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NSF Annual Report for grant PHY-7921541 : 1/15/81 to 1/14/82: Ronald F. Fox  

Progress in the broad area of fluctuation phenomena in thermal physics 

has been steady on several fronts during the past year. Three, more specific 

areas of effort are recognizable in this program, and are: 1) mathematical 

foundations of stochastic descriptions in physics; 2) applications of 

stochastic physics to problems in fluids and condensed matter; and 3) quantum 

mechanical fluctuation phenomena. 

Last June, Ulrich Steiger earned his Ph.D. in physics under my supervision. 

We studied the Brownian motion of molecules in liquids with emphasis on coupled 

translational and rotational motion. While chemists have shown a rapidly 

increasing interest in such phenomena over the past two years, our interest 

was primarily formal. In "Coupled Translational and Rotational Diffusion in 

Liquids" (see attached publication list), we cleared up the earlier literature 

a bit, and developed the cumulant methods for such problems. In our more 

recent "Boson Operator Representation of Brownian Motion" we present a remark-

able reformulation of classical Brownian motion, for both translation and 

rotation, in terms of boson creation and annihilation operators. This work 

provides still another example of the strong parallel between field theory 

methods and statistical mechanics methods. We expect to be able to clearly 

explain orientational effects in diffusion controlled reactions using these 

methods. Some progress in collaboration with Dr. J. Keizer at the University 

of California at Davis, with whom Dr. Steiger is currently doing post-

doctoral research, has already been made in this direction. 

The study of hydrodynamic fluctuations continues earlier work in this 

area. With Ph.D. candidate Byron Burel, light scattering from fluids out of 

equilibrium is being studied. Progress has been made on the effects of a 

thermal gradient on the diffusion of solute species in a fluid. This problem 



is a variation on the more widely studied problem of! light scattering from 

the fluid itself. The diffusion problem provides a somewhat more tractable 

example and we have been able to include vessel boundary condition effects 

as well as find the eigenfunction solutions analytically. It remains to 

definitively verify the theoretical approach for non-equilibrium processes. 

A paper reviewing the situation is submitted for publication by request of the 

editor of the Journal of Physical Chemistry. Another aspect of our work in 

hydrodynamical fluctuations deals with the non-linear terms in the theory. 

There is some controversy regarding the stress-strain non-linearity which was 

previously discussed in our earlier work. Recently, this work was criticized 

by Saarloos, Bedeaux, and Mazur. However, we found criticisms of their 

criticisms and have presented a paper elucidating the situation. This paper 

will soon appear in Physica A, where the issue was most recently raised. 

During the last half year or so, our primary effort has been in the area 

of long time tails in autocorrelation functions. While developing an alterna-

tive to the Mori-Zwanzig theory for transport processes, the long time tail 

issue was directly confronted. Our approach, based on cumulant methods 

provided a time-convolutionless theory, which is equivalent to the Mori-Zwanzig 

theory, but which is formally more attractive and tractable. In particular, the 

2nd cumulant directly provides the Green-Kubo formula for the transport coeffi-

cients, provided that corresponding autocorrelation functions are sufficiently 

well-behaved. The issue is whether or not long time tails in these correlations 

are "well"-behaved. Our study of such tails for diffusion has involved the 

mode coupling method, the Stokes-Boussinesq method, and the rigorous method of 

Sinai. We are finding that: 1) the theory is not as sound as has been claimed; 

and 2) if the long time tails are indeed really present, their effect is very 

small (in 3 dimensions). Although we can not yet vindicate the cumulant approach 



definitively, we hope we will soon be preparing a manuscript on this complex 

and important question. 

Quantum mechanical contexts for the study of stochastic phenomena have 

been a central part of this research program for a decade. In recent years, 

our efforts here had diminished, largely because experiments of relevance to 

our efforts were scarce. Now, however, with the development of "noisy" lasers, 

this work has revived. We are presently putting more effort here again in 

order to study the behavior of molecules in "noisy" laser beams. Such studies 

relate both to the fundamental theory of stochastic quantum mechanics and to 

applications to energy (light) driven molecular processes. 
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1) The Origin of Irreversibility in Quantum Statistical Mechanics, to appear 

in Advances in Mathematics (by invitation). 

2) Coupled Translational and Rotational Diffusion in Liquids, J. Math. Phys. 
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5) Stress-Strain Fluctuations in Non-Linear Hydrodynamics, accepted to appear 
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6) Testing Theories of Nonequilibrium Processes with Light Scattering Techniques, 

invited for Journal of Phys. Chem. 



Annual Report by Ronald F. Fox for NSF Grant PHY-7921541: 

"Fluctuation Phenomena in Thermal Physics" 

This report covers the second year of activity under this grant, and 

serves to also justify funding for a third year (1982) in accordance with the 

"Continuing Research Grant" status of the original award. 

In June, 1981, my graduate student, Ulrich Steiger, received his Ph.D. 

degree. His thesis: "Analysis of Coupled Translational and Rotational Diff-

usion Using Operator Calculus" culminated a program of research started seven 

years ago by me. Mr. Steiger was able to bring this program to fruition in 

just two years. Two major results were achieved. 1) The contraction of the 

Kramers-Liouville equation into the Smoluchowski equation was obtained in a 

very general setting, and was applied to the complicated phenomenon of coupled 

translational and rotational diffusion. 2) A boson operator representation 

for the Kramers-Liouville operator was discovered which greatly facilitates 

the analysis, and illustrates deeper connections with field theory. The first 

of several papers based on the thesis has been accepted for publication in 

the Journal of Mathematical Physics. 

Another graduate student, Byron Burel, has made much progress on the 

problem of light scattering from fluids in nonequilibrium states. Several 

research groups have published work on this problem for light scattering from 

H2O subject to a thermal gradient. Modifications of the Brillouin doublet 

are predicted. The problem has generated several papers which were later 

corrected, and concurrence on the "correct" result was slow to come. We ana-

lyzed this problem thoroughly and verified the current correct result. More- 

over, we discovered the reason behind a perplexing cancellation of first order 

perturbation results in all of the earlier work. By looking at a somewhat more 



simple problem, diffusion in a fluid in a thermal gradient, we achieved an 

exactly solvable case, for which perturbation techniques are unnecessary. A 

simple symmetry argument proves to be the basis for the cancellation in the 

perturbation problem. Our review of the earlier work will appear in Accounts 

of Chemical Research, by invitation from the Editor, J. F. Burnett. An 

account of our exactly solvable case is in preparation for Physical Review. 

During the Spring quarter, 1981, I was Visiting Professor of Chemistry 

at the University of California at Davis. There, I enjoyed a collaboration 

with Drs. Joel Keizer in Chemistry and Marc Mangel in Mathematics, both of 

whom share my research interests in stochastic processes and nonequilibrium 

statistic mechanics. On May 7, 1981, Dr. I. Prigogine delivered the Hitchcock 

lecture, as a guest of the Department of Chemistry at Davis. He and I met 

for the first time and spent 90 minutes together with a small group put together 

by Dr. D. McQuarrie. Prigogine told me personally that he was mistaken in his 

debate with me over the Glandsdorff-Prigogine stability criterion. Even though 

he will not publically declare his error, he has admitted it to me privately! 

After seven years of debate, this was a most welcome conclusion. 

In March, 1981, a paper appeared in Physical Review D in which two Georgia 

Tech colleagues and I put straight a mistaken claim by T. H. Boyer that the 

Boltzmann distribution and the Planck spectrum were inconsistent with each 

other for relativistic particles. What is remarkable here is that we submitted 

our paper in September, 1979. The 18 month delay until the paper appeared was 

a result of repeated rejections and resubmittals which finally terminated when 

Boyer finally saw the light. The entire issue caught someone's attention at 

the Scientific American where the debate was featured under "Science and the 

Citizen" in the June, 1981 issue. Currently, another graduate student, A. Teate, 

is working on related problems for multiphoton and multiphonon processes. 



The Advances in Mathematics editor, G-C. Rota, invited a paper to 

celebrate Mark Kac's 65th birthday. I submitted a paper entitled "The 

Origin or Irreversibility in Quantum Statistical Mechanics" which reviews 

my work with reduced density matrices and cumulants for operators. A 

publication date is still not set. 
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SUMMARY 

The equations for coupled translational and rotational diffusion 

of asymmetric molecules immersed in a fluid are obtained. The method 

used begins with the Kramers-Liouville equation and leads to the 

generalized Smoluchowski equation for diffusion in the presence of 

potentials. Both external potentials and intermolecular potentials are 

considered. The contraction of the description from the Kramers-

Liouville equation to the Smoluchowski equation is.achieved by using a 

combination of operator calculus and cumulants. Explicit solutions of 

these equations are obtained in the two-dimensional case. The formalism 

also allows the calculation of corrections to the generalized Smoluchow-

ski equation. Smoluchowski's result is precisely the second cumulant, 

in the cumulant expansion. 

The next non-vanishing term, the fourth cumulant, leads to dif-

fusion equations with position dependent diffusion coefficients. The 

higher order cumulants lead to evolution equations fd the reduced 

probability density which contain partial derivatives of order m with 

m > 3. Explicit expressions are given up to the sixth order in the 

cumulant expansion for translation diffusion. From a practical point of 

view, this formalism is very useful because partial differential equa-

tions can be solved numerically by using a finite element calculation. 

The contraction of the Liouville-Kramers description into the 

Smoluchowski description is achieved by using a creation-destruction 

operator representation. In an appropriately defined inner product 



space, these operators possess the operator algebra of boson operators 

in quantum field theory. The discovery of this representation for the 

Liouville-Kramers description including rotational effects greatly 

facilitated obtaining the Smoluchowski contraction. 

vi 
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ABSTRACT  

The equations for coupled translational and rotational diffusion of 

asymmetric molecules immersed in a fluid are obtained. The method used 

begins with the Kramers-Liouville equation and leads to the generalized 

Smoluchowski equation for diffusion in the presence of potentials. Both 

external potentials and intermolecular potentials are considered. The 

contraction of the description from the Kramers-Liouville equation to the 

Smoluchowski equation is achieved by using a combination of operator 

calculus and cumulants. Explicit solutions to these equations are obtained 

for the two dimensional case. Comparison of our results with earlier 

literature is also presented. 



I. 	Introduction  

In this paper we study the translational and rotational motion of 

molecules immersed in a fluid. The molecules experience translational and 

rotational Brownian motion as a result of the bombard'- .ment by fluid molecules. 

The description of this essentially stochastic process in terms of the 

probability-distribution function P(t,x) leads to a diffusion equation 

2 
ibEP(t,x) = 	ai .00 alca  a 	P(t,x) + bi(x) 	p(t,x) xi 	 xi  

(1 ) 

A P(t,x) 

for all times t > 0 and all points x, x = (q 1 , q2 , q3 , 4), G, 11)). q=(q1, q2 , q3 ) 

describe the position and the Euler angles a = (¢,04) fix the orientation. 

The differential operator A is a diffusion operator. All eigenvalues of the 

symmetric matrix (aii (x)) are nonnegative. For translational diffusion AT  is 

simply a diffusion constant multiplied by the Laplace operator. Favro [5] 

derived the diffusion equation for rotational Brownian motion and was able to 
. 

solve it for axial symmetric molecules using the fact that the diffusion operator 

AR  has the same form as the quantum mechanical Hamilton operator for a rigid 

body [10], the properties of which are well known. In general the translational 

and rotational motions are coupled in a complicated way. 

Already 50 years ago,Kolmogorov showed that under very general conditions 

1 
a Markov process defined in terms:of the transition probability F(t,x,x')dx' of 

finding a particle initially at point x in the infinitesimal small set dx' after 

a lapse of time t, leads to a diffusion equation. The probability density 

P(t,x ) = f P(t,Xj,X ) P(0,x)dx' 	 (2) 



-2-- 

satisfies equation (1). S
x 

is the space containing all points x. 

P(0,x) is the initial distribution at time 

t=0. 

The concept of a Markov process is an idealization of the underlying 

physical reality. For a complete dynamical description, it is necessary to 

consider the distribution function f
c
(t, x

c 
 y 

c
) defined on the phase space 

Sx  x S consisting of all points (x c , yc) with xc  = (q1 , q2 , q3 , 0,0,10) and 
Yc 

the canonically conjugate momenta y c  = (P1, p2 ,  p3, Po , P02 P 10 ). The 

distribution function f
c
(t, x 

c 
 , y 

c
) satisfies the Kramers-Liouville equation 

[14], [15] 

3t 	= (L+K) fc (t,xc ,y ) . 	 (3) 

L is Liouville's operator and K denotes Kramers operator, which describes the 

effect of all random forces acting on the Brownian particle. If equation (3) 

can be solved for some initial distribution f
c
(0, x 

c 
 ,y 

c
) then it is possible to 

find an operator G(t,xc) such that the averaged distribution p(t,x c) defined by 

p(t,Xc) E 	dYc  f(t,xc ,yc) 
	

(4) 

S  

fulfills the first order differential equation in time: 

a 
p(t,xc)a 

G(t,xc) 
 p(t,x

c
) 
	

(5) 

In general nothing is gained, since G(t,x c
) might be a very complicated operator. 

We will use the cumulant expansion [1], [2] to approximate the operator G(t,x c). 

L G(t,xc)  = 	G
(n) 

 (t,x
c
)  L  . n., 
	 (6) 



It turns out, that the diffusion operator A is the first nonvanishing term 

in the expansion (6). Equation (1), where A is now replaced by the second 

cumulant G
(2)

(t,x
c
), (G

(1)
(t,x

c
) = 0), is a very good approximation of (5). 

K describes the time evolution of the distribution of the 

momenta due to random forces. The momenta y e (t) can be considered as random 

variables, which very quickly become independent. y e (t) is independent of 

yc (t + 
At) if the lapse of time At is large compared with the correlation time 

T
k
. It can be shown [3], that the n

th 
cumulant is proportional to 

G (n) 	T 4  n-1 
	

(7) 

T is a dimensionless quantity. T E T
k
/T. T is some typical macroscopic time 

unit. 

Intuitively, it is clear that we obtain a Markov process on S
x 

described by 

(1) if the correlation time T
k 
of the momenta y

c
(t) becomes very small. It is∎  

the short correlation time which makes the higher order contributions small, . 

The idea of deriving the diffusion operator A as the lowest order of a 

cumulant expansion (6) is not new. The actual calculation of the operators 

A, G (3) ,... is complicated by the nonlinearity of the equation of motion for a 
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rigid body. The time derivatives of the angular momentum L and trans-

lational momentum p expressed in an orthogonal coordinate frame attached 

to the moving particle are: 

I 	 '-̀ 1. 	I 	I  
L =L xI L +N 

(8) 
." -1 ' 
p 	pxI L + F' 

N ' and F are the torques and the forces acting on the particle. The prime 

denotes vectors in the body fixed coordinate frame. I is the tensor of 

inertia. It is necessary, to choose body fixed coordinates for both L' and p' 

since' otherwise the friction tensor C depends on the orientationAa(*. 

The purpose of this work is to analyse the rotational and translational 

diffusion in the most general case using a mathematically transparent method. 

We will show that: 

(i) The generalized Smoluchowski equation is the lowest order 

contribution of G(t,xc). Starting off with a Maxwell distribution at time t=0 

the diffusion tensor is time dependent. For t < T it  the diffusion tensor 

depends on the mass and the moments of inertia,and becomes stationary for 

t >> rk . 

(ii) The diffusion equation couples the translational and rotational 

degrees of freedom even in the simplest case. As an illustration,the two 

dimensional diffusion equation is solved. The solutions are obtained in terms 

of exponential and Mathieu functions. (Section V). 

(iii) A suspension of N interacting Brownian particles leads to a diffusion 

(1) 	(2) 	(N) 
equation for the N particle density P(t, x

c 
, x

c 	
x
c 

). (Section IV). 

In Section II the operator calculus used later is.introduced and applied.to 

the translational motion. Section III treats coupled translational and 

rotational diffusion. 
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- II. Operator Calculus, Translational Diffusion  

The starting point of the theory is the Kramers-Liouville 

equation [14], [15]. 

-aif(t,q,p) = B f(t,q,p) = (L+K) f(t,q;p). 	 (9) 

q are the coordinates describing the position , q = (q 1 , q2 , q3 ) and p are the 

conjugate momenta. Liouville's operator is 

-1 	 8U a Lf = — m p • 	f +7(i . ap f . 

11 denotes the potential. Kramers operator is 

3 
Kf = 	• ( m 

1 
 p 	

k ap 
T 	) f 

ap  

It 	convenient [14] to work in the "interaction picture" 

fEetK t 

The exponential e
tK 

is defined by a formal power series in tK and acts on the 

new function ? which is assumed to be smooth enough, such that the series 
co 

etK` E  2 (tionin! 	converges. The smoother the smaller the contribution 
n=0 

of (tK)
n  which is a differential operator of order 2n in the variable p. 

The time evolution for is governed by the Kramers-Liouville equation in the 

"interaction picture". 

(10) 

(12) 

a 	-tK 	tK 
---t=e 	Le 	=L(t) at (13) 
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ti 

The operator L(t) can be expressed in terms of the differential operators 

a 	3 ITi  and -5T-3  using the identity 

e
-tK 

L e
tK 
 = e

-[K
'
.]t 

L 
	

(14) 

' The proof of this equation is found in [1]. The operator on the right hand 

side is by definition 

.e 	'
'it 

L E L + 	[K,..] n L(-t)n  
n=1 

The commutators [K,•]
n 

L can be defined by recursion 

[1( 9 •] 1L E [K,L] 

. 	. 
[K,-]

2 
 L E LK,[K,L]] 

[K,•] nL = [Ks . ]([ 1(2 . ] n11J) 

We can calculate all terms in the infinite sum (15). Applying the commutator 

algebra discussed in [14] leads to 

L(t) = -e
-(a/m)t 3 

• (-E+ kT a 	) aq 
•

m 	3p 

(17) 

e (a/m)t a 	au 	3 
( 	+ kT 

In Section III the corresponding expression for translational and rotational 

motion is derived in great detail. 

Formally, the solution of (17) can be written 

t 
ru 

= E(01.0  E T expf ds L(s) fo 	 (18) 

(15) 

(16) 



ti 

In which T exp is the time ordered exponential [1]. f
o 

is the initial 
ti 

distribution. The time ordered exponential must be used because L(t
1
) 

ti 

does not commute with L(t 2 ) if t1  # t2 . We would like to derive the 

time evolution for the averaged distribution P(t,q) 

i 	
f(t,q,p) p(t,q) E 1d3p f(t,q,p) = j d

3p etK 
(t 

 

(19) 

f 3 'if 
dap t(t,q,p) E < f(t,q)> 

The third equality can be proved by expanding the exponential e tK. After 

integrating by parts, all but the lowest order term, which is ?, vanish. We 

can assume that ?(t,q,p)I n 	= 0.  :=40 

We write the initial condition '(0,q,p) E l'o (q,p) = fo (q,p) in the form 

fo (q.0  = g(q,p) Pow 

• 	 (20) 

Poo) = < fo (0 > 

With equation (18), (19) and (20) one obtains 

p(t,q) = 	d3p ?(t,q,p) 

= f d3p E(t) g(q,p) Po (q) 
	

(21) 

E < E(t) > g  po (q) 

The operator < E(t) > is obtained by multiplying g(q,p) from the left with 

E(t) and integrating over the momenta p. Differentiating equation (21) with 



respect to t gives the time evolution equation 

 
3t  P(t,q) = ( at 

	

—a < E(0> ) < E(t)> 
1 

P(t,q)• 	 (22) 

We expect, that the inverse < E(t) >
-1 

exists at least for small times. It 
co 

may be obtained by the Neumann series [4] A
1 

= 	(1-A)
n
. The operator 

n=o 

3 G(t,q) E 	
at 

< E(t) >g  ) < E(t) >
-1 

(23) 

8t P(t,q) = G(t,q) .  P(t,q) 

	

depends on q since g(q,p) is a function on q and p. 	But in most physical 

applications the initial distribution of the momenta does not depend on the 

position q. In this case the operator G depends only on t. 

