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ABSTRACT

A heterogeneous (insoluble) lignin model which contains a basic reactive

unit of lignin attached to a cross-linked polymer network has been prepared.

Such a polymer-support model incorporates various polymeric characteristics

which may more adequately mimic a chemically reacting lignin.

Three lignin model dimers have been synthesized toward the preparation of

the heterogeneous model. These unique lignin-related compounds are: 1-(4-

hydroxy-3-methoxy-5-[y-hydroxypropyl]-phenyl)-2-(2,6-dimethoxy-4-methyl-

phenoxy)ethanol (I), 4-hydroxy-3-methoxy-B-(2-methoxy-4-[y-hydroxypropyl]

phenoxy)-acetophenone (II), and 2-(2-methoxyphenoxy)-l-(3-methoxy-4-hydroxy-

phenyl)-1,5-pentanediol (III).

Each new model is similar to lignin models which have been routinely

studied, but unique in that they all incorporate a propyl alcohol handle into

their respective dimer, each at a different position. The handle was incor-

porated so that the model could be attached to a polystyrene matrix via a

polymer-bound triphenylmethyl (trityl) ether.

The propyl alcohol handle of compound I resisted soluble tritylation, pre-

sumably because of the configuration between the phenol and primary hydroxyl,

and, therefore, I was not appropriate for polymer attachment. Both phenacyl

aryl ether II and B-aryl ether III, however, were easily tritylated; either com-

pound was thus appropriate for polymer-bound tritylation.

Compound III was attached to a macroreticular polystyrene by means of a

polymer-bound trityl to primary hydroxyl bond. The polymer-supported dimer thus

constituted an insoluble lignin model; the extent of model loading was deter-

mined by gravimetric analysis and Zeisel methoxyl content analyses.
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Subsequently, the insoluble model was reacted under simulated kraft pulping

conditions to afford moderate yields of guaiacol, a fragmentation product. The

addition of 28.5% p-dioxane or DMSO drastically depressed the yield of guaiacol

from the insoluble model. The trityl ether attachment was not as alkali-stable

as its soluble counterpart and, therefore, portions of the guaiacol production

from the insoluble model are from homogeneous reactions.

The behavior of the insoluble model was compared to the homogeneous reac-

tions of the analogous soluble tritylated analog of III, as well as to the reac-

tions of soluble III itself. The soluble tritylated III degraded in a manner

similar to other B-aryl ether models.

However, compound III underwent cyclization reactions which competed with

ordinary fragmentation; the nonderivatized primary hydroxyl cyclized by cap-

turing quinonemethides (which are key reactive intermediates in the reactions of

B-aryl ethers). The nonderivatized handle of III may yet prove useful as an

internal mechanistic probe, in an attempt to differentiate between ionic and

electron-transfer reaction mechanisms.
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INTRODUCTION

Lignin is a random, three dimensional, cross-linked polymer which is based

upon p-coumaryl-, coniferyl-, and sinapyl alcohols.l Native lignin is deposited

between the cells and throughout the cell walls of woody tissue. 2, 3 Lignin in

wood is insoluble in neutral solvents,4 presumably because of its high molecular

weight and because the polymer is locked into the macroscopic continuum of wood

by lignin-lignin covalent bonds.2

The goal of the chemical pulping of wood is to selectively remove the inso-

luble lignin. Reaction rates and mechanisms of chemically reacting lignin are

generally very difficult to quantify and characterize because reactions of

lignin are usually heterogeneous, that is to say, there are at least two dissi-

milar phases involved.5, 6 The phases involved during pulping consist of solid-

or gel-liquid interfaces of lignin and pulping liquor; 7 this concept is

supported by findings that lignin dissolution is accelerated when large surface

areas are exposed to cooking liquor and decelerated when the interface available

for reaction is decreased.8

Lignin model compounds are designed to approximate the chemical reactivity

of the predominant structural units in lignin while avoiding the experimental

difficulties associated with the complex structure of the polymer. The model

compounds are generally soluble in the reaction medium, are chemically distinct,

and products from their chemical reactions are relatively simple to detect and

measure.

Lignin models are favorably regarded as a tool with which the basic

underlying chemistry of delignification can be elucidated. It is questionable,

however, whether these simple, soluble models can mimic the various polymeric



-4-

characteristics of a chemically reacting native lignin. A review of some

general aspects of heterogeneous reactions will highlight the limitations of

simple model compounds.

CHARACTERISTICS OF REACTIONS OCCURRING AT SOLID-
OR GEL-LIQUID INTERFACES

Accessibility

In any chemical reaction involving a solid polymer, the degree to which the

polymer molecules are available to the reagents determines the ease and extent

of the reaction. With this concept in mind, Nakano and Schuerch compared the

rates and extent of chlorination of soluble model compounds, spruce lignin, and

wood meal. 9 Chlorine substitution on the soluble model compounds was com-

paratively fast in all solvents, whereas the rate of chlorine substitution

observed with the spruce lignin or wood meal was relatively slow, except when

performed in good lignin solvents. Specifically, for example, the rate of

chlorination of lignin in wood meal by aqueous chlorine was quite slow, while

soluble phenols reacted instantaneously with chlorine water. 9 ,2 9

Based on the data above, it appears that water is a poor lignin solvent, and

at least for chlorination, the physical process of diffusion is rate controlling.2 6

However, even in cases when diffusion is not a limiting factor and there is

sufficient solid-liquid interface for reactions to proceed, the mobility of

reactive units at the surfaces of the solid phase must be considered.

The effects of different solvent systems on the "availability" of molecules

covalently bound to insoluble polymer matrices has been studied extensively. 2 4 ,2 5

In general, those solvent systems which swell polymer matrices the most will

impart the greatest mobility and thus availability of reagents to surface bound
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molecules. Also, the restricted mobility of the insoluble component of the

reaction imposes a loss in entropy on the transition state of such a reacting

system.10,11

In the case of alkaline pulping, native lignin exhibits very little swelling

in aqueous alkali.7, 2 2 During the initial stages of delignification, par-

ticularly at lower temperatures, the lignin at the solid- or gel-liquid inter-

face has a restricted mobility - a molecular inflexibility.2 2 The physical

restraints on swelling and molecular mobility may make it more difficult to form

key intermediates or transition state complexes and represent a resistance to

delignification.

Microenvironmental Effects

Polyelectrolytic behavior must be kept in mind when investigating hetero-

geneous reactions. A simple example of a polyelectrolytic neighboring-group

effect is seen in the ionization of carboxylic acid groups on a polymeric mole-

cule, such as in polyacrylic acid. Qualitatively, the ease of proton release

will decrease as the degree of ionization increases because the polymer backbone

becomes progressively more negatively charged. The acidity of a carboxylic acid

flanked by two un-ionized groups should be greater than those flanked by one or

two ionized groups (Fig. 1).12,31

Moreover, the acidity of polymer-bound carboxylic acid and phenol can be

mutually influenced by hydrogen-bond formation between the two (Fig. 2).12,32

The hydrogen bond formed between the phenol and ionized acid group is stronger

than with the un-ionized acid. The acidity of the carboxylic acid is thus

enhanced, while that of the phenol is reduced.
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Figure 1. Relative acidities of carboxylic acid groups on a polymer.12,31

Figure 2. Neighboring-group effect with polymer-bound carboxylic
acids and phenols as neighbors. 12,3 2

In the instance of pulping, Schuerch has postulated an effect, called the

ion-exclusion effect, which is similar to the neighboring-group effect and which

may be operative during delignification processes. 26 Schuerch was specifically

looking at the sulfite process, but the conceptual scheme may be valid for alka-

line pulping.
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During alkaline pulping processes, the degrading lignin becomes negatively

charged. The reactive pulping chemicals in alkaline processes are themselves

negatively charged species, namely hydroxide ion (-OH), hydrosulfide ion (-SH),

and anthrahydroquinone dianion (AHQ=).

According to the Donnan equilibrium effect, polyelectrolytes tend to

electrostatically exclude ions of the same charge; this leads to an unequal

distribution of diffusable ions around the polyelectrolytic domain. 30 The

polyelectrolytic nature of partially degraded lignin may tend to repel negative

ions and prevent the completion of reactions by this Donnan equilibrium or

"ion-exclusion" effect.

Lignin model compounds are not polymeric in nature; rather they are usually

aliphatic-aromatic monomers or dimers, and they are generally soluble in the

reaction media of interest. It seems clear that simple models cannot mimic the

polymeric characteristics of a chemically reacting lignin. In light of the

inadequacies of simple models, and considering the difficulties in characteriz-

ing reactions as they occur in actual lignin, we initiated thesis research to

design an insoluble/heterogeneous lignin model.

THESIS OBJECTIVES

The goal of the thesis was to design, synthesize, and characterize a hetero-

geneous/insoluble lignin model. The heterogeneous model was to be comprised of

a basic reactive unit of lignin, a B-aryl ether dimer, 1 covalently attached to a

polymer network by means of a polymer-bound protecting group. 13 ,1 4 The model

would be used to study lignin fragmentation reactions relative to soluble

models.
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The insoluble model has the advantages of (1) a definable structure, which

actual lignin does not, and (2) the incorporation of various polymeric charac-

teristics, which simple models lack.

EXPERIMENTAL APPROACH

A macroreticular polystyrene was functionalized to a polymer-bound tri-

phenylmethyl (trityl) chloride and characterized by elemental analyses. This

functionalized resin would be used to preferentially form a trityl ether linkage

with a primary alcohol group on a lignin model.2 8,2 9 Such groups (propyl alco-

hol handles) were incorporated into several reactive lignin model dimers; the

synthesis of these unique compounds proved to be the most formidable portion of

the thesis.

A heterogeneous model was prepared from one of the appropriate lignin

dimers and was characterized (as to the extent of loading) by gravimetric

analyses and Zeisel methoxyl content analyses. This heterogeneous model was

subsequently reacted under kraftlike pulping conditions and the results were

compared to the reactions of analogous soluble lignin dimers.

ADDITIONAL BACKGROUND INFORMATION

Polymer-bound Protecting Groups

The last two decades have seen the rise in popularity of the simple, yet

far-reaching idea of attaching chemically reactive species to insoluble sup-

ports. 15 The most popular support is generally cross-linked polystyrene, of

various cross-link ratios and morphologies. Premanufactured polymer-supports,

often called resins, are available in both functionalized and unfunctionalized

forms from various suppliers. Functionalized polystyrene resins are obtained
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by either (1) polymerizing styrene and divinylbenzene along with a func-

tionalized monomer, or (2) performing reactions on premade polystyrene.1 2

Functionalized polymers, often in the form of polymeric analogs to pro-

tecting group (organic derivative) reagents, have been used extensively during

the synthesis of various kinds of molecules. For example, a polymer-supported

triphenylmethyl (trityl) chloride preferentially forms an alkali-stable polymer-

supported trityl ether at the primary hydroxyl (C-6) of a monosaccharide.17, 18

Chemists have prepared glycosides, di- and trisaccharides, as well as a variety

of other modified carbohydrate molecules from monosaccharides attached to a

polymer at C-6. The supported ether linkage can be hydrolyzed with acid after

the chosen synthetic procedures are complete to liberate the modified product

into the bulk solution phase.13,14,1 8

Morphology of Polymer Supports

Cross-linked polystyrene supports can be prepared or purchased with a

variety of physical characteristics, generally in bead form and with a thermal

stability of 250°C or greater. Most polystyrene supports are prepared by the

"suspension copolymerization" of styrene and divinylbenzene, differing in the

type or amount of solvent in which the polymerization is carried out. There are

basically three general categories in which most cross-linked polystyrene resins

can be classified.l2,16,19,20

Microporous gel-type resins have negligible internal surface area and dry

porosity, and they will not accept "nonsolvents" (solvents which do not solvate

styrene). However, upon addition of a good solvent, such as benzene or toluene,

considerable porosity is reestablished; the microporous gel can swell because

the cross-link ratio (% divinylbenzene) is commonly 2% or less. With nonsolvent
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systems (water, aqueous alkali, methanol and others) these resins display little

tendency to expand, and the transport of reagents within such an interior is

analogous to a diffusional process within a polymer solid.

Macroporous gel-type resins are similarly swellable in appropriate solvents

(though not as much as microporous gels because the cross-link ratio is commonly

20% or more). They have a moderate dry porosity and internal surface area,

allowing the penetration of some nonsolvents (methanol, heptane, acetonitrile,

but not water or aqueous alkali) into their internal voids.

Macroreticular resins have a definitive and permanent internal porous struc-

ture with a well defined surface area. They will absorb significant quantities

of all solvent systems by simply filling the available voids, although they do

not exhibit significant swelling with any solvent. Macroreticular resins can be

envisioned as spongelike, where the interior volume is responsible for the

absorption of liquid and the highly entangled volume of polymer material is

penetrated only by a good solvent.

A relatively new type of polystyrene, which is not prepared by suspension

copolymerization, has some interesting properties. Macronet isoporous gels are

made by cross-linking linear polystyrene.2 1- 2 3 These gels have the ability to

increase their volume in any solvent to give a high interior surface area.

Macronet gels are not currently commercially available, and information on their

physical and thermal stability is not widely known.

A macroreticular polystyrene, Amberlite XE-305, was chosen for the purposes

of this thesis.3 3 Polystyrene resembles lignin, superficially at least, in that

it is an aliphatic-aromatic polymer. This particular resin should allow all aque-

ous pulping reagents to come into contact with polymer-bound lignin models; the
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pores are very large (1000 A) relative to the size of alkaline pulping re-

agents and should reduce the potential importance of diffusion as a limiting

process.

DESCRIPTION OF THE DISSERTATION FORMAT

The format of this manuscript consists of the thesis introduction, as above,

followed by two articles prepared for publication. The articles include their

own introductions, the significant results of the thesis, and the experimental

methods employed to obtain the results. Following the articles are general

thesis conclusions and suggested future work, and two brief appendices.
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INSOLUBLE LIGNIN MODELS (I): SYNTHESIS OF UNIQUE LIGNINLIKE
DIMERS WITH PRIMARY ALCOHOL HANDLES

Patrick B. Apfeld and Donald R. Dimmel
The Institute of Paper Chemistry

P. O. Box 1039, Appleton, Wisconsin 54912

ABSTRACT

Three unique lignin model dimers, compounds 10, 11, and 12b, have been

synthesized; each was designed to have a propyl alcohol handle by which the

model could be attached to a polymer matrix via a polymer-bound trityl ether.

