In presenting the dissertation as a partial fulfillment of
the requirements for an advanced degree from the Georgla
Institute of Technology, I agree that the Library of the
Institute shall make it available for inspection and
circulation in accordance with its regulations governing
materials of this type. 1 agree thal permission to copy
from, or to publish from, this dissertation may be granted
by the prcfessor under whose direction it was written, or,
in his absence, by the Dean of the Graduate Division when
such copying or publication is solely for scholarly purposes
and dees not inveclve potential financial gain. It is under-
stoed that any copying from, or publication of, this dis-
sertation which invelves potential financial gain will not
be allowed withoul written permissicon.

7/25/68



ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO x"(t) + p(£)x(t) = 0

A THESIS
Presented to
the Paculty of the Graduate Division
by

Charles Jordan Holland

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Applied Mathematics

Georgia Institute of Technology

June, 1969



ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO x'"(t) + p(t)x{t) = 0

Approved:

s

# ] -

FAERY BV v o - 'C".--) (— el
Chairman

, ’ 11
‘ ~

Date approved by Chairman:w




ii

ACKNOWLEDGMENTS

I would like to thank all of those who assisted in the prepara-
tion of this thesis. I am very much indebted to Dr. H. K. Wilscn, my
thesis advisor, for his guidance and encouragement throughout the
course of this study. I would like to thank Dr. J. V. Herod and
Dr. A. W. Marris for their careful readings and suggestions for
improvements of this work.

I am also grateful to Georgia Tech and the National Science

Foundation for a Traineeship during the academic year 1968-69.



ACKNOWLEDGMENTS.
Chapter

I. INTRODUCTION.

TABLE OF CONTENTS

1T. CSCILLATORY BEHAVIOR.

ITI. THE CASE p(t)<0
IV. THE CASE p(t)>0 .

BIBLIOGRAPHY .

iii

Page

ii

16
22

43



CHAPTER T

INTRODUCTION

This thesis is a study of the behavior of solutions to the dif-

ferential equation

xX"(t) + pltx{(t) = 0, tza, (1)

under various restrictions on the function p. However, p is always
assumed to be continuous and real valued on some closed interval [a,=).
This assumption on p is sufficient to guarantee the existence and
uniqueness of solutions to initial value prablems for (1) on the inter-
val [a,»). By placing additional requirements on the function p, one

can deduce properties of the solutions to (1).

1.1 Definition: A solution to (1) is a function with a continuous
second derivative that satisfies the differential equation (1) at
every point of [a,=).
There are discussed, below, criteria for answering the following
questions: Under what hypotheses on p
(1) will the sclutions to the differential equation (1) oscillate?
(2) will the solutions to the differential equation (1) be bounded?
(3) will the solutions to the differential equation (1) apprecach

zerc as t-otw?



The significance of such a qualitative investigation into the
behavior of solutions to (1) can be illustrated by the following
example. Consider a particle which is at rest a unit distance from
the origin. Suppese that it is subjected to a force directed toward
the origin such that the particle's displacement x(t) is governed by

the differential equation

x"(t) + (exp t) x(t) = 0, t20.

Solving the equation in a power series, one finds that

Thus, it is difficult to determine from the series that the particle
oscillates with decreasing amplitude about the origin and that the
limiting position of the particle as time becomes infinite is the
crigin. By making a qualitative study, however, cne is able to verify
these assertions.

The differential equation (1) arises often in physical applica-
tions. If p is a positive constant, the differential equation (1) is
the equation of motion of the simple harmonic oscillater, which consists
of a particle of unit mass on a frictionless herizontal surface attached
to a linear spring. When p is nonconstant, the differential equation
(1) is the rectilinear egquation of motion of a particle which is subject

to a time-dependent central force.



Thus, as could be expected, equaticn (1) arises in the study of
planetary orbits. In 1877, G, W, Hill investigated the lunar perigee
by using equation (1) with p a pericdic function. Because of his
investigation the differential equation (1) with p periodic is commonly
called Hill's equation. The case where p is periodic {(except for the
trivial periodic case where p is a constant) will not be treated here.
The interested reader is referred to [13] for a discussion of this
case, Except for special situations, the cases where p changes signs
infinitely many times will also not be considered.

Certain elementary facts concerning properties of solutions to
differential equations in general and equation (1) will be presented

below. These results are needed for several proofs in the present work,

1.2 Proposition: 1If u is any nentrivial solution to equation (1),
then in any interval where u does not vanish, all solutions to (1) can

be expressed in the form
-2
cqu(t) + e u(t) - [ [u(s)] “ds,

- . . . . -2
where f [u(s)] st is any antiderivative of [u(t)] ~.
Proof: If u is a nontrivial solution and v is a second linearly

independent soclution, then by Abel's formula

u(t) v(t) u(a) v(a)

') (L) u'fa) v'(a)



where ¢ is a nonzero constant.

Hence v'(t)u(t) - u'(t)v(t) = c.

Since it was assumed that u does not vanish,

Lu'(t) o«
u(t) — u(t)

vi(t) - v(t)

It follows that

v(t) = cult) [ [u(s)] s,

where f [u(s)]—st is any antiderivative of [u(t)]_z. Since every solu-
tion of a linear second order differential equation can be expressed as
a linear combination of any two linearly independent solutions, the

desired conclusicen is cobtained. |]

The next result, which is commonly known as the Gronwall

inequality, is used to study the growth of solutions to (1).

1.3 Proposition (Gromwall Inequality): If u and v are positive valued

contimicus functions on [a,»), if ¢ is a positive constant, and if

t
ult) < c + f u(s)v(s)ds for tra, (27
o

then
t

u(t) < c exp|f v(s)ds
a



t
Proof: Let k(t) = c + [ u(s)v(s)ds.
8.3
Then k'(t) = u(t)v{t) < v(t)k(t) by (2). Now k(t) > ¢ » 0, thus
k'(t)/k(t) < v(t), and by integrating and taking exponentials, one sees
that
¢
k(t) £ ¢ « exp)/ v(s)ds
a
But

t
ult) < k(t) < ¢ « exp|[ vis)ds] . H
o



CHAPTER 2

CSCILLATORY BEHAVICR

In this chapter answers to the following questions are sought:

(1) What properties must p satisfy in order that equation (1)
be oscillatory?

{2) What properties must p satisfy in order that no (some)
solutions to (1) will be oscillatory?