In order to calculate G(t) we use the cumulant expansion, [1], [2], [3], 

which is obtained by reordering the expression 

	

t 	 t 
co 
, 

G(t) = L < L(t) T expf L(s)ds > < 1-T expir  L(s)ds >
n 

g 	-4- 	 g n=o 	 0 	 0 
(24) 

L G(t) = L G (k)  

Compare (18), (22), (23): G (k) contains all terms of the sum in (24) which are 
ti 

of order R in the operator L(s). The two lowest order terms are: 



t 
NC fo 

(28) 

i7t P(t,q) = i(71 • A(t) ( 1 	DU + D 
kT Dq 	Dq 

P(t,q) 

ti 

G
(1)

(t) = < L(t) >g  =fd
3
pL(t) g(p) 

	

t 	 t 

G
(2)

(0 = Jr ds < L(t) L(s) >g 	ds < L(t)>g  < 

	

0 	 0 

(25) 

dsf
3 rt' 

d p L(t) L(s) g(p) 

1,  
- jr4  dsi d

3 
 p L(t) g(p)f d

3
p

, 
j 

 

o 
L(s) g(p') 

The higher Order terms are given in Section VI. 

We assume, that the distribution in the momenta is initially a Maxwell 

distribution 

2 /  
g(p) = (2rmkT)_

3/2 
 4 13  '2mkT) (26) 

In this case, it is easy to verify that the first cumulant G
(1)

(t) vanishes for 

all times t > 0. The second cumulant is 

- 

	

 
(2) kt) 	

171
.t 

„ 
G 	

= kT D 	• ( 1 DU 
a 	oq 	kT Dq + Dq 	

1-e 	 (27) 
 

ti 
The time evolution equation (23) is,to second order in L,the Smoluchowski equation 

with time-dependent diffusion "constant" 

a 
- t) 

	

kT 	e  
A(t) = 

a 
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At t=0 the diffusion constant vanishes since by assumption the distribution in 

p was given by a symmetric function, the Maxwell distribution. After a short 

time of order m/a the particles start moving until finally the Boltzmann 

distribution is reached. In order to illustrate the meaning of the time-

dependent diffusion constant A(t) we calculate the first and second cumulant 

with the initial distribution g(p) = d(p-p 0 ). All particles have the same 

momentum p
o at t=0. In this case the first cumulant does not vanish: 

(1) = -e 1t 	m -1 • 9 G6 	 ml 
  --- 

aq 

( 	
2a a 

G2) (t) = 
a ( - — t 

- e
- 	t 

_.1 ( a • m 	po 	- kT fci  

a 
t 

+ 	( 
a 	 9q 	aq 	aq 

1-e m 	a 	( aU  + kT -9--  

In the limit t- both expressions (27) and (29)(30) agree,as they should. The 

operator G(t) is independent of the initial condition for large times. The 

larger a/m, the faster G(t) approaches the constant expression. For very large 

values of a/m the dynamics governed by (23) 	elproo.LkeS a Markov process. 

Formally the Markovian limit is obtained by first resealing the time T = a
-1

t 

and taking the limit co.co. In this limit all higher cumulants vanish since they 

are proportional to higher powers of 1 — . a 

2 

(29) 

(30)  



III. Coupled Translational and Rotational Diffusion  

We consider particles of arbitrary shape in a fluid. The friction forces 

depend on the orientation. We will describe a proper choice for the variables. 

In [12] and [13] inconsistent definitions which 

lead to wrong results are used. 

The position and orientation of each particle is determined by the six 

variables comprised in the six-tuple x. 

X = (q1,q2 ,q3 ,,,e4) 	 (31) 

0 is an arbitrary origin and C the center of mass. q l ,q2 ,q3  are the 

coordinates of the vector OC in the laboratory frame where 
" e ne

2'
eA  
3 

are three 

A A 
arbitrary orthogonal vectors of length one such that e A  l  x e2  = e3 , et cyclic. 

It is convenient, to choose the Euler angles a = oom to describe the 

orientation [16]. We will also use the body fixed coordinate frame 

e1
', e2, la3 such that the tensor of inertia I becomes diagonal. The components 

of the vector e. . expressed in the laboratory fixed frame A  el ,eA  2 ,eA  3  are 

R(404) = RXi (4),e4)) 

	 (32) 

The Euler angles are defined by 

Room E Rz (4) X(e) Rz (*). 	 (33) 

R
z
(4) and R

z
(*) are counter-clockwise rotations of a vector about the e 3 

axis. 

Rx (e) is a rotation about the e1 axis. 



-12- 

Rz (0) = eg)T3  

R { (8) = en' 
	

(34) 

Rz (*) = e*T3 

The 3 x-3 Matrices 
TT2'T3 

are defined 

(T1 ) km =
ikm 
	 (35) 

e
ilm 

is the completelyanrisymmetric Levi-Civita tensor. Besides the position 

x (31) we need the momenta y 

' l 
p/,p/ p/ L/ L/ L/) 
1 2' 3' 2' 3 

(36) 

Both the translational momenta p' and the angular momenta L' are expressed 

in the body fixed coordinate frame. The tensor of inertia and the friction 

tensor depend only on the mass distribution and shape of the particle. They 

are independent of the orientation if body fixed coordinates are used. 

According to (32) the vector p' and p Einq , where m is the mass and the dot 

denotes the time derivative, are related in the following way: 

= Rt (o,e, Op 
(37) • 

R 1 (0,e,Op 

The angular momentum L' is the product of the angular velocity w' and the tensor 

of inertia I 

L I  = I wl 	 (38) 



With equation (37) the skewsymmetric angular velocity matrix 7 [11] expressed 

in the body fixed frame is 

1 • 
R R 

The matrix 2 and the pseudovector co' are related: 

(39) 

3 
2 = 	w T 
	

(40) 
. 1=1 

In order to obtain 0 in terms of the Euler angles a = (004) and their 

time derivatives we substitute in (39) for the rotation R the expressions (33) 

and (34). Evaluating the time derivative in (39) and multiplying R from the 

left with R
2 
 leads to 

T1 e  T3 e-8T1 T e8 	0 
e 

3 

(41) 

+9 e 
.41'3 T 

1
ega3 	; T3  

We compare this expression with (40). Equation (41) can be simplified using 

the commutator algebra [Ti ,Tj ] = cijk  Tk  [10], [16]. One obtains for the 

angular velocity co' 

_$ sin g sin 0 + e cos 0 

2
= 0 sin e cos 0 - 5 sin 0 	 (42) 

• 	• 
co3 - 0 + 0 cos e 

Now we are able to describe the motion of the particle completely. The phase 

space Sx  x Sy  consists of all pairs z = (x,y) defined by (31), (36), (37), (38) 

and (42). 
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Liouville's Equation  

The motion of the rigid body is a solution of the canonical equations 

Yc = 
X
c
= 

3y
c 	 3xc 

(43) 

11(XC.937C )  - 2! IIP112 + I LI.  11 L' U(Xd 

The canonical conjugate variables x
c 
and y

c 
are x

c
=x and y

c 
= (p1,p

2
,p

3
,p

(1)
,p

6
,p
*
). 

The canonical conjugate momenta for the angle variables a = 0,0,0 are given by 

p = 21  with T = IL' • 1 1  L'. 
a 	(7,, 	 2 

m LI sin e sin p  -I- 14 sin e cos 1p L; cos e 

p e  = LI cos IP - 14 sin IP . 	 (44) 

p = L' 
V 	3 

For every solution Z, c (t) E (Xc (t), yc (t)) of equation (43) Liouville's theorem 

holds 

a c r 	 a 
at 4- c`t ' z c) 	lc 	3z

c 
fc (t,zd = 0 (45) 

It would be more convenient to express the particle density distribution f c  as 

a function of the variables z = (x,y) defined earlier, instead of as a function 

of z
c 

=
c 
 , y 

c
). We define a new density 

f(t,z) E fc (t,ze (z)) 	 (46) 



determinant is -sin 0. For any observable 0 =0(z
c

) the expectation value 

rEO E J  dzc  0(z c) fc  (t,z c) can also be expressed in the newvariables 

With the following identifies, one obtains the Liouville equation (48) for 

the new density f(t,z). 

a 	az 	a 
az

c 	
az

c az 

• 	
dt 	

_ d 
dt 

z = 	z(t) - 	z(z 
c 
 (t)) = 

az 
az 

z
c (47) 

az az
c 

azc az - 1  12 

1112 is the 12 dimensional identity matrix. We get: 

a 	• azat f(t,z) + z 	 f(t,z) = 0 	 (48) 

The transformation 
c 
 z=z 

c
(z) is given by equation (37) and (44). The Jacobian 

(q,a,p',L') 

EO = f dzitet az 
	

(z c (z)) f(t,z) 

= id3q dcp de sine 	d3p'd3L's 
	

(49) 

x 0 (q,(1),e,11,,p',L') f(t,q,4,e,111,p',L') 

Equation (45) and (48) are formally the same but the meaning of the differential 

9 
operators a — and 	are very different. 

z 	
3

c 



q °12 °13 4,6 

 131 ,P2 21)3 00 ,P0 ,P p  
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a 	
( aa 

a  = ( a 	3  (50) az
c 	

ax
c 	

ay 	 az 	ax 	ay ) 

The gradient 
ax  is evaluated with the canonical conjugate momenta c 

y
c 

= (p
1
,p

2
,p

3' 
p
0, 

p
p
) fixed. When — ax operates, the momenta y=(p

123 
',p',p'

' V2' 
 L2) 

are fixed. 

a 
' aql 	q

2 
,q

3' 
 00:10 	• • • 
 

131 ,P2 2133 2P0 ,Pe 2P10  

( 

a 

 

a . . . 

1
,q

2
,q

3'
0,8  

p',p',p L' L' ' 
1 2 3' l' 2

L 
' 3 

 

• . 0 

pl ,p,p;,LI ,L ,L; 

(51)  

Rather than using (47) to calculate z we go back to Euler's equation. 

3 	-to 	d 	3 	0  
axc 	dt ak 

C 

(52) 

The Lagrange function4 is 	= 2 yt  M 1  y – U(xc). M is the generalized 

inertia matrix 

(53) 



cos * 

-sin IP

0.  

0 	(58) 

0 	1 

 A = sin 0 sin 4, 

sin 0 cos 4, 

cos 

0 

-17- 

- M is a symmatric 6 x 6 matrix. Keeping in mind that y = y(xekc) equation 

(52) can be written 

3U(x
c

) 
d 	t m-1 _a_y 	_ y t m-1 h.  + 
dt Y  - aic 	 ax cc 

- 0 	 (54) 

The derivatives
3  
-a-Y-- and 22-are 6 x 6 matrices. Evaluating the time 
x
c 	3i 

derivative gives 

Ft  M 	 y1 M 1 dt 
	

m 
ay 	-1 3y 

ax 	
3U + 
ax 
 (x 

 c 
 ) = 0 (55) 

32: 
Y 	. + 	 a 	

c 	c  

The following definitions-are useful: 

6 	ay m 
A1 

E / M 

1:11=1. 	ax
ck 

6 
c. 	-1 	d 	837m 	aYm 

B = L M dt 	ax
ck ‘.1,c. 	

ck 

Equation (54) can be solved for y. The result is 

-t DU (x) 
A
-1 

- y
t 

BA
71 

ax 

aU/Dx = 3U/3xc  in agreement with (51) since the potential U does not depend on 

the momenta. From the transformation y = y(xc , :lc) given by (37) and (44) 

one obtains for the matrix A 

(56) 

(57) 



R (004) 0 

  

0 

1 	 1 
sin 4) 

sin e 	sin e cos 4)  

cos 	 sin e 0 

  

(59) 

( 	a 	I 
R

1 	At-1 - 

B
A71 

= - 	
aa 	• 	ik -k 	1 

	

j 	1,k 	 (62) 

B
3 
vanishes. This leads to 

The inverse of this matrix is 

-ctg 6 sin IP -ctg 6 cos p  1 

We can write the matrix A and B in block form 

A= 

(60) 

B
1  R 
	B

2
A' -1  

BA
1

= 

B
3
R 	B

4  A
I-1  

• 

Comparison of (37)(44) with (58) gives 

y = MA(xc) ic  . 	 (61) 

With (61) the matrix B can be expressed in terms of A. 

B = —
d 

A ax 
-2 	• The matrix B1R is therefore equal to (

d 	1 
R )R = 

dt 	
c 

c 

By direct calculation we find that also B
4
A
t-1 
 is equal to -7. The matrix 
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We define the differential operator D x  

According to (57) Sr is 

5 

D 1 	L. (63)  

(64)  

E A 
ax 

-D
x 

U(x) + 
( p l xw l 

 L'xwd 

We used the fact that the following contribution vanishes 

• y R71  4 a  ( R71  4 ) = 	
a ( 	4  R-1 4Rit t 	ik k 	2 	 it 	ik k 3a, 	 i,k 3a: 

. 1 	3 	R-1 4 112 . 	33 i lm /2 . 0  
aa

j 	
I I 	 2 	aj  I I 4.  I 

Equation (64) is Euler's equation of motion for a rigid body. The 

differential operator Dx  is explicitely given by equations (111) and (112). 

•In the following it is more convenient to write the last term in 

equation (64) as a quadiatic form in y 

(5011  = -(D
x
U(x)) 11  + C  a 	Y Y /mu 

,m 	
4 m 

aunn= ( (n) M 1 + M 1
C 
 (n) t 	

(65) 

( 

 C (n) 	
0 	T

n) 

0 	0 

C 	
) (m+3). 	0 	0  

0 	T
n 

n=1,2,3 
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The tensor a
RIM 

is defined such that akmn=am91.1  With these definitions we 

obtain Liouville'A equation (48) in the form we will use it in the following. 

at f(t,x,y) = 	-yM
-1 

D
x 
+ (D

x
U(x)) • V• 

(66) 

- 1 akmn  y ym  Vn  f(t,x,y) 

• 	a 
The operator x •— in (48), (51) is equal to ym-Dx 

since y =- M A(x) 
ax 

(61), (63). V denotes the gradient with respect to y with components 

v  - 
ayn • 

Kramers-Liouville Equation  

The motion of the particle is influenced by an external potential U and 

a "Brownian fluid", which is composed of molecules which exert fluctuating 

forces and torques 

= ((t) , kt)) 	 (67) 

In absence of an external potential the equation of motion is 

= 	ds r(t-s) y(s) + h(t) 
	

(68) 

For a derivation of the generalized Langevin equation (68) see [6]. The 

friction tensor r(t) is proportional to the correlation of the fluctuating 

forces h(t) 

r(t) = < ?1(0), 	 (69) 
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The symmetric tensor r(t) is independent of the momenta y for heavy solute 

molecules. In the following we will use the "Markovian limit". 

CO 

= -Cy + h(t) 	C E 1 r(s)ds 
	

(70) 
0 

The following discussion can be generalized simply by replacing the 

6 x 6 matrix C with the corresponding expression in (68) in all equations. 

In [6] equation (68) was derived from a linearized set of the equation of 

motion. Therefore one does not have to distinguish between the laboratory 

and the body fixed coordinate frames. The difference consists of quadratic 

terms L' x w' and p' x w'. The idea is that over a short time of the order 

of the relaxation time both frames don't differ very much. After combining 

the stochastic equation (70) with Newton's equation, we can follow the orbit 

over an arbitrary long time and must therefore distinguish between both 

coordinate frames. The equation of motion containing the forces due to the 

fluid and the external forces is: 

y _ — Cy + D
x 

U + 	 + L'xw t  

p/ xw/ 	

.(71) 

In [12] and [13] the term p'xw' is omitted. The generalization of 

Liouville's equation including stochastic forces can be obtained from (71)[l]. 

The result is the Kramers-Liouville equation 

—a f = (L + K)f at 

Lf = -yM 1  Dx  f + (DxU) • Vf - 	4
itsin 

yym  Vn  f 
	(72) 

Kf = V • C ( M ly + kT V)f 
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The operator K is known as Kramers operator. 

ti 
The Operator L  

In the translational case it proved very useful to go to the "interaction 

picture". 

f etK ? 

co 
2: (t) 	e-tK L  etK 	

L + 	[K,•] /1  L( (-t)n  
n=1 	 n!  

The operator L consists of three terms. 

L = L
o 
+ L

f 
+ L

q 

1 
L
o 
= - y • M D

x 

f 
= (D

x 
	•V 

 • 

L
q 
 = - 2 a

kmn 
 y 

Ym  Vn 
Lyon 

The calculation of the operators 1
o 

and Lf  does not pose any difficulties. 

However, for Lq  the situation is different since Lq  contains quadratic terms 

in q. The commutators with K become more complicated. 

A11 operators needed in (74) are contained in the algebra generated by 

x y , V , 	. The position and momenta are independent. From the 
m n axi 

definition (51) we obtain [V
n
, x] = 0 and [ 

—ax , ym 
] = 0 . The partial 

i 
derivative — ax is evaluated with the momenta y = (p', L t ) held constant. The 

i 
differential operator (Dx ) i  (63) also commutes with ym  and Vn  for all components 

ti 
i,m,n. The only nonvanishing commutator needed for the calculation of L is 

[ Vn,Ym] 	6nm 
	n,m = 1, ....6 	 (75) 

(73)  

(74) 
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- The operator 1o(f)  is given by the infinite sum 1
o
(t)=L

o 
+ I [K.,•] nL (-t)  /11!). 

n=1 
In order to simplify the notation we introduce the matrices C and C and the 

operator Ex  

C = cm 1  , CEC kT , Ex E-M71  Dx 
	 (76) 

Kramers operator becomes 

K = V • Zy+ V • C V . 	 (77) 

The operator Lo  is Lo  = y • Ex . The first time dependent term in the 

expression for i:0 (t) is equal to -t[K, L o]. This commutator is 

[K, Lo] = 	• Cy ,y. kJ+ [V• n,y• 

y nt (15x)m Vn Yt ' Ymi 
n,1 ,m 

+ 
nt xm 

[ V
n 

V
t ' ym] 

n,l,m 
• 

The following identities hold for qrbitrary operators A,B,C. 

[A,BC ] = [A,B]C + B[A,C] 

[AB,C] = A[B,C] + [A,C]B 

(78) 

(79) 
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With (79), (78) becomes 

[K,L0] = 	/ 	Znst (fix)m 	Vn[Y eYm] 	[ Vn,Yra]Y z i 
n, 2,,m 

+
nt 

(5 ) 
m J 

	

n,tom 	
x 

 

With (75) and using the fact that the matrix C = C kT is symmetric [6Lleads 

to 

o
i = Ex - Cy + 215

x 
• CV 

For the higher order commutators one obtains 

[K,•i n  L = 	• Efly + 2 	5• dm 	v 

	

° 	 m+k=n-1 

This equation can be proved by induction on n. The calculation is similar 

to the calculation of [K,L0]. We observe that the matrix -dm  C is symmetric for 

all m > 0 since 

= cM 1  cm1 	1 . . . . cm 	kT 

-M t 	tm 
= (C C) = C C 

C and M are symmetric. Using this property the last term in (81) becomes 

2 	5x • Em(-0 4  C V. The sum vanished for even n. For odd n it is 
mirEt=n-1 

(80) 

(81) 

	

-1 - 	'k 
equal to 2 	 V. 

