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Technical Report  

Grant No. GK-5529 

The model consisting of a taut string supported by a nonlinear 

(fracturable) viscoelastic foundation is elaborate enough to include the 

essential features of the cleavage process, and yet simple enough to permit 

numerical solutions to meaningful initial-boundary value problems. After 

obtaining some equilibrium solutions to serve as initial conditions for 

certain dynamic problems, we have numerically integrated the equation of 

motion of the string via the method of characteristics. 

When a load sufficient to extend an initial crack is applied quasi-

statically, the model predicts that the crack starts from rest and passes 

throh a brief acceleration period on its way to a constant speed that 

is very nearly the sound speed of the string. Stability predictions 

based on equilibrium results appear reliable. Several examples have been 

worked that predict unstable-stable crack propagation (as the crack tip 

moves away from a fixed load, for example). The dynamic analysis confirms 

the prediction. The crack tip accelerates to a constant speed and stops 

rather abruptly as it approaches and passes the "point of insufficiency". 

These are results for zero damping. 

When the load is applied suddenly, the results are particularly in-

teresting. The crack in the model grows but not continuously. Separate 

secondary cracks form ahead of the primary or initial crack. This occurs 

when there is no damping and persists for small amounts of damping that 

might be reasonably regarded as intrinsic to engineering materials. 



The prediction of secondary crack formation is important because it 

points out what may be the greatest inadequacy of the Griffith theory to 

date. The Griffith theory of crack extension would never (indeed, could . 

 never) predict the formation of secondary cracks because the necessary 

singularity could not be developed on the interior of a linearly elastic 

solid. The model being used here was developed along the Lines of the 

Goodier-Kanninen model and requires no such singularity for the extension 

or formation of a crack. 

Once it was discovered that the. model had not only the capability 

but also the inclination for secondary crack formation, the main thrust 

of the research program was diverted slightly (with the tacitly assumed 

approval of NSF). Instead of concentrating on crack propagation in rate 

sensitive materials, we have decided to try to determine the circumstances 

under which secondary cracks form in the host material, whether it is rate 

sensitive or not. Questions such as: "When do secondary cracks occur"? 

"Where do they occur"? and "How many and how long are they"? are under 

current consideration. 

Secondary cracks have been observed to occur naturally by several 

experimenters. Their presence is usually explained by stating that they 

are.undetected initial cracks, or that they have .  been formed by "high 

dynamic stresses" in advance of a running primary crack. Results ob-

tained with our model suggest that neither of these reasons are necessarily 

correct. We have secondary cracks appearing when the primary crack does 

not propagate. Indeed, our model suggests that the primary crack is very 

sluggish under dynamic loading, and there is a strong indication that if 

it grows at all it does so by coalescing with secondary cracks formed in 

its path. 
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SUMMARY 

In this thesis a simple mechanical model is proposed for the study 

of dynamic cleavage. The model consists of a taut string supported by an 

elastic but fracturable foundation. The foundation reaction is governed 

by a nonlinear law patterned in form after the force-separation law for 

two isolated atoms. 

The equation governing the string motion is a one-dimensional wave 

equation. Because of the foundation law, this equation is essentially 

nonlinear. The equation of motion is solved numerically by the method of 

characteristics, and results are presented for a series of initial-

boundary value problems. These results describe the effects of four 

different loading histories - quasi-static, suddenly applied and main-

tained, impulsive and periodic - and considers some of the consequences 

of introducing damping in the model. 

Results of this study show that an initial crack in the foundation 

may propagate in significantly different ways, depending on how the 

transverse load is applied. The initial crack propagates continuously 

when the string is brought to its mobile equilibrium position quasi-

statically and then disturbed slightly. However, when the load is 

applied dynamically, the extension of the initial crack is accompanied 

by the formation of new and separate cracks - secondary cracks. The 

formation of secondary cracks persists when small viscous damping is 

introduced in the model. 

viii 



CHAPTER I 

INTRODUCTION 

Cleavage is the act of splitting a material, usually along a 

natural line of division. In a crystalline solid, for example, cleavage 

can only occur on certain planes called cleavage planes. Thus the two 

new surfaces produced are more or less smooth. 

Cleavage of a crystal occurs when it is deformed so severely as 

to break the interatomic bonds across a cleavage plane. However, these 

bonds are not broken simultaneously over the whole plane. An essential 

feature in the cleavage of a crystalline solid is the successive sepa-

ration of atoms at the tip of a cleft or crack. To illustrate this, an 

idealized atomic structure near the tip of a cleavage crack is shown in 

Figure 1. 

When remote forces are applied that tend to extend the crack, 

atoms on opposite sides of the cleavage plane begin to separate in ac-

cordance with a force-separation law having the general form indicated 

in Figure 2. In so far as the interior of the solid is concerned, the 

separation is most acute near the tip of the crack and increases as the 

remote forces increase. The interatomic forces opposing the separation 

increase until they reach a maximum; these forces then diminish rapidly 

with further increase in separation. Finally the pair of atoms at the 

crack tip move "out-of-range" as to their mutual attraction. At this 

time, they become part of the new crack surface and the next pair enters 

the final stages of separation. These then move out of range and so on. 

1 
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Figure 2. A General Form of the Force-separation Law. 
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If the remote forces are applied gradually, the initial stage of 

cleavage, when the interatomic forces remain on the rising branch of the 

curve in Figure 2, can be regarded as a quasi-static process. In fact, 

the inherent nonlinearity of cleavage is not manifested in the initial 

stage. However, as the separation at the crack tip approaches the value 

corresponding to maximum interatomic attraction, it increases very rapid-

ly with any increase in remote forces, no matter how gradually applied. 

In this stage of cleavage, inertia effects and nonlinearity cannot be 

reasonably ignored. 

Just over fifty years ago, Griffith [l] (1) made the first fruitful 

effort to model cleavage. Griffith's model represents an initial crack 

in a solid by a vanishingly thin slit in an infinite, linearly-elastic 

continuum. Points on the prolongation of the slit are assumed to remain 

fixed as a remote tension perpendicular to the slit is applied. The so-

lution to this problem was already available to Griffith; it had been 

found earlier by Inglis 1- 21 subject to the usual assumption of small de-

formations. Griffith used Inglis's solution to compute the strain energy 

stored in the solid, and by incorporating surface energy in an energy 

balance, he obtained the remote tension required for an imagined quasi-

static and infinitesimal extension of the slit. The stresses ( and 

strains) used by Griffith in his calculation are singular at the ends 

of the slit and consequently represent a local violation of the assump-

tion of small deformations. In spite of its more obvious shortcomings
(2) 

(1) Numbers inside brackets refer to references on p.110. 
(2) For a comprehensive and detailed critique of Griffith's theory see 
J. N. Coodier [3,p.18]. 
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the Griffith theory has dominated subsequent efforts to model and analyze 

the cleavage process. 

The Griffith theory of cleavage assumes a perfectly brittle 

material. Irwin F4] and Orowan [5] have extrapolated Griffith's result 

to include plastic deformation confined to a small region just ahead 

of the crack tip by introducing an "effective surface energy'. 

A recent paper by Barenblatt 16] gives a more realistic descrip-

tion of the crack tip. Barenblatt's theory rests on the following two 

hypotheses: "the first is that the area of the part of the crack surface 

acted upon by the [nonlinear] forces of cohesion can be considered as 

negligibly small compared to the entire area of the crack surface ... 

second ... [when the crack is at the point of extending] the form of the 

crack surface (and consequently, the local distribution of the forces of 

cohesion) near the edges ... does not depend on the applied load." Using 

these hypotheses in conjunction with the methods of linear elasticity, 

Barenblatt obtained a criterion for crack extension. This criterion is 

equivalent to that of Griffith by proper interpretation of Barenblatt's 

limiting distribution of cohesive forces in terms of surface tension. 

In order to examine Barenblatt's hypotheses for Griffith's 

original problem, Goodier and Kanninen [7] introduced a model in which 

the forces across the cleavage plane are replaced by the reaction of non-

linear springs. Stresses to either side of the cleavage plane are taken 

to be those found in a linearly elastic solid. This model allows the 

essential nonlinearity of the cleavage process to be dealt with directly. 

Results obtained with the Goodier-Kanninen model lend support to 

Barenblatt's hypotheses. 
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For the three models so far discussed, the remote forces leading 

to crack extension must be applied slowly enough to warrant the neglect 

of inertia forces. Indeed in Griffith's theory, the crack extension is 

assumed to occur so slowly that no kinetic energy is developed. In 

less ideal situations, once a crack begins to extend, it may continue to 

do so at an alarming rate, and in such cases, the inertia of the material 

near the crack tip cannot be ignored. 

