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Abstract—This paper proposes a general framework for deter-
mining the effect of communication delays on the convergence
of certain distributed frequency regulation (DFR) protocols for
prosumer-based energy systems, where prosumers are serving
as balancing areas. DFR relies on iterative and distributed
optimization algorithms to obtain an optimal feedback law
for frequency regulation. But, it is, in general, hard to know
beforehand how many iterations suffices to ensure stability. This
paper develops a framework to determine a lower bound on the
number of iterations required for two distributed optimization
protocols. This allows prosumers to determine whether they can
compute stabilizing control strategies within an acceptable time
frame by taking communication delays into account. The efficacy
of the method is demonstrated on two realistic power systems.

Index Terms—Communication delays, Distributed frequency
control, Inter-area oscillations, NERC reliability criteria, Pro-
sumer, Power system frequency control.

I. INTRODUCTION

In today’s electricity industry, frequency regulation is per-
formed by balancing areas in a unilateral way by taking into
account local frequency measurements and power interchange
deviations as part of Automatic Generation Control (AGC).
Tie-lines are either neglected or modeled as static generators
with output equal to active and reactive tie-line flows and
voltage set-points equal to bus voltage magnitudes. Each
balancing area is only able to control its own system footprint,
but there is no real-time coordination between neighboring
utilities/control-areas. This lack of coordination can create
inter-area oscillation problems, which can cause system-wide
instability and in the worst case scenario can lead to blackout
[1], [2].

Regulating frequency in the future grid will be even more
challenging. It is envisioned that in the future the grid will be
populated by multiple electric sub-systems with local energy
production as well as consumption. These so-called prosumers
can produce, consume, and/or store electricity and make
strategic decisions empowered by a cyber-layer superposed
on top of the physical grid. Prosumers can be arranged in
a hierarchical (nested) or flat organization. Prosumers can be
as small as an electric vehicle (EV) or a smart building with
home energy management systems, or as large as a utility
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or an independent system operator (ISO). All prosumers can
share the operating task of balancing generation and demand
at different time scales. But only large-scale prosumers are
able to operate as a frequency control area. Indeed, small-
scale prosumers, such as EVs, inside a utility-level prosumer
cannot be considered as a balancing area. But, these prosumers
can participate in frequency restoration by adjusting their set-
points based on the overall policy of the larger prosumer.
The main focus of this paper is overcoming communication
delays for distributed frequency regulation or distributed power
balancing between larger prosumers, which serve as balancing
areas. Although the performance of the algorithms under
consideration is important, the framework itself is the main
contribution.

The state-of-the-art in frequency regulation or secondary
frequency control adopts one of two different architecture
designs: 1) the current approach, which is unilateral or fully
decentralized; 2) centralized with wide area monitoring and
(closed-loop) control systems (WAMCS). Under the decentral-
ized architecture, each control area measures its local power
deviations and deviations on tie-line flows and adjust internal
frequency regulators in response to these deviations. Theoret-
ically, this is similar to decomposing a large-scale optimal
control problem into sub-problems and solving each sub-
problem separately without considering coupling constraints
[3].

The main drawback of the current approach is a lack of
coordination between frequency regulators. In order to reduce
this problem, different methods have been proposed, such as
implementing power system stabilizers (PSS) and/or FACTS
devices, to enhance the damping of oscillatory modes [4], [5],
and [6]. Unfortunately, none of the proposed methods could
guarantee frequency stabilization.

The second architecture for frequency regulation relies on
WAMCS systems to collect information from different parts
of the grid [7]. Although this architecture has the poten-
tial to obtain near-optimal control strategies without creating
inter-area oscillations, it needs a large-scale centralized con-
trol/communication infrastructure and has a single point of
failure, which makes the system vulnerable to cyber attacks.
Note that currently WAMCS systems are only monitoring
the state of the grid and not providing closed-loop automatic
control.

