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SUMMARY 

 

Emerging “bandwidth hungry” applications such as high definition video distribution and 

ultra fast multimedia side-loading have extended the need for multi-gigabit wireless solutions 

beyond the reach of conventional WLAN technology or even more recently emerging UWB and 

MIMO systems. The availability of 7GHz of unlicensed bandwidth in the 60GHz spectrum [1] 

represents a unique opportunity to address such data-throughput requirements. The 60GHz 

Integrated CMOS digital radio chipset comprises of PHY and MAC layers, RF transceiver, 

High-Speed Digital Interface and an underlying Serial Communication Fabric. 

To have a complete communication solution compliant with the latest ECMA-369 [3], 

ISO/DIS 13156 and IEEE 802.15.3c standards [4], we build a digital implementation of MAC 

and PHY with over a million gates. The Serial Peripheral Interface (SPI) serves as the bridge 

between the higher layers in the communication stack (PAL-MAC) [5] [6] and the lower layers 

like PHY-RF Front End. The MAC module can setup the communication link on the fly by 

tuning parameters such as operating channel, channel bonding and bandwidth, data rates, error 

correction mechanisms, handshaking mechanisms, etc, by using the SPI to communicate with 

internal components. The SPI interface plays a crucial rule in not only this, but also during the 

testing and debug phase. Operation of each of the RF modules is monitored through the serial 

interface using local SPI slaves which are hooked up to the 4-wire serial bus running all through 

the chip. The SPI host controller emulates an embedded protocol analyzer. For calibration and 

fine tuning purposes, digital settings can also be loaded onto these modules through the SPI 

interface. R-2R DACs are used to convert these commands into analog voltages which then 

provide a tunable bias to the RF and mixed-signal modules. Other key functions of this serial 

communication and control interface are: Initialization of all of the RF and mixed signal 

modules, DC calibration of data converter [7], PLL and other mixed-signal modules [8], data 

acquisition, parametric tuning for digital modules such as linear equalizer, Gain Control loops 

(AGC, VGA) [9], etc. 

Ultra high speed digital Input-Output buffers are used to provide an external data 

interface to the radio chipset. These high speed I/Os are also used in the Gbps (gigabit-per-

second) link for data transfer between the RF transceiver chip and the PHY-MAC baseband chip. 

The IOs are expected to comply with different signaling standards such as LVDS [10], 



SLVS200, SLVS400 [11], etc. A robust system involves a meticulous pad ring design with 

proper power domains and power cuts. Full-chip integration of the digital PHY, MAC, peripheral 

logic and IO ring is done in a semi-custom fashion.  



1 INTRODUCTION 

 

1.1 Motivation 

 

Over the past decade, advances in wireless communication have significantly altered the 

networking and connectivity space. This transformation has been two-pronged. On one hand, 

advances in semiconductor manufacturing coupled with innovative design techniques have 

pushed forward the bandwidth envelope. On the other hand, the overcrowded electromagnetic 

spectrum compels us to develop newer data transmission and modulation techniques.  

Recent advances in semiconductor technology have shrunk the CMOS devices from 

180nm down to 32nm and 22nm. These developments have brought in a lot of positive changes 

like higher operating frequencies and much smaller silicon real estate (die areas). However, these 

advantages come with a flip side, namely, the static power consumption has increased manifold. 

Most recent trends indicate that there is growing emphasis to develop newer devices and 

innovative design techniques to minimize the power consumption. With active device fT‟s (unity 

current gain transit frequency) of over 100GHz, it is now possible to have Radio Frequency 

Front End circuitry (signal conditioning, filtering and amplification) along with digital baseband 

on the same silicon die. This technology improvement has created newer market segments with a 

variety of high bandwidth applications. This is the “technology driven” perspective.  

Another perspective is the “user need” based. Figure 1 depicts a comparative study of 

various communication standards that were prevalent at the turn of the century. As seen, 

traditional mobile communication standards such as Global System for Mobile (GSM), Code 

Division Multiple Access (CDMA) and Wideband Code Division Multiple Access (WCDMA), 

have throughputs of a few megabits per second. The Ultra Wide Band (UWB) standard supports 

data rates of 1Gbps. All these are limited to transfer of voice, data and images. Streaming of 

video needs much higher bandwidths and only wired communication standards were capable of 

supporting it. 

 



 

Figure 1: Comparison of various communication standards 

 

 

 

 

 

 

 

 

Figure 2: Wireless standards spectrum 

 



Transfer of huge amounts of data would also need high bandwidth communication. 

Figure 3 shows the growing size of the average computer hard disk, which will soon move into 

the terabyte regime. As this trend grows, we would soon need systems for faster data transfer 

between these devices [12]. A variety of multi-gigabit application interfaces and entertainment 

connectivity solutions such as HDMI, USB2/3, MIPI, GbE, PCI, etc… can be address with the 

single chip 60GHz solution. This is the “user need” driven motive to explore 60GHz 

Communication system. 

 

 

 

 

 

 

 

Figure 3: Average storage capacity of hard disks 

 

 

 

 

 

 

 

 



1.2 Choice of 60GHz for the Digital Radio 

A wide variety of reasons influenced the choice of developing a 60GHz digital radio, 

some of which are highlighted below. Typical transit frequency (fT) curves for Silicon 

Germanium (SiGe) and Complementary Metal Oxide Semiconductor (CMOS) devices at various 

technology nodes are presented in Figure 4. At the 90nm node, the CMOS fT is over 140GHz, 

making it an ideal choice for the development of 60GHz radio transceiver.  

 

 

Figure 4: Transit frequencies for SiGe and CMOS at various technology nodes 

 

 

 

 From the mid 90‟s, the defense sector has applications in the higher frequency band 

(77GHz) using III-V compound semiconductors (GaAs, HBT, PHMET) [13] [14].The digital 

post processing for these applications was realized on vanilla CMOS processes, mainly for cost 

benefits. Using the III-V semiconductors for high volume production design was not feasible and 

this was one of the major thrusts for CMOS RF front-ends. The interest in utilizing the 

unlicensed band at 60GHz for high-speed short-range communication was exploited. A unique 

feature of this frequency band is the high oxygen absorption level (~15dB/km). High absorption 

levels prohibited long range communication. However they were advantageous from the 

frequency reuse perspective. This meant that two communication links, located in close 

proximity of each other could operate simultaneously. This wireless network was standardized 

by the IEEE 802.15 Working Group for Wireless Personal Area Networks (WPAN).  



 The Federal Communications Commission (FCC) in the United States, allocate the 59-

64GHz frequency band for general unlicensed use. Japan standardized the 59-66GHZ band for 

high-speed data communication. In Europe, the 59-62GHz band has been allocated for Wireless 

Local Area Network (WLAN) and mobile broadband systems use the 62-63GHz and 65-66GHz 

bands. Since propagation losses increase with the operating frequency, we need high gain 

antennas for longer reach. Higher the gain of the antenna, narrower the beam width and this 

helps minimize the beam spread. Overall, the combined effect of oxygen absorption, narrower 

beam widths, and higher frequency reuse positions the 60GHz band [15] most appropriate for 

short range high data rate communications. 

 This 60GHz unlicensed band has a sufficiently large bandwidth of about 7GHz and is 

capable of providing multi-gigabit throughput using simple modulation schemes like ASK 

(Amplitude Shift Keying) and BPSK (Binary Phase Shift Keying). More complex schemes such 

as QPSK (Quadrature Phase Shift Keying), QAM (Quadrature Amplitude Modulation) and 

OFDM (Orthogonal Frequency Division Multiplexing) support data-rates as high as 10Gbps. 

Thus we can ensure a seamless integration with multimedia standards. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1.3 Digital Control and backend 

 

The design of 60GHz CMOS Digital Radio Transceiver is extremely complex with many 

RF, Analog and digital modules juxtaposed on the chip. Each of these RF and Analog mixed-

signal modules need to be tuned for optimal performance. Doing so would ensure lower power 

consumption, higher spectral efficiency and higher data rates with lower BERs (Bit Error Rates). 

Hence it is crucial for us to ensure that all these modules get tuned and calibrated appropriately. 

This gives rise to the need for a reliable debug and tuning mechanism over a robust 

communication channel. Amongst the available serial interfaces, the SPI [16] communication 

protocol suits our needs best. This duplex serial communication link has been customized for 

high speed operation. 

The digital backend on this transceiver forms the backbone of the wireless 

communication channel. The digital modem, PHY (physical communication layer of the OSI 7 

layer software stack) [17] and the MAC (Media Access Control sub-part of the Link Layer), 

form the digital content on this chip. The Radio link is serial and hence the digital modem also 

operates on the serial data stream. Thus it is designed to be fairly simple with only the necessary 

functionality built into it. For ease of test, the transceiver was designed in a two-chip solution. 

Later revisions were fully integrated single silicon die CMOS transceiver solutions. The serial 

data stream is sent off-chip using high-speed digital I/Os. The separate test-chip for PHY and 

MAC modules interfaces with this high speed serial link. The PHY and MAC make up a million 

gate design which was implemented using the ASIC physical design flow. Special attention was 

given while building the I/O ring with extra attention to the pad ring, power cuts and pad 

assignments. 

 

 

 

 

 

 



1.4 Organization of Thesis 

The thesis is divided into seven chapters. After introducing the research objective of the 

60GHz digital radio and its design challenges in chapter 1, chapter 2 talks about the physical 

design flow in ASIC design. It starts with register transfer level (RTL) design and briefly touches 

upon the entire flow: RTL coding, synthesis, simulation, layout, verifications. The PHY and 

MAC designs were developed using this flow. For version-1 they were part of a separate chip 

(ease of testing). In the later versions, they were integrated with the RF front-end on a single 

chip. Screenshots used to illustrate the digital flow are some of the intermediate steps during the 

MAC-PHY Physical layout development. Chapter 3 discusses the various serial communication 

interfaces used for on-chip and off-chip data acquisition. The chapter concludes with the choice 

of Serial Peripheral Interface (SPI) as the chosen serial communication protocol for the 60GHz 

digital radio system.  

Details of the serial interface sub-system are explained in chapter 4. Two designs for the 

SPI were realized in 90nm CMOS process. The differences in the two designs and the motivation 

to switch from one to the other, is provided. Detailed timing diagrams for the different modes of 

operation are presented. Chapter 5 talks about the measurement setup developed for using this 

serial communication interface. The testing phase began with standard off-the-shelf protocol 

analyzers and bit-stream signaling sources, and went on to custom-designed modules.  

Digital I/Os (with standard 50Ω termination) were designed to bring out the SPI ports. 

For bringing out the baseband signal we developed a multi-gigabit digital I/O interface. Chapter 

6 discusses these designs. This chapter briefly touches upon the importance of ESD protection in 

the ASIC development flow. It discusses the major ESD failure mechanisms and outlines a few 

design techniques to mitigate that risk. A special I/O ring had to be developed for the MAC-PHY 

standalone chip (version-1) which forms the last part of this chapter. The chapter concludes with 

some measurement results. Chapter 7 concludes this thesis by summarizing the work performed 

and suggesting future improvements. 

 

 

 

 



2 PHYSICAL DESIGN FLOW FOR ASIC IMPLEMENTATION 

 

The Physical Design of any full-custom ASIC [18] can follow either the top-down 

design or the bottom-up approach. Figure 5 shows an overview of the physical design 

flow for ASIC (Application Specific Integrated Circuit) implementation from RTL to 

GDSII, in the top-down approach. The following subsections detail the individual steps 

mentioned. The step-wise physical design flow [19], highlighting the corresponding tool 

used at each step, is shown in Figure 6. 

 

 

Figure 5: Designing SoC - From Logic design to Physical design 

 

 

 

 

 

 



 

Figure 6: System-On-Chip Design Flow 

 



2.1 Design Entry 

The physical design flow for ASIC implementation begins with design entry in 

logical format as shown in Figure 5. The system is described in a symbolic or descriptive 

language and a simulation is run to test the functionality. This description resembles a 

flowchart and hence is technology independent. The system operation is tested at an 

abstract level. High-level architectural changes need to be incorporated at this stage. 