	

•C 	u V. 
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[K,•] n  Lo  = 

E  . =11 
y 

E • 	2D 	En-1 L v  
n even 

(82) 

, n odd 

 

    

The final result for the operator to (t) is 

co 
Lk) 	n y [K,-] Lo (-t)

n 
 /n! 

) 

e-te'  y 	. , Z 	_ . 	
=1, 

x 	‘et - e
tc 
 )CC V. 

and with the definitions of C, C and "Iix  (76) one obtains 

Lo(
t) = -y • M 1E(-0D

x 

+. kT V • [ E(t) - E(-t)] Dx 

 The matrix E(t) is the exponential 

-1 
E(t) 	etCM 

The corresponding expression used earlier for the translational motion 

B 	- --t 	 '= 	
B 	3 

-p/m • — e m + 2kT sinh (m 
	Bp 3q 
t ) — • — is a special case of (84). It is 

aq  
ti 

remarkable that no higher theo second order derivatives appear in L
o
(t)! 

The calculation of the operator L f  is similar. One obtains 

	

L
f
(t) = V • E(t) [D

x 
U(x)] 
	

(86) 

In "7... Final step we calculate the operator L which is quadratic in the 

momenta y. This leads to major complications, but it turns out, that the 

operator L (t) contains no higher order derivatives than a third order 

derivative in the momenta q. 

n=o 
(83) 

(84) 

(85) 
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We will write Lq  as the scalar product of two vectors with 6

3 
= 216 

components (74): 

Lq  = -a • (y0y0V) 	 (87) 

In order to find the commutators[K,•] n  L we make the ansatz that there 

exist some vectors W
(n)

, X
(n)

, Y
(n)

, Z (n) 
such that 

[K,•] n  L = W (n) 	(570570V) + X (n)*  • v 

(88)  

+ Y (n)
(y0V0V) + Z (n) (VOVOV) 

The vector X (n)*  e fR6  is defined 4n)* _ 	X(n)  . The definition of 
23,k 

the nth  commutator (16) [K,•] n  Lq  = [K,•]([1C,•]
n-1 

Lq) allows us to derive 

recursion relations for the vectors W (n) , X (n) , Y (n) , Z (n) 

Lemma: 	
/4 (0) . _a  , x (0) . 0, y (0) . 0, z (0) . 0  

w(n+1) = w(n) 

x
(n+1) 

= X (n)  0 + W
(n) 

T 

(n+1) = Y (n)  T + w(n)  T 

z
(n+1) 	(n) 	(n) 

= Z 	+ w 

The 216 x 216 matrices T,(1),E,T,I are defined 

C 01 01 + i0 01 -101.0 

T=Z ®1, 0 	— 110&. 011- tete Cfi  

-10 -61. 01-.1011,e Zt 

E = 2 C 01101 

ft, 

■ 4 loco 11 

(89)  

(90)  

- 
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- 	11 is the 6 x 6 identity matrix.
r(n) 

is symmetric in the first two indices 
kem 

W
(n)
lam = W

(n)
am 

 for all n = 0,1,2... 

Proof: All these relations follow directely from the definition of 

x(n), 
Y(n), w

(n) , z (n) 
(88) and the definition of . the commutator [I( -] 11  (16). 

The following equations are true for arbitrary vectors X
(n) 

 , Y
(n) 

 , W
(n) 

 , 

Z
(n) 

with the only restriction that W
(n) 

is symmetric in the first two indices. 

W ini = W (n) 
kftm 	ikm (91) 

(1) [17 • Cy, x (n)*  • v] . = (x (n) a)* - V 

(2) [v - Ey, W (n)  - (yey4W)] = W (n) 	- (M/617) 

(3) [V - Cy,  Y (n)  - (WW)] = Y (n)  T 	(ytrOV) 

(4) [V 	Cy, Z•(n)  - (WV@V)] = Z (n)  0 	(WIVOV) (92) 

(5) [v - CGV, W (n) 	(y0570V)] = (W (n) E) * 	v + W (n)  T - ()TOM) 

(6) [V 	y(n)  - (y0V0V)] = Y (n)  = - (vevev) 

(7) [v • &, z (n)  • (vevev)] = 0 

The proof of these equations is mostly straighOorward. For instance the 

first equation is: 

[ v - Ey , X (n)*- V] = 	E X()*[ V y 	V ] 
a,8,y 

aa Y 	a a ' y 

I aa y 
x(n)*  v

a 	af3
) = x (n)* (-Et) - v = (x (n) a) *  v 

cio,y 
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The 5
th equation is different since there are two different type of terms: 

[ V • &, W (n)  • (y0y0V)] 

a,13,y,6,c 

w (n) 
a$ yde 

f(7 	, yy ] + y6  VE ) 

[V a,yy]V8 
 y6  Vc 

 +y
y  Va . 

[V ,y]V
c 
 +y

y
[V 
a

, 

	

By assumption W
,(n) 	

W
. 

= 
(n) 

and [y
a
, V] = -6

0
. This gives the result 

	

yde 	dye 

[ V *b7, Vn) • (y0y0V)] = (W (n) E) *  V + W 1)-  • T 	(y0V0V). The proof of the 

other equations is similar. 

We define the vector valued function W(t): 1R +IR
216 

co 

W(t) = / ((-0 11/11!)14 (11) 	 (93) 
n=o 

and similarly X (0, Y(t) and Z(t). The recursion relations (8i 1) for W
(n)

, 

%*(n) ,  Y (n) 
and  Z

(n) lead to the differential equations 

W(0) = -a , X(0) = 0 , Y(0) = 0 , Z(0) = 0 

(94) 

W(t) 	- w(t) y 

i(t) = — x(t) sa — w(t) F. 

Y(t) = -Y(t) T - W(t) T 

Z(t) = -Z(t) 0 - Y(t) 
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These differential equations can be integrated and the results are 

W(t) = -a exp( -t 1) 

X(t) = a
J 	

ds exp ( -s 	) E exn ( [s-t] a ) 

of 	 (95) 
Y(t) = aji ds exp (-s y ) T exp ([s7t] T ) 

ot 
Z(t) = _jr ds Y(s) E exp( [s-t]fl 

o 

 With these expressions the final result for the operator i ii(t) is with (84), 

(86), (88), (95):  

L(t) = -y • 14-1  E(t) D
x 

+ kT V • [E(t) - E(-01 Dx  

+ V • E(t) [Dx  U(x)] 	 (96) 

+ W(t) • (5353V) + X (0 • V 

+ Y(t) • (y0707) + Z(t) • (70707) 

This is the Liouville operator in the interaction picture. The quadratic term 

Lq  caused all the additional terms. Even if they are not explicitly known, we 

will be able to show that they do not contribute to the first and second 

cumulants. 

First Cumulant  

We calculate the cumulants under the assumption that initially the 

distribution in the momenta y is a Maxwell distribution 

	

g(y) - 	 e 	2kT 
(27r kT)

3 (dct M) 1/2 
1 
	Y • M

1
Y 	

(97) 

The first cumulant is according to (25) 



G
(1) 	f 6 q,  

(t) = 	d y L(t) g(y) 	 (98) 

We use expression (96) of I'M and integrate by parts. The contribution 

at the boundaries vanish. The remaining terms are integrals over odd 

functions in ym, which vanish. The first cumulant is identical zero for 

all times t > o 

(1) 
G 	P(t,x) = 0 (99) 

Second Cumulant  

The second cumulant gives the first nonvanishing contribution 

L(t) G (2)  (t) = rdsfd
6 
 y L(t) L(s) g(y) 
	

(100) 

with (96) 

- 
G (2)  (t) = _Jr ds .I' d

6
y y • M 

1 
 E( 	D

x 

x [ y • M 1  E(-s)D
x 
+ kT V • E(s) - E(-s) D

x 

(101) 

+ V 	E(s) [Dx  U(x)] + W(s) • (570570V) 

+ X (s) 	+ Y(s) • (y0V0V)] g(y) 

The remaining terms of the product t(t) L(s) vanish after integrating by parts. 

The only term left from the operator L(t) is -y • M
1 
E(-t) D. Also the term 

Z(s) • (VOVOV) vanished after integrating by parts three times. 

At first we can show, that the contribution due to the terms W(s) (y0y0V), 

X (s) • V and Y(s) • (570V0V) cancel.each other. We will show that the following 

integral vanishes for k= 1,2...6 and all times s > 0 
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4s) .1- d6y yk  [W(s) • (y0y0V) + X* (s) ° V 

(102) 

+ Y(s) • (y0707)] g(y) 

JWe recall that 
r  d

6
y y

i  yj  g(y) = Mid kT. Again integrating by parts (102) 

becomes 

J
k
(s) = - 	(kTWn

mk(s) Mnm  + Xnnk (s) - Ynnk (s)) 	(103) 
n,m 

co 
L 	(, The function J

k(s) may be written as J k (s) = L J
k
n) 
 (-s)n  /n!. For the 

n=o 
constants J (n) one obtains according to (93) 

• 

J (t)  _ kT W (i)  M + X")  - Y") 	 (104) k• 	n,m 	nmk nm 	nnk 	nnk 

(1-1) The recursion relations (89) allow us to define J (i) in terms of J
k 

J 24)  = 	(kT W(i-1) C m 	
-t 

k + v (1-1)  E 
kfilmf ntlt ,  m'k 4"lek'm' m'k l',k',m' 

(105) 

Comparing this expression with (103) shows 

J (L)  - y j (k-1) Et = j a-l) Etl 
k' 	k'k (106) 

	

(o) 	 y 	) The vector J
k vanishes because X (o) 

= Y (o) 
= 0 and 	w(o 

k't'm 	= 

- I 	PC 	=-1-Trace (C (m) + M-1C (m)t M) = 0 (65) (89). This shows lel , -It 'm ic.'Z 	2 

that J (1)  = 0 for all £ and k. Therefore 

J
k(s) =0 	s>0 
	

(107) 



- The integration of the remaining four terms in (101) is straight forward. 

One has to keep in mind that the matrix M
1 
E(t) is symmetric. 

The final result is 

dt P(t'x) 
	
G(2) (t) 

 
P(t,x) = D • A(t) Dx 
	k 

 +- (D
x 
 U(x)) P(t,x) 	(108) = 	 1T  

The time dependent diffusion matrix is 

- 
A(t) = kT C

1 	tCM
1 	

t 0 (109) 

Equation (108) is the generalized Smoluchowski equation for coupled 

translational and rotational diffusion. Since we started with a Maxwell 

distribution at t=0, the diffusion matrix A(t) is time dependent. Equation 

(108) includes as a special case the translational diffusion and the rotational 

diffusion discussed in [5]. The operator D
x 

depends on the orientation 

a = (00,40. 

( De l 
Dx  

Da  

aql  

	

, 	a 

	

Rt(0,19,Y 	aq2 

c13 )//  

(110)  

a 	 1 	a 	 3 
cos 4) -Tc3 	

sin e acp + sin 111 	 ctg 6 sin tp Ttp- 

Da 
-sin IP 

a 
+ cos ip 	 sin 0 34) - ctg 0 cos ti) 3 

(112) 
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The rotation R(0,000 is defined in (33), (34). The expression for Da 

 follows from (59) and (63). Usually the friction. tensor C is split into four 

3 x 3 matrices. 

	

CRT 

	CTR 
C 

	

RT 	RR 

(113)  

For axialsymmetric molecules it is easy to show that CTR  = 
C
RT = [8]. In 

this case the diffusion equation is 

a 
q' 	T-Dq' 

+ kT   [ Deu(l,a)]) 

(114)  

+ Da  • AR(Da  + 	Daucci3O1) I p(t, q ,a) 
 kT 

-CTT  
with 	 AT  = kT C 	- e 

t 
,3T-  (11 

AR 
= kT C

.41 
 e 

( 	 -tCRR I-1 ) 
- t 0 

RR  

The diffusion of translational and rotational degrees of freedom is still 

coupled even if the potential U vanishes, since D , depends on a. In Section V 

we will solve (114) in two dimensions for U(q,a) = 0. 

In 112] and [13], different expressions for the operators corresponding to 

D , and D
a
, which are wrong in our opinion, are used. Instead of D the operator a 
a 

J 	q x-
5.4. 

 was used. J is, up to a constant factor, the quantum mechanical 

angular momentum operator for a rotating  point particle. Both operators D a 

 and j have the same commutator algebra since they are both infinitesimal 

generators of a representation of SO(3). Da  and J correspond to two different 

a 
representations;see (136). A connection between J . = - iq x.— and the three 

3q 

Euler angles(0,04) also used in [12] and [13] is not obvious. 



For axially symmetric particles one can factorize the angular dependence 

of P(t,q4,6,10 in 11). The operator I.) t  is in general not equal to ilr=1 

the Laplace operator in spherical coordinates on the unit sphere. This is 

3 
only true if we set —= 0. If we consider only axial symmetric molecules 

34) 

and do not diStinguish between two orientations which differ only by 

rotation about the axis of symmetry, then we may use Da
1

21  
 = Alr=1, .see (136). 

[12] obtained wrong results by setting J 2  = A. 

It is important to keep in mind that the operator Dq t  depends on the 

orientation. Dq i  is the gradient along the body fixed coordinate axis. If D 

3 
is replaced by Dq  = -5–q- one obtains wrong results [12], [13]. The coupling of 

translational and rotational diffusion of the two dimensional model discussed 

in Section V is a consequence of the a dependence of D only. 

These claims will be justified in detail in Section V. 

• 



(i) (i) (I) 	(I) 	(I) 	(i) 	(I) dp = n dq, dq
2 

dq
3 

d. 	sin 6 	de 	d. 
i=1 

N 
(116) 

IV. N Particle Diffusion  

We consider N particles moving in a fluid interacting via arbitrary 

forces. In general the N particle density P(t,x (1)
, x

(2)
,..0,x

(N)
) is not the 

product of the distributions P(t,x (I) ) where x (i) denotes the six coordinates 

of the i
th 

particle x (i) = (q (1)
, a (i)

). The N particles are 

correlated. The interaction energy is 

u(x (1) ; x (2) ,..., x (N)) 
	

(114) 

For an arbitrary observable 0 (x (1) , x (2)
,...,x

(N)
) depending on the position 

and orientation of the particles 1,...,N the expectation value is defined 

EOM E f dp P(t,k) 	 (115) 

with ;E E 	
(1) 

, X
(2) 

,..., X
(N)

). The volume element dp is the product • 

measure 

The objective of this section is to derive the evolution equation for the 

N particle density P(t& based on the Kramers-Liouville equation for the N particle 

motion. For the domplete description of the N particle dynamics all positions 

(i) and all momenta y (I) are required. 
	ti 

z (i) E 
 oc(i), y(i)) 

k(t) E (z (1) (t), z (2) (t),..., z ( N) (t)) 

(117) 
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These variables are connected with the canonical variables z
1,c  (0 through the 

transformation (37) and (44) applied on every single coordinate z (i) , i=1,...,N 

et) 	ec(t))  _ ( z (1) (z !1) (0),...,z (N) (z (N) (0) ) 
	

(118) 

Liouville's equation holds for the density f
c
(t, tic) since the determinant of 

the Jacobian matrix of the flux z (t) is equal to one as a consequence of 

Hamilton's equation. 

.(i) 	. 	9H 	 • (i) 	= 	9H  
(x 

c  ) 
	 (Yc ) k k 	(i) 	 3(x(i) ) a(Yc ) k 	 c k 

(119) 

for k = 1,2,...,6 and i = 

1 	
y (i) . M(1)-1  y (i)  + U(x (1) ,...x (N) ). The Hamilton function is HOlc, ,x) = 

Liouville's equation is 

	

. 	a 
cM c ii 	

• z 
	a fc (t 'kc ) 	• 	f  (t 7  ) = 0 ke   

(120) 

 c 
is determined by (119). The expectation value of an observable 0(z ) is 

obtained by 

i20(t) = ji du e  fc (tqc) 0(kc ) 	 (121) 

due is the volume element in the phase space (S
xc 

x S Y
c 

	

N 	12 

	

du = II 	n d(z (i) ) 
c 

 
i=1 k=1 	

c k  
(122) 

1=1 
The matrix M(i) is the generalized inertia matrix (53) of the i th particle. 



Instead of the canonical variables z we use again z. The transformations 

of the density fc , the observable 0 and the measure dp c  are 

f(t,k) E fc (t,kc (0) 

0(z) 	E 0 (,ztic (0) 
ti 

dp 	E 	
a  kc Det 	I dk 

12 
= n sin e (I) R dz (i)  

1=1 	 k=1 

(123 ) 

The expectation value of the function 0(k) 

E0(t) = idp f(t,k) 0(k) 	 (124) 

agrees with the definition (121). 

The Kramers-Liouville equation for the N particle problem has the form 

N 	(4\  
a 	 , a  

f(t,k) = 	ak f(t,z) + y 
K(i)  f(t,k) 

1=1 
(125) 

K (1)  is the Kramers operator acting on the i
th 

particle 

E V(i) • C (i) 	M(i)-1  y (i)  + kT V (i) ] 

(126) 

V (i) 	a 	 
9y

(I)  

The Kramers operator is the direct sum of the individual operators K (I) acting 

on the i
th particle. The forces due to the fluid are completely random and not 

correlated at different positions. [6] The correlation matrix of all components 
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of all random forces and random torques, which is 6
N 

x 6
N 
matrix, is the 

direct sum of the correlation matrices C (i) . Therefore equation (126) is 

justified. With L (i) , the Liouville operator acting on the i
th 

particle, the 

Kramers-Liouville equation (125) is the sum of N formally identical operators 

N 	f4N 	(4‘ 

at 
f(t ) = y (L‘'" + K"4 ) f(t,k) 

i=1 

L (i)  = -y (1)  • M
(i)-1 DX(i) + DX(i)U09. V

(i) 
(127) 

e (i) 	(y (i) 8 y (i)  8 V (i)  ) 

All operators L (1) are connected through the potential U(0. Equation (127) 

contains the complete N body dynamics. 

Since EK (i) , L (J) ] = 0 for i ¢ j we have 

-t 	K(1)  N 	t r K  (i) 	N -tK(I) 	tK(I)  L 
e i=i 	y L`JJ

f41 
  e i=1 	= 1 e 	L(i)  e 

j=1 	 1=1 

(128) 

= / L 	
. 

i=1 

The operator t (i) (t) are given in equation (96)after . replacing z by z (i) , and 

iii by M (i) . The evolution equation fOr.the density ? defined by f E etK  ? is 

therefore 

N 
1, ( t 	. 	L(i) (t)?(t.k) at 	i=1 

(129) 



MC 

j=1 

Suppose the momentum distribution is Gaussian initially 

g(X )  = 01 g(Y(1))  

  

 

yM
(i) (1)-1  y (i) 

•  
(130) 

g(y
(1)

)=
1  2kT 

(2nkT)
3
(det M)

1/2 

 

As in the one particle case the first cumulant vanishes. 

. 