To overcome these challenges, in [8], a distributed frame-
work for frequency regulation of prosumer-based energy sys-
tems is proposed. Distributed frequency regulation (DFR)
in smart power grids is a fairly new topic. In [9], a dis-
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tributed model predictive control (MPC) framework is pro-
posed for Automatic Generation Control (AGC) of power
systems. In [10], a distributed control algorithm for frequency
control of electrical power systems is presented. But, the
DFR framework, proposed in [8] and extended in this paper,
only requires one-hop communication between prosumers and
allows prosumers to obtain optimal control strategies through
a consensus-based ADMM (Alternating Direction Method of
Multipliers) method.

However, the computational burden of the DFR algorithm
increases as the system grows in scale and/or communication
delays increases. In this paper, a new framework is developed
to determine the lower bound on the number of iterations
for obtaining guaranteed stabilizing control strategies for dis-
tributed frequency regulation.

The rest of the paper is organized as follows: in section II-A
an overview of the one-step DFR framework is presented. This
is followed by developing a new framework for computing
an iteration budget for the DFR algorithm in Section III.
The proposed framework is simulated on two realistic power
systems in Section IV, and in Section V the paper concludes
with discussions of the overall findings.

II. OVERVIEW OF DISTRIBUTED FREQUENCY
REGULATION

A. DFR Framework

Frequency regulation includes bringing frequency deviations
to the desired value, 60 or 50 Hz depending on the country 1,
using minimal control effort. This is indeed an optimal control
problem whose objective is to drive the power deviations to
zero using minimal control effort. This paper bases its anal-
ysis on the frequency regulation problem for prosumer-based
energy systems as it is formulated in [8]. For convenience, the
problem is summarized as follows:

min
u

J(x(tc), u) = min
u

∑
i∈N

pixi(tc + 1)2 + riu
2
i , (1)

subject to coupling constraints

xi(tc + 1) = aiixi(tc) + biiui(tc)

+
∑
j∈Ni

aijxj(tc) + bijuj (2)

where u =
[
u1, . . . un

]T
and x(tc) =

[
x1(tc), . . . xn(tc)

]T
,

N is the set of all prosumers (n = |N | is the number of
prosumers), xi and ui are the power deviation and control
variable of prosumer i, P = diag(pi) and R = diag(ri) are
cost coefficients, and Ni is the set of prosumer i’s neighbors.
In addition, the system matrices are A = [aij ] and B = [bij ],
which have the same sparsity structure as the Laplacian of the
grid.

In today’s industry, this problem is solved by neglecting
coupling between prosumers. Therefore, the problem becomes
much simpler and each prosumer solves its sub-problem in a

1Note that most countries operates at 50Hz.

fully decentralized way as:

min
ui

pixi(tc + 1)2 + riu
2
i

s.t. xi(tc + 1) = aiixi(tc) + biiui
(3)

As discussed in the preceding section, neglecting coupling
can cause critical technical problems for the grid. Advanced
frequency regulators take into account the effect of tie-line
flows [3], but still neglect the effect of neighbors’ control
strategy.

In [8], a distributed framework for frequency regulation is
proposed, under which prosumers have a perception of the
decision variables of their neighbors and through a consensus-
based ADMM method they achieve agreement on their control
strategy. This framework is denoted as “One-Step DFR”,
because only one-hop communication between prosumers is
sufficient to achieve stabilizing optimal control strategies.
Under the one-step DFR framework, the frequency regulation
problem is recast as follows [8]:

min
U1,···Un

n∑
i=1

(
pi
[
ATi Xi +BTi Ui

]2
+ riU

2
ii

)
s.t. Uij = Ujj , ∀i ∈ N, j ∈ Ni,

(4)

where Ai, Bi, and Ui are the ith rows of A, B and U matrices,
where U = [Uij ], ∀i ∈ N and ∀j ∈ Ni ∪ {i}, and Uij
is the perception of prosumer i from the control action of
its neighbor, prosumer j. In addition, Xi is a column vector,
which includes xj , j ∈ Ni ∪ {i}.