Using dimensional analysis and estimating velocities from the 

quasi-static desplacement field, Mott [8] considered consequences of in-

cluding the kinetic energy in Griffith's energy balance. In analyzing 

Griffith's problem, Mott concluded with the suggestion that the velocity 

of propagation of a crack in a brittle material will tend towards a value 

of the order of the velocity of sound in the material, and which is inde-

pendent of the stress applied or of the atomic cohesive forces across the 

cleavage plane. 

Yoffe [9] obtained the first solution to the field equations of 

dynamic elasticity theory which satisfied boundary conditions appropriate 

(in the Griffith sense) to a moving crack. She considered a Griffith 

crack of constant length travelling through an infinite elastic plate 

subjected to uniform remote tension. The crack was presumed to move at 

a constant speed in a straight line collinear with its length. The 

stress field established near the crack tip is such that if the pre-

scribed crack speed exceeds a certain value, the direction of maximum 

tensile stress is no longer perpendicular to the assumed propagation 

direction-- indicating a possible limiting speed for the propagation of 

a straight crack. Broberg [10] and Craggs [11] later also obtained 
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exact solutions to similar problems involving the steady propagation 

of a crack. Their conclusions are in agreement with Yoffe's regarding 

possible branching of the crack. Moreover, Craggs points out that the 

forces required to maintain a steady crack speed decrease as the speed 

increases. 

Ang [12] investigated an unsteady field of stresses and strains 

by considering the transient response of an infinite elastic plate when 

a force applied on and normal to the crack surface suddenly moves with 

constant speed away from the tip of a semi-infinite crack. Baker [13] 

has obtained the transient response of a stretched infinite elastic plate 

when a semi-infinite crack suddenly appears and extends at a constant 

speed. 

The present information concerning the nature of unsteady crack 

propagation is very limited. Erdogan [14] emphasized this in a recent 

review paper by stating that we need "a solution for an accelerating 

crack for the simplest possible case". To this end the unsteady crack 

propagation problems that have received the most attention to date are 

the so-called anti-plane or "shear crack" problems, which require the 

solution of only one wave equation. Such problems have been treated 

analytically by Kostrov [15] and Eshelby [16]. 

The preceding brief review of certain investigations into the 

nature of dynamic crack propagation indicates that the investigators 

have either assigned a constant crack speed or treated anti-plane strain 

problems. In all cases, the model used is that of a slit running through 

a linearly elastic continuum so that the inherent nonlinearity of the 

process is confronted only to the extent of applying Barenblatt-type 
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hypotheses. 

The following study proposes a relatively simple mechanical model 

which exhibits the more significant features of crack propagation. The 

model is a taut string resting on an elastic but fracturable foundation; 

it will be discussed in detail in Chapter II. Such a model allows a 

defect (crack) to grow at a rate dictated not by the analyst but by 

the intrinsic separation properties of the foundation. The inertia 

forces and nonlinearity can be taken into account due to the relative 

simplicity of mathematical formulation presented in Chapter III. 

By using the method of characteristics, the numerical solutions 

of various initial-boundary value problem are obtained and discussed in 

Chapter IV. These results describe the kinetics of the crack tip and the 

wave effects on the other parts of the string during the process of crack 

extension. It will be seen that the model, in responding to a variety 

of dynamic loads, predicts the formation of secondary cracks in addition 

to the simple extension of the primary crack. 



CHAPTER II 

A SIMPLE MECHANICAL MODEL 

In the preceding chapter, we discussed the cleavage of a crystal-

line solid, and in describing the essential features of the process, we 

used the lattice or particle model to represent the solid. While this 

model is useful for just such discussions and descriptions, it is beset 

with severe mathematical difficulties which make the model impractical 

for quantitative analysis. On the other hand, using a continuum model 

to represent the solid, we reduce the mathematical difficulties but at 

a cost of making indistinguishable precisely those features of cleavage 

we wish to study in detail. A hybrid model, such as the one proposed 

by Goodier and Kanninen, would seem a reasonable compromise for studying 

quasi-static or steady crack propagation, but to determine and analyze 

the unsteady response of such a complex model seems too ambitious for a 

first effort. 

The Properties and Construction of the Model  

In this chapter, we set ourselves the problem of constructing a 

mechanical model which will be simple enough to be mathematically tract-

able and yet elaborate enough to exhibit what we have described as the 

essential features of dynamic cleavage. Such a model's properties would 

necessarily include: 

(i) a sufficiently simple analytical description to 
facilitate at least a numerical solution to a 
meaningful initial-boundary value problem; 

9 



(ii) a capacity for the accelerated growth of a defect 
(crack); 

(iii) an intrinsic mechanical criterion for the formation and 
growth of such a defect; 

(iv) the capacity for propagating mechanical disturbances. 

One of the simpler mechanical systems having these properties 

consists of a taut string supported by an elastic but fracturable 

foundation. Figure 3 shows the proposed model. The two-sided founda-

tion is piecewise continuous and is represented in the figure by a dense 

array of springs. The spring law is patterned in form after the force-

separation law for two isolated atoms (see Figure 2). This feature 

makes the foundation fracturable; it also makes the problem of determin-

ing the response of this model necessarily nonlinear. 

When there are no transverse loads applied to the string, it 

takes the level equilibrium position with no reaction from either side 

of the foundation. If a transverse load is applied which causes points 

on the string to be displaced vertically upwards, the springs, comprising 

the lower side of the foundation are stretched by varying amounts, and 

the springs of the upper side are compressed by corresponding amounts. 

In continuing this description and in all that follows, it will be con-

venient to refer to the lower and upper sides of the foundation as the 

tensile and compressive foundations respectively. 

Both foundations continue to oppose any increase in vertical 

displacement until a specified critical displacement is exceeded by some 

segment of the string. The corresponding segment of the tensile 

foundation is then recognized as being fractured. This means that over 

1 0 
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the extent of the fracture, the tensile foundation is incapable of 

exerting any force on the string even if the displacement should sub-

sequently become less than critical. With the reader's indulgence, we 

shall refer to such a fractured segment of the tensile foundation as a 

"crack" and to its ends as "crack tips". 

The Equation of Motion  

Figure 4 shows an infinitesimal segment of the deflected string 

stretched by a constant tension S. The mass per unit length of the 

string is denoted by the constant p. The spatial, x, axis is coincident 

with the equilibrium position of the unloaded string, and t is the time. 

Assuming the transverse displacement w(x,t) is everywhere small during 

the motion, we can write Newton's equation of motion in the transverse 

direction of the string as 

	

2 	 2 
S —w  + f(w,x,t) = p

w 

	

ax 	 at 2 (1) 

where f(w,x,t) is the total transverse force per unit length acting 

on the string. Equation ( 1 )is a one-dimensional wave equation. 

The function f(w,x,t) includes the reactions of the tensile and 

compressive foundations and any externally applied load. If we denote 

these three components of f(w,x,t) by -q i (w), -q 2 (w) and p(x,t) res-

pectively, the equation of motion becomes 

2 
w 	w 

2 
S 	- p 	= q

1 
(w) 	q2(w) - p(x,t) 

22  

12 
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Figure 4. A Segment of the Deflected String. 



this is usually written 

2 	2 
w 	1w 1 

= — [q
1 
(w) + q

2
(w) - p(x,t)] 

6x
2 	

c
22 	S  

where 

2 	S 
c = — 

A 

is the sound speed of the string. Although not immediately apparent, 

Equation (2) is essentially nonlinear, since, in order that the tensile 

foundation be fracturable, q l  is necessarily a nonlinear function of w. 

Solutions of (2) for selected functions q l  and q 2  are obtained 

in the following two chapters. Details of ql  and q 2  are specified in 

the following section. 

Foundation Laws  

As mentioned earlier in this chapter, we shall pattern the spring 

law for the foundation in our model after the force-separation law for 

two isolated atoms indicated in Figure 2. While the precise shape of 

the curve shown there is not known, two of its features have been identi-

fied with two mechanical properties of the crystalline solid. The slope 

of the curve at the equilibrium separation is related to the modulus of 

elasticity, and the area under the upper portion of the curve is related 

to the work of separation or surface energy. 

The curve has been represented by a number of qualitatively 

similar functions selected to form analytically convenient laws and 

usually written in terms of the two parameters mentioned above. The most 

common use of such laws has been in estimating the theoretical strength 

14 

(2) 

(3) 
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of a crystal
(1)

• Hence more attention has been paid to the representa-

tion of the upper portion of the curve where the forces between atoms 

are attractive than to the lower portion where they are repulsive. Some 

functions that have been used in the past are a linear-with-cut-off or 

"sawtooth" law, a sine law, an exponential law and an inverse power 

law. Of these, only the inverse power law represents both the upper and 

lower portions of the curve. 

Any of these functions would be satisfactory for our purposes. 

