
1

Real-Time Visualization of Scalably Large Collections of
Heterogeneous Objects

Douglass Davis, William Ribarsky, T.Y Jiang, Nickolas Faust, and Sean Ho
Graphics, Visualization, and Usability Center

Georgia Institute of Technology
{dougd, ribarsky, jiangf}@cc.gatech.edu, nick.faust@gtri.gatech.edu, sean@arl.mil

Abstract

This paper presents results for real-time visualization of out-of-core collections of 3D objects. This is a significant
extension of previous methods and shows the generality of hierarchical paging procedures applied both to global
terrain and any objects that reside on it. Applied to buildings, the procedure shows the effectiveness of using a
screen-based paging and display criterion within a hierarchical framework. The results demonstrate that the method is
scalable since it is able to handle multiple collections of buildings (e.g., cities) placed around the earth with full
interactivity and without extensive memory load. Further the method shows efficient handling of culling and is
applicable to larger, extended collections of buildings. Finally, the method shows that levels of detail can be
incorporated to provide improved detail management.

I. Introduction

We have recently shown how intent and perception
can be used to significantly improve out-of-core
visualization of large scale terrain [1]. This paper
demonstrates that these techniques can be generalized
and applied to heterogeneous data. Although we deal
here with geospatial objects, there is no reason why
one could not employ a similar framework for time-
dependent, 3D data. The importance of the present
paper is that it lays out a general set of methods for
effective out-of-core visualization and then applies
them to discrete, static objects, such as buildings,
that are quite different from the continuous terrain
studied previously.

In this paper we show how our techniques can be
applied to large collections of buildings, several
hundred or more in each collection, that may be
distributed at many spots throughout the world.
Efficient out-of-core visualization methods permit
timely paging of building data in support of real-time
navigation. Our approach uses an efficient quadtree
hierarchical structure appropriate for global terrain [2]
at the top level followed by methods appropriate for
3D object detail management at lower levels. The
quadtree level at which the change-over occurs from
the quadtree hierarchy to the 3D object management
structure will depend on the nature of the objects. The
levels will be different, for example, for collections of
buildings of a certain range of sizes versus vehicles.
We provide a basis for determining this level.

II. Related Work

We have considered how out-of-core visualization
applies to terrain datasets [1]. We found that a
combination of out-of-core visualization, which tends
to focus on 3D data, and visual simulation, which

places an emphasis on visual perception and real-time
display of multiresolution data, results in interactive
terrain visualization with significantly improved data
access and quality of presentation. Ref. 1 considers
only terrain whereas the present paper generalizes to
collections of 3D objects and provides criteria for
detail management based on density and size
distribution of objects.

Over the years there have been several methods that
have been developed and used to cope with large
amounts of data [3]. In early research, George and
Rashwan used auxiliary storage methods to solve
finite element problems [4]. Liu [5] applied an out-of-
core multifrontal method for sparse factorization.

Recently there has been work that addresses
interactive visualization of very large, out-of-core
datasets. From what has been done so far, it is clear
that application-control and domain-dependent data
organization are essential to achieving good
performance. Relying on system virtual memory, for
example, frequently results in thrashing and abysmal
performance. Ueng et. al. [6] apply an application-
controlled segmentation approach to out-of-core
visualization. They spatially and hierarchically
partition the dataset into an octree and load only
needed segments. One problem with their approach is
how to determine segment boundaries. Cox and
Ellsworth present application-controlled demand-
paging [7], in which the system knows something
about what data are needed and when. By considering
operating system memory management, they
minimize thrashing. Zyda and co-workers [8] came up
with a hierarchical quadtree data structure by evenly
subdividing data into square quadnodes and rendering
with regular grid polygonalizations. Based on this
regular grid they develop a paging method that takes
into account the viewpoint and speed of the user.
Quite recently Chiang et. al. [9] have developed an
interactive technique for out-of-core isosurface

2

extraction from volume data. They developed a meta-
cell technique for partitioning the original data and an
indexing scheme for efficiently making isosurface
queries into the metacells, which reside on disk, to
bring in the appropriate data for constructing the
isosurface. All the above out-of-core techniques
consider the paging of continuous volumetric or
terrain data. None considers application to collections
of discrete 3D objects, as we do here.

The need to handle scalably large collections of
buildings has come to the fore because there are
improved methods to extract such data [10] and
because applications requiring accurate display of
urban data (such as emergency response, urban
planning, or urban warfare) are growing in
importance.