In order to solve the DFR problem, the constraints are
augmented in the objective function and the ADMM method
is used to produce the augmented Lagrangian function as [8],
[11], and [12]:

Lρ,i(Ui, Ūhi , λhi ) = pi
[
ATi Xi +BTi Ui

]2
+ riU

2
ii

+ λh
T

i (Ui − Ūhi ) +
ρ

2
‖Ui − Ūhi ‖22,

(5)

where, ρ > 0 is a given penalty factor, and Ūhi is a column vec-
tor, which includes the average control strategy of prosumer i
and that of its neighbors, defined as:

Ūhij :=

∑
l∈Nj∪{j}

Uklj

|Nj |+ 1
, ∀j ∈ Ni ∪ {i}. (6)

In each iteration, prosumer i computes its optimal control
strategy by solving a self-contained problem of the following
form:

Uh+1
i = argmin

Ui

Lρ,i(Ui, Ūhi , λhi ), (7)

Next, prosumers share their perceptions with their neighbors
and continue this process until errors in power deviations and
errors in perceptions become smaller than a desired value.

As shown in [8], DFR is a distributed method for fre-
quency regulation, which can guarantee system-wide stability
using minimal control effort. It can also address inter-area
oscillations problems because coupling between prosumers is
considered in computing minimizing control strategies.
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TABLE I: Convergence of the DFR algorithm for three prac-
tical energy systems

Number of Number Number of Duality
prosumers of buses iterations gap (pu)
3 (Flores Island) 46 10 10−4

10 (IEEE System) 24 47 10−4

15 (Sao Miguel Island) 1900 151 10−4

B. Modelling communication delays

DFR relies on communication between prosumers, which
can potentially pose limitations for the convergence of the
algorithm, if the communication delays become large. In gen-
eral, the communication architecture in smart grids supports
the functionalities of the DFR algorithm, as the cyber layer
has a similar sparsity pattern as the prosumer-based power grid
and it connects neighboring prosumers, which are located at
seperate geographical regions. The communication networks
for prosumer-based energy systems have three classes: ISO-
level network for communication between independent sys-
tem operators (ISO); utility-level network to connect various
devices within utilities and interconnect neighboring utilities;
and, micro-level network to form a backbone for communica-
tion between microgrids, facilities, homes, etc [13].

Timing is critical for communication between prosumers,
particularly for supporting the functionalities of the DFR
algorithm. In fact, NERC A1 criterion requires that a prosumer
brings power and frequency deviations (area control error,
ACE) to zero once every 10 minutes and NERC B2 criterion
requires that a prosumer begins to return ACE to zero within
1 minute after the beginning of a disturbance [14]. These
reliability criteria enforce a clear time limit for the DFR
algorithm. If a prosumer cannot compute stabilizing control
strategy within 1 minute, it is a violation, which can lead to
system-wide stability problems.

Increasing the communication delay between prosumers
increases the risk of violating the NERC reliability criteria
as it slows down the convergence of the DFR algorithm
(iterations take more time). It can also be noted as the size
of the grid increases, the number of iterations required to
reach the minimizing control action increases for the DFR
algorithm. This has been illustrated in Table I for three
practical prosumer-based energy systems with different size
and connectivity.

IEEE and the International Electrotechnical Commission
(IEC) have defined rigorous standards for communication
delay requirements in smart grids in order to ensure reliable
operation of the grid and avoid potential stability problems
[15]. Table II illustrates a summery of the expected packet
delays in different communication categories. It is shown that
the communication networks are responsible for delivering
diverse categories of messages. In addition, some of the
messages, such as the monitoring and control information,
have critical delay requirements [13].

