
I n p r e s e n t i n g t h e d i s s e r t a t i o n a s a p a r t i a l f u l f i l l m e n t o f 
t h e r e q u i r e m e n t s f o r a n a d v a n c e d d e g r e e f r o m t h e G e o r g i a 
I n s t i t u t e o f T e c h n o l o g y , I a g r e e t h a t t h e L i b r a r y o f t h e 
I n s t i t u t e s h a l l m a k e i t a v a i l a b l e f o r i n s p e c t i o n a n d 
c i r c u l a t i o n i n a c c o r d a n c e w i t h i t s r e g u l a t i o n s g o v e r n i n g 
m a t e r i a l s o f t h i s t y p e . I a g r e e t h a t p e r m i s s i o n t o c o p y 
f r o m , o r t o p u b l i s h f r o m , t h i s d i s s e r t a t i o n may b e g r a n t e d 
b y t h e p r o f e s s o r u n d e r w h o s e d i r e c t i o n i t w a s w r i t t e n , o r , 
i n h i s a b s e n c e , b y t h e D e a n o f t h e G r a d u a t e D i v i s i o n w h e n 
s u c h c o p y i n g o r p u b l i c a t i o n i s s o l e l y f o r s c h o l a r l y p u r p o s e s 
a n d d o e s n o t i n v o l v e p o t e n t i a l f i n a n c i a l g a i n . I t i s u n d e r 
s t o o d t h a t a n y c o p y i n g f r o m , o r p u b l i c a t i o n o f , t h i s d i s 
s e r t a t i o n w h i c h i n v o l v e s p o t e n t i a l f i n a n c i a l g a i n w i l l n o t 
b e a l l o w e d w i t h o u t w r i t t e n p e r m i s s i o n . 
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CHAPTER I 

INTRODUCTION 

This thesis is a study of the behavior of solutions to the dif

ferential equation 

x"(t) + p(t)x(t) = 0, t>a, (1) 

under various restrictions on the function p. However, p is always 

assumed to be continuous and real valued on some closed interval [a,°°). 

This assumption on p is sufficient to guarantee the existence and 

uniqueness of solutions to initial value problems for (l) on the inter

val [a,°°). By placing additional requirements on the function p, one 

can deduce properties of the solutions to (1). 

1.1 Definition: A solution to (1) is a function with a continuous 

second derivative that satisfies the differential equation (1) at 

every point of [a,°°). 

There are discussed, below, criteria for answering the following 

questions: Under what hypotheses on p 

(1) will the solutions to the differential equation (1) oscillate? 

(2) will the solutions to the differential equation (1) be bounded? 

(3) will the solutions to the differential equation (1) approach 

zero as t-H-00? 
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The significance of such a qualitative investigation into the 

behavior of solutions to (1) can be illustrated by the following 

example. Consider a particle which is at rest a unit distance from 

the origin. Suppose that it is subjected to a force directed toward 

the origin such that the particle's displacement x(t) is governed by 

the differential equation 

x"(t) + (exp t) x(t) = 0, t>0. 

Solving the equation in a power series, one finds that 

x(t} = 1 - — t 2 - — t 3 + — t 5 + ••• 

Thus, it is difficult to determine from the series that the particle 

oscillates with decreasing amplitude about the origin and that the 

limiting position of the particle as time becomes infinite is the 

origin. By making a qualitative study, however, one is able to verify 

these assertions. 

The differential equation (1) arises often in physical applica

tions. If p is a positive constant, the differential equation (1) is 

the equation of motion of the simple harmonic oscillator, which consists 

of a particle of unit mass on a frictionless horizontal surface attached 

to a linear spring. When p is nonconstant, the differential equation 

(1) is the rectilinear equation of motion of a particle which is subject 

to a time-dependent central force. 
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Thus, as could be expected, equation (1) arises in the study of 

planetary orbits. In 1877, G. W. Hill investigated the lunar perigee 

by using equation (1) with p a periodic function. Because of his 

investigation the differential equation (1) with p periodic is commonly 

called Hill's equation. The case where p is periodic (except for the 

trivial periodic case where p is a constant) will not be treated here. 

The interested reader is referred to [13] for a discussion of this 

case. Except for special situations, the cases where p changes signs 

infinitely many times will also not be considered. 

Certain elementary facts concerning properties of solutions to 

differential equations in general and equation (1) will be presented 

below. These results are needed for several proofs in the present work. 

1.2 Proposition: If u is any nontrivial solution to equation (1), 

then in any interval where u does not vanish, all solutions to (1) can 

be expressed in the form 

c u(t) + c u(t) • / [u(s)] ds, 

where J [u(s)] ds is any antiderivative of [u(t)] 

Proof: If u is a nontrivial solution and v is a second linearly 

independent solution, then by Abel's formula 

u(t) v(t) 

u'(t) v'(t) 

u(a) v(a) 

u'(a) v'(a) = c 
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where c is a nonzero constant. 

Hence v'(t)u(t) - u'(t)v(t) = c. 

Since it was assumed that u does not vanish, 

v'(t) - v(t) u'(t) 
u(t) " u(t) • 

It follows that 

v(t) = cu(t) / [u(s)] 2ds, 

where / [u(s)]~ els is any antiderivative of [u(t)] -2 Since every solu

tion of a linear second order differential equation can be expressed as 

a linear combination of any two linearly independent solutions, the 

desired conclusion is obtained. D 

The next result, which is commonly known as the Gronwall 

inequality, is used to study the growth of solutions to (1). 

1.3 Proposition (Gronwall Inequality): If u and v are positive valued 

continuous functions on [a,°°), if c is a positive constant, and if 

t 
u(t) < c + / u(s)v(s)ds for t>a, 

a 
(2) 

then 

t 
u(t) < c exp / v(s)ds . 
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P r o o f : L e t k ( t ) = c + / u ( s ) v ( s ) d s . 
a 

Then k ' ( t ) = u ( t ) v ( t ) < v ( t ) k ( t ) by ( 2 ) . Now k ( t ) > c > 0 , t h u s 

k ' ( t ) / k ( t ) < v ( t ) , and b y i n t e g r a t i n g and t a k i n g e x p o n e n t i a l s , one s e e s 

t h a t 

k ( t ) < c • e x p 
t 

/ v ( s ) d s 

But 

u ( t ) < k ( t ) < c * e x p / v ( s ) d s 
a 
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CHAPTER 2 

OSCILLATORY BEHAVIOR 

In this chapter answers to the following questions are sought: 

(1) What properties must p satisfy in order that equation (1) 

be oscillatory? 

(2) What properties must p satisfy in order that no (some) 

solutions to (1) will be oscillatory? 

Since the definitions of oscillatory (nonoscillatory) solutions 

and oscillatory (nonoscillatory) equations vary in the references, we 

shall adopt, as a matter of convenience, definitions which are equiva

lent to those in Hille [9]. 

