Trumbute of Paper science and Tocknology

 Central files
PROJECT REPORT FORM

Copies to: Files
Mr. Steele
Dr. Rowland
Mr . Swanson

PROJECT NO. 849 \qquad COOPERATOR Institute REPORT NO._ 23
DATE August 9,-1046
NOTE BOOK $\quad 660$
PAGE 27.13, TO- 22
SIGNEDQuFin 41 Suransuan
John V. Swanson

PREPARATION OF ALLYL GUAR
INTRODUCTION

Considerable interest has been shown recently in allyl derivatives of carbohydrates because of their unique film forming and adhesive properties. These new products promise to become very important in the resin, varnish, and paint fields. As prepared, they are soluble in most organic solvents but upon exposure to air, heat, certain chemical agents, or infrared and ultraviolet light a cross linkage oxidation and polymerisation occurs which leaves a very inert product of high gloss, good abrasion resistance etc. One of the very interesting materials for making allyl products is starch. The similarity of guar mucilage to starch, in so far as polywolecularity is concerned. led to some preliminary experiments to prepare an allyl guar mannogalactan product and 8 tidy 80 me of its properties. BXPERIMENTAL

The method used for allylation of guar was patterned after thatused for starch as published by Nichols, Smith and Yanovsky, in Ind. Eng. Chem. ' 37, 201(1,45). These investigators proceeded through the acetate derivative, simultaneously saponifying and etherifying with alkali and allyl bromide or chloride.

PURIFICATION OF GUAR Gl4-L

Thirty grams of oil-free guar Glt were dispersed in a total of
3 liters of distilled water in a Waring blendor and then cooked with direct steam. The temperature was raised to 95° C. and held there for 20 minutes.

k

The piscous mixture was supercentrifuged and cooled to $35^{\circ} \mathrm{C}$. and slovly added to 8 liters of pigorousiy stirred cold 948 ethyl alcohol: The precipitated mannogalactan was collected by decantation and filtration through eloth and then treated with fresh 958 ethyl alcahol, twice more with absolute ethanol and finally with absolute ether. The product was then sucked dry at the filter and placed in a sample bottle. Yield: 80\%.

ACETYLATION OP GUAR MANNOGALACTAN

Twenty gramg (o. d.) of the purified guar were weighed out and placed in a one liter 3-neck flack fitted with a condenser and a mercury sealed stirrer. Three hundred fifty milliliters of pyridine (17.5 parts) and 284 ml . of acetic anhydride (14.2 parts) were added. The flask was placed in an oil bath at $105-110^{\circ}$ C. and the contents stirred for 20 hours. $\mathrm{A} \mathrm{CaCl} 2_{2}$ tube was attached to the condenser to prevent the entrance of moisture. The mixture became very viscous and darkened somewhat during the reaction time. After 20 hours the mixtare was cooled and poured into about 7 volumes of 94% ethyl alcohol in a Waring blendor. The precipitated acetate was filtered off on a fritted glass funnel with suction and then washed twice with fresh alcohol in a Waring biendor and finally mixed with 95\% alcohol and allowed to stand overnight. The product wes wasked once more, filtered and vecuam dried over CaCl_{2} for 48 hours. Yield: 35 g . practically quantitative. Acetyl content by method of Genung and Nallatt [Ind. Eng. Chem. Anal Ed., 13. 369 (1941)] $43.8,43.7 \%$ calculated for triacetate $\mathrm{O}_{6} \mathrm{H}_{7} \mathrm{O}_{5}\left(\mathrm{OCCH}_{3}\right)_{3} 44.8 \%$.