In reality, the communication networks are not always able
to meet the strict communication delay requirements of IEEE
and IEC. For instance, experimental results on communication

TABLE II: IEEE and IEC standards for communication timing
requirements in smart grids

Information category Delay requirment
Protection 4 ms
Monitoring and control 16 ms
Medium speed control functions 100 ms
Slow speed auto-control functions 500 ms
Operations and maintenance 1 s

TABLE III: Experimental delay measurement for messages
requiring immediate actions [15], [16], and [13]

Test scenario for critical messages Delay rang (ms)
1 0.2 - 0.7
2 3.2 - 17
3 12 - 86
4 32 - 173
5 18 - 97

delays between substations, reported in [15] and [16] and
summarized in Table III, show that in many scenarios the
packet delays exceed the maximum required limit for the most
critical messages.

In order to overcome the limitations of the communication
delays, in the next section, a new framework is proposed to
estimate a lower bound on the number of DFR iterations.
This algorithm may not be the most efficient but it allows
us to explicitly ask questions about the computation budget.
The proposed method allows prosumers to obtain a system-
dependent budget for DFR iterations.

III. OBTAINING A LOWER BOUND FOR DFR ITERATIONS

A. Steepest Descent-based DFR

In this section, a gradient descent-based approach is pro-
posed to obtain the computation budget of DFR iterations. The
general structure of the gradient descent-based DFR algorithm
is formulated as follows.

ul+1 = −γ
2

∂J(x(tc), u)

∂u
+ ul = Cx(tc) +Dul (8)

where γtc is the step size at time tc and C and D matrices
are defined as:

C = −γBTPA (9)

D = I − γ
(
R+BTPB

)
(10)

It follows from (8), (9), and (10) that the predicted control
strategy is related to the square of the Laplacian of the grid,
which implies that each prosumer needs to communicate with
its neighbors and neighbors’ neighbors to estimate its control
strategy for the next step.

Equation (11) shows the predicted control strategy for two
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iterations and L iterations scenarios.

u(tc)
2 = (C +DC)x(tc) +D2u(tc − 1)

...

u(tc)
L =

L−1∑
j=0

DjCx(tc) +DLu(tc − 1),

(11)

In order to determine how many iterations need to be taken
to obtaining stabilizing control strategies, one needs to first
calculate power deviations at time tc+1 based on the predicted
control strategy at time tc

x(tc+1) =

(
A+B

L−1∑
j=0

DjC

)
x(tc)+BDLu(tc−1), (12)

combining (11) and (12) leads to:[
x(tc + 1)
u(tc)

]
= Asteepest

[
x(tc)

u(tc − 1)

]

=


A+B

L−1∑
j=0

DjC BDL

L−1∑
j=0

DjC DL


[

x(tc)
u(tc − 1)

]
,

(13)
where Asteepest is defined as the composite system matrix
whose spectral properties determines the stability of the sys-
tem.

In fact, it is possible to define a formal characterization of
the sufficient number of iterations based on the stability of the
composite system matrix. The number of iterations (L) needs
to be large enough to satisfy the following condition:∣∣eig(Asteepest(L))

∣∣ < 1 (14)

B. Stability Condition for Steepest Descent-based DFR

Since (14) guarantees the stability of the composite system,
it is important to first understand whether there exists any L
for which the stability condition holds. Intuitively, it should be
possible to find L if the optimal solution to DFR stabilizes the
system. Note that when performing gradient descent starting
from an arbitrary initial point, the distance to the optimal
solution after L iterations depends on the step size and the
distance between the initial estimate and optimal solution.

The following theorem shows that as long as the step-
size for the gradient descent process is chosen appropriately,
there exists L such that the composite system is always stable
regardless of how the initial estimates for the gradient descent
process is chosen.

Theorem 1. Recalling from (9) and (10), if γ is such
that the spectral radius ρ(D) < 1 and the spectral radius
ρ(I − B(R + BTPB)−1BTP )A) < 1, there exists L such
that ρ(Asteepest(L)) < 1.

