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SYMBOLS AND DEFINITIONS

Amplitude of output produced by unit amplitude oscillation of
input

Amplitude of aircraft oscillation produced by unit amplitude
oscillation of control surface

Amplitude of aircraft oscillation required to produce unit con-
trol surface dgflection by autopilot

Angle between airplane longitudinal axis and horizontal, radians
Control deflection, radians, subscripts refer to: a-aileroh,
e-elevator, r-rudder

Difference between actual value and reference value of guantity
being controlled, radians

Phase angle in degrees between © and § , positive when © is
ahead of & ; subscripts are: a-aircraft, p-autopilot

Angle of roll, radians

Angle of yaw, radians

Angle of side slip,/ = tan™t

side-slip velocity \ radians
Angle between flight path of center of gravgty and horizontal,
radians
Yawing angular velocity _hggi, radians per second
Rolling angular velocity __QEL, radians per second

dt
Pitching angular velocity, '_{%EE

time, seconds

Non-dimensional time unit
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w Angular frequency, radians per span or chord-length traveled

(e Angular frequency at which €, = €

p

Z-axis In plane of symmetry and perpendicular to relative wind

X-axis In plane of symmetry and perpendicular to Z-axis

Y-axis Perpendicular to plane of symmetry

ky Radius of gyration about X-axis, feet
ky Radius of gyration about Y-axis, feet
k, Radius of gyration about Z-axis, feet
b Span of aircraft, feet
c Mean aerodynamic chord of aircraft, feet
A  Air density, slugs per cubic foot
S Reference wing area of aircraft, square feet
v Velocity along flight path, feet per second
q  Dynamic pressure, e_tzri , pounds per square foot
D Differential operator d or d
dt ds

i Imaginary unit, i #Vl
C, Yawing moment coefficient, _yawing moment

aSb
C1 Rolling moment coefficient, rolling moment

gSb
CY Side force coefficient, side force

qS
C; Lift coefficient, 1lift
Qs -

Cm Pitching moment coefficient, pitck%_gg_moment
Cna, C]x?, CY@ indicate  JCp 3Cq aCy

LY EYE] 98
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Cn, » Cp indicate 9 Gy _9Cy
’ 3 2 32
2v 2v
cnn 5 cln indicate o c,.,b ac%
& By & 2_
J 2v c) v
C, 5 Gy indicate I C, 90,
s 93 94§
CLoc Lift curve slope 9C1
3
Cy Pitching moment curve slope 3 Cq
ES By
c Damping in pitech 9GC
ng T
2v

KG (i)) Indicates open loop transfer function of system
X Angle of attack

/1 Relative density factor mass of airplane

~ Sh
or mass of airplane
~Sc
Body Qxrs
= Z-0x/5
{ /orrzorntal/

X-ox/s

Relation Between © , < , and 7/~



DETERMINATION AND CLASSIFICATION

OF AIRPLANE TRANSFER FUNCTIONS
SUMMARY

A theoretical investigation has been made of airplane
transfer functions. The airplane configuration chosen for
analysis was typical of modern high speed aircraft. The
stability characteristics of the airplane were expressed in
terms of non-dimensional parameters, thus making the results
applicable to aircraft of any size.

The stability parameters were substituted in differ-
ential eguations of motion and the response of the airplane
as a function of the driving frequency was obtained. The
response as a function of frequency was obtained by use of the
operator D = iw and the derivation of this method is pre-
sented in detail. Calculations were made to determine the
response in the following quantities; pitch angle, angle of
attack, flight path angle, normal acceleration, roll angle,
and yaw angle,

The results are presented in the form of frequency re-
sponse curves and transfer function curves for the each various
quantities. The responses in pitch angle, angle of attack, and
flight path angle were calculated for a range of airplane

inertia values.



INTRODUCTION

During and since World War II the performance of military
aircraft, and potentially of commercial aircraft, has been greatly
improved. Most of the improvement, however, has been evident in
higher top speeds and longer ranges, rather than in those features
which would tend to reduce pilot fatigue and error. The higher top
speeds and their accompanying evil, higher rates of fuel consumption,
have increased the effects of small errors in navigation and at the
same time reduced the time available for navigational work. The
longer ranges have also meant longer periods of active flying by the
pilot. These features have caused considerable effort to be devoted
to the development of devices intended to relieve the pilot of routine
duties and allow him to conserve his energies for the more urgent
periods of combat or other emergencies.