Since the definitions of oscillatory (noncscillatory) solutions
and oscillatory (nonoscillatory) equations vary in the references, we
shall adopt, as a matter of convenlence, definitions which are equiva-

lent to these in Hille [9].

2.1 Definitions: A solution to (1) is oseillatory if it has an
infinite number of zeros in [a,»). Equation (1) is oscillatory if every
solution to (1) is oscillatory. A solution to (1) is nonoscillatory if
it has at most a finite number of zeros in [a,»). Equation (1) is

nonosetllatory if every nentrivial solution is nonoscillatory.

One usually thinks of functions defined on [a,») as being oscil-
latory if their values not only equal zero an infinite number of times
but also change signs at any zero. It will now be shown that the value
of any nontrivial soclution will change sign at any zero. Hence, if a
nontrivial solution is oscillatory according to this definition, then

it will also possess this additional property. It follows then, that if



a nontrivial solution has value zero at a point, t.,, it will possess

0
property (P) and not property (Q) as illustrated in Figure 1.

’ t
A i
e tO f////r\\\ tg\\\ tO
(Q)

Figure 1

2.2 Lemma: If x = u(t), ast<e, is a nontrivial solution to (1) and if
u(k) = 0, ask<e, then either

{1) u'(k)<0, and there exists an interval (a,k) such that
u{t)>0 on (a,k) and an interval (k,b) such that u{t)<0 on (k,bk), or

{2) u'(k)>0, and there exists an interval (a,k) such that

u(t)<0 on (a,k) and an interval (k,b) such that u(t)>C cn (k,b).

Procf: Since x = u(t)} is not the trivial solution, then u'(k) 30
since solutions to initial wvalue problems are unique. Thus there is
an interval (a,b) centained in l[a,») with k iIn (a,b) such that

u'(t) ¥ 0 on (a,b). Suupose that u'(t)>0 on {a,b). For an arbitrary

peint ¢ in (a,k),

ule) = ulk) = u(e) = u'(s)c-k) < 0

for seme s in (c,k). Thus u(t)<0 on (a,k). By a similar argument one

can show that u(t)>0 on (k,b), and hence property (2) holds. By



assuming the alternative, u'(k)<0, one can show that property (1) must

hold., []

A useful thecrem for the study of oscillations of solutions is

the Sturm comparison thecrem.

2.3 Theorem (Sturm Comparison Theorem): Let u and v be nontrivial

scluticns of

n

X+ plt)x (3)

I
[ ]

and

x" + qlt)x ()

1l
<
w

respectively, where p(t)>q(t). Then u(t) equals zerc at least once
between any two zeres of v unless p Z q in which case u = cv for some

nonzero constant c.

Proof: Let tl and t2 be successive zeros of v so that v(tl) = v(tQ) =0

and suppose that u is nenzero on (t ,tz). Then by replacing u and (or)

1

v by their negatives 1f necessary, one could find sclutions u and v with

positive values on (t ’tg)' Then

1

W(tl) = u(tl)v'(tl) >0 and (5)

w(tQ) = u(tz)v'(tz) <0, (8)



where W(t) denotes the Wronskian of u and v. B8ince u and v are positive

on (tl’tQ)’ however,

Wi(t) = [p(t)-g(t)u(t)vi{t) > 0 on (tl,tz).

Hence W{t) is nondecreasing, thus a contradiction of (5) and (8)
results unless p(t) - q(t) = 0. In this event, u(t) = ¢v(t) since the

Wronskian of two linearly independent soluticns is nonzero. I

2.4 Theorem: Let p(t} > g(t) on [a,=). If Equation (3) is non-
oscillatory, then Equation (4} is nonoscillatory. Similarly, if Equa-

tion (4) is oscillatory, then Equation (3) is oscillatory.

Proof: The result follows immediately from the Sturm comparison

theorem. []

The Sturm comparison theorem is very useful in the case

p{t)<0 on [a,=).

2.5 Theorem: If p(t)<0, then no nontrivial solution has more than

one zero.

Proof: Suppose that u is a solution of (1) such that u(tl) = u(t,) = 0.

2
By the Sturm comparison thecrem, the sclution y(t) = 1 to y"(t) = 0

would have to vanish at least once in (tl’tz)' Hence a coeontradiction

results, and no soluticn can vanish more than once. []
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A restatement of the above theorem in terms of oscillatory

equations gives the following.
2.6 Corcllary: If p(t)<0 on [a,=), then Equation (1) is nonoscillatcry.
The case where p(t)>C on [a,*) is examined next.

2.7 Thecrem: If p(t)>0 on [a,») and if

oo

I pls)ds = 4=,
o

then Equation (1) is oscillatory.

Prcof {Bellman [2]): Suppose, for contradicticn, that v 1s a solution

te (1) which is positive valued for t>k, where k>a is a constant. Then
v'{(t) = -p{t)v(t) £ 0 and v'(t) is monotone nonincreasing for t>k.
There are three cases to consider:

(1) wv'(t)

IV

0 for all trk.
(2) v'(t) 2 0 for t in (k,f1, v'(t)<0 for t>f
tor some constant frk.
(3) v'(t) < 0 for t>k.
First, suppose that (1) holds. Then
t

v'{(t) = -] pls)v(s)ds + v'(k),
k

and by the mean value theorem for integrals,
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t
v'(t) = -v(e) [ pls)ds + v'(k)
k

for some constant ¢ in (k,t). But

oo

I p(s)ds = +=,
o
hence v'(t) is negative for some t and a contradiction results. Thus
(1) cannot hold. Now suppose (2) holds. Let m>f so that v'(m)<0.
Since v'"(t)<0, then v'(t)sv'(m) for t>m. Thus
t
v(t) - v(m) = [ v'(s)ds g v'(m)(t-m).
m
Since v'(m)(t-m) + -= as t+t», a contradiction is cbtained. Case (3)
follows in a manner similar to Case (2} with m>k an arbitrary constant.
Thus v(t) cannot remain positive for all t>k. It follows from Lemma
2.2 that v{(t) becomes negative. In a similar manner, one can show that
v(t) cannct remain negative for t>k for some constant k»a. Therefore

all solutions are oscillatory. ]
2.8 Corollary: If p(t)2a2>0, then Equation (1) is oscillatory.
Proof: The result follows immediately from the previous theorem.

