
08:57:07 OCA PAD AMENDMENT - PROJECT HEADER INFORMATION 11/30/94 

Project #: E-24-644 Cost share #: E-24-330 
Center I : 10/24-6-R7329-0AO Center shr I: l0/22-l-F7329-0AO 

Rev #: 5 
OCA file I: 

Active 

Work type : RES 
Contract#: DDM-9114489 
Prime I: 

Subprojects ? : N 
Main project 1: 

Project unit: 
Project director(s): 

AL-KHAYYAL F A 

ISYE 

ISYE 

Mod I: 1 

Unit code: 02.010.124 

(404)894-3037 

Document GRANT 
Contract entity: GTRC 

CFDA: 47.041 
PE I: N/A 

Sponsor/division names: NATL SCIENCE FOUNDATION 
Sponsor/division codes: 107 

I GENERAL 
I 000 

Award period: 910901 to 950228 (performance) 950531 (reports) 

Sponsor amount 
Contract value 
Funded 

Cost sharing amount 

New this change 
0.00 
0.00 

Does subcontracting plan apply ?: N 

Total to date 
82,909.00 
82,909.00 

4,145. 00 

Title: NONLINEAR PROGRAMMING WITH QUADRATIC CO NSTRAINTS 

PROJECT ADMINISTRATION DATA 

OCA contact: Jacquelyn L. Bendall 

Sponsor technical contact 

THOM J. HODGSON 
(202)357-5167 

NATIONAL SCIENCE FOUNDATION 
1800 G STREET, NW 
WASHINGTON, DC 20550 

Security class (U,C,S,TS> : U 
Defense priority rating N/A 
Equipment title vests with: Sponsor 

Administrative comments -

894-4820 

Sponsor issuing office 

MARIA VALERIO 
(202)357-9626 

NATIONAL SCIENCE FOUNDATION 
1800 G STREET, NW 
WA'HINGTON, DC 20550 

ONR r esident rep. is ACO CY/N): N 
NSF supplemental shee t 

G T . ' 

AMENDMENT NO. 2 EXTENDS PROJECT TERMIN AT! ON DATE THROUGH FEBR UAR Y 28, 1995 . 



GEORGIA I NSTITUTE OF TECHNOLOGY 
OFFICE OF CONTRACT ADMINISTRATION 

NOTICE CF P JECT CLOSE OUT 

Closeout Notice Date 08/07/95 

Pr ojec t No . E-24-644 ____________ _ Center No. 10/24-6-R7329-0AO 

Project Di r e c tor AL-KHAYYAL F A _________ __ School/Lab ISYE __________ _ 

Spons or NAT L SCIENCE FOUNDATION/GENERAL ____ ~-----------------------

Contr a .t/Gs'an t No. DDM-9114489 _______________ _ Contract Entity GTRC 

\:} . ) r:tme Conb':ac t No. 

Title NONLIN AR PROGRAMMING WITH QUADRATIC CONSTRAINTS ______________________ _ 

Effective Completion Date 950228 (Performance) 950531 (Reports) 

Closeout Actions Required: 

Final Invoice or Copy of Final Invoice 
Final Report of Inventions and/or Subcontracts 
Government Property Inventory & Related Certificate 
Classified Material Certificate 
Release and Assignment 
Other 

YIN 

N 
N 
N 
N 
N 
N 

Date 
Submitted 

Comments ___________________________________________________ ___ 
LETTER OF CREDIT APPLIES. 98A SATISFIES PATENT REPORT. ____________________ _ 

Subproject Under Main Project No. 

Continues Project No. 

Distribution Required: 

Project Director 
Administrative Network Representative 
GTRI Accounting/Grants and Contracts 
Procurement/Supply Services 
Research Property Managment 
Research Security Services 
Reports Coordinator COCA) 
GTRC 
Project File 
Other 

y 
y 
y 
y 
y 

N 
y 
y 
y 

N 
N 



_, 

Annual Progress Report 

Nonlinear Programming with Quadratic Constraints 
NSF Grant No. DDM-9114489 

Faiz A. Al-Khayyal, Principle Investigator 
School of Industrial and Systems Engineering 

Georgia Institute of Technology 

Funding for this project comprises full year support for one graduate 
student (beginning October 1991) and summer support for the principle in
vestigator (beginning July 1992). We report herein on the accomplishments 
and progress achieved during the first full year of the grant. An unexpected 
medical condition~ which required major surgery in December 1991 to cor
rect, precluded the principle investigator from any progress in the six month 
period from January to June 1992, during which no charges were made to the 
grant. The research for that period will be completed during the six month 
no cost extension from October 1993 to l\'1arch 1994. 

The graduate students that were supported between October 1991 and 
September 1992 are foreign national Yinhua \-Vang (October-December, 1991) 
and U.S. national Timothy Van Voorhis (July-September 1991), with the 
latter student continuing his Ph.D . dissertation research under the grant. 

Overall progress in the research area can be summarized as follows. A 
limited literature search was undertaken that focused on applications and 
methods that deal with quadratically constrained nonlinear programs. An 
in-progress paper was completed that developed an algorithm for quadrat- 
ically constrained quadratic programs. Special cases of quadratically cod
strained nonlinear programs were investigated for the purpose of establish
ing and characterizing conditions under which solutions are guaranteed to 
exist or to be unbounded. In particular, we extended a sufficient condition 
for unboundedness of a quadratically constrained feasible region to neces
sary and sufficient conditions. Finally, we explored various aspects of a new 
linearization-relaxation technique for polynon1ial programs for the purpose 
of specializing and improving the results and methods to the treatment of 
quadratic constraints. Son1e promising preliminary results were obtained. 



An elaboration on the accomplishments summarized above is presented 
next, starting with the literature search. Nonlinear programs arise in prac
tically every major engineering field. Electrical engineering accounted for 
thirty of the ninety-five total reference~, mostly in control theory but also 
including power transmission, hydropower generation, robotic manipulation, 
circuit design, and signal and wave propagation. All required the solution 
of some nonlinearly constrained (often quadratic) programs. Chemical en
gineering had seven references in chemical process control, entropy mini
mization and parameter estimation. Structural design problems arising in 
aeronautical, civil, and marine engineering (designing aircraft wings, trusses, 
and undersea cables) were treated in seven references. Including other ap
plications from ground water remediation to sound radiation control, there 
were a total of fifty-five references on engineering applications. Applications 
in the management and economic sciences yielded thirteen references on job 
scheduling, cost allocation, portfolio selection, setting transit fares, impact 
of energy prices on supply and demand elasticities, and finding equilibrium 
pnces. 

In addition to applications. the literature search classified the successful 
solution techniques for strengths a.nd weaknesses. Quadratic programs have 
been solved by sequential linear progrannning, piecewise linear approxima
tion, various active set methods. and by interior point methods. For nonlinear 
programs, successive quadratic programming was the most popular with vari
ations concentrating on computing step-sizes~ specifying descent functions, 
and updating the Hessian matrix. Other procedures that are gaining favor 
for some problerns include interior point methods. descent methods relying 
on quadratic approximations~ iterative linear programming, Tabu search, and 
approaches tha.t decornpose the problem and solve a series of problems in a 
lower dirnensional space. The literature search was conducted by Tim Van 
Voorhis and a report detailing our findings is in preparation and should be 
ready by early next year. 

The completed paper was in-progress at the time the grant was awarded. 
It was co-authored with Christian Larsen of the University of Odense ( Odense, 
Denmark) and is entitled "Solving a General Quadratic Optimization Prob
lem." A summary of the results will appear in the Proceedings of the 1993 
_VSF Design and Jf an1tjacturing Systems Conference. The method is based 
on outer approximation (linearization) and branch and bound with linear 

2 



programming subproblems. When the feasible set is nonconvex, the infinite 
process can be terminated with an approximate (possibly infeasible) opti

mal solution. Error bounds are derived that can be used to ensure stopping 
within a prespecified feasibility tolerance. 