Practically all of the devices designed to aid the pilot in-
volve some form of automatic control. Unfortunately, the theory of
servo-mechanisms is not one with whidh most aeronautical engineers
are well acquainted. This fact has caused the burden of designing
such devices to be thrown upon the electronic engineers who have for
some years been using automatic control theory in the design of feed-
back amplifiers., As might be expected, considerable confusion can
arise because of the dissimilar terminalogy in the two fields and the
of aerodynamic experience on the part of the electronic engineers,
There seems to exist a need for the dynamic characteristics of

airplanes to be expressed in terms of quantities which can be readily



handled by the existing servo-analysis methods.

It is the purpose of this paper to present the results of
calculations made to determine those airplane characteristics which
would be necessary in the rational design of automatic pilots, and to
classify those characteristics in such a manner as to make them intel-
ligible to a servo engineer who is unfamiliar with airplane dynamics.

The required airplane characteristics have been calculated from
differential equations of motion by the use of operational mathematics.
The basic values of the airplane parameters used in the equations are
representative of current airplanes; in some cases certain parameters
have been varied over wide ranges in order to indicate the effect of
such changes and to increase the applicability of the results.

The types of characteristics calculated are as follows: the re-
sponse in pitch angle, angle of attack, flight path angle and normal
acceleration to elevator deflection and the response in roll and yaw to
both aileron and rudder deflections. The longitudinal responses were
calculated for a range of inertia and static stability values. A total
of seventeen airplane responses are presented.

The results are presented in the form of frequency response
curves and transfer function curves for each of the above mentioned
cases. The curves are classified according to the form of their
mathematical expression and also, as well as is possible, according
to the type of autopilot response necessary to insure a stable air-

plane-autopilot combination.



GENERAL DESCRIPTION OF FREQUENCY RESPONSE METHOD
Frequency Response Curves

The frequency response method of autopilot-aireraft analysis
involves the use of four (L4) quantities as shown by the curves on
Figure 1. These four consist of two pairs. One pair of curves
describes what a forcing oscillation of the control surface (input)
does to the motion of the aircraft (output). The other pair of curves
describes how the autopilot moves the control surface (output) in
response to the motion of the airplane (input). The two quaﬁtities
plotted to describe each response are the amplitude ratio between the
airplane motion and the control surface motion, R, and the phase angle,
€ , between the airplane motion and the control surface motion. The
relationship of the body motion both in amplitude and phase (time re-
lationship) to the forcing control deflection depends solely upon air-
plane parameters. The relationship of the enforced cortrol notion to
the body motion both in amplitude and phase depends solely upon auto-
pilot parameters, These response curves are usually determined for a
range of frequencies from zero to about three times the natural frequency
of the airplane. Both sets may be determined either experimentally or
by use of equations of motion. Generally the response of the airplane
is calculated and the response of the autopilot is measured.

The response of the aircraft is obtained by the calculation of
a steady state solution of the equations of motion. The procedure

involves the replacement of the differential operator D by a sinusoidal



frequency variable 'iW!, This permits the response of the airplane
per unit disturbance to be plotted as a function of the periodic
disturbance.

The response data for the autopilot are obtained by similar
calculations or by oscillating the autopilot at various frequencies
and amplitudes and measuring the control or servo motion produced.