2.9 Example (Cesari [4]): The restriction p(t) > ¢ is not alone suf-

ficient condition to guarantee oscillations of solutions. Solutions to

the differential equation
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x" + (m/tQ)x =0,

where m is a positive constant and a>0, are of the form

Cltl/zsin(k in t) + c2t

l/gcos(k In t3),

where k is a positive constant if m>1/4., They are of the form

where kl and k2 are constants if m < 1/u4. If m > 1/4, Equation (1) is
oscillatory; and if m < 1/4, Equation (1) is nonoscillatory. Thus, for
the case where p(t) 2 0 on [a,>) and

oo

f p(s)ds < +e,

o
Equation (1) may or may not be oscillatory. The Sturm comparison
theorem can be used to determine the behavior of Equation (1) in this
case. If m is a positive constant, for example, it is easily seen
that if p(t) > (1+m)t2/u on [a,w) then Equation (1} is oscillatory, and
if p(t) = (l—m)tQ/u on [a,=}, then Equation (1) is nonoscillatory.

The last case considered is that where p is not necessarily of
constant sign and remains "sufficilently close" to zero. If p is
"sufficiently close'" to zero, then one would expect solutions to (1)
to be asymptotic to those of x"(t) = 0, and hence Equation (1) would be

nonoscillatory.



13

2.10 Definition: The function f is asymptotic to the function g as

t > 4o 1f

f(t) _

ICO R

lim
oo

Q

2.11 Theorem (Bellman [2]): If [ s|p(s)|ds < =, then any solution to
a

(1) is asymptetic to a+mt as t++w, where at least one of the constantsa

a and m is nonzero.

Proof: Let A(t) = -p(t). Then (1) is transformed into
x'"(t) = Alt)x(t). (7)

We next cheoose a constant b satisfying the following:
(i) b >a
(ii) b > 1
oo

(iii) [ s|a(s)|ds < 1/3.
b

The existence of a ceonstant b is guaranteed by hypethesis. Next let v
dencte the unique solution te (7) satisfying v(b) = 0, vi(b) = 1.
Integrating (7) from b to t, one obtains
t

vi(t) = 1 + f A(s)v(s)ds. (8)
b

A second integration yields the relation
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t u
v(t) = (t-b) + [ [ A(s)v(s)dsdu. (9)
b b

Changing the order of integration of the integral, one finds that

t o u t t
[ [ a(syis)dsdu = [ [ A(s)v(sdduds = [ (t-s)A(s)v(s)ds.
b b b s b

But t»b>1, hence (9) becomes
t
|v(t)| <t +t j' [A(s)Hv(s)ldS.
b

Dividing by t and then applying the Grenwall inequality one finds that

t o
< exp|/ |A(s)|sds| < exp f |A(s)|sds! . (10)
b

|V(t)|
¢ b

oo

Denote exp|/ |A(s)|sds| by K.
b

t t
But |/ A(s)vis)ds| s [ |a(s)||v(s)lds
b b

and using from (10) the result that lﬁ%ﬁli.s K, one obtains

t t
|f A(sWi(s)s|z kK [ s|a(s)|ds .
b b

Since

t 1 1
1im X [ s|a(s)las| < 5—[exp 5} <1,
tro b
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t
1im |/ A(s)v(s)s| < 1.
t++o b

By (8}, v'(t) has a finite positive limit as t++%. Dencte the limit by
q. Then there is a T such that for t>T, v(t)>0. Hence, for t>T,

o0

w(t) = v(t) » [ =38
t vi(s)

is a secend solution of (1) which is linearly independent of v(t). By

L'Hopital's rule,

oo

ds
t vg(s) 1 1
Lin w(t) = Hn ———= = Ln - = - =
T+ tr+= —_— Tr4
v(t)

Hence w(t) approaches a limit as t++». Since a general soluticn to (7)
can be expressed as a linear combination of w(t) and w(t), all non-
trivial solutions are asymptotic to atmt where at least one of the
constants a and m is not zero. Thus ne sclution te (1) can have
infinitely many zeros, and Equation (1) is ncnoscillatory. This result

is recorded as Theorem 2.12.

oo

Theorem 2.12: If [ s|p(s)|ds < =, then Equaticn (1) is nonoscillatory.
a
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CHAPTER III

THE CASE p(t} < 0

Theorem 2.11 showed that if p(t) < 0 on [a,=) and [ s p(s)ds
o
converges, then every soluticn to (1) is asymptotic tc atbt where at

least one of the constants a and b is not zero. Thus, some solutions

are bounded, but no nontrivial solution approaches zerc as tr+e,
The next case is that where p(t) < 0 and [ |p(s)|ds = +=.
o
First, a lemma is established which is required in the proof of the

next theorem.

3.1 Lemma: Let ¢ and d be positive [negative] constants. If p(t) < 0
on [a,=) and [ |p(s)|ds = +=, then for any sclution v to (1)} with

a
via} = ¢ and v'{(a) = 4,

1im v(t) = lim v'{(t) = +o [-e=],
oo torton

Proof (Sansone [17]): Let a(t) = -p(t). For any nontrivial sclution

to (1),

% [v(t)' (t)] = a(t[v(t)12 + [v'(t)]2 > o.

Thus for any nontrivial soluticn v(t)v'(t) > v'(a)v(a) > 0 for t>a.

Note that this implies that v(t) % 0, v'(t) # 0 for tra. Writing (1)
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in the form v"(t} = a(t)v(t), multiplying by v'(t) and integrating, one

obtains

t

[v' ()12 = [v'(@)1% + 2 [ a(s)lv(s)v'(s))ds.

a

But v'{t)v(t) = v'{a)v(a) » 0 for tra. Dencte v'(a)v(a) by f.

2 2 t
[v' ()] = [v'(a)1° + 2f [ a(s)ds.
o
By hypothesis,
t
1im f a(s)ds = +o,
T+ o

hence

lim v'(t) = +w=,
Tt

It follows necessarily that lim v(t) = 4+, The case where ¢ and 4 ave

tortoo
negative constants is similar. n

3.2 Example: The requirement

(o]

[ Ipts)]ds = +=
o

is necessary to guarantee that lim x'(t) = +o[-«].

oo

x(t) =

[t+t{arctan t) - %-ln(t2+l) + 1] is a solution to x"(t) =
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x(£)[ (1+t?) (t+t(arctant) - 2 1n(t7+1) + 1)177 such that x(0) = 1,

%' (0) = 1, a(t) > 0 for t>0, x(t} > +=» as t = +w; nevertheless x'(t)
is bounded on [0,»). This example corrects an error in [4] on p. 83.
In [4] the conclusion of Lemma 3.1 was stated without the hypothesis
oo

[ |p(s)|ds = +w.

o

3.3 Theorem: Let k be any nonzero constant. Then under the same

hypotheses on p as in the last lemma, there exists a unique solutien to

(1) with w{a) = k such that

lim w{t) = Q,
tteo

while for any other sclution x satisfying x(o) = k, either

lim x{t) = 1im x'(t) = +=  or lim %{t) = 1lim x'(t) = -e,
oo trtoo trto torteo

Proof (Sansoné [17]): Without loss of generality, suppose k>0. Let

v(t) be the unique sclution to (1) satisfying v(a) = k, v'{(a) = 1.