Since we are concerned here with studying the effect of nonlinearity 

rather than the particular kind of nonlinearity, we shall use only the 

linear-with-cut-off and sine laws. We choose two in order to determine 

in limited measure the sensitivity of our results to the particular kind 

of nonlinearity considered. 

The two spring laws for the tensile foundation are shown in Figure 

5 as functions q(w). They have common initial slopes
(2)

k and areas-

under-tension A. The relation in compression is taken to be a smooth 

and linear continuation of the upper portion of each curve. Hence the 

curves are coincident in compression. Each of the laws determines a 

maximum lineal force q and a critical displacement w in terms of k 

* 	* 
and A. The analytical expression of each law including q and w is 

presented in Table 1. 

The compressive foundation is completely linear (unfracturable) 

with spring modulus k in tension and compression. 

(1) See for instance A. H. Cottrell, "The Mechanical Properties of 
Matter." Wiley, New York, 1964, pp. 270-271. 
(2) The unstretched length of the spring is the "equilibrium separation". 
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Table 1. Analytical Expression of Foundation Laws. 

Foundation Law q Range of w (1) qmax 
w

max 

Linear-with-cut-off kw 

0 

0 5 w <* w
* 

* 
w > w* 

* 
kw 

* 
w 

Sine 1 	* 
—kw 
2 

0 

2w 
s in --x- 

W- 
0 5 w <*—TT* w 

2 
TT 	lc 

w * > —
2

w 

1 
—
2 

kw 
* 1 

— TT W 2 
* 

Compressive kw all w -- 

(1) The symbols 5* and * > mean "has never exceeded" and "has ever 
exceeded" respectively. 

17 



CHAPTER III 

ANALYSIS OF THE EQUATION OF MOTION 

In this chapter we prepare to solve the nonlinear partial differ-

ential equation governing the motion of the string of our model. Details 

of this preparation are presented only for the linear-with-cut-off spring 

law because the corresponding work for the sine law is very similar. 

Nondimensionalization of the Equation of Motion  

As a first step toward putting (2) into a dimensionless form, we 

introduce dimensionless independent variables x and T related to the real 

space and time variables through 

ct 
X = 7 	and 	T = 	, (4) 

where / is a characteristic length whose value and meaning will be dis-

cussed later. Under this transformation, the sound speed of the string 

in the XT plane is unity. 

With k replaced by q
* 
 /w

* 
 , the linear-with-cut-off spring law in 

Table 1 becomes 

q 	-- 
1 

w27  
w , 

* 
w w 

18 
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which suggests 

W = 	and 	Q 
	

(5) 
w 	 q 

as natural choices for dimensionless displacement and foundation reaction 

respectively. In (5), Q and q represent general foundation reactions 

which can be either tensile or compressive. As before, indices distin-

guish the foundation reactions; i.e. Q
1 
and Q

2 
represent the dimension-

less tensile and compressive foundation reactions respectively. 

In order that X and W be measured on the same basis, we now choose 

* 
the characteristic length t equal to w . Finally, we put the applied 

lineal force into dimensionless form by writing 

P = 2* . 	 (6) 

Upon substituting (4) - (6) into (2), we find that the equation 

of motion becomes 

b 2W b2W q*w*  
- 	2 

= 	S 	[C2 1 (W) 	Q2 (W) - P(x,T)7 ax
2 

aT 

Or 

a
2142 	aW  = M

2
[Q 1  (d) + Q2 (W) - P(X,T)]  ax 	aT 

where 
* * 

M 
2 

=
q w  

is a dimensionless parameter. 

In terms of the dimensionless variables, the spring laws for the 

tensile and compressive foundations are 

	

W , 	W 5* 1 
Q 1 (W) = 	, 	W *> 1 
	 (9) 

(7) 

(8) 



and 

Q 2 (W)  = W  

respectively. 

In its new form, the only parameter appearing in the equation of 

motion is M
2
. According to (8), M

2 
depends directly on the spring law 

* * 
through the product q w and inversely on the string tension S. 

Whenever possible, we shall develop solutions of (7) in terms of 

, 
M2 ; i.e. without specifying its value in advance. In the following sec- 

tion, for instance, we obtain certain static or equilibrium solutions in 

terms of M
2
. In Chapter IV, however, where we obtain solutions of (7) 

by numerical integration, M
2 
must be specified in advance, and some con-

sideration must be given to the value assigned to it. 

Taking M
2 
< < 1 would bias (7) in favor of the slope-tension force 

w 	 2w  
and the inertia force (

2
) at the expense of the foundation re- 

aX 
actions Q l (W) + Q 2 (W) and the applied lineal force P(X,T). On the other 

hand, specifying M 2  > > 1 merely reverses the bias and makes (7) more 

nearly singular. In order to study the interaction of all the forces 

represented in (7) and at the same time to expedite the numerical analy- 

1 
sis, we shall assign the value T,  to M

2 
when it must be specified in ad- 

vance. 

Static Solutions  

One of the initial-boundary value problems we wish to investigate 

concerns the response of our model when the applied load is increased 

slightly after a quasi-static loading to the greatest load that can be 

supported for a given initial crack. With this intention, it is natural 

20 

(10) 



21 

to require a solution to an equilibrium problem. In this section, we 

obtain such solutions in closed form including the expression for the 

critical static load. 

Consider an imperfect tensile foundation with an initial crack of 

length 2a. Let the string be displaced quasi-statically to its final 

equilibrium position W(X) under an applied load whose final distribution 

is P(X). By setting the inertia force in (7) equal to zero, we obtain 

d
W 	M

2
[Q (W) + o 2 (w) - P(X)] = 0 

dX
2 

for determining the final equilibrium position of the string. It is 

assumed, of course, that P(X) has been applied in such a way as to pro-

hibit stretching any of the springs in the tensile foundation past their 

critical displacement. 

If we take the origin of the X axis to be the midpoint of the 

initial crack and consider only loads P(X) that are even functions of X, 

then only the semi-infinite string X Z 0 need be considered (see Figure 

6). In particular, if the external load is of constant intensity and 

applied only over the central part of the string, then the loading func-

tion is 

P (constant) , 	0 5 X 5 b 

P(X) = 

0 
	

X > b 

and the linear foundation reactions can be written as 

	

2W , 	X 	a 

Ql (w ) 	Q 2 (W) = 
W , 	X < a 
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Now the equilibrium equation (11) can be readily solved, and the 

equilibrium load can be determined in terms of the crack tip displacement 

W(a). We shall denote by Pcr  that value of P bringing the inital crack 

just to the point of extending; i.e. that value of P corresponding to 

W(a) = 1. A crack which is opened to such an equilibrium configuration 

has been called a "mobile equilibrium crack" by Barenblatt. We shall 

consider separately the loading cases of a 5 b and a > b. 

a s b: 

In this case, the equilibrium equations written for the various 

segments of the string are: 

W" - M2W + M
2
P = 0 , 	0 5 X < a ; 
cr 

W" - 2M2W + M
2
P
cr 

= 0 , 	a s X 5 b ; (12) 

W" - 2M2W = 0 	 X > b . 

Prime (') indicates the derivative of a function with respect to its 

argument. In addition to (12), the following conditions must be satis-

fied: 

W' (0) = 0 ; 

W(a) = 1 ; 
	

(13) 

Lim W(X) exists ; 

X-4 co 

W(X) and 14 1 (X) are continuous on 0 5 X < co. 

The first condition is due to the symmetry of the string, founda-

tion and load with respect to X = 0. The second condition identifies the 

applied load as the critical load. The third condition follows from the 

stipulation that under finite loading, the displacement should remain 
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a > 

When the load is applied only over a part of the segment corre-

sponding to the initial crack, the equilibrium equations are: 

W" - M2W + M2P =0, OSXsb; 

W" - M
2
W = 0 	, b < X < a ; 	 (16) 

W" - 2M
2
W = 0 
	

X Z a . 

A solution satisfying (16) subject to the same conditions (13) as 

before is 

A2 (e
MX 
 + 	 )+P   + P cr , 0 s X < b 

W(X) = I [(1 -2) eM(X-a) + (1 + V2) e
l4(a-X)

] , b s X s a , 	(17a) 
2 

ei2M(a -X) 	
X > b 

where 

[(1 -2) 
eM(b-a) 

 - (1 + 	e
M(a-b) ] 	(17b) A

2 
— 	  
2(e -e -e -Mb ) 

and 

P 
cr 	s inh Mb (f2 cosh Ma + sinh Ma). 	 (17c) 

Equations (14c) and (17c) are equivalent when a = b. 

As an example to illustrate the relation between critical load and 

crack length, a curve is drawn in Figure 8 showing Pcr(a) for b = 20 and 

1 
M = 7  . For a s b we plot (14c); for a > b (17c). The curve shows that 

as a varies from zero, the value of P 	first decreases with increasing 
cr 

26 
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crack length. After passing through a region where P 	is practically 
Cr 

independent of a, it begins to increase rapidly as a approaches and ex-

ceeds b. 

