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ABSTRACT

An evolved version of the Technology Identification,
Evaluation, and Selection (TIES) method is presented that
provides techniques for quantifying technological uncertainty
associated with immature technologies. Uncertainty in this
context implies forecasting. Forecasting the impact of immature
technologies on a system is needed to provide increased
knowledge to a decision-maker in the conceptual and preliminary
phases of aircraft design. The increased knowledge allows for
proper allocation of company resources and program
management. The TIES method addresses the milestones
encountered during a technology development program, the
sources of uncertainty during that development, a potential
method for bounding and forecasting the uncertainty, and a
means to quantify the impact of any emerging technology. A
proof of concept application was performed on a High Speed
Civil Transport concept due to its technically challenging
customer requirements.

INTRODUCTION

Aggressive performance and economic objectives of future
aircraft concepts warrant the need for a change in the manner in
which complex systems are designed. Future concepts must
outperform current standards if they are to be viable alternatives
meeting societal needs. These needs are encapsulated in
projected commercial traffic growth, changing government
regulations, increased throughput, and the desires of the traveling
public for comfort, safety, and affordability. Specifically,
commercial world air travel is expected to grow at a rate of 5.5%
per year over the next decade [1], resulting in a 71% increase
over current levels within a decade and increasing 192% in two
decades. In addition, stringent regulations from government
entities impose laws on emission and noise levels and increased
safety while the traveling public desires lower ticket fares and
more flight options. Further, the airlines want more opportunities
for profit by lowering operating, support, and investment costs.
All of these objectives are imposing more constraints on future
aircraft concepts from the airframe and engine manufacturers. If

a manufacturer were to design, test, and mass-produce a vehicle
concept consisting of only present day technologies, it is
doubtful that the aggressive and conflicting customer
requirements could be met.

These shifting currents of commercial aviation have evoked
a response from the current NASA administration in the form of
the “Three Pillars for Success” program [2]. This program is a
roadmap to guide U.S. aerospace endeavors for the next 20 years
in accordance with the changing environment of future aviation.
A recent National Research Council report urges that to achieve
the goals set forth in the “Three Pillars for Success” program,
breakthrough technological capabilities, both evolutionary and
revolutionary, will be required [3]. NASA has launched the
Scenario-Based Strategic Planning initiative to propel the
identification and development of potential technology
candidates to meet the future goals. Yet, the adaptation by
manufacturers or operators of new technologies, which are not
incremental or imposed by regulation, encounters strong
opposition. Since manufacturers and operators are driven by
economic incentives, conventional or existing technologies are
usually preferred [3]. Yet, if a technology can be shown to the
decision-maker to improve a system at a low risk and without
significant negative impact to other subsystems or economics,
the technology may buy its way onto the aircraft. To facilitate
this objective in the conceptual and preliminary phases of design,
a means to quantify and forecast the impact of emerging
technologies, or mix of technologies, has been created. The
method is an evolved version of the Technology Identification,
Evaluation, and Selection (TIES) method developed in
References [4,5]. In Reference [5], the focus was on a
deterministic evaluation of the mix of technologies needed to
meet some customer requirements with a brief discussion on the
probabilistic nature associated with immature technologies. The
new aspects contained herein address the probabilistic nature of
immature technologies. In particular, a methodical logic is
developed to create the ability to forecast the impact of any
emerging technology, while accounting for technological
uncertainty.



2

METHODOLOGY

The methodology developed to ascertain the impact of
emerging technologies on aerospace systems is depicted in
Figure 1. The nine step TIES method has been described in
References [4,5] and fits into the modern aircraft design theory
presented in References [6,7]. The current investigation
addresses, in depth, the technological uncertainty and provides a
robust means for assessment. These new aspects are entailed in
Steps 6 through 9 and will be discussed in detail. A brief
overview of the other steps is presented as a basic outline of the
entire method.

OVERVIEW OF STEPS 1 THROUGH 5
The top portion of Figure 1 entails the first five steps of the

TIES method. The process begins by defining the problem
through a mapping of the customer requirements into
quantitative evaluation criteria (also called system level metrics).
Next, a potential class of vehicle concepts, e.g. a high capacity,
long range, subsonic transport or a twin-engine fighter class, is
identified that may fulfill the customer requirements. A
functional decomposition of the class of vehicle is performed via
a Morphological Matrix [8] to identify concept alternatives.
From this matrix, a baseline vehicle is established which contains
only present day technologies. A design space bounded by
control variables such as wing aspect ratio, engine thrust, etc is
then defined for the baseline. This space is investigated for
technical feasibility and economic viability in a Modeling and

Simulation environment via the Response Surface Methodology
(RSM) and/or Fast Probability Integration (FPI) technique. If the
probability of success for feasibility and viability are
unacceptable, the decision-maker has the option to expand the
design space, relax the constraints, or infuse new or alternative
technologies. The later option motivates the need for the TIES
method. The current research focuses on the enhancing the
quantification of the impact of technological uncertainty. The
reader is referred to References [4,5,9,10] for more detailed
information regarding steps 1 through 5.

TECHNOLOGY IDENTIFICATION (STEP 6)
If the design space exploration yields an unacceptable

system feasibility and viability, specific technologies must be
identified for infusion. From the Morphological Matrix,
applicable technologies or technology programs for the class of
vehicle under consideration must be identified from the
component alternatives. The designer or decision-maker must
establish physical compatibility rules, quantitative impacts to the
system, and the level of maturation of the technologies to
facilitate the evaluation and selection steps.

Compatibility Matrix

A compatibility matrix is formalized through Integrated
Product Teams to establish physical compatibility rules between
technologies. An example matrix is shown in Figure 2 for three
arbitrary technologies (T1,T2,T3) where a “1” implies
compatibility and a “0” implies incompatibility. It should be
noted that the limiting case of compatibility is a combination of
two technologies. Hence, the matrix is two-dimensional and
symmetric. In this matrix, T1 and T2 are not compatible. As an
example, a composite wing structure could not have HLFC. Due
to the nature of composite structures, the micro-holes needed for
HLFC boundary layer suction would compromise the composite
matrix, creating structural integrity problems. The purpose of
this matrix is to eliminate combinations that are not physically
realizable.