Then, as shown in the lemma,

lim w(t) = lim v'(t) = + =,
trteo tor oo
and v{(t) does not vanish on [a,*). By Proposition 2 any solution x

to (1) is of the form

t
x(t) = cvlt) + e vit) f (v(s)T %ds for t>o.
o
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Since we require that x{a) = k, x is of the form

x(t) = v(t)|1 + ¢ [ ds
a v (s)
for scme constant c.
. . ® ds T ds

Since lim v'(t) = +w, [ converges. Denote [ by n. All

£rtoo o v (s) o v (s)
possible cases for the values of ¢ are considered now.

b ds -1
Case 1. c¢<n<0. Suppose ¢ = ~f for some constant

o vels)
bra. At t=b, x{(b)=0, and since for t<b, x(t)>0, then x'(b)<0. Hence

for some interval (b,f), f>b, x'(t)<0. Thus there is a peint g in

(b,f) such that =x{(g)<0 and x'(g)<0. By the lemma,

lim x{(t) = 1lim x'{t) = =o,
trtoo t>teo

Case 2. Suppose c=n. Now

t

1 +n ds 3
lim x{t) = 1im & lEV(S)]
ot oo T

Using L'Hopital's rule, cne finds that
T -m
2
. v {t) L 0o

lim v () = lim Ty 0

t>+ =
v2(t)
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since v(1t) was chosen such that 1lim v'(t) = +«, Therefore 1lim x(t) = 0.

t++too Tt
Case 3. Suppose ¢»0. Then clearly lim x(t) = +=, Differenti-
oo
ating, one obtains
t ds c
x'(t) = v'(t) +cv'(t) f T
a v (s)

Since v'{(t) + +w» as t++= and since the other terms are nonnegative,

then 1lim x'(t) = +=.
tto
Case 4. Suppose n<c<Q. Then

t
1im x{(t) = |lim v(t)| = |lim 1 + c f ——inﬁi = 4w
totm ttoo o0 a [vi(s)]

gince 1im v{(t) = += and since the other limit is positive.
torte
Differentiating,

x'(t) = v'(t)|1l + ¢ f ;S VEE)
a v(s)
T ds
Since 1lim ¢ + |f — | > L then 1im x'(t} = 4.
tte o [v(s)] tteo

When c=n, the unique solution to (1) with x{a} = k such that

lim x{(t) = 0 is cbtained. For any cholce of c#n, either 1lim x{(t) =

t 400 to+eo
1im x'(t) = 4= or lim x(t) = lim x'{(t) = -, If k<0, then a similar
Trtoo trte Tt

argument holds where v(t) is chosen to be the solution to (1) satis~

fying v{e) = k and v'(a) = -1, (I
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fe2]

3.4 Example: The requirement f |p(s)|ds = 4o ig necessary to
o
guarantee that all solutions to (1)} either approach zero or become

unbounded as t++®, Observe that x(t) = g—[l + e_t] is & solution to

x" = [1 + exp t]'lx

with x(0) = k (k#0) such that lim x(t) = %u This corrects the mis-
oo
print of Sansone's result (Theorem 3.3 in this work) on p. 84% in [4]
L= =] =)
where [ [p(s)|ds = += was printed as [ |p(s)|ds < +=.
a o

3.5 Comment: Consider again Equation (1} with p(t) < 0 and

fm lp(s)|ds = +=. Let k30 be arbitrary, and let w denote the unique

:olution to (1) satisfying w(a) = k such that 1im w(t) = 0. [Denote
pro

w'(a) by m. If v is any solution to (1) satisgyzng v(a) = k and

v'(a) # m, then lim v(t) = =. The Wronskian of u and v at t=u is non-
torpoo

zero, hence u and v are two linearly independent solutions to (1).

Thus every solution to (1) will be a linear combination of u and v.

Therefore, if a solution is bounded as t—>te, it has limit zerc as

ttoo,
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CHAPTER IV

THE CASE p(t) > 0

The case where p is a poesitive function on [a,®) requires a mcre
detailed analysis. First, results are obtained to insure that all solu-

tions are bounded con [a,»).

Boundedness of Solutions

The first theorem, originally due to Dini and Hukuhara, shows
that if for a particular function p, all sclutions to (1) and their
derivatives are bounded, then for any function "“sufficiently close to
p" all soluticns to (1) and their derivatives for the new function
would also be bounded. Vector-matrix notation will be convenilent for
proving this theorem. The necessary details are included in this work;

however, for a more complete exposition see [7].

L,1 Definitions: Let y = (yl,yg,...,yn)T be a vector in R". Then

n
Iyl = z ka]. Let A = (aij) be an mxn square matrix. Then
k=1
n
”AH = E laijl' The symbel I will denote the identity matrix of
i,3=1

appropriate dimension.

4.7 Lemma: Let Y(t) denote the matrix solution to Y'(t) = A(t)Y(t),
Y{a) = I, and let X(t) be a solution of X'(t) = A(£tX(t), X{a) = YO.
Then the sclution to Z'(+) = [A(t) + B(£)1Z2(t), Z(a) = YO’ satisfies

the integral equation
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t
Z(t) = X(£) + [ Y)Y Hs)B(s)2(s)ds. (11)
o

Proof: The result is easily verified by direct substitution.

4.3 Theorem: C(onsider the differential equations

"+ £(t)x = 0 (12)
and
v+ [£(t) + g(t)ly = 0 (13)
where

o

f lg(s)|ds < 4=,
o
Then all sclutions to {(12) and their derivatives are bounded if and

only if all solutions te {13) and their derivatives are bounded.