 

 

2.2 Logic Synthesis 

 

Generally, all the digital cells are developed in each of the fabrication houses 

(foundries) and licensed out as “Digital Standard Cell Libraries.” The standard cells come 

in different descriptions with each one called a “view”. During the synthesis stage we 

make use of the Verilog [20] (behavioral) view and the timing-power view. The logical 

description of the design is mapped on to standard cells (digital gates) through this 

process of synthesis. Synopsys Design Compiler [21] and Cadence BuildGates [22] are 

some of the tools that we used for synthesis. These tools support schematic viewers for 

viewing the gate level design and the connectivity. At this stage, we are ready to perform 

a Static Timing Analysis (STA) [23] on the design. 

 

 

 

 

 

 

 

 

 

 



2.3 Logical Verification:  

 

The synthesized gate level Netlist is read into a simulation tool like “ModelSim” 

from Mentor Graphics [24]. A detailed testbench is created in the same descriptive 

language (Verilog or VHDL [25]). This testbench has a sequence of test vectors that are 

applied to the unit under test (our design). A waveform viewer is used to view the test 

results. The following set of images highlight the procedure. 

 

 

 

 

Figure 7: ModelSim Workspace 

 

 



 

Figure 8: ModelSim Schematic 

 

 

 

 

 

 

 

 

Figure 9: ModelSim Waveform 

 

 



2.4 Static Timing Analysis 

 

All the standard cells are characterized and Look-Up Tables (LUT) for timing and 

power data has been generated. The timing views for the standard cells are read into a 

static timing analysis tool like PrimeTime from Synopsys [23] and the design is linked. 

We then define the boundary conditions and the timing constraints for the design through 

the Synopsys Design Constraint (SDC) file [26]. A detailed outline of the timing analysis 

flow is shown below: 

 

i. Preparing the Analysis Environment 

The standard cell libraries are read in first. Then the Netlist (design) is 

read in. The link paths are setup and the design is linked. The appropriate wire 

load models are read in and the operating conditions are set.  

 

ii. Preparatory timing and clocking checks  

The most important step here is to define the system clock. Min-max 

values for the clock uncertainties and latencies are set. We can also define the 

clock duty cycle and transition times. Setup, hold and other clock gating checks 

are verified as part of this step. This timing verification is done at multiple stages 

in the flow, starting with post-synthesis, then post-layout and finally during the 

timing sign-off phase. During the post-synthesis phase, the wire delay is only an 

estimate. However we have real extracted data during the other two phases. The 

wire delay is extracted in a format called the Standard Delay Format (SDF) [27] 

and is back-annotated on the design. 

  

 

iii. Checking design integrity 

 When the design has been setup correctly, the design integrity can be 

checked by commands such as report_design, report_reference and so on. 

 



iv. Running timing analysis 

 Executing the command „check_timing‟ will use all the timing constraints 

and run the timing engine on the design. A thorough check on setup times, hold 

times and transitions time will be performed. Warnings and errors will be thrown 

up for each and every check. Some of these could be exceptions such as false 

paths, multi-cycle paths, clock domain crossings, etc. These errors need to be 

resolved at this stage. Timing slacks [28] can be reported for further detailed 

analysis. Some of the advanced timing issues like reset recovery and removal, 

clock synchronization, etc are explained in the references [29]. 

 

v. Boundary timing characterization  

Timing characterization can be hierarchical with sub-designs and parent 

design. The partitioning could be in design compiler (synthesis) or within 

PrimeTime (for ease of timing analysis). Some of the key aspects related to timing 

hierarchy are: input and output arrival delays, input and output port loads, 

constant logic values on inputs, logic propagation, annotated delays and parasitic, 

timing exceptions and so on. 

 

vi. Fixing timing violations 

 Timing violations need to be fixed on a case-by-case basis. Some 

violations could be false, such as false paths. Like the reset paths on flip-flops. 

Some paths may span multiple clock periods and need to be constrained as multi-

cycle paths. Then there are IO paths that need to be properly constrained with 

commands such as „set_input_delay‟.  

 



 

Figure 10: DC Shell Execution 

 

 

 

 

 

 

 



2.5 Physical Design 

 

Once the design passes timing checks, it is ready to be taken into layout. We use the 

SOC Encounter tool form Cadence Design Systems [30] for physical design. An outline 

of the physical design flow is presented here: 

 

i. Data Preparation 

 Before the design is taken into the physical layout tool, the reference 

libraries and constraints are setup. These steps include: setting up the path of the 

technology file, reading in the physical (.lef) and timing (.db) libraries, reading in 

the timing constraints file (.sdc), I/O assignments (.tdf or .io) and setting up the 

TLU+ model files for parasitic RC extraction. 

 

ii. Design Check 

 The „checkDesign‟ command checks the design integrity with respect to the 

following: 

- Physical library 

- Timing library 

- Netlist 

- I/O constraint 

- Power and Ground nets and pins 

- Tie-highs and tie-lows 

 

iii. Read Design 

The Netlist must be read into the design. While doing so, the SoC 

Encounter can be instructed to preserve logical hierarchies in the design. This will 

show up as soft-macros during the placement stage and helps group relevant cells 

(logic). 

 

 



 

Figure 11: Design netlist read into SoC Encounter 

 

 

The Netlist is made unique as part of the reading process. A unique Netlist 

is a pre-requisite for performing Clock Tree Synthesis (CTS), scan chain 

reordering and Timing optimization and closure related functions (command: 

uniquifyNetlist). 

Another important check at this stage is the check for “assign” statements. 

The assign statement emulates a wire in RTL/Verilog. This is not the case with a 

physical design tool. In Verilog, the two ends of the logical wire can be connected 

to two different net names. However in physical layout as well as in reality, there 

exists only one unique name for that net. Hence the assign statements need to be 

cleanup by modifying the Netlist (setDoAssign on) or inserting buffers 



(setDoAssign on –buffer buffer_name). A little care needs to be taken by manually 

ensuring that the timing constraints through that net are retained. 

 

 

iv. Design Partitioning 

 To minimize the run-time and memory requirements, large designs are 

partitioned either in a top-down method or a bottom-up method. Both approaches 

involve the use blackboxes. When working with blackboxes, they need to be 

defined early in the flow. The logical boundary needs to be specified with 

intermediate ports/pins. Timing sync (synchronization) points need to be 

specified. Separate power domains need to be defined. When the blackbox is 

taken into the placement stage, the top level power mesh needs to be pushed down 

into the macro. The I/O and timing information needs to be pushed down into the 

macro. After that, the blackbox macro would be laid out as a separate design. To 

integrate the blackbox back into the top level design, special commands need to 

be used; „loadBlackBoxNetlist‟, „convertBlackBoxToFence‟, „assignPtnPin‟, 

„alignPtnClone‟ and so on. At this stage, the partitioning on the macro can be 

undone and the subsequent macro can be merged with the top design if needed. 

The designer needs to make this engineering judgment which is primarily 

influenced by the timing criticality of the design. For a detailed timing closure, a 

flat design is preferred and hence the purpose of Unpartitioning.  



 

Figure 12: SoC Encounter Views for Floorplan (Macro Placement) 

 

Figure 12 shows the blackboxes in different orientations. The fig on right shows the macros after 

unpartitioning. The top level wirings are not shown here. In the Floorplan view, we can see 

placement blockage at the center of the chip. [31]. 

 

v. Floorplanning and Placement 

 After reading in the Netlist, the design moves into the floorplan stage. 

Various options exist for defining the floorplan; rectilinear floorplan, core-to-io 

spacing, aspect ratio, cell placement utilization, number of rows and columns and 

so on. All this information can be saved and re-read during the design iteration. 

The design connectivity needs to be studied and memories, macros and blockages 

need to be properly placed. This is very crucial to avoid routing congestion at a 

later time which might trickle down to timing closure problems. Common layout 

practice is to place placement halos around memories. The halo is generally 

concentric with the inner-halo being a hard placement blockage and the outer-halo 

allowing decap (decoupling capacitor cells) and buffer placement. 

 

 



 

Figure 13: Placing memories with power termination rings 

 

 

The design is now ready for timing driven placement of standard cells. To save up 

on the layout area, the standard cell rows should be flipped and abutted. The cells 

can be grouped by logical partitions and optimized for timing. It is a general 

practice to “glue” related cells together in a group and to color them. Thus the 

layout can be optimized in a partitioned design scenario. Pre-routes are created in 

the next step. Power ring and stripe widths are decided by the power and delay 

requirements.  

 

 

 

 

 



 

Figure 14: Power ring and stripe 

 

 

 

 

Figure 15: Standard cell groups in colors 



The pins are placed during this stage. Care needs to be taken when placing the 

Clock and reset pins. Clock pin placement decides the H-tree structure during 

clock tree synthesis stage. Reset pin is also important due to the large fan-out on 

that net.  

Certain process nodes mandate the use of tap cells to supply power to the Nwell 

and to ground the p-substrate. The taps need to be placed in a repetitive fashion 

and must lie within some specific distance from each other. Tie-off cells are used 

on inputs which are tied off to VDD or GND, as an additional ESD (Electro-Static 

Discharge) protection.  

 

 

vi. Synthesizing the clock tree 

 The goal of Clock Tree Synthesis (CTS) [32] is to minimize clock skew 

and insertion delay. The process of CTS involves the usage of the following list of 

files: 

o The timing constraints file (.sdc) 

o The clock specification file (.ctstch) 

o The capacitance table  and  

o The LEF (physical library) for clock buffers and delay cells. 

 

Table 1 enumerates the structure of the clock tree specification file. 

 

 

 

 

 

 

 

 

 



Table 1: Clock Tree Specification File 

 

AutoCTSRootPin <clock pin name> 

NoGating Rising 

SetDPinAsSync YES 

SetIoPinAsSync YES 

PostOpt YES 

OptAddBuffer YES 

Buffer <buffers in library> 

MaxDelay 200 ps 

MinDelay 0 ps 

MaxSkew 50 ps 

End 

 

 

 

Most of the attributes specified above are self explanatory. The attribute 

“NoGating” sets clock gating as a sink. Hence the CTS engine stops tracing 

through the gates and considers those inputs as rising edge triggered flip-flop 

clock pins. Assign a “NO” value to have a gated clock tree synthesis. We also 

specify to run a post CTS optimization to confirm that the timings are within 

bounds. Some details about the timing related terminology (skew, slew, etc) is 

presented later. 

The timing constraints for the design need to be setup. Common practice suggests 

addition of some design margin into these constraints to account for routing bottle 

necks later in the flow. Encounter timing engine will trace the clock net 

throughout the design and propagate it through combinational logic. The tool is 

smart enough to figure out the correct phase of the clock at every flip-flop.  

 

 

 

 



For gated clock tree synthesis, the clock tracing stops at: 

1.  A clock pin 

2.  An asynchronous set/reset pin 

3.  A user specified leaf pin (clock sink) or an exclude pin 

4.  An input pin without a timing arc to an output pin. 

The designer can check whether the clock specifications were properly applied on 

the design by executing the „ckSynthesis –check‟ command and fixing any errors. 

The next step after this is to synthesize the clock tree on the design. The setup and 

hold times are reported in the command console. CTS added cells and affected 

nets are dumped into reports that can be read from a web browser or text editor. 

Special (detailed) analysis for delay variation and OCV (On Chip variation) [33] 

can be performed using „setAnalysisMode‟ and „setTimingDerate‟ commands. 

Clock reconvergence issues are discussed in a later section.  

 

 

vii. Routing 

 SoC Encounter tool divides the core area in smaller regions called g-cells 

(global routing cells). This is similar to the small delta areas we consider when 

performing surface integrals. The entire core region is divided into routing 

channels which are alternating and orthogonal. Each g-cell will have about 10-20 

routing resources which get assigned to the nets in the design. This helps in 

analyzing the congestion in the design. If some areas seem to have very high 

congestion numbers then we need to go back to the placement stage to reorient or 

to move cells around. There exist other tricks such as creating density screens, 

strategically placing routing blocks and so on.  

 

Before we are ready to route the design, we need to set the correct layer 

stack information. Extra spacing, double via, extended via and other options need 

to be set. Special routes are generally done before the entire design gets routed. 

Clock nets would be an example of special routes.  



Routing is divided into three stages: global route, detailed route and eco route. 

The designer needs to ensure that the design is placed and power routing is 

complete. Once the Nano Router has run, various reports are generated. 

Depending on the complexity and size of the design, there could be opens and 

shorts as well as DRC (Design Rule Check) violations such as vias under wide 

power nets, etc, which need to be fixed. These can be fixed with ECO routing. It 

is customary to run a timing check and timing optimization loop before fixing 

these errors. Since the routing is complete, the timing optimization engine can 

perform setup as well as hold fixes. This step is also called as the Post Route 

Optimization step. Though the timing engines used while routing and timing 

optimization are identical, their accuracy settings are different, with the most 

accurate one being sign-off timing checks. 