Some of the special cases of quadratically constrained nonlinear programs 
that were investigated by graduate assistant Yinhua Wang were the optimiza
tion of linear and quadratic objective functions over feasible sets defined by 
a single quadratic constraint, under different assumptions on the defining 
matrices. For the problem 

rrun CT X 

s.t. xTQx ~ b 

where c # 0, b > 0 and Q is symmetric, we have the following. When 
Q is positive definite, the optimal direction -Q- 1c to the unique solution 

-.jbfcTQ- 1c Q- 1c can be determined in O(n2
) time using Gaussian elim

ination. When Q is either negative semidefinite or negative definite, the 
problem is unbounded. \Vhen Q is either positive semidefinite or indefinite, 
there are two cases: if c is in the orthogonal complement X l. of the homo
geneous region .. X = { :r : xT Qx ::; 0} and when c tf. X .1_ In the first case, let 
tl, t2, ... 'tk be a basis for x· j_' then the problem is equivalent to 

m1n c? y 
s.t. yTQy~b 

where c = (t1, ... , tk )T c and Q = ( t1, ... , tk )T Q(t1, ... , tk) with positive def
inite Q. Since the latter problem can be solved in 0( n) running time, the 
main difficulty rests in determining a basis for 4,\ l.. In the positive semidefi
nite case, however. ){ = {X : Qx = 0} SO that x· l. = aff{ ql 1 q2, .... qn} where 
<?i is the ith colmnn of Q and aff{-} denotes the affine hull of a collection of 
\·ectors. In the second case, when c ~ 41{ l., the problem is unbounded. 

For the proble1n 

m1n .rTQ0 x 

s.t. .rTQ1x ~ b 

where b > 0 and Q0 is positive definite, we have the following. If Q0 is 
positive semidefinite. then the problem has optimal \·alue of zero. If Q0 is 



anything else (indefinite, negative definite or semidefinite), then the objective 
function is unbounded so that existence of a solution to the problem depends 
on Q1 . In order for the problem to be feasible, Q1 cannot be either negative 
definite or semidefinite. If Q1 is either positive semidefinite or indefinite, let 
t1, ... ,tk be a basis for the orthogonal complement of {x: xTQ 1x 2:: 0}. As 
before, we can reduce the problem to 

m1n yTQ0 y 

s. t. YT Qly 2:: b 

where Qo = (ti, ... ,tk)TQo(tl,···,tk) and Ql = (th···,tk)TQl(t 1, ... ,tk) 
with both Q0 and Q1 positive definite. Thus we only need to consider the 
case when both Q0 and Q1 are positive definite. This is a nonconvex program 
which can be approached in the following fashion. 

A solution of the problem 

min ;\ 

s.t. Qox = J\Q1x 
xtfO 

will yield an optimal direction and hence an optimal solution to the desired 
problem. The latter problem is equivalent to solving the collection of n + 1 
problems 

and for each i - 1, ... ~ n 

n1111 ,\ 

S. t. Q 0 X = ;\ Q 1 X 

ET X :::; -1 

n1lll ;\ 

s.t. Qox = J\Q1x 
Xi 2:: 1. 

Suppose the opti1nal solutions are (i\ A1
) fori= 0, 1. ... , n. (For infeasible 

problems, set i·i = 0 a.nd ~i = +oo.) Let i. = argmini{.\i}, then xi· is 
an optimal direction for the desired problem. We note that since ~i· is 
the minimum eigenvalue of positi\·e definite matrix Q~ 112 Q0Q; 112 and ii* 

is the corresponding eigenvector. the n + 1 problems above should never be 



unbounded and at least one has an optimal solution. It remains an open 
question whether procedures for these problems exist that are more efficient 

than solving for Q~ 112 and the eigenvalues of Q~ 112Q0Q~ 112 . 
In an unpublished manuscript entitled "Unboundedness of a Convex 

Quadratic Function Subject to Concave and Convex Quadratic Constraints," 
Caron and Obuchowska prove that the convex region defined by the intersec
tion of a collection of convex quadratic constraints ( caU it Rv) is unbounded 
if and only if Rv contains a half-line. The same result holds for the non
convex region defined by the intersection of a collection of reverse convex 
quadratic constraints (call it fiG). The feasible region of the problem under 
consideration is R = Rv n Rc and for this region. the authors prove that R 
is unbounded if it contains a half-line. That is, they were only able to find 
a sufficient condition for unboundedness of R. Under an independent study 
project with graduate student Gong Panjing, we were able to prove that R 
is unbounded if and only if it contains either a half-line or an unbounded 
quadratic arc on the boundary of R. 

In a series of papers. H.D. Sherali et al. proposed a linearization-relaxation 
technique for polynomial programming problems. The procedure was special
ized to a number of applications and research is ongoing. One such applica
tion which has not yet been addressed by Sherali is quadratically constrained 
quadratic programs. Our interest in the procedure is two-fold. First because 
it extends some ideas originally proposed by the principle investigator some 
fifteen years ago, and second because we believe that we can add a unique 
perspective to the approach that should enhance the utility and versatility of 
the theory. To that end we focused our preliminary investigation on studying 
the tightness of the linearizations for quadratic constraints with an eye to 
develop tighter relaxations. 

The linearization-relaxation n1ethod treats every quadratic term x 2 over 
a bounded region e ::; .r ::; u as follows. The term is linearized by replac
ing it with a new variable~ say w, wherever it appears in the problem and 
augmenting the feasible set of the problem by the constraints 

w > 2ux - u2 

w > 2€;r - [2 

w < (u+[)x-Cu 

:-Jotice that this defines a linear overesti1nate of x2 and a convex piecewise 
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linear underestimate of x 2 over f :=:; x :=:; u. Thus, the graph of x 2 is captured 
in a triangular region on the interval [f, u]. We experimented with several 
simple ideas for tightening the triangular region and thereby improving the 
linearization when x 2 appears in a constraint. The criterion we chose was 
the best reduction in volume of the triangular region by partitioning the 
interval [e, u]. The most reduction was achieved by bisecting the interval 
and constructing two triangles within the original that share a vertex at 

1 1 . 1 u-f 
[ ]

3 

( -(f + u), -(e + u) 2
). Each of the smaller tnangles has area - -- , 

2 4 . 32 2 

with the original triangle having area 
3

1

2 
[u -iW. Thus the area is reduced by 

a factor of four when splitting the interval. Moreover, the maximum vertical 
height in the triangle represents the maximum error of approximating x 2 

by w and this occurs at the midpoint of the interval. Of course, to realize 
this gain we must double the number of linear constraints that augment the 
problem from three to six. 

l\1ore challenging are the cross product terms xy which are linearized by 
replacing then1 with. say. ::. \Vith the bounds a ~ x ~ b and c ~ y ~ d, the 
feasible set is augmented by the constraints 

z > dx +by- bd 

z > ex+ ay- ac 

- < ex+ by- be -
- < dx + ay- ad 

The convex region 111 R 3 that captures the graph of xy IS the conex hull 
of the four points (a. c. ac), (a, d, ad), ( b, c, be) and ( b, d. bd). The volume 
of this region depends only on differences ( b - a) and ( d - c), and not in 
the magnitude of the bounds, as in the previous case for x2 . The volume is 

i[( b- a)( d- elf and the maximum error in estimating xy by z occurs at 

the center of the rectangular domain ~(a+ b, c +d). 

To give us an ability to experime~nt with our ideas. · graduate research 
assistant Timonthy \"anvoorhis wrote a Pascal program that applied the 
linerization-relaxation technique of Sherali to quadratically constrained 
quadratic progrcuns. Research in this area is ongoing and concrete results 
will be reported at a later date. 