The shape of the curve in Figure 8 indicates that short initial 

cracks located within a much longer loaded segment (a < < b) are unstable 

in the following sense. If a load sufficient to extend the initial 

crack (i.e. increase a) is applied and maintained, it is more than suffi-

cient to extend longer cracks. On the other hand, the curve also indi-

cates that initial cracks approaching or exceeding the length of the 

loaded segment are stable because a load sufficient to extend such an 

initial crack is unsufficient to extend the crack when it grows. Figure 

7 shows that for loads applied over the entire length of the string, any 

crack in the tensile foundation is unstable. 

In Figure 9, the displacement profile of a mobile equilibrium 

crack is shown for a = 5 and b = 20. The forces acting on the string 

are shown in the same figure. As expected, there is a discontinuity in 

the total foundation reaction Q
1 
+ Q

2 
at the crack tip. 

In the nondimensionalization process outlined in the previous 

section, we used w as the characteristic length. The precise value of 

the "out-of-range" separation for two isolated atoms is not known, but 

Figure 2 indicates that it is the same order of magnitude as the equili-

brium separation. Thus with regard to our model, any crack of practical 

specific length must be regarded as being very short. In an effort to 

take into consideration longer cracks, we now study the response of our 

model when the tensile foundation contains a semi-infinite initial crack. 
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For this situation, the symmetry condition of (13) can no longer 

be applied, and we require instead that both ends of the string have 

finite displacement (i.e. Lim W(X) exists). This furnishes us enough 
X -4 -00 

conditions to solve the problem. For a uniform load applied over the 

entire string, we have 

[ /2  + ( 1  - i2 ) eMX ] 	X s 0 	 (18a) 

W(X) = 

	

+ (1 - 7) e-V2MX,  X Z 0 	 (18b) 

and 

Pcr = 
V2 . 

In Chapter IV the propagation of the semi-infinite crack is 

studied for several different initial conditions and loading situations. 

The Method of Characteristics  

After obtaining certain static solutions, we turn now to the prob-

lem of solving the equation of motion (7). Such an equation has been 

treated successfully in the past by employing the method of characteris-

tics. Although the application of this method usually involves numerical 

integration, it is considerably more straightforward than other meth- 

ods.
(1)  The theory of characteristics is well known and will not be dis-

cussed in detail here. To apply the method, we first write (7) in a form 

more convenient for numerical integration. Let 

	

V - 	and 	8 = 	.
aX 

	

_ 	 (19) 

An attempt to solve the initial-boundary value problem analytically 
using the Rieman-Volterra method is presented in the Appendix. 
(1 ) 



Then the equation of motion becomes 

av ae 	2 
aT 	+ M (4 - P) = 0 	 (20) 

We shall integrate these three first order partial differential equations 

rather than the single second-order wave equation. The dependent vari-

ables to be determined are W, V and 8 as well as Q 1 
and Q 2, which depend 

on W through (9) and (10). Physically, V is the velocity of an element 

of the string and 8 is the slope of the string. 

Since the equation of motion is hyperbolic (with constant co-

efficients) its characteristics are the two families of straight line 

defined by 

dX 
Fr 1  

Along these lines, the dependent variables are governed by the "character- 

istic" equations 

dX 
(TT (V  e) m

2 
(Q - P) 	° 	along c-Fr  = 1 

dT 
(V + 	+ m

2 
 (Q - 	

dX 
= 0 , 	along 	= -1 

(22a) 

(22b) 

In addition to the lines defined by dX = + 1, the vertical lines on the 
dT — 

XT plane are of special interest because 

dW _ u 	along 	
dX 

dT 	" 	 dT = 
(22c) 

31 

and 
dX _ 
dT 

(21) 

If initial values (T = 0) are given, we can determine the values 

of W, V, 0 and Q at any desired point on the XT plane. To do this, we 
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first construct a region on the XT plane bounded by the line T = 0 and 

/dX 
the characteristic lines 47,. ± 1) passing through the point: in question. 
Then we integrate equations (22). Numerically, this procedure can be per-

formed by subdividing the region into a grid system consisting of charac-

teristic lines and vertical lines. The integration is performed step by 

step until the point in question is reached. A brief outline of the 

numerical procedure follows. Results of various initial-boundary value 

problems are presented in the next chapter. 

We first construct a characteristic net on the XT plane formed by 

dX 
the families of lines dX 
	

77 = ± 1 and 	= 0 (see Figure 10). Since the 

space mesh size is related to the time mesh size, an arbitrary time inter-

val A T determines the elementary mesh size. Then we integrate the differ-

ential equations (22) along the appropriate lines. To do this, we con-

sider a general square abcd (Figure 10). The sides ad and cd have slopes 

+ 1 and - 1 respectively, and the diagonal bd is vertical. Integration 

of the characteristic equations yields 

and 

W
d 

= W
b 
+ (V

d 
+ V

b
) AT , 

1 
Vd  = tV + V - 8 
dza 	c 	c 

- "
2 
 (2 Q

d 
 + Q

a  + Qc  - 2 Pd  - Pa  - Pc ) All 

(23a) 

(23b) 

1, 
8a 	z 

= tV
c 
 - V

a 
 + 8

a 
 - 8

c 	
M  - 	 Q

a 
- P

c 
+ P

a ) AT)  , 	(23c) ,=, 	 2 ' 
(Q

c - 

2 

= where the approximation
2
f(t)dt - 	[f(t ) + f(t )] is used to evaluate 

ti 	1 	1 
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X 

Figure 10, A General Characteristic Net and its Interior Element, 



the integrals. In addition to (23), we have 

W
d 	

if W(Wd ,T) *> 1 

Qd =  • (24) 

2Wd  , if W (Xd ,T) 	1 

The numerical calculations are generally started from the line 

T = 0, where the initial data are available. Thus, when the element 

abcd is under consideration, values of W, V, 6 and Q at points a, b and 

c are known beforehand. Then equations (23) and (24) form a set of four 

algebraic equations for the determination of Wd,  Vd,  0
d 

and Q
d
' By re- 

peating the procedure, we can obtain all the values of W, V, 8 and Q 

throughout the region. 

The characteristic net shown in Figure 10 is a form of broad 

applicability. However for some initial-boundary value problems we 

shall use nets with slightly different elements. These special cases 

will be discussed as they occur. 
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CHAPTER IV 

NUMERICAL RESULTS 

The method of characteristics discussed at the end of Chapter III 

will now be used in developing numerical solutions of a series of initial-

boundary value problems. The results presented in this chapter describe 

the effects of four different loading histories - quasi-static, suddenly 

applied and maintained, impulsive and periodic - and considers some of 

the consequences of introducing damping in our model. 

Disturbed Mobile Equilibrium Crack  

In this problem, the string is initially at rest under an exter-

nally applied load that is just insufficient to extend an existing crack 

in the tensile foundation. The string is set in motion when the exter-

nal load is suddenly increased by a small amount. The initial displace-

ment and slope of the string are taken from the static solutions of 

Chapter 

The region of integration is the shaded part of Figure lla. It 

is convenient to regard the interior of this region as being composed 

of triangular elements such as the one shown in Figure 11b. This choice 

leaves triangular half-elements (Figure 11c) adjacent to the boundary 

X = 0. 

The difference equations for any interior element are obtained 

from (23) and (24) by replacing AT by AT/2. We now drop the alphabetical 

(abcd) designation of points in favor of the index coordinates (i,j) in-

dicated in Figure 11. 
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For points along X = 0, the slope of the string is zero due to 

d 
symmetry; i.e. CD 	= 0. Hence only the equations along — = - 1 and 

0,j 	 dT
X 

 
dX 

= 0 are required to determine the variables for boundary elements. dT 

Furthermore, since points on X = 0 are always within the cracked segment 

of the tensile foundation, Q0,j  = W .. This permits the following di- 0,3 

rect solution of the difference equations for boundary elements. 

w 
0,j 

AT ( 	— 
(V 
 0,j-1 + V. 	+ 8 

1 	
. 0,j-1 	2 	0,1-1 	1,j-i 	1,j-1 )  mi)2 W 

	+  

( MAT
2 

(Q 2 ) 	 - PO,j 	Pl,j-1 ) / 

2 
V 	=V 	+ 6 	- - (W 	+Q 	-P 	-P 	) AT , 0,j 	1,j-1 	1,j-1 	

M 
 2 	0,j 	1,j-1 	0,j 	1,j-1 

	

0,j 	0,j . = W 	 (25) 

and 

60,j 
	0 

0,j 

We now consider the following two problems separately. A uniform 

load P is applied over the entire string (b = 02); a uniform load P is 

applied only over a finite segment of the string (a < b < co). 

b = co: 

In this case, P.. E (1 	6) P 
Cr

, where e is a small positive 

constant and P
Cr 
 is given by (15). Initial values of displacement and 

slope are taken from the limiting form of (14) as b 	02. Results for 

37 



38 

mobile equilibrium cracks of inital length a(0) = 5
(1) 

and a(0) = 10 dis-

turbed by 1% and 5% increases in load are presented in Figures 12-17. 

a <b < m: 

For this problem, the external load P. 	can be written 
1 ,3 

P (constant) , 	X 5 b 
P.= 
1 ,J 

0 
	

X > b 

where again P = (1 	e)P. Initial data and P
cr 

are taken from (17a) 
cr 

and (17c) respectively. The numerical integration was performed for 

b = 20 with a(0) = 5 and a(0) = 10 subject to critical load excesses of 

1% and 5%. The results are presented in Figures 18-26. 