 

 



Figure 16: Congestion map and tracks used 

 

 

Figure 17: Showing congestion 

 

 

The designer should ensure that the special routes are not messed up during 

detailed route. Special routes are clock routes (generally on higher metal layers to 

minimize parasitic caps) and analog routes (differential routing with shielding). 

This would be a good time to verify the geometry (DRCs) and connectivity 

(LVS). 

 

 

 

 

 

 

 



viii. Design finishing 

 Post route optimization stage will fix all setup violations and most hold 

violations. Any setup violations left might need an RTL level fix, in which case, 

an ECO flow would be necessary. Hold violations can generally be fixed by 

insertion of buffers and rerouting. Sometimes hold is not fixed by the tool due to 

lack of space. Freeing up the placement a little helps. At the 90nm and finer 

technology nodes there is a minimum metal density needed for proper CMP 

(Chemical Mechanical Planarization).  To have uniform metal thickness all over 

the chip, with varying thicknesses of dielectric layers, we need passive (floating 

chunks of metal) or active (connected to a particular net) metal fill. Making the 

topology of the metal layers more uniform, we can minimize the variations in 

metal density.  

Typically metal fills are targeted to achieve around 40% density, since at 

that density, the impact on added capacitance is minimal and it is easier to 

converge on the timing of the design. Adding rectangular metal fill chunks instead 

of square ones, yields the same density with fewer pieces. There is statistical data 

to support this claim. The command „verifyMetalDensity‟ can be executed, to 

check which metals need filling and what locations need it the most. Unconnected 

metal fill adds lesser parasitic capacitance than connected fill (tie-off). Special 

care must be taken when adding fill over pre-laid out macros. Since the macros 

are already timing closed, the impact of the newly added metal fill should be kept 

at a minimum.  

Certain process nodes/foundries would enforce via cut density checks in 

their DRC suite. This requirement can be met with double via insertion. Doubling 

the vias is beneficial from the DFM (Design For Manufacturability) standpoint 

too. We then run an exhaustive DRC and LVS check on the entire design to verify 

that there are no new spacing violations or shorts created due to the added metal 

fill. 

 



 

Figure 18: SoC Encounter – DRC 

 

 

 

 

 



 

 

Figure 19: Calibre DRC 



 

Figure 20: Calibre LVS 

 

 

 

 

 

ix. RC Extraction, Delay calculation and Timing analysis 

Routing adds significant parasitic capacitance to the design nets. This will 

alter the timing on different paths and that impact needs to be studied. The 

parasitic RC extraction flow, followed by delay calculations, SDF (Standard 

Delay Format delay file) generation and timing analysis will address this need.  

 

 



x. Engineering Change Order (ECO) flow 

An automatic ECO is run when the timing optimization step is executed. 

However, some of the timing fixes need manual intervention, which is when a 

manual ECO becomes essential. As an engineering practice, it is wise to save the 

design and the Netlist prior to the execution of manual ECO. The following are 

some of the types of ECOs: 

 

a) Adding a Buffer 

 For example; when we need to intentionally skew the 

clock to make use of positive setup margin. 

 

b) Changing a Cell 

 When the tool deems it unnecessary to up/down size a cell, 

yet the design calls for it. For instance when driving a large 

capacitive load on output ports. 

 

c) Deleting buffers 

When certain buffers cause extra delay and the tool is 

unable to optimize that path, those buffers might have to be deleted 

manually. 

The Netlist changes can be viewed in a schematic browser before running ECO 

placement, ECO routing and ECO finishing steps (timing analysis and DRC 

fixes). 

Routing only fixes, though do not impact the Netlist directly, can be broadly 

classified as a type of ECO. Avoiding Crosstalk for instance would need re-

routing and sometimes might call for driver cell fixing, buffer insertion or other 

ECOs.  

 

 

 

 



xi. Design Sign-off 

Power analysis on sub-90nm designs is a must. Encounter has a built-in 

power analysis tool. However, for detailed power analysis – based on switching 

patterns and test vectors (vcd input files), designers often rely on Cadence 

Voltage Storm. At cutting edge technology nodes power is tightly couple with 

delay and hence analyzing the instantaneous power drop all over the chip 

becomes a necessary design sign-off metric.  

Design-for-Yield and Design-for-Manufacturability steps are a part of the 

sign-off flow. Multi-mode Multi-corner timing analysis and optimization will take 

into account On-Chip Variation (OCV) effects. To optimize run-times and 

processing memory requirements, this timing analysis is best done outside of SoC 

Encounter. Major EDA vendors like Synopsys, Cadence and Mentor Graphics 

have a suite of toolsets to aid formal verification. However, upcoming EDA 

vendors like Calypto Design Services [34], etc offer quite competitive products.   

 

 



 

Figure 21: Design Completion 



3 SERIAL COMMUNICATION INTERFACES 

 

 Various serial communication interfaces such as JTAG [35], SPI [36] and I2C [37] were 

evaluated for the Gigabit Digital Radio application. The following sections explain these serial 

interfaces in greater detail. 

 

3.1  JTAG 

  

JTAG (Joint Action Test Group) was initially developed as an inexpensive means of 

testing printed circuit boards. To support this, a device would contain additional circuitry that 

would allow, at a minimum, the reading and writing of the I/O (boundary) pins. Internally, the 

device had one big, long serial shift register with parallel load capability. The input and output of 

the serial shift register (Test Data In - TDI, and Test Data Out - TDO) would be externally 

connected to other chips on the board to form a series of serially connected shift registers called 

a scan chain. By using various JTAG instruction operations built into the chip it was possible to 

load the scan chain with bit patterns called test vectors that would allow a pin on a device to be 

driven high or low. Using interconnects on the PC board; it would then be possible to read this 

value through an input pin on another device somewhere else in the scan chain. The chain could 

then be serially shifted back into a JTAG tester and examined for correctness. In this manner it 

would be possible to check interconnects between devices as part of an inexpensive 

manufacturing test. This was great for things like Ball Grid Array packages where it was not 

possible to verify connectivity between pin and pad through direct access. The JTAG approach 

became quite popular for testing and evolved over time to handle other functions as well. When 

programmable devices started to appear they initially had their own proprietary programming 

interfaces. It wasn't long before manufacturers realized they could enhance the JTAG circuitry 

with additional User Defined instructions (something that was planned for in the JTAG spec). 

These instructions would allow the programming information to be shifted into the device and 

programmed using the same JTAG pins that were already being used for testing. Reducing pins 

on a device was usually a "good thing" so programming via JTAG starting being added to a 

number of devices. The JTAG circuitry does add a good bit of overhead to the part so it is not 



very efficient for small parts, but for larger devices it can be extremely cost effective. Not only 

does it (normally) allow you to read and write the boundary pins of a device but the internal 

chain can also include access to otherwise inaccessible information that can be extremely 

valuable to the chip designer. And, another big achievement - it has been used extensively to add 

debugging functions to the device, such as the ability to single step, read and write internal 

registers and so on. Figure 22 shows the typical JTAG connection between multiple devices in a 

system scenario. Figure 23 shows the timing diagram.  

 

 

Figure 22: JTAG Interface 

 

 

 

 

 

http://en.wikipedia.org/wiki/File:Jtag_chain.svg


 

 

Figure 23: JTAG Timing Diagram 

 

 

 

Figure 24: Timing numbers for DS4550 [37] 

 

 

 

 

 

 

 



3.2 SPI 

 

The Serial Peripheral Interface (SPI) was originally designed as a means of connecting 

peripherals to a central processor using a minimum of interconnect pins. Typically, this was used 

where access to the peripheral was infrequent or the transfer rate was unimportant. One of the 

initial popular uses was small non-volatile memories that could be used to store configuration 

information. Today the interface is used on a wide range of products from real time clocks to 

UARTs. The interface does share some of the characteristics of the JTAG interface; it 

communicates serially over separate input and output lines, and thus contains an internal serial 

shift register. Although not mandatory in either case, JTAG normally connects the internal shift 

registers of multiple devices in one long serial shift register chain where SPI normally connects 

multiple peripherals in parallel. In other words, with SPI the pin that transfers data from a 

controller (master) to a peripheral (slave) can be connected to the input pin of multiple devices. 

The pin is called Master Out Slave In (MOSI) which is a really nice way of removing any 

ambiguity regarding the direction of data transfer versus a specific chips viewpoint. Conversely, 

multiple outputs from the various peripheral chips (Master In Slave Out or MISO) are connected 

together going back to the controller. These outputs are always tristated unless a device is 

specifically selected for data transfer by the master and is in the process of transferring data. Like 

JTAG, SPI has evolved to handle other functions as well, such as low speed communication 

between processors where one acts as the master and one as the slave during any given transfer. 

Also, like JTAG, since SPI transfers data into and out of a device, its usage can be extended to 

programming that device. 

In the standard SPI protocol, the data is shifted in on the rising edge of the clock and is 

shifted out on the falling edge of the clock. Figure 25 shows a SPI based system with a single 

master and multiple slaves. Each of the slaves needs a separate „chip_select‟ signal. However, in 

pin limited systems, so many connections come at a premium. To work around this problem, the 

slaves can be daisy-chained as shown in Figure 26. All the slaves can be controlled using a single 

chip select pin. However the disadvantage in doing so is the delay in accessing some of the 

slaves. Access to every slave will go through each of the other slave devices and hence slows 

down the entire communication protocol. A typical timing diagram is shown in Figure 27.  



 

 

 

Figure 25: SPI Subsystem depicting Master-Slave Configuration with individual slave select 

 

 

 

 

Figure 26: SPI Subsystem in Daisy-Chain Format 

 

 

 



 

 

Figure 27: SPI sample timing diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.3 I
2
C 

 I²C is an acronym for Inter Integrated Circuit bus. I²C is a 2-wire serial interface 

standard defined by Philips Semiconductor in the early 1980's. Its purpose was to provide an 

easy way to connect a CPU to peripheral chips in a TV-set. The BUS physically consists of 2 

active wires and a ground connection. The active wires, SDA and SCL, are both bidirectional. 

Where SDA is the Serial Data line and SCL is the Serial Clock line. 

The key advantage of this interface is that only two lines (clock and data) are required for 

full duplexed communication between multiple devices. The interface typically runs at a fairly 

low speed (100 kHz to 400 kHz). With I2C, each IC on the bus has a unique address. Chips can 

act as a receiver and/or transmitter depending on its functionality. 

The I²C-bus is developed by Philips to maximize hardware efficiency and circuit 

simplicity. The I²C interface is a simple master/slave type interface. Simplicity of the I²C system 

is primarily due to the bidirectional 2-wire design, a serial data line (SDA) and serial clock line 

(SCL), and to the protocol format. Bi-directional communication is facilitated through the use of 

wire and connection (the lines are either active-low or passive high). The I²C Bus protocol also 

allows collision detection, clock synchronization and hand-shaking for multi-master systems. 

The clock is always generated by the master, but the slave may hold it low to generate a wait 

state. In most systems the microcontroller is the master and the external peripheral devices are 

slaves. 

The maximum number of devices connected to the I²C bus is dictated by the maximum 

allowable capacitance on the lines, 400pF, and the protocol's addressing limit of 16k; typical 

device capacitance is 10pF. The I²C protocol has 127 addresses available. The original vision 

was to assign addresses by device function, but when Philips began to sell microcontrollers for 

I²C, the address could be programmed, eliminating the need for a Philips-assigned address. 

A device that controls signal transfers on the line in addition to controlling the clock 

frequency is the master and a device that is controlled by the master is the slave. The master can 

transmit or receive signals to or from a slave, respectively, or control signal transfers between 



two slaves, where one is the transmitter and the other is the receiver. I²C bus support more than 

one master connected to one bus. 

The I²C bus is an innovative hardware interface which provides the software designer the 

flexibility to create a truly multi-master environment. It is possible to combine several masters, 

in addition to several slaves, onto an I²C-bus to form a multi-master system. If more than one 

master simultaneously tries to control the line, an arbitration procedure decides which master 

gets priority. 

To begin communication, the bus master (typically a microcontroller) places the address 

of the device with which it intends to communicate (the slave) on the bus. All ICs monitor the 

bus to determine if the master device is sending their address. Only the device with the correct 

address communicates with the master. 