6 



Given the limited quality time that was available to the principle inves
tigator to devote to the project, we believe that the progress made to date 
meets or exceeds the goals set in the proposal for this juncture, keeping in 
mind that research will continue for six months at the end of the grant period 
during the no cost extension. We have concentrated our efforts on the de
velopment of new algorithms for obtaining approximate global solutions for 
the problems under investigation. We have begun to explore the limitations 
of existing and new algorithms for solving real problems. We have addressed 
the question of existence of solutions and have characterized this property for 
some quadratically constrained problems, while techniques for checking these 
conditions are still in the development stage. We have not yet begun to look 
into extending to the nonconvex case a technique developed by the principle 
investigator based on the concept of shrinking and rotating boxes that con
tain the feasible set. Instead we concentrated on the linearization-relaxation 
technique which we believe to be more promising at this time. 

Turning to a sun1n1ary of the work to be performed during the succeed
ing budget period, we plan to wrap up and clean up the preliminary re
sults reported earlier. Technical reports and conference presentations will 
be completed on the literature search and on the necessary and sufficient 
conditions for unbounded convex sets. \Ve shall experiment futher with im
provements to the linearization-relaxation technique and test our ideas on 
sample problen1s using the code we developed. Any substantive findings will 
be disseminated in a con1putational study. \Ve also plan to devote some effort 
into deriving good error bounds and heuristic approximation techniques for 
quadratically constrained quadratic programs. An important and interesting 
problem, which has not been looked at in the literature, is to find a feasible 
solution from a. near feasible solution for these problems. The latter might be 
obtained from an outer approximation technique and the former would sig
nificantly contribute to tightening a posteriori error bounds. We have some 
preliminary results on this problem~ and we anticipate the development of 
a convergent algori thn1 for special cases of this problem. Finally, we have 
some early results on transcending frorn linearizations to quadratic convex
ifications to obtain tighter yet still tractable approximations to nonconvex 
programs. Son1e of this research involves convex underestimating functions 
of rnore general quadratic forn1s than considered to date, but it is too early 
to predict the value of these ideas at this time. 
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Abstract 

This project is concerned with developing computationally efficient procedures for solving op
timization applications involving quadratic constraints. Such constraints are usually linearized in 
practice which leads to less precise modeling of the application. Availability of robust methods for 
global optimization of quadratically constrained optimization problems would improve the solutions 
of existing problems because better models can be applied. 

The proposed procedure is a branch-and-bound method which is based on rectangular partitions 
and piecewise-linear under and overestimations that prescribe linear programming subproblems. 
The overall procedure is guaranteed to converge to a global solution. VVe report on results of 
experiments on computational enhancements to accelerate convergence and allow for the solution 
of larger applications than currently possible. Preliminary results are promising and suggest that 
a significant improvement in the overall algorithm is an achievable goal. 

Enhancements dealt with include: ( i) improving the lower bound, obtained from solving linear 
programming subproblems, by using augmented Lagrangian functions to solve tractable duals of the 
subproblems; ( ii) finding good feasible points early by using Newton and Interval-Newton methods, 
and by using problem-specific heuristic techniques; and (iii) improving the convexifications of the 
subproblems while keeping them computationally tractable. Preliminary results in all three areas 
are inconclusive. Ongoing research to full~· develop the most promising ideas is underway and will 
be reported at a later date. 



1 Introduction 

One of the most widely studied problems in optimization is the quadratic program, in which a 
quadratic objective function is minimized over a set of linear constraints. While several useful 
algorithms have been developed to solve problems of this sort, this formulation is inadequate for 
many industrial and engineering applications. Nonlinear constraints arise naturally in engineering 
to represent natural or empirical laws that govern the behavior of the system being modeled. Anal
ysis of highly nonlinear engineering systems frequently resorts to quadratic approximations that are 
valid within some acceptable parameter ranges. However, problems with higher-order polynomials 
functions can be rewritten as equivalent quadratically constrained problems. For example, each x 7 

term can be replaced by y3x with the added constraints Yl = x 2, Y2 = Yf, and Y3 = y1 y2. Here, 
three new variables and three quadratic equality constraints are needed to represent x 7 , so any 
procedure based on quadratic reformulation must appeal to large scale optimization algorithms for 
quadratically constrained nonlinear programs of the form: 

·a t Min x ' -.ox + c0 x 

subject to x 1Qix + dx s; di, i = 1, ... , m. 

While this program is encountered regularly in a wide variety of areas, it is often very difficult 
to solve. A brief survey of current Operations Research literature reveals that these programs 
remain largely unstudied. :More recent developments in Semidefinite Programming have revived 
interest in the convex version of the above problem which can be treated as a tractable semidefinite 
program, but this approach holds little promise for the nonconvex version of the problem, which is 
the focus of this research effort. General global optimization algorithms can be used for this class of 
problems. but these procedures are neither broadly-applicable nor practical for the larger instances 
of the problem which would be encountered in real-world applications. The following examples are 
presented as applications for which impro\·ed solution techniques would have an immediate impact. 

2 Applications 

Since variances are expressed as quadratic functions~ stochastic environments naturally tend to give 
rise to quadratically constrained programs with linear or quadratic objective functions. Avram and 
Wein [7] consider a product design problem from the semiconductor industry. In this problem, the 
chip sites on a semiconductor wafer are allocated to the various types of chips. The variability 
of the wafer fabrication process complicates the problem. Hence, one possible objective function 
minimizes the maximum variance of a random variable Tk which describes the number of sets of 
nondefective type-k chips per wafer. \Vhile citing the difficulties posed by this objective, which 
results in a quadratically constrained minimization problem, the authors provide results for small 
instances of this problem, where 4 types of chips yield 4 quadratic constraints. 

Probabilistic systems are often described mathematically by the chance-constrained program. 
Denardo and Tang [12] model a Markovian production system, where jobs move between man
ufacturing activities randomly. The model makes uses of a linear control and relies on chance 
constraints to ensure, with a very high probability, both that buffer stock stays nonnegative and 
that production flows stay within each sector ·s capacities. This program is shown to be log-con vex 
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and each sector has only three constraints, thus making the problem solvable using standard codes. 
In a. similiar approach, Weintraub and Vera [32] mention the usefulness of chance constrained linear 
programs in areas such a.s energy planning, industrial production, capital budgeting, and water sys
tem planning. Their particular algorithm is demonstrated by solving a chance constrained problem 
in the area of forest planning, by considering the randomness in future timber growth. In this 
case, feasible solutions are not difficult to find, and hence a cutting-plane algorithm is used to 
solve instances with up to 34 chance constraints. Similiar constraints are used by Pourbabai and 
Seidmann [26] in a design of a branching system in telecommunications. This system consists of 
several parallel nonidentical communication devices with finite input buffers. Their models seek to 
maximize overall system throughtput, and employ chance constraints to ensure that the probability 
of congestion (i.e. that more messages are sent to a device than its input storage capacity allows) 
is sufficiently small. Suggested algorithms are given which rely greatly on the structure of the par
ticular application. The algorithm used in the most difficult case relies on a dynamic programming 
approach to solve the program in pseudo-polynomial time. 

Production and scheduling problems provide several opportunities for applications of quadrati
cally constrained quadratic programs. Gallego and Moon [17] seek to determine a multiple product, 
single facility cyclic schedule to minimize holding and setup costs. In this case, the possibility of 
externalizing setup operations is considered. Setup operations are said to be externalized if the 
production process is interrupted for all setup operations. This reduces setup time and holding 
costs but increases setup costs. The resulting model contains one fractional term which divides 
the setup time variable Si by the cycle length variable ti. By creating a new variable Ti such that 
riti = 1, this problem could be formulated as a bilinear program. Since the giyen formulation in
cludes only one nonlinear constraint, all other terms may be expressed as a function of the Lagrange 
multiplier associated with this constraint. A search technique is used to find the optimal value for 
this multiplier and then all other terms are easily calculated. 

Scheduling bottleneck operations is studied by Hum and Sarin [21]. An especially difficult 
problem arises when an entire lot must be processed before any part of that lot may be consumed. 
Decision \·ariables for this model include ]Vi \vhich is the number of setups (or production runs) 
for product -i per unit time and Xi which is the number of units of product -i produced per unit 
time. The Ni variables require the existence of another decision variable mi which must satisfy 
the equation m 1 N 1 = m 2 JV2 . Although this program is further complicated by integer restrictions, 
relaxing these results in a bilinearly constrained program, where the m variables are multiplied 
with both :c and N variables. For the given examples each m variable could take on a very limited 
number of values. Hence, it was not computationally difficult to enumerate ever~; possible vector 
of m variables and solve corresponding linear programs for each of these possibilities. 