Thro grams of guar acetate were diasolved in 45 g . of ecetone and mixed with 45 g . of $50 \% \mathrm{HaOH}$ and 45 ml . of allyl chloride. The mixture was seeled in a stainless steel bomb and heated with continuous rotation for 11-21 bours at $80^{\circ} \mathrm{C}$. The bomb was cooled, the contents trangerred into a 500 mi. distilling flask and the volatile matter steam distilled during 15 minutes. The gumby yellow-brown residue vas washed with distilled vater until free of alkali which lightened the color considerably. The gum was extracted with acetone and the solution was poured into 8 volumes of water. In the pare water the gum formed a colloidel solution which was only slowly flocced by sodium chloride but rapidy flocced by amall amounts of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$. The entire batch was flocculated infth alum and the gum collected by centrifuging. It was necessary to atore the product under vater or in solution in a pure organic solvent to help prevent oxidation and polymerization. Products stored under water for a few days usually developed an organic solvent insoluble layer of sum. Yone of the products made thus far have been analyzed for allyl value because of partial insolubility. DISUUSSION OF TEE FRODUCT

The allyl mannogelactan prepared above is soluble in most organic solvents such as acetone, alcohol etc., but insoluble in aliphatic hydrocarbons. The allyl content is probably about 2 allyligroups per hexose unit as shown by solubility characteristics.

A solution of the allyl product in acetone was evaporated on glass and also painted onto a birch panel. The film on the glass after drying

Project 849
Page 4
August 9, 1946
overnight and oven tresting at $90^{\circ} \mathrm{C}$. for 48 hours was auite insoluble and nonswelling in vater and organic solvents. Opon removing the film from the glass it was found to be somewhat brittle. The film on the birch panel after oven heating overnight and standing for a veek in the air became very insolable in water and showed very little effect on treatment with acetone, ether and alcohol. It also showed fairly good abrasion resistance. FURTHER NORK

When time permits further investigations of this product should be made by someone experienced in testing pesins and plastics.

PROJECT REPORT FORM

Copies to: Files Kr. Steele Dr. Rowland Mr. Swanson

PROJECT NO._ 849
COOPERATOR_Imetitnte
REPORT NO._ 22
DATE IUly_23, 1946
NOTE BOOK. 669
PAGE $\int^{38} \mathrm{TO}^{38} \mathrm{TO}^{45}$
SIGNED Gohur W. Dwancona
John V. Swanson

IETRODUCTIOS

In report Bo. 18 of this project it was shown that a very good trbsizing adhesive could be made by heating locust bean gan at various temperatures in the presence of small amounts of acid. The work of this report is an extension of this method of conversion to guar, tare, and flame tree marriages.

REPRERIMENTAL

The dextrinigation equipment and methods of incorporating and measuring the hydrochloric acid catalyst were described in report Ho. 18 and need not be repeated here. Two other acidic catalysts were tried during the present series of experiments and these vire added to the mucilage by somewhat different procedures:

PROCEDURE FOR ADDITION OF CHLORITE AS A CATALYST

A one liter suction flask was fitted with a 10 ch. fitted glass Bleacher type funnel and dry chlorine vas passed into the flask to displace the air. One hundred fifty grams of 0 (hum mucilage verse placed in the funnel and chlorine gas was passed pard through the mass for various times.

The amount of active acid present in the mucilage vas determined by dispersing a 5.00 g . sample in 495 ml . of distilled water in a Haring Biendor
for one mimete. One handred grams of this solution vas treated with an excess of standard FaOH and the mirture heated to boiling. After cooling the sample vas back titrated to pl .6 .35 using a pl meter.

PROCBDURE FOR ADDITION OF AGETIC ACID AS A GATAIIST
A two liter Pyrex reagent botile was fitted internally with two flanges made of glass rod fastened by means of scotch tape. These flanges served to agitate the dry mucilage during the subsequent rotation. One hondred fifty gramb of olt-5 macliage were placed in the bottle and the bottle was attached to a ball mill rotating mechaniam which vas tipped upward at an angle of about $15-20^{\circ}$. 31x 3/4-inch porcelain balls vere added and rotation begun. l line and one hall grams of glacial acetic acid vere sprayed into the rotating macilage from an atomiser giving a mixture containing 6.33% of acid. After rotation for 0.5 hour to remove any ceking and small lomps the sample was dextrinised, as show in Table I.