What is notable about the I²C architecture is that the Slaves can hold the SCL signal low 

until the slowest slave is ready for data transfer. However, the clock is always generated by the 

Master and is an input into the slaves. 

The I²C protocol also allows for multiple masters in the system. Each master senses the SDA 

port and does its own bus arbitration. 

 

 

 

Figure 28: Typical I2C Bus System 

 



 

Figure 29: START and STOP Conditions 

 

 

 

 

 

Figure 30: Data Transfer on I2C Bus 

 

 



 

Figure 31: A master-transmitter addressing a slave receiver with a 7-bit address.  

The transfer direction is not changed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.4 Choice of SPI as the chosen serial communication interface 

 

 A comparison of the three serial interfaces is shown in Table 2. 

 

 

Table 2: Overview of SPI, I2C and JTAG Serial Communication Protocols 

 

Protocol Architecture Multi-

Master 

Data Rate Flyby Data 

transfer 

Full 

Duplex 

SPI 4-wire No 1Mbps No Yes 

I2C Shared data and clock signals Yes 400Kbps Yes No 

JTAG Daisy Chain Data Signals No 100MHz N/A N/A 
 

 

As is seen in the comparison table, SPI is the only protocol where the data rate can be 

scaled well into 100s of Mega bits per second. The Digital RF CMOS radio needs over 10 slaves 

which would mean we need an equal number of chip select lines. In a SoC (system-on-chip) 

scenario where the silicon real estate is at a premium, having these many chip select lines is not 

always an option. Hence we develop a new serial communication interface which is a blend of 

the SPI and I
2
C protocols. It has a blend of the SPI signaling protocol along with the I

2
C address 

based approach juxtaposed with some newer features, which push the operating speed over 750 

Mbps. Even higher data rates are possible at the cost of burning more power. The next chapter 

looks at this system in detail. 

 

 

 

 

 

 



4 THE SPI SUB-SYSTEM FOR CMOS DIGITAL RADIO CUM 

MODEM 

4.1 Block Description 

 

The block diagram of a typical SPI Slave is shown in Figure 32. 

  

Serial_clock

Serial_data_in Serial_data_out

Spi_reset

Spi_slave_select

Reference_addr<addr:0>

Parallel_data_in<r:0>

Parallel_data_out<w:0>

Common_data_out<c:0>

Read_eanble
SPI Core

 

     Figure 32: Typical SPI Slave 

 

 

Table 3 harbors the pin description of the serial communication block. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3: Pin Description for SPI Slave 

 

Signal Function 

Serial Data In SPI Data is serially pushed into the SPI block 

Serial Data Out SPI data is read out serially on this pin 

Clock 

SPI clock pin. All registers are triggered on the rising edge of the clock. 

Clock pulses should be sent for each data bit being pushed in/read out. 

This would imply that we need to send clock pulses even after the read 

load signal has been sent. (as many as the width of the data being read 

out) 

Slave Select 

This signal is pulsed after the data has been written into the SPI module 

(write mode) and after the control word has been written into the SPI 

(read mode). The rising edge of this pulse will transfer the previously 

sent serial data onto the SPI parallel bus. 

Reset 
Resets all the registers inside the SPI module. This is an active low 

signal.  

Read Enable 
This active high signal signals the availability of the serial data on the 

Serial_Data_Out pin. This pin is not available outside the chip. 

Reference Address 4 bit address hardwired for individual SPIs (a1-a4) 

SPI Read Bus A parallel bus input into the SPI block.  

SPI Write Bus 
A parallel output of the SPI block. This data changes during the 

individual SPI write sequence. 

Common Control 

Word Bus 

A 14 bit parallel output of the SPI bus. This data changes during the 

common SPI write sequence. 

Common Control 

Mode 

A „1‟ indicates Common word operation and a „0‟ indicates the 

individual SPI operation. 

Reset Out 

This is an active low output from the SPI block (resetb_out). It is zero in 

the default mode. This output is intended to be used as Power On Reset 

and users can use this to reset their register files. This signal goes low 

when, either the global reset (rstb) goes low or a reset sequence has been 

exercised on the SPI block. 



Since we intend to use only one chip select line to control every slave device, an address 

based system is needed. As part of the transmitted data sequence, the first few bits represent the 

address bits. The data bits follow these address bits. This serial stream is shifted into every slave. 

Within every slave, the received address is matched with a hard-wired address and when a match 

is found, the data is loaded into that particular slave. The rest of the slaves discard the serially 

shifted data. A typical hookup of the SPI master-slave system is shown in Figure 33. 

 

 

 

Figure 33: Typical SPI Subsystem with Multiple slaves 

 

  

The outline the Version 1 of the SPI sub-system is presented in the coming section which is 

followed up by a further detailing of the Version 2 SPI and its various modes of operation.  

 

 

 



4.2 Version 1 of the SPI sub-system 

 

4.2.1 Overview 

 

In 2008, the digital flow using a place and route tool was not completely setup. It was 

being used for the cell layout only. Rest of the design was done in the Cadence Virtuoso ICFB 

environment. As seen in chapter2, functional simulations were not performed on the design, but 

detailed transistor level spice simulations were. This was a very time consuming process and for 

the lack of sufficient time, exhaustive testing on the sub-system was traded off.  

 

The standard data sequence was as follows: 

 

Addr<0:4> Read bit Write bit Long Bit Write_bits<w:0> 

 

 

4.2.2 Modes of Operation 

 

 Write Mode: Write bit is high. The data in the serial stream is loaded into the spi_write 

bus. Only the short word is loaded. 

 Long Mode: Long Bit is high. This means all the write bits will get loaded. If this is 0 

only the short word (length specified in table) is loaded. 

 Read Mode: Read bit is high. The parallel word from the spi_read bus is loaded onto the 

dout line serially. 

 

For V1 of the SPI slave, two different write modes were designed based on the system 

requirements. The RF modules in the Digital Radio chip, need tuning or parameter updates fairly 

quickly and repetitively. For that reason, these bits were clubbed together as a “short write” and 

could be accessed easily (typically 12-16 bits). The rest of the bits (typically 120 bits or more) 

were part of the extended write or “long write” which took much longer to access. 



4.2.3 Cell Naming Convention 

 

Each of the SPI slaves is given a name which indicates the read and write widths as 

shown in Figure 34. 

 

SPI Naming Convention

spic7w72s32r16

7 Control Bits

72 Total Write Bits

32 Short Write Bits (for faster write)

16 Read Bits

* Total number of Write bits = 72 – 7 = 65
 

 

Figure 34: SPI slave naming convention 

 

 

 

 

 

 

 

 

 

 

 

 



4.2.4 Typical SPI sub-system address space 

 

 Table 4 shows the SPI slave address space used on October 2008 ST90nm CMOS Digital 

Radio chipset. 

 

 

Table 4: SPI Subsystem Address Space 

 

User/Block 
Bits 

Cell Name 
Address 

Total Control Write 
Short 

Wr 
Read refadd[0:3] 

Power 

Amplifier 
16 

6 
10 0 8 Spic6w16s0r8 “0000” 

(4a+1r+1w+0L) 

LNA+Mixer 32 
7 

(4a+1r+1w+1L) 
57 16 8 Spic7w64s16r8 “0001” 

Analog 

Modem 
128 

7 

(4a+1r+1w+1L) 
121 32 16 Spic7w72s32r16 “0010” 

RF 

Amplifier 
48 

7 

(4a+1r+1w+1L) 
41 16 8 Spic7w48s16r8 “0011” 

VCO 72 
7 

65 8 8 Spic7w72s8r8 “0100” 
(4a+1r+1w+1L) 

Data 

Converters 
8 

4 

(4a+0r+0w+0L) 
4 0 0 Spic4w8s0r0 “0101” 

Digital 

Modem 
56 

7 
49 16 8 Spic7w56s16r8 “0110” 

(4a+1r+1w+1L) 

 

 

 

 

 

 

 

 

 

 



4.2.5 Top Level SPI System 

 

 

Figure 35: Top Level SPI System 

 

 

 

The SPI control bits from the input consist of the following signals: datain, clock, load, 

read_enable and reset. These will be routed to each individual SPI through the top level bus with 

buffers and capacitors inserted at regular intervals. Since the design was entirely done in the 

cadence schematic entry environment, buffering on the data bus had to be done at this stage (pre-

layout). The assumption being made was that the delay impact would be uniform over all the 

signals. The SPI digital bus had deep penetration inside the RF core, crosstalk was a major 

concern. To mitigate this risk, sufficient decoupling capacitance was added all through the digital 

bus. This however mandated an increased use of buffering to keep the slew rates within bounds. 

A ground shield was laid out on both sides of the data bus. 

 

 

 

 



4.2.6 SPI Core Design (for spic6w16s0r8) 

 

 

 

 

 

 

As shown in Figure 37, the first few bits comprise of the address bits. An „add_check‟ signal is 

generated in the address decoder block, which is used as a gating signal for loading the data bits. 

The register space is made up of two levels of registers clocked on different clocks as seen in 

Figure 37. 
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Figure 37: Two level of registers clocked by spi_clk and load 

 

Figure 36: SPI Core Design 



The read_enable signal stays high when serial data is being shifted out of the SPI. This is 

used in the junction blocks shown in [fig] for bus arbitration. All of the serial data out ports are 

wired-or since only one of them would be operational at any given point in time. Hence, tri-state 

buffers are used before wire-or‟ing two signals, with read_enable providing the gating check. 

 

4.2.7 SPI Junction Circuitry 

 

 

 

 

 

 

 

 

 

 

 

 

The junction ensures that two SPI blocks do not contend for the dout line at the same 

time. In case of an error, if two SPI slaves do contend for the same serial out bus, both of them 

lose control of the bus. 

 

 

 

 

 

 

 

 

 

Figure 38: SPI Junction Circuitry 



4.2.8 SPI Layout 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Most slaves had an aspect ratio of 1 to 1.2. Inputs and Outputs were on opposite sides 

with static configuration signals on one side. The ref_add bits set the hard-wired address for the 

individual slave.  

 

4.2.9 Read Operation 

 

Special care needs to be taken during the read operation. Since the total bus length is over 

2mm, it could take longer than a single clock period to shift the data out. Hence two successive 

read operations are avoided by interleaving a dummy write operation between consecutive reads. 

During the idle state and write state, there is no activity on the serial_data_out port. A logic high 

state is always maintained on this port during idle state. When a read operation is initiated, a 

preamble consisting of {1,0} is shifted out first. A 1 to 0 falling edge on the serial data out port 

indicates the start of the data frame. A post-amble of 3 logic zeros follows the data frame. 

 

Figure 39: SPI Layout 



4.2.10 Typical RF Radio Initialization sequence 

 

The two flowcharts in Figure 40 and Figure 41 highlight the SPI based RF Radio 

initialization sequence. 

 

1. Chip Initialization 

 

 

 

 

 

 

 

Figure 40:  Chip Initialization 

 

SPI Initialization Procedure

Bits being sent on SPI bus Description of the stateState

Key for the document

Reset sequence

Individual SPI 
configuration sequence

Common word 
sequence

Reset: a0 = 1, a1 = 1, load  pulse Internal reset signal is generated , which resets all 
data registers to zero. This reset signal is also 

available at the output of the SPI block as ‘rstb’.
‘rstb’ is a logical OR of the global reset signal 

‘reset’ and this reset sequence generated signal.

SPI Config: a0 = 0, a1-a3 = 
address, 3 control signals, data 

(variable length), load pulse

Individual SPIs are configured to output relevant 
data on their data bus. Further operation will 

happen through common word sequence, where 
only part of these data bits will be toggled.

Common mode: a0 = 1, a1 = 0, 14 
bit data, load

Common word sent to all SPIs. Based on the 
common control bits, individual SPIs will toggle 

bits on their data bus.