Proof: Assume that all solutiecns to (12) and their derivatives are

bhounded. Converting (13) to a system by the change of variables

Z, T ¥, 2, T Y', one obtains

Let A = and B =
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By assumption, all solutions to Y' = A{t)Y are bounded. Hence |Y(t)]|
is bounded, and since TrA(t) = 0, [jy "l(t)H is bounded. Overestimating

the right side of Equation (11), one cbtains
t -1
lz() < 1Y) + [ Y| g™ ) ') lz(s)]]ds. (1u)
a
Using the estimates derived above, one observes that

t
Jeco)l] = e + ey | Bl flato)as.
8]

It fellows from application of the Gronwall inequality that

t t
|zl = cy exp|£ CQHB(sﬂ\ds = cg exp{é c21g(s)|d;l.

o

By assumption f lg(s)|ds is convergent. Therefore ||z(t)]| is bounded
a
above. Hence

izt = Jz ()] + |z, ()] = |y()| + |y ()] < ¥

where v is a solution to (13). Thus, all solutions to (13) and their
derivatives are also bounded.
The proof of the converse statement of the theorem follows

immediately. [
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2 o
4.4 Corollary: If p = a + g, a a positive constant,

o0

I lgloy]at <+,
o

then all soclutions to x" + p(t)x = 0 and their derivatives are bounded.

Proof: Solutions to the differential equation x™" + a2x = 0 are of the
form x(t) = ¢y sin at tc, cos at for arbitrary constants c, and Cpe It

follows immediately from Theorem 4.3 that all solutions to

%"+ (a2+g(t))x = 0 and thelr derivatives are also bounded. |

The next two examples show that the previous theorem and

corollary are about the best results possible.

4.5 Example: If the constant a in the previous corollary is zero,

then the corollary is not necessarily true. Consider

1
X"+ —=x =0, tzl,

8t2
which has for solutions
22 222
x(t) = c,t oy c,t 4
for scme constants ¢, and ¢.,. Although

1 2

j (Bt)_th < w, if c2 + c2 # 0,
1 1 2



x (t) becomes unbounded as t-+=, Hence the requirement a2>0 is
necessary. Note that no nentrivial solution is bounded. However, p
does not satisfy the hypotheses of Theorem 3.1 which guarantee that

every scolution of (1) is asymptotic to ¢tbt with 02 + b2 + 0.

4.6 Example (Bellman [2]): The hypothesis

=]

[ lets)]ds < =
a

in Theorem 4.3 and Corcllary 4.4 cannot be weakened to the require-

ment that |g(t)| >~ 0 as t>+=. The differential equation

. 2 . 2
TR E 4 cos E sin T 4 o8 t251n *

t

¥ = 3, t=z8

has an unbounded soluticn although p is positive on [8,=), lim p(t) =

trteo
and 1lim p'(t) = 0. An unbounded solution is
Tt
T cosz(s)
x(t) = exp f —————= ds| * cos t.
s

8

Since

. 2 . 2
I 4 cos t sin t + cos t sin t

a t t2

dt

26

1

does not exist, neither the hypotheses of the theorem nor those of the

corollary are satisfied.
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In case g{t) apprcaches a2 monoteonically and g' exists, however,

oo
the requirement [ |g(t)|dt < += can be eliminated. The next lemma,

o
which is a consequence of Thecrem 3.3, will be used in proving these

results.

4,7 Lemma: If f |q(b)|db < =, then all soluticns to y" + q(s)y' +
0
y = 0 and their derivatives are bounded on [0,«).

Proof: Converting to a system by means of the change of variables

Zy =Y &, T y', one cbtains
T
Zl 0 1 Zl o] 0 zl
= +
_52 -1 90 z, -E -q(s) Z,
All sclutions to
t
zl ) 0 1 2.l
z,2 -1 0 22

are bounded, and since trace [;2 é} = 0, then Equation (14) holds in

this case. The rest of the proof is similar to that of Theorem 4.3. [

4.8 Theorem: If p(t) 2 a>0 and p'(t) < 0 on [a,»), then all solutions

to (1) and their derivatives are bounded on [a,=).

Proof: The substitution y(s) = x(t),
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t
5 = f vp(b) db, t in [a,=),
o

transforms (1) Into

y" + q(s)y' +

where

Q(S) = —'—E'!-("E'ES—/—Q' and
' 2lp(t)]

y =0 (15)

t
s = [ V/p(v) db.
o

Note that since p(t) = a » 0, the transformation is one-to-one and

lim s{t) = 4o, Now,
tortoo

[eo]

’r |q(s)|ds = I _:%.
0 a  2[p(k)]

vp(k) dk =

lim - %— In p(k) —ln(p(a)] = Constant,

ke

since p(k) is bounded away from zeroc.

Therefore all sclutions to (15)

and their derivatives are bounded on [0,»). Hence

iy + [y ()] s H

for scme constant M. But y(s) = x(t) and y'(s) =

Ix(t)] s M and |x'()]

x'"{t) . Thus
vp(t)

< Mp(t) < Mvpla) ,
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hence all sclutions to (1) and their derivatives are bounded on

fa,=). O

4.8 Theorem: If p is positive and bounded above by some constant R
on La,»), and if p' is non-negative on [a,»), then all soluticns to (1)

and thelr derivatives are bounded on [a,»).

Proof: One makes the same change of variables as in Theorem 4.8 to

p'(t)
QPS/Q(t)

chtain Equation (15). Since p' is nonnegative then |q(s)f =

Hence,

[ lats)|as = lim[%-ln p(k) - 2 1n p(ai} = Constant,

2 2
0 koo

since » 1s bounded above on [a,»). The rest of the proof follows

exactly as that of Thecorem 4.8.

L.,10 Example: Theorem 4.8 and Theorem 4.9 show that all solutions to
x" + [4 + %Jx, t>1, and x" + [4 - %}x = 0, t2l, and their derivatives
are bounded on [1l,=). DNote that this result is not obtainable from

[ee]

Theorem 4.3 since I %?—diverges.
1
Thecorems 4.8 and 4.9 can be generalized to cbtain the following

result.

4.11 Theorem: If a < p(t) £ M on [o,®) where a and M are posi-
tive constants, if p' exists on [a,»), and it

p'(s)

o(s) ds
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converges, then all solutions to (1) and their derivatives are bounded

on [a,»),
<0 <o \
Procof: Note that f |q(s)|ds = f E—ik)idk.
- o 0 o p (k)
1f f lq(s)|ds converges, then all solutions to (1) and their

0]
derivatives are bounded. ]

The case where p(t) approaches infinity monotonically is now

considered.

4,12 Theorem: If p is positive and approaches infinity monotonically,

then all solutions to (1) are bounded.