Note that the spectral radius of D determines the stability
of the gradient descent process, while the spectral radius of
I −B(R+BTPB)−1BTP )A determines the stability of the
closed-loop system.

Proof. The key idea behind the proof lies in the following
observation. Since ρ(D) < 1, the expression

∑L−1
i=0 D

i corre-
sponds to a convergent geometric sum and therefore converges
to (I −D)−1 as L approaches ∞. The same assumption also
implies that DL must converge to 0.

Therefore,
A+B

L−1∑
j=0

DjC BDL

L−1∑
j=0

DjC DL

→
[
A+B(I −D)−1C 0n×n

(I −D)−1C 0n×n

]

(15)
as L approaches ∞, where (I −D)−1 = 1

γ (R + BTPB)−1.
Substituting for (I −D)−1 and C in (15), we obtain

A∞ =

[
A−B(R+BTPB)−1BTPA 0n×n
−(R+BTPB)−1BTPA 0n×n

]
(16)

The eigenvalues of the block lower triangular matrix A∞
are the eigenvalues of A−B(R+BTPB)−1BTPA and 0n×n
(due to the zero matrix on the bottom right corner of A∞).
Thus, all the eigenvalues of A∞ are contained in the unit circle
as the spectral radius of A−B(R+BTPB)−1BTPA is less
than 1 by assumption [8].

This implies that ρ(A∞) < 1. Since the spectral radius
of a matrix is a continuous function of its entries, we have
ρ(Asteepest(L)) → ρ(A∞) < 1. This shows that for large
enough L, ρ(Asteepest(L)) < 1.

The above theorem guarantees that as long as a “large
enough” L budget is chosen, the system represented by (13)
would be asymptotically stable. However, the size of the L
budget is quite dependent on the optimization procedure and
the spectral characteristics of the system matrix (A). This
implies that the L budget, found by the gradient descent-based
method, can be conservative for many real-world power grids.

In the next section, an alternative and much faster approach
is proposed, called Nesterov’s accelerated method, which
converges to the optimal solution with a quadratic rate as
opposed to the steepest descent, which has linear convergence.

C. Nesterov’s Accelerated-based DFR

In this section, the Nesterov’s accelerated gradient descent
method is applied to obtain an effective L budget for the
DFR algorithm. The Nesterov method is a variation of the
gradient descent, which uses a variable step-size to accelerate
convergence.

The following equations outline the theory of the accelerated
gradient method:

yl+1 = ul − γ∇J(ul) (17)

ul+1 = ηly
l + (1− ηl)yl+1 (18)

where ul, yl ∈ Rn (n is the dimension of the system), γ is
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the step-size and the sequence ηl is defined as:

η0 = 0 (19)

al =
1+
√

1+4η2l−1

2 ηl = 1−al−1

al
(20)

The process is initialized such that y0 = u0. Next, it will
be shown that yl converges to the minimum of the DFR cost
function (J) for all initial estimates u0. Recalling from (8),
the gradient of the cost function is recast as:

∇J(x(tc), u) = BTPAx(tc) + (R+BTPB)u (21)

Therefore, the equations (17) and (18) can be re-formulated
as follows:

yl+1 = Dul + Cx(tc) (22)

ul+1 = ηly
l + (1− ηl)yl+1 (23)

Equations (22) and (23) constitute a time-varying linear sys-
tem, which can be expanded as:wl+1

yl+1

ul+1

 = Ml

wlyl
ul

+Nlx(tc) (24)

where the state variable wl is used to keep track of previous
values of yl. In addition, matrices MI and N1 are defined as:

Ml =

0n×n In 0n×n
0n×n 0n×n C
ηl 0n×n (1− ηl)C

 (25)

and

Nl =

 0n×n
D

(1− ηl)D

 . (26)