Unreset: a0 = 1, a1 = 0, load pulse

Common word 
sequence

Individual SPI 
Write

Individual SPI 
Read

SPI write: a0 = 0, 
a1-a3 = address, 3 

control signals, 
data, load pulse

SPI read: a0 = 0, 
a1-a3 = address, 3 

control signals, 
load, extra clocks 
for data read out

Common mode: 
a0 = 1, a1 = 0, 14 

bit data, load



2. Time Domain Duplexing Operation 

 

 

 

Figure 41: Time Domain Duplexing Operation 

 

 

 

 

 

 

 

 

 

 

 

Standby Mode

TX Early ON = 1
Transmit Mode

Standby Mode

Receive Mode

Receive Mode + AGC on

Standby Mode

AGC bits toggle

AGC state: OFF
Gain set by saved state

AGC State: ON

TX  ON = 1

RX Early ON = 1

RX  ON = 1

Receive Mode + AGC on 
+ AGC State saved AGC bits toggle

AGC State: ON
and AGC State is saved



4.3 New Upgraded V2 SPI Sub-System 

4.3.1  Motivation for the upgrade 

 

The following reasons prompted the re-design of the SPI sub-system: 

 

1. The design had to be ported to the standard digital design flow right from RTL to GDSII.  

 

2. The entire design needed to be synchronized to a single clock (spi_clk). The version1 

design had multiple clocks (spi_clk, load) with no clock-domain crossing checks. This 

led to some bits getting erroneously loaded or getting loaded with the wrong data. Such 

glitches were totally eliminated in this revision of the SPI system. 

 

3. The RF radio got revised from 3 separate chips to one single chipset. The number of SPI 

slaves increased manifold and the addressing had to be changed. The concept of Control 

Word followed by a Data Word took birth.  

 

4. The data word format changed from {Short word + Long word} to {normal data word + 

Common Mode word}. Thus was born the “Broadcast Mode” which enabled control of 

all the SPI slaves at one go. 

 

5. During the tuning and calibration phase, only a few bits used to get updated. However 

with the older SPI system, the entire 200-odd bits had to be streamed in. A change to the 

register based system meant that data could be updated in short bursts and hence in lesser 

time. The whole data word was broken down into 32b registers for both read and write 

operations.  

 

6. This 32b register based data access is also in compliance with the standard serial 

communication interfaces found on microcontrollers. It can be used to transfer data 

between any two devices, say a microprocessor and memory unit. 

 



7. Bugs were found when doing a parallel load into certain SPI slaves. Additionally, some 

of the bits in one SPI slave got flipped when writing into another SPI slave. For the lack 

of exhaustive testing, this erroneous behavior could not be explained. With the new 

digital flow setup, running functional simulations at different stages (RTL, post-synthesis 

and post-layout) was fairly straightforward. Many more test cases were created for the 

exhaustive testing which led to fixing of some minor bugs. All the modes were tested 

with different combinations being tried out. Probability of an error was reduced to less 

than 1 bit in 100,000 (measured data). 

 

8. Since the 3-chip implementation of the digital radio was now a single chip solution, the 

classification of SPI slaves had to be modified. The address space was reassigned with 

the two most significant bits now representing the layer in the OSI 7-layer protocol stack 

[17] – RF, MAC, PHY and PAL.  

 

9. Two consecutive read operations were not feasible in the first version of the sub-system. 

With the new design, it is now possible to perform consecutive read or write operations 

and in fact any permutation of read/write access is supported.  

 

10. A bug was found with the software reset functionality. The slaves were reset through 

software just fine; however the unreset command had a glitch wherein the common mode 

indicator bit got reset. Staying in the common mode even during software reset was 

important for the RF blocks. This was fixed in the next version of the SPI slaves. The 

common mode indicator flag in the new system gets reset only on hard-reset and on 

common mode exit command.  

 

 

 

 

 

 

 



4.3.2 Block description 

 

 The basic block diagram of an individual SPI slave is shown in [fig].  

 

Figure 42: SPI Block Diagram - Individual Slave 

 

 

Since the new SPI slave is a single clock domain design, the load signal is now converted 

from a positive going pulse at the end of the data transmission, to a low going enable signal 

indicating transmission. It stays low throughout the data transmission and is illustrated in the 

timing diagrams below. Rest of the SPI interface comply with the standard 4-wire SPI protocol 

(courtesy: Motorola), namely: reset_n, spi_clk, sdi and sdo. Read enable signal is used for bus 

arbitration on the read path. A reset_n_out signal is generated as a software reset and is 

explained in 4.3.7.1below. 

 

 

 

 

 

 



The data interface is split into three blocks: read bits, parallel write bits and common 

mode control bits.  

 

a) Read block: The read block is split into 32 bit registers and each one of these 

registers can be read out individually. The number of registers is a programmable 

parameter in the RTL Verilog file. The read block latches the data on the read 

(pdin) pins on each clock rising edge. A predefined preamble and post amble is 

attached to the data before serially shifting it out.  

b) Parallel Write Block: This block contains the regular parallel write registers, each 

one 32bits wide.  

c) Common Mode Control Block: This block contains one 32b register that is used 

for common mode control. The common mode is another name for broadcasting 

data. The [sec 5.3.5] below will talk more about common mode.   

 

4.3.3 Simplistic Timing Diagram 

 

 A simple timing diagram for the SPI serial communication is show in [fig]. The first step 

is the SPI master pulling the Chip select line low. This signal is common for all of the address 

based SPI slaves. One dummy clock cycle follows this action. Hence, during the first clock cycle 

(after CS_N goes low) all the internal counters and state machines get initialized. Valid 

transmission begins with the second clock cycle. The 14b control word is sent first followed by 

the 32b data. After the 45
th

 clock cycle, a few dummy data bits are padded. The number of bits is 

programmable and is set through a parameter in the RTL source code. On the next falling edge of 

the clock, the chip select line is pulled up to logic high. 

Since this system is half-duplex, data transmission can occur only in one direction at any 

given time. The clock is always sent from the master to the slave. The Master should always 

change the data during the falling edge of the clock. This allows the slave device, sufficient time 

to latch the data on the rising edge of the clock.  

When a read command is issued, the control word is sent to the slave. On the following 

clock rising edge (16
th

 clock cycle) 



 

Figure 43: SPI Timing Diagram (Version 2 implementation) 

 

4.3.4 Control Word Format 

 

 The 12b control word is shown in Figure 44. The first bit is the read/write bit which 

indicates what operation is being exercised. According to this bit, the appropriate state machine 

kicks in. This is followed by a 2bit block address to choose between the RF, PHY, MAC and 

PAL blocks. The same slave is used for the RF, PHY and MAC blocks. However the PAL slave 

is actually a memory cell. That mode of communication is used by the off-chip microprocessor 

(PAL) to initialize the memory contents. When these two bits are “11”, there is no data width 

limit (32bits for all other cases). The whole memory content is streamed continuously in a single 

burst. The MAC serves as the link between the PAL and memory and hosts the Direct Memory 

Access (DMA) controller. Depending on which type of memory is being accessed, the DMA 

controller knows the data width (8bits/16bits). For RF, PHY and MAC blocks, the next five 

fields in the control word represent the sub-address or the slave address. The Figure 44 illustrates 

the sub-addresses for the RF block. The last 4 bits of the control word tell what of the 32b 

registers is being accessed.  



 

Figure 44: SPI Timing Diagram - Control Word 

 

4.3.5 Common Mode 

 

 The Common Mode is also known as the Broadcast mode for the SPI sub-system. In this 

mode, all the slave devices are controlled, all in one go. Global level changes are applied to all of 

the RF sub-modules, such as channel change, modulation change, gain setting, etc. The 

following table will better illustrate this point. 

 

 

 

 

 

 

 

 

 

 

 



Table 5: Common Mode Control Word 

 

Bit 

Number 
Function Pin Details 

0 CM Indicator 1 = Indicates we are in Common Mode 

1 CM Reset 1 = Common Mode Reset 

2 Tx ON 1 = Transmitter ON 

3 Rx ON 1 = Receiver ON 

4 Tx Early ON 1 = Early ON sent to Transmitter 

5 Rx Early ON 1 = Early ON sent to Receiver 

6 Channel Select 4 
 

See Channel Table in point 5 below which is 

as per ECMA standards 

„Channel Select 4‟ is reserved for future 

7 Channel Select 3 

8 Channel Select 2 

9 Channel Select 1 

10 Channel Select 0 

11 Mode Select 3 Modulation Schemes such as: 

OOK, BPSK, QPSK, MSK, 16-QAM, 64-

QAM and so on. 

 

12 Mode Select 2 

13 Mode Select 1 

14 Mode Select 0 

15 Data Rate Select 2 000 = 1.728Gbps                 001 = 864Mbps 

010 = 1.485Gbps                 011 = 3.456Gbps 

100 = 2.97Gbps                   101 = Reserved 

110 = Reserved                   111 = Reserved 

16 Data Rate Select 1 

17 Data Rate Select 0 

18 AGC 2 000 = OFF    001 = ON       010 = Save State 

(AGC ON)      011 = Load Saved State(OFF) 

1xx = Reserved 

19 AGC 1 

20 AGC 0 

21-31 Reserved Bits reserved for future use 

 

 
 

 

 

 



The mode information is as shown in Table 6. 

 

Table 6: Mode Selection Table 

 

Mod3 Mod2 Mod1 Mod0 Mode 

0 0 0 0 

Various Modulation 

Schemes such as: 

OOK 

BPSK 

BFSK 

QPSK 

16-QAM 

64-QAM 

PFM 

MSK 

and so on 

0 0 0 1 

0 0 1 0 

0 0 1 1 

0 1 0 0 

0 1 0 1 

0 1 1 0 

0 1 1 1 

1 0 0 0 

1 0 0 1 

1 0 1 0 

1 0 1 1 

1 1 0 0 

1 1 0 1 

1 1 1 0 

1 1 1 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 7: Channel Change Table [3] 

 

CH_CHANGE 
BAND_ID 

Lower 

Freq 

Center 

Freq 

Upper 

Freq 32 10 

00 00 1 57.240 58.320  59.400 

00 01 2 59.400 60.480 61.560 

00 10 3 61.560 62.640 63.720 

00 11 4 63.720 64.800 65.880 

01 00 5 57.240 59.400 61.560 

01 01 6 59.400 61.560 63.720 

01 10 7 61.560 63.720 65.880 

10 00 8 57.240 60.480 63.720 

10 01 9 59.400 62.640 65.880 

11 00 10 57.240 61.560 65.880 

 

 

 

Software reset is also a part of the common mode control. Four other operations; 

Transmitter/Receiver Early ON, Tx/Rx ON set the transceiver chip in either transmit or receive 

mode. The Early On mode is needed to give the on-chip VCOs (Voltage Controlled Oscillators) 

sufficient time to startup. Any jitter in the output frequency will directly impact the overall Bit 

Error Rate (BER).  

The Common Mode Control Block within each slave is as shown in Figure 45. The 

common mode control word is latched in a separate register. Thus, each slave has parallel data 

(multiple 32b registers) and common mode data (one 32b register). The data from these two 

registers are processed together with some combinational logic. The parallel data is also 

available for direct use (in the RF module). The multiplexed outputs are extra set of signals 

which are fed into the RF module. This way, the RF module‟s functionality can be overridden 

and tuned in the common mode/broadcast mode. There may be some static signals that are 

generated from other digital blocks, RF modules or are generated off-chip. One example being, 

the Tx_On signal. It is fed into the SPI slaves from an off-chip control (highest priority) or from 

a local SPI slave (next priority) or set through parallel data (lowest priority).  



 

Figure 45: SPI Slave - Common Mode Operation 

 

 

4.3.6 Software Reset 

 

 A new feature in this serial communication module is the ability to generate a software 

reset. To save up on an extra bonding pad the reset pad might not always be bonded out. 

However, the digital content on the chip is significant and it is best to initialize the digital logic 

to a known state. The state machines could go into a blind state and flip-flops could turn 

metastable; both cases being severely detrimental to the performance of our chip.  

 Hence software reset functionality was developed and the active low reset was used to 

reset majority of the digital content on the chip. Special SPI commands were reserved for this 

purpose. When this command (address) is broadcast, each of the slaves generate this reset signal. 

Peripheral logic such as SAR ADC digital core, ADC error correction algorithms, counters and 

gain control state machines, etc can make use of this reset pulse. Just to be safe, an unreset 



command was also reserved. These functions were tested to be working fine on the second 

version design.  

 

 

Figure 46: SPI Slave - Common Mode Reset 

 

  

As seen in the Figure 46, serial data is shifted into each of the SPI slaves. The reset_n 

signal is the off-chip reset signal; which is held high. After the serial data is latched into the slave 

(cs_n going high), the software reset command is detected and the reset_n_out signal is 

generated as a low going pulse.  All the internal registers are also reset as can be seen by 

observing cdout and pdout signals.  

 

 

 

 

 

 

 



4.3.7 Detailed Timing Diagrams 

 

 The following screenshots illustrate the timing sequences for SPI communication. 