Proof (Bellman [2]): Multiplying (1) by %' and integrating by parts,

one obtains

' 2
[x gt)] + plt

2 b2 2t ?
y BOL | Dl | pedle()]” |, LT 4 s,
a

Dropping nonnegative terms on the left results in the inequality

t 2
5 x (s)p(s) 4 p(s)
p()Ix(+)3 < ¢+ i p(s7]

Application of the Gronwall inequality yields

A

o ta pis)
PN 5 ¢ exp [ TfE5y

Clp(t)-plal] 2 C p(t)
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since p(a) » 0. Hence [x(t)]2 < C and the result is obtained. ]

The Existence of Sclutions Having
Limit Zero as t>+o

For the case where p becomes infinite as t>+e, the problem of
determining whether any or all nontrivial solutions to (1) have limit
zero has been of current interest. For example, see [111, [12]1, [14],
[15] and [16]. First, sufficient conditions for at least cne nentrivial

soclution to tend toward zero as t>+x are shown.

4.13 Lemma (Lazer): IFf p(t)>0 and p' exists on [a,»), p(t) approaches

infinity as t>+=, and if

2
p'(s)ds

t 1
lim f X(é?)
trtw o

exists, then there exists a nontrivial sclution u to (1) such that

lim u(t) = 0.
fortoo

Proof: Let

. 2
K(x(t)) = E‘-—-it—i] + [x()1°. (16)
/o ()

Then

and integrating one obtains
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t (s 2
Kx(t)] = Kx(a)] - | E’;(S—E)‘ p'(s)ds. (17)
o
By hypothesis,

1lim ft §l£E2-2 * p'(s)ds
ot 3 (s)

exists, therefore 1im K[x(t)] exists. Since ¢ s [x(t)]2 < K[=x(t)1,
tatoo
then we conclude immediately that all solutions to (1) are bounded.

Let Vl(t) and Vz(t) be two linearly indeperndent solution satisfying

T
V(v (o) - Vz(u)Vi(a) = 1. Then by Abel's formula,
1 1 _
Vl(t)Vz(t) - Vz(t)Vz(t) =1 for tra. (18)

Suppose that Vl(t) does not have limit zero as t+te. Since p{(t)
approaches t+« as t>te, then all solutions are oscillateory so let

tl < t2 < t3 +++. be the successive values at which Vl(t) obtains its

. 1 2
maximum value. Hence for each tn,Vl(tn) =0, K[Vl(tn)] = [Vl(tn)] ,
and 1im t = +e, Since lim K[Vl(t)] exists, and each Vl(tn) > 0, then

oo trtoo
lim Vl(tn) exists and, by assumption, is some positive number c. Let
e
N be sc large that for all positive integers n>N, then Vl(tn) > c/2.

< ¢/2 for all n>N. Now

] !
Vv A = Vv
But from (1&) l(tn) Q(tn) 1, hence | Q(tn)l
Vz(t) is also bounded on [u,*) and by the Bolzano~Welerstrass Theorem
there exists a subsequence {tnj} of the sequence {tn} such that
{VQ(tnj)} cenverges to a number b. It shall now be shown that the non-

trivial solution Y(t) = Vz(t) - (b/c} Vl(t) has limit zero. Then
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lim Y{t .) = 0
nj

n,-»o

and
1
lYr(t_.)]| = |V2(t ) g 2/c
Hence
4 2
0 < KIY(t .)] ¢ + [Y(t .)]1° for n.>N.
p T e L) ™ )
P n3

Since lim p(t) = 4+, it follows that 1lim K[Y(t .)] = 0. The existence
e ] 11 0 nj
of 1im K{Y(t)] was proved eariier in the lemma. Hence lim K[Y(t)] =
T oo

Lim K[¥(t ;)] = 0. Since O s [v(£)1% < K[¥(t)], it follows that

n, >

1m ¥(t) = 0. 0
ttoo

Cf course, it is sufficient to check that llm f X(é§ plis)ds
exists for two linearly independent solutions Vl and since any other
solution of (1) is a linear combination of Vl and VQ. The lemma will

not help if one cannot determine v' for two linearly independent solu-
tions. Therefore a criterion is needed which will determine the answer
from the nature of p alcne.

4,14 Theorem: If p is positive and p' exists on [a,»), if lim p(t) =

Tt
+=, and if

|p'(8)] - p'(s)
pis)

lim f
trteo q

exists, then there exists at least one nontrivial solution to (1) with

limit zerc as trtw.
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Proof (Lazer): From the previous lemma, it is sufficient to prove that

ft %' (7] 2
1lim E p'(s)ds
T+t (s)

exists for every solution x of (1).

Let
et U et pree)
[p'(t)] = 5
and
T I DI D
[p'(t)] = 5
Now
t ni(sy]?
f ETET_ p'(s)ds = (19)
o

t 2 t -, 2 )
f xgéi?] [p'(s)1tas - [ x(é?j] [p'(s)]) ds.
o a

If the limits of the two integrals on the right exist at t++«, then

It %' (s 2
lim O p'(s)ds
tatwo o 8 )

exists at t++=, If x is any solution to (1), then

, 2
0 < (%LﬁE?} + [x(t)]2 = K [x(t)].
vp(t)

Thus
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1 2 .
0 < E%—LE%} < Kl=(t)] = K xla}] - (20)
Yp(t)

2 -
(p'(s)] ds.

t 2 t ey
x'(s) , + ®'(s)
_ j [ETET—J [p'(s)] ds + i )

o

The last equality above follows from FEquation (17) in the previous

lemma. Dropping the negative term on the right of (20), one obtains

[‘ ] < K[x(a)] +j E‘ (S] [p'(s)] ds.
p(t

Application of the Gronwall inequality yields

1A

2 t -
[x'(t)] Lp'(s)]
= K[ x(a)] exp@L EEvryvae ds]

A

Klx(a)] expE _B-%l_d] .

By hypothesis the integral in the previcus equation exists, hence

[ (£)]?

e is bounded, say by M, on [a,»). Therefore

x' () [p'(s)1
f 2t ores £ 0 f S

A

which exists. But, from (20),

t
o< | -ilgil [p' (s)] ds < K[x(a)] + f x (S [p'(s)]ﬁds_
3 (s)
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Since the limit on the right exists and the integrand

[E(S) . [p'(s)]+ is positive,

-] ' — 2
o

exists, Since the integrals on the right side of (19) have limits as

trteo,

exists, and the desired conclusion is reached. [

An important consequence of the previous theorem is the follow-

ing: If p is positive and p' exists on fe,=), and if 1im p(t) = +e=,
T3>0
then |p'(t)| - p'(t) = 0 and hence

OIS SO

o p(s)

Using Thecrem 4.1l4, cne can conclude that at least one nontrivial solu-

tion to (1) has limit zero.