III. Placing 3D Objects in a
Geospatial Hierarchy

The forest of quadtrees has proven capability for
handling global terrain [1, 2]. When considering
buildings or other geospatial collections of objects,
we would like to build on this structure, at least at
the top level. If we have several cities in our global
dataset, we want to quickly determine that the viewer
is navigating towards, say, Los Angeles and does not
need detailed data for Bombay, Houston, or even San
Francisco. Further, as the user navigates the greater
LA area and gets close enough to view individual
blocks of buildings in, say, Anaheim, we don’t want
to page in and individually test buildings from
Pasadena.

On the other hand, when the user can discern
individual buildings or groups of buildings, it is more
appropriate to use methods focused on managing
detail for the individual buildings or groups. The
question is: at what level should this change-over be
made? We present below an analysis of when this
should occur. In the following we show how large
collections of buildings or other objects can
efficiently fit into the geospatial hierarchy. A full
exposition of detail management for the groups of
buildings is beyond the scope of this paper, but we
show where such methods would fit and implement
some simple techniques.

The top level hierarchy is shown in Fig. 1. The
earth is divided into 32 zones, with each zone
containing a quadtree [2]. For the buildings or other
objects the quadtree goes to a certain level after which
there is a non-quadtree detail management scheme.
What should this level be? Let us assume a quadcell
of side Lq (see Fig. 2.). Now let’s assume an object
with maximum dimension Lo. If Lo < Lq, then only
the 8 surrounding quadcells might contain objects that
would extend into a central quadcell. In fact if we
divide the central cell into 4 quadrants and further
assume that all objects are placed in the quadcells that
contain their centers, the maximum number of
quadcells whose objects could overlap this quadrant

would be 4, the central cell plus the 3 nearest
quadcells to the quadrant. Our approach is to go as
deeply as possible using the very efficient quadtree
but not to permit more than 4 linked cells for
considering overlapping objects, since there will be
increased overhead from keeping track of the links and
from having to consider all the objects in the linked
cells. The collection of objects in the linked cells
would have to be considered in view frustum culling,
collision detection, and many other operations. Thus
we choose cells for which Lo < Lq but these
dimensions are close in size. For buildings in an
urban setting, Lo could be about 50 M, the
dimension of a typical city block. If a typical
building is the size of a house, say 10 M on a side,
we would have to consider no more than 100 or so
buildings for 4 linked cells. Note that occasionally we
will have to consider linked cells that could be in
multiple quadtrees.

However, what about extended objects such as a
stadium, the Pentagon, the Vehicle Assembly
Building at the Kennedy Space Center, or very large
objects created via detail management? The latter
might require considering several blocks as one
object. If we use the largest such object in the
database to determine the leaf node level of the
quadtree, we might also end up with cells containing
several hundred smaller objects. To obviate this
problem we have discrete representations of such large
objects at successive levels of the quadtree, each
representation carrying its own list of linked cells.
Thus if we flew from outer space down towards an
urban area, we might first see a phototextured shape
representing the downtown area, which would then be
replaced by more detailed shapes representing
collections of blocks and tall landmark buildings, and
finally these would be replaced by shapes for
individual buildings. Although the present system
switches between discrete representations, one can
imagine a more sophisticated process with more
continuous switching of detail.

Since such large objects are relatively small in
number, we can handle them reasonably efficiently
even though they carry their own lists and
descriptions. Also such representations usually occur
before the appearance of large numbers of smaller
objects. When considering small buildings at urban
densities, however, we use our more automated and
compact linked cell mechanism.

IV. A Hierarchical Structure for
Optimized Paging

As discussed above our global structure is divided

into 32 zones, each 45o x 45o [1,2]. Each quadrant
has its own quadtree; all are linked so that objects or
terrain crossing quadrant boundaries can be rendered
correctly. To improve performance, the system is
divided into multiple threads that can run in parallel.
In particular, there is an independent rendering thread,

3

which has a "triple buffer" of display lists. One of the
display lists contains what the renderer is currently
drawing, one is used by the scene manager to buffer
graphics commands, and the last contains data that are
ready to be displayed.