Compatibility Matrix               
(1: compatible, 0: incompatible)

T1 T2 T3

T1 1 0 1
T2 1 0
T3 1

FIGURE 2: EXAMPLE TECHNOLOGY COMPATIBILITY MATRIX

Technology Impact Matrix

Once the compatibility matrix is determined, the potential
system and sub-system level impacts of each technology are
established. The impact must include primary benefits and
secondary degradations. In general, the impact of a technology is
probabilistic in nature. The probabilistic nature arises from
various contributing factors, especially if the technology has not
fully matured, i.e. widespread commercial or military
application. Hence, a brief discussion is presented on the unique
aspects of an immature technology. In particular, an
understanding is needed of the following:

• the milestones encountered during a generic technology
development program,

• the sources of uncertainty during that development, and
• the potential methods for bounding and forecasting the

uncertainty so that the impact may be quantified.
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Technology Development

The innovative process by which a technology is developed
can be qualitatively described through a monitoring of the major
milestones achieved from concept formulation to widespread
application. As defined by NASA for application in the
aerospace community, the milestones have been characterized
into a “metric known as the technology readiness level (TRL)”
[3]. A description of the NASA defined TRLs is listed in Table I.
The TRLs represent a checklist for monitoring the progress of a
successful technology program and the expected impact.
Consideration is not given to the influencing or constraining
factors that may alter the progression such as schedule, budget,
market demand, political or socioeconomic policy, physical
limitations, etc. The TRLs simply describe the maturation and
development process of a technology and provide a basis by
which different technologies can be compared as they progress
through the gates of maturation. For program monitoring, TRLs
are appropriate, but should be mapped to a quantitative scale for
the purpose of decision making. To do so, one must understand
how a generic technology develops and matures.

“No single growth pattern describes the development and
diffusion of all technologies. There are general concepts of how
technologies develop, however, and these can be a useful guide”
[11]. One of the prominent concepts is through the method of
analogy to other “well-known physical or biological systems”
[12] such as growth patterns of yeast cell populations. Historical
data for various technology concepts, including aircraft speed,
steam engines, and fluorescent lamps [13], has revealed an
ordered pattern of development that resembles this biological
growth curve, also known as a sigmoidal curve or an S-curve.
The method of analogy assumes that a technology development
program will follow this S-curve pattern if a successful program
is achieved. A successful program is one that can achieve all
goals within the allowed budget and schedule. An example S-
curve growth pattern is shown in Figure 3 [11].

TABLE I: TYPICAL TECHNOLOGY READINESS LEVELS

Level Readiness Description
1 Basic principles observed and reported
2 Technology concept and/or application formulated (candidate

selected)
3 Analytical and experimental critical function or characteristic

proof of concept or completed design
4 Component and/or application formulated
5 Component (or breadboard) verification in a relevant environment
6 System/subsystem (configuration) model or prototype

demonstrated/validated in relevant environment
7 System prototype demonstrated in flight
8 Actual system completed and flight qualified through test and

demonstration
9 Actual system flight proven on operational vehicle
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FIGURE 3: GENERIC TECHNOLOGY DEVELOPMENT

The solid S-curve is the expected or ideal progression of a
technology as a function of program effort. The program
advances “slowly as many impediments must be initially
overcome, advances rapidly for a period and then slows as the
easy improvements” [11] are achieved. The uncertainty bounds
associated with the expected maturation curve are due to the
influencing and constraining factors stated previously, i.e.,
resource allocation, political and socioeconomic policies, etc., in
addition to assumptions made to assess the technology progress.
As expected, the uncertainty diminishes as the program advances
and knowledge and experience increases. The upper limit of this
curve is typically viewed as a physical limitation of the
functional capability of the technology and in most instances, a
point of diminishing returns.

If one were to map this technology progress curve to the
TRLs in Table I, the growth curve would be indicative of the
component progression from TRL 1 to 5, if the program is
successful. It should be noted that the uncertainty, which is
reduced, is directly attributable to the specific disciplinary
impact, e.g., drag reduction, for which the technology is being
developed and not to other subsystems. As resources are invested
and more knowledge is gained about the technology at the
component level, the uncertainty reduces. Yet, when the
component is integrated to the system in a relevant environment
at a TRL of 6, the uncertainty of the system increases as shown
in Figure 4. This increase results from integration difficulties,
degradation to other systems, manufacturing uncertainties, etc.
For example, Circulation Control (CC) is used to increase the lift
capability of the wing at low speeds and its current TRL is 4, as
applied to a high speed concept. This technology has been
proven with various wind tunnel experiments [14,15] to achieve
very high lift augmentation. Yet, with CC infusion into the full
system, issues concerning integration arise, including power
requirements for operation, redundant systems for certification,
available wing volume for ducting, etc. Additionally, prior to the
introduction of the technology, uncertainty already exists in the
system due to ambiguous requirements, modeling and evaluation
assumptions, to name a few, as shown on the left as the straight
portion of the system uncertainty.

However, if the technology development is not assumed
successful, the right hand side of Figure 4 may be obtained. If
one were to track the actual technology impact at the component
and system level as the TRL increases, the mode value of the
confidence interval (distribution) may deviate significantly. This
implies that the technology growth curve does not follow a
regular or predictable pattern. Aside, the mode value is defined
as the point of largest frequency [16]. For a symmetric
distribution, the mode is equivalent to the mean. Although
uncertainty reduces, the deviation in mode value is not evident
with increasing TRL shown on the left. In fact, the desired
impact may never be realized unless some physical limitation is
overcome, or breakthrough technology advancements achieved.
The movement of the mode value and the shape of the
distribution are functions of several factors. Those factors
include the resources allocated to the development of the
technology, the methods and tools used to analyze and design the
technology, the information available, the desired impact level,
integration to the system, and disruptive progress. The next step
is the identification of forecasting techniques to bound, quantify,
and estimate the technological uncertainty.
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Technology Forecasting