The two sets of curves on figure 1 were calculated for a typical
airframe and autopilot. They are used to determine stability as follows.
The intersection of the € curves is determined. This intersection, or
critical frequency, determines the frequency at which a neutrally stable
oscillation may exist. The wvalues of the R curves at the critical fre-
quency, &) determine if the oscillation can exist. Thus, if, at the
critical frequency, the R values are equal, i. e.,, the R curves inter-
sect at Wk, then there will be a neutrally stable oscillation. If,
however, Rp is greater than R, as in this example the oscillation will
be damped, and conversely if Ra is greater than Rp instability will be
indicated., The existence of a stable or unstable oscillation is the only
definite conclusion that can be drawn directly from the two sets of curves.
By definition, see below, the response curves are valid only for the con-
dition of zero damping of the oscillation and, therefore, if the R curves
do not intersect at the same frequency as the € curves, the inter-
section of the € curves no longer determines the frequency of oscillation.
This can be stated in another way - if the airplane-autopilot combination
is either stable or unstable, the basic response curves will indicate the

fact, but will not define the frequency or the damping of the oscillation,



The frequency response data mentioned above may be considered in
another manner which increases the applicability of the data, and is
more usual in servo-mechanism analysis. The total response may be con-
sidered as a vector quantity of amplitude R and phase angle € , A plot
of the locus of the head of this vector as a function of the forecing
frequency, w , 1s known as a transfer function curve. There is a
significant difference in the form of the response curves and in the
transfer function curve, The response curves for both airplane and
autopilot must be expressed in terms of the same ratio., That is, they
must be (using the pitch response as an example) curves of e/s and
E?g vs., W or they must be curves of &Ag and SAE vs, W . (The latter
form requires a slightly different interpretation from that used omn
the e/g and E/g curves) The transfer function curve, however, is
always the ratio of output to input and thus the transfer function
for the airplane will be in terms of 9/5 while that for the auto-
pilot will be given in terms of J/E.

The method of predicting the stability of a system through
use of transfer function curves is outlined below.

1. The transfer function of the entire system is obtained
(for single loop systems) by taking the product of the transfer func-

tion of the component parts.
Thus ( % ) = ( 8/5 ) X ( 'S/E )

complete system airplane autopilot
2. This system transfer function is plotted and the Nyquist
criterion is applied. In its simplest form this criterion requires

that the system transfer function curve lie between the point 1.0 and



the origin where it crosses the 0° ray. This is reversed from the cri-
terion as usually used by electrical engineers, the reversal being due
to the fact that aeronautical convention requires that a plus sign be

assigned that control deflection used to correct a plus deviation.
METHOD OF ANALYSIS
Calculation of the Airplane Transfer Function Curves

If an airplane is considered as a rigid body, it has six possible
degrees of freedom and a set of six differential equations of motion is
required to represent the motion. Because of the symmetry of the airplane
in the X-Z plane there will be a negligible amount of coupling between
the lateral (rolling, yawing, and sideslipping) motions and the longi-
tudinal (pitching, vertical, and forward) motions, provided the oscil-
lations are small. The assumption of zeroc coupling between the above
mentioned motions allows the six equations to be divided into two sets
(one lateral, one longitudinal) of three equations each. The validity
of this assumption is discussed at length by Jonesl. In some special
cases where further simplifying assumptions may be made it is possible to
eliminate one or two of the equations and thus reduce the set of three
equations to two or one.

The equations of motion, as presented in this report are complete-
1y non-simensional. Not only Are they written in terms of dimensionless

coefficients but the derivatives themselves are taken with respect to a

1
Jones, B, Melville - "Dynamics of the Airplane" - Aerodynamic
Theory W.F. Durand, Editor. Julius Springer, Berlin, Div. N, Vol.V ppl23



non-dimensional time unit. The definition of this time unit and its de-
rivatives are given below.

Dimensional time, t, is equated to a non-dimensional unit, s,
multiplied by the ratio of an airplane dimension to the forward velocity:

that is, t = sb for lateral equations
v

or
t = sc for longitudinal equations.
v

From these definitions the following relationships for the derivatives

are obtained

2 2 :
D. - v or Dy - v& .2 for lateral equations 1
t = -TF'DS t oy Ds qu (1)
2 .
s D 2_ 2 for ngitudin equa- (2
Dt - : Dy t= z p2, fo longit al equa- (2)

tions
The use of this non-dimensional time unit causes the solutions of the
equations to be in terms of span or chord lengths traveled., Thus the
frequency of the forcing function is always in units of radians per
span or chord length traveled.