Compound 10, which has a y-hydroxypropyl group ortho to a phenol, could not,

however, be tritylated. Phenacyl aryl ether 12b, which has a para y-hydroxy-

propyl group on the phenoxy substituent, was easily tritylated. The B-aryl

ether 11, which has a y-hydroxypropyl group incorporated through the alkyl B-

carbon, was also tritylated in a straightforward manner and has subsequently

been used for the preparation of a polymer-bound lignin model dimer.

INTRODUCTION

In order to elucidate the role(s) of various chemicals in removing lignin

from wood (delignification), researchers have quite often examined the reactions

of lignin model compounds. These simple models are designed to simulate the

chemical reactivity of the predominant reactive units in lignin and, thereby, to

avoid experimental difficulties associated with the complex, random, cross-

linked structure of the polymer. 1 Extensive studies employing model dimers,

such as structures 1 and 2 (Fig. 1) have provided an abundance of information

about the possible reactions of lignin during alkaline pulping.2 - 4
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Figure 1. General lignin model dimers, with aryl rings A and B, and
side-chain positions a, B, and y annotated.

The objective of our recent synthetic efforts has been to prepare lignin

model dimers which are attached to an insoluble polymer matrix; a lignin model

dimer covalently bound to a polymer would constitute a heterogeneous (insoluble)

lignin model which may provide the lignin chemist with an additional method by

which to study alkaline delignification. The synthesis of polymeric lignin

model compounds requires lignin model dimers similar to the "conventional" lignin

dimers illustrated in Fig. 1, but unique in that they include a primary alcohol

side-chain incorporated onto the molecule at either ring A or B, or through the

B-position. This report describes the model syntheses; a publication to follow

describes the polymer model syntheses, characterization, and reactions. 6

The impetus behind preparing these unique types of models is that primary

alcohols can be preferentially derivatized in the presence of secondary and

tertiary alcohols and phenols, with alkali-stable/acid labile triphenylmethyl

(trityl) ether protecting groups.7 Polymer-supported trityl chlorides are

easily prepared and provide a means to bond primary alcohol substrates to a

polymer. This technique has frequently been used to immobilize monosaccharides
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by forming the polymer-bound trityl ether at the C-6 hydroxyl.8, 9 Likewise, it

should be possible to covalently attach a lignin model containing a primary alcohol

handle to an insoluble polymer backbone via a polymer bound trityl ether. 10 ,1 1

The two principal considerations which need to be addressed when designing

a model with a primary alcohol handle are the location and the length of the

handle. These considerations are, of course, complicated by the restrictions of

synthetic ingenuity and convenience, and by the type of lignin dimer that is to

be studied.

The most predominant reactive unit in lignin (and the type of most interest

to this study) is the B-aryl ether unit.l The general alkaline pulping chem-

istry of B-aryl ethers is demonstrated by reactions of simple model 3,2,3 as

illustrated in Fig. 2. During alkaline pulping, models such as 3 (and presu-

mably lignin as well) give rise to vinyl ethers 4 and, in the presence of cer-

tain additives, cleavage products - a styrene phenolate ion 5 and a simple

phenolate ion 6.

The inherent chemistry of the heterogeneous B-aryl ether model should be

unaffected by the polymer linkage. The attachment should not sterically hinder

the usual reactions, should survive alkaline pulping conditions, and should be

easily detached by acid hydrolysis.

Three different types of B-aryl ether structures, which would constitute

lignin dimers with primary alcohol handles, are illustrated in Fig. 3. If the

handle (and subsequent polymer attachment) is on the A-ring (7) or through the

B-position (8), an alkaline B-ether fragmentation reaction of the polymer-bound

model would liberate into solution a simple phenol, which should be easily quanti-

fied. 12 Conversely, a polymer attachment through the B-ring (9) would liberate,
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upon fragmentation, a compound analogous to 5 which, because it is a styrenelike

molecule, can polymerize and may thus be difficult to analyze quantitatively.

Figure 2. Generalized alkaline reactions of B-aryl ether 3, with and
without "additives."

Figure 3. Three B-aryl ether dimers with primary alcohol handles.
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A suitable length for the alkyl side-chain ([CH2]x) of the handle, was cho-

sen on the basis of two factors. The trityl ether is a large protecting group;

in order to prevent steric interference with the anticipated delignification

chemistry it was decided that an appropriate alkyl side-chain [CH2]x should have

x > 1. Additionally, an examination of the possible alkaline chemistry of the

tritylated versions of 7, 8, and 9 (when x = 1) reveals that the trityl ethers

may not maintain their expected alkaline stability. Structures 7 and 9 are set-

up for detritylation via ortho- or para-quinonemethide generation (Fig. 4a and

4b); similarly, the vinyl ether analog of 8 is also a likely candidate for pre-

mature detachment via quinonemethide generation (Fig. 4c), because the y-carbon

is a "vinylogous" benzyl carbon.

Figure 4. Possible alkali-promoted detritylation reactions of three
tritylated lignin model dimers.

ortho quinonemethide

generation
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Finally, after a consideration of the above-mentioned factors and an over-

view of possible synthetic schemes, we decided that the synthesis of compounds

10, 11, and 12a (when x = 3 inch [CH2]x) would be the objective of our study.

Each of these compounds with primary alcohol handles should be appropriate for

the eventual preparation of insoluble lignin models.

RESULTS AND DISCUSSION

A-Ring Handle Model

Preparation of Compound 10

An ideal synthetic scheme for our purposes would be a generic procedure

which would start with any of a variety of already prepared conventional lignin

dimers and add a propyl alcohol handle to it. Scrutiny of possible synthetic

routes to an A-ring handle model directed our attention toward coumarin syntheses

(Fig. 5.)13,14 Coumarin-type structures, their precursors, and reduction products

all resemble the desired A-ring handle model 10, in that they include an ortho

configuration between a phenoxy oxygen and a three-carbon alkyl-oxy side-chain.

(a)

Figure 5. A) Structure of 8-methoxycoumarin (13) and its Bouvealt-Blanc 14

reduction product (14). B) Generalized schematic of Panetta and
Rapoport's 15 coumarin synthesis.
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Portions of a recently described coumarin synthesis appear suitable for our

synthetic requirements. Panetta and Rapoport report that when triethylortho-

acrylate is reacted with guaiacol, the 2,2-diethoxychroman 16 is formed (Fig.

5b).1 5 If a diethoxychroman structure can be prepared with a para-acyl phenol,

the synthesis of the desired A-ring handle model 10 appears possible (Scheme 1).

R = R4 , 10

Scheme 1. Adaptation of Panetta and Rapoport's 1 5 coumarin synthesis for the
introduction of a propyl alcohol handle to acetoguaiacone (19) and
lignin dimer 23.

Scheme 1 was attempted initially with a readily available para-acyl phenol,

acetoguaiacone (19). The diethoxychroman 20 was indeed formed in excellent yield

(ca. 74%) and was subsequently hydrolyzed with HC1 to give the ester 21. The

simultaneous reduction of the a-carbonyl and ethyl ester of 21 was effected with
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LiA1H 4 in THF giving compound 22, a lignin model monomer with a primary alcohol

handle.

Similarly, the phenacyl B-aryl ether 23 was subjected to the identical

synthetic sequence. (Conventional lignin model 23 can be prepared by any one of

several routinely used synthetic coupling techniques. 16, 1 7) The desired com-

pound 10 was successfully prepared in an overall yield of 58% (3-steps, from

23). This synthetic sequence should be applicable for introducing a primary

alcohol handle to a variety of other lignin dimers with different B-aryl groups

and/or B-alkyl substituents.

Tritylation of Compound 10

The preferential tritylation of the propyl alcohol handle (using either a

soluble or polymer-bound tritylating reagent) is central to the usefulness of

the unique lignin dimer 10. However, reaction of 10 with trityl chloride/

pyridine7, 18 or tritylpyridinium tetrafluoroborate (TPFB) 1 9 failed to give

a tritylated product. Similarly, the simpler monomer 22 could not be trity-

lated.

This resistance toward tritylation is in stark contrast to the behavior of

another phenolic compound with a primary alcohol handle; 3-(3-methoxy-4-hydroxy-

phenyl)-l-propanol (27), was easily tritylated using the TPFB method. A possi-

ble explanation for the unexpected behavior of compounds 10 and 22 could be that

the primary alcohol group is deactivated toward tritylation because of an intra-

molecular hydrogen bond between the phenol and primary hydroxyl (involving an

eight-membered ring). Alternatively, the trityl ether may have indeed been

formed, but subsequently hydrolyzed by an intramolecular proton transfer from

the phenol.
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Clearly, the unexpected behavior of lignin dimer 10 limits its potential

utility. Variation of the original synthesis (Scheme 1) could make tritylation

of a modified 10 possible. Prior to the LiALH4 reduction of structure 25, the

phenol could be protected with a B-(trimethylsilyl)ethoxymethyl (SEM) ether.2 0

The protected phenol dimer could be reduced and then tritylated. Selective

removal of the SEM group would then be accomplished by treating with fluoride

ion. While this modified approach seems promising, the course of the research

progressed toward alternative models rather than pursuing the above-mentioned

variation.

B-Ring Handle Model

Preparation of Compound 12b

As mentioned previously, the alkaline fragmentation of a polymer-bound

model based on dimer 12a would liberate a styrenelike molecule which may be dif-

ficult to analyze quantitatively. Alternatively, a B-ring handle model which

has an a-carbonyl rather than an a-hydroxyl (such as structure 12b - a phenacyl

B-aryl ether) could be studied. The alkaline degradation of phenacyl aryl

ethers are also of interest to lignin chemists; 2 1 the alkaline fragmentation of

a polymer-bound 12b should liberate acetoguaiacone (19) which can be easily

quantified.

Compound 12b was prepared using procedures which have been commonly

employed for the preparation of other lignin model dimers. Employing the method

of Hosoya, et al., 16 acetoguaiacone was brominated on the B-carbon to give 26,

which was coupled with the sodium salt of 3-(3-methoxy-4-hydroxyphenyl)-l-propanol

(27) resulting in ketone 12b in ca. 60% yield (Scheme 2). (Although it was not

prepared, 0-aryl ether 12a should be easily made by employing a NaBH 4 reduction
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procedure.5) The precursor 27 was prepared via a two-step synthesis from feru-

lic acid. The latter was easily hydrogenated over palladium on carbon and the

resulting dihydroferulic acid reduced with borane-tetrahydrofuran complex (or

LiALH4) to give precursor 27.

Scheme 2. Coupling reaction1 6 giving lignin model dimer 12b, which has a
propyl alcohol handle on the B-ring.

Tritylation of Compound 12b

Compound 12b was tritylated in a straightforward manner employing the TPFB

method;1 9 after a chromatography the yield of 12b-Tr was a modest ca. 35%.

(Similarly, we would expect compound 12a to be tritylated without complication.)

Beta-Position Handle Model

Preparation of Compound 11

The alkylation of lignin dimers (such as 2a) with methyl or hydroxymethyl

groups at the B-position is a procedure which has been successfully and fre-

quently employed by Dimmel, et al. (Fig. 6).5 Treatment of 2a with a strong

base, lithium diisopropylamine (LDA), effectively generates a carbanion at a B-

carbon; this nucleophile can be alkylated by methyl iodide to give the methy-

lated product 2b, or by formaldehyde (an aldol condensation) to give the

hydroxymethylated product 2c.
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The above-mentioned alkylation technique could, perhaps, be adopted as a way

to introduce a carbon side-chain (with X > 1 in [CH 2]x) through the B-position

of lignin dimer 2a. Dimmel, et al., found, however, that the scope of this reaction

was limited; ethyl, propyl, and benzyl halides would not alkylate 2a. 5 Possible

explanations for this behavior include the greater bulk of the above halides and

the possibility of competing elimination reactions with the ethyl and propyl

halides. Nevertheless, allyl bromide might be an effective alkylating agent

because of two factors: a competing elimination reaction (by the loss of HBr)

is impossible, and the reactivity of allylic substrates is relatively high.2 2

Figure 6. Alkylation of lignin model dimer 2a.5

Indeed, 2a was alkylated with allyl bromide to give compound 28. The sub-

sequent transformation of 28 to the desired 11 requires two separate steps: (1)

the terminal olefin must be hydroborated and oxidized to give a terminal alcohol

(using the stereoselective disiamylborane [DSB] and hydrogen peroxide as the

oxidant [0])23 and (2) the a-carbonyl must be reduced with sodium borohydride.

Transformation of 28 to 11 can be accomplished via either route A or B (Scheme

3); the two routes differ only in the particular order in which the DSB/[0] step

and borohydride reduction take place. Either route involves the introduction

of a second asymmetric carbon (step 52 or B1) and the likelihood of producing
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mixtures of erythro/threo diastereomers. Often, such similar isomers are dif-

ficult to separate and/or purify by chromatographic or crystallization methods.

The overall conversion of 28 to 11 was effected via either routes A or B on

a small scale. Samples of 11 obtained by route A were chromatographically iso-

lated as oils and, based on spectral evidence, were mixtures of diastereomers.

Conversely, the intermediate alcohol 30 from step B1 was chromatographically

isolated as an oil and shown by NMR to be a single isomer (see Experimental).

The final step, B2, converted 30 to the desired 11; the latter was obtained as a

pure, crystalline solid (which was, clearly, also a single isomer).

Scheme 3. Utilization of an alkylation reaction5 as the initial step for the
preparation of a lignin dimer with a y-hydroxypropyl handle incor-
porated through the alkyl B-carbon.
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In the case of step B1 , it is not overly surprising that a single isomer

was obtained; Cram's rule predicts that, based on steric considerations, a par-

ticular diastereomer will predominate for certain additions (such as a hydride

ion) to carbonyls which are adjacent to an asymmetric carbon.24 Many reactions

of this type are known; in some the extent of selectivity approaches 100%.25,26

The sodium borohydride reduction of 28 (step B1) aptly illustrates this kind of

selectivity.