Project 849 Page 4 July 23, 1946
TABLR I (continued)
DEXTRIMIZATION DATA

$\begin{aligned} & \text { \& HCl on } \\ & \text { mucilage } \end{aligned}$	Dextrinisation		Relative viscosity $18 \& 30^{\circ} \mathrm{C}$
	$\begin{aligned} & \text { Temp. } \\ & { }^{\circ} \mathrm{CO}, \end{aligned}$	$\begin{gathered} \text { T1me, } \\ \text { hrse. } \end{gathered}$	
	143	9	-
	143	12	10.8
	143	15	11.6
	143	18	10.1
	143	21	9.2
	143	27.75	6.3
	143	33.5	4.7
	140	4.0	12.1
	140	8	3.5
	140	12	3.4
	140	16	4.0
	140	20	3.4
	140	24	3.1
0.237	-	-	
0.233	105	5	25.1
	105	14.25	9.3
	105	20	6.3
	105	26.5	5.4
	105	48	2.93
0.217	85	20.5	49.7
	85 25		18.4
0.863	25 85	24 14	54.6 1.13

Time of add.
$\mathrm{BCl}_{\mathrm{Cl}}^{\mathrm{n}} \mathrm{sec} \mathrm{H}_{2} \mathrm{SO}_{4}$
Ma. of conc.呂

Code Ho.
081-669
087-669
088-669
G91-669
G98-669
TABIII I (continued)
 Relativo

DEXTRINIZATIOH. DATA

Kind of
mactlage
ma of conc.
111111
88.

* Not evenly heated, caked up in bottle
** Values in error because some chlorine volatilised during determination

COOKIEG OF MUCILAGES FOR YISCOSITY MRASURREMRETS

Two and one-half grams of the macilage were slurried in 175 ml . of $\mathrm{H}_{2} \mathrm{O}$ in a tared beaker. Steam was injected to $87^{\circ} \mathrm{C}$. and the temperature was held at $85-87^{\circ}$ C. for 10 minutes. The mixture was stirred for 10 minntes longer vhile cooling, diluted to 1% concentration and the relative oiscosity was determined at $30^{\circ} \mathrm{C}$. In a modified 0 stwald viscometer.

COORIEG OP MUCILAGES FOR TUBSIZIEG

Mfteen grams of the dextrinized macilage vere siurried in 250 ml . of water in a tared beaker and heated by means of direct steam to $87^{\circ} \mathrm{C}$. The mixture was held at $85-87^{\circ}$ C. for 10 minutes and stirred 10 minutes more while cooling when it was diluted to the desired concentration and used as a tubsize in the usual manner on the laboratory size press.

MGTHOD OF DETERMIEATION OF APPAREBT SUGAR IF TEE DEXTRINIZRD MUCILAGH
A modified Somogi micromethod was used for determination of the apparent sugar. The copper reagent had the following composition:

$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	$7.5 \mathrm{~g} /$ liter
$\mathrm{KNaCH}_{4} \mathrm{H}_{6}-4 \mathrm{H}_{2} \mathrm{O}$	25.0 g
$\mathrm{Ha}_{2} \mathrm{CO}_{3}$	25.0 g
NaHH_{3}	20.0 g
KI	5.0 g
KIO_{3}	0.535 g eceurate.

The chemicsis vore aissoived in the order given in 850 mi. of distilled vater. The KIO_{3} was dissolved separately and added to the solution quantitatively. Tro liters of solution vere made up at one time and the bottle fitted vith a siphon and soda-lime tube.

The sample consisted of 5 ml . of the agitated one per cent mucilage solution used for the viscosity measurements. A 50 -minute heating period
in the boiling vater bath was used. This period had been determined in prefious mucilage experiments (see report Ho. 17).

DEXTRIMIZATIOS TTHMPBEATUBES

When large samples of wucilage ($150-300 \mathrm{~g}$) vere dextrinized the teaperature of dextrinisation was difficult to attain rapidiy. This was due to both the bottle and mucilage being cool and cooling of the oven wile making the necessary connections to the bottle. Por these ressons the dextrinization temperature was not a rigidly controlled factor bat was a temperature range. For temperatares above $125^{\circ} \mathrm{C}$. the time of dextrinization was started when the thermometer inside the bottle reached $125^{\circ} \mathrm{C}$. About 30 minutes were generally required for the temperature to rise from $125^{\circ} \mathrm{C}$. to $143^{\circ} \mathrm{C}$.