Efficiently utilizing production resources is also studied by Ahmadi and l\Ia tsuo [2] as they 
consider the problem of allocating pick-and-place robots which put electrical components on circuit 
boards to the various families of items at each stage of the production process. The objective is 
to minimize the total time to complete all jobs. The model employs variables Ti j . which represent 
the time assigned to production of item j in family i, and Xik, which is the number of machines 
allocated to family i at stage k. The program is then given as minimizing the maxjmum completion 
time of any family i, which is given by Lj T ij . A bilinear constraint is introduced by requiring 
that Tij·L"ik 2 Pijk, where parameter Pijk is the total processing time for item j in family i at stage 
k. Again. this program features integrality requirements, but relaxjng these restrictions yields a 
bilinearly constrained program. Due to the difficulty of this problem. the authors do not attempt 
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to solve their program to optimality. Rather, the Lagrangian function is used to dualize nonlinear 
constraints and find lower bounds. Heuristics are suggested to find upper bounds. Solutions 
obtained are of varying quality, with all being within 7 .. 5 percent of optimality. 

Operations Research also features a variety of location problems, some of which may be best 
formulated with quadratic constraints. Benchakroun, Ferland, and Cleroux [10] introduce a model 
to specify the distribution system for an electrical power industry. The objective function seeks 
to minimize the sum of all costs, including those associated with maintenance, investment in sub
stations. feeders, and voltage regulators, and energy loss in the feeders. The resulting program 
has a nonlinear objective and bilinear constraints, which feature both integer and continuous vari
ables. By adding variables, the objective could be restated in quadratic form. In this application, a 
Bender's decomposition method is used to solve subproblems and generate additional cuts. Consid
erable effort is devoted to transforming the problem into a form which can be solved more efficiently. 
Solutions are given for small instances with 2 substations and 15 load locations. 

Network design is encountered in a different context by Gavish [18], who considers the design 
problem faced by managers of computer networks when they must set up a new backbone network 
or expand an existing one. This network design consists in simultaneously selecting the locations 
for placing network control processors, deciding on the set of links which connect backbone nodes, 
selecting links of end-users to the network, and selecting routes used by end-users at minimum cost. 
This program also is a nonlinear combinatorial optimization problem which could be formulated 
as a bilinear one by replacing variables which are currently in the denominator of some term. 
Once again, both lower and upper bounds are found, instead of an exact solution. A subgradient 
optimization procedure is used to solve the Lagrangian relaxation of the original problem to obtain 
a lower bound. Greedy and partial-enumeration heuristics are used to find an upper bound. 

The popular facility location problem becomes a quadratically constrained one when it is ex
tended to multiple periods by Balakrishnan, Jacobs, and Venkataramanan [8]. This extension 
studies the facility layout problem under the two assumptions of changing demand, which could 
result in \·arious optimal (or even near-optimal) layouts for different time periods, and a limited 
amount of funds for rearranging the layout between periods. The objective seeks to minimize the 
sum of rearranging costs and material flow costs. Decision variables are Xtij, a 0-1 variable for lo
cating department i at location j in period t, and Ytijl, a 0-1 variable for shifting department i from 
location j to l at time t. Hence, a quadratic constraint is introduced of the form Ytijl = X(t-l)ijXtij. 

Two approaches are tested, a dynamic programming algorithm and a constrained shortest path 
algorithm. Since the dynamic programming approach is purely enumerative and the constrained 
shortest path technique combines enumeration with the simplex method, the latter procedure works 
much better for larger instances. The largest example solved considered an instance with 20 de
partments and 4 periods. 

Another version of the facility location problem is studied by Jeul and Love [22]. The minimax 
location problem occurs when decision-makers locate a new facility at the location which will 
minimize the maximum distance from the new facility to any member of a set of existing facilities. 
This objective is used in locating facilities such as fire stations, hospitals, or military detection 
devises. each of which must be as close as possible to all of its targeted customers. This problem 
is easil~· demonstrated to consist of minimizing a linear objective subject to quadratic constraints. 
\Vhile no test results are given, solving the dual problem is suggested. 

Various programming formulations encountered within the area of game theory also may be 
solved as quadraticall.v constrained quadratic programs. Kostreva, Ordoyne, and \¥iecek [24] pro-
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pose an algorithm for solving multiple-objective programming problems with polynomial objectives 
and polynomial constraints. The algorithm is demonstrated by solving a problem in two-person 
game theory. A locally efficient point is found by minimizing a linear objective and moving both 
polynomial objective functions into the problem as constraints. For a small instance (3 constraints, 
including 2 original objectives), the Lagranian matrix is given and algebraic methods are used to 
find all efficient points. 

The bilevel programming problem arises from game theory applications in a variety of contexts. 
Anandalingam and Friesz [6] survey this problem and describe the associated two-person game. 
In this game, the "leader" selects his decision vector first, then the "follower" selects his decision. 
Hence the leader's problem is to maximize a linear program in x (his decision space) and y (the 
follower's decision space), where y is the optimal solution to the linear program which will confront 
the follower after the x decisions are known. This model is especially appropriate when a policy
maker must make decisions which take into account the likely response of a group of constituents. 
There are a number of different approaches to this problem, one of which uses the Karush-Kuhn
Tucker optimality conditions to form a bilinear program whose solution will give the optimal decision 
vector for both x and y. Suh and Kim [31] introduce a few applications of this program, in which 
the public sector is the leader of the game, and the private sector is the follower. These areas include 
natural resource management, project selection, strategic planning for the agricultural sector, and 
regional development. In particular, they consider the transportation planning problem, for which 
the public sector constructs new transporation systems, improves capacities, and regulates services 
and prices. The private sector then chooses locations of production, modes of transportation, and 
shipment routes. To solve this application, a descent-type algorithm is introduced which relies on 
derivative information of the lower level problem to calculate the optimal solution to the upper 
level problem. 

A more complex example of bilevel linear programming, taken from a real-world application, 
is presented by Ben-Ayed, Blair, Boyce, and LeBlanc [9], who construct a program for optimizing 
the investment in the inter-regional highway network of a developing country. Again, an iterative 
algorithm is developed which solves the lower problem separately. In a business setting, Hobbs 
and Nelson [20] use a bilevel progra.rn to develop a model for the electric utility industry. At the 
upper level, the electric utility industry (the leader) seeks to either minimize costs or maximize 
benefits while con trolling electricity rates and subsidizing energy conservation programs. Customers 
(the followers) attempt to maximize their net benefit by consuming electricity and in vesting in 
conservation. This instance is quite small and no details are given for a general solution technique. 

As might be expected, many engineering applications require quadratic constraints in order 
to correctly model natural relationships. Structural design optimization problems, for example, 
require a mathematical formulation which accurately describes physical laws. In one application, 
Hajela [19] studied the problem of minimum weight sizing for truss configurations. He found 
that indeterminate systems required quadratic stress and displacement constraints. Another civil 
engineering application deals with the planning involved for water distribution systems. Klempous 
[23] considers an optimal strategy for controlling pumping stations so that consumer demand is 
met at a minimum cost, while reservoir levels are maintained at a desired level. After making 
simplifying assumptions, the n1odel which is used minimizes a linear function over a quadratic 
set of constraints. In this formulation, the quadratic constraint matrices Qi are indefinite. These 
constraints relate the number of working pumps, the output flow, and the head of water. The 
number of these constraints equals the sum of the number of pumping stations and the number of 
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reservoirs. 
Quadratic constraints have proven useful in electrical engineering, especially in the areas of VLSI 

design and signal processing. A key aspect of VLSI design is the best location of integrated circuits 
on the circuit board. Eben-Chaime [11] formulated a quadratically constrained reverse convex 
programming model which can be used to accomplish this difficult task. In this formulation, the 
quadratic constraints ensure that the various components are placed in non-overlapping locations. 
In a signal processing design application, Er [13] made use of a quadratic objective and a single 
quadratic constraint in notch filter design. This formulation allowed his design to accomphish two 
objectives, achieving one by satisfying the constraint, and the other by minimizing the objective 
function. Er [14] uses a similiar construction (one quadratic objective with one quadratic constraint) 
to design antennas. 