Conversely, the sodium borohydride reduction of 29 (step A2) apparently

must involve factors other than the spatial relationship of substituents on the

chiral B-carbon. The primary alcohol of 29 can react with a BH4 - group; thus, a

hydride ion can be delivered to the carbonyl carbon from both an intra- and

intermolecular hydride source. The borohydride reduction of 29 is, therefore,

predictably less stereoselective.

Finally, based upon the fortuitous selectivity of step B1, the overall

synthetic route B was repeated on a multigram scale to afford a quantity of com-

pound 11 which was sufficient for the intended purpose.6 The respective yields

of products from the large scale synthesis were: alkylation step - 68%, step B1

- 65%, and step B2 - 64%, for an overall three-step yield of 11 from 2a of 28%.

Compound 11, if easily tritylated, should be a very appropriate lignin dimer

with a primary alcohol handle with which to manufacture and study an insoluble

lignin model.

Tritylation of Compound 11

The trityl chloride-pyridine method7, 18 with compound 11 proceeded in a

straightforward manner, and the tritylated analog of 11 (11Tr) was obtained as a

crystalline solid in ca. 64% yield. Similarly, the analogous polymer-bound
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trityl chloride was reacted with 11 to afford a polymer-bound 11.6 The prepara-

tion and characterization of this insoluble (heterogeneous) lignin model will be

described in a publication to follow.9

SUMMARY

Three unique lignin model dimers have been prepared. Each new model is

similar to lignin models which have been routinely studied, but unique in that

they all incorporated a propyl alcohol handle onto their respective dimer, each

at a different position.

The synthetic routes leading to B-aryl ethers 10 and 11 are both generic

techniques by which to introduce a propyl alcohol handle to a variety of

available lignin models. Compound 10, the A-ring handle model, could not be

tritylated, presumably due to the unique configuration between the phenol and

primary hydroxyl; therefore, compound 10 appears inappropriate for attachment to

a polymer via a polymer-bound trityl ether. Conversely, compound 11, the B-

position handle model, tritylates in a straightforward manner and appears

appropriate for the preparation of a polymer-bound lignin dimer.

Finally, a third synthesis has provided a way to prepare a B-ring handle

model, phenacyl B-aryl ether 12b; this synthetic scheme is rather specific,

however, and does not add the propyl alcohol side-chain to an already prepared

lignin model. Nevertheless, 12b tritylates easily and may be an appropriate

substrate for the preparation of a polymer-bound lignin model dimer.

EXPERIMENTAL

General Information

Proton and 1 3C-NMR were recorded on a Jeol FX-100 spectrometer using CDC13

or d6-DMSO as a solvent and TMS as an internal reference. Infrared spectra were
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recorded on a Perkin-Elmer Model 700 infrared spectrometer and standardized with

polystyrene. Electron impact mass spectra were obtained at 70 eV using a direct

insertion probe (DIP) with a Hewlett-Packard 5985 mass spectrometer. Elemental

analyses were performed by Micro-Tech Laboratories, Skokie, Illinois.

All solvents employed, unless indicated otherwise, were A.C.S. reagent

grade. Reagents and starting materials were obtained from Aldrich Chemical Co.,

Milwaukee, Wisconsin. All melting points recorded are uncorrected.

4-Hydroxy-3- methoxy-B-(2,6-dimethoxy-4-methylphenoxy)acetophenone (23)

The phenacyl B-aryl ether 23 was prepared according to the general method

of Miksche;17 its specific preparation is detailed elsewhere. 2 7

Triethylorthoacrylate (15)

This reagent was prepared in a manner identical to that used by Stetter and

Uerdinger,2 6 in which triethylorthopropionate is brominated (with Br2 in pyri-

dine) to give 2-bromo-triethylorthopropionate, which in turn is dehydrobromi-

nated with potassium-t-butoxide to give 15.

6-Acetyl-2,2-diethoxy-8-methoxychroman (20)

Into 150 mL toluene was dissolved 15.0 g (90.4 mmol) of acetoguaiacone

(19), 9.2 g (90.4 mmol) of pivalic acid, and 31.5 g (180.8 mmol) of 15. The

mixture was refluxed for 24 hours, cooled, and diluted with 300 mL Et2 0 . The

combined organic layer was separated and washed with IN NaOH, water, and

saturated aqueous NaCI, dried (Na2SO4 ), and concentrated in vacuo to give a gold

oil which crystallized upon standing. (Acidification and ether extraction of

the NaOH was allowed for the recovery of ca. 0.9 g of starting material.)

Recrystallization of the gold solid from hexane gave 19.8 g (74.2%) of light

yellow crystals of 20: m.p. 81.0-84.0°C; IR (mull) cm- 1 1680 (C=O); 1H-NMR
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(CDC1 3) 6 1.19 (t, J = 7 Hz, 6 OCH2CH3 ), 2.12 (t, J = 7, Hz, 2, ArCH 2CH2), 2.55

(s, 3, COCH3), 2.91 (t, J = 7 HZ 2, ArCH2), 3.72 (q, J = 7 Hz, 2, OCHCH 3), 3.74

(q, J = 7 Hz, 2, OCH2CH3), 3.85 (s, 3, OCH3, and 7.35 (s, 2, aryl).

Ethyl 5-acetyl-2-hydroxy-3-methoxydihydrocinnamate (21)

Into 200 mL of Et20 was dissolved 12.0 g (40.5 mmol) of 20. To this mix-

ture was added 200 mL of 10% aqueous HC1 and the 2 phase mixture was stirred for

2.25 hours. The reaction mixture was separated and the aqueous layer extracted

with Et2 0. The combined organic layers were washed with water and saturated

aqueous NaC1, dried (Na2S04), and evaporated on a steam cone to give 11.5 g of

an oil which hardened upon standing to orange-gold crystals of 21: m.p.

64.0-65.0°C; IR (mull) cm-1 3350 (OH), 1730 (ester C=O), 1670 (ketone C=O), and

1600 (aryl); 1H-NMR (CDC13) 6 1.22 (t, J = 7, 3, CH2CH3), 2.54 (s, 3, ArCOCH3),

2.67 (t, 2, ArCH2), 3.08 (t, 2, ArCH 2CH2), 3.92 (s, 3, OCH3), 4.13 (q, 2,

COOCH2CH3), 6.59 (s, 1, OH), and 7.43 (s, 2, aryl).

1-(3-Methoxy-4-hydroxy-5-[y-hydroxypropyl]phenyl)ethanol (22)

A slurry of 0.86 g (22.7 mmol) of LiAlH 4 in 35 mL of dry, freshly distilled

THF was stirred while a solution of 2.0 g (8.8 mmol) of 21 in 35 mL THF was

dripped in over 1 hour. The mixture was brought to and kept at reflux for 1.5

hours and then allowed to come to room temperature with stirring overnight. The

reaction was quenched by the addition of saturated aqueous Na2S04, until effer-

vescing stopped and a nearly colorless granular solid was obtained. The mix-

ture was filtered through a fine porosity filter funnel and the residue rinsed

with fresh, dry Et20. The organic filtrate was reduced in vacuo to give 0.5 g

of 22 as an oil: IR (neat) cm- 1 3350 (broad, OH), no carbonyl absorbances, and

1600 (aryl); 1H-NMR (d6-DMSO) 6 1.28 (d, J = 6 Hz, 3, CH3), 1.64 (m, 2,
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ArCH 2CH2), 2.53 (t, J = 8 Hz, 2, ArCH2), 3.40 (t, J = 7 Hz, 2, CH20H), 3.76 (s,

3, OC_3), 4.58 (q, J = 6.5 Hz, 1, ArCHOH), 5.38 (broad s, 3, 3 OH), 6.64 (s, 1

aryl), and 6.75 (s, 1, aryl).

The solid (aluminum salts) residue from above was dissolved in 1N H2S04,

and the acidic mixture was extracted with Et20. The ether extracts were washed

with water, dried (Na2S04), and reduced in vacuo to give ca. 0.3 g of an oil

with spectra identical to the product 22 described above.

6-(2,6-Dimethoxy-4-ethlphenoxy)acetyl-,2-diethoxy-8-methoxychroman (24)

Compound 23 was subjected to the identical procedure for preparing

diethoxychromans (as described above) with the following quantities: 12.0 g

(32.1 mmol) of 22, 1.64 g (6.05 mmol) of pivalic acid, and 11.2 g (64.2 mmol) of

triethyl orthoacrylate. The diethoxychroman 24, 17.5 g, was obtained as an oil

and used without further purification: IR (neat) cm- 1 1690 (C=0), and 1590

(aryl); 1H-NMR (CDC13) 6 1.19 (t, J = 7 Hz, 6, CH2CH3), 2.11 (t, J = 7 Hz, 2,

ArCH2CH2 ), 2.32 (s, 3, ArCH3), 2.89 (t, J = 6.5 Hz, 2, ArCH 2CH2), 3.44 (m, 4,

OCH2CH3), 3.79 (s, 6, ArOCH3), 3.88 (s, 3, ArOCH3), 5.09 (s, 2, ArCOCH2), 6.4

(s, 2, aryl), 7.22 (s, 1, aryl), and 7.50 (s, aryl).

Ethyl 5-(2, 6-dimethoxy-4-methlphenoxy)acetyl-2-hydroxy-3-

methoxydihydrocinnamate (25)

All of the crude product 24 from the previous procedure was dissolved in 100

mL of Et20 and stirred for 3 hours with 100 mL 10% HCl. While this reaction pro-

ceeded, a fine white powder crystallized out of the ether phase. The entire re-

action mixture was chilled, and the white powder was collected on a fine porosity

filter funnel and washed with cold water and ether to give 7.1 g of 25. The

filtrate was separated and the ether layer washed with water and saturated
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aqueous NaCl, dried (Na2S04), and concentrated on a steam cone until slightly

cloudy; upon cooling another 3.0 g of product was collected, to give a total of

9.1 g (72.7% two-step yield from 23) of 25: m.p. 111.5-113.0°C; IR (mull) cm- 1

3400 (OH), 1590 (aryl), 1660 (ketone C=0), and 1710 (ester C=0); 1H-NMR (CDCl3 )

6 1.22 (t, J = 7 Hz, 3, CH2CH3 ), 2.32 (s, 3, ArCH3), 2.64 (t, J = 6 Hz, 2,

CH2COO), 2.99 (t, J = 6 Hz, 2, CH2CH2 CO0), 3.80 (s, 6, ArOCH3), 3.93 (s, 3,

ArOCH3), 4.11 (q, J = 7 Hz, 2, CH2CH 3), 5.08 (s, 2, CH20Ar), 6.40 (s, 3, 2 aryl

& OH), and 7.21 (d, 2, aryl); 13C-NMR (CDC13) 6 14.2 (q, CH2CH3), 21.8 (q,

ArCH3 ), 25.4 (t, CH2CH2COO), 33.8 (t, CH2COO), 55.9 (q, 2 ArOCH3), 56.1 (q,

ArOCH3), 60.3 (CH2CH3), 75.1 (t, CH20Ar), 105.8 (d, aryl C-3,5), 108.6 (d, aryl

C-6), 124.0 (d, aryl C-2), 125.6, 126.9, 133.8, 133.9 (all d, aryl), 146.2,

148.3, 152.5 (all s, aryl), 172.7 (s, COO), and 193.2 (s, ArCO); MS (DIP) m/e

(%) 432 (15.6, M+), 167 (100.0), 251 (38.4), and 77 (13.8).

l-(4-Hydroxy--methox y- 5-[-hydroxypropyl]phenyl) -2-(2,6-dimethoxy-
4-methylphenoxy)ethanol (10)

The LiAIH 4 reduction procedure (which has already been described for the

reduction of (21) was repeated with the following quantities and conditions:

5.0 g (11.6 mmol) of 25 and 1.2 g (32.4 mmol) of LiAlH 4; the mixture was

refluxed for 21.5 hours. The reaction was quenched by the addition of saturated

aqueous Na2SO4, giving a suspension of grey-white solid in the THF. The mixture

was filtered and rinsed with copius quantities of Et20. Additional product was

recovered by rinsing the residue with CH2C12. The filtrates were washed with

water and dried (Na2S04) and concentrated in vacuo to give oils which were

crystallized from Et2 0 to give a total of 3.7 g (82%) of 10: m.p. 110.0-111.0°C;

IR (mull) cm- 1 3223, 3450 (OH), 1595 (aryl), and no C=0 absorbances; 1H-NMR

(d6-DMSO)(60°C) 6 1.69 (m, 2, CH2CH2), 2.25 (s, 3, ArCH 3), 2.56 (t, J = 7 Hz
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[with further fine splitting], 2, ArCH2), 3.42 (t, J = 7 Hz, 2, CH20H), 3.6-4.1

(broad signal, 1, OH), 3.75, 3.77 (2 s, 6 + 3, ArOCH3), 3.79 (d od d, J = 7.5 &

10 Hz, 1, CHACHBOAr), 3.96 (d of d, J = 4.5 & 10 Hz, 1, CHACHBOAr), 4.5-4.9

(broad signal, 1, OH), 4.71 (d of d, J = 4.5 & 7.5 Hz, 1, CHOH), 5.6-7.2 (broad

signal, 1, OH), 6.47, 6.48 (2s, 1 + 1, aryl), 6.70 (d, J = 2 Hz, 1, aryl), and

6.82 (d, J = 2 Hz, 1, aryl); 13C-NMR (d6-DMSO) 6 21.3 (q, ArCH 3), 26.2 (t,

CH2CH 2CH 2), 32.8 (t, ArCH 2 ), 55.6 (q, ArOCH3 ), 55.8 (q, 2 ArOCH3), 60.5 (t,

CH2OH), 71.5 (d, CHOH), 78.5 (t, CH20Ar), 106.3, 107.6, 119.7, 134.5 (all d,

aryl), and 127.9, 131.9, 132.8, 142.9, 146.8, 152.3 (all s, aryl); MS (DIP) m/e

(%) 392 (1.6, M+), 182 (5.20, 168 (100, ArOH+), and 77 (4.6).

Elemental analysis, calcd. for C21H2 807 (%): C, 64.27; H, 7.19; 0, 28.54;

found: C, 63.50; H, 7.17; 0, 28.46.