Both the object and terrain paging threads have a
server and manager. The object server loads pages
from disk while the manager decides which cells
should be loaded (taking into account user viewpoint
and navigational speed) and passes it along to the
scene manager. The object server and manager
communicate with the scene manager and the rest of
the system via shared caches, so that communication
is limited to small request messages and
acknowledgments. This communication path supports
a demand-paging approach such as that of Cox and
Ellsworth [7]. When data are needed for a node in the
quadtree, the scene manager allocates space in the
shared cache and sends a message via a shared memory
priority queue to the object manager. Message
priorities in this queue are changed dynamically
according to the importance of the associated request
as determined by the terrain manager. Thus, requests
that gradually become less important sift towards the
end of the queue and get serviced only when no higher
priority requests remain in the queue.

The underlying disk management system has a file
structure with files aligned with the quadnodes in the
set of linked quadtrees. Put together, all this makes
the object and terrain visualization system quite
scalable. Tens to hundreds of gigabytes of data may
be made available for visualization, either locally or
remotely.

Object Page Scheduling. We have found that the
above page priority procedure sometimes falls short
when handling global data. Users of such data
frequently fly quickly from a global view where the
terrain elevation and imagery data are at 8 Km
resolution to views close to the ground where the data
are at 1 M resolution or higher, and there may be
hundreds or more buildings in view. If the user flies
in too fast, the traversal of linked quadtrees by the
terrain manager falls well behind the user's
navigation. The process can stall in this case, and the
pages for the scene currently in view can take quite
long to arrive.

Unfortunately the system cannot just jump to the
appropriate position in the quadtree. The quadtree has
to be traversed to get important properties
information, especially quadcell linking data but also
geospatial bounding boxes and other data, that are
necessary to determine if the object data should be
displayed or not. To address this problem we created a
modified version of the separate set of indexing trees
used in the terrain paging system [1]. This separate
structure provides properties information but is
lightweight so it can be traversed quickly. Large
segments of the indexing trees reside in main memory
for fast access. With the flexibility of this scheme we

can skip one or more levels before paging in object
data. A predictive mechanism is instituted based on
user navigational speed and viewing direction to help
predict where the terrain manager should skip.

Since the scene manager is receiving continuous
updates from the user via the user interface, it can use
these in its requests to the object manager. The scene
manager can, for example, expend more detail on
buildings or other objects in the center of the screen.

IV. Building Display Results

We present results for a collection of 471 textured
buildings on our global terrain database. The terrain
has worldwide coverage at 8 Km, U.S. data at 1 Km,
Georgia at 100 M, and several insets ranging from 10
M to 0.5 M. The total size of the terrain alone is 1.5
GB. The 471 buildings are for downtown Atlanta and
are thus placed on top of high resolution terrain data
at 1 M resolution. When buildings are added without
the hierarchical paging structure, the frame rate drops
from 15-20 frames per second to 7 frames per second,
even on the SGI Infinite Reality. We have lately
developed faster object rendering (not used in the
results of this paper), but frame rate still slows
considerably when buildings are loaded.

The frame rates indicated in Figs. 3-7 (the first
number in the lower left corner) were obtained on an
SGI Infinite Reality with 4 R10000 processors, 1 GB
of memory, and 27 GB of disk. All results depicted
were obtained on continuous fly-in or fly-out with no
pauses (except for the skyline in Fig. 7 where there
was a pause during switch from fly-in mode to
parallel to the earth mode). The fly-in rate was such
that one could navigate from a whole earth view at
over 10,000 Km to 10 M above the earth (in an area
with high resolution data) in 30 seconds.

The hierarchy permits a simple but effective detail
management process. Object pointers are loaded at the
quadlevel determined as described in Sec. III.
Accompanying the pointer is the object location and a
bounding dimension obtained from the largest
dimension of the object bounding box. Using the
viewpoint , object location, and bounding dimension,
the system finds a maximum size for the object in
screen space in terms of pixels. (See Fig. 2.) For the
results presented in Fig. 4, any object with bounding
dimension greater than 1 pixel is loaded and displayed.
This conservative approach works well; the largest
buildings in the database don’t appear until the user
navigates to about 160 Km away from them. No
buildings are paged in until this point, and frame
speed does not slow perceptibly until the user is
closer and more buildings are paged in. (See Figs. 4,
6 and 7.) This shows the efficient scalability
associated with our hierarchical paging process.
Buildings in groups of any size could be placed all
over the earth and neither performance nor memory
load would be affected till the user is relatively close
to them. Of course we could also apply a more

4

sophisticated boundary dimension that would take
into account orientation of the object.