Chemical engineering requires the extensive use of nonlinear programming techniques. Floudas 
and Visweswaran [16] present a simple pooling problem as an example for which quadratic con
straints are required to ensure product quality. In this example, three input streams, each with 
a unique chemical composition, come together to produce two final products, each of which must 
meet certain quality standards. Complicating this problem is the fact that two inputs are mixed 
together in a common pool before combining with the other input to form the final products. The 
pooling of the two products requires the introduction of both bilinear inequality constraints and 
bilinear equality constraints. A more complex example, representing an actual application, is also 
given of a multiperiod tankage quality problem. This program maximizes a linear function which 
defines total value at the end of the last period over 22 constraints. Of those constraints, 12 were 
nonconvex bilinear constraints similiar to those in the smaller example. 

The preceding brief survey is designed to introduce the broad areas of application for the 
quadratically constrained quadratic program. Certainly in a scientific setting, where models must 
reflect the true state of reality, the flexibility introduced by the use of nonlinear constraints is often 
necessary for an adequate description of a problem. \Vhile many methods have been used in order 
to solve programs of this sort, many are not well-suited for larger problem instances. For example, 
dynamic programming, or any technique which relies significantly on enumeration strategies, will 
encounter difficulties when used for large problems. In other cases, global optimal solutions are 
deemed to be too difficult to find and heuristic and dual procedures are used to produce bounds 
on such a solution. Some applications, especially ones with few constraints, have a structure which 
allows specialized solution techniques. However, these are often the result of complicated analysis 
and are not applicable to the broader class of quadratically constrained quadratic programs. We 
present next a general purpose algorithm for finding global solutions to this class of problems and 
discuss alternative strategies to acccelerate convergence and increase the size of the problems that 
can be solved in this way. 

3 Algorithm 

As previously mentioned, solving a quadratically constrained quadratic program is extremely diffi
cult in general. Pardalos and Vavasis [25) have shown that even the simplest linearly constrained 
nonconvex quadratic program is an NP-hard problem by proving that this holds even when ma
trix Q0 is of rank one, with exactly one negative eigenvalue. Of course, the addition of quadratic 
constraints complicates their problem significantly. Since this problem is inherently hard to solve, 
a good approach is to find a tractable problem which approximates the original one. The natural 
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choice for this approximation is a linear program, because of our desire to treat large scale instances 
of the m~iginal problem. 

One successful approach along these lines was proposed by Al-Khayyal and Falk [3) and spe
cialized to the quadratic case by Al-Khayyal and Larsen [4]. Sherali and Tuncbilek [28] further 
extended the procedure to handle all polynomial functions. Adams and Sherali [1] demonstrated 
that a generalization of this technique could be used to solve quadratic mixed integer programs. 
This approach provides a conceptually straight-forward method of generating a linear program 
which approximates the original problem. In the case of a quadratically constrained quadratic 
program, the LP approximation (or LP relaxation) is formed as follows. The nonlinear terms, 
which are all the product of two (not necessarily distinct) variables, must be replaced by simple 
linear ones, each of which represents one of these products. For example, 6xi becomes 6w11 and 
3x1 x2 becomes 3w12 . Of course, this formulation cannot constrain the new linear terms to equal 
the product which they represent (i.e. w12 cannot be set equal to x 1 x 2 , else we would lose the 
linear programming formulation). However, given bounds on all original variables, it is possible 
to constrain the new linear terms to be within a well-defined area which envelops the equations 
Wij = XiXj V i,j. For example, if fi is a lower bound and Ui is an upper bound such that fi :::; Xi :::; Ui, 
then clearly (xi-fi) 2:0 and (ui-Xi) 2:0. Therefore (xi -fi)(xi-fi) = XJ -2fixi+fr 2:0, and, 
using the approximating term, Wii- 2fiXi + f[ 2: 0. Similiar constraints may be generated using the 
upper bound inequality ( Ui- Xi) 2: 0 and any possible combination of the product of two of these 
inequalities. The linear constraints constructed in this fashion are called implied constraints, and 
such constraints are frequently studied in integer programming when attempting to characterize a 
facet of the convex hull of integer points. 

To illustrate this procedure, consider the following bilinear program with bilinear constraints: 

Min 3x+7y+4xy 

subject to -7x - 4y- 6xy :::; -50 

-3x - 8y - 5xy :::; -40 

0 ::S X ::S 15 

0:::; y:::; 13 

The first step in producing the LP approximation program is to replace all nonlinear xy terms 
with a linear variable, say w. Secondly, bounds on variables x and y are used to limit the allowable 
values for w. Since (x -O)(y-0) = xy 2: 0, w is also constrained by w 2: 0. Since (15-x)(13-y) = 
195 - 13.r - 15y + xy 2: 0, w is also constrained by w - 13x - 15y + 195 2: 0. Similarly, w may 
be constrained from above by combining upper bounds with lower bounds. This results in the two 
inequalites (15- :r)(y- 0) = 15y- xy 2: 0 and (x- 0)(13- y) = 13x- xy 2: 0. Hence, w is 
constrained by inequalities w - 15y :::; 0 and w - 13x :::; 0. The completed LP is given by 

Min 3x + 7y + 4w 

subject to -lx - 4y- 6w :::; -50 

-3x - 8y - 5w :::; -40 

w 2:0 
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w- 13x- 1.Sy ~ -195 

w- 15y ::; 0 

w- 13x ::; 0 

Note that the original bounds no longer need to be explicitly stated. Any solution which satisfies 
these constraints will also satisfy the original problem's bounds on x and y. For example, since 
w ~ 0 and 15y ~ w, clearly y must satisfy y ~ 0. It is easily shown that original problem bounds 
must always be similarly satisfied by any feasible solution to the LP relaxation. 

When all of the possible implied constraints that can be derived from variable bounds are 
added to the linearized relaxation of the original constraints, a linear program emerges which has 
many desirable properties. First of all, the LP relaxation serves as a lower bound for the original 
nonlinear program since any feasible solution to the original problem is certainly also feasible to the 
LP. Secondly, if any original variable x j is at its upper or lower bound at the optimal solution, all 
approJdmating variables Wij associated with the product of x j and any other Xi will exactly equal 
that product. f inally, the largest possible difference between a linear approximation term Wij and 
the product Xi X j which it represents is equal to ~( Ui - fi )( Uj - fj ). Hence, as the distance from 
each ij to Uj gets increasingly smaller, Wij will eventually get within any given E of Xi X j. This 
con vergence provides the motivation for a branch-and-bound optimization algorithm. 

The branch-and-bound procedure begins by solving an LP relaxation which includes constraints 
generated by the bounds given for each variable. If the solution solves the original problem (i.e. 
each Wij = XiXj as well as satisfying all original constraints), the solution is optimal for the original 
problem. Otherwise the maJdmum difference I Wij - Xi X j I is identified. Branching is done to 
decrease this difference by branching on Xi or x j. Without loss of generality, assume x j is chosen 
and the solution to the first problem has x j = Sj. Two new problems are generated, one of which 
generates constraints using fj ::; x j ::; s j and the other using Sj ::; x j ::; Uj. Clearly, .ej < Sj < Uj, 

since if Sj was exactly equal to either fj or Uj this would imply that each Wij = Xi X j. Hence, 
each of these problems decreases the maximum possible difference I Wij - Xi X j I· In the example 
problem given previously, the optimal solution to the LP is found at x* = 1.30435, y* = 0.434 78, 
and w* = 6.52174. The difference between w and the product xy is 5.9546. In this case, x would 
be chosen as the branching variable (due to the fact that the optimal x* was closer to the center of 
its allowable region than the optimal y* was). Hence one new problem would be generated using 
variable bounds 0 ::; x ~ 1.30435, 0 ::; y ::; 13, and another using 1.30435 ~ x ~ 15 and 0 ::; y ~ 13. 
These problems are solved and further branches are generated in the same fashion. 