3-(3-Methoxy-4-hydroxyphenyl)-1-propanol (27)

Into 700 mL of absolute ethanol was dissolved 50.0 g of ferulic acid, after

which ca. 1.5 g of 10% Pd on carbon was added. The mixture was stirred while

hydrogen was supplied to the reaction mixture from a balloon (equipped with a

3-way stopcock), which could be periodically recharged with the gas; the reac-

tion was allowed to proceed until no more hydrogen was consumed. The solution

was filtered through CELITE, concentrated in vacuo to give a light brown oil,

and crystallized from CH2C12/hexane to give 42.8 g (84.8%) of dihydroferulic

acid as light-brown needles: m.p. 88.0-90.5oC (Lit.2 9 89-90 0C).

Dihydroferulic acid, 40.0 g (20.4 mmol), was dissolved into 200 mL of dry,

freshly distilled THF; all glassware was oven-dried and all operations, until

the workup, were under dry nitrogen. To the dihydroferulic acid solution was

added (in 5 portions using a syringe) a total of 245 mL (24.5 mmol) of 1.0M
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BH3-THF complex. After ca. 75% of the reagent had been added the reaction mix-

ture formed an unstirrable gel. The mixture was heated at reflux for 1 hour,

allowed to cool, and diluted with 400 mL water to give a clear, yellow-brown

solution. This quenched reactions mixture was extracted with Et20 and the ether

extracts were washed with 5% aqueous NaHC03, saturated aqueous NaCl, dried

(Na2S04) and concentrated in vacuo to give 31.3 g crude 29 (84% yield, ca. 100%

conversion). From the bicarbonate wash was recovered ca. 8 g dihydroferulic

acid.

Vacuum distillation of 18.9 g of crude 29 yielded 13.2 g of purified 29:

b.p. 178-180°C (1 mm Hg); IR (neat) cm- 1 3400 (OH), 1600 (aryl), and 1520;

1H-NMR (CDC13, 6 1.82 (m, 2, CH2CH20H), 2.59 (t, J = 7 Hz, 2, ArCH2), 3.62 (t,

J = 7 Hz, 2, CH20H), 3.76 (s, 3, ArOCH3 ), and 6.5-6.9 (multiplets, 3, aryl).

The sodium salt of 29 was prepared by dissolving 5.6 g (30.6 mmol) of the

phenol in 30.6 mL of 1.OON aqueous NaOH; the methanol and water were removed in

vacuo. Two 50 mL portions of 1,2-dichloroethane were added and evaporated in

vacuo to remove residual moisture; the vacuum was always purged with nitrogen,

and the contents chilled to ca. 0°C between 1,2-dichloroethane additions. The

residual sodium salt of 29 was a fluffy off-white solid which was desiccated for

24 hours over fresh P205 before its subsequent use.

4-Hydroxy-3-methoxy-B-(2-methoxy-4-[y-hydroxypropyl] phenoxy)-
acetophenone (12b)

The dimer 12b was prepared by the general coupling technique of Hoysoya, et

al. 16 as modified by Dimmel et al.5 Three equivalents of the sodium salt of 29

(30.6 mmol) were dissolved in 25 mL dry DMF (dried over molecular sieves) and

stirred under nitrogen while 2.5 g (10.2 mmol) of B-bromoacetoguaiacone (26) in

25 mL DMF was added dropwise over 1 hour, while the reaction mixture was kept at
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50°C. Stirring was continued for 1 hour after complete addition of 26, after

which the mixture was diluted with 250 mL water and acidified with HCl. The

mixture was extracted with CHC13, and the organic layer was washed with large

amounts of water to remove excess DMF. The chloroform layer was concentrated in

vacuo; the residual sirup was diluted with two 50 mL portions of xylenes and

concentrated under high vacuum (ca. 1 mm Hg) leaving 6.8 g of organic material.

A portion of the above material (4.1 g), which was a mixture of product 12b

and excess 29, was subjected to column chromatography (silica gel 60, hexane/

acetone 1:1) to give a 2.6 g portion of 12b, as a sirup. The sirup was

crystallized from i-PrOH to give 1.3 g (61%) of 12b as light-yellow needles:

m.p. 94.5-96.0°C; IR (mull) cm- 1 3500 (OH), 1665 (C=0), and 1590 (aryl); 1H-NMR

(CDC13) 6 1.65 (broad s, 1, CH20H), 1.84 (m, 2, CH2CH 20H), 2.64 (t, J = 7 Hz, 2,

ArCH2), 3.66 (t, J = 6.5 Hz, 2, CH20H), 3.85, 3.92 (2 s, 6, ArOCH3), 5.25 (s, 2,

CH20Ar), 6.36 (broad s, 1, ArOH), 6.6-7.0 (m, 4, aryl), and 7.58 (m, 2, aryl);

13C-NMR (CDC13) 6 31.7 (t, CH2CH20H), 34.2 (t, ArCH2), 56.1 (q, 2 ArOCH3), 62.1

(t, CH20H), 72.6 (t, CH2OAr), 110.6, 113.2, 114.1, 115.6, 120.4, 123.3 (all d,

aryl), 127.6, 136.2, 145.9, 146.8, 149.7, 151.1 (all s, aryl), and 193.2 (s,

C=O); MS (DIP) m/e (%) 346 (26.5, M+ ) 347 (5.6), 181 (1.3), 151 (100), and 137

(14.1).

4-Hydrox-3-methoxy-B-(2-methoxy-4-[y-trityloxypropyl]phenoxy)
acetophenone (12b-Tr)

Tritylpyridinium tetrafluoroborate reagent (TPFB) was prepared according to

the method of Hanessian and Staub.1 9 Into 25 mL of spectroscopic grade aceto-

nitrile was dissolved 0.5 g (1.44 mol) of 12b and 0.9 g (1.5 equiv.) of TPFB.

The solution was kept at 55-60°C and after 24 hours the reaction progress seemed

sluggish (by tlc); two more 0.5 g portions of TPFB were added on succesive days.
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After 5 days the entire reaction mixture was evaporated to dryness in vacuo and

the solid residue was extracted with CHC12. The chloroform extracts were washed

with water, dried (Na2S04), and concentrated in vacuo to give an oily residue

which was visually contaminated with trityl alcohol crystals. This crude prod-

uct was chromatographed on alumina (Alumin-AR CC-10, CH2CL2/methanol 40:1 to

20:1) to give a 0.3 g fraction (35%) of 12b-Tr as a colorless oil: IR (neat)

cml- 1690 (C=0), and 1595 (aryl); 1H-NMR (CDCI3) 6 1.87 (m, 2, CH2CH 20Tr), 2.66

(t, J = 7 Hz, 2, ArCH2), 3.10 (t, J = 6 Hz, 2, CH20Tr), 3.80, 3.90 (2s, 6,

ArOCH3), 5.21 (s, 2, CH2OAr), 6.5-7.0 (m, 2, aryl), and 7.2-7.6 (m, 19, aryl).

3-(3-Methoxy-4-hydxyphenyl)-l-trityloxypropane (27Tr)

The TPFB procedure was repeated with 27, with the following quantities:

1.2 g (6.6 mmol) of 27 and 2.9 g (1.1 equiv.) of TPFB. Following workup, 1.7 g

of a crude solid was recovered, which was twice recrystallized from CHC13/hexane:

m.p. 109.0-111.0°C; 1H-NMR 6 (CDC13 ) 1.90 (m, 2, ArCH2CH2), 2.66 (t, J = 7 Hz,

2, ArCH2), 3.10 (t, J = 7 Hz, 2, CH_2OTr), 3.79 (s, 3, ArOCH3), 5.44 (s, 1,

ArOH), 6.5-6.8 (m, 3, aryl), and 7.1-7.7 (m, 15, trityl).

3-Methoxy-4-hydroxy-B-(2'-methoxyphenoxy)acetophenone (2a

Phenacyl aryl ether 2a was prepared by the general method of Hosoya, et

al.1 6 as adapted by Dimmel, et al.5

2-(2-Methoxyphenoxy)-1-(3-methoxy-4-hydroxyphenyl )-4-pentene-1-one (28)

The following alkylation procedure5 employed oven-dried glassware, freshly

distilled anhydrous solvents, and nitrogen atmospheres. To 150 mL of ice-cooled

THF was added 224 mL (0.347 mol) of 1.55M n-BuLi in hexane and 35.1 g of diiso-

propylamine. After stirring 15 min, the solution was cooled to -70°C and 25.0 g

2a (86.7 mmol) dissolved in 150 mL THF was added dropwise. The stirred mixture
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was then allowed to warm to room temperature for 1 hour, followed by cooling

again to -70°C; to this mixture, 42.0 g (0.347 mol) of allyl bromide (dissolved

in 100 mL THF) was added dropwise. After complete addition of the allyl bro-

mide, the mixture was allowed to warm to room temperature and stirred for

several hours. The reaction mixture was quenched by the addition of 0.5N

H2S04. The organic layer was separated, and the aqueous layer was extracted

with Et20. The combined THF/ether extracts were extracted with 1N NaOH; these

NaOH extracts were acidified and extracted with CH2C12. The CH2CI2 extracts

were washed with water and saturated aqueous NaCI, dried (Na2S04), and con-

centrated in vacuo to give ca. 30 g of a brown oil. The oil was chromatographed

(silica gel 60, CHC1 3/EtOAc 6:1) to give 19.4 g (68.1%) of 28 as a gold oil: IR

(neat) cm- 1 3400 (OH), 3190, and 1635 (CH=CH2), 1670 (C=0), and 1590 (aryl);

1H-NMR (CDC13) 6 2.81 (t, J = 7 Hz [with further fine splitting] 2, CH2CH=CH 2),

3.77, 3.87 (2 s, 6, ArOCH3), 5.0-5.4 (m, 3, CHOAr & CH=CH2), 5.8-6.2 (m, 1,

CH=CH 2), 6.39 (s, 1, OH), 6.85 (m, 5, aryl), and 7.70 (m, 2, aryl); 13C-NMR

(CDC13) 6 37.7 (t, CH2CH=CH 2), 55.6 (q, ArOCH3), 81.4 (d, CHOAr), 113.9 (t,

CH=CH 2), 132.7 (d, CH=CH 2), 110.7, 112.4, 116.1, 117.6, 120.5, 122.1, 123.8 (all

d, aryl), 126.9, 146.5, 146.8, 149.5, 150.8 (all s, arylO, and 196.1 (s, C=0);

MS (DIP) m/e (%) 328 (24.0, M+), 151 (100), 123 (15.), 177 (15.4), 77 (11.0),

and 205 (9.6).

2-(2-Methoxyphenoxy)-1-(3-methoxy-4-hydroxyphenyl)-4-penten-1-ol (30)

Into 300 mL of absolute EtOH was dissolved 20.0 g (60.9 mmol) of 28. Six

equivalents (13.8 g) of NaBH4 were quickly dissolved in 150 mL water/50 mL EtOH

and added dropwise to the substrate solution. After 1 hour, the solution was

quenched by the dropwise addition of 3N HC1, diluted with more water, and ex-

tracted with CH2C12. The organic extracts were dried (Na2SO4) and concentrated
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in vacuo to leave 20.4 g of an oil. The crude product was chromatographed

(silica gel 60, CH2C12/EtOAc 20:1 to 5:1) to give a major fraction of 13.0 g

(64.7%) of 30, as a colorless oil: IR (neat) cm- 1 3100 (OH), 1650 (C=C), no C=0

absorbance, and 1600 (aryl); 1H-NMR (CDC13) 6 2.0-2.2, 2.4-2.7 (2 m, 1 + 1, non-

equiv. CH2CH=CH2), 3.8-3.9 (broad signal, 1, OH), 3.87 (s, 6, ArOCH3), 4.1-4.3

(m 1, CHOAr), 4.80 (d, J = 3 Hz, 1, CHOH), 4.9-5.1 (m, 2, CH=CH2), 5.74 (s, 1,

ArOH), 5.7-6.0 (m, 1, CH=CH2), and 6.67-7.13 (m, 7, aryl); 
13C-NMR (CDCl3) 6

32.7 (t, CH2CH=CH2), 55.9, 56.0 (2 q, ArOCH3), 72.8 (d, CHOH), 87.2 (d, CHOAr),

117.0 (t, CH=CH 2), 131.4 (d, CH=CH2), 108.8, 112.0, 114.0, 119.0, 120.5, 121.4,

123.6 (all d, aryl), and 135.0, 144.6, 146.4, 147.0, 151.5 (all s, aryl); MS

(DIP) m/e (%) 330 (10.2, M+), 153 (100.0), 124 (51.8), 178 (51.8), 177 (20.2),

206 (14.7), and 137 (18.7).

Disiamylborane (DSB)

A kit supplied by Aldrich Chemical30 provided a rapid and simple method for

preparation of the reagent; equal volumes of a 1M BH3/THF solution were combined

with a 2M THF solution of 2-methyl-2-butene to give a 0.5M THF solution of

bis(3-methyl-2-butyl)borane (DSB).23

2-(2-Methoxyphenoxy)-l-(3-methoxy-4-hydroxyphenyl)-1,5-pentanediol (11)

All procedures, until workup, employed oven-dried glassware, freshly

distilled anhydrous solvent, and nitrogen atmospheres. Into 100 mL of THF was

dissolved 12.0 g (36.3 mmol) of 29; the mixture was chilled in an ice bath and

600 mL (8.2 equiv.) of 0.5M DSB in THF was added to the solution over 1 hour.

The mixture was kept at ca. 0°C for 3 hours, after which 130 mL water was added

to decompose residual hydride. The organoborane was oxidized in situ at room

temperature by adding 220 mL of 3N NaOH, followed by the dropwise addition of
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183 mL of 30% H202. The aqueous phase was saturated with K2C03 and the THF

layer was separated. The aqueous layer was then extracted with additional THF

and the combined THF was washed with saturated aqueous NaCl, dried (Na2S04), and

concentrated under high vacuum (ca. 1 mm Hg) to leave 14.7 g of a crude yellow

oil. The crude product was subjected to three successive column chromatographies

(silica gel 60, CH2C12/MeOH 50:1 to 20:1) to give 11.4 g of a colorless oil

which crystallized upon standing for several days; the product was recrystallized

from benzene to yield 8.1 g (64.3%) of compound 11: m.p. 108.5-109.0°C; IR

(mull) cm- 1 3450, 3225 (OH), and 1590 (aryl); 1H-NMR (CDC13) 6 1.5-2.1 (m, 5,

CH2CH 2 & OH), 3.55 (broadened t, J = 6 Hz, 3, CH20H & OH), 3.81, 3.82 (2 s, 6,

ArOCH3), 4.25 (m, 1, CHOAr), 4.80 (d, J = 3, 1, CHOH), 5.74 (s, 1, ArOH), and

6.7-7.1 (m, 7, aryl) [The lH-NMR assignments were verified with homonuclear

decoupling experiments]; 13C-NMR 6 (CDCl3) 24.5, 29.3 (2 t, CH2CH2), 56.1 (s, 2,

ArOCH 3), 62.8 (t, CH20H), 73.1 (d, CHOH), 86.4 (d, CHOAr), 109.5, 112.7, 114.2,

119.2, 119.4, 121.4, 123.1 (all d, aryl), and 132.0, 145.0, 146.6, 147.4, 151.4

(all s, aryl); MS (DIP) m/e (%) 348 (13.9, M+), 71 (100.0), 124 (75.5), 153

(68.0), 196 (27.4), 224 (16.2), and 137 (15.5).