The primary purpose of forecasting, in any context, is to
provide the decision-maker with adequate information on which
future business decisions and company strategies may be based.
Two broad categories of forecasting exist: exploratory and
normative. Exploratory forecasting techniques consider historical
trends and extrapolate into the future to see what may happen.
“The feasibility of this process depends upon an assumption that
progress is evolutionary and does follow a regular pattern” [8].
The normative method begins with future goals and works
backward to identify the levels of performance needed to obtain
the desired goals, if at all achievable with the resources
available. Either perspective utilizes one, or combinations, of
four traditional forecasting techniques: S-curves, trend
extrapolation, the Delphi method, or scenario development [17].
The first two techniques assume a functional form of previous
technological growth and extrapolate to a future time. Again,
sufficient information must exist for the forecast to be accurate
and of value to the decision-maker. The Delphi method is a
structured means of incorporating expert opinions (usually
subjective) through questionnaires and controlled feedback to
estimate a technology impact and the confidence of achieving
that impact. Finally, the scenario development assumes some
future status of the world (economic, political, etc.) and its
influence on the technology progress to shape the development
curve [8,11] and usually disrupts the technology progress at a
pre-specified time.

If sufficient program monitoring is performed in the early
phases of a development, a technology impact trend may be
established. This trend may then be forecasted to a future time
(or a TRL) and the impact quantified. Yet, if a technology is in
the infancy stages and little information is available as to the
detailed progress, insufficient information exists for forecasting
the mode value of the distribution. For example, if a technology
were at a TRL of 3, as in Figure 4, one would assume that the
trend continues to reduce. Thus, erroneous results are obtained
and the forecasted impact would be more optimistic than what
could actually be achieved. This is one major difficulty
associated with forecasting methods. The irony exists that a good
deal of data is required to sufficiently forecast, but the need for
forecasting is more prominent when insufficient information
exists, as in the conceptual phases of aircraft design. As will be
shown in later sections, the specific technologies considered fall
into this later category of insufficient information.

Bounding Technology Uncertainty

If a technology is in the infancy stage of development (low
TRL), the shape of the development curve is not easy to predict,
due to lack of substantial data to establish a trend. Hence, the

forecast must rely on expert, subjective opinions through the
Delphi method with an assumed growth pattern. Subsequently,
the forecast should focus on the evaluation of “the potential
commercial benefits (and penalties) that might be achieved IF
the (program) is successful” [8] and can be matured to the point
of full-scale application (i.e. TRL=9). As more information and
data becomes available, the forecast is updated and re-evaluated.

Based on this rationale, the uncertainty, or confidence limits,
may be bounded based on a logical reasoning of what should
happen as a technology program progresses. For example, one
may assume that a successful technology program develops
along a linear trend as shown in Figure 5. Point “A” represents a
technology in the infancy stage of development. The desired
capability of the performance improvement is Point “D” and is
assumed to be the expert defined impact. This point is not yet
fully realized due to knowledge impediments, and may actually
be higher or lower than the expert defined limit. Points “B” and
“C” represent other levels of technology maturation. To bound
the uncertainty of the technology, one must realize the two
sources. One, the inherent uncertainty associated with the
technology development as described previously. Second, there
is uncertainty associated with forecasting the trend. Specifically,
the confidence limits of achieving a desired value “broaden as
the time frame of the forecast increases, reflecting the growing
level of uncertainty” [18] in knowledge. A tangible analogy of
this type of uncertainty is the forecasting of the price of fuel. One
could forecast what the price of fuel would be for the next day
with a very high confidence. However, the confidence of what
the price will be in fifty years is very low. Now, if one applies
this analogy to the forecasting of an immature technology impact
to a future time (i.e. TRL), the limits of probability should
spread. Consider Point “A”, since the time frame of the forecast
is large to the desired impact value, the distribution is very wide.
Yet, for a higher TRL value, the confidence or probability of
achieving the desired technology improvement increases since
the forecast is for a shorter time frame and more information is
available regarding the technology.

As shown in Figure 5 for the distributions (“a”,”b”,”c”), the
uncertainty in achieving the desired improvement is not
necessarily normally distributed and the mode value should
deviate. In fact, the distribution should be skewed towards the
desired level if the expert opinion is relatively accurate. Based
on this rationale, shape distributions associated with different
TRLs may be established and will be based on qualitative
reasoning, since insufficient data is available for the technologies
considered. However, the distribution definitions should be
modified, as more information becomes available.

Performance
Improvement
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92 4 83 51 6 7
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Limit of probability
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FIGURE 5: UNCERTAINTY IN FORECASTING A TECHNOLOGY
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Based on the probabilistic nature described above, a
Technology Impact Matrix (TIM) is formed for the technologies
identified in the Morphological Matrix. Unfortunately, advanced
technologies are difficult to assess within a conceptual modeling
and simulation environment such as a sizing/synthesis tool.
Sizing/synthesis tools are typically based on regressed historical
data that limits or removes their applicability to exotic or
revolutionary technologies. However, the impact of a technology
can be qualitatively assessed by introducing technology “k”
factors. These “k” factors modify disciplinary technical metrics,
such as specific fuel consumption, cruise drag, and/or component
weights that result from a sizing tool. The modification is
essentially an incremental change in the technical metric, either
enhancement or degradation. In effect, the “k” factors simulate
the discontinuity in benefits and/or penalties associated with the
addition of a new technology.

As a result, the impact of a technology can be defined by a
technical “k” factor vector whose elements consist of the benefits
and penalties associated with the technology. Each element of
the vector has an estimated impact value and an associated
distribution based on the technology’s TRL. Not all technologies
will affect each element of the vector, but the vector must
capture all technologies. An example matrix for three
technologies that influence four technical metrics is shown in
Figure 6. In the deterministic example in Figure 6, T1 and T3
affect all “k” factors except for the second, while T2 does not
affect the first or third. Each element of the vector is established
via the Delphi method, literature reviews, or physics-based
modeling [5]. The vector must include benefits and penalties to
accurately assess the impact of technologies. The identification
of the appropriate shape distribution for a given TRL of the “k”
vector elements is discussed in later sections.