4.15 Corollary: If p is positive on [a,»} and becomes infinite as
t++o, and if p' exists and is nonnegative on [a,»), then at least one

nontrivial solution to (1) has limit zerc as trtw,

4.16 Example: There exists at least one nontrivial solution of

n
x" + (exp t)x = 0 and of x" +1 % = 0, n>0, which has limit zero as
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t>+w, The boundedness of all solutions to the above two equations is a
consequence of Theorem &.12.

One might ask, "If p satisfied some condition in addition to
thoese in Corollary 4.15, then would all solutions to (1) have limit
zero as t+te?" The answer is "Yes," but the additional hypotheses on
p are fairly stringent. However, the following thecrem, due to

Willett, indicates the reascon for the hypotheses complexity.

4,17 Theorem: Let b(t) be a given positive nondecreasing continuous
function on [a,»). Then there exists a positive function p(t) with a
continuous derivative such that p'(t) > b{t) and Equation (1) has at

least one solution x = u{t) such that

lim sup |u(t)| > 0.
t>+oo

Proof: See Willett [20].

The previous thecorem shows that no restriction on the growth of
p(t) will alone be sufficient to guarantee that all sclutions to (1)
approach zero as t+tx,

In 1936 Sansoné developed sufficient criterion for establishing

that all solutions to (1) approach zero as t+te,

3.18 Theorem: Let p(t) is a positive, nondecreasing function with

continuous derivative and lim p(t) = +». If for every sequence {t_}
t-r+o n
satisfying the conditions
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< t - < - = .
tn tn+l’ n+l tn < tn tn—l n=1,2, )
. = 4o . _ .

lim t_ R lim (tn+l tn) )
N>+ T++®
. ntl tn _
lim sup "_E-'—:—'-E—"— =1,
n+tw n n-1

it happens that

nZ (t 1t )‘: zun E—-——p(‘t) too,

then all solutions to (1) have limit zero as t->to,

Proof: See Sansoné [18].

4.19 Example: Let p(t) = exp t. Then for any sequence {tn} satisfying

1
the above restrictions, min Efégl' = 1 since p'(t) = p(t), and
t <t<t L P
n~ - n+l

1
L (-t min % -
azl M My cper P n=1
n~ -~ nt+l

-~ 8

(tn+l—tn) =t

Since p{(t) = exp t satisfies the other hypotheses of the theorem,

all solutiens to x" + exp t x = 0 have limit zerc as t>t=,

It is usually difficult to verify that an arbitrary functicn

satisfies the hypothesis of Theorem 4.19. A problem of much recent
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interest has been the develcpment of hypotheses that are easier to
verify. The most general result in this area at present is the follow-

ing theorem and lemma due to Willett, Wong, and Meir.

4.20 Theorem: Let p be a positive, nondecreasing function with

continuous derivative on [a,®) such that lim p(t) = +=, If any one of
ot

the following criterion is satisfied, then all scluticns to (1) have

limit zero as t—+tw=,

(1) There exists a positive, continuous a(t) on [a,»)} such that

1 t
lim inf a'(t) > 0, and lim inf 2 (t)p(t) >0
1/2 a(t)

trte  alt)p 2(t) oo

(2) 1lim inf p'(t) >0  and | p T(s)ds = +=
T4 o

t p'(t) In t

{3} 1lim inf e

forfes

> 0.

{(4) p has a centinuous second derivative, p' > 0 on [a,=) and

lim sup p"(t) £ 0.
Tt

4,21 Lemma: Let p be a positive nondecreasing function with continu-

ous derivative on [a,*) such that 1im p(t) = +=. If there exist a
ttoo
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positive, nondecreasing function q with a continuous second derivative

on [a,») such that q{t) > +» as tr+w,

t
- 72 1 g'"(s)ds _ 1
A o= 1lim sup f < = (21)
oo a(t) a pl/z(s) 3
and
1 t q'(s) p'(s)
iiTm 50 i max[Qm 1) pls) 0] « ql(s)ds = 0 (22)

for some positive constant m, then all sclutions to (1) have limit zero

as t-rtwo.

Proof of the Lemma: Tor any nontrivial sclution x of (1), let

R{t) = x2(t) + [='(t) - p_l/g(t)lg-

2
JIxte)lprir) 0
pg(t)
then x(t) has limit zero as t>+=. Suppose R(t) > S > 0 as t > +=, For

If R(t) has limit zerc as trt+=,

Note that R'(t) =

every e>0, there exists a te > o such that for all t > te,

S+ e > R(t) > 8.

Suppose that (22) is true for some constant m, and let K be any con-

stant in (0,m). Note that

0 < max[2Kq¥q - p'/p,0] < max[2mg¥q - p'/p,0]
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and since ¢ is positive,

t
0z q(J:f:) c{ max[2Kq'(s)/q(s) - p'(s)/p(s),0]a(s)ds <
1 t
< gy J max2mq'(s)/a(s) - p'(s)/p(s),0]a(s)ds.
o
Therefore

t
lim a%?j j max[2Kq'(s}/q(s) - p'(s)/p(s),0]q(s)ds = Q.
T+t a

Thus (22) is true for all constants in (O,m). Hence, one can always

assume that the constant m is in (0,1). A little algebra shows that
(- ' T ' ' -1 -1 1y 2 1 1
(gR)' = (1-m)q'R - mq'(xx') p = + p "a(x")"(2mq'/q-p'/p). {23)

Equation (23) is now integrated term by term with estimates made on

each of the terms.

I

t
arR': [ [als)R'(s)1'ds = q(t)R(t) - alt ) * R(t) 2
t

e
d
2 q(1)8 - q(t IR(t)) S
t t
(1-m)g'R: [ (1-m)g'(s)R(s)ds < (S+e) [ (l-m)q'(s)ds =
t t
e e

(S+E)(l—m)[q(t)-q(te)].
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p_lq(x‘)z(zmq‘/q—p‘/p):

t

f EX'(S)]Qp—l(S)(2mq‘(8)/q(5) - p'(s)/p(s))q(s)ds <
t

e

t
< (s+e) [ max[2mq'(s)/a(s) - p'(s)/p(s),0] * q(s)ds

t
e

since [x‘(t)]zp_l(t) < R(t) < (S+eg) for tzte.