Using (22) to (26), the Nesterov method can be casted as
a linear time-varying system driven by a constant input x(tc).
The response of such a system at time L is given bywLyL

uL

 = Φ(0, L)

w0

y0

u0

+ FLx(tc) (27)

where Φ(0, L) is the state transition matrix and FL is the
discrete time convolution operator, defined as follows:

Φ(0, L) = ML−1ML−2 . . .M0In when L > 1 (28)

FL =

L−1∑
k=0

L−1−k∏
i=0

ML−1−iNk (29)

Recalling from Section III.A, the composite system matrix
for the Nesterov-based DFR algorithm takes the following
structure:[
x(tc + 1)
u(tc)

]
= ANesterov

[
x(tc)

u(tc − 1)

]
=

[
A+BPFL BTΦ(0, L)G

PFL TΦ(0, L)G

] [
x(tc)

u(tc − 1)

]
(30)

where
T =

[
0n×n I 0n×n

]
(31)

and

G =

 I
0n×n
I

 . (32)

The matrix G is used to generate initial conditions for the
Nesterov’s update equations and T is used to recover the vector
of interest (i.e yL). Since yL converges to the minimizer of
the DFR cost function as L approaches ∞, it can be shown
that for large enough L, the composite system will stabilize to
the origin. The system given in (30) is asymptotically stable if
the spectral radius of the Nesterov’s composite matrix is less
than 1. Equation (33) illustrates a formal characterization for
the stability of the Nesterov method.

ρ(

[
A+BPFL BTΦ(0, L)G

PFL TΦ(0, L)G

]
) < 1 (33)

IV. SIMULATION RESULTS

In this section, the Steepest descent-based and Nesterov’s
accelerated-based DFR algorithms are demonstrated on two
practical power systems. The first system is the electric
power system on Sao Miguel Island, the capital of Azores
Archipelago, and the second system is the IEEE 24-bus
system. The results show that the L budget depends on
the optimization procedure, the spectral characteristics of the
system matrix, and the size of the grid.

A. Computing L budget for Sao-Miguel Island

Sao Miguel is the largest and capital of Azores Archipelago,
islands of Portugal. The electric power system on Sao Miguel
has more that 2000 lines, around 1900 buses, and 15 gen-
erators. The average demand of the island is 70 MW. The
detailed description of the Sao Miguel system is presented in
[17], [18].

In this paper, the power system of Sao Miguel is clus-
tered into a prosumer-based structure, where each prosumer
represents a control area for frequency regulation. Figure 1
illustrates the schematics of the equivalent power grid on Sao
Miguel, in which each node represents a prosumer, which has a
generator and a load. The loads are representing the equivalent
demand on the prosumers [19].

The DFR cost is chosen such that the minimizer to the cost,
which takes on the form of u∗ = −Kx, becomes an stabilizing
control strategy for the system. The state transition matrix and
the convolution matrix corresponding to the gradient descent
process for different values of L are computed using the
following recursive equations:

Φ(0, k) = DΦ(0, k − 1) (34)
Fk = DFk−1 + C (35)

As shown in Figure 2, it takes at least 4300 iterations for the
gradient descent process to obtain a stabilizing control strategy,
which can bring the spectral radius of Asteepest(L) to less than
1. On the other hand, for the Nesterov’s accelerated method
the number of iterations (shown in Figure 3) is drastically less
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Fig. 1: Schematics of the equivalent power grid on Sao Miguel Island

(L is approximately 700) due to the quadratic convergence of
the Nesterov process2.

Assuming that the expected communication delay for each
iteration is δ, by increasing the number of iterations the overall
time3 taken to attain a stablizing controller is ∆ = Lδ.

Recalling from Section II-A, NERC B2 criterion requires
that prosumers start regulating frequency within 1 minute
after the disturbance. Therefore, if ∆ ≥ 1 minute, prosumers
will violate the NERC reliability criteria and the DFC algo-
rithm will fail to converge. Computing L allows prosumers
to estimate whether they are able to stabilize power and
frequency deviations after any arbitrary perturbations within
the acceptable time window.