Technical "K" 
Factor Vector

T1 T2 T3

k   factor 1 +4% ~ -10%

k   factor 2 ~ -3% ~

k   factor 3 -1% ~ -2%

k   factor 4 -2% -2% +3%
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FIGURE 6: EXAMPLE TECHNOLOGY IMPACT MATRIX

TECHNOLOGY EVALUATION (STEP 7)
The technologies identified in Step 6 are applied to the

vehicle concept and evaluated. The evaluation provides data and
information to the decision-maker whereby selection of the
proper mix of technologies is performed. Yet, the search for the
mix that will satisfy the customer requirements is dominated by
the “curse of dimensionality”. Depending on the number of
technologies (n) considered, the combinatorial problem can be
enormous. If all combinations are physically compatible and
assuming only an “on” or “off” condition, then 2n combinations
would exists. In addition, the technology “k” factor vector that
influences a vehicle is probabilistic and a cumulative distribution
function (CDF) must be generated for each combination, further
complicating the evaluation. If the computational expense of the
analysis is acceptable, a full-factorial probabilistic investigation
could ensue. Yet, if the computational expense is too high (e.g., a
finite element analysis), an alternate evaluation method is
needed. One potential method is a genetic algorithm formulation.
Reference [19] defines genetic algorithms (GA) as “a class of
general-purpose search methods…which can make a remarkable
balance between exploration and exploitation of the search
(design) space” to find the best family of alternatives.

For the purposes of the current investigation, the
computational expense is manageable due to the means by which
the technology “k” vectors are modeled. Consider the TIM in
Figure 6 and a metamodel representation of a system metric [20].
If one were to bind each “k” factor element of the technical
vector, a metamodel in the form of a second-order Response
Surface Equation (RSE), Equation 1, could be generated for each
of the system level metrics [5].
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For example, “k” factor 1, k1, is bounded between –10% and
+4%, while “k” factor 4, k4, is bounded between –4% and +3%.
Hence, the system metrics could be defined as a function of the
“k” factors for a fixed geometry using Equation 1, through a
Design of Experiments [21]. An RSE of this form is thus defined
for each system metric and is valid for the “k” factor ranges
specified. The impact of a technology on a system metric can be
evaluated via a simple calculation of Equation 1 with the
appropriate technology “k” vector values. Since the impact of a
technology is probabilistic, the “k” factor elements are
distributions rather than the deterministic values in Figure 6.
Hence, to quantify the impact on a system metric, a Monte Carlo
Simulation is performed with user defined frequency
distributions for each “k” factor element. Thus, a CDF is
obtained for each system metric. If one assumes that the
technologies are additive, then a combination of two or more
technologies remains a simple Monte Carlo Simulation on the
RSE. Now, instead of the response, R, being a function of only
one “k” vector (i.e., technology), it is a function of the sum of the
combination of vectors (i.e., sum of technologies). For example,
if one wants to determine a system metric value due to a
combination of T1 and T2, distributions are assigned to each
element of both “k” vectors. Then, a random number generator
would select a value for the first element of the T1 vector and the
first element from the T2 vector, based on the user-defined
frequency distributions. Then, the two values are added to obtain
a “new” first element that is then inserted into Equation 1 and the
system metrics value calculated. This is done for each element
and each time a new combination of technologies is desired. This
process is automatically performed with the software package
Crystal Ball [22] and the CDF values extracted.

POPULATION OF THE PUGH MATRIX (STEP 8)
The Pugh Evaluation Matrix [23] is a method where concept

formulation and evaluation is performed in an organized manner.
The concepts identified in Step 6 form the rows and the system
metrics from the problem definition form the columns as shown
in Figure 7. The deterministic elements of the matrix are
populated from the results obtained in step 7 for each alternative
and metric. Since the metrics are in the form of CDFs, the
decision maker has the ability to select a confidence level
associated with a given metric. The confidence level is also
related to the risk or uncertainty associated with a particular
technology, and the selection of these levels is purely subjective.
The corresponding value of the metric at a fixed confidence level
is then inserted into the appropriate cell of the matrix. This
process is repeated for each metric and each compatible
technology concept.
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FIGURE 7: POPULATING THE PUGH MATRIX

STEP 9: TECHNOLOGY SELECTION
A Technique for Order Preference by Similarity to Ideal

Solution (TOPSIS) [24] is utilized to down select the proper mix
of technologies satisfying the system level metrics. TOPSIS
provides a preference order of the deterministic values obtained
in the Pugh Matrix, at a given confidence level, resulting in a
ranking of the best alternative concepts. The method by which
TOPSIS ranks the alternatives is described below.

From the Pugh matrix, each element of a metric vector (i.e.,
a given column) is non-dimensionalized by the Euclidean norm
of that metric vector. If so desired, subjective weights may be
placed on each metric to establish a relative importance. Next,
each metric vector must be classified as a “benefit” or a “cost”
whereby a maximum of a benefit and a minimum of a cost are
desired. Positive and negative ideal solution vectors are then
established. The positive vector elements consist of the
maximum value of the “benefit” metrics and the minimum value
of the “cost” metrics. The negative vector is the compliment of
the positive vector. Next, the distance of each alternative from
the positive and negative ideal solution is measured by the n-
dimensional Euclidean distance, where “n” is the number of
alternatives. Finally, each alternative is ranked from “best” to
“worst” based on the closeness to the positive solution and
distance from the negative ideal solution. These rankings can
change depending upon the level of confidence and metric
weightings assumed.

Once the top alternatives have been identified, the decision-
maker has an abundance of information on which business
decisions and strategies can be based. One can explore the
robustness of each alternative with the Robust Design Simulation
method, which has been implemented for various vehicle
concepts [6,25,26]. Additionally, the “best alternative(s)” design
space may be re-investigated to determine if geometric
optimization may further improve on the customer requirements
[4]. Finally, the individual technologies may be compared on a
one-to-one basis to identify which technology programs have the
more significant impact on the systems so that resource
allocation may be optimized.

IMPLEMENTATION

The TIES method described herein was applied to a High
Speed Civil Transport (HSCT). This vehicle was a perfect test-
bed for the TIES method due to the technically challenging
customer requirements and the need for revolutionary advances
over present day technological capabilities. For brevity, the new
aspects of the method are emphasized in the current
investigation, in particular Steps 6 through 9, while only the

pertinent information needed for context from Reference [4] is
presented. For more information regarding the details of the
beginning steps of the TIES method as applied to an HSCT refer
to References [4,25].