'
ma'(xx'] p * Integration by parts yields

t 'y 1 t
[ q'(s)x(s)x'(s)Ip (s)ds = q'(s)p = (s)x(s)x'(s) (24)
e e
t -1 t 2
- f q"(s)p “(s)x(s)x'(s)ds + [ q'(s)p'(s)p “(s)x(s)x'(s)ds.
t t
e e

Estimates are now made on the right side of the previocus equation.

Since (x * x'p_l)2 > 0, it follows that

2 2

2fp7hee | 5 %8+ pTHxD? < Sve for 2t (25)

Because pl/z(t) > pl/Q(s) for all s in (te,t) and

t

[ la"(s)ds 2 q'(x) - alr ),
te
then
t
g (p ) < [ Ja™s)|p M 2(s)ds + 0(2). (26)

t
2
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Thus
+
q'p Txx' < (S;E) f lq”(s)'p /2(s)ds + 0(1).
t t
e a
Also
t -1 t 12 -1/2
fa"s)p (s)x(s)x'(s)s = [ p (s)x{s)x"(s)q"(s)p (s)ds <
t t
e [

t
[giEJ i lq”(s)|p—1/2(s)ds by (25).

1A

Now

t t
[ @' (s)p'(s)p % (s (s)x'(s)ds < {§§EJ [ ar(s)pt(s)p 2 % (s)as.
t t

e e

Integration by parts yields

t
[§§EJ [ arsip (2™ (s )as =
t
e

e t
e

t t
(S+e){%'(8)p—l/2(8)|t - [ o Y 2(s)as

But by (26), it follows that

t -1 - t -1/2
| a"(s)p'(s)p ~(s)x'(s)x(s)ds| < 2(Ste) [ [q"(s)|p (s)ds + 0(1).

T t
e e

Combining the previocus estimates on (24), one obtains
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t -1 ' t ~-1/2
ij mp ~(s)[x(s)x'(s)] ds < 3m(S+e) f lam(s)|p (s)as + 0(1).
"

t
e e

The estimates on the integrals of each of the terms of Equation (23)

are now completed. One cbtains
a(t)s - a{t)R(t,) £ (S+e)(1-m)lalt)-qt )] +

t
+ (s+e) [ max[2mg'(s)/q(s)-p'(s}/p(s),0]qa(s)ds +

T
e

t ~1/2
+ 3m(s+e) [ |a"(s)|p (s)ds + O(1). (27)
t

e

Dividing through by q and taking the limit as t>+e=, one finds with the

use of (21) and (22) that
S < (S+e){(1-m) + 0 + 3im(S+e).

Solving for e, one obtains

(1-31)Sm
® 277 (1-3n)em

But e is arbitrary. Hence a contradiction of the fact that S is posi-

tive in cbtained. [

Proof of the Theocrem:

t
(1) Let q(t) = 1+ ] a—l(s)ds. It will be shown that q
o
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gsatigfies the hypotheses of the lemma. From the hypotheses on a
it follows easily that g is positive and beccmes infinite as tte,

Further q' is nonnegative. If

tlgmel

ds
1/2(5)

lim f
trtoo oy P

is finite, then (21) clearly holds. Suppose the integral does not

exist. Then

t t
[ qm(s)[p 2(s)as = [ |a'(s)|p 2(s)a 2(s)as =

o o
o 2, -1/2 ¢ ' 2, ~1/2
{a (s)a “(s)p (s)ds + 2 [ max[-a (s),07 « a “(s)p (s)ds.
o o
Integration by parts shows that
t
f ‘q"(s)lpnl/z(s)ds <
o
~1/2, -1 t ~2, . -1/2
P (a)a “(a) + 2 f max[-a'(s),0]a “(2)p {s3)s,
a

Dividing by q{t), cne obtains
t
0 < ——l—-f ]q”(s)|p-l/2(s)ds <
q{t) 5

t
O 27 2()a (o) + 2 [ max(-a'(s),07a (s )p 7 Zas

o

<
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T
Since f |q”(s)|p_l/2(s)d5 is not finite, L'Hopital's rule is valid for

o
the last term of the previous expression. Therefore

t
2 f max[-a'(s),0] - a_Q(S)p_l/Q(s)ds
0 < lim e <
Tt q(t)
. 2max[-a'(t),0]
< lim su 2
S e ae) p(t)
L
By hypothesis 1im inf ET%SL%%S-i 0, hence
trtoo ?
. -a'(t) _
max{iirm a(t) p(o) {} -0
Therefore +
" -1/2
[ 1a"(s)|p™ 7 “(s)ds
. o
1lim =0
oo q(t)

and (21) is verified with X = 0. For any m > 0,

2mq'(t)/q(t) - p' () /p(t) =

t
Q' (t)/q(t)|2m - p'(t)alt) |1 + [ a™t(s)ds|/p(t)
[¢)

But since lim inf p‘(t)a(t)p_l(t) > 0 and since the integral beccmes
Tt
positively unbounded as t>t=, then there is a T>a, so that for all t>T,



b7

[2mg'(t)/q(t) - p'(t)/p(t)] < 0,

Therefore (22) holds. Hence q(t) = 1 + ft a‘l(s)ds satisfies the
hypothesis of the Lemma and condition (l? in the statement of the
Theorem is valid.

(2) Let a(t) = p(t). Then a(t) satisfies the hypotheses of
condition (1) and hence (2) is valid.

(3) Let a(t) = (t+2) 1n (t+2). Then a(t) satisfies the

hypotheses of condition (1).
(4) Let a(t) = REED

p'(t)
Then
l1im inf P';}; , P'(t)[la;Qp(t)p”(t)] -
e pltla™ " (1) 2ot

The other criteria of condition (1) are easily verified and hence

condition (4) is walid. [

4.22 Example: Let p(t) = +", n>0. Then all solutions to (1) have

limit zero as t+t=. Since tp'(t)p_l(t)log t =n log t and

lim inf n leog t > 0, then p(t) satisfies the hypotheses of the theorem

1>+

and condition (3). Therefore all solutions have limit zerc as t+tw,
The previcus theorem has given sufficient criteria to insure

that all solutions to (1) have limit zero as t>+». These criteria are

relatively easy to check in practice. Necessary conditions to insure

that all soluticns have limit zero do not seem to be known.
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