruction decreased individual samples’
robustness

(b) Reconstructed stimuli collapse to a single
mean

Figure 4.5: Projected samples were replaced with multivariate Gaussian of same dimen-
sionality after the network was trained to reconstruct the ”0”s and ”3”s.

4.3 Reconstruction of Samples Projected onto Principal Components

When random projection is replaced with Principal Components Analysis, it be-

comes clear that the preservation of inter-category variance is what enables the reconstruct-

ing network to map samples to their category means. Instead of performing random pro-

jection to k = 78 dimensions, PCA was performed on the ”0”s and ”3”s, and only the first

k = 2 principal components were taken and reconstructed. They represented 28.91% of

the total original variance. In Figure 4.6, it is clear that inter-category variance dominated

intra-category variance, and this caused the network to reconstruct samples based mostly

on categorical information instead of sample specific information. The robustness increase

effect was much more prominent in this case (note the y-axis scale in Figure 4.6a).
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(a) Increase in robustness more consistent than
with random projection

(b) Stimuli more precisely transition towards cor-
responding category mean. Few samples remain
in between-category region of visual space.

Figure 4.6: Projected samples replaced by first two principal components

4.4 Reconstruction of Perturbed Samples

As outlined in section 3.3, samples of the MNIST dataset were modified such

that contiguous groups of pixels were set to 0 intensity, and then fed into the network

trained to reconstruct original samples. The network was able to ’fill-in-the-blank’ on these

perturbed samples, and produced prototypical representations of the perturbed sample’s

original category. Some examples of this phenomenon are visible in Figure 4.7.

(a) Stimuli reconstructed after main diagonal 3 pixels wide was removed.

17



(b) Stimuli reconstructed after antidiagonal 3 pixels wide was removed.

(c) Stimuli reconstructed after right half was removed.

(d) Stimuli reconstructed after left half was removed.

(e) Stimuli reconstructed after top half was removed.

(f) Stimuli reconstructed after bottom half was removed.

Figure 4.7: The network output contained parts of the digit that were removed from the
stimulus fed in. 18



4.5 Reconstruction of Partially Zeroed Random Projections

The network was trained to reconstruct the original random projected samples, as

previously described. The same samples were fed through the network, but after random

projection, one half of each stimulus’ random projection’s values were randomly chosen

to be set to 0. These samples were then fed through the pre-trained network and recon-

structed.The results of reconstructing these zeroed random projections are shown in Figure

4.8 along with their original sample.

Figure 4.8: Reconstruction of stimuli after k = 38 random projection values were set to 0
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CHAPTER 5

DISCUSSION

The random projection/reconstruction process is analogous to a synchronization

between low-dimensional, neuronal representations of stimuli and the pixel-domain pre-

sentation of those same stimuli. In order to minimize the reconstruction mean square error,

the neural network tends to map reduced stimuli towards the mean of their ground truth

category upon reconstruction. Preservation of inter-category variance through random pro-

jection enables this process. This is clearly visible in Figure 4.2, as there is a distinct

separation between two groups of stimuli whose sample robustness increased via the ran-

dom projection and reconstruction, and these groups are centralized near the actual means

of the ”0”s and ”3”s.

This phenomenon may suggest that random projection enables computationally

efficient learning of natural visual concepts by reducing the complexity of visual stimuli.

Random projection provides a noisy sketch of the presented image with missing informa-

tion in the neuronal domain, and the neural network attempts to decode the original image

from just the noisy sketch. The Johnson-Lindenstrauss lemma [2] only guarantees relative

preservation of distances between points within some error bound. Since the fine details

of the stimulus in the visual space are lost in this sketch, the reconstruction generally con-

tains all of the features specific to the digit (”0” or ”3”, etc.) but few of the extraneous

features specific to the individual sample, as is visible in Figure 3.2a. The reconstructed

samples match the category of the input, but typically do not look exactly the same as the

input and are missing sample specific features. The generalized concepts are learned in an

unsupervised manner.

Ell and Ashby (2012) have shown that inter-category and intra-category variance

in certain feature spaces have a significant impact on the ability of humans to categorize
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stimuli in an unsupervised manner[11]. Dasgupta (1999) has demonstrated that random

projection makes Gaussians more spherical, and his algorithm used this property to learn

mixtures of Gaussians in a computationally efficient manner [12]. An algorithm by Kalai,

Moitra, and Valiant (2012) disentangles mixtures of Gaussians into their corresponding pa-

rameters, similar to those created by 2-combinations of MNIST categories, through com-

putation in the random projected vector space [13].

It is clear that the low-dimensional result of random projection preserved the

bimodal nature of the original distribution, and this caused the reconstructed stimuli to

form two distinct categories. We propose this simple mechanism as a method of low-

dimensional neuronal concept learning without explicit categorization or presentation of

category labels.

When the random projection step is skipped, and the decoded representation is

replaced with distinct samples from a multivariate unit Gaussian of the same dimensional-

ity, the reconstruction collapses to a single mean, as shown in Figure 4.5. This indicates

that the low-dimensional neuronal representations of the original stimuli contain enough

information to both distinguish between samples from the two different categories, as well

as to reproduce a prototypical instance of the corresponding category.