As the bounds for each variable are tightened, each Wij must eventually get within some ac
ceptable E of the product Xi X j. When this happens, the LP solution becomes close to feasible for 
the original problem. This must be true because none of the problem's original constraints are 
violated by the optimal values of the linear variables w;1 which are used as substitutes for the 
actual quadratic terms and each I wJj - xrx; I< E. When the LP solution at any given branch b 

within an acceptable tolerance of feasibility to the original problem, it must also solve the original 
problem at that branch. All branches must eventually be fathomed (pruned) for any one of the 
three reasons: 1) the subproblem of the current node yields a lower bound which is greater than a 
known feasible solution, 2) the subproblem of the current node is infeasible, or 3) the subproblem 
of the current node produces a feasible point to th eoriginal problem. When all branches have been 
fathomed, the global solution is the feasible point with the minimum objective value, which resides 
in one of the branches fathomed for reason (3). 
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4 Analysis of Algorithm 

Certainly the solution procedure detailed above has several desirable properties. First of all, forming 
the linear relaxations is not difficult either conceptually or con1putationally. Secondly, the procedure 
can be shown to converge to a global solution. This property sets this approach apart from many of 
the traditional, gradient-based approaches for solving nonlinear programs which often converge to 
points which are only guaranteed to be local solutions. The procedure also generates progressively 
improving lower bounds. 

One of the drawbacks of this procedure is that the size of the LP relaxations can grow exponen
tially large if all implied constraints are utilized. If a problem has man~· linear terms, but only a 
few quadratic ones, the size of the LP will not be much larger than the size of the original problem 
(in terms of the total number of variables and constraints), if only first level implied constraints are 
used. \Vhen there are many quadratic terms, each distinct nonlinear product Xi X j i replaced by 
a new variable Wij. The number of such variables in the LP can be much higher than the original 
number of variables. In the worst case, if all the possible products of the form XiX j are part of 

a quadratic problem \vith n variables, then a total of n(n
2
+1

) additional \·ariables are necessary to 

linearize each one of these products. To illustrate how fast this enlarges a problem, an original 
problem has 50 variables, then the could have an LP relaxation with as many as 1275 additional 
variables. 

Perhaps even more important than the additional variables, each new variable which is intro
duced also requires additional constraints. For a quadratic term of the form Xi X j, where i f= j, if 
only the first level of implied constraints are used then four new constraints are introduced. which 
arise from the four inequalities: 

(i) (xi- fi)(xj- lj) > 0 

(ii) (xi- fi)(uj- Xj) > 0 

(iii) ( Ui - Xi) (X j - 1 j) > 0 

(iv) (ui- xi)(uj- Xj) > 0. 

If i = j, then inequalities ( ii) and (iii) are identical and hence only 3 new constraints are 
necessary. Returning to the case where all possible product terms actually occur in the problem, a 
problem with n variables would generate an LP with n(n2+l) new variables. The n products of the 

form XiXi require 3 additional constraints, while the rest require 4. Hence, if every possible first 
level implied constraint is actually generated, an additional 2n( n + 1)- n constraints are created. 
If the original problem had 50 variables, the LP may therefore have an additional 5050 constraints. 

Note that this only considers constraints with first level implied constraints, which can be derived 
by taking two bound products at a time. Improved linear programming relaxations can be obtained 
by adding implied constraints derived from bound products taken three at a time, four at a time, 
all the way up to n at a time. However, this will add an exponential number of constraints and 
force the use of decomposition and subgradient optimization methods to solve the resultant LP. 
For this reason, in the procedures developed herein, we shall use only first level implied constraints 

in the sequel. 
A second potential obstacle to be dealt with is the number of branches that are explored before a 

feasible solution is found. To understand how serious a concern this can be. it is helpful to consider 
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a simple example. To simplify the analysis, assume that a solution is defined as being feasible if all 
original constraints are within 0.0001 of being satisfied. Further assume that all original constraints 
will be satisfied within a tolerance of 0.0001 if each I Wij - Xi X j I< 0.000001. This would in fact 
be true if each constraint coefficient is < 10 and no more than 10 approximation terms Wij occur 
in any one original constraint. To see that this holds, note that all constraints are satisfied using 
the Wij variables. Thus, replacing any Wij variable with the actual Xi X j product they represent 
could change the left-hand side of the constraint by no more than 0.00001. Hence, replacing 10 
(or fewer) linearized terms with their actual product can cause the constraint to be violated by no 
more than 0.0001. Recall that the maximum possible difference I W1:j- XiXj I= ~(ui- Ri)(u1 - .e1). 
Hence I Wij - Xi X j I :S 0.000001 if each Uj - fj :S 0.001414. To illustrate the number of branches 
required to achieve this level of precision, consider an example with only 10 variables, each of which 
is originally constrained to be between 0 and 40. Assuming that each branch bisects an interval, 
it would require 32.768 branches to cover the entire interval for any single variable such that each 
branch satisfies Uj- Rj < 0.001414. Since this must be done for each variable, up to 327,680 branches 
could conceivably be created. Hence, even problems with very few variables could, in the worst 
case, require the solution of an enormous number of LPs. 

Of course, in actual problems, good solution areas will be quickly identified and then explored 
until a feasible solution is found. This allows the algorithm to fathom branches which contain the 
majority of the original feasible region before any extensive exploration of these regions takes place. 
Nevertheless, the number of branches involved in exploring these good areas may still be significant. 

The power of the branch-and-bound procedure provides a strong motivation for devising meth
ods which reduce potential difficulties due to the number of branches, constraints, and variables. 
Significant improvements have been made in the overall algorithm by addressing these concerns. vVe 
will strive to translate our progress in this area to enhance these methods from having theoretically 
potential to being practical solution techniques. 

5 Improvements 

The focus of our research has been to devise methods which start the branch-and-bound procedure 
with a good, hopefully near-optimal, feasible solution. To be effective this must be done in con
junction with procedures that find tight upper bounds. Together these two algorithmic properties 
will result in early fathoming of many nodes and thus identify a global optimal soloution without 
an excessive number of branches to establish optimality. For this purpose, heuristic approaches 
were devised which take advantage of the structure inherent in specific problems. Such techniques 
proved extremely valuable for finding good feasible solutions with a minimal amount of work, but 
their effectiveness is highly problem dependent. 

To illustrate how effective this approach can be, consider the bilinear program given earlier. 
By taking advantage of the structure of the problem, a ver~v good solution can be found using the 
following alternating technique. Initially, set y0 = 0 and solve an LP for the optimal x given y = y0 . 

The solution to this problem is found at x = 13~. Similarl~·. solving an LP for y given x0 = 0 yields 
the solution y = 12~. \Ve now assume that a good solution is very likely to lie in the region 0 :S x :S 
13~, 0::; y ::; 12~. Thus, an LP relaxation is generated using these bounds and an optimal solution 
is found at x 1 = 1.31931, y1 = 0.48030. This solution is not feasible, so we continue by once again 
solving two LPs: one for the optimal x given y = y1 and one for the optimal y given x = x 1

. The 
solutions to these LPs ( :r = 6.6940 andy= 3.286.5, respectively) are then used to provide bounds for 
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another LP approximation problem. Once again, the heuristic is based upon the likelihood of a good 
solution being in the region 1.37931 ::; x ::; 6.6940, 0.48030 ::; y ::; 3.2865. Following the example 
to its conclusion, the solution to this LP relaxation is infeasible point x 2 = 2.43094, y2 = 1.03557. 
Linear programs for x given y = y2 and for y given x = x2 yield the bounds 2.43094 ::; x ::; 3.8782, 
1.0355 7 ::; y ::; 1. 77 4 7. Solving a third linear relaxation yields x 3 = 2.85227, y3 = 1.37 459, which 
in turn generates LPs which provide bounds 2.85227::; x ::; 2.93765, 1.37459::; y ::; 1.4225. Given 
these much tighter bounds, the solution x 4 = 2.88794, y4 = 1.39625 yields a point which is very near 
feasible. The heuristic therefore concludes by solving two final LPs (one for y given x = x 4 and one 
for x given y = y4

) and using the better of the two solutions as an upper bound. In this case, the 
solution x = 2.88842, y = 1.39625 provides an excellent upper bound of 34.57084 on the objective 
function. To see how good this bound is, we note that the actual optimal solution x = 2.88814, 
y = 1.39637 has objective function value of 34.5707. Clearly, the success of the above approach was 
highly correlated to the size of the problem and the bilinear structure of the functions. However, the 
example illustrates the potential of fully exploiting problem structure, even for NP-hard problems. 