Elemental analysis, calcd. for C19H2 40 6 (%): C 65.50; H 6.94; 0 27.55;

found: C 65.78; H 6.96; 0 27.26 (by difference).

2-(2-Methoxyphenoxy)-1-(3-methoxy-4-hydroxy)-5-trityloxy-1-pentanol (11Tr)

Into 75 mL freshly distilled, anhydrous pyridine was dissolved 1.53 g (4.39

mmol) of 11 and 2.41 g (2 equiv.) of trityl chloride. The reaction mixture was

maintained at ca. 50°C for 5 days, and then diluted with 75 mL water. The

aqueous pyridine solution was extracted with toluene, which was in turn washed

repeatedly with water (until the wash was neutral), washed with saturated
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aqueous NaCl, dried (Na2SO4), and concentrated in vacuo to leave 4.7 g of an

oil. The crude product was chromatographed on alumina (AluminAR CC-10, CH2C12/

MeOH, pure CH2C12 to 20:1) to give 2.17 g of a colorless oil, which was

crystallized from warm MeOH to yield 1.67 g (64.5%) of 11Tr: m.p. 109.5-111.0°C;

IR (mull) cm- 1 3450, 3270 (OH), 1600, and 1580 (aryl); 1H-NMR (CDC13) 6 1.4-2.1

(m, 4, CH2CH2), 3.04 (t, J = 6 Hz, 2, CH2OTr), 3.66 (d, J = 3 Hz, 1, OH), 3.77,

3.84 (2 s, 6, ArOCH3), 4.13 (m, 1, CHOAr), 4.76 (t, J = 3 Hz [d after D20 wash],

1, CHOH), 5.65 (s, 1, ArOH), 6.6-7.0 (m, 7, aryl), and 7.0-7.4 (m, 15, trityl);

1 3C-NMR (CDC13) 6 24.2, 26.3 (2 s, CH2CH2), 55.8 (q, 2 ArOCH 3), 62.9 (t, CH2OH),

72.6 (d, CHOH), 86.1 (s, CAr3 ), 86.7 (d, CHOAr), 108.7, 111.9, 114.0, 118.8,

119.9, 121.3, 123.2 (all d, aryl), 126.6, 127.5, 128.4 (all d, trityl aryl),

144.0 (s, trityl aryl), and 131.4, 144.5, 146.4, 146.8, 151.4 (all s, aryl); MS

(DIP) m/e (%) 243 (100.0, Tr+), 71 (23.7), 244 (22.4), 153 (36.4), 165 (24.7),

and 223 (16.8).

Elemental analysis, calcd. for C3 8H3 806 (%): C 77.26; H 6.48; 0 16.25;

found: C 76.87; H 6,54; 0 16.59 (by difference).

5-Hydroxy-2-(-methoxypheoxy)-1-3(methoxy-4-hydroxypheny1)-1-pentanone (29)

The DSB procedure described above was repeated with compound 28, using the

following quantities: 4.8 g (14.6 mmol) of 28, 88 mL (3 equiv.) of 0.5M DSB,

and the appropriate amounts of NaOH and H202 during the workup. The crude prod-

uct, 5.5 g, was chromatographed (silica gel 60, CH2Cl2/MeOH 30:1 to 10:1) to

yield 1.8 g (36%) of 29 as an oil: IR (neat) cm- 1 3400 (OH), 1670 (C=0), 1590

(aryl), and no C=C absorbances; 1H-NMR (d6-DMSO) 6 1.65, 1.89 (2 m, 4, CH2CH2 ),

3.46 (t, J = 6 Hz, 2, CH20H), 3.76, 3.93 (2 s, 6, ArOCH3), 4.48 (broad s, 1,

OH), 5.63 (t, J = 5 Hz, 1, CHOAr), 6.94 (m, 4, aryl), 7.62 (m, 2, aryl), and
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10.15 (broad s, 1, ArOH); 13C-NMR (d6-DMSO) 6 28.2, 29.7, (CH2CH2), 55.8

(ArOCH3), 60.4 (CH20H), 80.3 (CHOAr), 112.3, 113.3, 115.0, 115.4, 120.5, 121.4,

123.1, 126.4, 147.1, 147.3, 149.4, 151.9 (aryl), and 195.5 (C=0).

Compound 11 (Alternate Preparation)

The NaBH 4 reduction procedure described above was repeated with compound

29, using the following quantities: 2.9 g (8.4 mmol) of 29 and 1.9 g (6 equiv.)

of NaBH 4. The crude product, 2.8 g, was chromatographed (silica gel 60, Ch2Cl2/

MeOH 50:1 to 30:1) to yield 1.4 g (48%) of 11 as an oil which was a mixture of

diastereomers: IR (neat) cm- 1 3400 (OH), no C=O absorbance, and 1595 (aryl);

lH-NMR (CDC13) 1.4-2.0 (m, 4, CH2 CH2), 2.10 (s, 1, OH), 3.60 (t, J = 6 Hz, 2,

CH20H), 3.83, 3.85 (2s, 6, ArOCH3), 4.1-4.2 (m, 1, CHOAr), 4.74 (d, J = 8 Hz,

0.3, CHOH), 4.82 (d, J = 3 Hz, 0.7, CHOH), 5.29 (s, 1, OH), 5.77 (broad s, 1,

ArOH), and 6.6-7.1 (m, 7, aryl); 13C-NMR (CDC13) 24.2, 29.1 (CH2CH2, major)

27.4, 28.1 (CH2CH2, minor), 55.7 (2 ArOCH3), 62.5 (CH20H), 72.6 (CHOH, major),

76.1 (CHOH, minor), 86.5 (C HOAr), 108.8, 112.0, 114.0, 118.7, 119.1, 121.2,

123.0 (aryl, major), 109.4, 117.8, 119.4, 120.7, 121.0, 122.4 (aryl, minor),

131.5, 144.5, 146.3, 146.7, 151.0 (aryl, major), and 131.8, 145.2, 148.2, 148.1,

150.0 (aryl, minor); DS (DIP) m/e (%) 348 (2.5, M+), 71 (100.0), 124 (52.5), 153

(45.7), 196 (15.9), 137 (12.8), and 224 (9.8).
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ABSTRACT

A unique lignin model dimer 2-(2-methoxyphenoxy)-l-(3-methoxy-4-hydroxy-

phenyl)-1,5-pentanediol (11) was attached to a macroreticular polystyrene by

means of a polymer-bound trityl to model primary alcohol bond. The extent of

model loading was determined by gravimetric analysis and Zeisel methoxyl con-

tent. The insoluble model, 11Tr-P, was reacted under simulated kraft pulping

conditions, to afford moderate yields of guaiacol, a fragmentation product. The

addition of 28.5% of p-dioxane drastically depressed the yield of guaiacol from

11Tr-P. The trityl ether attachment was not as alkali-stable as its soluble

counterpart, and portions of the guaiacol yield from 11Tr-P are from soluble

reactions. The behavior of the insoluble model was compared to the reactions of

11 and to the reactions of the analogous soluble tritylated model dimer 11Tr.

INTRODUCTION

Lignin model compounds are designed to approximate the chemical reactivity

of the predominant structural units in lignin, and as such are regarded as tools

with which the basic, underlying chemistry of delignification can be elucidated.

The model compounds are generally soluble in the reaction medium, are chemically

distinct, and products from their chemical reactions are relatively simple to

detect and measure.
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Chemical reactions of native lignin are, on the other hand, usually hetero-

geneous; that is to say, there are at least two dissimilar phases involved.2, 3

The phases involved during pulping consist of solid-liquid interfaces of lignin

and pulping liquor,4,5 and the reaction rates and mechanisms of the degrading

lignin are very difficult to quantify and characterize.

The goal of chemical pulping is the selective removal of the insoluble

native lignin. Studies of the chemistry of soluble lignin model compounds have,

in general, suggested that the selective degradation and dissolution of lignin

during alkaline pulping is controlled by the cleavage of several different types

of alkyl-aryl ether bonds.6 -8

However, it has been argued that the rate of delignification might also be

influenced by factors other than the ease (or rate) of ether bond cleavages.

Some such factors include: (a) accessibility of reactants to lignin in dif-

ferent morphological regions,9 (b) polyelectrolytic behavior of the degrading

polymer, postulated by Schuerch as an "ion-exclusion" (Donnan equilibrium)

effect, 1 0- 1 1 and (c) diffusion-, transport-, adsorption-, and desorption-

phenomena. 2,3,7

Moreover, investigators of other polymeric systems have shown that the

intrinsic ease or difficulty of a chemical reaction in which one of the reac-

tants is part of an insoluble matrix may be quite different than the analogous

homogeneous system; the insoluble reactant can impose a loss in entropy on the

transition state of such a reacting system.12,13 Another operative factor in

heterogeneous reactions is the molecular mobility of the insoluble matrix.

Influenced by temperature and solvent, those conditions which impart greater
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flexibility to a polymer backbone enhance the availability (reactivity) of the

polymer-bound substrate.14,15

Clearly, soluble lignin model compounds cannot mimic the various polymeric

characteristics of a chemically reacting native lignin. In light of the inade-

quacies of simple models, and the difficulties in characterizing reactions as

they occur with actual lignin, we initiated an experimental program to design,

synthesize, characterize, and employ insoluble (heterogeneous) lignin models.

The heterogeneous models will be comprised of a basic reactive unit of lignin

attached to a polymer network by means of an alkali-stable polymer-bound pro-

tecting group1 and will have the advantages of (1) a definable structure, which

actual lignin does not, and (2) heterogeneity, which soluble models lack.

Design Criteria and Limitations

The design of the insoluble model described herein will follow a polymer-

bound protecting group methodology.1 Premanufactured macroreticular polystyrene

can be functionalized to a triphenylmethyl (trityl) chloride. The polymer-bound

trityl chloride preferentially forms a trityl ether linkage with primary alcohol

groups; such groups (propyl alcohol handles) have been incorporated into reac-

tive lignin model dimers. The general design of the insoluble model should

allow us to study its chemistry in a variety of alkaline systems.

Polystyrene was chosen because insoluble, cross-linked polystyrene supports

(often called resins) are commercially available with a variety of physical

characteristics, generally in a convenient bead form and with a thermal stability

of 250°C or more. Also, polystyrene resembles lignin, superficially at least,

in that it is a cross-linked, aliphatic-aromatic polymer.
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Macroreticular polystyrene was chosen to insure maximum solid-liquid inter-

face of the insoluble model and cooking liquor. The definitive internal porous

structure of macroreticular resins allows them to absorb significant quantities

of virtually all solvents.1,16, 1 7 The structure of macroreticular resins can be

envisioned as spongelike, where the interior volume is responsible for the

absorption of liquid, and the highly entangled volume of polymer material is

penetrated only by a good polymer-swelling solvent.

The choice of the trityl ether protecting group was in part based on its

reported stability at pH > 12 and 150°C; 18 clearly, the model-polymer attachment

should be stable to the conditions under which the insoluble model will be

studied. Bulky trityl ethers are not seen as reacting by SN2 processes, so the

addition of a nucleophilic additive (such as hydrosulfide, in a kraft system)

would not be expected to affect trityl ether stability.

It is convenient that trityl ethers are preferentially formed with primary

alcohols;1 9 in general, there is no need to block other alcohols or phenols in

polyhydroxylic compounds. Two lignin model dimers with primary propyl alcohol

handles were prepared (Fig. 1).20 Both compounds, phenacyl aryl ether 12b and

B-aryl ether 11, are considered appropriate substrates to support on a polymer

via a polymer-bound trityl ether because they could be conventionally trity-

lated without complication. For the purposes of this study, only dimer 11 was

employed for the preparation of an insoluble lignin model.

For the purposes of this paper, the insoluble model (based on dimer 11) has

been briefly studied only under simulated kraft pulping conditions. Similarly,

the chemistry of analogous soluble lignin model dimers has been studied.
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Figure 1. Structures of various compounds referred to in the text.

RESULTS AND DISCUSSION

Selection, Purification, and Stability Checks of the
Polystyrene Support

The specific macroreticular polystyrene chosen for this study was selected

from among three commercially available Amberlite resins (Table 1). Amberlite

XE-305 was chosen on the basis of its large average pore diameter which should

insure that the transport of reagents and products, in and out of the macro-

reticular network, will not be restrictive. Also, Amberlite XE-305 is unusual,

among macroreticular resins, in that it has a low degree of cross-linking (4%

divinylbenzene).3 5

Amberlite XE-305 is available only as an industrial-grade resin, so a puri-

fication was required. A multistage procedure suggested by Merrifield 2 1 was

employed, which produces what may be considered an analytical-grade resin.
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Table 1. Characteristics of three commercially available Amberlite
resins.37-39

Resin Average Pore Diameter,a A Surface Area,a m2/g

XE-305 1000 35

XAD-2 90 300

XAD-4 40 725

aBased on the BET method.4 0 , 4 1

The stability of Amberlite XE-305 under high temperature alkaline con-

ditions was confirmed in several ways. Portions of the polymer were subjected

to aqueous lN NaOH at 150°C for three hours, after which they were quantitatively

recovered, thoroughly washed, dried under vacuum, and weighed to show no weight

loss had occurred. Each cooking liquor was extracted with ether and chloroform,

and gas chromatographic analysis of the extracts showed no polystyrene degrada-

tion products. There were no macroscopically observable differences between the

thermally treated and untreated resin samples, and in a separate experiment2 2

there were no significant microscopic differences between untreated resin and

resin heated for seven days at 175°C, in lN NaOH.