BESULTS AED DISCUSSIOY
The dextrinisation data are presented in Table I and several typical carves are given in Pigure 1. Prom these it may be readily seen that guar mucilage is dextrinized in a manner similar to locust bean gam.

The viscoaity of the final product of dextrinization depende upon four factors:- temperature, time, acid concentration, and purity of the original mactlage. High temgeratire alone was found to rapidly reduce the viscosity of gaar ancilage but this almost invariably gave a dark brom product. Starting vith somewhat parer product such as olt-L resulted in a somewhat lighter color but the product vas still dark enough to noticeably lover the brightness of a sheet. Increased acid concentrations onabled the ase of lower dextrinization temperatures as vell as a shorter time but the acid for the most part remained in the final sample and continued to

sloviy convert the mucilage. It is believed that acid concentrations in the neighborhood of 0.1 to 0.15% mey cause no detrimental effect in this reepect but 0.2 to $0.3 \% 18$ probably an excessive amount to leave in the inal prodnct. When higher conversion temperatures were used it seemed reasonable to expect that a considerable part of the HC1 used in these experiments would be volatilized. Hovever, it vas found that the acidity of the dextrinized products had increased. Analyses of several dertrins are given in Table II.

TABLT: II
BFPECT OF HEATIFG ON TEES ACID CONTRTI
OF DEXPRIXITED MUCILACHI

Converted	Dextrinisation conditions		Acid $\%$
mucilage	Temp. ${ }^{\circ} \mathrm{C}$.	Time, hrs.	
638-669 ($64-5$)	25	-	0.116
	143	19	0.246
948-669 (84-5)	25	-	0.000
	140	21.5	0.194
650-669 (94-L)	25	-	0.266
	125-237	0.5	0.252
O56-669 (O 4 L L)	25	-	0.070
	143	15	0.116
G91-669 ($04-5$)	25	-	0.217
	85	20.5	0.252
Guar germ Plour	--25	-	0.000
	160	2.5	0.000
	160	46.5	trace

Whether the ECl volatilised or not is unknown but it may gasily be seen that even the acid concentration of $G+5$ is increased. This may poseibly be the result of protein breakdom, oxidation of the mucilage by air, or breakdom of fatty acid materlals present in these mucilages. A sample of guar germ flour was heated at 160° C. for various lengthe of time but falled to develop ang significant amonnt of titratable acidity.

The use of chlorine gas as an acidic catalyst did not give a product of lighter color than straight HC1. Otherwise this catalyst functioned similarly to HCl.

gTALUATIOR OF THE TUBSIZS QUALITIRS OF THF DRXTRIHIZED KOCILACES

In order to use the converted mucilages as tubsizes the relative viscosity at 18 had to be 4.0 or below. Certain products having higher Viecosities than this were eveluated but these could not be expected to enter commercial use for this parpose. The data are presented in Table III vhere it is apparent that falrly outstanding tubsise adhesives can be made from guar mucilage when the product is in the proper viscooity range. In Figare 2 the percentage increase in bursting strength imparted by a 4.0% tubsize solution is plotted against the relative viscosity. Locust bean gum samples G151-654 (Report झo. 18) are also plotted and the result seems to indicate that the lover the Fiscosity the poorer is the tubsizing adhesive strength. The guar dextrin samples are quite erratic bat if sufficient tests were made to make the data statistically valld it is believed that the same conclusion would resalt. . It is also apparent from the data presented that tara mucilage $66-690$, flame tree mucilage $615-$ and $G 16-690$, and locust bean gum mucilages $0151-654$, G16- and $024-590$ are, despite their greater percentage of impurities, all somerhat superior to guar macilage. A similar conclusion has been empirically made for other methode of conversion and it begins to appear that guar mucilage may be the poorest source of mannogalactan for conversion parposes. Becanse so little is known about the chemical structure of the mannogalactans these differences cannot be accounted for at the present time. Perhaps when our methylation work is further along ve can proceed to convert guar mucilage more intelligently.
fable ill

Mロ

1 品	
E	
8	
$\begin{aligned} & \text { Ei } \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$	

table III (oont.)
~

The mechaniam of the dextrinization of guar micilage should be etudied more fundamentally. Por example it is possible if not probable that the galactosides and mannosides in the mucilage chein may be connedted by different linkages. Thus, the mannosides may be joined by A -linkages and the galactosides by a-linkages. Under such conditions it might be expected that the a-linkeges would hydrolyze mach faster than the β-linkages giving essentially a mannan dextrin. It is obvious that the reverse case might predominate in another type of macilage giving a galactoside dextrin. Forthermore, the way in which the chains are constructed-the pattern of distribution of mannose and galactoserwould greatiy influence the adhesive strength of the dextrin obtained.