2.1 Definitions: A solution to (1) is oscillatory if it has an 

infinite number of zeros in [a,°°). Equation (1) is oscillatory if every 

solution to (1) is oscillatory. A solution to (1) is norvo scillatovy if 

it has at most a finite number of zeros in [a,°°). Equation (1) is 

nonoscillatovy if every nontrivial solution is nonoscillatory. 

One usually thinks of functions defined on [a,°°) as being oscil

latory if their values not only equal zero an infinite number of times 

but also change signs at any zero. It will now be shown that the value 

of any nontrivial solution will change sign at any zero. Hence, if a 

nontrivial solution is oscillatory according to this definition, then 

it will also possess this additional property. It follows then, that if 
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a nontrivial solution has value zero at a point, t , it will possess 

property (P) and not property (Q) as illustrated in Figure 1. 

Figure 1 

2.2 Lemma: If x = u(t), a<t<°°, is a nontrivial solution to (1) and if 

u(k) = 0, a<k<°°, then either 

(1) u'(k)<0, and there exists an interval (a,k) such that 

u(t)>0 on (a,k) and an interval (k,b) such that u(t)<0 on (k,b), or 

(2) u'(k)>0, and there exists an interval (a,k) such that 

u(t)<0 on (a,k) and an interval (k,b) such that u(t)>0 on (k,b). 

Proof: Since x = u(t) is not the trivial solution, then u'(k) ^ 0 

since solutions to initial value problems are unique. Thus there is 

an interval (a,b) contained in [a,00) with k in (a,b) such that 

u'(t) | 0 on (a,b). Suupose that u'(t)>0 on (a,b). For an arbitrary 

point c in (a,k), 

u(c) - u(k) = u(c) = u'(s)(c-k) < 0 

for some s in (c,k). Thus u(t)<0 on (a,k). By a similar argument one 

can show that u(t)>0 on (k,b), and hence property (2) holds. By 
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assuming the alternative, u'(k)<0, one can show that property (1) must 

hold. D 

A useful theorem for the study of oscillations of solutions is 

the Sturm comparison theorem. 

2.3 Theorem (Sturm Comparison Theorem): Let u and v be nontrivial 

solutions of 

x" + p(t)x = 0 (3) 

and 

x" + q(t)x = 0, 

respectively, where p(t)>q(t). Then u(t) equals zero at least once 

between any two zeros of v unless p = q in which case u = cv for some 

nonzero constant c. 

Proof: Let t and t^ be successive zeros of v so that v(t^) = v(t^) = 0 

and suppose that u is nonzero on (t^jt^). Then by replacing u and (or) 

v by their negatives if necessary, one could find solutions u and v with 

positive values on (t ,t„). Then 

W(t ) = u(t 1)v ,(t 1) > 0 and (5) 

W(t2) = u(t2)v'(t2) < 0, (6) 
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where W(t) denotes the Wronskian of u and v. Since u and v are positive 

on (t ,t ) , however, 

W'(t) = [p(t)-q(t)]u(t)v(t) > 0 on (t^t^. 

Hence W(t) is nondecreasing, thus a contradiction of (5) and (6) 

results unless p(t) - q(t) = 0 . In this event, u(t) = cv(t) since the 

Wronskian of two linearly independent solutions is nonzero. Q 

^*4 Theorem: Let p(t) > q(t) on [a,°°). If Equation (3) is non

oscillatory, then Equation ( 4 ) is nonoscillatory. Similarly, if Equa

tion ( 4 ) is oscillatory, then Equation (3) is oscillatory. 

Proof: The result follows immediately from the Sturm comparison 

theorem. D 

The Sturm comparison theorem is very useful in the case 

p (t )<0 on [a,°°) . 

2.5 Theorem: If p(t)<0, then no nontrivial solution has more than 

one zero. 

Proof: Suppose that u is a solution of (1) such that u(t^) = uCt^) = 0. 

By the Sturm comparison theorem, the solution y(t) = 1 to y"(t) = 0 

would have to vanish at least once in (t^jt^). Hence a contradiction 

results, and no solution can vanish more than once. Q 
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A restatement of the above theorem in terms of oscillatory 

equations gives the following. 

2.6 Corollary: If p(t)<0 on [a,°°), then Equation (1) is nonoscillatory. 

The case where p(t)>0 on [a,°°) is examined next. 

2.7 Theorem: If p(t)>0 on [a,°°) and if 

oo 

J p(s)ds = +00, 
a 

then Equation (1) is oscillatory. 

Proof (Bellman [2]): Suppose, for contradiction, that v is a solution 

to (1) which is positive valued for t>k, where k>a is a constant. Then 

v"(t) = -p(t)v(t) < 0 and v'(t) is monotone nonincreasing for t>k. 

There are three cases to consider: 

(1) v'(t) > 0 for all t>k. 

(2) v'(t) > 0 for t in (k,f], v'(t)<0 for t>f 

for some constant f>k. 

(3) v'(t) < 0 for t>k. 

First, suppose that (1) holds. Then 

t 
vf(t) = -/ p(s)v(s)ds + v'(k), 

k 

and by the mean value theorem for integrals, 
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t 
v'(t) = -v(c) J p(s)ds + v'(k) 

k 

for some constant c in (k,t). But 

00 

/ p(s)ds = +°°, 
a 

hence v'(t) is negative for some t and a contradiction results. Thus 

(1) cannot hold. Now suppose (2) holds. Let m>f so that v'(m)<0. 

Since v"(t)<0, then v'(t)<v'(m) for t>m. Thus 

t 
v(t) - v(m) = J v'(s)ds < v'(m)(t-m). 

m 

Since v'(m)(t-m) •> -°° as t-H-00, a contradiction is obtained. Case (3) 

follows in a manner similar to Case (2) with m>k an arbitrary constant. 

Thus v(t) cannot remain positive for all t>k. It follows from Lemma 

2.2 that v(t) becomes negative. In a similar manner, one can show that 

v(t) cannot remain negative for t>k for some constant k>a. Therefore 

all solutions are oscillatory. D 

2 

2.8 Corollary: If p(t)>a >0, then Equation (1) is oscillatory. 

Proof: The result follows immediately from the previous theorem. 

2.9 Example (Cesari [4]): The restriction p(t) > 0 is not alone suf

ficient condition to guarantee oscillations of solutions. Solutions to 

the differential equation 
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x M + (m/t2)x = 0, 

where m is a positive constant and a>0, are of the form 

1/2 sin(k In t) + c_t 1/2 cos(k In t), 

where k is a positive constant if m>l/4. They are of the form 

k 1 

where k^ and k^ are constants if m < 1/4. If m > 1/M-, Equation (1) is 

oscillatory; and if m < 1/4, Equation (1) is nonoscillatory. Thus, for 

the case where p(t) > 0 on [a,00) and 

Equation (1) may or may not be oscillatory. The Sturm comparison 

theorem can be used to determine the behavior of Equation (1) in this 

case. If m is a positive constant, for example, it is easily seen 
2 

that if p(t) > (l+m)t /4 on [a,°°) then Equation (1) is oscillatory, and 
2 

if p(t) < (l-m)t A on [a,°°), then Equation (l) is nonoscillatory. 

constant sign and remains "sufficiently close" to zero. If p is 

"sufficiently close" to zero, then one would expect solutions to (1) 

to be asymptotic to those of x"(t) = 0, and hence Equation (1) would be 

nonoscillatory. 

oo 

/ p(s)ds < +°°, 
a 

The last case considered is that where p is not necessarily of 
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2.10 Definition: The function / is asymptotic to the function g as 
t + 0 0 if 

lim —7—r- = 1, 

2.11 Theorem (Bellman [2]): If / s|p(s)|ds < °°, then any solution to 
a 

(1) is asymptotic to a+mt as t-M-°°, where at least one of the constants 

a and m is nonzero. 