Longitudinal equations

The three longitudinal equations mentioned above describe a
motion that is usually the sum of two well defined oscillatory motions.
One of these, the phugoid, is a lightly damped, long period motion in
which the angle of attack remains nearly constant, and the forward speed
and the horizontal inclination vary. The other motion is a short period,
heavily damped motion in which the forward speed remains constant and &

and X vary,



The phugoid is easily controlled, or rather eliminated, by proper
manipulation of the controls. Its period is so long (30 seconds - 100
seconds) that a human pilot 'flies it out' without conscious effort and
therefore it is not involved in the flying qualities requirements as
given by Gilruth2.

On the other hand, the period of the shorter oscillation is of
the order of one second and its damping is quite important in determin-
ing the flying qualities of the airplane, It thus seems reasonable to
assume that any autopilot which does not cause an unstable short period
oscillation will have a sufficiently rapid response to completely mask
any phugoid characteristics which might be inherent in the uncontrolled
airplane, On this basis it is only the response characteristics of the
airplane in © and o that need be investigated to obtain information
for use in autopilot design. The elimination of the forward speed
variable, s reduces the number of longitudinal equations to two and
greatly simplifies the computations necessary in obtaining response
curves., The longitudinal equations of motion, as used in this paper,

are given below.
2
(ZplE) D%~ £Crny D)8 =Conk = Comgs O

S8 —/Z/MD +CI_.‘)°< "Cz.é S (L)

2
Gilruth, Robest R. "Requirements for Satisfactory Flying
Qualities of Airplanes" U.S. National Advisory Committee for Kero-
nautics Wartime Report L-276
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Lateral Equations

The lateral equations of motion used to calculate the response
presented herein are taken from a paper by StemﬂfieldB. The equations
as presented have been somewhat simplified by the assumption that the
principal axes of inertia are co-incident with the stability axes.
This condition is not often met exactly on actual airplanes, but it
does represent a rather median condition. The lateral equations are

given below,
4ex )% < =
[Zri/ ) D*-4C, D) -2C, LY -C, B = G S (5)
. T
-écnp0¢ +Ep(FE) O 'éﬁcﬂrpjyﬂcﬁpﬂ “Cns I o

~C, B +[EpiD-G fan b5) ¥ +(E D =G, G = Cyd (7)

Solution of equations for sinusoidal forcing function

The term transfer function, as used herein, is taken to mean
that function of frequency which describes the above mentioned air-
plane response curves, The transfer function curves could be obtained
by computing several discrete solutions to the equations of motion
using sinusoidal forcing control motions of several different fre-
quencies. It is much more convenient, however, to use a method that
gives the response directly as a function of the forcing frequency.
This may be done by setting up a solution for the desired response and

substit ting the relation D= iWw, For example

4
Sternfield, Leonard "Effect of Product of Inertia on Lateral
Stability" U.S. National Advisory Committee for Aeronautics Technical
Note 1193, Washington D.C.
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if f(D)e=K$§
then 8 _ K (8)
s — £
and substituting D = il gives
82 . K (9)
s — (W)

The presence of both odd and even powers in £(D) will cause the f(iw)

to be a complex number and the expression may be written

8. K oK, Kif
§ arib- Rer® R
where
R=Va%b? and € = tan"l b (10)
a

The above expression describese{s as a complex quantity of amplitude K

and phase ( -€), both of which are functions of frequency. g
The setting of D equal to iWw is a device often used, but

seldom explained, The following Jjustification for this substitution

has been amplified somewhat from that given by Brown and Campbellh.
Consider again a system having the equation of motion

f(D) 8 = K§

The ratio of output to input may be written

L (8)
. & B
and when d =8 sinwt
& _ K sinwt (11)
s £(D) .