In the previous example, the heuristic worked especially well for several reasons. First, the 
objective function was monotonically increasing as a function of either x or y. Similiarly, the left
hand side of the constraints was monotonically decreasing as a function of either x or y. Finally, 
the problem was tractable given initial values x 0 = 0 and y0 = 0. 

\Vhen problem structure does not easily give rise to specialized algorithms, as in the bilinear 
case above, we investigated other techniques that were based on the use of infeasible solutions that 
are generated by the LP relaxation. As the variable bounds which generated the linear relaxations 
become increasingly small, the optimal solutions to these approximating problems approach the 
feasible set. Hence, it is reasonable to use these solutions as starting points, and then move in 
a search direction which seems likely to quickly intersect the feasible region. One method of 
accomplishing this is illustrated on the following problem: 

subject to -.Sxl - 8y1 - 7X1Yl - 3X1Y2 + 2X2Yl - 9X2Y2 

-8x2 - 10y2 + 6x1 Y1 - 8x1 Y2 - .sx2Y1 - X2Y2 

-2xl - 3x2 - Yl - 5y2 - 3xl Yl + 2xl Y2 - 7x2Yl - 2x2Y2 

X1 - 6x2 - 5yl - 8x1 Yl - X1 Y2 + .T2Y1 - 6x2Y2 

::; -70 ( 1) 

::; -40 (2) 

::; -50 (3) 

::; -60 (4). 

This problen1 was solved by the branch and bound method without any enhancements and 
required the solution of LP relaxations at 160 branches to attain the desired solution accuracy. As 
an example of an LP relaxation which yields a good near-feasible solution, branch number 114 (of 
the 160 branches) sol Yes the LP generated by the following bound constraints. 

0::; XI ::; 10, 3.1428::; X2::; 3.1472, 0.1850::; Yl::; 0.5783, 2.0788::; Y2::; 10 

The solution to this LP relaxation is 

x 1 = 0, x2 = 3.1430, Yl = 0.5666. Y2 = 2.4398, 

with an objective function value of 83.9939. It is easily demonstrated that this solution satisfies 
constraints 2 and 4. but slightly violates constraints 1 and 3. 
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Clearly, if only one constraint was violated, an effective method for finding a point which satisfies 
that constraint would be to move in the direction of steepest descent (i.e. the negative gradient) 
of the constraint function until that constraint is satisfied. \Vhen multiple constraints are violated, 
a direction must be found which tends to reduce all such constraints. Therefore, the negative 
gradients of all the violated constraints are useful for identifying a direction which points towards 
the region where all of these constraints are satisfied. A promising direction would lie within the 
cone formed by all of these negative gradients. A logical choice is to search in the direction obtained 
by averaging all of these negative gradient directions, although more complicated procedures could 
also be used to find directions which were more centrally located within this cone. In our example, 
the normalized negative gradients of constraints 1 and 3 are 

(0 .4202, 0.5314, 0.0442, 0. 7299)T and 

( -0.0418,0.4193. 0.8142, 0.3995)T. 

Thus, a reasonable search direction would be the average of these two directions, which is 

d( X, y) = (0.1892, 0.4183, 0.4292,0.564 7)T 

Moving even a small distance in this direction does in fact yield a feasible point. In this case, 
letting Xnew =X old+ Ad where A= 0.000469 yields a feasible point (x, y) with an objective function 
value of 84.0045. The objective function value associated with this feasible point differs from 
the objective function value of the optimal solution to the LP relaxation at that branch by only 
0.0106. Hence, the feasible solution yields a tight upper bound which allows several branches to be 
fathomed. Techniques \vhich take advantage of the information provided by the LP relaxations, as 
this one does, are very effective if they are designed o be computationally simple and have a high 
probability of being successful. The latter property is highly problem dependent. 

Finding good upper bounds, as described above, is only one-half of a total strategy to accelerate 
convergence. The second half calls for finding good lower bounds on the global optimal objective 
value for each subproblem. Solving the LP approximation problems is method of providing lower 
bounds. However, in the early stages of the branch-and-bound algorithm, when variable bounds 
are somewhat loose, the lower bounds produced are not in general tight enough to contribute to 
fathoming. Problem specific heuristics (in the spirit of the one detailed above for finding tigt 
upper bounds) for improving lower bounds for promising subproblems region were investigated. 
The most robust strategy involved solving the Lagrangian dual of a tractable relaxed problem. For 
example, given the variable bounds at a certain branch. an effective method of finding a lower bound 
on the objective function over the subproblem's feasible set would be to consider the augmented 
Lagrangian function. For a problem of the form 

Min f(x) 

subject to g( x) ~ 0, 

the Lagrangian function is defined for u 2:: 0 by 

8(u) = inf(j(x) + utg(x)). 
X 
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The augmented Lagrangian function is created by augmenting the original objective function 
with terms which penalize the violation of the problem's constraints, and then defining the La
grangian function as above based on the augmented objective function. The value of the augmented 
Lagrangian function for any given vector u of Lagrange multipliers provides a lower bound on the 
optimal value off( x ). Unfortunately, finding this lower bound may require considerable effort in 
some instances. However, within the context of the branch-and-bound algorithm, minimizing the 
Lagrangian function may be efficient and useful. The reason for this is that the branch-and-bound 
algorithm produces a solution which in general would tend to be close to the actual optimal solu
tion for the variable bounds at a given branch. Thus, starting from this near-optimal point would 
allow faster convergence to the true solution than starting from some arbitrary point. Secondly, 
the branch-and-bound algorithm could be helpful in providing Lagrange multipliers which are close 
to the optimal multipliers. Hence, the value of 0( u ), where u is obtained from the solution of the 
relaxed linear programming problem in the branch-and- bound algorithm, should be close to the 
value of 0( u*), where u* is the vector of optimal Lagrange multipliers, whenever u is close to u*. 

Moreover, 0( u) serves as a lower bound on the subproblem's optimal objective value and this lower 
bound is better (higher) than that obtained from the linear programming relaxation. 

Another way of improving the lower bounds is to tighten the approximation of the LP relaxations 
by adding more implied constraints. Research into methods for identifying the critical implied 
constraints that improve the lower bounds found at each branch is ongoing and no conclusive 
results are ready for dissemination at this time. Another interesting ongoing research area is 
the identification of either redundant contraints or constraints that tighten the feasible region's 
approximation too far away from the neighborhood of an optimal solution to do any good. In this 
way tight LP relaxations can be made small enough to be solvable by standard algorithms, without 
the need to resort to large-scale methods such as subgradient optimization or successive over
relaxation. The idea of dropping implied constraints that tighten the region far from an optimal 
solution was very effective on the location problems studied by Sherali and Tuncbilek (1992). In that 
work, the authors applied analytical techniques to the plant location problem in their attempt to 
reduce the number of additional constraints generated to form the LP relaxation. They determined 
that the constraints generated by multiplying ( Ui - xi)( Uj - x j) could be ignored without causing 
a significant difference in the value of the optimal solution to the LP. This result is not surprising 
for the location problem since the constraints that were dropped formed lower bounds on linear 
approximation variables that the objective function sought to maximize. Since the optimization 
process attempted to increase the value of these variables, the lov.·er bounds induced by such mplied 
constraints were rarely active at an optimal solution to the relaxed problem. 