While a standard autoencoder or compressed sensing model will find an efficient

or non-redundant representation to encode samples, this experiment demonstrates that an

unstructured, data-independent low-dimensional random projection encoding of the origi-

nal stimuli is sufficient to differentiate and reconstruct the categories of stimuli in question.

These results are relatively consistent across all pairs of digit categories from the MNIST

dataset.

This mechanism is very time efficient. It produces an interpretable neuronal en-

coding of distinct visual stimuli in O(kn) time with no preprocessing step other than draw-

ing kn weights from a univariate Gaussian.

The most atypical feature of the random projection method is its data-independence.
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The algorithm performs exactly the same operation regardless of input. So long as the pre-

sented categories of stimuli form a jointly bimodal distribution of features, no matter the

feature space, a random projection step beyond that feature space will reduce the stimuli

into a low-dimensional variation that preserves the bimodality of the original distribution.

Since many natural stimuli of a single category or concept have variations in their features

deviating from the mean, this mechanism could be used to categorize naturally occurring

stimuli in general.

Another useful property of the random projection method is that, since the entries

of the random projection matrix a drawn from an approximate Gaussian distribution with

mean 0, the projected samples’ values have a mean of approximately 0; the expectation of

the product of random variables is the product of their expectations, the expectation of the

sum of random variables is the sum of their expectations, and random projection is the sum

of the products of the input elements multiplied by normally distributed weights.

The usefulness of this property is apparent in Figure 4.7. When the network was

trained on the original stimuli and samples with contiguous regions of pixels set to 0 were

fed through, the reconstruction from the random projection domain filled in the removed

regions. The effect on the values of the random projection of setting some pixels to 0 is

proportional across those values. In other words, since the neuronal random projection

weights are normally distributed, the probability that setting a single pixel to 0 increases

a value in the random projection is approximately equal to the probability of that value

decreasing. Since the result of random projection is not spatially oriented or otherwise or-

dered in any particular way, and additionally because the random projection values should

remain distributed similarly regardless of small portions of pixels being zeroed, zeroing

small portions of pixels in the stimulus passed in affects the network output minimally.

This results in the random projection-reconstruction network model essentially being able

to ’fill-in-the-blank’, so long as there are some category distinguishing features that remain

in the perturbed stimulus.
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Also due to this property are the results shown in Figure 4.8. Setting some propor-

tion of the random projection values to zero has a minimal effect on the reconstruction by

the neural network. Each neuron essentially corresponds to a random projection into k = 1

dimension. Setting half of the k = 78 original neurons results in the outputs of a k = 39

dimension random projection with 39 additional neurons outputting 0. Since these neurons

have an expected mean output of 0 over the data set, this operation produces reconstruc-

tions very visually similar to those produced by random projection into k = 39 dimensions

reconstructed by the same network. The random projection neurons are indistinguishable

in the sense that their weights are drawn from the same distribution and they each perform

the same operation. Random projection then, could occur into any large number of neurons

and subsets of those neurons can be used to reconstruct the original stimulus.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Neuronal random projection on a visual stimulus produces a low-dimensional

encoding of that stimulus. Over a bimodal distribution, the projected samples remain ap-

proximately bimodal. However, information is lost during the random projection process.

Because a small amount of relative error is introduced to each sample, a neural network

trained to reconstruct the original sample from the random projected domain by minimiz-

ing mean square error tends to produce samples that have category-dependent features but

not features specific to the original sample. Additionally, the neuronal random projection

is somewhat flexible. The components of a reconstruction of an original stimulus sample

are not strongly dependent on any single neuron’s output, and no single neuron’s output

is strongly dependent on any particular component of the input stimulus. The model pro-

posed can infer category-specific visual features of MNIST digits in their reconstruction

when those features are removed from the input to the network after it has been trained.

This mechanism is suitable for learning visual concepts in that it is data-independent

and computationally efficient. It can be viewed as a synchronization between a random

neural impulse response to the presentation of a visual stimulus and the simultaneous re-

construction of that stimulus.

Future work could explore these properties over more complex datasets, such as

those of pictures of objects, as well as over different types and levels of concepts such

as directionality, texture, smoothness, sounds, etc. Experiments on concept learning of

artificially generated stimuli could be useful. Are there certain types of visual concepts that

are inherently easy for neural networks to learn? Do the statistics of natural images lend

themselves to be easily learned by humans? How does this relate to the concept learning

capabilities of neural networks? These experiments would potentially require the use of
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convolutional neural networks in either the random projection phase, reconstruction phase,

or both. The inclusion of convolutional models and different neural network architectures

would certainly allow for more complex stimuli to be learned.

This paper only explores the learning of two visual concepts at a time, specif-

ically, 2-subsets of categories of the MNIST dataset. Changes to the sample robustness

metric could allow for analysis of learning many distinct visual concepts at once by a sin-

gle neural network model and its capacity to store those concepts. Additionally, different

random projection models could be explored. Sparsity and positivity constraints on neu-

ronal random projection in this context may yield interesting results.

While this work was performed on a limited dataset and on just a single neu-

ral network model, it highlights important properties of random projection in the task of

representing visual concepts in a lower-dimensional, neuronal encoding. Neural network

models can exploit the relative error introduced by random projection as well as its low

dimensionality to efficiently construct neuronal representations of distinct visual concepts

that are independent of sample specific features in an unsupervised manner.
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