L
Brown, Gordon S. and Campbell, Donald P.,"Principles of Servo-
mechanisma", John Wiley and Sons New York Chapter 1V
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If the Laplace transform, as defined by Gardner and Barness, is applied

to the equation it becomes

(9) = 2. 2

sl (s) £(s) (s“+w), (12)
and the characteristic equation, f(s) (52+-u32) = 0, may be factored
into (s—sl) (8=82) sesresessa(8=iwW) (s+iw) = 0. When the inverse

Laplace transform is applied, the general form of the solution will be

Slt 82t ilt —-iwt

For a consideration of the steady state behavior those terms having
real exponents may be discarded leaving
iwt -iwt

5 = P K 1l
(g)ss(t)“ e ® S ® 2

If the expression for(g) is broken up into partial fractions the
5/(s)
value of the coefficients will become

K and K_jw = K

jw = _K -
fiw)2i f(-iw)2i (15)
The steady state solution now becomes
iwt ~iwt
(g) - Ke _ K e
S)ss(t) fliw )21 f(-iw)2i

which reduces to

iwt —iwt
K e _ K e
(g] - fiw) fl—iw) (16)
slss(t) — 21 .

5

Gardner, Murray F. and Barnes, John L., "Transients in Linear
Systems" John Wiley and Sons New York 1942. Chapter V
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The terms may be written as

-1€
) - $ — 1 € (17)
£(iw) a+tidb T\ 24,2
and
Sy, T 1 i€ (172)
fl-iw) ~ a6~ \ 22452
whore & woban™r b and a and b are functions of wh.
a
This gives for (2)
s /ss(t)
i(wt-€) ~i(wt-€)
(E) - K X e -e (18)
S/ss(t) — '\,324. b2 21

which by use of Euler's formula may be changed to

(g) - K x sin(wt-¢€) (19)
3)ss(t)

V a4 bé

The maxium value of the above expression will occur when sin(wt-€)=1.
This will, of course, occur at a phase angle € away from the time at
which sinw t = 1,

Thus the expression for (g) in the steady state, and as a
$ /max

function of frequency, may be written as

(9) - K at a phase angle (-¢€)

5 NEs®

or
(@_) — K|-€ , where both R and € are functions of (20)
S R

frequency.

It will be noticed that this is the same result as was obtained

by substituting D = iw) in the response equation (8).



Estimation of stability derivatives

The airplane for which the aerodynamic derivatives have been

estimated is described by the following dimensions,

Wing aspect ratio 6 A4 105 - - - longitudinal
Taper ratio 0.5 M 17.5 = = lateral
Horizontal tail area 0.208 %* 0.17

Vertical tail area 0.108 Ar 1.0, 1.1k, 0.50
Tail aspect ratio 3 _4%’_: «20

Tail length 2¢ or g

The values of the derivatives were estimated by use of methods
now current in airplane stability analysis. These methods are out-
lined and extensive bibliographies on the subject are given by Donlan,6
and Campbell?. The values of the derivatives used in this paper are
given in table I.

Estimation of autopilot characteristics.

The autopilot curves shown on figure 1 describe the response
characteristics typical of current electric-servo autopilots. The
autopilot is assumed to contain both rate and displacement gyroscopes
and to be equipped with synchro pick-offs and feedback links which

feed into a phase sensitive amplifier, The output of the amplifier

6

Donlan, Charles J. "Factors affecting Longitudinal Stability
and Control" NACA-University Conference Collection U.S, National Ad-
visory Committee for Aeronautics. 1949 pp 187-202

7

Campbell, John P. "Factors Affecting Lateral Stability" NACA
University Conference Collection U.S. National Advisory Committee for
Aeronautics, 1947 pp 203-229
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A system of this sort may be represented by the following equation.
3/ K%'K§-§K5+'§§)
E - DE + K3 + K¢
A block diagram of the system is shown in figure 2.

Methods of Classification of Transfer Functions

Low frequency characteristics

It quite often happens that an airplane which has been carefully
trimmed (i. e., put into equilibrium as regards forces and moments)
will subsequently develop out of trim moments. Such moments may be
caused by the using of fuel, the dropping of bombs, the accumulation of
ice or the shifting of passenger load., These moments, unless cancelled
out, will cause the airplane to deviate from the desired course.