Different modes are illustrated. These functional simulations were done using ModelSim on 

post-layout Verilog netlists. The post layout timing was verified in PrimeTime. 

 

4.3.7.1 Reset and Write Sequence 

 

 The first step after turning the power on is always applying a reset pulse. This initializes 

all the state machines in a known state and all the registers get pre-loaded with a known value. 

Metastability in flip-flops should be avoided not only because the operation needs to be 

predictable but also to keep the power consumption within bounds. A simple SPI parallel write 

sequence is the executed and the timing diagram for the same is shown in [fig]. The data bits are 

sent in a particular order: 12b Control word followed by a 32b data word. The control word is 

comprised of the read/write bit followed by block address, slave address and register address. 

The serially transmitted data gets loaded into the appropriate register while the sdo 

(serial_data_out) line remains tristated.  

 

 

Figure 47: SPI Parallel Write 



4.3.7.2 What happens when extra bits are shifted in? 

 

When the data is serially shifted in, the chip_select (CS_N) signal indicates the start of 

transmission and end of transmission information. A falling edge on this line indicates the start 

of data transmission and a rising edge indicates the end. The CS_N signal is expected to be held 

low all through the serial shifting process. What if the same SPI master is used to communicate 

with various SPI slaves? Some slaves could be built to receive 32b data while others could 

support higher data widths (say 128b). With the same SPI master, the chip select line would be 

held low for longer, providing excessive clocks. Each SPI slave is immune to the length of the 

CS_N low-period. For a 32b slave, the first 32 bits of data get latched on the rising edge of the 

CS_N signal as shown in Figure 48.  

 

 

 

Figure 48: SPI Write Operation - Excess Clocks (Redundant Data) 

 

 

 

 

 

 



4.3.7.3 Common Mode Write Sequence 

 

As discussed in Section 4.3.5, the Common mode is used as a broadcast control mode to 

control all the SPI slaves in one go. The common mode address assigned in this case was 

“0011111” which can be seen in Figure 49. The 32b data gets loaded in the common mode 

register and appears on the „cdout‟ port. Parallel data register (internal) stays unaffected by this 

change. However as seen in Figure 45, the multiplexing logic could change the data on „pdout‟ 

port. 

 

 

Figure 49: SPI Common Write Sequence 

 

 

 

 

 

 

 

 



4.3.7.4 Read Sequence 

 When the SPI masters sets the read/write bit in read mode, serial data is shifted out of the 

slave device. Data on the „pdin‟ port is latched internally on every clock cycle. When a read 

command is executed, this latched data is shifted out on the „sdo‟ port. To avoiding bus 

contention a read enable flag is set. It indicates valid data on the „sdo‟ line. Since the serial data 

out lines from all slaves are wire-or‟ed, bus arbitration logic is mandatory. The read_enable 

pulse is used to avoid contention as shown in Figure 61. 3 logic high bits are padded to the data 

and hence 35 clock cycles are needed for a successful read operation. A word of caution that this 

serial interface is half duplex and the clock is always provided by the master SPI.  

 

 

Figure 50: SPI Slave - Read Sequence 

 

 

 

 

 

 

 

 

 



4.3.7.5 Accessing the wrong register 

 

 When the sub-block address is wrong, the SPI slave does not respond at all. Hence the 

read and write commands will get ignored. Common Mode is characterized by the special 

broadcast address and hence that would also be ignored when a wrong address is shifted in. 

When the slave address is correct but the register address is wrong, the write operation will again 

be ignored. No change in the parallel data port happens. However when a read operation is 

executed with the wrong register address, all 1‟s are serially shifted out as shown in Figure 51. 

There is no particular reason in choosing all 1‟s over all 0‟s or a tri-stated output.  

 

Figure 51: SPI Slave - Read Sequence with Wrong Register Address 

 

 

 

 

 

 

 

 

 

 

 



4.3.8 Physical Layout 

 

 Cadence SoC Encounter is used as the physical design tool. The steps followed during 

the physical layout have already been outlined in Chapter 2 of the thesis. A number of SPI slaves 

were developed using the same flow. Depending on which module uses the SPI slave, a custom 

wrapper a.k.a. glue logic was developed around the SPI slave. Once the individual slave modules 

are designed using the digital flow, the top level integration and hook-up is done on Cadence 

Virtuoso [38].  

 

 

Figure 52: Physical Design of SPI Slave - Placement Stage 

 

 

 

 

Figure 53: Completed Physical Design of SPI Slave 

 

 



 

Figure 54: SPI Integrated with an RF Module (VCO) 

 

 

 

 
 

Figure 55: SPI Bus arbiter Junction 

 

 

 

 

 



 
 

Figure 56: SPI Bus 

 

 

 

 

 

 
 

Figure 57: SPI I/O circuit and pad interface 



4.3.9 MAC-RF Adapter and SPI Bypass 

 

 The initial version of the RF Radio Transceiver was a two-chip solution. The RF Analog 

Front End (AFE) was one chip and the digital PHY and MAC layers comprised of the second 

chip. Serial high speed data (I – In-phase and Q – Quadrature) is exchanged between the RF and 

PHY blocks. The PHY processes serial data, checks CRC, detects the preamble and combines 

the data in 32b format. Hence the PHY-MAC interface is a parallel 32b interface. The SPI serial 

communication system is shared across both chips and is controlled by the off-chip PAL 

(Application layer) processor. The 4-wire serial bus continues on from one chip to the other as 

shown in Figure 58. 
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Figure 58: Common SPI Bus on PAL -> Baseband (PHY/MAC) -> RF AFE interface 

 

 Individual SPI slaves are used for local calibration, tuning and operational settings. The 

common mode or broadcast mode is used to tune all the RF blocks all at one go. These changes 

are initiated by the MAC block and hence there is a need for a separate SPI master. The MAC-

RF Adapter serves exactly this purpose. It is the interface between the MAC control loop and the 

RF sub-system.  

 As seen in Figure 59, the MAC module provides the clock to the SPI Adapter. The MAC 

provides other control signals to the adapter namely, Channel Change, Modulation Change, Data 

Rate change, Channel Bonding, Gain setting and Tx/Rx switch. These commands are processed 

and sent over the serial link as part of the common mode control. Hence the SPI adapter acts as a 

slave to the MAC state machine and behaves as a pseudo-SPI master for the RF SPI slaves. The 

Adapter logic is an interrupt driven state machine and triggers any operation when the MAC 

initiates some command. On completion of the action, an action_complete flag is raised. This is 



the handshaking between the two state machines. The SPI Adapter also has a local SPI slave that 

is used to override some of its functionality. Every individual command that the MAC sends to 

the SPI adapter can be overridden by user defined commands with the help of the in-built (local) 

SPI slave.  

 

 

 

Figure 59:  SPI sub-system inside MAC 

 

  

The MAC-RF SPI Adapter is initially in the bypass mode. Hence the external SPI master 

has full control of every SPI slave on the chipset. On completion of this phase, the control of the 

bus is handed over to the MAC-RF Adapter SPI.  

 

 

 



As seen in the Figure 60, there is a multiplexer outside the MAC module which allows 

the PAL processor SPI master to access to the RF SPI slaves. This is the default mode. Once the 

MAC module takes over the control of the RF front-end, it sends information to the Adapter 

logic on the Channel Change lines. This is translated into a Common Mode Control Word and is 

broadcast to the RF SPI slaves. When in this mode, the external multiplexer is set to port 1 

allowing complete access of the RF slaves to the MAC. The MAC provides the clock to the 

Adapter and allows the Adapter to behave as a pseudo-SPI master.  

  

In case the PAL processor wishes to take back the control of the RF SPI slaves, it can 

communicate with the Baseband SPI (Figure 60) and flip the multiplexer over to port „0‟. Thus 

the MAC control can be bypassed for test purposes.  

 

 

 

Figure 60: SPI Bypass Logic 

 



4.3.10 An in-depth look at the Common Mode 

 

The SPI implementation in our design supports clock rates in excess of 750MHz. One of 

the primary reasons to design for such high speeds is for providing flexibility to change the 

settings on-the-fly. The control sequence is briefly described here: 

 

1. A power-on-reset is sent to the entire chipset. The PAL microprocessor, Baseband logic 

(MAC + PHY) and the RF Front-end all get reset.  

 

2. All the slave SPI devices are initialized using the master SPI (outside the chipset). 

Multiple 32b writes and some 32b reads are exercised on the SPI slaves.  

 

3. The SPI slaves in the Baseband chip are first initialized and then the slaves on RF front-

end chip are initialized. The SPI bus passes through the Baseband chip through to the RF 

chip.  

 

4. An SPI RF-Adapter module has been incorporated with the MAC module in the Baseband 

chip. This block acts as a pseudo-SPI-master for the RF front end SPI slaves. The MAC 

issues commands to the RF blocks (VCOs, CDR PLLs, Transmitter chain, Receiver 

Chain, etc…) though the SPI RF-Adapter, on the SPI communication channel.  

 

5. After all modules have been initialized properly, the Baseband SPI slave hands over the 

control the SPI RF-Adapter block. This is then the pseudo-master for the RF frontend 

slaves. The MAC module now issues commands related to the communication channel, 

data rate and the modulation scheme. These commands affect most of the RF blocks if not 

all. There is a need for a common set of commands that would affect each and every RF 

slave. Hence the creation of the „Common Mode Control‟. 

 

As shown in Figure 45, each RF SPI slave has two sets of register outputs: 

 



i. cdout – Common Data Out which indicates the “Common Mode Command”. A broadcast 

on the SPI bus sends this command to every slave (common mode address = 0011111 for 

all slaves). 

ii. pdout – Parallel Data Out which holds the data written to each slave device. These values 

get coded during the SPI initialization phase. . 

As shown in Figure 45; when in Common Mode the common mode command influences 

the parallel data out. This is indicated by the multiplexing logic. This combinatorial logic 

would vary from block to block within the RF frontend. Using this broadcast scheme, the 

MAC module can simultaneously change the knobs inside each and every RF block.  

 

 

4.3.11 Sub-circuits 

 

 

 The Read path bus arbitration logic is shown in Figure 61. Read_enable is an output 

signal from the SPI slave. This signal is high when serial data is being shifted out of the slave as 

seen in Figure 50. SDI is the serial data out of the SPI slave and is the Serial_Data_In input into 

the SPI master. When no data is being read out, this signal stays tristated (Hi-Z) and hence 

tristate buffers are used on this path. 
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Figure 61: Bus Arbitration Logic on SPI Read Path 

 



 The Self Reset circuit was developed for the first design of the SPI slave. The initial 

version of the SPI slave had two clocks: spi_clk and load. The serial shifting occurs on „spi_clk‟ 

edges and the evaluation and decoding occurs on „load‟ clock edge. Based on the command word 

settings, the parallel data is loaded into the short_write_register, long_write_register or the 

common_mode_write_register. Thus, we needed three separate enable / internal clocking pulses 

to accomplish this task. A reset_cum_pulse generator logic was developed for this purpose and is 

shown in Figure 62. The add_check signal is the address match flag and ensures that a particular 

SPI slave is selected for evaluation. The external_reset signal is connected to the „power on 

reset‟ pulse. 
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Figure 62: Self-Reset and Pulse Generator Logic developed for the first version of SPI slave  

(Multiple clock domains) 

 

 

 

 

 

 

 

 

 

 

 



5 SPI TEST AND MEASUREMENT SETUP 
 

Just as the SPI Master-Slave sub-system went through multiple revisions, the test 

mechanism too was developed in stages. The first stage involved using an off-the-shelf solution 

from Byte Paradigm – the GP22050 Protocol Analyzer [39]. The hardware dongle is shown in 

Figure 63 and the GUI used to test the SPI sub-system can be seen in Figure 64.  

 
Figure 63: GP-22050 from Byte Paradigm used as the Embedded Protocol Analyzer 

 



 
Figure 64: User Interface (8PI-Controller) for GP-22050 

 

 

 

The next logical step in development of test and analysis tools was to build a self-

contained system. As a result of which, it was imperative to move to a Microcontroller based 

solution: Cypress Advanced Development Board [40] shown in Figure 65. The user interface 

was prepared in Matlab and can be seen in Figure 66. The microcontroller board can be 

configured either as an SPI master or as a slave. A sample waveform when the board acts as an 

SPI master is shown in Figure 67. 