The results for the first case (b = m) indicate that a mobile 

equilibrium crack begins to extend measurably as soon as the critical 

load is exceeded (Figure 12). The extension continues although the ex- 

da 
ternal load is held constant. The velocity of the crack tip (---) builds 

dT 

from zero to a terminal value that is the same order of magnitude as the 

sound speed of the string. The duration of the acceleration period and, 

to a lesser extent, the terminal velocity depend on the amount by which 

the crictical load is exceeded (Figure 13). Profiles of the string at 

T = 0, T = 15 and T = 30 are shown in Figures 14 and 15 for a(0) = 5 and 

a(0) = 10. The displacement history of points at x = a(0), X = a(0) + 10 

and X = a(0) + 20 are shown in Figures 16 and 17 for a(0) = 5 and a(0) = 10. 

(1) We have been using the symbol a for the initial length of an exist-
ing crack. It is now convenient to let a(T) represent the current length 
of a crack whose initial length was a(0). 
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Here we see that, except near the crack tip, points on the string per-

form small oscillations about their equilibrium positions. A comparison 

of results for the two different inital crack lengths suggests that the 

length of the initial crack has little or no influence on the dynamic be-

havior of the extending crack. 

The results for the second case are substantially different as 

might be predicted on the basis of the stability discussion in Chapter 

III. The crack begins to propagate in much the same manner as before, 

but as a(T) approaches b, the velocity drops very quickly to zero (Fig-

ures 18 and 19); i.e. the crack stops. To review the reason for this, 

consider Figures 20-22. Figure 20 shows that for b = m, any maintained 

load greater than P [a(0)] remains greater than P for longer equilib- 
cr 	 Cr 

rium cracks. Hence it is sufficient to insure the continued growth of 

the crack. However in the second case (a < b < m), Figures 21 and 22 

show that loads maintained slightly greater than P [a(0)] are not suffi- 
cr 

cient to extend all longer equilibrium cracks. More specifically, they 

become insufficient as a(T) approaches b. The propagating crack behaves 

as if it had some "inertia" since it runs past the "point of insufficien-

cy" by a small distance AA before stopping. String profiles at selected 

times and displacement histories of selected points are shown in Figures 

23-26. Once again, there is no apparent sensitivity to intial crack 

length. 

Suddenly Applied Load  

In this section we consider the response of our model when a uni-

form load is suddenly applied and maintained. The string is initially at 
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rest under no external load and the tensile foundation contains an initial 

crack of length a(0). 

If there were no crack, the string would perform uniform oscilla-

tory motions (with amplitude dependent on the magnitude of applied load 

and frequency dependent on the foundation stiffness). Thus points on the 

string sufficiently far from the crack behave just as a single degree of 

freedom spring-mass system. Since the effects of the initial crack can-

not be transmitted faster than the sound speed of the string, the charac- 

dX teristic line T., = 1 passing through the initial position of the crack 

tip divides the XT plane into regions of uniform and nonuniform motion. 

Thus the region of integration is reduced to the shaded part of Figure 

27a. 

For computational purposes, we set up index coordinates (i,j) 

originating at X = a(0) and T = 0; i.e. the original crack tip. The 

X 	dX axes i,j are parallel to the characteristic lines d Tr. . 1 and cf, = -1 

respectively. Along the line j = 0 the motion is governed by 

dw + 2M2W = M
2
P 

dT 
 

with initial conditions 

W(0) = 0 	and dTdW(0) = 0 

Thus the dependent variables along j = 0 are 

Wi 0 	2 
= — (1 - cos /2 MT) , 

,  

V i 0 2 = — MP sin I-  MT) , ,  

(26) 

(27) 



i,1 	i-1,j 

i-1,0 

c. Boundary Elements. 
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b. Interior Elements. 
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Figure 27. Region of Integration and its Elements. 



i3O 
= 0 

and 

Q. 	= 

Along the line i = -j (T=0) we have the homogeneous initial conditions 

W..=V . • =O. .=Q.. 7-1 0. 
-3,3 	-3,3 	-3,3 	-3,3 

The interior element is shown in Figure 27b; its difference equa-

tions are given by (23 and (24). The boundary elements (see Figure 27c) 

are triangles. With the boundary condition 6 = 0. The treatment of 

boundary elements is the same as in the previous section, and the solu-

tions are similar to (25). 

The uniform load P is taken to be a fraction of the least load 

that would rupture the perfect tensile foundation. This load can be 

obtained from (27) by setting the maximum displacement equal to the 

critical displacement (unity) and solving for P. The least load was 

found to be unity. 

To insure that the existing crack extends, the load P must be 

greater than a certain minimum value that cannot be found directly. 

Numerically it is approximately 0.76. If P is less than this value, the 

initial crack does not extend. 

In this section, we also consider a semi-infinite crack. For this 

case, it is convenient to take the origin of the XT plane at the initial 

position of the crack tip; i.e. move 0 to 0' in Figure 27a. Thus the 

index coordinates and the XT coordinates have a common origin. The re- 

gion of integration is the triangle WAB. 
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Along i = 0 (0'A) the dependent variables are 

W0 
 . = P(1 - cos MT) , 
,j 

VOA . = MP sin MT j 

e 	= 0 

and 

	

. 	
0, 

= Q 	w . 

	

0,J 	..1 

All elements are square (Figure 27b) with difference equations given 

again by (23) and (24). Numerical results for both the finite and semi-

infinite initial cracks are presented in Figures 28-37. 

Figure 28 shows how the crack tip displacement depends on the mag-

nitude of the applied load. When P is small, the crack tip displacement 

remains below the critical value and the crack does not extend. The am-

plitude of the crack tip displacement increases with increasing P. and at 

P 0.76, the maximum crack tip displacement exceeds the critical value 

and the crack extends. 

We take this value as the lowest suddenly applied and maintained 

uniform load that will extend any existing crack of initial length greater 

than 5. It is approximately 54% of the static critical load P . 
cr 

Figures 29, 33, 34 and 35 show an unexpected feature of crack pro-

pagation due to suddenly applied load. The crack does not propagate con-

tinuously. When P > 0.76, the intial crack extends, but its extension is 

accompanied by the formation of new and separate cracks. We shall call 

these new cracks "secondary cracks". As time increases, they grow in 
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size and continue to increase in number. The length of the secondary 

cracks seems to be limited. 

In comparing the figures, we conclude that the effect of the orig-

inal crack length is small. The relative positions of the secondary 

cracks are very much the same and the corresponding secondary cracks are 

formed approximately at the same time. The only influence of initial crack 

length seems to be in the extension of the primary (initial) crack. Longer 

initial cracks (a(0) = co in Figure 29 and a(0) = 20 in Figure 35) stop 

extending at an earlier stage than shorter initial cracks (a(0) = 5 in 

Figure 33 and a(0) = 10 in Figure 34). The shorter initial cracks con-

tinue to grow slowly until, for a(0) = 5 (Figure 33), the primary crack 

and the nearest secondary crack coalesce. 

Displacement profiles before and after the occurrence of secondary 

cracks are shown in Figure 30, In Figure 31 we show successive displace-

ment profiles for the string segment from X = 0 to X 12. Here we see a 

local maximum displacement in front of the original crack tip building up 

and finally forming a secondary crack. 

To understand how these small secondary cracks are formed, it is 

helpful to decompose the displacement history of a point within such a 

cracked segment into two parts. The first part, which we shall refer to 

as the remote response, would be the response of the point if the founda-

tion were perfect. The remaining part of the response is due to the dis-

turbing effect of the crack. This is zero until a signal travels from 

the crack tip to the point in question. Shortly after the signal arrives 

this part of the displacement remains small compared to the remote re-

sponse, but its amplitude increases with time. When it is large enough 
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Figure 29. Location of the Cracks. a(0) = co, P=0.95. 
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Figure 32. Displacement History at Selected Points on the String. a(0) =c°, P=0.95. 
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and additive to the remote response, the total displacement exceeds the 

critical value and a secondary crack is formed. Figure 36 shows this 

happening 25 units downstream from the tip of the semi-infinite crack. 