The tendency of any airplane-autopilot system to maintain zero
error (that is stay exactly on course) under a steady disturbing load
may be determined qualitatively from the shape of the system transfer
function curve. This is done by considering the physical menaing of
the behavior of the curve at low frequencies., At or near zero frequency
the R value of the transfer function may be likened to a sensitivity
constant, Thus if at &) =0 the value of R goes to infinity the slight-
est deviation from the input reference will cause an infinite response
from the airplane in a direction such as to reduce the deviation,

Mathematically to have zero error required that 8 out=86 in, or

8
that 8 out — 1. It is shown by Brown and Campbell that © out _

@ in 8 in ~
—  kK-c(iw)
T IFKG(iw)
8

Brown and Campbell Op. cit. Chapter 6, section 8.
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and thus that for a steady input angle
97 =1 if limit K-G(id) = o0
'8;' W— 0
and for a steady input velocity

B, = 1 if limit K-G(iw)iw =o0
i w__.o

Obviously the case of the airplane with a steady out-of-trim load is

not covered by the criterion for a steady input angle, It can be seen,
however, that the criterion for a steady input velocity will cover the
case of a system subjected to a steady extended load. If the system,

be it airplane or not, is subjected to a steady input velocity thare will
be created on the system a steady load due to the output velocity and
caused by the viscous damping always present in actual systems. If

the system can overcome this load and maintain zero position error

it can also evercome any external steady load and still maintain zero
error,

This sort of an analysis then leads to the possibility of classi-
fying airplane transfer functions by their behavior and that of their
first derivatives as «J goes to zero. It will usually not be necessary
to consider the system (airplane and autopilot) transfer function because
a proportional autopilot (one in which there is a definite ratio between
the error signal and the central deflection under static conditions)
will never have an infinite response at zero frequency and thus all
infinities in the system transfer function must come from the airplane,

Maximun allowable autopilot gain

The gain in the autopilot determines the amount of corrective

control deflection per unit error that will be called for by the auto-
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pilot. The higher the gain the stiffer the system will be, that is with
a hich gain a small deviation from course will cause a large corrective
control moment to be applied and this may be likened to a stiff spring
which creates a large restoring force when subjected to a small deflect-
ion.

In systems which are inherently zero error systems at zero fre-
quency such high stiffness is unnecessary but in other systems a high
gain is sometimes quite desirable in order to prevent out-of-trim
moments from causing objectionably large static errors,

Unfortunately the use of high gain in the autopilot is quite like-
ly to cause the system to become unstable. This is shown by the curves
on figure 1. If the gain in the autopilot were increased 545 would
increase and E/S would decrease, thus decreasing Kp and lessening the
stability of the system. The limiting value of Rp at e is that value

which will make the fraction _Rp ( 1. It can be noticed that this
Re

limiting value could be changed considerably if ¢ were changed. It
is evident that there is an infinity of solutions to the problem of
designing a stable airplane-autopilot system and it is impossible to make
any definite classification of airplane transfer functions unless the

analysis is made using data for a specific autopilot and airplane.
RESULTS AND DISCUSSION

General Characteristics of Airplane Transfer Function

The most evident feature of all the longitudinal response curves,

shown in figures 3-7 is the fact that they all bear a resemblance to the



18

response curves for a one degree of freedom system consisting of a spring,
a mass and a dashpot. The second resonant peak characteristic of two
degrees of freedom appears in a degenerate form in the & and r re-
sponses as an infinite point at zero frequency, but does not show up at
all in the « and £/¢ (or normal acceleration) responses. This indi-
cates the possibility that a good approximation to the o and D¢ curves
might be obtained by using a single equation of motion,.

Another general observation which mary be made is that the € and ¢~
responses exhibit rather low resonant peaks, thus indicating that in
these two variables the conventional airplane is nearly critically damp-
ed. On the other hand the responses in & and £#4 indicate rather low
damping. It may be concluded from this that antopilots sensitive to @
or ¢ would not be as seriously affected by shifts away from the design
phase characteristics as those autopilots sensitive to o« or £2¢ for
the following reasons. A change in the phase responas of the autopilot
would change «4; if the resonant peak is sharp a small change in ¢/, can
cause a large change in the value of Ry at &/ and thus completely alter
the stability picture.