 
Figure 65: CY3684 Development Board from Cypress Semiconductor 

 



 
Figure 66: Graphical User Interface in Matlab for Cypress ADB 

 

 

 
Figure 67: Sample waveforms for Cypress Microcontroller based SPI Master 

 

 

 



To make a self-contained system and to help prepare an evaluation kit for the Digital 

CMOS Radio solution, a mini-board was developed as seen in Figure 68. The board could 

directly be plugged into the USB [41] or FireWire [42] port of the computer. A working demo of 

the RF CMOS Digital Radio can be seen in Figure 69. 

 

 
Figure 68: Mini-board for self contained RF CMOS Digital Radio evaluation kit 

 

 

 



 
Figure 69: Working demo for mini-USB based solution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 ULTRA HIGH SPEED DIGITAL I/O DESIGN 

6.1 ST90nm Standard Digital IO Evaluation 
 

This chapter briefly outlines the IO cells available in the design kit provided by one of the 

vendors (ST Microelectronics [43]). Similar IO cell libraries are available from other vendors 

(TSMC [44], IBM [45], Samsung [46] and so on).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6.2 Classification of I/O cells 
 

The IO cells are divided as shown in the chart Figure 70. The figure is self-explanatory and 

highlights the most important features of the IO library. 

 

I/O Cells

1.0V 2.5V 3.3V 5.0V Step Fillers Filler Cuts Corners Supply Pads Reference Compensation

CMOS I/P TTL I/P

-  Input characteristics with hysteresis

- Library contains Digital I/Os and 

macros

- No special power sequence 

requirement

- Programmable Pull-up and Pull-down

- Scannable tri-state output

- Active output impedance control

- Slew rate controlled drivers

- Antenna diode protection on core 

inputs

- All cells available in single and double 

row configurations

- Controlled SSO noise performance 

(Simultaneous Switching Output)

- All I/Os come in 50um and 60um pitch

- Active current slew and impedance 

control feature of I/O cells is done 

through the IO_REF_Compensation 

block

- This is a macro cell placed in the core 

region with connections to the IO ring

- Special IO pad needed to tap these 

signals from the core

- Provides various reference voltages to 

the I/O cells which helps Active Slew 

Rate control and controlled SSO noise 

performance

- Controls the sleep mode for 

conserving power consumption

- Provides active output impedance 

control and compensation 

Connection Analog I/Os to 

Digital I/O pads

Connecting Linear I/Os 

with Double Row I/Os

- Cuts I/O rails: Core VDD, Core ground, I/O VDD, I/O 

GND, Reference, ASRC (Active Slew Rate Control) 

signals and Reference Compensation block signals

- Available in Linear and Staggered versions

- Contains back-to-back diodes between ground nodes

- Impact of the ring cuts on ESD and noise 

performance should be considered

- For ESD purpose, the substrate contact ring never 

gets cut under any circumstance

Cadence 

Layout 

Snapshot 

of a 

Corner 

pad!!

- Provides supply to I/O and core power 

rings

- Provides strong connection to power 

rings and Reference signals (A-F)

- Minimizes the parasitic resistance on 

power rails (keeps it below 70mΩ)

- Each supply pad carries upto 70mA 

- Recommended to use supply pads on 

inner rows when using staggered layout

* Reference: STMicro IO datasheets for 90nm node (CMOS090DK)  

Figure 70: Classification of IO Cells 

 



6.3 I/O Performance Evaluation 
 

Some test scenarios were created to test the performance of various I/O cells. A sample 

test was to tie two bi-directional digital I/Os back-to-back. Simulation results for the current 

drawn by the bi-directional cells are shown for the following two cases: 

 

i) Bi-Di driving another Bi-Di with 10pF of wire-load (Figure 72). 

ii) Bi-Di driving a 200Ω resistor // 1pF, for max drive capability (Figure 71). 

 

It is seen that when the Bi-Di cell is driving another Bi-Di cell, the average current 

consumption per IO is around 1.1mA at 108MHz. This amounts to 1.32mW average power 

consumption with 50% switching rate of incoming data. This switching rate is too high and is the 

worst case. Usually switching rates are in the 10% range.  

 

 

 

 

 
 

Figure 71: Simulation results for Max loading (200ohms//1pF). The first waveform shows the current 

consumption in two IOs = +/- 14.5mA 



 

Figure 72: Simulation results when one Bidi cell is driving another Bidi cell (10pf wire load).  

First waveform shows that the average current consumption is about 2.135mA for two Bidi cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6.4 Electro-Static Discharge  

 

6.4.1.1 What is ESD? 
 

 The word electrostatic discharge brings to our mind the memories of lightening striking 

the top of a building or sparks that form between our fingertips and metallic surfaces like 

doorknobs on dry winter mornings. The sparks are the caused due to the ionization in the air 

pocket between the charged human body (here palm of the hand) and the zero-potential metallic 

surface (here doorknob). These scenarios highlight the importance of studying the phenomenon 

of high voltage discharges. We focus on EOS (Electrical Over Stress) and ESD (which is a 

subset) occurring on semiconductor chips in particular CMOS chips.  

 

 

Figure 73: Distribution of failure models in Silicon ICs. ESD accounts for approximately 10% with EOS 

responsible for close to 5% of the failures. [47] 

 

 

In many cases EOS classified failures could be classified as ESD failures, which would 

make its percentage even higher. [48]. Charvaka Duvvury (Texas Instruments) defines ESD as 

the transient discharge of static charge, which can arise from human handling or contact with 

machines [49]. The next sub-section briefly covers the major type of ESD related failure 

mechanisms plaguing the chip design community and their approach to counter it. Some of those 



steps have been incorporated into the STMicro IO library cells and others taken care of 

manually.  

 

 

Figure 74: Three dominant ESD mechanisms, namely the Human Body Model, Machine Model and Charge 

Device Model 
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6.4.1.2 ESD Failure Mechanisms - Human Body Model 
 

 HBM is modeled on a person with a static charge touching a pin on a sample, while 

another pin is grounded. It is intended to address the hazard of charged person handling parts.  

This is one of the oldest failure mechanisms and the test methods used to test it are very mature. 

However, pin-to-pin hazards from charged people are less relevant for high pin-count BGA 

packages. 

 

Figure 75: ESD Failure - Human handling the chip [56] 

 

 

Hence the current design methodologies and testing procedures are built to test the 

robustness of the ESD protection devices and not to precisely model the field hazards.  

 

Figure 76: Simplified HMB Equivalent Circuit [56] 



 

 

Figure 77: HBM Test circuit [56] 

 

 

 

6.4.1.3 Machine Model 
 

 Machine model is modeled on an isolated and charged conductive objective touching a 

pin on a sample, while the charge is discharged through another pin that is grounded. Generally, 

HBM tests encompass all of the MM tests in them and hence MM is getting obsolete with 

JEDEC [50].  

 

 

Figure 78: Machine Model Equivalent Circuit [56] 



 

 

 

Figure 79: Machine Mode Test Circuit [56] 

 

 

 

 

6.4.1.4 Charge Device Model 
 

 

The Charge Device Model models automated handling of parts. An ESD event that 

occurs when a device acquires charge through some triboelectric (frictional) or electrostatic 

induction process and then abruptly discharged to a grounded object. In the field, the part picks 

up a charge through motion in the assembly or board mounting process or by encountering an 

electric field, and then one pin strikes a metallic ground, discharging the part suddenly. Usual 

steps in CDM testing would be 100V to 250V.  

 

 

 

 

 



A field induced CDM simulator is used to test for CDM zapping and the procedure is: 

 

1. The sample is placed on a field charging electrode, its potential is raised by applying the 

test voltage to the electrode, all pins floating. 

2. A POGO pin, which is  tied to a ground plane through a 1 ohm resistor then touches a 

package pin, letting the part neutralize back to 0V (discharge). 

3. Each pin will be zapped three times at both positive and negative polarity – total of 6 

zaps.  

 

Figure 80: Field induced CDM Simulator [56] 

. 

 

 

Figure 81: CDM Simplified Circuit Model [56] 



 

 

Figure 82: CDM Test Circuit [56] 

 

 

 

Figure 83: ESD Stress Waveform Comparison [56] 

 

 



6.4.1.5 State-of-the-art ESD protection techniques 
 

 Different structures such as ESD protection diodes, diffusion resistors, GGNMOS 

(Grounded Gated NMOS) etc. are used as ESD protection devices. These are part of the IO cells 

and serve as the first level of protection against electrical overstress. The second layer of 

protection is included inside the IPs in form of CDM clamps, ESD inverting buffers, gate poly 

resistors and so on. 

 

 

Figure 84: Some standard structures for ESD protection [54] [55] 

 

 

Figure 85: Sample ESD protected Output Buffer (Simplified Schematic) 



 

Figure 86: Sample ESD protected Input Buffer (Simplified Schematic) 

 

 

 

 

 

Figure 87: ESD Protection in Power Pad. VDDIO is typically 3.3V I/O Supply and VDD2 is typically 1.0V 

Core supply. The two grounds are connected through back-2-back ESD diodes. [55] 

 



 

Figure 88: RC-Triggered NMOS devices could be used for primary protection on supply rails. The trigger 

voltage could be programmable by varying the resistance and capacitance values. Special ESD implant 

should be used on the transistors to reduce the threshold voltage. [55] 

 

 

 A sample HBM test based (ESD zapping) failure mechanism is highlighted in Figure 89. 

[51]. VDD1 and VDD2 are two power pads which are part of separate power domains. The worst 

case scenario would be a case wherein the two ground planes are separate. It is general practice 

to have one common ground/substrate plane for a Pwell process. The figure below shows all 

possible current paths in a possible ESD event. Notes in the figure show the methodology to be 

followed to size the output and input driver devices so as to mitigate the ESD impact. If sized 

appropriately, most of the current would be carried by the GGNMOS and reverse-biased diode, 

thus acting as primary protection devices and avoiding permanent damage. 



 

 

Figure 89: Failure Mechanism at HBM Stress [55] 

  

 

6.4.1.6 Special ESD layout techniques 
 

 Special layout techniques might be used on the input and output driver devices to 

increase the source resistance and hence make them the non-preferred ESD current paths. The 

next few figures show some such techniques [52]. 

 

a. Every layer including metal, poly and active (n- or p-diffusion), is shaped as 45-degree 

polygons until the signal path changes layers (through a contact or via). By avoiding 90-

degree corners, we avoid charge concentration and power surges.  

 

b. Contacts are spaced a little away from the poly/gate to increase the active region 

resistance on source and drain sides. This reduces the voltage drop across the gate and 

increases the ESD protection characteristics of the transistor. If available, an additional 

layer could be used in the region between the contact and the gate poly to increase the 

resistivity of that region (RPO/Salicide block).  



 

c. Distance between gate and contacts on the power side should be minimal. 

 

d. Place multiple contacts and place them symmetrically. As seen in Figure 90, the electric 

field between source and drain forms symmetrical arcs.                                        

Distances Ra1+Rg1+Ra11 = Ra2+Rg2+Ra12 ensure that the current from an ESD strike 

is evenly distributed evenly along the width of the transistor. 

 

 

Figure 90: Layout of Output Buffer: End Overlaps [52] 

 



 

 

Figure 91: Layout of Output Buffer: Transistor Design [52] 

 

 

e. ESD protection resistors along with Grounded Gate NMOS devices form the typical 

protection circuitry for an input buffer. The layout of an Input ESD protection resistor 

with variable setting (selectable through Focused Ion Beam (FIB) machine) is shown in 

Figure 92. 

 

 

 

Figure 92: Input ESD Protection Resistor [52] 

 

 

 

 



6.4.2 SLVS Output Buffer 

 

6.4.2.1 General Description 
 

The high-speed digital IOs implemented here are based on differential signaling similar 

to the LVDS signaling shown in Figure 93. The serial data interface can support LVDS, SLVS-

200, and SLVS-400 at up to 4.32Gsps. 

 

 

Figure 93: LVDS signaling [10] 

 

 

SLVS uses differential signaling with resistive line termination both in the transmitter 

and the receiver. While differential signaling ensures more robustness against noise, line 

terminations at both ends eliminate reflections leading to improved signal integrity. The voltage 

swing of a single line is 200 mV (400 mV differential swing). This signaling referred to as 

SLVS-200 is based on the JESD8-13 SLVS-400 standard [53] and is a good compromise 

between power consumption, noise immunity, and VDD requirements. Hence, SLVS-200 is the 

primary standard chosen for implementing the high-speed serial interface though LVDS and 

SLVS-400 are also supported. 