Proof: Let A(t) = -p(t). Then (1) is transformed into 

x"(t) = A(t)x(t). (7) 

We next choose a constant b satisfying the following: 

(i) b > a 

(ii) b > 1 
oo 

(iii) / s |A(s)|ds < 1/3. 
b 

The existence of a constant b is guaranteed by hypothesis . Next let v 

denote the unique solution to (7) satisfying v(b) = 0, v'(b) = 1. 

Integrating (7) from b to t, one obtains 

t 
(t) = 1 + J A(s)v(s)ds. (8) 

b 

A second integration yields the relation 



t u 
(t) = (t-b) + J" J A(s)v(s)dsdu. 

b b 

Changing the order of integration of the integral, one finds that 

t u t t t 
J J A(s)v(s)dsdu = J J A(s)v(s)duds = J (t-s)A(s)v(s)ds 
b b b s b 

But t>b>l, hence (9) becomes 

(t) | < t + t J |A(s)| |v(s)|ds. 
b 

Dividing by t and then applying the Gronwall inequality one finds 

t 00 

< exp / | A(s)|sds < exp / |A(s)|sds 
b _b 

Denote exp / |A(s)|sds 
b 

by K. 

But 
t t 
/ A(s)v(s)ds| < / |A(s) | |v(s) |ds 
b b 

and using from (10) the result that V ^ ^ < K, one obtains 

t t 
|/ A(s)v(s)ds| < K / s|A(s)|ds . 
b b 

Since 
lim |K / s|A(s ) |ds| < j 
t->+°° b 

r _ ^ 
exp 3-I < 1, 
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t 
lim |/ A(s)v(s)ds| < 1. 
t-H-°° b 

By (8), vT(t) has a finite positive limit as t-H-°°. Denote the limit by 

q. Then there is a T such that for t>T, v(t)>0. Hence, for t>T, 

w(t) = v(t) • / 
t v (s) 

is a second solution of (1) which is linearly independent of v(t). By 

L'Hopital's rule, 

ds 
T t+\ T t V 2 ( S ) . . 1 1 
lim w(t) = lim = lim - — T - , — r - = - — 

1 v'(t) q 
v(t) 

Hence w(t) approaches a limit as t-H- 0 0 . Since a general solution to (7) 

can be expressed as a linear combination of v(t) and w(t), all non-

trivial solutions are asymptotic to a+mt where at least one of the 

constants a and m is not zero. Thus no solution to (1) can have 

infinitely many zeros, and Equation (1) is nonoscillatory. This result 

is recorded as Theorem 2.12. 
00 

Theorem 2.12: If / s|p(s)|ds < °°, then Equation (1) is nonoscillatory 
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CHAPTER I I I 

THE CASE p ( t ) < 0 

OO 

T h e o r e m 2 . 1 1 s h o w e d t h a t i f p ( t ) < 0 on [ a , * ) a n d / s p ( s ) d s 
a 

c o n v e r g e s , t h e n e v e r y s o l u t i o n t o ( 1 ) i s a s y m p t o t i c t o a + b t w h e r e a t 

l e a s t o n e o f t h e c o n s t a n t s a a n d b i s n o t z e r o . T h u s , some s o l u t i o n s 

a r e b o u n d e d , b u t n o n o n t r i v i a l s o l u t i o n a p p r o a c h e s z e r o a s t - H - 0 0 . 
OO 

T h e n e x t c a s e i s t h a t w h e r e p ( t ) < 0 a n d / | p ( s ) | d s = +°°. 
a 

F i r s t , a lemma i s e s t a b l i s h e d w h i c h i s r e q u i r e d i n t h e p r o o f o f t h e 

n e x t t h e o r e m . 

3 . 1 Lemma: L e t c a n d d b e p o s i t i v e [ n e g a t i v e ] c o n s t a n t s . I f p ( t ) < 0 
OO 

on [ a , ° ° ) a n d / | p ( s ) | d s = +°°, t h e n f o r a n y s o l u t i o n v t o ( 1 ) w i t h 
a 

v ( a ) = c a n d v ' ( a ) = d , 

l i m v ( t ) = l i m v ' ( t ) = + 0 0 [ - 0 0 ] . 
t - H - 0 0 t-H-°° 

P r o o f ( S a n s o n e [ 1 7 ] ) : L e t a ( t ) = - p ( t ) . F o r a n y n o n t r i v i a l s o l u t i o n 

t o ( 1 ) , 

^ r [ v ( t ) v ' ( t ) ] = a ( t ) [ v ( t ) ] 2 + [ v ' ( t ) ] 2 > 0 . 
d t 

T h u s f o r a n y n o n t r i v i a l s o l u t i o n v ( t ) v ' ( t ) > v ' ( a ) v ( a ) > 0 f o r t > a . 

N o t e t h a t t h i s i m p l i e s t h a t v ( t ) J 0 , v ' ( t ) J 0 f o r t > a . W r i t i n g ( 1 ) 
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in the form v"(t) = a(t)v(t), multiplying by v'(t) and integrating, one 

obtains 

9 o t 

[v T(t)r = [v 'CoOr + 2 ( a(s)[v(s)v'(s)]ds 

But v'(t)v(t) > vT(a)v(a) > 0 for t>a. Denote v'(a)v(a) by f. Hence 

9 9 t 

C v ' ( t ) ] = O ' ( a ) ] + 2f / a(s)ds. 

By hypothesis, 

t 
lim j a(s)ds = +°°, 
t-H-°° a 

hence 

lim v'(t) = +< 

It follows necessarily that lim v(t) = +°°. The case where c and d are 
t-H-00 

negative constants is similar. Q 

3.2 Example: The requirement 

oo 

/ I p(s ) I ds = +< 

is necessary to guarantee that lim xT(t) = +°°[-°°]. x(t) = 
1 2 ^ [t+t(arctan t) - - ln(t +1) + 1] is a solution to x"(t) = 
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x(t)[(l+t2)(t+t(arctant) - i ln(t2+l) + 1)] 1 such that x(0) = 1, 

xT(0) = 1, a(t) > 0 for t>0, x(t) -> +°° as t -* +°°; nevertheless xT(t) 

is bounded on [O,00). This example corrects an error in [4] on p. 83. 