The hot water solubility of guar macilage is progressively decreased to a constant falue upon dextrinisation at $150^{\circ} \mathrm{C}$. This is shown in Table if and Pigare 3. In these experiments oven-dry oft-l vas heated in closed weighing bottles in an oven at 150° C. The solubility was determined by cooking by the method used for viscosity determinations and 25 g . aliquots were evaporated to dryness. It may be fortuitous that the solubility becomes constant at approximately 57 - the percentage of mannose in gur-but this should be investigated. Attempts to determine the galactose in the soluble part of the 9 hour sample in Table IV by the method of $W 1$ se and Appling [Ind. Eng. Chem: 16, 28(1944)] gave a value of 4.0% while a mannose determination gave 50.4\%. An untreated sample of guar macilage gave a similar set of values vich is at present unexplainable. It is believed that the unpurified mucilage may contain a material which acts as a nutrient for the jeast organism Which does not attack galactose or wich slows down the other organism in some way thereby causing failure of the method. This is being investigated further.

TABLE IV

Time in hours, Heated at 150° C.	$\begin{gathered} \text { Solubility } \\ \text { in } \end{gathered}$	Viscosity at 18 \& $30^{\circ} 0$.	
		$\begin{gathered} \text { Before } \\ \text { Centrifaging } \end{gathered}$	$\begin{gathered} \text { After } \\ \text { Centrifaging } \end{gathered}$
0.0	78.5	too viscous	
1.0	74.4	too V	cous
2.0	72.4	92.5	83.0
3.0	63.2	16.8	14.4
4.0	60.4	9.55	7.37
5.0	58.4	6.41	5.58
9.0	57.7	3.60	3.22

The percentage of apparent sugar in a few dextrins was determined by a modified Somogy method in order to obtain an idea of the magnitude of chemical degradation. It is interesting to note that the amount of reducing material seemed to reach a constant value in the case of olt-5 macilage 681-669. This property of the dertrins might be profitably studied further.

Copies: Files
Steele lowland Swanson
*Al es Lictenook 669 paces E-10 69-74 $78-84$

COOPERATOR Institute
REPORT NO. 21
DATE -April 23, 1946
NOTE BOOK 654 and *
PAGE 126 TO 130
signed form Wi Swanson
John i. Swanson

Experiments with a Bentonite-Kannogalacten Niucilege Complex and its Effect on the Ash Content of Eandsheets

Introduction: Some months ago during a discussion of mucilage problems

 with several representatives of General Mills Inc. it was mentioned that small mounts of mannogalactan mucileges clarified or flocked bentonite dispersions. This vas tried later in the laboratory where it waslearned that as little as two drops of 0.5% guts mucilage would completely flocs 5. ml. of a 0.5% bentonite dispersion. This phenomenon seemed very interesting for the following reasons:

1. It is unusual to find two highly hydrated colloids having like charges which coagulate or floc when mixed.
2. A new type of complex addition product between the bentonite lattice and the mucilage appears to be formed which may be similar to the borex-mucilsere complex.
3. The complex formation may not be limited to bentonite alone but may form with the more hydrous fractions of many clays used as filling materials. Furthermore, this complex formation might account for the poorer results obtained in some mills because part of the mucilase vas inactivated by reaction with certain hydrous mineral species in the filler.
L. The combos ma: retain come of the cohesive properties of the mucilage and oenone useful as a nears of increasing the ash content of a sheet of paper. Fine fibers would also be retained more completely under these coridtions.
4. A possible analytical tool for mannogalectan mucilage might be developed.

Gris report is concerned with several preliminary experiments with the
phenomenon. Ilo collation tests ir graduated cylinders were mede with
locust bent gum mucilage fad this yes followed by 2 study of the effects.
of centonite-gher mucilage mixtures on the ssh and strength properties
of nondsheets.