(1) 	' 0 	(0 P(t,k) = f R d6y (i) 	11,. (i) (t) fl  g(y (k) ) P(t,k) 
1=1 	j=1 	k=1 

(131) 

si- d6y(i) t(j) (t) g(y (J) ) P(t,k) = 0 

The second cumulant is 

N N 
G
(2)

(t) P(t,d = 	dsi II dy
(i) 	 eomem)(s)II g(y(j)) P(t,k) 

o 	i=1 	.0=1 m=1 	 j=1 

= ids f n d6y(i)i,M(t)iM(s) j n1  ey (j ) ) P(t, ) 
= 

t N iN 
R d 

6 
 y
"Nn,faN 

(t)t‘ 
f 

+.1 ds 	 "1 1.,‘ mi (s) R g(y (J) ) P(t,x) 
o 	1=1 	 j=1  

= 	L G 	+ 	Jr ds G (1)(1) 	G(1)(m)(s) 	17(t,) 
1=1 

N 

. 
L 	(2)(I) 

o 	• 

(132) 

The second term vanishes because all first cumulants G (1)(k) .9.=1...N are zero. 

The remaining term is the sum of the cumulants calculated for the one particle 

dynamics. The N particle diffusion equation is: 

o 0=1 i=1 



a 	 (1) 	(N)  P ( t X 	, ...x 	) = r 	
1 + 	Dx(1) U(x

(1)
,..x 	) 

(N) 

3t " 	 L Dx(i) 	A
(i) 	[Dx(i) 

1=1 

x P(t,x (1) ,..x
(N)

) 

) 
A
(i)

(t) = kT C
(i)-1 	-t C

(i) 
 M 

(i)-1 
e 

(133) 

This is the generalization of the'Smoluchowski equation for N interacting trans-

lating and rotating particles. 

A 



V. 	Correlations between the variables q and a. 

We consider the one particle diffusion equation (114). In general the 

positions and orientations are correlated. The correlations are not only 

caused by the potential U = U(x), x = (q,a) or by nonvanishing elements of 

the matrix C 	
R CTR = C
RT . We will show that, if the positions q and the 

orientations a are uncorrelated at t=t
o 

there are in general correlations for 

t > t
o 

even if the potential vanishes and also CTR 
 0. 

Axially Symmetric Particles  

As an illustiation we consider axially symmetric particles. In this case 

one can show that C
TR 

= 0, [8]. If we identify the axis of symmetry with the 

1 
e t
3 
 axis the matrices C

TT 
and C

-1 
are diagonal. 

RR 

a 0 0 
-1 

ITT = 	0 a 

\ 0 0 a3  

(b 0 0 

cit-  = 0 1> 0 

0 0 b
3 

(134 ) 

We assume that we know the distribution at time t = t
o
, where to  is large 

compared with the translational and rotational relaxation time of the momenta. 

to » m II CTT 
II and t

o  » II C-1  III RR 
135) 

at 	
2 

P(t,q,a) = kT [ a Dq
2 

, 
+ (a

3
-a) 
	
+ b D

a
2  
+ (b

3
-b)(Da)

2 
	P(t,q,a) 

for 	t > t
o 

This equation is a special case of (114) where we used expression (134) for 

ti 	-1 
the friction tensor. We also used A(t) = kT C for t . > t

o 
 . 
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The differential operators (D 
q 
 ,)

2
, (D 

q 
 ,)

2
, D

2 
and (D) 3

2  are given by 

equation (111) and (112). 

() 1)
2 
 = A 

,„ ,2 3 / ku 1 ) 	— • B \a, 	 B
ij

(a) E R (a) R .(a) 
q 3 	3q 	3q 	 3i 	3J 

(Da)2 = 

sin
2
6 

( 

a
2 	

a
2 

+ — 
a
2

(I) 	a
2

IP 

(136) 

cos 8  3 	a 	a + 2 
sin 

2 
 6 4' 

a , arp  + ctg 8 

	

2 	92  
(D ) = a 3 	

a24, 

A 	is the Laplace operator in Cartesian coordinates. 

We define the new density P(t,q4,8) 

P(t,q4,8) = Jr-  d* P(t,q4,e4)• (137)  

Integrating equation (135) on both sides with respect to IP leads to 

15,7  P(t,q4,6) = kT l aAq  + 	I 	 a  ) 	e) (a -a) 	• B(4
'  3 	3q 	3q 

(138)  

+ bA I
r=1 

P(t,q4,6) 

The matrix B(a) defined in equation (136) does not depend on IP. 

BOO) = 

( sin e cos 0) 	 sin e cos 

sin e cos 0 	 sin 6 cos cp 

cos 6 	 cos 6 

(139)  

• 
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The contributions of equation (135) which contain a derivative with respect 

to IP vanish after integrating by parts. Therefore the operator D
a
2  
 reduces to 

1hir=1 , the Laplace operator in spherical coordinates on the unit sphere. 

D
a 

i v =
r=1 (140) 

We assume that the initial condition factorizes. For t > t
o the solution of 

(138) has the form 

P(to'cl4'e) = P oT(q)  13.011($°)  

P(t,q,4),6 ) = pi.(t,q,[pR1) pR(t,cp,e) 
	

(141) 

t > to 

The function P
T
(t) is also a functional of the distribution P 

R 
 (t). P

T 
 (t) 

and P
R

(t) are probability densities, 	d3q P (t,q,[p
R
]) = 1 and 

Jr dcp de sin e pR (t,cp,e) = 1 for all times t > t o . The boundary conditions 

are: P
T

(t,q,[13
R
I) = 0 if q

i 
 = = for some 1=1,2,3. Substituting (141) into 

equation (138) and integrating with respect to ci) and e (using the weight sin 6) 

leads to equation (142). Similarly one obtains (143) by integrating with respect 

to q. 

a 
PT (t,q,[PR] ) = kT aAq  

+ (a3  -a 
i,j 

a 	a dcp sin ede Bij  40) R(t,4,6) aq 	aq J 

x P T
(t,q,[p

R] ) 	
(142) 
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at 
P R (t,,P,O) 7 kT b Ai r.1 

 PR(t,4,O) 

(143) 

for t > t 
- o 

The second equation describes the "Brownian motion on the unit sphere". 

The eigenfunction of Ai r.1  are the spherical harmonics Y lm (84). Substituting 

a solution P
R
(t,c1),8) of (143) into equation (142) one obtains an expression, 

which is formally a diffusion equation with time dependent diffusion 

coefficients. The off diagonal elements of the diffusion matrix vanish if the 

distribution P (t,cp,e) is uniform. 

Similarly, one can show that for'arbitrary molecules with CTR  = 0 a 

solution of the form (141) (including IP) exists, if the positions and 

orientations are uncorrelated at time t = t
o 

and if U = 0. 

Diffusion in Two Dimensions  

In two dimensions the diffusion equation without external potential can be 

solved for arbitrary initial condii:ions. Equation (108)  reduces to 

at P(t,q,,q2 ,4) = A P(t,q,,q2 ,$) 

a  
aqi  

A= 
a 

aq2 

•
( 

a  
 aql  

A(.) 
a 
aq2  

a2 
+ kT y 

• 

(144) 

t > t 
- o 

a cos

2

cp + 8 sin
2 	

($-a) sin cos 

A(.) = kT 
	

(145) 

.(3-a) sin 	cos 	 a sin2. + $ cost. 



kTa, kT(3, kTy are the diffusion constants corresponding to the degrees of freedom 

q
1

, q
2 

and (f). We assume that a > 6. We use the following identities to simplify 

the matrix AW: 

a cos
2 

. + a sin2 cp - a + (3 	a -
cos 24) 

2 	2 

-  a sin
2 

. + a cos 2 (I) = a 
2
+ (3 	a 2 

 a  cos 24 (146) 

2 sin . cos . 	= sin 2. 

A(0) = kT 6 
( 1 0 ) 	 ( cos 2. - sin 2. 

+ kT E 
0 1 	 -sin 20 -cos 2. 

(147) 

a is the average translational diffusion constant and e is a measure for the 

asymmetry of the particle. 

a + a 	_ a - a 6 	 e _ 
2 	 2 (148) 

Without solving (144) explicitely it is already possible to make some 

statements about the lowest moments of q l , q2  and 4. One obtains the following 

differential equations for the expectation values 

4; Jr... >t. dq, dq2  d. . . . P(t,q1q2,.): 



d 
dt < ql > t = 0  

dt < ql >
t  = 2kT 6 + 2kT e < cos 20 > 

dt < '41(1
2 > =-2kT e < sin 20 >t 	

(149) 

< cos 20> t= -4y kT < cos 20> t 

 < sin 20>t= -4y kT < sin 20> t  

This leads to: 

< cos 20 >
t 

= e
-4y kTt 

< cos 20 >t  
0 

2 
< ql >t 

= 2 kT 6t + 
2y 
_ 

(1-e 
	kTt , 	 2 

) cos 20 >
t 

+ < q >
t 

0 

11 	
<

0 
(150) 

< 	>t 
1-e 

4y kTt
) < sin 20 >

to 
+ < q

1 
q
2 >t 

 

The calculation of arbitrary expectation values < 0 >
t 

, 0 = 0(q
1
,q

2'
0) can 

be reduced to the problem of finding the eigenvectors and eigenvalues of the 

diffusion operator A in equation (144). 

(k Aki k2 ) ki k2 t = ° 
	

(151) 

/Si 	• 
For the symmetric case a = $ the solutions of (1497 are 

e 
fly]. e ik2q 

t 	q
2' 	

2 
43) =— 

(FL 	 sin(t0) 

(152) 

d 
dt 

d  
dt 

1 
ik

1
q
1 

ik
2
q
2 

*k
1
k
2 t(cll' cl2' *) 	e 	 cos(t0) 



We choose a box of length L and assume periodic boundary conditions 

4)(0,c1
2' 4) = ti)(1,,cl 2' 4) , IP(ci

l' 	= tgqLAO 

*(cll' cl2' 4))  = 1/1(q 1“12' 4)+27T)  

(153)  

The possible values for k1 , k
2 

and 2. are 

k 	+ 2ror 2m7r 
1 	L 	

k
2 

= ±
L  

n,m e N 

(154) 

£ = 0,1,2,... 

In the general case a > 13 we make the ansatz that the eigenfunctions can be 

written 

1 
iklglik

2
q
2 

*
k1 k2  (cil' cir cP) L e  gk_ k

2 
 (4))  (155) 

One obtains the following differential equation for the unknown function 

gki
k2t

(4) (144), 	(147), 

[ 	2 	2 
-6(k 	+ k

2
) 

(151) 

2 	2 
- e(k1 - 1c2 ) cos 24) 

(156) 

+ 2 e k
1
k
2 

sin 24) + y 
92 Akik2x, 

k 2.°)=° 
gkl-2 -  

2 
9(1) kT 

We define the complex wave number k'. 

k l  E k
1 
+ ik

2 

arctan ( k
J. 
	

(157) 
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le can be written k' = Ik'l 4 . Equation (156) becomes: 

1 .... ( 61k , 12 4.  E 1 k , 12 e21.0-2ity 4.  E i v  12 e-24-2i0 
2 	

) 
I 	I 	I 	 2 	I  

. 

30 	kT 	
gk

1
k
2
/ (4))=0  

1 	 2_ 
92 	Ak, k 2, 

(158) 

The exponentials can be combined to cos(2[0+0]). Equation (158) is equivalent 

to Mathieu's equation[9]. 

d  
dz Y  

) + (al (r) - 2r cos 2z) yiz) = 0 	 (159) 

2 	2 
(ki  + k2)(a - 

4y 

(4) 	
k2 

z = + arctan -c. 	 -(160) 

Ak- k2g. = -kT y a t(r.) + a 	+ 6 	k2  + 2 
2 

gk1k2 L(4° 
 = y + arctan k2  )) 

ki  

The eigenvalues a
2,
(r) of Mathieu's equation are negative for certain values 

of r and 	[9], but the eigenvalues A k k 2, 
are always less or equal to zero 

1 2 
for all kk

2 
and ft. 

Equation (159) has a complete set of orthogonal solutions cc r,z) and 

sa t(r,z) with the corresponding eigenvalues denoted by a l(r) and b x(v) [9]. 



The eigenfunctions of (151) are 

1 
* k (q 	4)  kl 21 1 2  

ik

• 1

q1 ik2q2 	 k2 
seg(r,O+ arctan( 

(161) 

e 1 • 22 	 k2 1 ikq ikq ce r,0 + arctan 
*k1k2 2. (ql' q2 4)  ?it 	 k

1 
 )) 

since 0 . k k, *k k 	is a complete set of orthogonal eigenfunctions of 
1 2 	2 

the diffusion operator (151), the expectation value < 0 >
t 
can be found by 

r< 0 >t  = j dql  dq2  dO P(t,q1 ,q2 ,0) 0(ql ,q2 ,0) 

Aklk2it y_ 	 Pkkk22. o
k k 
1 2 

At 
e 	P 	O f  

k
1
k
2

2, 
klLk 2k 

The coefficients Ok,kit, 0kk22.' 
P 	P

lclk22. 
are obtained from 0 

and the initial distribution P(t o ,q
1
,q2 ,4). 

q24) 0(q1 ,q24) 
0 	 dq2  d(f) k k 2. (q1' -11 	2 k k I 	

1 2 1 2 

(162) 

ql , q2 ,0)  

(163 ) 
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As an illustration we consider the following two obsurvables: 

OS (q
l' 	

E sin(k
1q1

) se
1
(r,4) 

(164) 

OC (c11 ,0 E sin(klql) cel (r,cp) 

with k
1 
2/L and r = 

n2  (a -  

yL
2 

We assume that the asymmetry is small. In this case r << 1 and the Mathieu 

functions se
1 

and ce
1 

are approximately 

cel (r4) = cos(,) - Ti cos(34) 

sel (r4) 	sin(4) - Ti sin(34) 

The corresponding eigenvalues are 

al (r) 11  1 + r 

bl (r) 
 

2-  1 - . r 

The eigenvalues A 	and X' 	are 
±k 01 	±k 01 

1 	 1 

2 
X 
±k1 01

11  - kT ( y + 	3a + 	1) 
L2  

2 

±k 01
= - kT ( Y+ /, ( a + 3a )) 

' 

and for the expectation values of O s  and Oc  one obtains 

(165)  

(166) 

(167)  

2 

c 	
-kT ( y + IT„

' 	
3a + 	t 

< 0 >
t 
= c e 	L 

(168) 
2 

Os 	
-kT ( y +

n 
 ( a + 3s 1) t 

< 0 >
t 
= cl e 	L' 

The constansts c and c' can be written c = (0c . P(t )) and c' = (Os . P(t )). 
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The state 0
c 
decays faster since we assumed a > 	a corresponds to the 

diffusion along the e'
1 
 axis of the molecule. In the state 0c the molecule 

axis e'
1 
 is mainly parallel to the e

1 
direction of the laboratory frame; in the 

, 
state O s  e

1 
is mainly parallel to the e

2 
axis. The avarage speed of the 

molecules in state Oc  is bigger in the direction e l ; el  is also the direction 

of the spatial inhomogenity 	Therefore 0
c 
decays faster then O. This 

example is typical for the type of coupling ofq^q2 and (I), which occurs in the 

translational and rotational diffusion if the potential U vanishes and also 

CTR = 0. 

VI. Concluding Remarks  

We have shown that a "contraction of the description" is achieved when a 

Kramers-Liouville process is averaged with respect to its momenta variables. 

The second cumulant of an ordered time evolution cumulant expansion yields 

the generalized Smoluchowski equation as the contracted ,  description. We have 

examined the details of the dynamical operator algebra generated by the con-

traction procedure for translational and rotational degrees of freedom, and 

for as many as N distinct particles. 

A more thorough description of the higher order cumulants, shown to be 

small here, will appear in a forthcoming paper. 
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The "excess entropy" around nonequilibrium steady states, (152S) ss , 
is not a Liapunov function 
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ABSTRACT 	In a response to my recent paper [Fox, R. F. 
(1979) Proc. Natl. Acad. Sci. USA 76, 2114-2117i, Nicolis and 
Prigogine [Nicolis, G. & Prigogine, I. (1979) Proc. Natl. Acad. Sci. 
USA 76,6060-6061] reasserted that the "excess entropy" around 
nonequilibrium steady states, (PS)„, is a Liapunov function. 
A simple, explicit counterexample which invalidates this claim 
is presented. The existence of an alternative theory possessing 
a proper Liapunov function for steady states is reviewed. 

One way to describe the stability of nonequilibrium steady 
states is to construct a Liapunov function, L(t), which satisfies 
the stability inequalities 

[1 ] 

dt 
if and only if the steady state is stable. In the linear regime near 
full equilibrium, the second-order excess entropy, (15 2S)eq , 
provides such a function, as was discussed recently by Fox (1) 
and as has been repeatedly observed earlier by others, especially 
Prigogine (2). In addition, (62S )eq near full equilibrium provides 
the Einstein-Boltzmann-Planck formula for near-equilibrium 
fluctuations, a fact that enabled Onsager to build his celebrated 
theory of near-equilibrium thermodynamics (3). These two 
properties of (6 2S)eq  are intimately connected by the fluctua-
tion-dissipation theorem for near-equilibrium thermody-
namics; and this fact was one of the main points of the recent 
paper by Fox (1). On purely mathematical grounds, many Li-
apunov functions could be constructed for near-equilibrium -
thermodynamics; but the particular choice of (62S),,q  is of 
special interest because of its additional physical significance, 
which it derives from its additional role in determining the 
near-equilibrium fluctuations. 

In the case of nonequilibrium steady states, the question has 
been raised whether there exists a similar quantity. Prigogine 
has repeatedly suggested that the excess entropy around the 
steady state, (o2S)., possesses the Liapunov property, although 
he has also shown that it does not provide the basis for a formula 
for the nonequilibrium fluctuations around the steady state. A 
theory for nonequilibrium steady-state fluctuations developed 
by Keizer (4, 5) has established that the covariance of the 
steady-state fluctuations can be used to construct a Liapunov 
function for steady states. This quantity parallels the behavior 
of (o2S)eq  in that it provides both the steady-state fluctuations 
and a Liapunov criterion. Fox (1) reviewed the fact that it is the 
fluctuation-dissipation relation for steady states that is re-
sponsible for this dual role, just as is the case for (62S)eq  near full 
equilibrium. Of the many mathematically possible Liapunov 
functions for steady states, the choice of a Liapunov function 
based upon the covariance of steady-state fluctuations is espe- 

The publication costs of this article were defrayed in part by page 
charge payment. This article must therefore be hereby marked -ad-
vertisement -  in accordance with IS U. S. C. §1734 solely to indicate 
this fact. 

cially attractive because of its additional physical significance. 
Indeed, Keizer (5, 6) has shown that it may be used to build a 
thermodynamics of steady states which parallels the thermo-
dynamics at equilibrium in every detail. 