OVERVIEW OF STEPS 1 THROUGH 5
In the recent NASA High Speed Research program effort,

an HSCT was defined as a Mach 2.4, 300 passenger aircraft with
a 5,000 nm range [27] and four mixed-flow turbofan engines
[28]. The system level metrics that must be met for a successful
HSCT concept are summarized in Table II. Although the TOGW
is constrained to less than 106 lbs, previous work has indicated
that a nominal value of 750,000 lbs is desirable for economic
purposes. Baseline and alternative concepts were established via
the Morphological Matrix in Reference [4]. The optimal
geometric baseline concept that was established at the end of that
investigation served as the baseline for the current investigation.
The only exceptions included the use of a fuselage nose droop in
lieu of synthetic vision and a conventional nozzle without a
mixer-ejector nozzle and an acoustic liner.

The configurations analyzed in this study were sized for a
5,000 nm mission with the primary cruise altitude of 67,000 ft at
Mach 2.4. A subsonic cruise portion preceded the primary cruise
segment at an altitude of 35,000 ft at Mach 0.9. The payload of
the aircraft was assumed 300 passengers with baggage and a
flight crew of two, nine flight attendants, and a fuselage length of
310 ft with a maximum diameter of 16 ft. The primary geometric
and propulsive characteristics of the baseline configuration were
described in Reference [4] and a three-view is shown in Figure 8.
All aircraft sizing and analysis tasks for this study utilized an
enhanced [4] version of the Flight Optimization System, FLOPS
[29], code. FLOPS was linked to the Aircraft Life Cycle Cost
Analysis, ALCCA [30], code.

The HSCT design space exploration performed in Reference
[4] revealed that more than 50% of the design space considered
could meet the LdgFl and TOGW requirements. Yet, the TOFL,
Vapp, and FON could only be satisfied by 19.5%, 3.5%, and
2.5%, respectively. The concept “show-stopper” was the SLN,
which could not satisfy the 103 EPNLdB requirement with any
combination of design parameters. Since no feasible design
space exists, the economic viability did not need to be
investigated and technologies were infused. It should be noted
that emissions were not considered in the current investigation.

TABLE II: HSCT SYSTEM LEVEL METRICS

Parameter Target/
Constraint

Units

Performance
Approach Speed (Vapp) ����� kts

FAR 36 Stage III Flyover Noise (FON) ����� EPNLdB
Landing Field Length (LdgFL) �������� ft

FAR 36 Stage III Sideline Noise (SLN) ����� EPNLdB
Takeoff Field Length (TOFL) �������� ft

Takeoff Gross Weight (TOGW)   ����6 lbs
Economics

Acquisition Price (Acq $) minimize FY96 $M
Research, Development, Testing, and Evaluation

Costs (RDT&E)
minimize FY96 $M

Average Required Yield per Revenue Passenger
Mile ($/RPM)

�������� FY96 $

Total Airplane Related Operating Costs
(TAROC)

minimize FY96 $

Direct Operating Cost plus Interest (DOC+I) minimize FY96 $
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FIGURE 8: BASELINE HSCT CONCEPT

TABLE III: CONVENTIONAL BASELINE HSCT DATUM POINTS

Metric Baseline
Value

Target/
Constraint

Needed %
Reduction

TOGW 855353 106 ok
TOFL 10707 11000 ok
LDGFL 9231 11000 ok
Vapp 156.3 155 -0.89
FON 107.4 106 -1.34
SLN 110.5 103 -7.28
Acq $* 185.7 reduce nominal
RDT&E* 15205.4 reduce nominal
$/RPM* 0.1085 0.10 -8.5
TAROC* 5.318 reduce nominal
DOC+I* 4.496 reduce nominal

* Economic results are optimistic due to assumed 800
production units

TABLE IV: ALTERNATIVE TECHNOLOGIES

Technology TRL Purpose
Composite Wing [31] 3 Wing weight reduction
Composite Fuselage [31] 3 Fuselage weight reduction
Circulation Control [32,33] 4 Increased low speed performance
Hybrid Laminar Flow Control [34] 3 Cruise drag reduction
Environmental Engines [28, 35, 36] 3 Noise suppression, lower fuel burn

and emissions
Advanced Flight Deck Systems [27] 4 Pilot visualization without fuselage

nose droop weight penalty
Advanced Propulsion Materials [37] 3 High temp. materials, reduced engine

weight, lower fuel burn
Integrally Stiffened Aluminum
Wing Structure [38]

4 Wing weight and part complexity
reduction

Smart Wing Structures [39] 3 Reduced flutter and wing weight
Active Flow Control [39] 3 Cruise drag reduction
Acoustic Control [39] 3 Noise suppression

Compatibility Matrix                
(1: compatible, 0: incompatible)
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Composite Fuselage 1 1 1 1 1 1 1 1 1 1

Circulation Control 1 1 1 1 1 1 1 1 1

HLFC 1 1 1 1 0 0 0 1

Environmental Engines 1 1 1 1 1 1 0

Flight Deck Systems 1 1 1 0 1 1

Propulsion Materials 1 0 1 1 1

Integrally, Stiffened Aluminum Airframe 
Structures (wing)

1 0 1 1

Smart Wing Structures (Active 
Aeroelastic Control)

1 1 1

Active Flow Control 1 1

Acoustic Control 1
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FIGURE 9: HSCT TECHNOLOGY COMPATIBILITY MATRIX

TECHNOLOGY IDENTIFICATION (STEP 6)
Since the probability of success for feasibility was non-

existent for the SLN, eleven technologies and technology
programs were considered for infusion. The technologies, listed
in Table IV, were identified through a literature search of
potential sub-component alternatives. The primary purposes of
the technologies are also listed. The TRLs were established by
comparing the information available in the literature to the
definitions in Table I.

Compatibility Matrix

A full factorial combination of the eleven technologies
resulted in 2,048 combinations. However, some combinations
are not physically realizable. In order to screen non-realistic
combinations from biasing the results, a compatibility matrix is
created. The compatibility rules for these technologies were
determined from brainstorming activities and literature reviews
and are shown in Figure 9. As a result, this process reduced the
number of alternatives to 273 combinations, which was
computationally manageable.