In [4] the conclusion of Lemma 3.1 was stated without the hypothesis 
oo 

/ |p(s) |ds = +°°. 
a 

3.3 Theorem: Let k be any nonzero constant. Then under the same 

hypotheses on p as in the last lemma, there exists a unique solution to 

(1) with w(a) = k such that 

lim w(t) = 0, 
t-H- 0 0 

while for any other solution x satisfying x(a) = k, either 

lim x(t) ~ lim x'(t) = +°° or lim x(t) = lim x'(t) = 
t-H- 0 0 t-H-°° t-H- 0 0 t-H- 0 0 

Proof (Sansone [17]): Without loss of generality, suppose k>0. Let 

v(t) be the unique solution to (1) satisfying v(a) = k, vT(a) = l. 

Then, as shown in the lemma, 

lim v(t) = lim v'(t) = + 0 0, 
t-H-°° t->+°° 

and v(t) does not vanish on [a,°°). By Proposition 2 any solution x 

to (1) is of the form 

x(t) = c^vCt) + c2v(t) / [v(s)] ds for t>a. 
a 
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Since we require that x(a) = k, x is of the form 

x(t) = v(t) 1 + c / ds 
a v (s ) 

for some constant c. 

ds converges. Denote / ds Since lim v'(t) = +°°, / 
t-H-00 a v^(s) a v^(s) 

possible cases for the values of c are considered now. 

by n. All 

ds -1 
for some constant Case 1. c<n<0. Suppose c = 

a v^(s)_ 

b>a. At t=b, x(b)=0, and since for t<b, x(t)>0, then x'(b)<0. Hence 

for some interval (b,f), f>b, x'(t)<0. Thus there is a point g in 

(b,f) such that x(g)<0 and x'(g)<0. By the lemma, 

lim x(t) = lim x'(t) = -°°. 
t-H-00 t-H-°° 

Case 2. Suppose c=n. Now 

lim x(t) 
t-H-°° 

lim 
t-H-°° 

1 + n / ds 
a [v(s)]' 
1 

v(t) 

Using L'Hopital's rule, one finds that 

lim 
t-H-C 

-m 
v 2(t) 
v'(t) 
v2(t) 

= lim 
t-H-00 

v'(t) = 0 
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since v(t) was chosen such that lim v'(t) = +°°. Therefore lim x(t) = 0 
t-H-00 t-H-°° 

Case 3. Suppose c>0 . Then clearly lim x(t) = +00. Differenti-
t-H-°° 

ating, one obtains 

(t) = v'(t) + c v'(t) / ds c 
2. , ' v'(t) ' a v (s) 

Since v'(t) +00 as t-H-°° and since the other terms are nonnegative , 

then lim x' (t) = +°°. 
t-H-00 

Case 4-. Suppose n<c<0. Then 

t 
lim x(t) = lim v(t) • lim 1 + c / 
t-H-°° t-H-°° t-H-°° a 

ds 
a [v(s)T 

= + 0 0 

since lim v(t) = +°° and since the other limit is positive. 
t-H-00 

Differentiating, 

x'(t) = v'(t) 1 + c / ds 
v (s) v(t) 

Since lim c • ds > -1, then lim x'(t) = +°°. 
t-H-00 

t-H-°° (a [v(s)] j 
When c=n, the unique solution to (1) with x(a) = k such that 

lim x(t) = 0 is obtained. For any choice of c^n, either lim x(t) = 
-t->"i-«> t-H-°° 

lim x'(t) = +°° or lim x(t) = lim x'(t) = If k<0, then a similar 
t-H-oo t̂-+°° t-H-«> 

argument holds where v(t) is chosen to be the solution to (1) satis

fying v(a) = k and v'(a) = -1. Q 
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00 

3.4 Example: The requirement / |p(s)|ds = +°° is necessary to 
a 

guarantee that all solutions to (1) either approach zero or become 
k -t 

unbounded as t-H-00. Observe that x(t) = — [1 + e ] is a solution to 

x" = [1 + exp t] x 

with x(0) = k (kfO) such that lim x(t) = —. This corrects the mis-
t-H-00 

print of Sansone's result (Theorem 3.3 in this work) on p. 84 in [4] 
00 oo 

where / |p(s)|ds = +°° was printed as J |p(s)|ds < +°°. 
a a 

3.5 Comment: Consider again Equation (1) with p(t) < 0 and 
oo 

J |p (s ) I ds = +°°. Let k̂ O be arbitrary, and let w denote the unique 
a 
solution to (1) satisfying w(a) = k such that lim w(t) = 0. Denote 

t-H-00 

w'(a) by m. If v is any solution to (1) satisfying v(a) = k and 

v'(a) ̂  m, then lim v(t) = 00. The Wronskian of u and v at t=a is non-
t-H-00 

zero, hence u and v are two linearly independent solutions to (1). 

Thus every solution to (1) will be a linear combination of u and v. 

Therefore, if a solution is bounded as t-H-00, it has limit zero as 

t-M-00. 
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CHAPTER IV 

THE CASE p(t) > 0 

The case where p is a positive function on [a,00) requires a more 

detailed analysis. First, results are obtained to insure that all solu

tions are bounded on [a,00). 

Boundedness of Solutions 

The first theorem, originally due to Dini and Hukuhara, shows 

that if for a particular function p, all solutions to (1) and their 

derivatives are bounded, then for any function "sufficiently close to 

p" all solutions to (l) and their derivatives for the new function 

would also be bounded. Vector-matrix notation will be convenient for 

proving this theorem. The necessary details are included in this work; 

however, for a more complete exposition see [7]. 

T n 4.1 Definitions: Let y = (yn ,y_,...,y ) be a vector in R . Then J Ji' J2 n 
n 

l|y|| = I |y | . Let A = (a. .) be an nxn square matrix. Then 
k=l k 1 : 

n 
| | a | | = \ Ja. .] . The symbol I will denote the identity matrix of 

i,j=l 1 3 

appropriate dimension. 

4.2 Lemma: Let Y(t) denote the matrix solution to Y'(t) = A(t)Y(t), 

Y(a) = I, and let X(t) be a solution of X'(t) = A(t)X(t), X(a) = Y . 

Then the solution to Z'(t) = [A(t) + B(t)]Z(t), Z(a) = Y , satisfies 

the integral equation 
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Z(t) = X(t) + / Y(t)Y"1(s)B(s)Z(s)ds. 
a 

(11) 

Proof: The result is easily verified by direct substitution 

4.3 Theorem: Consider the differential equations 

and 

where 

x" + f(t)x = 0 (12) 

y" + [f(t) + g(t)]y = 0 (13) 

J" | g ( s ) | ds < + 0 0 . 
a 

Then all solutions to (12) and their derivatives are bounded if and 

only if all solutions to (13) and their derivatives are bounded. 