Contrary to the claim of Nicolis and Prigogine (7), the 
problem of finding Liapunov functions at steady states is not 
merely a matter of choosing between (6 2S),, and the covariance 
of the steady-state fluctuations. The reason this is not the issue 
is that (PS)„ is not always in fact a Liapunov function at steady 
states. So that there will be no doubt regarding the existence of 
the opposite claim—that is, that (PS)„ is a Liapunov function 
for steady states—I will quote solely from the recent paper of 
Nicolis and Prigogine (7), although other sources for this claim 
are referenced in an earlier paper (1). The italics in the quota-
tions are mine and the references are those in the paper of Ni-
colis and Prigogine (7). The first paragraph of ref. 7 states: "The 
central quantity in this theory is (6 2S)., the second-order excess 
entropy around the steady state, which is used as Lyapounov 
function to derive linear stability criteria." The fifth paragraph 
of ref. 7 states: In the light of these definitions of stability and 
of Lyapounov functions (7), (o2S)„ keeps its significance en-
tirely. As we pointed out (4, 5), its usefulness is 2-fold: first, it 
has a macroscopic meaning below, at, and across bifurcation 
points, independently of the fine—and often complex—details 
of the behavior of the fluctuations; and second, it enjoys 
universality, as it can be applied to a wide class of systems in-
cluding those subject to spatially inhomogeneous disturbances, 
surface effects, and so forth." In paragraph six: "Naturally, the 
above summarized properties of (PS )„ do not imply that there 
is an argument against the use of other Lyapounov functions." 
In paragraph seven they conclude: ''The covariance of the 
fluctuating thermodynamic variables advocated by Fox (3) 
provides an example of just such another Lyapounov function 

All of the preceding would carry weight if it were not for the 
fact, to be exhibited below, that ((5 2S)„ is not always a Liapunov 
function at steady states. That it is not one was observed by 
Keizer and Fox (8) some time ago. Evidently, we did not make 
this point sufficiently clear to bring an end to the debate which 
continues to this day (1, 7). In the following, an explicit coun-
terexample is used to show explicitly that along the solutions 
of the rate equations 

d(o2S). < 0  

	

((PS 	0 

	

dt 

	 [2] 

for a steady state that is asymptotically stable. The stability 
will be shown on the basis of other stability criteria. With.this 
example, there can no longer be any question regarding the 
universality enjoyed by (6 2S )„ as a Liapunov function. 

L(t) :..5 0 

dL(t) 
2:- 0 
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COUNTEREXAMPLE 

The purpose of this counterexample is to exhibit a simple system 
in which there is a stable steady state, but for which (5 2S), fails 
as a Liapunov function, along the trajectory to the steady state 
of the solutions to the rate equations. It will be shown that, 
even though the approach to the steady state is completely 
stable, all along the trajectory of the solutions d(o2S),„/dt < 0 
repeatedly, with a regular frequency. It is also true that 
d(o2S)„/dt < 0 for trajectories already arbitrarily close to the 
steady state. This failure of (S 2S)„ as a Liapunov function for 
steady states is not shared by the choice of a bona fide Liapunov 
function in Keizer's theory (4, 5, 9). 

The model describes the reaction dynamics of a driven, ho-
mogeneous-phase, chemical reaction which involves a modified 
Schlogl mechanism. Such a mechanism was the prominent 
feature in another model, already discussed by Keizer and Fox 
(8). We already showed then that (S 2S)„ could not be used as 
a Liapunov function. 

The reaction is 

K 
Ry 4 Y 

K 4. 	 K± 
Ry  = VRy  Y + 	K *  = —

V2 K- 

X Rx 

The rate equations for this reaction which is driven by the 
constant input KR y  is given below in concentration variables: 
x = X/V and y = Y/V. 

K +x 2y — tc_x 3  — Kx 
y = KRy  — K + x 2y + K—x 3 . 

The steady state values of x and y, for fixed KR y, are 
x„ = Ry  

K K _ 

	

y., = aRy  + 	a — . 
K R y  

The local equilibrium entropy per unit volume is the same as 
in equation 39 of ref. 1: 

S(t) = So — KB (x In Vx 	y In Vy). 	[6] 

The resulting second-order excess entropy is 

— ozs = — _ KB  (6x, 60 (Exx Exyjr) 	[7] 2 	2 
1 	1 

Eyx Eyy Sy 

	

= KB 	+ 

	

2 	x 
The entropy matrix is 

1 
0 

	

E = (
E' El = 

x 
	. 	 [81 

	

Evx  Eyy 	1 
0  

Y 
The linearized relaxation equations around the steady state 
are 

d (Sr) 	(H.. lixy) (Sx) 

	

Tit Sy 	Hyx H yy).9.4 Sy 

= H„ 
(Sxj 
Sy 

in which it follows from Eqs. 4 that 

Hx. = 2K + xy — 3K—x 2  — K 

Hxy  = K +X 2  
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Hyx —2K +  xy + 3K_x 2  

Hyy = K + x 2  

Using the steady-state values from Eqs. 5 in Eqs. 10 yields 

H„ = 	— K—Ry 2 	K-I-Ry 2  

The second equality defines /3f  by 13*  = K±Ry 2 . 

The stability of this linear regime around the steady state is 
determined by the eigenvalues of Hss . These are denoted by 
X*  and are 

X* = — —2 (0— + 0+ — K) 

± —
1 

-013_ + 13+  — K )2  — 413+K . [12] 
2 

Whenever /3_ + 13+  > K, it follows that the steady state is stable. 
There are two possibilities: (i) two distinct, negative, real ei-
genvalues if (/3_ + /3+  — K) 2  > 413+K; and (ii) two complex 
conjugate roots with identical negative real parts if (/3_ + $+ 
— K) 2  4/3+K. This concludes the traditional linear stability 
analysis. 

Eq. 7 makes it clear that 

( 628)3, 	0. 	 [13] 

If (PS). is to serve as a Liapunov function, its time derivative 
must be 0 along the trajectories of the solutions to the rate 
equations. By using Eqs. 7 and 9, it follows that 

 dt 	 dt 
(PS). = —KB — I(Sx Sy) E„ 

Sy 

= -KB (Sx, Sy) [Ht „ E„ + E„ Hs.] (
Sr

) ; 
Sy 

with Eqs. 5, 8, 9, and 10, we get 

	

2(K - 13-) 	13 + (20 - K) 
1 	 13- + K W s, Ess  + Ess  H88 Ry + (2 13_ - K) 	2  02+  

	

/3_ + K 	13_ + K 
[15] 

Because 
.1  402  + 13 _K - 50 2+K 2  det(Hlr„ E„+ Es8 Hs., I = [16] 

Ry 2(13— + K) 2  
it is 3 0 whenever 4/3_ > 5K, and it is 0 whenever 40_ 5K. 
In the latter case, this leads to d/dt (S 2S)„ 45. 0 for appropriate 
choices of or and Sy. The requirement that the roots in Eq. 12 
confer stability is /3_ + /3+  > K, whereas the failure of (S 2S) s. 
as a Liapunov function requires that 413_4.5. 5K. Both require-
ments may be met simultaneously by a measurable set of pa-
rameter values for /3+, /3_, and K (Fig. 1). There is also a special 
subcase of this domain satisfying 

	

+ 13+  — K) 2  = 4$+K. 	 [17] 

With the a from Eqs. 5, for fixed K and fixed a, the choices for 
13 -1- are reduced to the two values 

(1 + a)2
K(±)-Ni

1
8
+
+ 	

a
4

)
a   K. 

(1+a)2  
K 

3 + a  0+(±) 	 [18] 

Eq. 12 shows that, for these choices, the relaxation eigenvalues, 
X* , are now "doubly degenerate" (i.e., equal) with the value 

X* = — —2 (0— + 0+ — K) = — N/Ki3+ (*)  

[3] 

[4] 

[5] 

[91 

[1 0] 

KAly 2  2K —K + R y 2 
 (I( — 13_ 	0+ 

— 2K —O il  

[14] 

[19] 



[20] 
(x+ 0 

0 

A.4 
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the steady state is seen at the initial time, t = 0, when Eq. 23 
satisfies 

2 
— (62S),s l e .0  = -KB —

1 	
(3-)[ 6x(0)] 2(2(K - (3-)[6x(0)]2  2 ----- 

at 	 RY 	
0t 

- K 

X [4(0)]2  + 20+ 
13_ + K 

5x(0)5y(0)) < 0. [24] 

If the values of 13 + , 0_, arid K are confined as shown in Fig. 1, 
then there is always a measurable family of [5x(0), Sy(0)) values 
satisfying Eq. 24. In the special case of X roots which are 
complex conjugates (i.e., damped oscillations), Eq. 12 yields the 
frequency v when 413+K > (0_ + (3 +  - K)2  

v = N/40+K - (0+  + (3_  - K) 2 • 	[25] 

For every integer n, the time-dependent factors in Eq. 23 sat-
isfy 

where 

1 
to n2r -

v 
. 

This means that for every integer multiple of the oscillation 
period, 2r /v, we have 

dt  0
2s). I==tn = e —(fi++ 0---10 ^ 

d
—

t
(62s)ssit=o< 0 

(3♦ 

K 

[28] 

P - 
FIG. 1. 13_ + 13+  > K and 413_ 4.5K. 

In the linear vicinity of the stable steady states, an initial 
deviation from the steady-state values, at time t = 0 and de-
noted by [5x(0), Sy(0)1, will evolve in time according to a so-
lution of Eq. 9. There exists a similarity transformation of H. 

S -1H.S such that 

S -1H„S = 

with S given by 

10+ + X+ 13+ + 
- 2K 	- 2K) 

det S = 	- 2K)(X+  - A_) 

[22] 

This means that along the trajectories of the solutions for the 
rate equations 

d 
(62S). = -Ke[6x(0), by(0)] (S-1)1 (

ex 4-i 	0 
Ti 

	et 
0 	ea- t 

X (1 -11„,,E„ + E„11,„)S (e x0+ 	ex°  i) S -1  (66xy((°0))). [23] 

At t = 0, this expression reduces to the t = 0 value of Eq. 14. 
The invalidity of using (52S)„ as a Liapunov function around 

[27] 

whenever Eq. 24 is satisfied. In the special subcase given by Eq. 
17, Eq. 23 reduces to 

—
d 

(62S)„ = - —KB  e -(04.4-0--10  (2(K - _)[6x(0)? 
dt 	R y  

	

2 	'3
+ 

 + 
K 

[4(0)]2 
j3-  

213_ - K 

	

+ 	 Sx(0)4(0)) < 0 [28] 
j3_ + K  

CONCLUDING REMARKS 

Because (52S)3, does not work as a Liapunov function around 
steady states, the critical remarks by Nicolis and Prigogine (7) 
lose their fOrce entirely. Nevertheless, it is necessary to address 
two additional remarks made by them in paragraphs seven and 
eight of their criticism of Fox (1). 

Their reference to Lax and Maxo (references 9 and 10 cited 
in ref. 7) suggests that the Liapunov function based upon the 
covariance of the steady-state fluctuations, as proposed by 
Keizer, was already anticipated by Lax. In Lax' classic paper, 
there does appear a derivation of the fluctuation-dissipation 
relation for steady states, as is well known; but no connection 

and 

	

2K 	-(3+ + X-)) 1 
- 2K) (3+  + X+ I det 

The solutions to Eq. 9 can always be writ en 

(60)1 s p-o 0 s _ i  (Sx(0)1 
y(t)) 	0 	ex') 	oy(0)1 

for all (t) > 0 wherever Eq. 24 is satisfied. 
These deficiencies in (5 2S)38  as a Liapunov function are not 

shared by the choice of a Liapunov function determined by the 
covariance of the steady-state fluctuations as advocated by 
Keizer (5) and Fox (1). When the latter is constructed for the 

[21] example used here, a bona fide Liapunov function is obtained. 
Most importantly, it is seen to involve explicitly the input pa-
rameters K and R y . These quantities are not in E„ or in E 
generally, because the local entropy is determined by equilib-
rium behavior only. At steady states, both the fluctuation cor-
relations and the Liapunov properties must depend upon the 
driving terms, the input parameters K and R y . 
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with or discussion of Liapunov properties appears anywhere 
in the paper. Nothing more is added by Mazo's paper. 

The suggestion that Fox's approach suffers from "drawbacks" 
regarding the behavior of fluctuations at bifurcations or critical 
points is entirely incorrect. Fox (9) has shown how to treat such 
cases explicitly in a recent paper in which he derives Keizer's 
theory from a master equation basis. The critical fluctuations 
are indeed non-Gaussian, but the theory is more than adequate 
to describe them explicitly and quantitatively. In ref. 9 one will 
find other references regarding the treatment of critical points 
and bifurcations. 

In their original criticism, Keizer and Fox (8) could only point 
to the failure of (62S)„ as a Liapunov function. We did not then 
have an alternative proposal. Now, however, Keizer's theory 
of nonequilibrium thermodynamics at steady states (4-6)  

provides an alternative proposal, already shown to be free from 
such mathematical deficiencies. 
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Comment on "Inconsistency between the Boltzmann distribution for relativistic free particles 
and the Planck spectrum for thermal radiation in quantum theory" 
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Contrary to the result announced in the title of this paper, we find that Einstein's results for the consistency 
between the Planck and Boltzmann laws for atoms in thermal equilibrium hold as well for relativistic atoms. 

In his paper' Boyer extends Einstein's 1917 
derivation of the Planck radiation lawn  to rela-
tivistic atom velocities. In the first part of his 
paper Einstein showed Planck's law to be a conse-
quence of the condition that the equilibrium distri-
bution of atoms of large mass and negligible velo-
cities over their internal energy states (given by 
the Boltzmann distribution) must be established 
solely by absorption and emission of radiation. 
This classic, beautifully simple derivation is well 
known, appearing in textbooks in quantum mechan-
ics.3  

Boyer's calculation relates to the second part 
of Einstein's paper, which investigates the motion 
of the atoms under the influence of radiation. In 
this much more delicate and intricate problem it 
is required that the mean square speed which 
atoms acquire because of their interaction with 
radiation of temperature T be equal to that pre- 
dicted by the equipartition law of statistical mech-
anics. Einstein demonstrates that this require-
ment is fulfilled, for heavy atoms moving slowly, 
only if the radiation density is given by Planck's 
law. It is this latter calculation (as refined by 
Milne) which Boyer extends to relativistic atom 
velocities and which leads to the inconsistency 
announced in the title of his paper. 

If true, such an inconsistency would have far-
reaching consequences, requiring, for example, 
fundamental modification in theories of early 
evolution of the universe.' One should also see 
the inconsistency between the Planck and Boltz-
mann laws for relativistic atoms by extending 
Einstein's simple, classic derivation of Planck's 
law given in the first part of his paper. 

In this comment we review the simple deriva-
tion of the Planck radiation law using quantum  

field theory,' which amounts to giving a modern 
version of Einstein's work. Inspection of the 
details of this derivation shows it is in no way 
restricted to nonrelativistic atom motions, but 
rather indicates consistency between the Planck 
and Boltzmann laws for any atom velocity. 

We suppose the system to contain atoms which 
may be in states A or B and a radiation field of 
photons y which can freely exchange energy by 
the reversible process 

B +y . 	 (1) 

Atom states A and B will in general describe cen-
ter-of-mass motion as well as internal electron 
motion. Thus, for example, a typical state A for 
a center-of-mass momentum 5 and electronic 
state 4, is IA) = I e li* R  41), where R is the center-
of-mass coordinate. 

Let N(A) and N(B) be the number of atoms in 
states A and B, respectively, when equilibrium 
is established at some temperature T. If P. and 
P. are, respectively, the transition probabilities 
per sec for the forward (A —B + y) and reverse 

+ y — A) reactions, the condition for equilibrium 
is 

N(B)P, = N (A) . 	 (2) 

The equilibrium ratio of numbers of atoms in 
states B and A is given by Boltzmann's law: 

N(B) e —EBibT 
MA) e —BA Ihr 
	 (3) 

where EA  and E B  are the energies of atoms in 
states A and B, and include both center-of-mass 
energy and internal energy. Then Planck's ra-
diation law, expressed in quantum language, is 
that 'h .., the number of photons of wave vector 
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1 k I = 0-1/c) and polarization state a in thermal 
equilibrium, depends only on frequency w in the 
form 

nk .cf = (e llw kr  - 1)-1  , 	 (4) 

with frequency co related to the difference in energy 
between states A and B: 

h co= EA -B B ' 

Transition probabilities are calculated in first-
order, time-dependent perturbation theory with 
atom-photon interaction H', 

H' -7-5— E-Di* X I me  c 

where me  is the electron rest massjo i  is the 
momentum of the ith electron, and A is the vector 
potential for the radiation field. The obvious ob-
jection to the form of H' being a nonrelativistic ex-
pression for the electron-photon interaction is 
really not relevant, since all we require is the 
ratio Pe/Pe . This ratio, given by Eq. (13) below, 
is independent of the matrix elements of H' be-
tween states A and B, and the same result for this 
ratio is obtained by using a relativistic form for 
11'. 

The vector potential A-  expressed in terms of 
annihilation (ae.a ) and creation (a t„,a ) operators 
for photons of wave vector and polarization 
state a is 

2irs.2c h  ) 112  

k,a 
2k,a W-112  11 

x (aka  eK• who 

	

+ ak a  e 
	

(7) 

where th .a  is a unit vector in the polarization di-
rection. Straightforward application of first-
order, time-dependent perturbation theory then 
gives 

2 

Pe 	 + 1) E (Ble 	i€1,,a' Pi A)1 2  . 	e 
(8) 

e2 

Pa =T 	• nk a (1-1  E KAI eirA Zk.a . i311B)1 2  y 	(9) rt M c  

where photon frequency w agrees with Eq. (5), 

hco =EA — EB • 	 (10) 

The photon momentum h k satisfies the momentum 
conservation, 

p=p'+hk, 

with p (ii') the center-of-mass momentum of  

elements in Eqs. (8) and (9) over center-of-mass 
coordinate R, setting the ith electron coordinate 
ri  = R + p i , with p i  the relative electron coordinate. 

Because of the Hermitian character of the per-
turbation matrices which determine these transi-
tion probabilities, 

(B I e - i;;;Z„.„ •P i l 	= ( 	• k  e i.r*".i I B) 

= ( A I e 4.71 t k .a  • r), 	* , 
(12) 

the ratio of the transition probabilities is indepen-
dent of these matrix elements, depending only on 
photon occupation numbers: 

Pn _ k a + 1  
PB 	nk .a  

The condition for equilibrium expressed by Eq. 
(2) implies that the ratio of transition probabilities 
equals the ratio of numbers of atoms in the two 
states A and B: 

N((B) e -E kr 
PB 
_a. 

N(A) 7g,Tirr  

Combining Eqs. (13) and (14) we obtain Planck's 
radiation law: 

nkei  = (eke,' 
r -- 1)-1. 	 (15) 

Compared with Einstein's 1917 derivation, this 
standard quantum-mechanical derivation differs 
in three respects: (a) spontaneous and induced 
emissions appear automatically from the boson 
character of photons, (b) detailed balance be-
tween forward and reverse reactions is an auto-
matic consequence of the Hermitian interaction 
between atoms and radiation field, and (c) no re-
striction on atom velocities (described by the 
states IA) and IB)) has been made. For rela-
tivistic velocities, in order to treat the atom as 
a "particle" having certain discrete energies al- 
lowed by quantum mechanics, one considers those 

energy levels to be levels of proper energy, since 
the only privileged frame of reference is the atom 
itself. Thus we can assign a proper mass M to 
the level A, and a smaller mass M' to the lower 
level B. This only changes the detailed form of 
EA  and E B, EA  = 	+ C2  p2)1/2, EB = (M' 2C 4  

+ C 2 11' 2) 1/2, but does not affect the conservation 
laws 1iw= EA -E B  and it 	+lii. Of course the 
photon frequency depends on 	and the 
direction of k relative to 	From the conserva- 
tion laws, one easily finds 

caw 2 A412) 

hco 2 [(M 
2c4 

c2p2)1 /2 -cp . , 

(5) 

(6) 

(13) 

(14) 

state A (B), as follows from integrating matrix 	where k is a unit vector in the direction of photon 
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propagation. This can be written, using My c2 
 = 	2c4  + c2p2 ) 1/2 , 	—M')c2  = E o = h w o, and 

=myir, as 

1 	(M+M')  
h = hce 

° (1—v • k/c) 2M • 

Reference 1 mistakenly assigns photons in the 
rest frame of the atoms (assumed the same for 
atoms in both upper and lower states) to have 
the frequency co o, which amounts to omission of 
the factor (M+M')/2M and thereby introduces an 
error in the analysis except in the limit M=M' or 
we' 0. 