Technology Impact Matrix

The Technology Impact Matrix (TIM) was constructed for
the eleven technologies based on a literature review of applied
research and expert opinions. The TIM shown in Figure 10
contains the expert predicted impact values if each technology
were matured to the point of full-scale application. In the context
of the technology development milestones described previously,
the impact values were those associated with a TRL of 9. The
elements of the technical metric “k” vector are listed on the left.
The elements encompass all technology impacts, although not all
technologies contribute to every element. The technical “k”
vector consisted of 16 elements and was unique for a given
technology. The values shown are conservative impacts from the
cited references in Table IV. The “k” vector included primary
benefits and secondary penalties to both performance and
economic metrics. For example, the infusion of a composite
wing could reduce the sized vehicle wing weight by 20% and the
cruise drag (due to a smoother wing surface) by 2%. Yet, the
costs associated with manufacturing and maintaining this type of
wing are more than a conventional aluminum wing structure.
This secondary penalty was simulated by increased Research,
Development, Testing, and Evaluation (RDT&E), production,
and Operation and Support (O&S) costs.
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T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

Wing Weight -20% +5% -10% -5% +2%
Fuselage Weight -25% -15%
Engine Weight +1% +40% -10% +5%
Electrical Weight +5% +1% +2% +5% +5% +2% +2%
Avionics Weight +5% +2% +5% +2% +5% +2%
Surface Controls Weight -5% +5% +5%
Hydraulics Weight -5% +5%
Noise Suppression -10% -1% -10%
Subsonic Drag -2% -2% -10% -5%
Supersonic Drag -2% -2% -15% -5%
Subsonic Fuel Flow +1% +1% -2% -4% +1%
Supersonic Fuel Flow +1% -2% -4%
Maximum Lift Coefficient +15%
O&S +2% +2% +2% +2% +2% +2% -2% +2% +2% +1%
RDT&E +4% +4% +2% +2% +4% +2% +4% +5% +5% +5%
Production costs +8% +8% +3% +5% +2% +1% +3% -3% -3% -3% -3%

Aircraft Morphing

Technical K_Factor Vector

FIGURE 10: HSCT TIM (EXPERT PREDICTED IDEAL VALUES)



8

TRL Distribution Shapes

As shown in Table IV, the technologies considered for
application were at a TRL of 3 or 4 and insufficient data existed
in the literature to establish a well-defined growth curve. Hence,
the uncertainty of achieving the expert predicted technology
impact was estimated based on qualitative reasoning and mapped
to a quantitative growth pattern. The estimation was performed
via a sensitivity investigation of the system metrics to a Weibull
distribution. The Weibull distribution was chosen since it “is a
family of distributions that can assume the properties of other
distributions” [22] such as an exponential, normal, or Rayleigh.
The formula that describes a Weibull distribution for a “k”
vector element is shown in Equation 2, where L represents the
apex location of the distribution, α is a scale parameter, β is the
shape parameter, and x is the random variable. An illustration of
the variation in the different Weibull parameters and the
influence on the frequency distribution is provided in Figure 11.
As the shape (β) increases the distribution narrows although the
mode value slightly shifts from the location of –0.2 and the
distribution shifts from an exponential to more of a typical
Weibull. As the scale (α) increases, the distribution spreads and
the mode value shifts even further.
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To establish the appropriate “k” factor shape distribution for
a given TRL, a DoE combined with a Monte Carlo Simulation
was utilized, such that a metric was defined in terms of the
Weibull distribution parameters. For each technology “k” vector
element, ki|Ti, in the TIM, the impact value was assumed to take
the shape distribution of Equation 2. For each element, a range
of applicable values for L, α, and β were defined based on the
predicted impact, ki, as listed in Table V. Based on these ranges,
a DoE was executed for the metrics in Table II for a given
technology. For each DoE case, the “k” factors were assigned the
appropriate distribution parameters and a Monte Carlo
Simulation executed. For a given confidence level, the metric
values were extracted and supplied as data to the JMP statistical
package [40]. Eleven DoEs were executed so that the sensitivity
of a metric to a given technology distribution could be
investigated.

L = -0.2, α = 5%ki, β = 1.5

-0.2 -0.192 -0.184 -0.175 -0.167

-0.2 -0.194 -0.188 -0.182 -0.176

L = -0.2, α = 5%ki, β = 2

-0.2 -0.151 -0.101 -0.052 -0.002

L = -0.2, α = 30%ki, β = 1.5

-0.2 -0.185 -0.17 -0.155 -0.14

L = -0.2, α = 5%ki, β = 1

-0.2 -0.163 -0.127 -0.089 -0.053

L = -0.2, α = 30%ki, β = 2

-0.2 -0.11 -0.02 0.07 0.16

L = -0.2, α = 30%ki, β = 1

FIGURE 11: VISUALIZATION OF A WEIBULL DISTRIBUTION

TABLE V: RANGE OF WEIBULL DISTRIBUTION PARAMETERS

Weibull Parameter Minimum Maximum
L ± 5% ki ki

α 5% ki 50% ki

β 1 2

880793

870911

876123

10995

10883

10942

9445

9359

9404

158.6
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158.2

101.5
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101.8
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FIGURE 12: METRICS SENSITIVITY TO A WEIBULL DISTRIBUTION

VARIATION OF TWO PROPOSED TECHNOLOGIES

As an example, the metric sensitivities due to the addition of
environmental engines are shown in Figure 12. The disciplinary
metrics that the environmental engines influence are: increased
engine weight and noise suppression from a mixer-ejector nozzle
and acoustic lining, reduced fuel flow from improved
combustion efficiency, and increased RDT&E, production costs,
and O&S costs. The results shown below were for a 50%
confidence level and were consistent for all other levels for this
technology. The metrics were highly sensitive to the scale
parameter which stretches out the distribution over a larger
range. Furthermore, some of the metrics (TOGW, TOFL, and
Vapp) were insensitive to the variation in the “k” vector
distributions, and varied less than 1% in magnitude as seen on
the left. This result provided valuable insight to the significance
of secondary impacts on the system. Specifically, the primary
purpose of the application of the environmental engines was to
reduce FON and SLN. This indeed was the impact, and there
was minimal influence to other performance metrics. This result
was consistent for the remaining technologies and HLFC is
shown for comparison.