Amberlite XE-305 (31-P) was functionalized to the polymer-bound trityl

chloride (36-P) employing the synthetic route shown in Scheme 1.23 The bromine

content of product 32-P was 1.36%, which corresponds to one bromine per 4.4

polystyrene aryl rings. The chlorine content of the final product 36-P repre-

sents 60.5% of the theoretical maximum (based on the original amount of bromine),

and corresponds to 1 chlorine per 8.5 polystyrene aryl rings, or 0.91 milliequiv-

alents of chlorine per gram of product. Table 2 shows the elemental analyses of

the various polymer products.
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Functionalization of polystyrene (31-P) to a polymer-bound
trityl chloride (36-P).

Table 2. Elemental analyses of purified Amberlite XE-305 (31-P) and
functionalized polymer products 32-P, 35-P, and 36-P.

Sample

31-P

32-P

35-P

36-P

%C

91.47

77.78

89.48

88.12

%H

7.75

6.47

7.36

7.22

%Br%0

1.36

1.93

2.99

1.63

%C1

14.67

0.67

3.22

What appears to be the limiting factor(s) with regard to the incorporation

of chlorine? It is unlikely that a poor conversion in the final chlorination

step could account for the large deviation from the maximum expected chlorine;

the conversion of trityl alcohol to trityl chloride typically gives a yield of

95% or greater.24
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Only a small portion of the bromine from 32-P was not reacted; elemental

analysis of 35-P showed a trace (0.67%) of bromine. However, a semiempirical

mass balance between 32-P and 35-P indicates that the decrease in bromine is not

balanced by an increase in oxygen.

Side reactions of the lithiated intermediate 33-P could account for the yield

discrepancies. Undesirable oxidations of 33-P could give phenols, and protona-

tion could generate starting units, 31-P. Moreover, the best agreement between

predicted and actual elemental analyses of 35-P is based on the representation

that a portion of 33-P reverts to an unsubstituted aryl unit, via protonation.

It is consistent then that the major limiting factor with regard to chlorine

incorporation is not the incomplete chlorination of 35-P. If a greater loading

of chloride is desired, either the original bromine content must be increased or

the source of protons (probably trace water) and oxygen must be reduced. Related

inference based on the above analyses is that the majority of oxygen that

remains in product 36-P was originally present in the Amberlite XE-305.

Preparation of a Polymer-Bound Monomer (27Tr-P)

The monomer 3-(3-methoxy-4-hydroxyphenyl)-l-propanol (27) has previously been

tritylated to give 3-(3-methoxy-4-hydroxyphenyl)-l-trityloxypropane (27Tr).2 0

Preparation of the analogous polymer-bound monomer, 27Tr-P, was accomplished by

reacting a portion of polymer-bound trityl chloride (36-P) with a threefold

excess of compound 27 in dry pyridine. The loading of monomer on the polymer

product 27Tr-P was determined to be 0.26 milliequivalents per gram of product,

based on gross weight differences between 36-P and the product; this loading was

confirmed by an acid hydrolysis study. While the trityl ether attachment is pre-

sumably stable to alkali, it can be readily cleaved with acid. The quantity of
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27 which was liberated upon treatment of 27Tr-P with trifluoroacetic acid (TFAA)

corresponded to 102% of the loading value based on the gravimetric analysis.

Alkaline Stability of the Trityl Ether in 27Tr and 27Tr-P

Trityl ethers are reported to be stable at 150°C in 0.1-1.0N NaOH (pH >

12).25 Nevertheless, we checked the stability of the tritylated monomer 27Tr

and the polymer-bound monomer 27Tr-P under the kraftlike conditions in which

the lignin models would be studied. Portions of 27Tr were reacted for up to 2

hours at 150°C in a 0.11M NaOH/0.021M NaSH system; an aqueous medium employing

28.6% p-dioxane was used to insure solubility of 27-Tr. No trityl ether

cleavage was observed.

However, the analogous polymer-bound trityl ether of 27Tr-P was not as

stable. Portions of 27Tr-P were reacted at both 135°C and 150°C under similar

conditions as described above (except that the aqueous medium contained no

cosolvent); cleavage of polymer-bound trityl ether gave the yield of compound 27

shown in Table 3. Examination of this data shows that the fraction of polymer-

bound trityl ether being cleaved levels off at ca. 25% (at 150°C).

A possible explanation for the above behavior is that a fraction of polymer-

bound trityl groups are intrinsically strained (being part of a cross-linked

polymer), and form relatively weak trityl ethers with primary alcohol substrates.

These weak ethers cleave more readily than a soluble trityl ether; the remaining

fraction of polymer-bound ethers may be relatively unstrained and maintain an

alkaline stability similar to their soluble counterparts. Nevertheless, the data

regarding polymer-bound trityl ether stability will be taken into account when

interpreting data on the reactions of the polymer-bound lignin model dimer.
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Table 3. Relative yield of 27 liberated from polymer-bound monomer
27Tr-P upon exposure to kraftlike conditions.

At 135°C At 150°C
Time, min %27 %27

15 4.5 13.5

30 7.8 17.9

45 - 20.6

60 11.6 25.3

90 14.6 23.0

120 15.0 24.3

240 17.0 25.4

Preparation of a Polymer-Bound Lignin Model Dimer (llTr-P)

Lignin model dimer 11 was selected as an appropriate compound with which to

prepare an insoluble lignin model. The propyl alcohol handle of 11 could be

conventionally tritylated with trityl chloride to give llTr;2 0 the analogous

heterogeneous synthesis employing a polymer-bound trityl chloride will attach

model 11 to the polymer, thus constituting an insoluble lignin model compound.

The position of the propyl handle attachment is convenient because, upon a

typical kraft-promoted fragmentation,6, 7 guaiacol (2-methoxyphenol) will be

liberated into solution, where its production can be easily measured.2 6

Preparation of the polymer-bound lignin model, 1lTr-P, was accomplished by

reacting a portion of 36-P with a sixfold excess of 11 in dry 33% dry benzene/

pyridine. The benzene was added to assist in swelling the macroreticular polymer

backbone and, perhaps, promote a greater loading of 11. Based solely on gross

weight differences between 36-P and the polymer product, the loading of dimer on

product llTr-P was determined to be 0.41 millimoles per gram of product.

Further characterization was desired.
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Characterization of Insoluble Lignin Model 11Tr-P

Reliable weight differences are difficult to obtain when working with

polymer beads; quantitative delivery from vessel to vessel is awkward and

complicated by the fact that functionalized polymer beads often take on a static

electrical charge. Clearly, it would be useful to find a specific analytical

technique for determining the loading of model dimer on 11Tr-P.

The only source of methoxyl groups in the insoluble model is from the

attached lignin model (two methoxyls per dimer). The Zeisel methoxyl deter-

mination has proven to be reliable for a variety of insoluble substrates;27 ,2 8

values are generally very reproducible in the range of methoxyl content expected

for insoluble model llTr-P.2 9

Methoxyl content analyses were performed in triplicate on 11Tr-P to give

values of 2.67, 2.67%, and 2.79% for an average of 2.71% methoxyl. This

methoxyl content corresponds to a loading of 0.436 millimoles of dimer per gram

of polymer product. Although this value is slightly higher than the value

determined by weight difference, it is considered a more reliable estimate of

loading, since the sources of error in the gravimetric analysis (i.e., mechani-

cal losses) would give a lower than actual value.

Additionally, the general degree of loading was confirmed by weight differ-

ences of a sample of 11Tr-P before and after an acid treatment (ca. 0.38-0.44

mmol/g of material could be hydrolyzed off the polymer using TFAA). Also, in a

separate experiment, 3 0 a sample of 11Tr-P was treated with diazomethane to

methylate the phenol of the attached dimer. The methoxyl content of the diazo-

methane treated product (with three methoxyls per dimer) was found to be 4.33%,

which compares favorably to the theoretical value of 4.06%, based on the original
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methoxy analysis. Excess methoxyl content of the diazomethane treated 11Tr-P

may be due to the methylation of phenolic contaminants which are part of the

original polystyrene 31-P.

Nevertheless, the loading value of 0.436 millimoles per gram was used for

calculating stoichiometric quantities used for the subsequent degradation studies.

This loading represents a 61.5% conversion of trityl chloride groups (to trityl

ethers) and corresponds to 1 model dimer per ca. 14 polystyrene aryl rings.

How can it be shown that the dimer loaded on 11Tr-P is covalently bonded

and not just adsorbed? It seems unlikely that even a strongly adsorbed

substrate would remain on the polystyrene following the extensive soxhlet

extraction purification procedures which follow the attachment reaction (see

Experimental). However, a control experiment was designed to further rule out

adsorption as a possibility. A portion of the polymer-bound trityl alcohol

(which does not have a reasonable mechanism with which to form a covalent bond

with a primary alcohol substrate) was stirred with an excess of compound 11, in

a manner analogous to the preparation of 11Tr-P. After the workup/purification

procedure, the polymer beads were dried in vacuo to a constant weight; the

weight of the resultant beads showed no weight gain, confirming that the lignin

dimer of 11Tr-P is not adsorbed but, rather, covalently bound.

In a related experiment, a portion of 11Tr-P was subjected to an exhaustive

methylation (using dimethyl sulfate) in an effort to make any adsorbed material

more extractable. No material detectable by gas chromatography was extractable

from the dimethyl sulfate treated beads, again confirming that the lignin dimer

of 11Tr-P is covalently bound.
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Homogeneous Degradations

Preliminary Degradations at 135°C

Preliminary homogeneous degradations of compounds 11 and 11Tr were performed

in an effort to understand any peculiar behavior of these lignin models. Yields

of guaiacol from the 135°C kraftlike degradations of 11 and 11Tr are shown in

Table 4. It should be noted that 1lTr required the addition of p-dioxane

(28.5%) to maintain soluble conditions during the reactions.

Table 4. Relative yields of guaiacol from the 135°C kraftlike degradations
of compound 11 (in an aqueous system) and compound 11Tr (in an
aqueous/28.5% p-dioxane system).

11 (in H20) llTr (in H20/p-dioxane)
Time, min % Guaiacol. % Guaiacol

7.5 0 0

15 0 0

30 0 4.6

60 3.4 17.8

120 5.9 37.9

The dramatic difference in the rate of guaiacol production suggests that the

reactions of 11 and llTr must have unique mechanistic features. Examination of

the methylated reaction extracts from the degradation of 11 shows the presence

of the methylated analog of structure 37 (Fig. 2). Apparently, the primary

alcohol acted as a "built-in" quinonemethide captor; Fig. 2 illustrates how the

ionized primary alcohol could attack the quinonemethide, II-QM, and form a

six-membered ring (as it rearomatizes the system).3 2 This cyclization thus

interferes with the typical kraft-system fragmentation reactions.

The above-mentioned behavior was not observed during the reactions of llTr;

presumably, fragmentation reactions proceed without competing cyclizations,
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giving further evidence for the stability of soluble trityl ethers under the

chosen conditions. Similarly, cyclization should be unlikely with the insoluble

model, llTr-P, since the propyl alcohol handle is blocked by the attachment to

the polymer. Clearly, compound llTr constitutes a more appropriate control with

which to compare the behavior of the insoluble model.

Figure 2. Cyclization reactions occurring during the kraftlike degradation
of compound 11.

Ho mogeneous Degradations at 150°C

Kraftlike degradations were performed on both compounds 11 and llTr at

150°C, in both aqueous and aqueous/28.5% p-dioxane media. The percentage of p-

dioxane used was arbitrary and convenient (1.0 in a total of 3.5 mL); compound

llTr may indeed be soluble at a lower level of p-dioxane addition, at 150°C.

Figure 3 shows the relative yields of guaiacol in each of these systems.

As was mentioned earlier, llTr is not soluble in an aqueous reaction system

at room temperature. Nevertheless, the degradation of llTr was performed in the
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water-only system to determine whether or not llTr is soluble at 150°C. The

relatively low production of guaiacol suggests that llTr is sparingly soluble in

the aqueous system even at 150°C.

Figure 3. The relative yield of guaiacol from the kraftlike degradation of
compounds 11 and llTr in both water and water/28.5% p-dioxane.

As Fig. 3 illustrates, the yields of guaiacol from the reaction of llTr in

the aqueous/p-dioxane medium level off at ca. 71% after 90 minutes. Direct com-

parison of the guaiacol yield from 11 and llTr in the water/p-dioxane medium

suggests that the cyclization process described previously (Fig. 2) is respon-

sible for the depressed yields of guaiacol from 11.

Compound 11 fragments faster in the water-only medium than in the water/

p-dioxane system. However, this observation does not suggest that the cycliza-

tion reaction (Fig. 2) did not occur in the aqueous medium - cyclization product
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37 was observed in reaction extracts from both the water and water/p-dioxane

reactions of 11. Rather, p-dioxane has been observed to depress the fragmen-

tation of other B-aryl ether model compounds,3 3 and is presumably slowing the

production of guaiacol in this instance. Similarly, we can speculate that the

rate of guaiacol production from 11Tr would have increased if the percentage of

p-dioxane had been decreased (as long as solubility was maintained).

In addition, kraftlike degradations were performed with compound 1lTr in a

water/28.5% DMSO system. The rate of guaiacol production from 1lTr in the DMSO

system parallels the production in the p-dioxane system for the first 60 minutes

(Table 5), after which the overall yield of guaiacol diminishes. A tentative

explanation is that the loss of guaiacol at the later times is due to DMSO-

promoted polymerization.

Table 5. Relative yields of guaiacol from
degradations of compounds 11 and
aqueous/28.5% cosolvent systems.
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Heterogeneous Reactions at 150°C

As previously mentioned, soluble model 11Tr was considered an appropriate

control with which to compare the fragmentation behavior of the insoluble model.

Fragmentation of 11Tr yielded guaiacol in a straightforward manner in the water/

p-dioxane system. We therefore anticipated that the most meaningful comparison

between the soluble and insoluble models would be with this cosolvent system.