Proof: Assume that all solutions to (12) and their derivatives are 

bounded. Converting (13) to a system by the change of variables 

= y, z^ = y', one obtains 

0 1 

•f 0 bJ L-
o o 

- g o 

z. 1 
ẑ  [_2_ 

dt 

Let A = 
0 1 

•f 0 
and 

0 0 

- g 0 
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By assumption, all solutions to Y ! = A(t)Y are bounded. Hence ||Y(t)|| 

is bounded, and since TrA(t) = 0, ||Y ^(t)|| is bounded. Overestimating 

the right side of Equation (11), one obtains 

z(t)|| < ||Y(t)|| + J ||Y(t)|| ||Y'1(s)|| ||B(s)|| ||z(s)||ds 
a 

(14) 

Using the estimates derived above, one observes that 

|z(t)|| < c + c 2 J ||B(s)|| ||z(s)||ds . 

It follows from application of the Gronwall inequality that 

z(t)|| < c^ exp|J c^ |B(s) ds = c^ exp J c |g(s)|ds 

By assumption J |g(s)|ds is convergent. Therefore ||z(t)|| is bounded 
above. Hence 

||z(t)|| = |z1(t)| + |z2(t)| = |y(t)| + |y'(t)| < M 

where y is a solution to (13). Thus, all solutions to (13) and their 

derivatives are also bounded. 

The proof of the converse statement of the theorem follows 

immediately. Q 
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4.4 Corollary: If p = a + g, a a positive constant, 

00 I | g ( t ) | d t < +°°, 
a 

then all solutions to x" + p(t)x = 0 and their derivatives are bounded. 

2 
Proof: Solutions to the differential equation x" + a x = 0 are of the 
form x(t) = c, sin at +c. cos at for arbitrary constants c, and c^. It 1 2 1 2 
follows immediately from Theorem 4.3 that all solutions to 

2 
x" + (a +g(t))x = 0 and their derivatives are also bounded. Q 

The next two examples show that the previous theorem and 

corollary are about the best results possible. 

4.5 Example: If the constant a in the previous corollary is zero, 

then the corollary is not necessarily true. Consider 

1 - x = 0, t>l, x + 
8t 

which has for solutions 

x ( t ) = c n t 
2+v/2 
4 

2-/2" 
4 

f o r s o m e c o n s t a n t s c a n d c . A l t h o u g h 

00 
/ (8t) 2dt < 00 if c ± + c 2 ^ 0, 
1 
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x(t) becomes unbounded as t-H-0 0. Hence the requirement a >0 is 

necessary. Note that no nontrivial solution is bounded. However, p 

does not satisfy the hypotheses of Theorem 3.1 which guarantee that 
2 2 

every solution of (1) is asymptotic to c+bt with c + b ^ 0. 

4.6 Example (Bellman [2]): The hypothesis 
00 J |g(s ) |ds < 0 0 

a 

in Theorem 4.3 and Corollary 4.4 cannot be weakened to the require

ment that |g(t)| -> 0 as t-H-°°. The differential equation 

2 . 2 ^ 
1 + 4 cos t sin t + cos t sin t 

t' 
x = 0, t>! 

has an unbounded solution although p is positive on [8,°°), lim p(t) = 1 
t-H-00 

and lim p'(t) = 0. An unbounded solution is 
t-H-°° 

Since 

x(t) = exp 
t 2, v 

/ c o s ( s ) ds • cos t 

2 . 2 
4 cos t sin t cos t sin t t t' 

dt 

does not exist, neither the hypotheses of the theorem nor those of the 

corollary are satisfied. 
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In case g(t) approaches a monotonically and g' exists, however, 
oo 

the requirement / |g(t)|dt < +°° can be eliminated. The next lemma, 
a 

which is a consequence of Theorem 3.3, will be used in proving these 

results. 

4.7 Lemma: If / |q(b)|db < 00, then all solutions to y" + q(s)y' + 
0 

y = 0 and their derivatives are bounded on [0,°°). 

Proof: Converting to a system by means of the change of variables 

= y, ẑ  = y', one obtains 

zl 0 1 zl + 
0 0 Zl 

-1 0 l7_ 0 -q(s) f2_ 

All solutions to 

0 1 

•1 0 

are bounded, and since trace 0 1 
-1 0 = 0, then Equation (14) holds in 

this case. The rest of the proof is similar to that of Theorem 4.3. Q 

4.8 Theorem: If p(t) > a>0 and p'(t) < 0 on [a,°°), then all solutions 

to (1) and their derivatives are bounded on [a,00). 

Proof: The substitution y(s) = x(t), 
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t 
s = / / p ( b ) d b , t i n [ a , ° ° ) , 

a 

t r a n s f o r m s (1) i n t o 

y" + q(s)y' + y = 0 (15) 

where 

q ( s ) = P , ( t )

q / Q and s = / v^TbT d b . 
2 [ p ( t ) ] d / ^ a 

Note t h a t s i n c e p ( t ) > a > 0, t h e t r a n s f o r m a t i o n i s o n e - t o - o n e and 

l i m s ( t ) = + 0 0 . Now, 
t-H-OO 

OO 

/ |q ( s ) | d s 
0 

since p ( k ) is bounded away from zero. Therefore all solutions to (15) 

and their derivatives are bounded on [0,°°). Hence 

|y(s ) | + |y'(s)| < M 

for some constant M. But y(s) 

|x(t) | < M and 

a 2[p(k)]d/^ 

lim I n p ( k ) - l n ( p ( a ) ) = Constant, 

= x ( t ) and y'(s) = • • 
ZpTtT 

| x ' ( t ) | < M / p ( t ) < M/p(a ) , 
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hence all solutions to (1) and their derivatives are bounded on 

C a 9 » ) . D 

4.9 Theorem: If p is positive and bounded above by some constant R 

on [a, 0 0), and if p' is non-negative on [a,°°), then all solutions to (1) 

and their derivatives are bounded on [a,00). 

Proof: One makes the same change of variables as in Theorem 4.8 to 
p'(t) obtain Equation (15). Since p' is nonnegative then |q(s) 

Hence, 
2p 3 / 2(t) 

J |q(s ) |ds = lim 
0 k-*» 

| In p(k) - | In p(a) = Constant, 

since p is bounded above on [a,00). The rest of the proof follows 

exactly as that of Theorem 4.8. D 

4.10 Example: Theorem 4.8 and Theorem 4.9 show that all solutions to 

x" + 4 + ̂ -lx, t>l, and x" + x = 0, t>l, and their derivatives 

are bounded on [l, 0 0). Note that this result is not obtainable from 
00 

/
ds — diverges. i s 

Theorems 4.8 and 4.9 can be generalized to obtain the following 

result. 

14• H Theorem: If a < p(t) < M on [a,00) where a and M are posi

tive constants, if p f exists on [a, 0 0), and if 

I 
lp'(s) 
p(s) ds 
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converges, then all solutions to (1) and their derivatives are bounded 

on [a,00). 

CO oo 

Proof: Note that / |q(s)|ds = / P ' ^ ) dk. 
IpOO 

If / |q(s)|ds converges, then all solutions to (1) and their 
0 

derivatives are bounded. D 
The case where p(t) approaches infinity monotonically is now 

considered. 

4.12 Theorem: If p is positive and approaches infinity monotonically, 

then all solutions to (1) are bounded. 