Those responses computed with variations in pitching inertia and
static stability (on figures 3-6) show about what would be expected from
a knowledge of simple forced vebrations; namely, an increase in inertia

lowers the frequency at which resonance occurs and an increase in static
stability increases the freguency of resonance,

The lateral curves (see figures 8-11) in general do not exhibit

as sharp peaks in the amplitude responses as do the longitudinal. In
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fact the roll amplitude response curves might be approximated except,
at zero frequency, by a one degree of freedom system having only a mass
and viscous damping, even though they actually represent motion in
three degrees of freedom. The closeness of this approximation is
illustrated by the dotted curve on figure 8. The amplitude response
curves in yaw are also somewhat similar in shape to the approximate
roll curves but the yaw phase angle curves are quite differmnt from
any others. Experience gained in computing the curves indicates that
by only slight changes in the airplane parameters the phase angel curve
may be made to reverse its downward trend at about 180° and shoot up
sharply to finally approach 90°, It may be noticed that the fact that
the phase angles drop sharply down to lagging or negative values will
tend to make - occur at a relatively low frequency. As zero frequency
is approached the R, curve rises quite rapidly and thus tends to reduce
the allowable value of autopilot gain.,

Low frequency characteristics

As mentioned above the chief point of interest in the low fre-
quency region is the behavior of either the amplitude curve or of the
complete transfer function as zero frequency is approached. The mathe-
matical form of each transfer function and the value of the derivative
as & goes to zero are presented in table II. These values of the
derivative limits indicate that, for any of the types of motion studied
here, any airplane-autopilot combination will have some steady state
error under steady load unless the autopilot is equipped with an inte-

grator,
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Permissable autopilot gain

The fact that an airplane-autopilot system will inherently be
subject to steady state errors makes the use of high autopilot gain
more desirable, It has previously been shown that, for the airplane
response on figurel, the value of Rp will have to be 1.0 or more if
W, is at 0.08. This when put in terms of S/E’ means that the con-
trol deflection produced per degree of airplane deviation must be
less than one degree., If the same autopilot is applied to the roll
response data on figure 8 it can be seen that Rpwould have to be great-
er than 3.0. This would mean that to insure stability the autopilot
could produce only 0.33° aileron deflection per degree of airplane
deviation.

The above amounts of control deflection are relatively small
compared to those which would be required to trim an airplane subject-
ed to battle damage or out-of-trim moments caﬁsed by asymmetrical use
of fuel. Therefore if an automatically stabilized airplane is to have
satisfactory characteristics under steady out-of=trim conditions it
will probably be necessary to use an autopilot which incorporates
powerful phase-compensating devices, Such devices would make the cri-

tical frequency higher and thus allow the use of higher autopilot gain.
CONCLUDING REMARKS

The problem of attaining all desirable characteristics in an
airplane-autopilot system is not one which can be solved by a consider-

ation of the airplane characteristics alone., However this analysis
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indicates that by a study of typical airplane transfer functions it
is possible to obtain a general view of the problem and to propose
plausible solutions. The final answer, though, must in all cases
depend upon a detailed study of the particular airplane and auto-

pilot involved.
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Response
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/s
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STABILITY DERIVATIVES

Longitudinal Derivatives

M
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105
105
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TABLE I - Cont.

Lateral Derivatives

r Np

116 -.071 17.5

kg

D
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Ky
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ngr

0
oOhG
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0
"".13?
"013?
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FORMS OF AIRPLANE TRANSFER FUNCTIONS

Response
9/5
o/
/s
0¥/

ﬂ/s one~-degree-of
*  freedom

TABLE II

Transfer Function

a +ibw ”
cwc +i(dw ~ew)

aw? + ibw
cw- +i(dwé-ew)

(aw?2+Db) + icw

dwe+i(ewd - fw)

(aw 2+ b) + icw

(dw c-e) -ifw

=3

bW+ jcw

aw’ +i(bw3-cw)
([Awi—ewW?) + i(fW 2-gw+ hw)

(ago 2—-b};|- ilcwi+dw)

(ew+ fw*e) + i(gw -hw?-kw)

Caw?+i(bwi-cw)

(AW i—ew2) + (fTwo—gw> +hw)

—(aw?+ b) i(—cw3+dw)

(ewli-fw*) + i(gwd-hwi-kw)
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