The pulse-shaped outputs, being purely analog in nature, require analog 50  output 

buffers. 



6.4.2.2 SLVS/LVDS Output Buffer Swings 
 

 

The SLVS/LVDS Output buffer has 5-level programmable swings as shown in Table 8. 

 

Table 8: Output buffer voltage swings (into 50ohms) 

 

Output Setting {c1,c0_bar} Differential Peak (mV) Standard 

01 106 - 

00 203 SLVS-200 

11 358 LVDS 

10 408 SLVS-400 

Max. Swing Mode      FSM = logic 1 700 - 

 

 

 

6.4.2.3 Functional Schematic Diagram 
 

In its simplest implementation, an SLVS buffer switches the direction of 2mA current 

through an external resistive termination (50Ω), depending on the data pattern.  

 

 

Figure 94: Output Driver section for a simple SLVS implementation 



The reference current source shown above can be modified to support various standards 

such as SLVS200, SLVS400 and LVDS. The exact signal swings into a 100Ω differential 

termination have been illustrated in the previous sub-section. The current DAC setting is done 

using a 2bit decoder. A large buffer chain boosts the incoming data before switching the 

transmission gates on the output section.  These transmission gates are huge since they carry a 

peak current of over 6.5mA (Fail Safe Mode). Under all cases, these gates offer 16Ω of 

impedance. To match this to a 50Ω termination, we have added a series resistance of 34Ω.  

A special feature to disable the IO cell when it is not in use; has been provided. The Fail 

Safe Mode feature (FSM = logic „1‟) will maximize the reference current; thus giving us the 

maximum swing at the output.  

 

6.4.2.4  Visio Schematic 
 

 

 

 

Figure 95: {C1, C0_bar} 2:4 decoder for DAC settings 

 



 

Figure 96: Circuit to buffer Datap, Datan; which drive large transmission gates in output driver section 

 

 

 

 

 

 

 

 

 

 

Figure 97: Current DAC for setting Output Driver Constant Current Source, as per the IO standard being 

supported 

 

 



6.4.2.5 Layout 
 

 

 

Figure 98: Layout of the SLVS Output Buffer 

 

 

 

6.4.2.6 Performance Summary 
 

 
Table 9: SLVS Output Buffer Performance Summary 

 

C1 C0_BAR FMAX 

(Data rate) 

VOUT  

(peak-to-peak) 

Power Consumption 

0 1 5GHz +/- 40mV 10.364mW 

0 0 5GHz +/- 45mV 10.749mW 

1 1 5GHz +/- 160mV 13.175mW 

1 0 5GHz +/- 170mV 13.525mW 

FSM = Logic 1 5GHz +/- 350mV 20.211mW 

 

 

 



6.4.2.7 Component List 
 

 
Table 10: SLVS Output Buffer Component List 

 

Block Name Test Bed 

SLVS Output Buffer 

Back-to-Back Transient Simulation Testbench 

Inverter (drive strength X1) 

Inverter (drive strength X2) 

Inverter (drive strength X4) 

Inverter (drive strength X8) 

Non-inverting Buffer (drive strength X12) 

3 input AND gate 

Transmission Gate with PMOS and NMOS 

Transmission Gate with only NMOS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6.4.3 SLVS Input Buffer 

 

6.4.3.1 General Description 
 

The SLVS output buffer generates a switching current of typically 2mA pk-pk amplitude. 

This current flows through the internal termination of 50Ω (inside this digital input buffer). A 

total swing of 200mVp-p is developed which is then passed through an inverter chain. These 

inverters are appropriately biased, such that the input differential swing swings around the 

inverter switching threshold (VM). To ensure that we have biased the inverters near the switching 

threshold under all conditions (irrespective of variations in process corners, temperature or 

operating voltages), we use a special biasing technique. 

 

 

Figure 99: Bias generator for Inverters 

 

 

An identical inverter is used to generate the bias voltage. This inverter has a switch that 

would short its output, back to its input; hence forcing the inverter to settle at VM, its switching 

threshold. This bias voltage sets the input differential voltage to swing around VM. We get a 

much larger swing at the output of the first set of inverters on data path. After the signal is 

sufficiently boosted through the second set of inverters, it is fed into a buffer chain to drive a 



load of 20fF on each node. Simulation results with 4.4GHz data rate and complete loading, is 

shown in the next section. 

 

 

 

Figure 100: SLVS Digital Input Buffer functional block diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6.4.3.2 Visio Schematic 
 

 

 
Figure 101: SLVS Digital Input Buffer 

 

 

 

 

 

 

 

 

 

 

 

 



6.4.3.3 Layout 
 

 

 

Figure 102: Layout of SLVS Input Buffer 

 

 

 



6.4.3.4 Performance Summary 
 

 
Table 11: SLVS Input Buffer Performance Summary 

 

FIN – Cc extracted simulations 5GHz* 

Input Amplitude 10mV peak-peak 

Power Consumption 3.373mW 

 

 

* Verified operation up to 4.4Gbps in measurements 

 

 

6.4.3.5 Component List 
 

 
Table 12: SLVS Input Buffer Component List 

 

Block Name Test bed 

SLVS Input Buffer 

Back-to-Back Transient Simulation Test 

bench 

Inverter (drive strength X1) 

Inverter (drive strength X2) 

Inverter (drive strength X4) 

Inverter (drive strength X8) 

Transmission Gate switch 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6.4.4 SLVS Input-Output Buffers back-to-back Simulation Results 

 

A test schematic was created with the SLVS output buffer driving a long interconnect, 

which in turn drives an SLVS input buffer. The test schematic is as shown below in Figure 103. 

 

 

Figure 103: Test setup using SLVS I/Os back-to-back. Simulations show that speeds upto 5Gbps are easily 

supported 

 

 

Conditions:  

1. Data rate = 5.1Gbps 

             2. Output buffer setting = 400mVp-p (C1=1, C0_bar=0) (2mA drive) 

The signal swing does not appear to be balanced for a truly differential output, yet we are 

able to recover the complete swing through the digital input buffer. We must also note that the 

input buffer is not truly differential but pseudo-differential. 

 

 

Figure 104: Plot of Datap – Input to SLVS Digital Output buffer 



 

Figure 105: of Datan - Input to SLVS Digital Output buffer 

 

 

 

 

 

 

 

 

Figure 106: Plot of Outp – Output of SLVS Digital Output buffer 

  



 

Figure 107: Plot of Outn - Output of SLVS Digital Output buffer 

 

 

 

 

 

 

 

 

 

 

Figure 108: Power supply current drawn in SLVS Output buffer 



 

Figure 109: Current output of SLVS Digital Output buffer 

 

 

 

 

 

 

 

 

 

Figure 110: Digital output of SLVS Digital Input buffer 



 

Figure 111: Digital output of SLVS Digital Input buffer 

 

 

 

 

 

 

 

 

 

 

 

Figure 112: Power supply current drawn into SLVS Digital Input buffer 

 

 

 



6.4.5 Measured Results 

 

 The designed LVDS-SLVS I/Os were integrated into the chip and used at data rates of up 

to 4.32GS/s. The proper operation of the output buffer can be seen from the eye-diagrams in 

[Figure 113 and Figure 114]. However, measuring the input buffer was not feasible. The entire 

loop was tested to be functioning properly, thus indirectly testing the input buffer at data rates of 

1.728GS/s, 3.456GS/s and 4.32GS/s. 

 

 

Figure 113: 1.728 Gbps eye Diagram 

 

 



 

Figure 114: 3.456 Gbps eye Diagram 

 

6.4.6 PHY-MAC Chip I/O Ring 

 

 During the first phase of design, a separate chip was designed for Baseband processing. 

This chip included the functional blocks of PHY (PHYsical layer) and MAC (Media Access 

Control from the Data Link Layer). These two blocks were part of a separate chip which needed 

its own I/O ring. The baseband chip included an on-chip VCO for clock generation. A few 

analog pads were needed to tune this VCO. The following screenshots outline the flow that was 

used during the I/O ring development. 

 

 

 



1. The I/O pad requirement was estimated from the top level block diagram for the 

Baseband chip (PHY + MAC). Additional I/Os were needed for Clock Generation and 

Miscellaneous logic. Physical only I/O pads such as Power supply pads, ESD pads, 

corner pads etcetera were added to the top level Verilog netlist. Filler I/O pads are 

automatic inserted as part of the physical design flow.  

 

2. Since the overall RF CMOS Radio (Figure 115) was developed as a multi-chip solution, 

block diagram of the parallel interface sub-section was also considered during the 

generation of the parallel interface partial I/O ring. 
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Figure 115: Multi-chip solution developed for the RF CMOS Radio (version-1) 



 

Figure 116: Pin locations for the Application-PAL interface block and the PHY-RF interface block 
 

 

 

 



 

3. From the list of I/O signals, a spreadsheet representing the actual I/O pad assignment and 

the pad-cell to be used (from the STMicro IO Library) was developed. 

 

 

Figure 117: Full chip IO plan (Application on top & RF at bottom) 

 



 

4. A fake bonding diagram for the various I/O ring sections was developed. CUP (Circuit 

Under Pad) I/O cells with staggered I/Os was used as seen in Figure 118. 

 

 

Figure 118: Preliminary bonding diagram for the Parallel I/O section 
 

 



 

Figure 119: Preliminary bonding diagram for the Baseband Chip 
 

 

 

 

 

5. In consultation with the Package development engineer, the bonding diagram was 

finalized. The full-chip layout with die photographs is show in Figure 120, Figure 121 

and Figure 122. 

 



 

Figure 120: I/O ring of the Parallel Interface Section seen to the right of the CMOS RF Radio Chip 

 



 

Figure 121: I/O Ring on the Baseband chip 

 



 

Figure 122: Die photograph of the Parallel I/O 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 CONCLUSION 
 

In this work, a complete digital communication block set for control and tuning of Digital 

CMOS Radio has been presented. A novel communication protocol was developed, which 

combined the best of SPI and I2C protocols. The implementation was done using the ASIC 

development flow outlined in Chapter 2 and was tested to be functioning at clock speeds of over 

750MHz. Several tuning, self-healing and calibration algorithms were designed for the Digital 

Radio single-chip solution, all using the same reference flow and Standard Cell Library from 

various vendors. A list of claims and innovations is presented next. 

1. A design technique for an on-chip high-speed serial communication for a system-on-chip 

has been invented with special focus on lowering the power consumption. 

 

2. The serial interface has been optimized for achieving extremely high data transfer speeds. 

It has been tested at 750MHz on the 90nm technology node. The design is scalable and is 

expected to achieve data rates in the gigahertz regime at 65nm and 45nm. 

 

3. The architecture is scalable to accommodate as many slave devices as needed and is 

realizable in the vanilla CMOS process. Other serial protocols need special hardware for 

interface, like I2C needs open drain output drivers with data bus polling capability. 

 

4. A unique built-in self-resetting technique has been implemented to eliminate the need for 

a separate „reset‟ pin and save up on valuable real estate. 

 

5. The „Common Mode‟ based broadcast technique enables all the slaves to change states as 

needed thus allowing a significant speedup in the throughput. This is indispensible for 

timing sensitive state changes in which all the modules have to simultaneously reach a 

particular state with a predefined time period. 

 

6. The individual slaves are configured by writing the desired data pattern into them. A 

special „Short Write‟ mode allows the master device to very quickly change the settings 



on the slave devices. This is essential in Gigabits per second RF transceiver based 

applications. 

 

7. Most serial protocols spend significant time in handshaking. Our system eliminates these 

handshaking signals (like acknowledge signal) and leverages the overall RF system 

feedback loop to ensure correct data transmission. 

 

8. A new module can be connected to the address based serial communication system by 

simply connecting to the SPI bus. This “plug-in” feature eases the interfacing burden on 

individual RF block designers. 

 

9. Individual SS lines avoided; saves up a lot of silicon real-estate by avoiding extra routing 

and pads. 

 

10. Since most SoC control applications will be with a single master, all overhead associated 

with multi-master contention resolution is eliminated. 

   

The serial communication interface, high speed digital I/Os, Baseband chip along with the RF 

Analog Front end, form the core of the digital CMOS transceiver. This will pave the way for a 

next-generation connectivity solution which promises multi-gigabit transfer rate for real-time 

video streaming at low cost and in a small form-factor package. 
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