Proof (Bellman [2]): Multiplying (1) by xf and integrating by parts, 

one obtains 

Cx'(t)]2
 + p ( t ) [x(t)]2

 = [x'(a)]2
 + p(a)[x(a)]2

 + f [x(s)]2
 d p ( g ) 

2 2 2 2 ^ 2 

Dropping nonnegative terms on the left results in the inequality 

,(t)[x(t)]2 < C + J* X 2 ( 8 ) ? ( ^^ P ( S ) 

a 

Application of the Gronwall inequality yields 

p(t)[x(t)]2 < C exp 

= C[p(t)-p(a)] < C p(t) 
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since p(a) > 0. Hence [x(t)] < C and the result is obtained. Q 

The Existence of Solutions Having 
Limit Zero as t-H-00 

For the case where p becomes infinite as t-H-00, the problem of 

determining whether any or all nontrivial solutions to (1) have limit 

zero has been of current interest. For example, see [11], [12], [14], 

[15] and [16]. First, sufficient conditions for at least one nontrivial 

solution to tend toward zero as t-H-°° are shown. 

4.13 Lemma (Lazer): If p(t)>0 and p' exists on [a,00), p(t) approaches 

infinity as t-H-°°, and if 

lim 
t-H-0 

(s) n 2 

|£<s) p'(s)ds 

exists, then there exists a nontrivial solution u to (l) such that 

lim u(t) = 0. 
t-H-00 

Proof: Let 

K(x(t)) = x'(t) + [ x ( t ) T (16) 

Then 

K'(x(t)) = -p'(t) x(t) £(t)_ 

and integrating one obtains 



32 

K[x(t)] = K[x(a)] - / 
1 ^ ' ( s ? 2 

Lp(s)J 
p'(s)ds (17) 

By hypothesis, 

lim / 
t-H-00 a 

x'(s) n 2 

Lb(S) 
• p'(s)ds 

exists, therefore lim K[x(t)] exists. Since 0 < [x(t)] < K[x(t)], 
t-H-00 

then we conclude immediately that all solutions to (1) are bounded. 

Let V^(t) and V (t) be two linearly independent solution satisfying 

V (cOV^Ca) - V (a)v|(a) = 1. Then by Abel's formula, 

Vl(t)V2(t) - V2(t)V2(t) = 1 for t>a. (18) 

Suppose that V (t) does not have limit zero as t-H-00. Since p(t) 

approaches +°° as t-H-°°, then all solutions are oscillatory so let 

t^ < t^ < tg ••• be the successive values at which V^(t) obtains its 
t 2 maximum value. Hence for each t ,V.(t ) = 0, K[V. (t )] = [V. (t )] , n 1 n I n I n 

and lim t = +°°. Since lim K[V.(t)] exists, and each V. (t ) > 0, then n ^ 1 I n 
lim ̂ ^(t^) exists and, by assumption, is some positive number c. Let 
n-H-co 
N be so large that for all positive integers n>N, then V^(t ) > c/2. 

But from (16) Vn(t )v'(t ) = 1, hence | v ' ( t )| < c/2 for all n>N. Now 
1 n 2 n ' 2 n 

V (t) is also bounded on [a,00) and by the Bolzano-Weierstrass Theorem 

there exists a subsequence {t .} of the sequence (t } such that 
n n] n 

(V2(t^_.)} converges to a number b. It shall now be shown that the non-

trivial solution Y(t) = V (t) - (b/c) V (t) has limit zero. Then 
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lim Y(t .) = 0 
: 

and 

|Y'(t )| = | v _ ( t . ) | < 2/c. 1 n] 1 1 2 nj 1 

Hence 

0 < K[Y(t .)] < — — + [Y(t .)] 2 for n.>N. 
n ] c2p(t .) ^ ^ 

Since lim p(t) = +00, it follows that lim K[Y(t .)] = 0. The existence 
ni 

t-H-°° nj-x» 
of lim K[Y(t)] was proved earlier in the lemma. Hence lim K[Y(t)] = 

f->cx> -£->oo lim K[Y(t .)] = 0. Since 0 < [Y(t)]2 < K[Y(t)], it follows that ni ~ n .-*30 

1 lim Y(t) = 0 . 0 
t-H-°° 

Of course, it is sufficient to check that lim / 
t-*°° a 

x'(s) 
L p > ) J 

2 
p' (s)ds 

exists for two linearly independent solutions and since any other 

solution of (1) is a linear combination of and V . The lemma will 

not help if one cannot determine V* for two linearly independent solu

tions . Therefore a criterion is needed which will determine the answer 

from the nature of p alone. 

4.14 Theorem: If p is positive and p' exists on [a,°°), if lim p(t) = 
t++°° 

+°°, and if 

l i m f |p'(s)l - p'(s) d s 

^ . P(s) t->+°° a 

exists, then there exists at least one nontrivial solution to (1) with 

limit zero as t-H-°°. 



34 

Proof (Lazer): From the previous lemma, it is sufficient to prove that 

lim J 
T-H-00 A 

t r-x'(s) 
L p > ) J 

p'(s)ds 

exists for every solution x of (1). 

Let 

CP'(T)] 
+
 = lp'(T)l + p'(t) 

2 

and 

CPF(T)]" = I£ pf(t)l - p'(t) 
Now 

t r-x'(s) 
L p > ) 

p'(s)ds = (19) 

t 1-x'(s) 
L e ( S ) J 

2 + t 

[p'(s)]+ds - / x'(s) 

[p(s )J 
[p'(s)]"ds 

If the limits of the two integrals on the right exist at t-H-°°, then 

lim / 
T-H00 A 

t 1 , / ri2 x r (s) p ' (s)ds 

exists at t-H-°°. If x is any solution to (1), then 

0 £ 
X ' ( t ^ + [x(t)]2 = K [x(t)] lipTtl Thus 
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0 < x'(t) < K[x(t)] = KCx(a)] - (20) 

FPTIF)2[P,(s)]+ds + / * ^'(STL2 

[£(S). 
[p'(s)] ds. 

The last equality above follows from Equation (17) in the previous 

lemma. Dropping the negative term on the right of (20), one obtains 

x'(t) 2 t 
< K [ x ( a ) ] + / 

a LE<S)J 
[p'(s)]'ds 

Application of the Gronwall inequality yields 

[ x ' ( t ) ] ' 
p(t) < K[x(a)] exp ; p(s) 

< K[x(a)] exp J p(s) 

By hypothesis the integral in the previous equation exists, hence 
C x ' ( t ) ] -

p ( t ) is bounded, say by M, on [a,00). Therefore 

x'(t) 

L£(t) 
00 

[p'(s)]"ds < M J [ P L ^ ] 

which exists. But, from (20), 

0 < J 
a 

x 1 (s ) 

L£(s)J 

2 + * [P̂ SJFDS < K[x(a)] + | 
a 

x'(s) 

LP(S) J 
[p'(s)]"ds 
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Since the limit on the right exists and the integrand 

L p > ) * C p ' ( s ) ] i s p o s i t i v e , 

x'(s) 
l 2 < s ) J 

Cp 1 ( s ) r d s 

exists. Since the integrals on the right side of (19) have limits as 
t-H-oo, 

x'(s) lim f —r— p'(s)ds 
t + + 0 O i L p > ) J * 

exists, and the desired conclusion is reached. Q 

An important consequence of the previous theorem is the follow

ing: If p is positive and p f exists on [a,°°), and if lim p(t) = +°°, 

then |p'(t)| - p'(t) = 0 and hence 

{ P(s) 

Using Theorem 4.14, one can conclude that at least one nontrivial solu

tion to (l) has limit zero. 