Figure 37 shows the displacement history of a point 30 units down-

stream. Here the response due to the presence of the crack is out of 

phase with the remote response and no secondary crack is formed. 

Initial Velocity Problem  

The string is initially at rest under no external load. At T = 0, 

every point of the string is given the same transverse velocity V 0  by the 

application of a uniform impulse over the entire string. There is an 

initial crack of half-length a(0) in the tensile foundation. 

The numerical calculations for this case are similar to those of 

the suddenly-applied-load problem. The region of integration shaded in 

Figure 27a is used again here. Along the line X = T + a(0) (or j = 0), 

the solution is known. 

V
0 

 
W 	= 	sin 12 MT , 
i 3 O j2 M 

Vi3O 
= V0 

cos /2 MT 
	

(29) 

Q
i3O 

= 2 W
i3O 

and 

0 	= 0 . 

If the maximum displacement of the remote part of the string is to 

remain less than the critical value, there is an upper limit for V0. 
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Setting the maximum W i0  in (29) equal to unity, we find that the upper 

limit for V0  is j
-2 M. The least V

0 
 extending an intial crack is approxi- 

1 
mately 0.62 for M

2 	
-4- = 	(Figure 38). 

The semi-infinite crack is also considered for this loading. The 

region of integration and elements used in the computation are the same 

as those used for the corresponding problem in the previous section (Fig-

ure 27). 

For the remote part of the string (X = - T), the solution is 

V 0 
W0,j 	M = — sin MT , 

and 

Vo,i  =V
0 
 cos MT , 

Q0,j = WO,j 

80 = ,j 

(30) 

Results for this problem are shown in Figures 38-43. These figures 

show that the crack propagates in much the same manner as it would under a 

suddenly applied and maintained load. For V o  = 0.67, separate secondary 

cracks are formed. In contrast to the suddenly applied load problem, how-

ever, the secondary cracks in the present problem do not tend to coalesce 

even when very short initial cracks are considered (Figures 42 and 43). 

Periodic Loading  

When a time dependent uniform load is applied to the string, the 

distrubing effect of an existing crack can also cause the formation of 
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Figure 42. Location of the Cracks. a(0)= 5, V o  = 0.67. 
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secondary cracks. In this section we consider the problem of a semi-

infinite crack under a spatially-uniform load P cos wT, where w is the 

frequency of the driving force and P is a constant. 

The value of P is selected so that the displacement in the remote 

part of the string (X 5 T) remains less than the critical value. This 

part of the string performs a uniform forced vibration governed by 

dW 
+ 2142W = M

2
P cos wT , 

dT 
 

which has the solution 

M P 
2 

2 
W = 	(cos wrt - cos 12 MT) . 

2M
2
- w 

 

Now, for W < 1 we have 

2
P 	

2 

-2 
M 	2 (cos wT - cos j-2 MT s 	

9 
 -M 10 2 < 1 ; 

2M - w 	 ZA - w 
 

i.e. we require 

P < 
2M

2 	
2M

2 • 

2 

	

The critical amplitude defined by P
Cr

(1) 	w 
= 1 - 	becomes 1 - 2w

2 

2M 
1 

for M2 4 = — 
 • 

The region WAB in Figure 27a is again employed for the numerical 

(1) P
cr  has been used earlier to denote critical static load. It is con- 

venient in this section to use the same symbol for the critical amplitude 
of the periodic load. 

2M2 - w2 	w2 

(31) 

(32) 

(33) 



computations. The known values along the line X = T (or j = 0) and 

X = - T (or i = 0) are: 

2 
W
i0 = 

M P
2 (cos wT - cos /2 MT) ; 

, 
2M

2
-w 

 

1 0 	
M
2
P  

2 V. 	= 	 M sin /2 MT - w sin WT) ; , 
2M -w 

G . 	
= 0 ; 

Qi3O = 2 Wi 3 O ; 

and 

M
2
P W 	= 	(cos wT - cos MT ) ; 0,j 	

M
2
-w

2 

M
2P  

2 V0, . = (M sin MT - w sin wT) ; j 	2  
M -w 

C/0,j 	; 

Q
0,j 	

W
0,j 	• 

It is seen from the above expressions that there are two "resonant" 

frequencies corresponding to the natural frequencies of the perfect and 

cracked foundations. They are /2M and M respectively. These resonant 

frequencies are avoided in the computations. The frequencies of the 

applied loads considered are above (w = 1.0 and 0.8), between (0.65 and 

0.577) and below (0.4, 0.2 and 0.1) the resonant frequencies. Higher 
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(35) 

(35) 
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frequencies are not considered here because they require finer grid size 

and consequently longer computation time. 

The results (Figures 44-48) show that cracks propagate mainly by 

the spreading of small secondary cracks. The primary crack extends by a 

small amount under some driving frequencies whereas on certain occasions 

it does not extend (See Figure 45). Two basic factors determing the 

pattern of secondary cracks are the driving frequency w and the force 

ratio P/P. The frequency has the effect of locating the secondary 
Cr 

cracks (Figure 45), and the force ratio seems to dictate their number and 

size (Figure 44). When the frequency is fixed, it is found that the pro-

cess of forming new cracks is very sensitive to the ratio 13(1) (Figure 
Cr 

44). Furthermore, there is only a narrow band of load ratios that lead 

to the formation of secondary cracks. Beneath this band no crack propa-

gation of any form is detected; beyond it, the tensile foundation is 

completely ruptured. To illustrate this, Figure 44 shows the pattern of 

secondary cracks for w = 1 under varying load ratios after approximately 

12.7 cycles of the loading. From this figure, we see that below P = 0.895 

no secondary cracks are formed, nor does the primary crack extend. And, 

P = 1 is the critical value of P which causes the entire foundation to 

rupture. 

In Figure 45 we see the pattern of secondary cracks for fixed 

P/P
Cr 

(0.95) while the driving frequency is varied. For w = 0 the results 

coincide with those of suddenly applied load, as expected. When the fre-

quency increases, the pattern changes considerably; as w goes beyond the 

lower resonant frequency (w = 2), 	main crack does not extend and only 

secondary cracks are formed. Typical displacement histories, string 
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profiles and crack formations and extensions in the XT plane are indicated 

in Figures 46-48. 

Effects of Small Damping  

Most materials exhibit the property of energy dissipation because 

of internal friction or damping. To take this into consideration for our 

model we modify the foundations by introducing dashpots as indicated in 

Figure 49. 

If each dashpot has a coefficient of viscosity 8' and its corre- 
* 

sponding dimensionless parameter is 8 = S cw ' then the equation of motion 
S  

becomes 

aw M
2
(2W - P) + 2

8 bT 
— , for perfect foundation 

a zw 	2w  

ax
2 

aT
2 

M
2
(W - P) + 8 aw for fractured foundation aT 

Thus the dashpot of the tensile foundation ceases to affect the string as 

soon as the corresponding spring is broken. 

For a semi-infinite crack under a suddenly applied load, we can 

consider the motion of the remote string as a spring-mass-dashpot system. 

Parts of the string for which X Z T have the equation of motion 

d
2
W 	dW 

dT
2 	dT 
+ 28 	+ 2142W = M

2
P . (37) 

Solutions of this equation depend on the values of 8 and M. From 

the theory of vibrations, the cricital damping factor 8 cr 
 is found to be 

1 
[3
2 
cr 

= 2M2 
For M

2 
= 4 

–. we have 8
Cr 
 = /2/2. Since we are considering the 

(36) 
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Figure 49. A Modified Model Showing Material Damping Effect. 
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effects of material damping, the damping factor should be far below B 
'cr .  

Therefore, the solution of (37) has the form 

W = fi - e -  T(cos 412M 2 -S 2  412M2 -S 2 T + 	 sin 
qqm
12  -0 T 

71 
4/2m2_ 0 2 

and 	 • 	(38) 

dW 	M
2
P 	-$T 	, j 2 V = dT - 	e 	sin 2M - $ T 

,j2M - P 

A similar solution for the left hand side of the string (X s - T) can be 

obtained. 

The amplitude of W decays with increasing time, and we find W has 

a maximum value at T = 7/4(214
2 

- $
2 

. Thus, to satisfy the condition that 

this displacement in (38) remains less than the critical value, take 

137r 
$ 2 

q" + e 	 ) <1 

or 

P = cr 
2 

 

57  

_2M
2 
 - $2  

1 + e 

In the numerical integration, again we use the region O'AB shown 

in Figure 27a. We have taken P to be 95% of the critical load given above, 

for $ = 4%, 1%, 0.4% and 0.1% of $ cr  and M
2 	1 

= 	. Figures 50-52 show 

typical results. 