Based on the above sensitivity investigation, a more detailed
look at the individual “k” factor element distributions ensued.
The focus was to identify the Weibull distribution parameter
values that could mimic the total uncertainty of the technology
impact as the TRL varied. In essence, bound the uncertainty of
the technology impact, as was shown in Figure 4 and Figure 5, so
that a quantitative assessment could be performed. For brevity,
the investigation resulted in the location defined as the “ki” value
from the TIM and a shape value, β, of 2 for all technologies. The
only parameter that varied was the scale (α) and was defined
based on the TRL as shown in Equation 3.
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As a visual aid, the variation in wing weight reduction due
to a composite wing is shown in Figure 13. For a composite
wing, the expert predicted the impact on the wing weight was to
be a 20% reduction. This value was achieved when the TRL
reached 9 since all technology developments were assumed
successful. The impact was assumed deterministic at this point.
Yet, at lower TRL, the uncertainty in knowledge about the
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technology was represented by the more spread out distributions
shown. As the TRL increases, the variability reduces and the
mode value approaches the expert defined value. This logic was
used for all technology “k” vectors and the distribution scale
parameter used corresponded to Equation 3. The shape of these
distributions followed the rationale of the technology uncertainty
described in earlier sections.

TECHNOLOGY EVALUATION (STEP 7)
The technology evaluation was performed by creating a

metamodel of each system metric in Table II as a function of the
“k” vector elements. The metamodels were second-order RSEs
as in Equation 1. The RSEs were created with a DoE by
bounding the “k” vector elements of the TIM. The ranges used to
generate the RSEs are summarized in Table VI. The “0” implies
no change in the technical metric, while a negative denotes a
reduction and a positive an increase. Once Equation 1 was
determined for each metric via the statistical package, JMP [40],
the 11 metric RSEs were used to rapidly evaluate technology
combinations as described previously. As a visual aid to the
decision-maker, a full factorial deterministic investigation was
performed and shown as a prediction profile in Figure 14. One
can immediately determine which technology had the most
influence on a given metric when turned “on”. Recall that the
SLN was the concept “show-stopper” for technical feasibility. As
can be seen, T5 and T11 both significantly reduced the SLN
when turned “on”, as indicated by the negative slope of the
sensitivity. Hence, both technologies show promise for achieving
a feasible design, but, the compatibility rules were not inherent
in the sensitivities shown, and care should be taken before
arbitrarily turning “on” a mix of technologies. If T5 and T11
were both turned “on”, the SLN results would be meaningless,
since both technologies were engine concepts and only one can
be applied.

The next step of the evaluation process was to assess the
impact of the compatible technology combinations in a
probabilistic space. This was performed by assigning the
appropriate Weibull distributions, as defined by Equation 3, to
all the technology “k” vector elements. As described previously,
a Monte Carlo Simulation was executed on the metric RSEs for
each of the 273 combinations of technologies with the Crystal
Ball software package [22]. As an example of the evaluation
step, the impact of three technology combinations on the TOGW
is shown in Figure 15. The variability of the CDFs is a function
of the number of uncertain parameters. The combination
including four technologies has the largest variability. These
results were similar for all metrics and technology combinations
consisting of 273 CDFs per metric.
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FIGURE 13: EXAMPLE TRL “K” F ACTOR DISTRIBUTION

TABLE VI: BOUNDED NONDIMENSIONAL “K” F ACTORS

Technical Metric “k” Factors
Elements

Minimum
(%)

Maximum
(%)

Wing Weight -35 7
Fuselage Weight -40 0
Engine Weight -10 46
Electrical Weight 0 22
Avionics Weight 0 21
Surface Controls Weight -5 10
Hydraulics Weight -5 5
Noise Suppression -21 0
Subsonic Drag -19 0
Supersonic Drag -24 0
Subsonic Fuel Flow -6 3
Supersonic Fuel Flow -6 1
Maximum Lift Coefficient 0 15
O&S -2 17
RDT&E 0 39
Production costs -12 30
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FIGURE 14: FULL FACTORIAL DETERMINISTIC TECHNOLOGY

INVESTIGATION
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FIGURE 15: EXAMPLE TECHNOLOGY COMBINATION CDFS

POPULATION OF THE PUGH MATRIX (STEP 8)
Four Pugh matrices were used in the current investigation.

One consisted of the deterministic values, and the remaining
three were populated by extracting the 10%, 50%, and 90%
confidence levels from each CDF. Each matrix was 273 by 11,
where 273 represented the number of alternatives and 11 the
number of system metrics. Each of the matrices were used in
Step 9 to determine the best mix of technologies to meet the
system metrics.
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TECHNOLOGY SELECTION (STEP 9)
The TOPSIS method was used on all four Pugh matrices to

identify the best mix of technologies. Each metric was classified
as a “cost” since minimization was desired. Furthermore, various
weighting factor scenarios were considered in the ranking
process, and ranged from heavy performance to relatively evenly
distributed, as listed in Table VII. TOPSIS was executed for
each Pugh matrix and each weighting scenario. The top 15
technology combinations were compared for each matrix and
weighting scenario and an interesting result obtained. The same
10 combinations ranked in the top 15 regardless of the weighting
or confidence level considered. Although the absolute ranking
order varied, the same technology mixes appeared. These 10
dominant technology mixes are listed in Table VIII. At first, this
result would suggest that a probabilistic assessment might not be
needed when evaluating the impact of immature technologies.
Upon further consideration, this is an erroneous conclusion. The
ranking of the best technology mixes was relatively consistent
since all technologies were approximately at the same TRL.
Hence, the frequency distributions assigned to the “k” vector
elements were also similar. If the TRLs were at different levels
for the 11 technologies, the metric CDFs obtained in Step 7
would have different variability. For example, consider the three
mixes of technologies in Figure 15. If T5 were at a TRL of 9, the
CDF for the ‘T5+T7+T9+T10” combination would have less
variability and the TOPSIS ranking would be different.
Additional insight was gained from the different weighting
scenarios in the form of the recurring technologies. In particular,
T2, T4, and T6 occurred in eight of the alternatives. This result
would suggest that a composite fuselage, HLFC, and the flight
deck systems provided significant benefit with minimal penalty
to the performance and economics of the system.