Thus we conclude that Einstein's original simple 
derivation of the consistency between Planck and 
Boltzmann laws for atoms in thermal equilibrium 
with radiation holds as well for relativistic atoms. 
Note, however, that the Planck and Boltzmann 
laws are not form invariant under a Lorentz trans-
formation. The usual form for the laws is exhibit-
ed only in the zero-momentum frame of the sys-
tem of atoms and radiation which are in thermal 
equilibrium. 

We thank Dr. Henry Valk for calling Boyer's 
paper to our attention. 
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Introduction  

During the fall of 1964, I began the first year of my graduate studies 

at the California Institute of Technology. Shortly after the term began, I 

came across the book:' Probability and Related Topics in Physical Sciences, 

by Mark Kac. This book also contained three sets of special lectures by 

Uhlenbeck, Hibbs, and van der Pol. About the contributions by Uhlenbeck, 

Kac wrote in the preface: 
• 

"The third (and longest!) is Probability in Some Problems of 

Classical Statistical Mechanics. This chapter is supplemented by two 

lectures (reproduced in Appendix I) by Professor G. E. Uhlenbeck on 

the Boltzmann equation. It was indeed fortunate that we were able 

to include in this volume so lucid an exposition of the physical 

ideas underlying this difficult and important field and to secure 

the collaboration of the foremost authority on these questions! 

Our Chapter III is to a large extent a running commentary on 

some of the points raised in Uhlenbeck's first lecture and although 

the chapter is self-contained, the reader is strongly advised to read 

one in conjunction with the other.. Uhlenbeck's second lecture brings 

the reader to the frontiers of our knowledge and opens a vast field 

where opportunities for further contributions are almost unlimited. 

Our debt to Uhlenbeck is, however, infinitely greater. Almost 

all of Chapter III has been directly or indirectly influenced by 

discussions and correspondence stretching over almost fifteen years 

of friendship and scientific association." 

I soon learned that Kac and Uhlenbeck had just the year before moved to 

the Rockefeller University where Detlev Bronk was building a new mathematical 



and physical sciences addition to the University's traditional, outstanding 

medical research enterprise. By the end of the 1960's Bronk built programs 

in mathematical physics and in philosophy which were internationally recogni-

zed as preeminent in these specialties. Kac and Uhlenbeck directedthe 

efforts in mathematics and statistical physics. 

Late in the fall of 1964, I applied to Bronk for transfer to Rockefeller 

University in order to study with Kac and Uhlenbeck. I knew that the student 

body at Rockefeller was very small, and imagined that I might be able to work 

closely with these two men. The culmination of the usual sequence of procedu-

res for admission was a personal interview with Bronk. As soon as I entered 

his office, Bronk extolled my great good sense in having recognized the 

attractiveness of working under Kac and Uhlenbeck, and granted me admission 

to the graduate school on the spot! It is impossible to overestimate the benefit 

to me to have been allowed to study from 1965 to 1969 with Kac and Uhlenbeck. 

My thesis, "Contributions to the Theory of Non-Equilibrium Thermodynamics", 

resulted from a very active collaboration with both men. 

The present paper reports subsequent work in quantum statistical mechanics. 

Even though all of this work was done after I left Rockefeller, the influence 

of Kac and Uhlenbeck is still very strong. The basic underlying philosophy has 

been beautifully expounded by Uhlenbeck in Chapter 1 of Lectures in Statistical  

Mechanics 2 . The methodology chosen to implement this philosophy, however, 

follows from a technique which Kac has so successfully used in both mathematics 

and physics. The technique is to study a model system with two properties: 

1) enough simplicity to be tractable; and 2) enough richness to illuminate the 

"real" problem. This paper uses a model to explain the origin of irreversibility 

in quantum statistical mechanics. 



Contraction of the Description 

In classical physics, the relationships between the time reversible 

microscopic dynamics and the time-irreversible macroscopic dynamics has been 

understood since the days of Boltzmann and Gibbs. 2  The microscopic picture 

for N classical, interacting particles is given by a 6N-dimensional phase 

space, called r-space, in which the microscopic state of the N particle system 

is represented as a single 6N-dimensional point. The time evolution of the 

system is represented by a trajectory of points in r-space. The trajectory is 

the solution to Newton's equations of motion. For this reason, it is known 

that this description is time reversible. Boltzmann observed that for N 

particle, interacting systems the r-trajectory is chaotic, although strictly 

continuous and differentiable. Boltzmann associated measureable regions of 

r-space with macroscopic states of the system. One region was overwhelmingly 

the largest and Boltzmann identified it as the equilibrium region. This means 

that for almost all r-points in the equilibrium region, the macroscopic vari-

ables have their equilibrium values. The non-equilibrium regions of r-space 

are individually much smaller than the equilibrium region, and they are of 

great variety. A r-point initially located in a non-equilibrium region of 

r-space will surely go into the equilibrium region, where it will almost surely 

remain because this region is so large. The macroscopic variables reflect this 

asymmetric time course by changing from non-equilibrium values into the equili-

brium values. This is Boltzmann's argument for irreversibility in the macro- 

scopic dynamics. 2  

Boltzmann's ideas were vigorously attracted by Zermelo 3 , who invoked 

Poincare's recurrence theorem, "Almost every F-point will reappear in an 

arbitrary small sphere centered at its initial position at t
o
, the time origin." 



Thus, a r-point initially in a non-equilibrium region will certainly come 

back to that region even though a lot of intervening time is spent in the 

equilibrium region. This fact undoes the apparent irreversibility. Boltzmann 

replied that the recurrence of the r-point m?rely gave rise to fluctuations 

in the macroscopic variables, and that most of the time the r-point would be 

found in the equilibrium region; but in vain. 

Gibbs had a view of r-space which made Boltzmann's ideas manifest. He 

studied the behavior of an "ensemble" of r-points. An ensemble of r-points 

moves like an incompressible fluid in 6N-dimensions. Even though its shape 

will radically change in time, its hypervolume is invariant. For an ensemble, 

it is true that almost every r-point exhibits recurrence, but they do so at 

immensely many different recurrence times. Therefore, at any single time, the 

vast majority of the ensemble's r-points are in the equilibrium region of 

r-space. Associating the ensemble with the macroscopic description yields 

macroscopic variables which fluctuate and exhibit irreversible behavior. 

Appropriately chosen ensembles generate macroscopic descriptions which 

utilize relatively few macroscopic variables as compared with the 6N micro-

scopic variables. This reduction in the number of variables is called the 

"contraction of the description". 2  

Reduced Density Matrices  

It is desireable to translate the Boltzmann-Gibbs-Uhlenbeck explanation 

of the origin of irreversibility in classical physics into its analogue in 

quantum physics. On the one hand, we are immediately confronted with the 

difficulty of translating the idea of r-space into quantum mechanics. On the 

other hand we must avoid the ambiguities of "coarse-graining" r-space, which 

the classical ideas imply. It turns out that both of these dilemmas are 



avoided by taking a slightly altered perspective which is natural in the 

quantum mechanical setting. The solution is to employ a density matrix 

formalism and to achieve a "contraction of the description" by generating . 

"reduced" density matrices. 

The density matrix4  provides an alternative to the SchrOdinger equation 

L 9 — = at 

in the form 

iii at P = [H,P] 

H is the Hamiltonian. The right-hand side of (2) denotes the commutator of 

H and p 

CH,p] = Hp - pH 
	

(3) 

in which p is the density "matrix", or "operator", which is related to IP by 

P E 140><*1 

In (4), <0 denotes the Schrodinger wave function, 4,, in Dirac's ket notation. 

One way to implement the idea of "contraction of the description" while 

dealing with density matrices is to construct "reduced" density matrices. In 

order to illustrate this technique, suppose that we divide up a system into 

two parts: a subsystem, S, and the remainder of the system, R. We may 

associate a Hamiltonian H with the subsystem by itself, and a Hamiltonian 

HR  with the remainder by itself. Denote the eigenkets of H s  and HR  respectively 

by It> and 10.. The product kets, Ir>ls>, span the Hilbert space of the complete 

system, and the original Hamiltonian for the complete system may be written 

(1)  

(2) 



	

H= H
S 

1R + 1S eiD H
R 
+ H

I 
	

(5) 

in which H
I includes all interactions between the subsystem S and the remainder. 

R. If we wish to follow the time development of S while ignoring the details 

of R, we may use the reduced density matrix, - oRed' defined by 

PRed. 	
1r> 
E <riplr> 
	

(6) 

47= Trace
R 

p 

Operator Calculus  

In this section, several operator calculus results are summarized for 

subsequent use. 

To solve (2), it is convenient to introduce the "commutator operator", 

[H,.], defined by 

[H,•]M = HM - MH 	 (7) 

in which M is an arbitrary operator. While M acts in the original Hilbert 

space, [H,•] acts in the space of operators. It is called a "superoperator". 

The solution to (2) can be written 

p(t) = exp {_ 	t [H,-]} p(o) 	 (8) 

in which p(o) is the initial value density matrix (operator), and the exponen-

tiated superoperator is itself a superoperator which acts on p(o). An 

easily proved identity, for arbitrary M, is 

 exp { - 	t [11,•]} M = exp { - 	t H} M exp {i  t H} 
	

(9) 

6 

The utility of the reduced density matrix is enhanced when the "interaction 



• • • (15) 

picture" is used. Instead of solving (2) directly, as in (8), we look at 

cr, defined by 

p(t) E exp 	t [Hs  01R  is  OHR,-]} a(t) 
	

(10) 

in which (5) has been used. This yields an equations for a(t): 

iii a a(t) = [141 (t),•] a(t) 

in which H
I 
 (0 is defined by 

HI  (t)= exp{tT t (Hs  01R  + ls  ®H10) HI  exp 	t (Hs  1,1R  + is  6)HR)} 

(12) 

The solution to (11) is not as easy to express as was the solution, (8), to 

(2); because of the t-dependence in kW. For two different times, t and s, 

we find 

6(t), k(s) ] # 0 
	

(13) 

because pis  1R, HI ] ¢ 0 and [l s  c5D HR, HI ] # 0. 

We may overcome the communtativity problem expressed in (13) by introducing 

the "t-ordered exponential". Consider the general vector equation 

dt — a = M(t)Z d (14) 

in which a is an N=component vector and M(t) is a t-dependent operatorl(NxN matrix) 

acting in the vector space in which a is found. The solution to (14), with 

+ 
initial value vector ao , is 

t 	 t 	si 	 + it(t) = : + f ds M(s) 4a'o  + f ds1  f ds2 M(s1) M(s 2) ao o 0 	 0   
0 

t 	81 	8/1-1 
+ f dsi  f ds2 	f dsn  M(s1) M(s2 ) 	M(sn) ao  + 

0 	0 	 0 



t 	 gl 	 811-1 	
4- 

Im (1 + 	f dsi  f ds 2 	f dsn  M(s1 ) M(s2 ) 	M(sn)) an  
n=1 o 

t 

'IT_ exp f ds M(s)} a 
4-  
n  

0 
t 

The third equality defines the symbol z exp i f  ds M(s)} , which must not be 

confused with the ordinary exponential, exp { rtds M(s)}. A reverse t-ordered 

exponential also exists: 

t 	 S r1-1 
exp { f ds M(s)} E 1 + 	f ds

1 
f ds

2 
... f ds

n 
M(s

n
) 	M(s

2
) M(s

1
) 

n=1 o 

(16) 

It may be used to solve the vector equation 

d 41' - a = a M(t) at 

in which t denotes "adjoint". It also provides the inverse of a forward 

t-ordered exponential: 

exp {- f ds M(s)} = (./ exp { f ds M(s)}) -1  

We may now write the solution to (11) in the form 

a(t) = z exp {- h f ds [k(s),-]1 a(0) 
For arbitrary M(s), the analogue of (9) may be proved 5 : 

exp -.- f ds [k(s),-]} M = Texp {- f ds k(s)} M exp{ 	f ds HI (s)  

(20) 

Because Hs  1R  and is  11) HR  act in orthogonal subspaces of the complete 

Hilbert space, (10) can be written 

(17) 

(18) 

(19) 



P(t) = exp {- 	t(Hs  & 1R)} exp {- 	t (ls 	ER)} a(t) x 	(21) 

exp { —
i 

t(1
S 
 (:)H_

K
)1 exp { t — t(HS 	R)} 

This implies that the reduced density matrii: defined in (6) can be written 

PRed. (t) 
 = exp { - 	t HS } 
	<rla(t) I r> exp { I t HS } 

	

(22) 
Ir> 

Notice that all operators are now acting in the subsystem Hilbert space only. 

Cumulants and Stochasticity  

Equation (22) does not provide a closed description for o ' Red. (t) in terms 

of itself only, but depends upon the full density matrix, a(t). The idea of 

"contraction of the description" is to get a closed description in terms of 

fewer variables. This means that we must find a closed description for p
Red. (t). 

The technique for achieving this goal is exhibited below. 

In the model calculations described later, we will consider R to be a 

reservoir with which the subsystem S interacts. At t = 0, the reservoir R is 

assumed to be in equilibrium whereas the subsystem may be prepared so that it 

is in any state whatever. At t = 0 the interaction between S and R begins and 

as time proceeds, S and R both evolve in a complicated way. From (21) it follows 

that p(o) = a(o). We assume that the initial density matrix factors and may 

be expressed 

a(o) 	aS(°) 
	

(23) 

in which the superscript, eq., denotes equilibrium. Using (23) in (19), and 

then putting (19) into (22) yields 

t i t 	 i 	
[ 	 eq. Ir> ex { i t E exp { - — 1.1 } 1 <r1Texp { - — f ds 1.1 s , *Ha o) x a 	 p — P Red. (t) = 	t 	S 	 li 	I() 	S ( 	R 	 li 	S } 1 r>   o 

(24) 



Define the evolution superoperator, E(t), which acts on operators in the 

subsystem Hilbert space only, by 

t 
E(t) E

Ir> 

 <rIT exp{ - 	f ds [A (s),-]) aReq lr> 

 0 
	I 

Therefore, we can write (24) as 

pRed. (t) = exp { - — t HS} (E(t) a s
(o) ) exp { — t HS } 

From this form of pRed.(t),  it follows that 

	

i t 9 (t) 	[H
S' 

p
Red.

(t)]+  at Red. 

	

i exp { - 	t Hs } (( 	E(t)) E 1 (t) E(t) a(o)) exp { t Hs } 

It will be shown below that the superoperator combination (— 9t 
 E(t)) E

1
(t) 

3 

can be written 

( 	 E(t)) E
1
(0 E G(t) 
	

(28) 

Using (9) twice, and (26) once with (28), permits us to rewrite (27) as 

9t PRed. (t)  = [HS" .] PRed. (t) 4-ite  
- — t [HS'

•]} G(t) exp — t [H
S'

-]} p
Red.

(t 
{ 11 

(29) 

This is now a manifestly closed equation for the reduced density matrix (operator) 

PRed.(t). The first term on the right-hand side of (29) is the only term present 

if the subsystem S is decoupled from R. The second term involves a succession 

of three superoperators and is explicitly t-dependent. This t-dependence is 

the price paid in order to achieve the contraction of the description. Never- 

theless, it will be seen in the model calculations below that even this t-depend-

ence can be handled appropriately. 

to 

(25) 

(26) 

(27) 



The factorization (23) at t = 0 does not persist for t > 0 unless 

H = 0 in (5). When H
I 
= 0, G(t) vanishes. The resulting equation contains 

only the first term on the right-hand side of (29), and is a special case of 

(2). Consequently, it is equivalent with the SchrOdinger description in (1). 

When H
I 

0, G(t) does not vanish, and it is not expressible in the form 

of a simple commutator operator (superoperator), i.e., 

exp {-t [H .]} G(t) exp 
h 	S' 	

f iT tS' effective(t)'.] 	
(30) 

Therefore, (29) is not a special case of (2), nor is it equivalent to (1), with 

an effective Hamiltonian. 5  An effective, Hermitean Hamiltonian would imply time 

reversibility. We shall see that G(t) is structured so that there is time 

irreversibility. Nevertheless, G(t) will still imply conservation of total 

probability, just as does an effective, Hermitean Hamiltonian. 

Equation (25) exhibits the reduction of an exponentiated superoperator in 

the total Hilbert space to an exponential superoperator in the subsystem 

Hilbert space. This reduction may be expressed usefully by introducing operator 

cumulants. 6 ' 7  We may do so, because it is possible to interpret the act of 

reduction as a kind of "averaging". For an arbitrary superoperator in the 

total Hilbert space, M, the "averaged" value is a superoperator in the sub-

system Hilbert space with "averaging" defined by 

<M> E 	<rIM a
R
eqlr> 

1r> 

• The operator cumulant expansion is expressed 



• t 
exp{ 	ds [11,(s),-]1> s 	 (32) 

h 0 

 t 
exp { - --f ds 64,(s),•11 a Recl 'Ir> 

h Ir> 	 o  

t 
exp{ 	f ds G (n) (s)} 

n=1 0 

Explicit expressions exist for the nth operator cumulant, G (n) , in terms 

of the moments of WI. These moments are computed using the averaging defined 

in (31). Comparison with (28) verifies 

G(t) = 	G (n) (t) 	 (33) 
n=1 

The first two cumulants 7  are 

	

G(1) (t) =<- 
h 
 [W

I 
 (t),•]> 
	

(34) 

and 

G
(2) (0 = - 12  f

t
ds <[ 

h o 

Using (31) in (34) yields 

(t),•] [HI
(s),•]> - f ds G (1  ) (t) G ---(1)  (s) (35) 

0 

c (1)(t) = - i I›<=1 [ H, (0 , •] aReq1=> 
	

(36 ) 

= - — 	(<r1WI(0 aRecl 'ir>• - • <rlaR 	WI(t)Ir>) h i r> 

whereas in (35) it yields 

G
(2) (t) = - 	f ds 	(<rIWI (t) HI (s) aR71. 1r> • + • <rIaReq•  HI (s) W

i (t)Ir> 

h o 	Ir> 

t 

(37) 

- I (0 aR
eq. • Wi (s)Ir> - <rlk(s)aReq % Wi (t)Ir>) 

- f
t
ds G (1) 	G(1)  (s) 

12 



in each of which the dots show where to place the subsystem operators upoh 

which these superoperators act. 

Notice that G
(1) (t) acts on the subsystem Hilbert space operators just 

like an effective Hamiltonian, e.g. like the right-hand side of (30). 

G(2) (t), however cannot be rewritten in the same way. The higher order 

cumulants also behave like G
(2) in this regard. 

The relationship between the averaging defined by (31) and truly stochastic 

averaging may be examined by studying the "correlation functions", such as in 

(37): 

et, 	et, 
C(t,$) E 2 <rill

I
(0 H(s) a

R
eq.