Figure 53 indicates the effects of damping on the extension of an 

existing crack and the formation of new cracks. For the larger values of 

$, the dynamic response becomes small as time increases (39.3% of it has 
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been damped out at T = 76 for $ = 4% of $ 
cr

). Thus secondary cracks 

can hardly be expected to appear. After the main crack has been ex-

tended for a small distance, it stops, and the string tends to its 

equilibrium configuration corresponding to the new crack length. When 

$ is smaller, say 0.1% of Bthe response tends to that of no damping 
cr' 

(only 2.48% of the dynamic response has been damped at T = 76). The 

secondary cracks appear at approximately the same time and place as 

they did for no damping ($ = 0). To compare these results, we list the 

data in Table 2. 
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Table 2. Effect of Damping on the Pattern of Crack Propagation. 

P = 0.95 P 
cr 

. 0.004 $ cr 	 = 0.001 13cr 	 = 0 

Primary 

Crack 

X 0 0.5 0 0.5 0 0.5 1 1.5 

T 4.5 5 4.5 5 4 4 4.5 4.5 

Secondary 

Crack (1) 

X 10 11 12 	13 14 15 8 9 10 11 12 13 7 8 9 10 11 12 

T 63 31.5 22 	22.5 31.5 41.5 53 32 22.5 22.5 22.5 32 53.5 33 13 14 22.4 32 

Secondary 

Crack (2) 

X 
None 

24 25 26 27 28 22 23 24 25 26 

T 59 48.5 49 49.5 59 50 39.5 40 40.5 50 

Secondary 

Crack (3) 

X None 40 41 36 37 38 39 40 41 

T 75.5 75.5 67.5 57.5 58.5 67 67.5 77.5 

Secondary 

Crack (4) 
t 

X 
None None 

51 51.5 

T 75.5 76 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

One of the purposes of this study was to investigate the differ-

ences between dynamic and static (or quasi-static) cleavage crack prop-

agation. From the numerical results reported in the preceding chapter, 

we found that, for the proposed model, an existing crack may propagate 

in significantly different ways depending on the loading condition. 

Continuous crack propagation is obtained when the string is dis-

turbed from its mobile equilibrium position. In this case, when small 

disturbances are given, the dynamic response is small and the entire 

process is dominated by the initial configuration. When the load is 

applied dynamically, the dynamic response becomes more and more impor-

tant. An existing crack is not likely to propagate continuously. 

Crack propagation in real material under dynamic loading is in-

deed a very complicated phenomenon. Literature dealing with analytical 

aspects is almost nonexistent. Past researches, such as the works of 

Yoffe, Craggs and Broberg, emphasized Griffith's work. In fact, all 

these analyses are based on the assumption that under a critical load an 

existing crack can propagate continuously at a constant speed. This 

constant speed of crack propagation is assumed to be achieved indepen-

dently of how the critical load is originally applied. However, for the 

present model, the transient state of crack extension, which depends on 

the loading situation, seems important to the subsequent propagation, 
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and continuous crack propagation may not be attained. 

In the case of dynamic loading, we find from Chapter IV that the 

critical loads are far below the quasi-static one. As an example, for 

the semi-infinite crack problem the quasi-static critical load is 1.414; 

on the other hand, if the load is suddenly applied and maintained it is 

0.76. Furthermore, when P = 1, the entire foundation will be ruptured. 

By comparing these critical loads, we may conclude that under dynamic 

loading, although a crack can be extended a very short distance, the 

total energy input is not sufficient for further propagation of the 

crack. But the dynamic response superimposed with the waves emitted 

from the crack tip may cause the formation of secondary cracks in front 

of the primary crack. Once these secondary cracks are formed, they 

themselves emit waves which further complicate the process. 

Cracks that do not propagate continuously have been detected ex-

perimentally. Van Elst [17] shows in his research that the emission of 

stress waves by a brittle crack seems only conceivable if the fracture 

propagates by discrete steps. In an analysis of his photographs, 

Van Elst suggests that a brittle fracture does not propagate continu-

ously but rather intermittently as a sequence of individual steps with 

the contour of the crack appearing as a broken line instead of a smooth 

line. Evidence of spreading microcracks ahead of a primary crack has 

also been found by Pratt and Stock [18] in their experiments concerning 

crack propagation in semi-brittle materials. In more recent research 

of crack propagation in composite materials, Daniel [19] found hairline 

traces extending beyond the ends of a visible crack. An explanation of 
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these traces is that molecular bonds are broken in the region due to the 

high dynamic stress. 

In the Appendix, we have attempted to solve the equation of 

motion analytically. In view of the existence of secondary cracks, we 

may conclude that Kostrov's method is not applicable to the present pro-

blem. From the resulting integral equation of this analysis, and if we 

expect secondary cracks to form during the process, we can see that the 

integral is along an undefined path of crack propagation which is not 

continuous in the XT plane. Furthermore, if the crack extends as a 

sequence of individual steps, the displacement at the crack tip varies 

with time. Thus the assumption, that the crack tip displacement is al-

ways the critical value, of Equation (A-20) is not valid. Under these 

circumstances, a solution of the integral equation is likely to be very 

difficult to obtain. 

The method of characteristics employed in Chapter IV allows 

numerical solution of the problem. Since the fracture criterion is 

built into the model, the crack is found to extend or new cracks are 

found to form by detecting the displacement history. Thus, the char-

acter of the crack propagation is obtained as a result and not pre-

scribed in advance. 

To determine the accuracy of the numerical integration, we com-

pared the displacement and velocity of the remote part of the string 

with the exact solution for a single spring-mass system. We found that 

the grid size of the characteristic net, which is governed by the ele-

mentary time AT, dominates the accuracy of the numerical integration. 

For example, in the periodic loading cases, for AT = 1 the error is 
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about four per cent per cycle. This is a large discrepancy, because the 

error is cumulative as the region of integration expands to cover several 

cycles of vibration. Such an error will completely change the pattern 

of the string motion and consequently the crack propagation. To over-

come this, we reduced the grid size. With AT = 1/4, the error diminished 

to less than 0.1%. Further shrinkage of the grid size would further im-

prove the results, but at a price of a significant increase in computa-

tion time, since the number of computations is inversely proportional to 

the square of AT. In the actual computation, we adjusted the values of 

dependent variables in the remote part of the string by prescribing the 

exact solutions. By so doing, the number of computations was consider- 

ably reduced. 

In Chapter II, we discussed two possible forms of the foundation 

law, but in the later development, only the linear-with-cut-off law was 

used because static solutions for the sine law are difficult to evaluate. 

In order to examine the importance of different foundation laws, a solu-

tion for the sine law for a suddenly applied and maintained load was 

obtained by numerical integration. For this foundation law, the criti-

cal displacement is •/2 and the corresponding critical load is approxi-

mately 1.14. When loads of magnitude between 1.00 and 1.10 are applied, 

we found that the dominant features of crack propagation do not change 

significantly. When the load is small, the primary crack extends only 

a small distance. If the load is increased, in addition to this exten-

sion, we found secondary cracks. This indicates that different founda-

tion laws may affect the value of the critical load and the location of 

the secondary cracks. But the overall character of the crack propagation 
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is similar to that predicted by linear law. 

When viscous damping was introduced in our model, we found that 

if it was sufficiently large, the secondary cracks did not appear and 

the dynamic loading caused the main crack to extend for only a small 

distance. As the damping was reduced, the secondary cracks were found 

again. The crack propagation features tended to those with no damping 

as the damping factor approached zero. 

To examine two-dimensional crack propagation in brittle crystal-

line solids, the Goodier-Kanninen model may be a useful tool for analy-

sis. Hovis [20] has investigated a dynamic crack propagation problem 

by employing such a model. But his problem is steady like Yoffe's; i.e. 

a crack of constant length travels through an infinite plate with pre-

scribed constant speed. We suggest formulating an unsteady problem 

based on the Goodier-Kanninen model and attempting a solution through 

the two-dimensional (space) method of characteristics. 



APPENDIX 

A FORMAL SOLUTION OF THE EQUATION OF MOTION 

In this appendix we attempt to obtain an analytical solution of 

the equation of motion. Through the method of Riemann-Volterra, this 

equation can be transformed into the form of an integral equation. 

Consider the nondimensional equation of motion 

2W 	a
W - M2  (Q 1 + Q 2 

- P) = 0. 
ax

2 aT
2 

(A-1) 

Since the reaction of the compressive foundation can always be written as 

Q
2 
= W, we can write this equation as 

b 2w  
- M

2
W = M

2
K , 

ax
22 

(A-2) 

where K = Q
1 

- P is the resultant lineal force of the tensile foundation 

reaction and the applied load. The loading function P here and through-

out this section is considered as constant. Suppose that K is an unknown 

function of the independent variables X and T; i.e. K = K(X,T). 