Note that the hierarchical paging works for any
objects including those representing collections of
buildings. We have used this to do simple detail
management. We have preprocessed the buildings to
produce 3 levels of detail, a shape representing the
extent and simplified skyline for the whole collection
of buildings, and two other sets of objects
representing portions of the building collection.
These objects were placed at appropriate (higher)
levels of the quadtree, as shown in Fig.2. A threshold
of 1 pixel was set for these objects and 10 pixels for
the individual buildings. When the underlying
buildings are paged in the higher level objects
disappear. As shown in Fig. 6, this permits
significantly higher frame rates until the viewer is
much closer to the buildings than before, while still
retaining detail about the location and shape of the
building collection.

Additionally the hierarchy aids in culling when the
viewer is panning or flying around the buildings.
Comparing Figs. 6 and 7 with Fig. 5 shows this
clearly as the former have lower frame rates because
some of the buildings are culled. Buildings not close
to the view frustum are not even paged in. This
makes feasible the handling of extended building
collections that are much larger than the one
considered here. In fact, we are planning to test such
an extended collection by replicating the current set of
buildings several times side-by-side.

V. Conclusions and Future Work

We have presented results for real-time visualization
of out-of-core collections of 3D objects. This is a
significant extension of previous methods and shows
the generality of hierarchical paging procedures
applied both to global terrain and any objects that
reside on it. Applied to buildings, the procedure
shows the effectiveness of using a screen-based
paging and display criterion within a hierarchical
framework. The screen-based tolerance is adjustable
and directly provides a control for image quality.

The results demonstrate that our method is scalable
since it is able to handle multiple collections of
buildings (e.g., cities) placed around the earth with
full interactivity and without extensive memory load.
Further the method shows efficient handling of
culling and is applicable to larger, extended
collections of buildings. Finally, the method shows
that levels of detail can be incorporated to provide
improved detail management.

We plan to extend object detail management by
providing more accurate levels of detail, as depicted in
Fig. 2 above. Our goal will be automatic procedures
that can be applied during preprocessing. We will also
consider dynamic control of levels of detail for
building and other features (such as streets and trees)
beyond the hierarchy, as shown in Fig. 1.

Acknowledgments

This work was performed in part under contract
DAKF11-91-D-004-0034 from the U.S. Army
Research Laboratory. We would like to thank Larry
Tokarcik and his team at the Army Research
Laboratory for supplying data used in this work.

References

1. Douglass Davis, T.Y Jiang, William Ribarsky,
and Nickolas Faust. Intent, Perception, and Out-
of-Core Visualization Applied to Terrain. Report
GIT-GVU-98-12, pp. 455-458, IEEE
Visualization '98.

2. Peter Lindstrom, David Koller, William
Ribarsky, Larry Hodges, and Nick Faust (1997).
An Integrated Global GIS and Visual Simulation
System. Report GIT-GVU-97-07.

3. N.M. Brenner. Fast Fourier Transform of
Externally Stored Data. IEEE Trans Audio and
Electroacoustics 17(2), pp. 128-132 (1969).

4. A. George and H. Rashwan. Auxiliary Storage
Methods for Solving Finite Element Systems.
SIAM J Scientific and Statistical Computing
6(4), pp. 882-910 (1985).

5. J.W.H. Liu. On the Storage Requirement in the
Out-of-Core Multifrontal Method for Sparse
Factorization. ACM Trans. Math. Software
12(3), pp. 249-264 (1986).

6. S.K. Ueng, C. Sikorski, and K.L. Ma. Out-of-
Core Streamline Visualization on Large
Unstructured Meshes. Transactions on
Visualization and Computer Graphics 3(4), pp.
370-379 (1997).

7. M. Cox and D. Ellsworth. Application-
Controlled Demand Paging for Out-of-Core
Visualization. Proceedings, IEEE Visualization
'97, pp. 235-244 (1997).

8. J.S Falby, M.J. Zyda, D.R. Pratt, and R.L.
Mackey. NPSNET: Hierarchical Data Structures
for Real-Time Three-Dimensional Visual
Simulation. Computers & Graphics 17(1), pp.
65-69 (1993).

9. Y. Chiang, C. Silva, and W.J. Schroeder.
Interactive Out-of-Core Isosurface Extraction.
IEEE Visualization '98, pp. 167-174 (1998).

10. Tony Wasilewski, Nickolas Faust, and William
Ribarsky. Semi-Automated and Interactive
Construction of 3D Urban Terrains. Accepted for
publication, Proceedings of the SPIE
Aerospace/Defense Sensing, Simulation &
Controls Symposium (1999).