Ir> 
ir> 

(38) 

I <rIH
I
(t) a

R
eq 'I> 	<r'IH

I
(s) a

R
eq•'r,> 

1r> 	 Ir> 

The subtracted term in (38) corresponds with part of the last term on the 

right-hand side of (37), and can usually be omitted because G
(1) 
 = 0 in 

many model calculations. It's included here for generality. The question 

is whether C(t,$) vanishes as It-s1 -4- co? If it does, does the "correlation 

time", T
c

, exist? 
CO 

dT T C(T) 
0 

T
c 

	 (39) 

f dT C(T) 

in which T E It-si. For truly stochastic processes, both of these conditions 

are met. For reduced density matrices, these conditions must be demonstrated 

explicitly for each specific model. In anticipation of the outcome of these 

calculations for the models discussed later in, this paper, it may be claimed 

that the asymptotic condition is fulfilled by an application of the Rielmann-

Lebesgue lemma, and the correlation time exists as well. Therefore, the 

1; 



reduced density matrix behaves as though it were the average of a truly 

stochastic process. 

Characteristic Functionals  

Following the stochastic analogy to its logical conclusion suggest the 

constructions  of the characteristic functional for the process. The charac-

teristic functional for a stochastic process is the generator of moments Of 

all orders. Functional differentiation n times generates the nth moment. 

Using the cumulant expressions in terms of moments 5  provides cumulants to 

order n. Usually, the cumulant expansion (33) does not sum in closed form. 

Nevertheless, the characteristic functional can be found in closed form, in 

some cases. The Gaussian case has these properties, 5  as is discussed later 

in this paper. 

In order to construct the characteristic functional, we must introduce 

an "auxiliary" superoperator 5  with respect to which functional derivatives will 

be taken. This superoperator is denoted by K(t), and it acts in the subsystem 

Hilbert space. 
ti 

The fundamental evolution superoperator is given in (11), and is [H I
(t),-]. 

It acts in the complete Hilbert space. To construct the characteristic func-

tional for it, the auxiliary superoperator and it must be combined. Since 

these two superoperators act in Hilbert spaces of different size, their 

combination must be approached with care. The required care is achieved by 

explicitly using an eigenket representation. 

The eigenkets of H were denoted by IS> earlier. For the present purposes, 

we will also denote them by III>, 

the complete Hilbert space. Its matrix elements with respect to the subsystem 

Hilbert space are 

I v> 111'>, and Iv'>. Let M be an operator in 



pvE <1.11M11°' 
	

(40) 

This matrix is still an operator in the remainder of the complete Hilbert 

ti 
space. We may now write the action of [H I

(0,•] on M in the form 

	

(t) M - M W (t) 
	

(41) 

111> <Pl il,(0 111 1 ><P 1m1 v>‹v 1 - 111> <P114 1v 1 > <vi lW col v><v 1 

in which summation over repeated labels is implicit. This implies that the 

ti 
superoperator, [H

I
(t),-], has subsystem "matrix" (tetratic) elements given by 

	

( Ek(t) , * 1) 11.4ovt 

	 (42) 

, 	. 	 , .1v> 

	

<111111 (tilp'). 	 [ At)I 

	

vv
, 
	 1.41 	

HI 

The dots indicate the location of operators in the remainder Hilbert space when 

this superoperator acts in the remainder Hilbert space, in parallel with the 

explicit case in (41). The auxilliary superoperatos, K(t), can also be given 

explicit labels for the subsystem Hilbert space: K(t) K „(t). pvp v 

We now form the subsystem scalar combination of K(t) and [HI (t),•], which 

is still a superoperator in the remainder Hilbert space: 

L 	E 	G 	K 	 ([171,(t),'D pvli c v , 

	

111> lv> 	1141  

The characteristic functional can now be written 

co 

•[K(t)] E 	<tli expq; f ds L(s)} aReqlr> 
ir> 

It is necessary to use the t-ordered exponential here because L is still a 

superoperator in the remainder Hilbert space spanned by the eigenkets Ir>. 

(43) 

(44) 



The characteristic functional, however, is an ordinary scalar function. 

ti 
The first two moments of [11

I
(t),•], in the sense of (31), are given by 

<0I (t),•]) 	> = 	
 0[K(t)11 	 (45) pvp'v' 	K 	,(t) uvu v 

62 

<(E I (t) ' .1)uve$ °I(s)'.1)6Bu'vt> =Kpv68
(t) 	K08p , v

,(s) 0[K(011
K=0 

in which it is indicated that K is set equal to 0 after the functional deriva-

tives have been taken. It is straightforward to check that this procedure 

leads to (36) and (37) for the first two cumulants. 

The chief advantage to using characteristic functionals accrues when they 

can be expressed in closed form, i.e., the summations in (44) can actually be 

performed. The most frequently encountered case where this is so is the 

Gaussian cases. In the Gaussian case, 0[K(t)] turns out to be an ordinary 

exponential of a quadratic form in K. This does not mean that the operator  

cumulants associated with
I
(t)-] vanish after 2nd order. 5  In a non-operator 

context, a Gaussian characteristic functional leads to cumulants which do 

vanish after the 2nd cumulant, and this fact is often used to characterize such 

processes as Gaussian. When non-commutativity is present, as it is with 

operators, a Gaussian process will have non-vanishing higher order cumulants, 

but will have a Gaussian characteristic functional. 5,8  There has been much 

confusion in the literature with respect to these facts. 

Connected Time Graphs and Fermi's Golden Rule  

In whatever context cumulants are used, they may possess an extremely 

useful property, called the "cluster" property or the "irreducible graph" property. 

In the present context, this property relates to the time dependence of the 



cumulant operators. The nth order cumulant in (33) can be written in terms 

of an n-1 fold integral over an integrand which is a function of n time 

variables. The "cluster" property, or "connected time graph" property, 

states that the integrand asymptotically vanishes whenever the n time vari-

ables are not clustered together within an interval of order T
c

, the 

correlation time. 

Looking back at G
(2) 

 in (37), the connected time graph property implies 

that for t >> Tc, G
(2) 

is independent of t. This is because the s-integration 

only contributes a non-vanishing value for it-sI 	T
c

. For It-s1 >>
c

, the 

integrand virtually vanishes. As a result, for t >>
c 

G
(2)

(0 is essentially 

a constant. The higher order cumulants, G (n)  with n > 2, exhibit this property 

in a similar way, except that generally G
(n) 

is a constant times a factor of 

-n-2 
order T

c 
, whenever t >> T

c
. T

c 
is a dimensionless quantity containing the 

- factor T
c

. The other factors are the ratio of a matrix element of H
I 

and h, 

E 
T m --  T 
C h c 

(46) 

in which E is a measure of the extent of the range of values produced by 

ti 
matrix elements of HI . We can be more explicit with particular models. 

The preceding points have the following significance. If T
c 

is so 

short compared with all other time scales in a particular problem, that it can 

be approximately set equal to zero, then we can view the result as a Markov 

process. 5  When this is true, the cumulants of order greater than n = 2 vanish 

-n-2 
because they are proportional to T

c 
it,  0. Thus, in the Markov approximation, 

G (2) 
alone provides the full result of the cumulant expansion. In examples 

in which the interaction between the subsystem and the remainder of the complete 

17 



system is electromagnetic, the coupling strength can be measured by the fine 

structure constant, a. The cumulant 
G(2m) 

works out to be of order a
m

. 

Usually, we argue that this makes the higher order terms small because 

1 	 ^2(m-1) 
a 	. However, we see here that 

G(2m) 
is really of order a

m 
 T

c 	
and 

137

that a alone does not tell the whole story. In fact, if Tc  were a sufficiently 

long time, then it could easily be more important than a, resulting in impor-

tant contributions to the cumulant expansion by cumulants of high order. 

Generally, we find that a and T
c 
both conspire to render higher order cumulants 

negligible, when T
c 
is small, making the validity of the G

(2) 
approximation 

even more secure. 

We might have tried to solve (29) for the reduced density matrix using 

ordinary perturbation theory. Fermi's Golden Rule could have been applied 

to get the rate of change to lowest orders in the fine structure constant. 

It is well known that in many situations, this procedure gives good results. 

The cumulant approach leads to G
(2) to lowest order in the fine structure 

constant. G
(2) agrees with Fermi's Golden Rule, but it does so while it is 

the argument of an evolution exponential, as in (32). If this exponential 

is expanded, the linear term in G
(2) is precisely Fermi's Golden Rule for the 

perturbation expansion. However, all the higher order iterations of the 

expansion of the exponential of G
(2) yield an infinite subseries of terms from 

the ordinary perturbation expansion. In this sense, G
(2) , is a much stronger 

result than Fermi's Golden Rule, and entirely justifies using Fermi's Golden 

Rule as the argument of an exponentiated  rate law, as is so often done. 

Moreover, for small T
c' 
 we see that G

(2) is a very good approximation to the 

entire cumulant expansion. This is why Fermi's Golden Rule works so well 

in so many cases. 



In the model calculations which follow, it will be necessary to establish 

a 

the size of T
c 

in order to apply these results. 

The Models  

The model calculations which follow are contractions of exact dynamical 

equations. First, the Hamiltonian for the complete system is given for each 

model. Next, the specific nature of the contraction for each model is stipulated. 

Finally, the characteristic functional for each model is constructed. The char-

acteristic functional can be used to obtain transition rates and energy shifts 

to any order in the coupling constants by application of functional differen-

tiation. Expressions for these kinds of quantities are exhibited for these 

simple models. 

All apparent stochastic properties are the result of the contraction of 

the description. In each case this contraction is accomplished by construction 

of reduced density matrices. No a priori stochasticity is inserted into the 

original, complete system Hamiltonians. For this reason, these calculations 

explain the origin of stochasticity, and irreversibility, in quantum statistical 

mechanics, and show how these properties emerge from the underlying exact, 

reversible dynamics. 

Two models are considered. In each model the subsystem is a simple quantum . 

mechanical system while the remainder of the complete system is a quantized 

boson field comprised of either photons or phonons. The boson field serves as 

a thermal reservoir. The reduced density matrices to be constructed describe 

the simple subsystem behavior. It is shown that the contractions employed, 

which eliminate the boson fields, result in Gaussian, non-Markovian processes 

for the subsystem description. 

The total Hamiltonians for the complete system in the two modelsgpaee: 



Model 1
5) 	 . H = HB  1P  + 1B  0Hp + HI 	 (47) 

1 
in which HB  is the Hamiltonian for the interaction of a spin Tmagnetic 

moment with an external magnetic field B = Bk, 

et -> I AB 
HB 	a = 	• B = 

2mc 	2mc 
a
z 

where a z 
is a Pauli matrix. Hp  is the Hamiltonian for photons 

Hp  = 41 t wk (a4  a4  + 
1 
 ) 

kA 	kA kA 

in which a
t is the creation operator for a photon of polarization A, propaga-

tion vector k, and frequency W I(  = elk'. The interaction Hamiltonian, H I , is 

et 
c 
 -> 

HI 2m 
= — a • B(r) (50) 

in which B(r) is the magnetic field associated with the photons through the 

plane wave expansion in volume V. 

	

B(r) _ Frt v 1 	1- 
c fitxa 	exp[i I•r]a -ikxe 	exp[-i k•r]a 

V 	4.1' 

	

r-k 	 kA 	 tA 	 tA 	 kA 
(51)

 in which e is the polarization unit vector for polarization A and propagation 

4. 
vector k. The interaction Hamiltonian in the interaction picture, in accord 

with (12), is 

ti 	e$i inta
z 4  -intaz Frt 	

4. 4. 	 4. 4. 

H
I
(t) 	

2mc e 	

ik-r-iwitt t  -ik-r+iu->t 

a e 	
k 

• 	
V 

41 ---- i(11 x 	) a 	e 	-a 	e 
kA 

✓ 
g 	tA tA 
	-ate 

W; 

(52) 

where n = eB 
2mc 

Model 2
5) 

+ lc  6) Hp + HI 	 (53) 

(48)  

(49)  



in which H is the Hamiltonian for a charged particle with charge Ze in an 

external potential 4(r), 

4. 4 

HC 	
2m + Ze 4)(1) 
	

(54) 

Hp is the Hamiltonian for phonons 

	

Hp = h w (bt  b +- ) 	 (55) t it 	k 	2  

• 	 4 
in which bt is the creation operator for a bulk phonon with wave vector k and 4 

,, 
frequency w+  = clic'. The speed of sound, c, in this relation is determined by 

k 
the bulk modulus B and the average mass density p o  through the identity 

c2  = B/ p
o
. The interaction Hamiltonian is 

	

H = Ze f d3r  t 6P(ri) 
	

(56) 

in which 

	

4. 4 	 4 4

1 t 
) 

ik-r 1 	 -ik-r 
b 	(57) is p (P) = -q 	1 	4/71- 	(w+  e 	b+  + w+  e 

	

k 	k ° ,54; C k2Vwt 	k 

4 
and q

o 
is the average charge density of the medium. The summation over k is 

bounded by the Debye frequency, i.e., w+  wri . The interaction in (56) is 
k 

the instantaneous Coulomb interaction between the bulk, longitudinal phonons 

and the charged particle. The interaction Hamiltonian, in the interaction 

picture, in accord with (12), is 

I 	
= -Ze q

o 
1 

   

4w 	i 	• 
it;; 

6(w
D
-w) 	exp[K t He

] e 	exp[- t H
C 
 ] e 	b+  

k k2  

 

0 
C 

+ exp[ - t H
C 
 ] e 	exp[- t HC  e 
	bi 

	

-ik.r 	 iwitt t  

	

4. 4. 	 • 
	 (58) 



in which 0(WD 
- w

+
) is the Heaviside step function which guarantees that 

k 

+ 	
1 

w
D
. In model 1, a spin magnetic moment is interacting with the 

k 
magnetic fluctuations of the photon field. These fluctuations give rise to 

an anomalous magnetic moment which =rbe calculated. The treatment here 

is non-relativistic, which is known to give the wrong value for the anomalous 

magnetic moment, even the wrong sign. A relativistic treatment is known to 

give agreement with measurements. Our purpose here, however, is to exhibit 

the technique described in this paper, and this can be most simply achieved 

by looking at the details in Model 1. For our choice for the analogue of 

a
eq. in (23), we choose the pure state density matrix generated by the vacuum 

state of the photon field 

Creq. 	lo> <01 
	

(59) 

in which lo> denotes the Dirac vacuum state for the quantized photon field. 

Thus, the magnetic fluctuations are vacuum fluctuations which effect the magnetic 

moment. 

In Model 2, the phonons are filling the role of a thermal reservoir. For 

the analogue of aR
q. 
 in (23), we choose the canonical density matrix for phonons 

at temperature 'T. 

ar' 	n exp[-8h wit  bit  bit](1 - exp[-8h wit]) 	= 
kRT 	

(60) 

When the temperature, T, is set equal to zero, the expression in (60) reduces 

to the phonon analogue of the vacuum density matrix for photons given in (59). 

Because of this, we can deduce results for Model 1 at non-zero temperatures 

by comparison with the results for Model 2. 

The characteristic functionals for these two models are constructed 



according to the procedure 5  exhibited in equations (42), (43), and (44). 

For Model 1, define the subsystem matrices 

inta 
M  ; (t)  . _ i  eh irYWR (it A) 	

(eft 
 + . 

, expr-i(t:-w t)] 
PP 	

(k x E )' e 	sZ 4'  — 	z  

	

2mi/w 4, 	 ae 
, 

t 	
k 	 UP 

into. 	

t 

74(t)( 4.‘ . i  eh /FWE 4. 	

(61) 

. 	 z 4.  -inta
z . uu , exp[i(k-r-co t)] -141 , , 	 (k x E 

2mVw 	4.  )• le 	ae 	
4. 4. 

t 	
k 	 t 

In addition, define 

Kf(11'A)(t) 
=yptv 

 ,(t) 8 
vy 

 , M (t' A) (t) 
p 	 pp' 

(62) 

K (ic,A) 	 tA) (t) = Kowv ,(t) 

4(t,A) (t) . 1  v (t) 8 	O-t,A) vy' N pp, (0 

b(t,A) 	1 Km 	= 	Kuvp , v ,(t) 8 UU 
	v' 
, N ( ' A) (t) ty  

These definitions greatly simplify the analysis based on (43). The superscripts 

f and b refer to forward and backward time ordering which result from the time 

ordering in (44) and the commutator in (43) in close parallel with identity (20). 

For the characteristic functional for Model 1, we obtain s)  

1 	r 	A) 	f(t,A) 	(t,A) 	b,A) t[K(t)] = xpr- 	dti 	dt2  L [1(1/  ' (ti) Km 	(t2) + Km 	(ti) Km 	(t2) 
0 	o 	ka 

(t,A) 	b (t, 	 tip (la) 	f(1P 

	

- KM 	(tl) KN 	(t2 ) 	KN 1 (tl) KM 	(t2)]] 	(63) 

which is manifestly Gaussian. 

For Model 2, define the subsystem matrices 

tuo„.  
Mp

(
p
1 	 1 	k ) 	 dr---1 47 ,(r,t) = - Ze q 	 —„ — (exp[-ft.1])

pp 
exp[i(w

pp
, + )t] -(64) 

° 	C 	
4%, 

k
2 

Po  



(11(r,) 4' 	 1 	wt 4n 
N ,t) = - Ze q 	 — (exp[i t4]), exp[i(w , - w)t] 
up 	 o 474; c 	LV k

2 	 up 	up  

in which w 
UU 
 , = (E - Eu ,) where E

u 
and E

u
, are eigenvalues of H

C 

corresponding with the eigenkets lu> and lu t > of Hc . We will also need 

the analogue of (62) for this model. The corresponding definitions will 

look just like (62) except that it will not be necessary to include the 

parameter A. For the characteristic functional for Model 2 we obtain s) 

co 	I 	 e 	4. 

[ 

I( f(k) 	b(t),. ,1 ( f(k
4  

	

),_ , 	1 	b(t) 	oat)  
4[K(t)] = exp - f dt1  f dt2  1 e(wp-w4) 1  Kti 	(t1)-Kti 	kt34 Km 	tr2) 	Km 	(t2) 	

t. 
° 	o 	o 	it 	k L 	 1-p(t) 1-AK 

(4.1 (t)(t1 ) 	41()(t1)) KN(k)(t
2)  1-p(t) 

1 	111 (t) (t2 ) Pal)  1..1] 	(65) 
1-p(t)1 

in which p(t) E exp[-ehw4. ]. This characteristic functional is also Gaussian. 
k 

The structure of the 40[K] in (65) reduces to the structure of the 40[K] 

in (63) when T 0 (3+-). Conversely, the results in Model 1 for T # 0, can 

be obtained by generalizing (63) to (65), provided that the e(w D-w4.) is left 
k 

out in the photon case. 

In both (63) and (65), the itsummation may be replaced by an integral in 

the infinite volume limit according to the limit 

wm 	2n 

	

• 	V 	f dw w2  f d4 f de sine ... 
(2nc) 3  o 

In Model 1; the upper limit for the w-integration, w M' 
is set equal to 

h 
as is customary in non-relativistic treatments of this kind. In Model 2, 

wm  is simply WD, the Debye frequency. The c in (66) is the speed of light 

for Model 1, and is the speed of sound for Model 2. The remaining factor of 

V which is explicit in (66), cancels the normalization factors of Ai in (61• 

(66) 

MC 2  



or (64) when these expressions are put into (63) and (65) by means of (62). 