Equation (A-2) is a hyperbolic partial differential equation; its 

normal form can be obtained through the transformations 

a = M(T + X) 	and 	S = M(T - X). 	 (A-3) 

The transformed equation is 

100 

B 2W W 
+ = - 

aoelsi. 	4 	4 
(A-4) 
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Equation (A-4) is known as the normal form of a Telegraphist's equation 
(1) 

with a nonhomogeneous part - 4. The characteristics of this equation 

in the as plane are found to be 

a = constant 	and 	s = constant . 	 (A-5) 

Now define a differential operator L by 

a 2 	1 
L = 	+ — . 

aa$ 4 

Then the equation of motion becomes 

L (W) = - 4. 

(A-6) 

(A-7) 

Let N be the adjoint operator of L. Since (A-4) is self-adjoint, L = N. 

The Green's formula can be written as 

SS [u L(W) - W N(u)] dad$ 
R 

= 	̀4-Ltcos (n a) + 	cos (118)i 
J F  

u F aw cos(na) + re-e  cos (n$) Ids, 	 (A-8) 

in which u is a solution of the adjoint differential equation. F is a 

closed contour formed by the characteristics and a curve on which suffi-

cient data are given. In the present case this curve is a = -$ (T = 0) 

and the given data are initial conditions. R represents the region 

(1) See A. G. Webster, "Partial Differential Equations of Mathematical 
Physics", 2nd Edition, Dover Publications, 1955. Chapter VI. 



bounded by F; n is the inward normal of r and s is the line segment 
along F in counterclockwise sense. 	Figure A-1 shows such a region. 

Referring to Figure A-1, we write 

1 	ds = y A IB sp 

p 	A 	B 
(A-9) 

where the integrands are identical to those inside the line integral in 

(A-8). The integrals can now be evaluated separately as follows. Along 

pA we have d$ = 0 and ds = -da so that 

	

cos(na) = 0 	and 	cos(n(3) = -1 . 	 (A-9) 

1 -A au 	aW dr = — 	- u 	da 
P 

2 , 	as 

= 1 ik as 
-2- r W 	da 

	

Aa 	- uw1A sA " 
au  , 

W — da 
P 

	

P 	p 	
ace 

6 = 1 – [u(p)W(p) - u(A)W(A)] +1A  W.Fu(Te  da . 	(a) 2 

Similarly, 

SB 	 1  rB dP 	f (au 	au 
A 	

- J 	
- (aw bwv 

A 	a$ 	bu) 	
u 	+ 	, 	(b) 

and 

sp 	-1 
dp = 

2 
1 	 1

B  p 
	as — [u(p)W(p) - u(B)W(B)] - 	W 	,13. 	(c) 
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Figure A-1 Region of Integration for Equation (A-8). 



Substituting (a), (b) and (c) into (A-8) we have 

IS[uL(W) - WN(u)] dud$ 
R 

1 
= U(p)W(p) - 7.[u(A)W(A) + u(B)W(B)] 

u 	 u 
+ SA  W 

b 
 --
u 
 du - Sp 6

0  
W -- du 

p 	 B 
6 	6 

1 pBr (6u 	6u(aW 	bWYI 
* JA  W+  TfT) uM +  STe) " * 

(A - 10) 

Now let u be a particular solution of the adjoint homogeneous 

equation 

N(u) = 0 . 	 (A-11) 

Without losing any generality, we now choose a particular solution, G, 

satisfying the following conditions: 

dG = 0 	 along pA ; 

aG _ 0  
68 - 	

along Bp ; 

G(t, 11) = 1 	at p(t,T)) 

A function of y = (t - 	- $) satisfies (d) and (e) identically. 

To satisfy (A-11), we let G = G(y). Then (A-11) becomes 

2 
dG dG G 

T dy 2 4-  (71c7 	= °' (A-12) 

(A-12) is an ordinary differential equation for G. To solve this equa-

tion, we make another transformation by letting 

. 
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Equation (A-12) now becomes a Bessel's equation of zero order; i.e. 

d
2
G 	

1 dG+ G = 0 . + — — 
2 T dT dT 

(A-13) 

The solution of this equation is 

G = Jo (*) = J0 (i( - ce)( 1-1 - $)). 	 (A-14) 

Note that the condition (f) is now satisfied. 

Suppose that the initial conditions can be written as 

W(X,O) = h(X) 	 (A-15) 

and 

aT(X,0)= g(X). 

Then after certain algebraic manipulations and transforming back to the 

original variable (X and T), we have 

W(X,T) = 2.2=[h(X-7) + h(X+T)] 

MT +T J'0q,d(T-T)
2 

- (X-X)
2
) 

pk 
 
h(X) 	  dX 

x-x 	4T-T)2 - 0._)02 

A+T 
+ 

1 
 1 . 	g(X) J

0 
 (M

'
/f(T-T)

2 
- (X-X)

2
) dX 

X-T 

- -4- I; K J 0 (N1,/(T-T)
2 

- (X-X
2 
 ) dXdT , 	 (A-16) 

where X and T are the corresponding coordinates of 	and 11 in the XT 
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plane. 
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Figure A - 2 	The Bath of the Crack Tip Divides R into S i  and S 2 . 
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Consider now that there exists an initial crack and it propagates 

continuously so that the crack tip traces a curve represented by X = ,e(T) 

in Figure A-2. If we fix the point under consideration, p(X,T), at the 

crack tip, then X = L(T) and p = p(L(T),T). In Figure A-2, the curve 

X = L(T) divides the region R into two subregions S 1  and S 2 . In S 1  the 

tensile foundation is fractured. Whereas in S 2 , we have Q L  = W. Thus 

K
1 
 = P 	in S

1  

K = 	 (A-17) 

k2 = P + W, 
	in S

2 

The surface integral in (A-16) can then be written as 

SS K Jo (iy) dXdT = P jjJ 0  (/p) dXdT + SS  W J 0  (,/Ty) dXdT 
R 	 R 	 S 

T /(T) + T - T 

P  SOi(T) 	
J0  (7'Cp) dXdT 

T /(T) + T - T 

ef 
0 /(T) 

W(X,T) J0 (/cp) dXdT. 	(A-18) 

In (A-17), the function y, has been transformed to the XT plane which 

has the form 

p(X,T) 	
142 E(T-T) 2 	(x-30 2 ]  . 

When the surface integral of (A-18) is substituted into (A-16) we 

finally obtain an integral equation for the displacement function W(X,T). 

If the functions h(X) and g(X) are given, one may expect a solution of W 

in terms of the crack length ,e(T). But since ,e(T) is not a prescribed 



1 PP 
w(x t ) = — 33 T(x,t) 	  

dxdt  
0' 0 	7 

(A-19) 
S 0 	j(t 0 - t) 2 

- (x
0  -

x) 2  
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function, the solution can not be considered as complete. Since the 

purpose of this section is not to obtain a complete solution of the equa-

tion of motion, we limit our analysis to the formal solution in the form 

of an integral equation (A-16). 

Since the anti-plane crack problem is governed by a single wave 

equation similar to the present equation of motion, it is interesting 

to compare these two problems. Kostrov treated the wave equation analy- 

tically by the method of Volterra which is similar to the method discussed 

in this section. He obtained a formal solution of the displacement func- 

tion, w, in terms of the unknown shear stress T. His solution is given 

below. 

Kostrov transformed this equation into Abel's integral equation, invoked 

Barenblatt's crack extension criterion and obtained numerical results for 

two special problems. 

In order to compare the two problems, we introduce a special case 

by assuming that the crack tip moves continuously, so that its displace- 

ment always assumes the critical value; i.e. W(.2(T),T) = 1. As in Kostrov's 

problem, if we take the initial values to be 

f(X) = 0 	and 	g(X) = 0 , 

then Equations (A-16) and (A-18) reduce to 

T A(T) 	T - T r  
J 	 0 

J (1-0 dXdT 
0 A(T) - T 	T 
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T L(T) 	T - T 

-1-1 S1 4 	
W(X,T) J 0 (fc9) dXdT = 

0 1,(T) 
(A-20) 

Even in this simple form, obtaining a solution of Equation (A-20) 

is a formidable task. Because not only is W(X,T) an unknown function but 

also L(T), which appears in the integration limits. After obtaining Equa-

tion (A-18), Kostrov treated his problem by employing two additional con-

ditions. They are: (1) the anti-symmetry of the displacement, that is 

w is identically zero at points on the prolongation of the crack; and (2) 

the general Barenblatt criterion, which ignores the actual distribution 

of the cohesive forces near the crack tip. In the present problem, how- 

ever, these conditions are not applicable, since W is not known beforehand 

at any point, except perhaps at the crack tip as in (A-20). Furthermore, 

the foundation reactions and therefore the displacement must be known at 

all points because the criterion of crack extension is defined by a crit-

ical value of displacement. 
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