Heterogeneous model 11Tr-P was reacted in both water-only and water/p-dioxane

under kraftlike conditions. Figure 4 depicts the production of guaiacol from

each of these systems, relative to the yield of guaiacol from 11Tr. The rate of

guaiacol production from the insoluble model 11Tr-P in the p-dioxane system is

unusually slow, ca. 9% after 8 hours. In contrast, the guaiacol yield from

1lTr-P in the water system was ca. 60% after 8 hours.

Figure 4. The relative yield of guaiacol from the kraftlike degradation of
insoluble model 11Tr-P in aqueous and aqueous/p-dioxane systems.
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The dramatic effect of p-dioxane on the production of guaiacol was unex-

pected; possible explanations include phase separation of the reaction medium

and/or collapse of the macroreticular network. Phase separation of p-dioxane/

aqueous NaOH mixtures has been observed at high temperatures (90 to 170°C) by

Obst.3 4 If phase separation has occurred during the reactions of 11Tr-P and

the organic layer has penetrated and "surrounds" the polymer, then the access of

hydroxide and hydrosulfide to the reaction sites would be limited.

Moreover, while macroreticular polystyrenes are generally considered "non-

swelling," 16 functionalized Amberlite XE-305 has been shown to swell moderately

in p-dioxane. 3 5 The presence of p-dioxane in the kraftlike reactions could have

swelled the polymer backbone of 1Tr-P and caused the macroreticular network to

collapse. In this instance, the availability of the reactive sites would be

restricted.

Would another cosolvent have a similar effect on the behavior of 11Tr-P?

The insoluble model was reacted in a water/DMSO kraftlike system; Fig. 5 shows

the production of guaiacol from soluble model 1lTr and insoluble model 11Tr-P in

the DMSO. Again, the addition of a cosolvent has drastically depressed the yield

of guaiacol. (Table 6 shows the complete tabulated data from reactions of 11Tr-P.)

Interpretation of Data from Insoluble Model 11Tr-P

The unexpected behavior of the insoluble model in water/cosolvent systems

makes comparisons to the analogous soluble systems difficult. A logical approach

would be to synthesize a derivative of 11 which would be soluble in an aqueous

reaction medium, yet would prevent the competing cyclization reaction (Fig. 2).

A likely candidate would be 11, monomethylated at the primary hydroxyl (llMe).

The aqueous kraftlike reactions of llMe could then be appropriately compared

with the reactions of insoluble model llTr-P.



-61-

The relative yield
of insoluble model
reaction systems.

of guaiacol from the kraftlike degradations
llTr-P in aqueous and aqueous/28.5% DMSO

Table 6. Relative yield of guaiacol from the 150°C kraftlike degradations of
insoluble model 11Tr-P in aqueous and aqueous/28.5% cosolvent reaction
systems.

Figure 5.
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However, even if a more appropriate soluble model (llMe) was prepared and

studied, the interpretation of the guaiacol production from 11Tr-P is further

complicated by observations that polymer-bound trityl ethers are not as alkali-

stable as their soluble counterparts; cyclized product 37, which could only be

present after trityl ether cleavage, was observed by GC/MS in extracts from the

reactions of 11Tr-P. [Also, the alkaline lability of the trityl ether in the

polymer-bound monomer 27Tr-P was previously detailed (Table 3).] The guaiacol

production from the reaction of llTr-P is, therefore, from a combination of

heterogeneous and homogeneous reactions.

A rough estimate of the maximum amount of guaiacol possible from soluble

reactions of liberated 11 was calculated from the integrated rate expressions

for consecutive, first-order, irreversible reactions. 3 6 The insoluble reaction

which yields guaiacol was excluded from the calculation. The rate constant for

the trityl cleavage reaction was estimated from the data from reactions of

polymer-bound monomer 27Tr-P, and the rate constant for the soluble fragmen-

tation reaction was derived from the data of the degradation of 11 in the

aqueous kraftlike system (Table 5). Figure 6 shows the estimate for guaiacol

production from soluble reactions and the difference between this estimate and

the total yield of guaiacol from the degradation llTr-P.

Clearly, the relative alkaline lability of the polymer-bound trityl ether

limits the utility of the insoluble model for quantitative studies. Nevertheless,

the general design of the insoluble model appears sound. The techniques devel-

oped herein could be extended to exploit the unique characteristics of compound

11. An insoluble model based on a more stable polymer attachment, such as a

polymer-bound benzyl ether, 1 could be prepared from 11, or from a version of
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11 which has the phenol and secondary hydroxyl blocked with a removable pro-

tecting group.

Figure 6. An estimate of the amount of guaiacol from soluble and insoluble
reactions compared to the total yield of guaiacol from the kraftlike
reactions of IITr-P.

SUMMARY

Unique lignin model dimer 11 has been shown to be an interesting and useful

compound with which to study alkaline delignification. Compound 11 and its

soluble tritylated analog llTr have been studied under 150°C kraftlike con-

ditions and shown to have unique mechanistic features.

Compound 11Tr degraded to give guaiacol in a manner similar to other B-aryl

ether models; the tritylated propyl alcohol handle did not interfere with ordinary

fragmentation reactions. However, the nontritylated 11 undergoes cyclization
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reactions which compete with fragmentation reactions. The nonderivatized propyl

alcohol handle of 11 cyclizes by capturing quinonemethides and, in a different

study, the handle of 11 has been exploited as an internal mechanistic probe in

an attempt to differentiate between ionic and electron-transfer reaction

mechanisms.32

The polymer-bound trityl ether analog of 11, namely llTr-P, was prepared and

studied as an insoluble lignin model under kraftlike conditions. In aqueous

kraftlike media, llTr-P gave reasonable yields of guaiacol. However, the addi-

tion of cosolvents, p-dioxane or DMSO at a level of 28.5%, drastically depressed

the yield of guaiacol from llTr-P. The influence of cosolvents is postulated to

be due to physical effects such as solvent phase separation or collapse of the

porous polymer network. A direct comparison of the cosolvent reactions of

11Tr-P to the soluble reactions of 11Tr (which required cosolvent to maintain

solubility) may not, therefore, be appropriate.

In addition, polymer-bound trityl ether groups were found to be not as

stable as their soluble analogs. The production of guaiacol from the reactions

of 11Tr-P is, therefore, from both soluble and insoluble reactions. Data

generated from this study have provided only an estimate of the quantity of

guaiacol produced from the insoluble reaction.

EXPERIMENTAL

General Information

The specific instrumentation used, the performance of elemental analyses, and

the reagents and solvents used have been previously detailed.20

Amberlite XE-305 (macroreticular polysytrene) was purchased from Poly-

sciences, Inc., Warrington, Pennsylvania, as manufactured by Rohm and Haas Co.,
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Philadelphia, Pennsylvania. The methoxyl analyses of the insoluble model was

performed by Mr. David Hogan of Chem-Lig International, Inc., Schofield,

Wisconsin.

Simulated Kraft Pulping Reactions

The kraftlike degradations of both the hetero- and homogeneous lignin models

were performed in 4 mL stainless steel pressure vessels (bombs). All pure

solvents and solvent mixtures were deoxygenated before use. The bombs were

loaded under dry N2 with the following quantities: 0.015 mmol of soluble or

insoluble lignin model, 20 equiv of NaOH and 5 equiv Na2S, and a total volume of

3.5 mL. For the insoluble model case, 34.4 mg of material (which contained

0.436 mmol of attached model dimer per gram of polymer beads) was weighed

directly into each bomb; these individual portions of beads were vacuum desic-

cated overnight and then the other reaction components were pipetted into the

bombs. The soluble lignin models were dissolved in aqueous NaOH or cosolvent

(p-dioxane or DMSO) and pipetted into the bombs.

After the contents were loaded, the bombs were sealed, prewarmed at 60°C for

30 min, and then tumbled in an oil-bath, at 135 or 150°C, for the desired reac-

tion times. The production of guaiacol was quantitatively analyzed using a

methylation/GC technique, with p-isopropylphenol as internal standard (IS), as

described below.

Guaiacol Methylation/Analysis26

Dimethylsulfate (1 mL, 100-350 equiv/model) was added to the model degrada-

tion solution/IS mixture, and the solution was stirred rapidly for 15 min in a

loosely stoppered 25 mL Erlenmeyer flask. Concentrated ammonium hydroxide

(4.5 mL) was added to quench the excess dimethyl sulfate, and the solution was
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stirred for another 15 min. Chloroform (2 mL) was added, and the solution was

stirred vigorously for 2 min, after which the CHC1 3 phase was removed with a

disposable pipette, dried (Na2S04) and analyzed by GC.

The identical procedure was carried out with the insoluble model degradation

reaction mixtures; the entire bomb contents (beads included) were subjected to

the dimethyl sulfate, the final CHC1 3 extraction, in these cases, was stirred

for 5 min.

Analyses of the methylated guaiacol/p-isopropylphenol mixtures were per-

formed on a Hewlett Packard gas chromatograph using a 6 ft, 1/4 inch glass

column packed with 3% silicone OV-1 on 100/120 chromosorb W-HP. The following

temperature program was used: 65° (2 min), then 20/min to 80° (3 min), and then

30°/min to 285°C (4 min).

Purification of Amberlite XE-305 Resin (31-P)20

Approximately 100 g of Amberlite XE-305 was gently mechanically stirred for

ca. 1 hr in 1500 mL of each of the following solvents (respectively) at or near

reflux: benzene, methanol, DMF, p-dioxane/2N NaOH (1:1, v/v), p-dioxane/2N HCl

(1:1, v/v), methanol, and benzene. After each heating/stirring period, the

resin was filtered (using a gas dispersion tube and vacuum) and washed thoroughly

with ca. 500 mL of the subsequent solvent. Thereafter, the resin was washed

with ca. 500 mL each of room temperature methanol and CH2C1 2, transferred to a

large cellulose thimble, and Soxhlet extracted with Et2O and with hexane for

8-10 hr in each case. (This final Soxhlet extraction sequence was used with all

polymer products.) Finally, the resin was dried in vacuo at 100°C for several

days until a constant weight was achieved. (Table 2 includes elemental analyses

of the polymer preparations.)
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Brominated Amberlite XE-305 (32-P)2 3

To a suspension of 25.1 g 31-P in 360 mL of CC14 was added 0.94 g of thallic

acetate sesquihydrate. This mixture was stirred in the dark for 30 min, at

which time 8.05 g of bromine (freshly distilled) in 20 mL CC14 was added over 15

min. The reaction was gently stirred at room temperature for 1 hr and at reflux

for 1.5 hr, after which the mixture had lost all color due to free bromine. The

mixture was cooled and filtered; the collected resin was rinsed and filtered

with 200 mL of the following solvents: CC14, acetone, acetone/water (2:1),

acetone, benzene, hot methanol, and methanol. The resin was Soxhlet extracted

with Et20 and hexane, collected, and dried in vacuo at 80°C to give 28.8 g of

polymer 32-P.

Lithiated Amberlite XE-305 (33-P)

A portion of the brominated resin, 23.7 g (43.5 mmol Br) of 32-P, was

suspended in 300 mL of dry benzene under a N2 atmosphere (the N2 was scrubbed

dry and oxygen-free with an OXICLEAR gas purifier). While maintaining anhydrous

conditions, 82 mL (131 mmol) of 1.6M n-butyllithium in hexane was added to the

reaction mixture, after which the mixture was refluxed for 2 hr. The resin was

filtered (using a gas dispersion tube with positive N2 pressure), rinsed and

filtered with dry THF, and the lithiated resin 33-P was suspended in 200 mL dry

THF in preparation for the subsequent reaction.

Polymer-bound Trityl Alcohol (35-p-)

Benzophenone, 19.8 g (2.5 equiv, relative to the expected Li content of

33-P) was dissolved in 125 mL of dry THF. This solution was added, over 5 min,

to the stirring mixture of 33-P, as described above. The mixture was stirred

for 2 hr at room temperature and filtered; the resulting resin was then rinsed
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and filtered with 2 x 100 mL of the following solvents: THF, Et20, THF/water

(2:1), water, THF, benzene, and hot methanol. The resin was Soxhlet extracted

with Et20 and hexane, and dried in vacuo at 100°C to give a cream-colored resin

35-P.

Polymer-bound Trityl Chloride (36-P)

Approximately 27 g of 35-P from above, was suspended in 350 mL of dry ben-

zene and 63.7 g (0.82 mmol) of acetyl chloride was added. The reaction mixture

was gently stirred at reflux under dry N2 for 19 hr, after which it was allowed

to cool. The resin was collected by filtration and rinsed and filtered with the

following solvents: 3 x 75 mL benzene, 3 x 75 mL CH2C12, and 3 x 75 mL low

boiling pet-ether. The resin was Soxhlet extracted with Et20 and hexane, and

dried in vacuo at 100°C to give 25.1 g of 36-P.

3-(3-Methoxy-4-hydroxyphenyl)-_-(polystyryltrityloxy)propane (27Tr-P)

Polymer-bound trityl chloride (36-P), 4.6334 g (4.21 mmol chlorine content),

was gently stirred (with a small magnetic stir-bar) in 60 mL dry pyridine (under

N2) and 2.50 g (3 equiv) of 3-(3-methoxy-4-hydroxyphenyl)-l-propanol (27) was

added. The mixture was stirred for 5 days after which the polymer was washed

successively with dry pyridine and dry Et20. The beads were placed in a cellu-

lose thimble and Soxhlet extracted for 12 hr with Et20 and hexane. The

resultant beads were dried in vacuo at 40°C until a constant weight of 4.8118 g

was achieved. The amount of material loaded, 0.2233 g, was calculated from the

following equation:

[weight gain of polymer product]
[model loaded (g)] = 1 - [MW of HC1]

[(MW of model) - 1.008]
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The loading level, determined from this gravimetric analysis, was calculated to

be 0.256 mmol/g. The quantity of compound 27 which could be liberated from

27Tr-P upon acid hydrolysis (as measured by GC) corresponds to 102% of the

above-mentioned loading.