4.15 Corollary: If p is positive on [a,°°) and becomes infinite as 

t-H-°°, and if p' exists and is nonnegative on [a,°°), then at least one 

nontrivial solution to (1) has limit zero as t-H-°°. 

4.16 Example: There exists at least one nontrivial solution of 

x" + (exp t)x = 0 and of x" + t x = 0 , n>0, which has limit zero as 
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t-H-00. The boundedness of all solutions to the above two equations is a 

consequence of Theorem 4.12. 

One might ask, "If p satisfied some condition in addition to 

those in Corollary 4.15, then would all solutions to (1) have limit 

zero as t-H-00?" The answer is "Yes," but the additional hypotheses on 

p are fairly stringent. However, the following theorem, due to 

Willett, indicates the reason for the hypotheses complexity. 

4.17 Theorem: Let b(t) be a given positive nondecreasing continuous 

function on [a,°°). Then there exists a positive function p(t) with a 

continuous derivative such that p'(t) > b(t) and Equation (1) has at 

least one solution x = u(t) such that 

lim sup |u(t) | > 0. 
t-H-°° 

Proof: See Willett [20]. 

The previous theorem shows that no restriction on the growth of 

p(t) will alone be sufficient to guarantee that all solutions to (1) 

approach zero as t-H-00. 

In 1936 Sansone developed sufficient criterion for establishing 

that all solutions to (1) approach zero as t-H-°°. 

4.18 Theorem: Let p(t) is a positive, nondecreasing function with 

continuous derivative and lim p(t) = +00. If for every sequence (t } 
t-H-°° 

satisfying the conditions 
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t < t , t . - t < t - t . n=l,2,---, 
n n+1 n+1 n n n-1 

lim t = +c 

n 
n-H-°° 

lim (t -t ) = 0, n+1 n 
n-H-°° 

, . n+1 n . lim sup = 1 
n->+°° n n-1 

it happens that 

L n+1 n n=l 
mm 

t <t<t _t. n ~ n+1 

p'(t) 
p(t) 

then all solutions to (1) have limit zero as t-H-00. 

Proof: See Sansone [18] 

^•19 Example: Let p(t) = exp t. Then for any sequence (t^} satisfying 

the above restrictions, mm 
p'(t) 

t <t<t n P<*> n~ ~ n+1 
= 1 since p'(t) = p(t), and 

OO 

= I (t -t ) = +00 . 
L

n n+1 n n=l 

Since p(t) = exp t satisfies the other hypotheses of the theorem, 

all solutions to x" + exp t x = 0 have limit zero as t-H-°°. 

It is usually difficult to verify that an arbitrary function 

satisfies the hypothesis of Theorem 4.19. A problem of much recent 

L^ n+1 n n=l 
mm 

t <t<t . n - n+1 

p'(t) 
p(t) 
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interest has been the development of hypotheses that are easier to 

verify. The most general result in this area at present is the follow

ing theorem and lemma due to Willett, Wong, and Meir. 

4.20 Theorem: Let p be a positive, nondecreasing function with 

continuous derivative on [a,°°) such that lim p(t) = +00. If any one of 
t-H-00 

the following criterion is satisfied, then all solutions to (1) have 

limit zero as t-H-00. 

(1) There exists a positive, continuous a(t) on [a,°°) such that 

J a ̂ (s)ds = +00, 
a 

l i m i n f a'(t) > o , and lim inf a , ^ ) p ( t ) > 0 
t++°° a(t)p 1 / 2(t) t-H- a U j 

(2) lim inf p'(t) > 0 and J p~1(s)ds = +< 
t-H-00 a 

( 3 ) l i m inf * P ' ( ^ l n 1 > 0. 
* H - P ( t ) 

(4) p has a continuous second derivative, p' > 0 on [a,00) and 

lim sup p"(t) < 0. 
t->+°° 

4.21 Lemma: Let p be a positive nondecreasing function with continu

ous derivative on [a,00) such that lim p(t) = +°°. If there exist a 
t-H-°° 



40 

positive, nondecreasing function q with a continuous second derivative 

on [a,00) such that q(t) +00 as t-H-00, 

, T I f q"(s)ds ̂  1 
X = L IM„SUP

 qTET / a i 7 2 ^ < 3 
(21) 

t-H-«> a p 
and 

lim 
t-H-00 hi max 2M AIM - l ! M o 

m q(s) p(s) ' U 

q(s)ds = 0 (22) 

for some positive constant m, then all solutions to (1) have limit zero 

as t-H-°°. 

Proof of the Lemma: For any nontrivial solution x of (1), let 

R(t) = x2(t) + [x'(t) • p 1 / 2 ( t ) ] 2 . 

Note that R'(t) = - ^ x ' ( t ^ P ' W < 0 > If R(t) has limit zero as t-H-°°, 
p^(t) 

then x(t) has limit zero as t-H-°°. Suppose R(t) -> S > 0 as t -> +00. For 

every e>0, there exists a t g > a such that for all t > t , 

S + e > R(t) > S 

Suppose that (22) is true for some constant m, and let K be any con

stant in (0,m). Note that 

0 < max[2Kq'/q - p'/p,0] < max[2mq'/q - p'/p,0] 
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and since q is positive, 

i 1 

0 < J max[2Kq' ( s ) / q ( s ) - p ' ( s ) / p ( s ) ,0 ] q ( s ) d s < 

1 t 

^ / max[2mq'(s)/q(s) - p'(s )/p(s ) ,0]q(s )ds 

Therefore 

1 t 

lim J max[2Kq'(s)/q(s) - p'(s )/p(s ) ,0]q(s )ds = 0 
t -H - o o a 

Thus (22) is true for all constants in (0,m). Hence, one can always 

assume that the constant m is in (0,1). A little algebra shows that 

(qR)' = (l-m)q'R - mq'(xx')'p_1 + p_1q(x')2(2mq'/q-p'/p). (23) 

Equation (23) is now integrated term by term with estimates made on 

each of the terms. 

t 
qR': | [q(s)R'(s)]'ds = q(t)R(t) - q(t ) • R(t ) > 

t e e 

> q(t)S - q(t )R(t ) e ' x e ' ds 

t t 
(l-m)q'R: J (l-m)q'(s)R(s)ds < (S+E) / (l-m)q'(s)ds 

t t e e 

= (S+E)(l-m)[q(t)-q(te)] 
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(24) 

p~1q(x')2(2Tnq'/q-p,/p): 