B. Computing L budget for the IEEE 24-bus system

The next case study is the IEEE 24-bus system, which has
38 lines and 32 generators. The average demand of the system
is 2,577 MW. The detailed description of the IEEE 24-bus
system is presented in [20].

The power system is clustered into 10 prosumers, where
each prosumer represents a utility or area balancing authority.
Figure 4 illustrates the schematics of the power grid of the
IEEE 24-bus system and Figure 5 demonstrates the cyber-
physical network of the prosumer-based IEEE 24-bus system.
It is shown in Figure 5 that the cyber-layer has the same
sparsity structure as the physical grid.

Figures 6 and 7 illustrate the results of applying the Steepest
descent-based and Nesterov’s accelerated-based DFR algo-
rithms to the IEEE 24-bus system. It can be observed that
the Nesterov’s accelerated gradient method outperforms the
gradient descent-based approach by a large margin.

2Unlike gradient descent, Nesterov’s accelerated gradient descent is not a
descent method and exhibits oscillations, called Nesterov’s ripples, around the
optimal solution. This is reflected in the osciallatory behaviour of the spectral
radius of the ANesterov matrix.

3Note that the computation delays are considered to be negligible compared
to the communication delays. This is a reasonable assumption as the update
law just requires taking linear combinations of state measurements, which can
be done quite quickly.

Fig. 2: The plot of the spectral radius of the Asteepest matrix
for the Sao-Miguel island system.

Note that, the number of iterations required by the gradient
descent DFR for the IEEE 24-bus system is approximately
3300, while it takes more than 4300 iterations to find an
stabilizing control strategy for the Sao Miguel system. This is
mainly due to the fact that the IEEE system has 10 prosumers
and the Sao Miguel Island has 15 prosumers. A similar
trend can be observed when comparing Nesterov’s accelerated
method for the two test systems.

The findings also show that the Nesterov method provides
an acceptable lower bound for the computation budget of the
test systems. Assuming that the cyber networks satisfy the
communication delay requirements of IEEE (δ < 16 ms), the
overall delay for the convergence of DFR for both systems
would be with in the acceptable time window (∆ < 11.2 s for
Sao Miguel and ∆ < 5s for the 24-bus system).
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Fig. 3: The plot of the spectral radius of the ANesterov matrix
for the Sao-Miguel island.

Fig. 4: Schematics of the power grid of the IEEE 24-bus
system [20]

C. Frequency Regulation Performance

The spectral radius of the Asteepest or ANesterov matrices
determines the rate at which the power deviations decay
down to zero (closer the spectral radius is to 1, slower the
convergence) and has a direct impact on the performance. At
an execution level, each prosumer improves its initial estimate
of the control action by executing L steps of a pre-determined
optimization protocol and then applies the improved control
action to the system. This process is repeated until the
power deviations, and consequently the frequency deviations,
are reduced to zero. The simulation results presented thus
far demonstrates that the spectral radius of Asteepest and

Fig. 5: Schematics of the cyber-physical grid of the prosumer-
based IEEE 24-bus system

Fig. 6: The plot of the spectral radius of the Asteepest matrix
for the IEEE 24-bus system.

ANesterov depends directly on the number of iterations (L)
spent improving the initial estimate.

In this section, further simulation results are presented to
illustrate and compare the performance of the optimization
protocols at different values of L on the IEEE 24-bus system.
The dynamics used to simulate the evolution of the power
deviations and the input vector is given by (13) (steepest
descent) and (30) (Nesterov’s accelerated gradient descent).
The plots presented in this section track the evolution of power
deviations assuming a communication delay δ of 16 ms.

According to Figure 7, the spectral radius of the ANesterov
matrix for the IEEE 24-bus system dips below 1 for L =
560. Figure 8 shows the norm of the power deviation when
the number of optimization steps used to compute the control
action is L = 560 when the optimization protocol used is
Nesterov’s accelerated gradient descent. It takes Lδ = 8.96
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Fig. 7: The plot of the spectral radius of the ANesterov matrix
for the IEEE 24-bus system.