2-(2-Metoxyenox 3ethoxyphenox)--4-hydroxy)-5-(polystyryltrityloxy-
1-pentanol (llTr-P)

Into 50 mL of dry pyridine and 25 mL dry benzene was suspended 3.9121 g

(3.55 mmol chlorine content) of 36-P. To this was added 7.10 g (20.4 mmol) of

compound 11 and the reaction mixture was gently stirred (with a small magnetic

stir-bar) at 45-50°C for 6 days. The beads were transferred to a glass thimble,

filtered, and rinsed with fresh dry pyridine and benzene. The beads were then

Soxhlet extracted with Et20 and hexane (for 10-12 hr with each solvent), and the

beads were dried in vacuo at 45°C to a constant weight of 4.4756 g. The amount

of 11 loaded on 11Tr-P was calculated (based on the gravimetric analysis) to be

0.630 g, which corresponds to 0.405 mmol/g. A more reliable estimate of

loading, 0.436 mmol/g, was derived from methoxyl analyses, and used when calcu-

lating stoichiometries for the degradation studies.

Acid Hydrolysis of Polymer-bound Models; General Procedure

Approximately 50-150 mg of insoluble model was suspended in 2 mL CH2C12 in a

60 mL separatory funnel (which had a plug of glass wool compressed into place just

above the stopcock). To this suspension was added 0.5 mL of trifluoroacetic acid

(TFAA) and the mixture was periodically swirled over 15 min. The mixture was

then drained into another separatory funnel which contained an excess of saturated

aqueous K2C03 ; the K2C03 neutralized excess TFAA and hydrolyzed any trifuloro-

acetates which may have formed.3 1 The overall process was repeated 2x or 3x

with the polymer beads, after which the resultant CH2C12 layer was separated

and its contents analyzed by GC or GC/MS.
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Identification of Cyclized Product 37

The methylated extracts from the kraftlike reactions of compound 11 were

subjected to GC/MS analysis. Gas chromatographic separation was achieved on a

Hewlett-Packard 5840A GC using a 6 ft, 1/4-inch glass column packed with 3%

silicone OV-17 on 100/120 chromosorb W-HP (100-300°C at 10°/min); the methylated

analog of 37 was eluted at ca. 19.7 min: MS m/e (%) 344 (34.7, M+), 221

(100.0), 151 (47.7), 220 (27.8), and 165 (15.5). An authentic sample of 37

(nonmethylated and methylated) was available from a separate study; GC/MS com-

parisons were identical.

REFERENCES

1. Hodge, P.; Sherrington, D. C., ed. Polymer-supported reactions in organic

synthesis. Wiley Interscience, New york, (1980)
a) P. Hodge, Chapter 2, p. 83, Polymer-supported reagents.
b) J. M. J. Frechet, Chapter 6, p. 293, Synthesis using polymer-supported

protecting groups.

2. Wilder, H. D.; Daleski, E. J., Tappi 47(5):270(1964).

3. Wilder, H. D.; Daleski, E. J., Tappi 48(5):293(1965).

4. Sarkanen, K. V.; Ludwig, C. H., ed. Lignins - occurrence, formation,
structure and reactions. Wiley Interscience, New York 1971. J. Marton,
Chapter 16, p. 64, Reactions in alkaline pulping.

5. Kleinert, T. N.; Marraccini, L. M., Tappi 47(10):605(1964).

6. Gierer, J., Svensk Papperstid. 73(18):571(1970).

7. Gierer, J.; Noren, I., Holzforschung 34(6):197(1980).

8. Gierer, J.; Ljunggren, S.; Ljungguist, P.; Noren, I., Svensk Papperstid.
83(3):75(1980).

9. Nakano, J.; Schuerch, C., J. Am. Chem. Soc. 82:1677(1960).

10. Schuerch, C., Ind. Eng. Chem., Prod. Res. Dev. 4(2):61(1965).

11. Moore, W. J. Physical chemistry. Prentice-Hall, Englewood Cliffs, New

Jersey, 1962. p. 170.



-71-

12. Bernhard, S. A.; Hammet, L. P., J. Am. Chem. Soc. 75:1798(1953).

13. Affrossman, S.; Murray, J. P., J. Chem. Soc. B:579(1968).

14. Regen, S. L., J. Am. Chem. Soc. 96(16):5275(1974).

15. Regen, S. L., J. Am. Chem. Soc. 97(11):3108(1975).

16. Kun, K. A.; Kunin, R. J., J. Poly. Sci. A-1(6):2689(1968).

17. Sederel, W. L.; DeJung, G. J., J. Appl. Poly. Sci. 17:2835(1973).

18. Greene, T. W. Protective groups in organic synthesis. John Wiley and Sons,
New York, 1981. p. 296 (reactivity chart 1).

19. Helferich, B., Adv. Carbohyd. Chem. 3:79(1948).

20. Apfeld, P. B.; Dimmel, D. R., previous paper.

21. Gisin, B. F.; Merrifield, R. B., J. Am. Chem. Soc. 94:6165(1972).

22. Bovee, M. J., personal communication (thesis in progress, The Institute of
Paper Chemistry.

23. Farrall, M. J.; Frechet, J. M. J., J. Org. Chem. 41(24):3877(1976).

24. Bachmann, W. E., Org. Syn. III:841(1955).

25. Kawana, M.; Emoto, S., Tetrahedron Letters 13:4855(1972).

26. Dimmel, D. R.; Schuller, L. F., J. Wood Chem. Technol., submitted for publi-
cation.

27. Freudenberg, K.; Bolz, W.; Niemann, C., Chem. Ber. 62:1561(1929).

28. Byerrum, R. U.; Flokstra, J. H.; Dewey, L. J.; Bull, C. D., J. Biol. Chem.

210:633(1954).

29. Thompson, N. S., personal communication (The Institute of Paper Chemistry).

30. Dimmel, D. R.; Schuller, L. F., unpublished results (The Institute of Paper
Chemistry).

31. Frechet, J. M. J.; Nuyens, L. J., Can. J. Chem. 54:926(1976).

32. Dimmel, D. R.; Apfeld, P. B.; Schuller, L. F., Holzforschung, submitted for
publication.

33. Dimmel, D. R.; Shepard, D.; Perry, L. F.; Joachimedes, T.; McDonough, T. J.;
Malcolm, E. W., J. Wood Chem. Technol. 5(2):229(1985).

34. Obst, J. R., Holzforschung 37:23(1983).



-72-

35. Warshawsky, A.; Kalir, R.; Deshe, A.; Berkovitz, H.; Patchornik, A., J. Am.

Chem. Soc. 101(15):4249(1979).

36. Bamford, C. H.; Tipper, C. F. H., ed. Comprehensive chemical kinetics, Vol.

2. The theory of kinetics. Elsevier Pub. Co., New York, 1969. Z. G.
Szabo, Chapter 1, p. 1, Kinetic characterization of complex reaction

systems.

37. Lehn, D. A.; Rohm and Haas Co., personal communication, concerning Amberlite
XE-305.

38. Rohm and Haas Co., Technical bulletin - fluid process chemicals, Amberlite
XAD-2, January, 1982.

39. Rohm and Haas Co., Technical bulletin - fluid process chemicals, Amberlite

XAD-4, February, 1978.

40. Brunauer, S.; Emmett, P. H.; Teller, E., J. Am. Chem. Soc. 60:309(1938).

41. Adamson, A. W. Physical chemistry of surfaces, 3rd Ed. John Wiley and

Sons, 1976. p. 567.



-73-

CONCLUSIONS AND SUGGESTED FUTURE WORK

The preparation and characterization of an insoluble/heterogeneous lignin

model has been accomplished. Comprising the insoluble model was a basic reac-

tive unit of lignin, a B-aryl ether, attached to a polystyrene matrix by means

of a polymer-bound triphenylmethyl (trityl) ether. The prerequisite polymer-

bound trityl chloride was prepared by following proven synthetic techniques.

The point of model-to-polymer attachment was a propyl alcohol handle which

had been incorporated into a lignin dimer structure. Three potentially useful

lignin dimers with propyl alcohol handles were synthesized during the course of

the thesis (Fig. 1), although only one (compound III) was employed to produce a

heterogeneous model. The modification of existing procedures and the develop-

ment of new synthetic schemes, in order to prepare such models, proved to be the

most formidable task in the course of the preparation of an insoluble model.

CH2 OH

Figure 1. Three lignin model dimers prepared during the course
of the thesis.

Two of the three synthetic schemes developed herein (to give compounds II

and III) are generic techniques by which a propyl alcohol handle can be intro-

duced to a variety of lignin models. Compound I resisted tritylation, but may
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still prove useful if the structure can be modified to allow derivatization at

the handle. 1

Compound III, on the other hand, had desirable properties and was success-

fully supported via a polymer-bound trityl ether to a macroreticular polystyrene

to produce a heterogeneous lignin model. Also, unusual behavior of III was

observed under kraftlike conditions, which may make the compound useful in stu-

dies designed to differentiate between ionic and electron transfer mechanisms.2

The synthesis of compound I, although it does not add a handle to an already

prepared dimer, is a straightforward method to prepare a lignin model with a

handle. Certainly, I could be used as a basis for a polymer-bound model.

Preliminary reactions of the insoluble model, based on III, gave moderate

yields of guaiacol, a fragmentation product; the yields were dramatically

depressed upon the addition of cosolvents. The cosolvent effect complicated the

interpretation of results from the insoluble model and, for future work in this

area, the use of cosolvents is not recommended.

The polymer trityl ether attachment was not as stable to kraftlike con-

ditions as its soluble analog. A portion of the guaiacol production from the

reactions of the insoluble model are from the soluble reactions of liberated III.

The alkaline lability of the polymer-bound trityl ether limits the potential

usefulness of the particular insoluble model developed herein. Nevertheless, the

general design - a polymer-bound protecting group linked with a specific func-

tional group handle - appears sound. Moreover, the particular insoluble model

(based on III) could be used to study lignin reactions in other systems under

which the polymer linkage would be stable.
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The unique characteristics of compound III should still prove useful for the

preparation of another insoluble model based on a more stable attachment, such

as a polymer-bound benzyl ether (Fig. 2).3 Tritylated III could have the

remaining hydroxyls blocked with a derivative that is stable over the entire pH

range, such as a B-(trimethylsilyl)ethoxymethyl (SEM) ether.4 Acid hydrolysis

of the trityl ether would leave the propyl alcohol handle as the only free

hydroxyl which could be attached to a polymer by means of a chloro- or iodo-

methylated polystyrene.5, 3 The functionalized polymer no longer requires selec-

tivity for a primary hydroxyl. The SEM ethers can be readily removed by

fluoride ion, giving an alternative insoluble lignin model.

Figure 2. Possible synthetic route to an insoluble lignin model based on a
polymer-bound benzyl ether linkage to compound III.
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Finally, the insoluble model developed herein may be considered as a proto-

type; the basic design should allow for the production of other heterogeneous

models with varying characteristics. The convenient form of the insoluble model

(polymer beads) adds to their potential versatility; polymer-supported models

can be studied under either batch or continuous (continual fresh reagent)

experimental conditions. Heterogeneous models, just by virtue of their insolu-

bility, incorporate characteristics of reactions occurring at solid-liquid

interfaces and as such should provide the lignin chemist with an additional tool

to study the reactions of lignin.
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APPENDIX I

ESTIMATE OF GUAIACOL PRODUCTION FROM SOLUBLE REACTIONS,
DURING THE REACTIONS OF THE HETEROGENEOUS MODELS

As mentioned in the results and discussion of Article II, the polymer-bound

trityl ether attachment was observed to be cleaving during the reactions of the

polymer-bound dimer. The observed guaiacol production from the insoluble model

is, therefore, from both soluble and insoluble reactions, as shown below:

where, PAB = insoluble model dimer

AB = liberated dimer (after trityl ether cleavage)

Bso1 = guaiacol yield from liberated AB

Bins = guaiacol yield, from direct fragmentation of PAB.

In order to derive a rough estimate of the maximum guaiacol production from

soluble reactions, the insoluble k3 reaction was ignored, and Bso1 was calcu-

lated from the integrated rate expressions for consecutive, first-order, irre-

versible reactions as shown:

PABt - PABo exp -kl t

0

ABt = ABp -k 2t + k2-k PABo(exp-klt - exp-k2t)

kL
Bsolt = PABo[le1- ktl(exp-ktlt - exp-k2t)]

0 0

/f
+ AB -exp-k2t) Bso,o
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The rate constant k1 was derived from the trityl cleavage data for the

polymer-bound monomer (27Tr-P, Table 3, Article II). The natural log (ln) of

the polymer-bound monomer concentration was plotted vs. time. (The available

concentration of polymer-bound monomer was assumed to be 26% of the actual

amount of monomer loading, since there was no cleavage after ca. 26% yield of

monomer.) The slope of the above line is k1 = -0.035 min-1 [correlation coef-

ficient = 0.99 (Texas Instrument TI-55III calculator program)].

The rate constant k2 was derived from the guaiacol production data from the

degradation of the nonderivatized dimer (compound 11, Table 5, Article II) in

the water system. The ln of the concentration of 11 was plotted vs. time; the

slope of the line was k2 = -0.009 min- 1 (correlation coefficient = 0.99).

Employing the above rate constants, and assuming that the maximum portion of

polymer-bound trityl ethers that can be cleaved in alkali is ca. 26%, we calcu-

lated an estimate of guaiacol production from liberated dimer (AB = 11) at

various reaction times. Below is a sample calculation for 90 minutes.

kl
Bsol,t = PABo[1 - exp-klt - k (expt-klt - exp-k 2t)]k2 -k1

Bsol(@ 90 min) = 0.26[1 - 0.428 - (-1.35)(0.0428 - 0.445)]

= 0.108 ~> 10.8% guaiacol from soluble reactions
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APPENDIX II

ACIDIC CLEAVAGE OF POSTDEGRADATION, POLYMER-BOUND PRODUCTS

In order to more completely describe the chemistry of the polymer-bound

lignin dimer, it was intended to analyze the molecules remaining on the polymer

after the kraftlike degradations. The acid hydrolysis procedure previously

described (Article II, Experimental) was repeated with samples of post-

degradation polymer-bound lignin model dimer.

The acid hydrolysis procedure employed a large excess of trifluoroacetic

acid; it was not optimized as to cleave remaining polymer-bound products without

inducing acid rearrangements or degradations. The only product identified by

GC/MS, to date, (from the acid treatment of postdegradation insoluble model

samples) was cyclization product 37 (Fig. 2, Article II). In this instance,

structure 37 was no doubt derived from acid cleaved polymer-bound starting

material (compound 11, Article II, Fig. 1). Acidic conditions can also lead to

this cyclization product from liberated 11.