We may view the results of this treatment of the k-summations in (63) 

and (65) as time correlation functions. For example, the k-summation of the 

f(TC 
 product K

,A)
(t1) K

A) 
 ' (t2) in (63) contains the w-integral: 

f dw w 3 
 e -iw(t

1 -t 2) 	
(67) 

0 

-i(ti-t2) e 	
(-i(t

1
-t

2
)) 2 	 (-i(t

1
-t

2
)) 3  

	

wM 	iwM(t1-t2
) 3 	

113 M 	
-iw

M 
 (t

1  -t2 )+6 	
113 M 	

-iw
M(t1-t2) 

	

3 
	

2 

6 	
-iw

M
(t

1
t2) 

6  
- 	 e 	 + 

	

(-1(tl-t2)) 4 	 (-1(t
1
-t

2
))11  

An application of the 	i(mann-Lebesgue lemma to the left-hand side of (67) 

guarantees that the integral vanishes in the limit t l-t2  4- co. This is mani-

festly the case on the right-hand side of (67). Moreover, the rapid oscilla-

tions of the numerator exponentials on the right-hand side of (67) causes the 

correlation to die off much more rapidly than the simple power law denominators 

alone would suggest. These features are characteristic of the correlation 

functions for both models, and justify the existence of re  in (39). 

Typical Model Results  

The reduced density matrix for Model 1 is a 2x2 density matrix. Since it 

is Hermiteair, it may be expanded in terms of the Pauli matrices. When this is 

.done, the coefficients of the Cartesian Pauli matrices turn out to be the 

1 
Cartesian components of the magnetization vector for the spin y magnetic 

moment.
5) Working out the 2nd cumulant contribution to (29) yields the Bloch 

magnetization equations: 

	

1 	 1 
	 (68) 

r 

	

( 	 (t) 

	

dt z t) = - 
' 	T 	z 



d
t  Mx 	

1 
(t) - 	(E

2  E1 
 ) M (t) + —

1 
(AE2 	 T 

- AE
1
) M

y
(t) - 	M 

x
(t) 	(69) 

d 	 y 	t 	
r 
—1 

 

- m
y 
 (t) = - 

1
- (E

2 
 - E1 

 ) M
x 	

- 
E

- (AE
2 	 T

r 
M - AE

1
) M

x
(t) - 	(t) 	(70) 

dt 	 y 

in which E = 42-‘8, E1 = - 	
1 

- 
2 e5h 

 B
3 
and 	 (71) 

2 	2mc%..,  	 T 
r 	

3 	5 8 
m c 

w 
1 e2t3M  

	

f 	3 	1  
AE 

	

J 	w 	 dw 
2 3w 5 2 	E2-E1 

c m o 

1 e413 
 f

(614  w 3 	1  
AE — — 
1 3w 5 2 	 E

1
-E

2
iw 

dw 
c m o 

The "longitudinal" term, Mz  comes from the diagonal part of the reduced density 

matrix, whereas the "transverse" terms, M
x 

and M
Y' 
 come from the off-diagonal 

part of the reduced density matrix. The full equilibrium result of these 

equations is Mz 
= 1 and Mx = M

y  = 0. This is a zero temperature result. For 

T # 0, Model 2 leads to a related result for full equilibrium, a reduced density 

matrix identical with the canonical density matrix in terms of the eigenenergies 

of Hc . The energy shift formulas in (71) provide corrections of first order in 

the fine structure constant, a, to the eigenenergies of H B . These corrections 

do not show up in the equilibrium result, but do contribute an "anomalous mag-

netic moment" corrections) to any resonance experiment. Similarly, for Model 2 

with T # 0, any resonance measurement would involve order a corrections to the 

energy difference factors which are the analogues to AE 2  - AE1  in (69) and (70). 

In general, 
G(2n)  provides equilibrium results with energies corrected to order 

an-1 and resonance results with energy differences corrected to order a
n

. 

Equations (68) - (70) are the most simple example of this behavior. However, 

we neglect higher order cumulants, 
G(2n) 

for n > 1, not so much because they 

lead to corrections of order a
n-1 and a

n
, but because the correlation time 

built into (63) and (65) is so short compared with the relaxation time, which 



Tis T — in (68) - (70). Obviously, by taking B very small, the relaxation time, 
r 

T
r
, becomes very long, according to (71). The correlation time, on the other 

2 mc hand is determined by wm  - 	. The magnitude of this correlation time is 

found by exploring the details of the correlation functions discussed in the 

last section. For Model 1, we have
5) 

wm 

f dw w 3  cos[(w+ALOT] = C(T) 
	

(72) 
0 

for purely "longitudinal" couplings in (29). These are the diagonal density 

matrix element transition rate correlation functions. The term Aw is equal 

1 
toli (E2-E1) = eB . The integral is elementary and gives the analogue of the 

mc 

real part of (67): 

3 

	

3wM 	 wm 
 2 

T
M 

C(T) = — sin[(w +Aw)T] + — cos[(w +Aw)T] — sin[(w
M- 

LO +AT] (73) If- 	 M- 

	

T2 	 T  

6 
- 	 6 cos[(+Aw)T] cos[(wmpw)T] 

4 	 T4 

It can be shown that only -Aw leads to interesting results, whereas +Aw leads 

to results which can not satisfy energy conservation. For short times, all 

of the terms in (73) must be combined to yield finite behavior, but for long 

times, the leading term dominates. An application of the Dirichlet integral 

• lemma which is a companion of the Rie?mann-Lebesgue lemma implies 

sin[(wm Aw)T] 

W 
f dT g(T) 	 - g(0+) 
0 

(74) 

for any smooth function g(T). The scale of this approximation is set by 

1 . t 	 -1 
— . For an electron, we get wm  = 1.3 x 10

-21 sec, which is much less 
1424 	mc2  
than T

r' 
even for very large magnetic fields, B. 

The Markov limit of G
(2) 

provides an irreversible dynamical description. 

2_7 



The non-zero temperature generalization of Model 1 which is analogous to 

Model 2 in structure can be used to construct a G
(2) 

for T # 0. The corre-

sponding reduced density matrix is irreversibly driven by G
(2) 

toward the 

Helmholtz free energy minimum appropriate at temperature T. The equilibrium 

value agrees with the Boltzmann distribution in unshifted energies. Resonance 

values induced by external couplings involve energies shifted to first order in 

the fine structure constant a. The approach to equilibrium is accompanied by 

a monotropic decrease in the free energy. 9  In an earlier, cruder model const-

ruction, 9  I was able to prove this irreversible, monotone behavior of the 

Helmholtz free energy while commemorating Mark Kac's 60 th  birthday. It is a 

double pleasure to now commemorate his 65th . 

2.3 
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Annual Report for NSF Grant PHY-7921541 by Ronald F. Fox 

"Fluctuation Phenomena in Thermal Physics" 

This report covers the third and final year of activity under this grant. 

In December, 1982, a graduate student, Barry J. Cown, concluded hig Ph.D. 

dissertation: "Stochastic Near-Field Theory and Techniques for Wideband 

Electromagnetic Emitters of In-band and OUt-of-band Frequencies", under my 

supervision. Dr. Cown is an applied physicist working on radar problems at 

the Engineering Experiment Station here at Georgia Tech. This work represents 

a very applied utilization of my expertise in stochastic processes. 

Another graduate student, Byron Burel, who will earn his Ph.D. in June, 

1983, has concluded his studies of light scattering from a fluid in a thermal 

gradient. These studies were designed to test a theory for hydrodynamic 

fluctuations in a fluid far from thermal equilibrium. The fluid is driven 

to a steady state by imposition of a thermal gradient. The thermal gradient 

induces spatial dependence in ali fluid - properties, including the dissipative 

parameters such as viscosity and heat conductivity. Cohen, Dorfman, and 

Kirkpatrick have used kinetic theory to show that a major enhancement of 

Rayleigh scattering is to be expected under appropriate conditions. This is 

to be contrasted with the earlier work which showed the modification of the 

• 
Brillouin side bands under the same conditions, but to a much less detectable 

level. I reviewed the Brillouin situation in the paper: "Tasting Theories of 

Nonequilibrium Processes with Light-Scattering Techniques", J. Phys. Chem. 

86, 2812 (1982). Recently, Ronis and Procaccia confirmed the work of Cohen, 

Dorfman and Kirkpatrick for the Rayleigh line. Both groups, however, have 

chosen a situation in which the spatial dependence of the transport coefficients 

can be ignored. Burel and I have attacked the much harder problem where this 



dependence is not ignorable. 

The problem of hydrodynamic fluctuations away from equilibrium in the 

non-linear regime continues to provide debate among theorists. My paper: 

"Stress-Strain Fluctuations in Non-linear Hydrodynamics", Physica 112A, 

 505 (1982) discusses the approach of Bedeaux and Mazur which I have 

criticized. 

Having decided that hydrodynamics may not be the best context in which 

to test non-equilibrium fluctuation theory, work commenced on dye laser 

fluctuations. This context simultaneously involves non-equilibrium fluctua-

tions, multiplicative stochastic processes, and non-Markovian processes. 

In the last regard, a paper: "Correlation Time Expansion for Non-Markovian, 

Gaussian, Stochastic Processes", has been accepted for publication by Physics 

Letters. Collaboration with Raj Roy, an experimentalist who recently joined 

our School of Physics provides added impetus to this work on laser noise. 

Two papers appeared from Ph.D. work of Ulrich Steiger, who graduated 

two years ago. They were: "Coupled Translation and Rotational Diffusion 

in Liquids", J. Math. Phys. 23, 296 (1982), and "Boson Operator Representation 

of Brownian Motion", J. Math Phys. 23, 1678 (1982). This work provides a 

remarkable representation of diffusion processes in quantum field theory 

language. The objective of these studies is a better understanding of 

diffusion controlled reactions in liquid solvents. 

My program of study of correlation functions using cumulant methods lead 

to a direct confrontation of the question of long-time tails. In June, 1982, 

I attended a conference on Nonlinear Phenomena in Fluids at Boulder, Colorado 

and gave a talk: "The Long Time Tail Conumdrum in Nonequilibrium Statistical 

Mechanics", to appear in Physica A. I addressed the computer simulation, 



theoretical, and experimental bases for long time tails in diffusion processes. 

I enunciated a variety of qualms regarding the firmness of each type of 

evidence. A much more detailed account of my objections: "Long Time Tails 

and Diffusion", will soon appear in Phys. Rev. A. Three incidental papers 

were also produced during this period of research. "The Ideal Gas and the 

Second Law of Thermodynamics", Am. J, Phys. 50, 804 (1982), presented my 

thoughts after my encounter with I. Prigogine in 1981. "Elementary Analysis 

-4- .4- 	-4- 
of Electric Dipole Transitions Induced by Semi-Classical A•p and E.r

-4-  
 Pertur- 

bations", written with Bill Harter, is submitted to Am. J. Phys. It clears 

-4- -4- 	-4- 
up a long standing, published confusion about A•p versus E.r

-4-  
. The resolution 

involves a gauge transformation, originally devised by Maria Mayer in 1931! 

This paper is relevant in multiphoton processes in molecules. The third 

paper is a remark about a paper recently published in Phys. Rev. Letters. My 

paper, with H. A. Gersch: "Critique of 'Quantum Statistics for Distinguishable 

Particles",shows that the paper critiqued does not achieve its claimed 

objective, the establishment of quantum statistics using an argument based 

on distinguishable particles, but instead contains a blunder, 

Overall the year has proved prOductive. Research activity has shifted 

towards quantum noise problems. 



"Analysis of Coupled Translational and Rotational Diffusion Using Operator 

Calculus," by Ulrich R. Steiger, Ph.D. 1981. 

SUMMARY 

The equations for coupled translational and rotational diffusion 

of asymmetric molecules immersed in a fluid are obtained. The method 

used begins with the Kramers-Liouville equation and leads to the 

generalized Smoluchowski equation for diffusion in the presence of 

potentials. Both external potentials and intermolecular potentials are 

considered. The contraction of the description from the Kramers-

Liouville equation to the Smoluchowski equation is achieved by using a 

combination of operator calculus and cimulants. Explicit solutions of 

these equations are obtained in the two-dimensional case. The formalism 

also allows the calculation of corrections to the generalized Smoluchow-

ski equation. Smoluchowski's result is precisely the second cumulant, 

in the cumulant expansion. 

The next non-vanishing term, the fourth cumulant, leads to dif-

fusion equations with position dependent diffusion coefficients. The 

higher order curnulants lead to evolution equations for the reduced 

probability density which contain partial derivatives of order m with 

m > 3. Explicit expressions are given up to the sixth order in the 

cumulant expansion for translation diffusion. From a practical point of 

view, this formalism is very useful because partial differential equa-

tions can be solved numerically by using a finite element calculation. 

The contraction of the Liouville-Kramers description into the 

Smoluchowski description is achieved by using a creation-destruction 

operator representation. In an appropriately defined inner product 

space, these operators possess the operator algebra of boson operators 

in quantum field theory. The discovery of this representation for the 

Liouville-Kramers description including rotational effects greatly 

farilitatni nhtpininn thn CrrInl!trknlactei r,nn+?,7irtinn 



"Stochastic Near-Field Theory and Techniques for Wideband Electromagnetic 

Emitters at In-Band and Out-of-Band Frequencies," by Barry J. Cown, Ph.D. 

1982. SUMMARY 

Antenna systems play an important role in the defense of both the 

civilian and military populations against incoming threat missiles. 

Typical antenna installations aboard surface ships or at Army field 

sites may have various radar, navigation, and communication antenna 

systems located within a relatively small area. The scattering and 

coupling of electromagnetic energy among the various antennas can cause 

severe degradations in the ability of the antenna systems to perform 

their designated functions. 

While all of the antenna systems are important, the directive 

microwave radar antenna systems are crucial. These systems have the 

tasks of detecting and tracking incoming missiles and, in some 

installations, they also guide the defensive surface-to-air missiles to 

the incoming threat missiles. Reliable detection and accurate tracking 

of a target can be hindered, or even prevented altogether, by the 

coupling of unwanted signals among antennas operating in the same 

frequency band (in-band coupling) or different frequency band (in-band 

to out-of-band coupling or out-of-band to out-of-band coupling). 

Further, the electromagnetic energy scattered by the antennas, the 

support structures, and other scattering objects can result in reduced 

detection range, tracking errors, and elevated sidelobe radiation. The 

increased sidelobe radiation can render the installation more 

susceptible to enemy anti-radiation missiles (ARM) which depend on high 

average sidelobe radiation levels for detection of and guidance to 

their target. 

The foregoing considerations make it imperative that the radar 

antenna 	systems 	function 	in 	a 	reliable, 	predictable, 	and 

electromagnetically compatible manner (compatible implying the absence 

of "too much" coupling) if they are to be electromagnetically effective 

against threat missiles. 	Hence, electromagnetic compatibility (EMC) 

and electromagnetic effectiveness (EME) are issues of vital concern. 

Of course, the analysis and design (or re-design) of real-world antenna 

installations to achieve optimum EMC and EME is a very complex problem 

area 	in 	applied 	physics, 	even 	if 	one 	were 	to 	consider 

electromagnetic coupling and scattering at only a single in-band frequency. 

However, the modern trend is toward operation over a wide range of 

frequencies, i.e., toward widehand continuous wave (cw) or pulsed systems. 

In addion, the ability to predict and control the effects of radiation at 



out-of-band frequencies has also become very important as the sensitivity 

and performance requirements of modern radar systems have increased. 

An accurate electromagnetic coupling and scattering analysis of 

cosited antenna systems for a given operating in-band or out-of-band 

frequency requires, as the first step, a knowledge of the nominal, or 

"clear-site", antenna electric field pattern for each antenna that would be 

obtained in the absence of other antennas or scattering obstacles. The 

most accurate patterns are obtained via the planar near-field measurement 

technique whereby the antenna's electric field pattern is computed 

numerically from electric field data obtained on a plane located within the 

near-field, or "Fresnel zone", of the antenna. However, this technique was 

developed for measuring very stable, single mode antennas at a single 

operating frequency. Consequently, the application of the near-field 

technique to measure wideband in-band and out-of-band antennas should be 

investigated to identify and, if possible, to overcome special problems 

that can arise. For example, it is known from experiments and theoretical 

considerations that out-of-band antenna patterns can exhibit erratic, 

seemingly random behavior. Thus, it is anticipated that stochastic theory 

and analysis will be needed in order to characterize out-of-band antenna 

patterns properly and efficiently. 

The second step in the analysis of coupling and scattering at a single 

frequency requires the use of the clear-site antenna patterns to compute 

coupling and scattering based on either the Plane Wave Spectrum (FRS) 

analysis technique or other established electromagnetic analysis 

techniques. 	Thus, the extension to wideband in-band and out-of-band 

frequencies needs to be studied. 	Again, a stochastic technique is 

indicated for analyzing in-band to out-of-band coupling, out-of-band to 

out-of-band coupling, or out-of-band scattering. 

Advances in the state-of-the-art of wideband antenna analysis can be 

achieved through a basic theoretical and numerical research effort. 

Accordingly, theoretical and numerical analyses were performed to study 

the application of near-field theory and techniques to characterize the 

radiation and coupling characteristics of wideband, in-band and out-of-

band pulsed or cw radiating systems. 	Specifically, stochastic theory 

and equations were developed for characterizing the radiation patterns 

of wideband cw or pulsed antennas over both in-band and out-of-band 

frequency intervals from measured data collected via near-field 

measurement techniques. 	The results are applicable to either phased 

array or reflector antennas. Three analytical techniques for analyzing 

the in-band and out-of-band coupling between pairs of cosited antennas 



were studied. 	The three techniques are (1) the Plane Wave Spectrum 

(PWS), (2) the Spherical Wave Spectrum (SWS), and (3) Geometrical 

Theory of Diffraction (GTD). The existing theory and equations that 

are applicable to selected common waveguide components under normal in-

band operation were extended to describe wideband out-of-band 

responses. Also, the theory and equations were formulated for 

computing the higher-order node coefficients at the aperture of a 

waveguide radiating element from a knowledge of the measured far-field 

electric field of the radiating element when surrounded by a large 

conducting "ground" plane. Equations for describing the effects of 

near-field obstacles located in the antennas' forward half-plane on the 

performance of a wideband cw or pulsed antenna were derived via the 

Plane Wave Spectrum (PWS) analysis technique. The resultant 

statistical average pattern versus frequency is expressed explicitly in 

terms of the antenna system mode excitation statistical parameters. 



"Fluctuations in a Nonequilibrium Steady State: Light Scattering from a 

Thermal Gradient," by Byron L. Burel, Ph.D. 1983. 

SUMMARY 

Near equilibrium fluctuation theory is extended into the non-

equilibrium regime through the use of the postulate of local equilibrium 

and the resulting nonequilibrium fluctuation theory is applied to a 

hydrodynamic system in which a steady state thermal gradient is present. 

This approach to nonequilibrium fluctuation theory is applied in an 

experimentally testable context to light scattering from water. In 

particular, the effects of the temperature dependence of the hydrodynamic 

transport coefficients upon the intensity of Rayleigh scattering are 

investigated. 

This calculation is accomplished by using Fourier series to reduce 

the hydrodynamic equations to matrix form. The resulting matrix equa-

tion is solved for the mass density fluctuations, and the mass density 

autocorrelation function is then computed. The connection between the 

mass density autocorrelation function and the structure function describ-

ing the scattered light intensity is established, and the Rayleigh 

intensity is computed. 

The result of this calculation indicates that the presence of a 

thermal gradient induces an enhancement of the Rayleigh intensity which 

may be a substantial fraction of the corresponding equilibrium intensity. 
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