J [x'(s)]2p 1(s)(2Tnq'(s)/q(s) - p'(s )/p(s )) q(s )ds < 
t 
e 

t 
< (S+e) j max[2mq'(s)/q(s) - p'(s)/p(s),0] • q(s)ds 

t 

since [x'(t)]2p X(t) < R(t) < (S+e) for t>t . 
- - ~ e 

» _i 
mq'[xxf] p : Integration by parts yields 

t ' -1 1 l t 

J q'(s)[x(s)x'(s)]p (s)ds = q'(s)p (s)x(s)x'(s) 
t 't e e 

t t 
- / q"(s)p" (s)x(s)x'(s)ds + / qf(s)p1(s)p" (s)x(s)x'(s )ds . 
t t e e 

Estimates are now made on the right side of the previous equation. 
-1 2 

Since (x ± x fp ) > 0, it follows that 

2|p~1xx'| < x 2 + p _ 1(x') 2 < S+e for t>t . (25) 
e 

1/2 1/2 Because p (t)>p (s) for all s in (t ,t) and - e 

t 
/ |q"(s)|ds > q'(t) - q(t ), 
t 6 

e 
then 

q'(t)p"1/2(t) < / |q"(s)|p"1/2(s)ds + 0(1). (26) 
t 
e 
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Thus 

q'p xxT 

5 ^ 1 / |q"(s)|p"1/'Z(s)ds + 0(1). 
-1/2, 

Also 

J q"(s)p"1(s)x(s)x'(s)ds = J p 1 / 2(s )x (s )x'(s )q"(s )p 1 / 2(s)ds< 

W T 

/ |q"(s)|p 1 / 2(s)ds by (25) 

Now 

t rQ ^ t 
/ q'(s)pT(s)p"^(s)x(s)x'(s)ds < 1 b + E / q'(s)p'(s)p 3 / 2(s)ds 

t 

Integration by parts yields 

j q'(s)p'(s)p 3 / 2(s)ds = 
t 

(S+e) ' (S )P 1 / 2 ( S ) L " q"(s)p 1 / 2 ( S ) D S 
e t 

e 

But by (26), it follows that 

q"(s)pT(s)p 1(s)xt(s)x(s)ds| < 2(S+e) / |q"(s)|p 1 / 2(s)ds + 0(1) 

Combining the previous estimates on (24), one obtains 
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t t 
|J mp"1(s)[x(s)x'(s)]'ds < 3m(S+e) / |q"(s)|p~1/2(s)ds + 0(1). 
t t e e 

The estimates on the integrals of each of the terms of Equation (23) 

are now completed. One obtains 

q(t)S - q(t)R(tQ) < (S+e)(l-m)[q(t)-q(t0)] + 

t 
+ (S+E) / max[2mq'(s)/q(s)-p'(s)/p(s),0]q(s)ds + 

t 
e 

+ 3m(S+£) / |q"(s)|p"1/2(s)ds + 0(1). (27) 
t 
e 

Dividing through by q and taking the limit as t->+°°, one finds with the 

use of (21) and (22) that 

S < (S+£)(l-m) + 0 + 3Xm(S+£). 

Solving for e, one obtains 

* > (l-3*)Sm . n 
6 " 1 - (l-3X)Sm 

But e is arbitrary. Hence a contradiction of the fact that S is posi

tive in obtained. D 

Proof of the Theorem: 
t 

(1) Let q(t) = 1+ / a 1(s)ds. It will be shown that 
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satisfies the hypotheses of the lemma. From the hypotheses on a 

it follows easily that q is positive and becomes infinite as t-H-°°, 

Further qT is nonnegative. If 

r
L q"(s) 

L I M J 1/2— 
t-H-» a p (s ) 

ds 

is finite, then (21) clearly holds. Suppose the integral does not 

exist. Then 

t t 
/ |q"(s)|p"1/2(s)ds = / |a'(s)|p"1/2(s)a"2(s)ds = 
a a 

' - 2 -1/2 ' — 2 "™l/2 j a (s)a (s)p (s)ds + 2 / max[-a (s),0] • a (s)p (s)ds. 

Integration by parts shows that 

/ |q"(s)|p 1 / 2(s)ds < 

(a)a 1(a) + 2 / max[-a'(s),0]a 2(s)p /2(s)ds 

Dividing by q(t), one obtains 

0 < j |q"(s)|p ' (s)ds < 

1 
- q(t) p 1 / 2(a)a - 1(a) + 2 / max[-aT(s),0]a'^(s)p 1 /^ds 

- 2 /_ N.-l / 2 
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— 1/2 
Since J |q"(s)|p (s)ds is not finite, L'Hopital's rule is valid for 

a 
the last term of the previous expression. Therefore 

0 < lim 
t-H-00 

2 / max[-a'(s),0] • a 2(s)p 1 / 2(s)ds 
a 

q(t) 

„ .. 2max[-a'(t),0] < lim sup 7 — t . ' 
t ^ + o o a ( t ) Ptt) 

a'(t) 
By hypothesis lim inf _ N _ ,^ N > 0, hence -£->-+oo a(t)p(t) -

max -a'(t) lim ,. x
 v ,, x , 0 

t-H-00 
a(t) p(t) = 0 

Therefore 

lim 
-£->-+oo 

/ |qM(s)|p 1 / 2(s)d £ 

a 
q(t) = 0 

and (21) is verified with X = 0. For any m > 0 

2mq'(t)/q(t) - p'(t)/p(t) = 

q'(t)/q(t) 2m - p'(t)a(t) 1 + / a 1(s)ds /p(t) 

But since lim inf p'(t)a(t)p "'"(t) > 0 and since the integral becomes 
t-H-°° 

positively unbounded as t-H-°°, then there is a T>a, so that for all t>T 
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[2mq'(t)/q(t) - p'(t)/p(t)] < 0, 

t 
Therefore (22) holds. Hence q(t) = 1 + / a (s)ds satisfies the 

a 
hypothesis of the Lemma and condition (1) in the statement of the 

Theorem is valid. 

(2) Let a(t) = p(t). Then a(t) satisfies the hypotheses of 

condition (1) and hence (2) is valid. 

(3) Let a(t) = (t+2) In (t+2). Then a(t) satisfies the 

hypotheses of condition (1). 
(4) Let a(t) = ^ T T T 

p' (t) 
Then 

l i m i„f P'<*> = P'(t)[l- p(t)p"(t)] > ^ 
t-H-» p(t)a 1 / 2(t) p d / 2(t) 

The other criteria of condition (1) are easily verified and hence 

condition (4) is valid. 0 

4.22 Example; Let p(t) = t n, n>0. Then all solutions to (1) have 

limit zero as t-H-°°. Since tp'(t)p ^(t)log t = n log t and 

lim inf n log t > 0, then p(t) satisfies the hypotheses of the theorem 
t-H-00 

and condition (3). Therefore all solutions have limit zero as t-H-00. 

The previous theorem has given sufficient criteria to insure 

that all solutions to (1) have limit zero as t-H-°°. These criteria are 

relatively easy to check in practice. Necessary conditions to insure 

that all solutions have limit zero do not seem to be known. 
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