Fig. 8: Plot of power deviations (L = 560 , optimization
procedure = Nesterov’s accelerated descent)

seconds to compute a control action. The largest eigenvalue
of the matrix ANesterov determines the rate at which the power
deviations converge to zero. This can be seen in Figure 8. The
spectral radius of ANesterov is 0.9646 and as such it takes
roughly 1200 seconds (20 minutes) for the system to converge
to zero.

Figure 9 is a plot of the power deviations when the number
of optimization steps is L = 3600 when using the steepest
descent method. Figure 10 shows a plot of power deviations
when the number of optimization steps is L = 3600, but for
Nesterov’s gradient descent method. With L = 3600, the delay
between the application of control actions is Lδ = 57.6s which
is still within the one minute limit, imposed by the NERC
criteria.

Note that it takes about 500 minutes (8.5 hrs) for the power
deviations to stabilize to zero when using steepest descent

Fig. 9: Plot of power deviations (L = 3600 , optimization
procedure = steepest descent)

Fig. 10: Plot of power deviations (L = 3600 , optimization
procedure = Nesterov’s accelerated descent)

(Figure 9) as opposed to 4 minutes (approximately) required
by Nesterov’s accelerated gradient descent (Figure 10). This is
due to the fact that the spectral radius of the Asteepest matrix
is 0.9898, which slows down the convergence. The oscillatory
behavior is due to the fact that the largest eigenvalue of the
system matrix Asteepest happens to be complex when using
steepest descent. The fast convergence exhibited in (Fig 10)
is due to the extremely small spectral radius of the ANesterov
matrix (0.0783) when L = 3600.

It should be stressed that the 8.5 hrs required for the steep-
est descent algorithm to stabilize is absolutely not realistic.
Nesterov’s accelerated gradient algorithm, on the other hand,
does stabilize sufficiently fast. However, this paper does not
claim that other algorithms, such as ADMM, would not do
better. But, the paper has indeed shown that it is possible to
connect the computing budget (L) to the system performance
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in an explicit way. The search for even better algorithms will
be left to future endeavors.

V. CONCLUSIONS

This paper introduces a novel method to estimate a lower
bound for the computation budget of the DFR algorithm.
Under the proposed method, prosumers are able to predict
how many iterations they need to take to obtain a stabilizing
control strategy in a distributed manner. Note that, knowing
this information by itself does not ensure stability. Only
after executing and implementing the optimal control action,
frequency and power stability can be achieved.

The paper shows that the computation budget depends on
the optimization method; the size of the grid, and; the spectral
characteristics of the system matrix. In fact, the Nesterov
accelerated-based method has faster convergence rate compar-
ing with the gradient descent-based approach and therefore
can provide an appropriate lower bound for the L budget.

In addition, the IEEE and IEC standards impose strict
communication delay requirements, which can satisfy the
expected requirements of the DFR algorithm. The proposed
method allows prosumers to overcome these challenges by
estimating whether they are able to achieve convergence within
the acceptable time window. The method is simulated on
two realistic power systems. The results show that the lower
bound computed by the Nesterov method can satisfy the
NERC reliability criterion, assuming that the communication
networks satisfy the requirements of IEEE.

The findings of this study gives rise to several new re-
search questions. For instance, what is the impact of large
disturbances such as generators/prosumers failure and/or lines
disconnection on the behavior of DFR? How can prosumers
be persuaded to participate in the DFR framework? Do pro-
sumers need to see it as a system responsibility or should a
policy mechanism be implemented to incentivize them? Do
prosumers with renewable energy sources require operating
below potential to release some regulating reserve? If so, what
mechanisms should be implemented to cover the economic
losses? These interesting questions are out of the scope of
this paper and should be part of future research endeavors.
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