Resource Allocation

Although each of the dominant alternatives satisfied every
system level metric, it is unlikely that a company has the R&D
budget and resources to successfully develop more than one or
two technologies. As stated previously, all technologies were
assumed to have a successful development program. This
assumption implied that any amount of funds and resources may
be used at a given time to develop the technology. This will not
happen in a real development program. Hence, as a decision-
maker, guidance is desired as to which technology is the most
influential for R&D resource allocation for overcoming
constraints or meeting objectives.

TABLE VII: TOPSIS WEIGHTING SCENARIOS

Weighting Scenario
Heavy Performance Evenly Distributed

Factor 1 2 3 4 5 6 7 8 9 10
TOGW 0.1 0.15 0.2 0.15 0.2 0.2 0.05 0.05 0.05 0.1
TOFL 0.1 0.1 0.1 0.15 0.1 0.1 0.05 0.1 0.1 0.1
LdgFL 0.05 0 0.05 0 0.05 0.05 0.05 0.05 0.05 0.05
Vapp 0.15 0.15 0.05 0.15 0.05 0.05 0.05 0.05 0.05 0.1
FON 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.1
SLN 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1
Acq $ 0.1 0.05 0.1 0.05 0.1 0.1 0.1 0.1 0.1 0.1
RDT&E 0 0 0.1 0 0.1 0.1 0.1 0.1 0.1 0.1
$/RPM 0 0 0 0 0 0 0.1 0 0.1 0.05
TAROC 0 0.05 0 0.1 0.1 0 0.1 0.1 0 0.1
DOC+I 0 0 0 0 0 0 0 0.05 0.05 0.1

TABLE VIII: D OMINANT TECHNOLOGY MIXES

Concept Technology Mix Concept Technology Mix
1 T4+T6+T7+T11 6 T2+T4+T5+T7
2 T3+T4+T6+T7+T11 7 T2+T3+T4+T6+T7+T11
3 T2+T4+T7+T11 8 T2+T3+T4+T6+T11
4 T2+T3+T4+T5+T6 9 T2+T3+T4+T5+T6
5 T2+T3+T6+T8+T10+T11 10 T2+T3+T4+T5+T6+T7

A resource allocation investigation was performed by a
comparison of the infusion of the individual technologies to the
conventional configuration, and evaluation of the deviations in
metric values. The SLN and the $/RPM are shown in Figure 16
and Figure 17, respectively, as examples. For the SLN, the target
percent reduction needed from the conventional configuration to
obtain a feasible concept was 7.28%, as shown by the vertical
line. Both engine concepts (T5 and T11) provide the needed
reduction with a confidence level of approximately 60%. Hence,
either one of the engine technologies would be prime targets for
increased R&D resources. Yet, one must also consider the
impact of the technology on the affordability and other
performance metrics of the system. As shown in Figure 17, T5
and T11 increase the $/RPM relative to the conventional
configuration, and could potentially hinder the success of the
program. In fact, T5 increased the Vapp for all confidence levels
to a point where the constraint of 155 kts was violated by as
much as 4.5 kts at the 100% confidence level. T5 negatively
impacted all metrics except for the FON and SLN. To the
decision-maker, the further development of the environmental
engines should be in question, unless another technology was
infused countering the negative impact. One example would be
the flight deck systems (T6). This technology counters the
negative impact of T5 by reducing all metrics. If a company
could invest the resources needed for both technologies, the
system metrics could be achieved. A similar result was obtained
for T11, and the same trade-off rationale could be applied to this
technology.

As mentioned previously in the TOPSIS analysis, T2, T4,
and T6 were dominant technologies. In the resource allocation
investigation, each of these three technologies reduced all
metrics as compared to the conventional configuration, with the
exception of increased acquisition price for T2 and T4 at all
confidence levels. Although neither of the technologies could
provide the needed SLN reductions, both provide sufficient
benefits to other metrics to meet the imposed targets from Table
II.
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FIGURE 16: PROBABILISTIC IMPACT OF TECHNOLOGIES ON SLN
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FIGURE 17: PROBABILISTIC IMPACT OF TECHNOLOGIES ON $/RPM

CONCLUSIONS

This paper described research in the area of probabilistic
technology assessments and techniques to forecast the impact of
any emerging technology in the conceptual and preliminary
phases of aircraft design. The thrusts of the techniques
developed were focused on the description of technology
development programs, and the various milestones encountered
during a successful program. The identification of sources of
uncertainty associated with an immature technology were
described and applied to the determination of frequency
distributions of a technology’s impact on an aerospace system.
Furthermore, the sensitivity of customer requirements to
technology shape distributions was investigated and provided
valuable insight for mapping technological uncertainty to
technology readiness. These aspects are enhancements to the
Technology Identification, Evaluation, and Selection (TIES)
method. The incorporation of technological uncertainty into the
TIES method provides increased knowledge to the decision-
maker.

A proof of concept investigation was performed on a High
Speed Civil Transport. This vehicle was used as a test bed due to
the technically challenging customer requirements. Eleven
technologies and technology programs were infused into a
conventional configuration. The technology readiness level of
each technology was established through a literature search of
applied research. From the search, the readiness levels were
mapped to a probabilistic space, and subsequently infused to the
vehicle. Physically compatible technology combinations were
evaluated and ranked based on the improvements to the customer
requirements. Three technologies were identified as significant
for further investigation and include: composite fuselage
structures, Hybrid Laminar Flow Control, and advanced flight
deck systems, such as synthetic vision.

Future effort in the development of the TIES method will
include a decomposition of the elements that contribute to
technological uncertainty, which were not considered in the
current investigation. In particular, resource allocation for the
development of an immature technology in the form of budgets
available and schedules and how those issues vary with time.
Furthermore, a more rigorous quantitative development of the
technology readiness distributions is needed.
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