:VIost branching tends to occur in those regions which in fact contain good solutions. Thus, a 
natural method of improving the overall algorithm would be to use a two step approach: 1) use the 
branch-and-bound procedure to identify areas which are likely to contain good solutions, and 2) 
use a rapidly convergent technique in order to find a local solution in the area of interest. Several 
traditional nonlinear programming techniques are available to accomplish this second step. Initial 
testing of this idea was done using Newton's method for solving systems of nonlinear equations. 

To illustrate its effectiveness in the context of a branch-and-bound algorithm, consider our bi
linear example. In this implementation, Newton's method for solving simultaneous equations is 
attempted only when the maximum difference I Wij - .r1:x j I is less than a given distance. vVe 
assume that the set of near binding constraints at the node's LP approximate solution are active 
at a local solution. In this example, Newton's method is first attempted at branch 15, which 
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has LP solution x = 2.56774, y = 1.08904, w = 4.71690. Neither constraint is satisfied with 
x = 2.56774, y = 1.08904, hence we seek to find a solution by using Newton's method for solv
ing four simultaneous equations. Two equations come from assuming both inequality constraints 
will be tight at a solution, the other two equations come from setting the partial derivatives of 
the Lagrangian with respect to both x and y equal to zero, which corresponds to a first order 
necessary condition holding at the local solution. After 3 iterations, Newton's method converges 
to x = 2.88814, yl.39637, and Lagrange multipliers u = (0.05655, 0.77299)T. This is in fact the 
optimal solution to the original problem and the branch-and-bound algorithm is completed after 
21 branches. Using the unenhanced version of the branch-and-bound procedure, 57 branches were 
required to solve the problem. Similar results have been achieved for slightly larger problems. 
Larger problems may require more sophisticated algorithms both for finding local solutions and 
for identifying when branches may be fathomed. Research is ongoing to explore these techniques 
in order to find methods which converge consistently and also quickly. Ideally, the combination of 
the global search inherent in the branch-and-bound algorithm and the rapid local convergence of 
traditional nonlinear methods should result in a powerful and efficient algorithm. 

Instead of solving smaller relaxed linear programs, faster Lagrangian methods can be used to 
solve the large scale LPs that are generated at each branch of the branch-and-bound tree. Tuncbilek 
( 1992) considers a Lagrangian approach to solving a quadratic program with only linear constraints. 
In this approach, all original constraints are moved into the objective function. Quadratic terms 
x[ are allowed to remain in the objective function. On the other hand, cross-product terms of 
the form Xi X j are simply replaced with either a linear over or under estimate (depending on their 
objective function coefficient) derived from bound products. Hence no additional bound product 
constraints or additional variables Wij are required. The resulting subproblem is therefore consid
erably smaller. Also. given any vector of Lagrange multipliers, the subproblem is separable and 
reduces to minimizing n quadratic functions over a bounded interval which is easy to solve. This 
allows for an exceptionally efficient solution of the Lagrangian subproblem at each step. Substi
tuting linear functions for all cross-product terms, while greatly reducing the work required to 
solve a particular problem, also tends to lessen the quality of the lower bound produced by this 
algorithm. We have extended this idea to the quadratically-constrained problem and have begun 
testing its effectiveness on small problems. vVe are still in the process of delineating conditions 
and problem properties under which this Lagrangian technique is worthwhile. We will continue 
to explore methods for calculating lower bounds as part of a branch-and-bound approach to much 

larger problems. 

6 Impact and Future Research 

The global optimization algorithm previously discussed is attractive both because it is powerful 
and because it is easy to understand and implement for a wide variety of applications. The basic 
algorithm has been published in [5] and the preliminary results on its enhancements are reported 
in [36]. Our research paves the way for allowing this algorithm to become a practical method for 
solving Operations Research problems encountered in real-world situations. In order to reach this 
goal, further research discoveries need to be made which will alleviate the difficulties associated 
\Vith the size and number of linear relaxations which must be solved in the course of using this 

approach. 
To fully explore the potential of some of the ideas developed in this research effort, fast nonlin-
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ear programming techniques need to be fully integrated into a global branch-and-bound algorithm. 
(We have only validated the efficacy of using these approaches on a limited set of test problems.) 
Bringing these two techniques together in a working code will allow for extensive numerical exper
imentation to establish how effective the overall procedure is on a wide range of problems. 

Exploiting problem structure to gain a better understanding of the linear relaxations formulated 
at each branch of the branch-and- bound tree will lead to more efficient methods of solving these 
problems. In particular, generating only those implied constraints that improve the quality of the 
lower bound will significantly reduce the size of the subproblems to be solved. Also, Lagrangian 
dual techniques, which are frequently used to solve large linear programs, have been shown by 
others [29) to generate useful lower bounds for certain location problems. 

Other advances can be made by developing powerful techniques for finding near-optimal feasible 
points for use as upper bounds. An efficient method for finding good feasible solutions to nonlinearly 
constrained problems, starting from nearby infeasible points, is by itself a worthy goal. Any discov
eries along these lines will ' both increase the theoretical understanding of nonlinear programming 
problems and improve the performance of existing algorithms. 

A promising new technique for solving the class of problems under investigation is based on 
decomposing each function into the difference of two convex ( d.c.) functions. This gives rise to 
a d.c. optimization problem which can be solved by either a branch-and-bound technique or an 
outer-approximation technique. Tuy et al [35] have successfully specialized the general approach 
to the solution of large-scale single facility location problems with both attraction and repulsion. 
Refinement of this procedure will be studied using a new d.c. decomposition of quadratic func
tions. Completion of the research will produce a new algorithm for global optimization of "large" 
quadratically constrained problems. 

7 List of Publications 

The following publications acknowledge NSF Grant DMII-91-14489 as a partial supporter of the 
research effort entailed in their preparation. The results in [27) helped to understand and explain 
in which situations local procedures will converge finitely. 

• Al-Khayyal, F.A., Larsen. C., and T. Van Voorhis (1995), A relaxation method for nonconvex 
quadratically constrained quadratic programs, Journal of Global Optimization 6, 215-230. 

• Shapiro, A., and F. Al-Ehayyal (1993), First-order conditions for isolated locally optimal 
solutions, Journal of Optimization Theory and Applications 77, 189-196. 

• Sherali, H.D., Krishnamurthy, R.S., and F.A. Al-Khayyal (1996), Enhanced intersection cut-
11 ting plane approach for linear complementarity problems, Journal of Optimization Theory 

and Applications. to appear. 

• Tuy, H., Al-Khayyal, F.A .. and F. Zhou (1996), A d.c. optimization method for single facility 
location problems. Journal of Global Optimization. to appear. 

• Van Voorhis, T., and F.A. Al-Khayyal (199.5), Accelerating convergence of branch and bound 
algorithms for quadratically constrained optimization problems, in State of the Art in Global 
Optimization: Computtaional JV!ethods and Applications, C.A. Floudas and P.M. Pardalos, 
eds., Kluwer Academic Publishers, Boston. to appear. 
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• Van Voorhis, T.P., (1996), Algorithms for indefinite quadratically constrained quadratic pro
grams, Ph.D. Dissertation, School of Industrial and Systems Engineering, Georgia Institute 
of Technology, Atlanta, Georgia, 30306-0205. in preparation. 

In addition, papers in preparation that will acknowledge NSF Grant DMII-91-14489 include the 
following . 

.._ A linearization relaxation technique for linear complementarity problems (with H.D. Sherali 
and R.S. Krishnamurthy) . 

.._ A d.c. optimization method for multifacility location problems (with H. Tuy and F. Zhou) . 

• A d.c. optimization technique for quadratically constrained quadratic programs (with T. Van 
Voorhis) . 

• On finitely terminating branch-and- bound algorithms for some global optimization problems 
(with H.D. Sherali). 
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