Excerimental:

Preliminery Floccing Experimente with Locust Bean Gum.
2. Sentonite dispersion

- Ten arams of Womirg bentonite were added to a 2 liter flask and wetted with 30 ml . of $95 \%^{\circ}$ ethyl alcohol. The mixture wes ciluted with reter to 2 Ifters accompanied by shahing.
b. Locrist Bean Gum.
$\operatorname{con} k$ A.
Wen grams of locust bean gum we:e suspended in about 1500 ml . of water and direct, steam injected until the temperature reached $35^{\circ} \mathrm{C}$. The mixure yes then diluter to 0.5% concentration and placed in two 2 liter flasks erci actoclared for 25 minutes at $120^{\circ} \mathrm{C}$. Whe flasks ve:e weighed, the concentration esain adjusted to 0.5% with sterile wot,or and the solation was poured into stenile 1 ? 5 ml . flasks and sealed with ruher stcresus. The viscosity of thic macilage solution we somewhet below normal because of the longer tine taisen to reise the temperatwe to 85° C. whick allowed the natural enzymes to act longer. after sterilizetion, howorer, the wiscosity remeinec corsicnt ior several aneths prowien the sea? hes not troker.
cook \bar{B}.
Fio and cre hif grems of locust bean gum were slurried in $350 \mathrm{mi} .0 \approx$ roter fri stean injected to ratice the temperature to $90^{\circ} \mathrm{C}$. After bolcing $2{ }^{4} 55-90^{\circ} 0$. for 10 rinutes the mixtire was dilutec to

c. We Floccing Experiments

Ore randred al. of the bentonite cispersion was adaed to each of several 100 ml . graduated cylineers. The jesired number of drops of
mucilage w es then added to each cylinder from an eye dropper axd followed by infediate shatirg. The mixture was allowed to floce and the fione volume recorded at varicis intervais. This pacerine was used for the first A and 3 sets reconded in Table I but $f=$ ves belisever that air bubles may have become ectrapped with this method of miring. Therefore, subsecuent e:periments were made $u g$ gentiy stirrint the rentmite and mucilsge in a beake: ard carefully transferring the mixture to the gracuated cylinder.

One hundret drops of the mucilase solution weighed 8.3 g . whick zote a weizht per crop of 0.0835 . The mucilage parcentoges in Trisie I were calculated from this value.

The effect of the concentration of mucilege when added to the bentorite inspersion may be seen from the data of Teble II. In these experimants the same totel cugntity of maninge was gdder to the jertonite but aifferert ccacentrations were 2 sed.

In Table IIT the effect of the lingth of tine teken to add the mucilege to the bertorite dispersion was stidied at ore corcentratign.

Experiments with the Dentonite-Nucilage Complex in Eandsheets
2. Zeatirg oí Puip.

Three huncred sixtor grems (O. D. basis) of iifertaeuser bleached suifite puig were slushed in the Valley beater with 23 liters of weter for 5 minates and then eeater for 51 minutes with 5500 g. on

$\begin{aligned} & \text { Kaci:-se } \\ & \text { Used. } \\ & \text { Soos } \end{aligned}$	Sucilege adcec			$\begin{aligned} & \text { Fioce Volime } \\ & 1 \end{aligned}$			$c_{i}{ }^{2 t}$		in Exis		
	amier	zonc．					18		2i		
	0 －	\bigcirc こer．－	Sonc．								
	drops	corite	¢ 0								
	C． 5.6	$\%$	Sesption				Yours				
A．	10	0.83	0.30115	0				5	5		
	20	1.56	0． 3083	，				17	16		
	40	3.32	0.0165	20				40	33		
	80	5.05	0.6332	105				86	93		
3	10	0.33	9．00425	Ej				$2{ }^{1}$	23		
	20	1.50	くが33	83				$3{ }^{2}$	32		
	10	3.32	C． 2165	$¢ 5$				4	14		
	80	6.65	－．0．32	38				43	43		
3.	0	0	0		0	0	0			0.5	
	1	0.08	2.00042		0	c	0			1.0	
	3	0.45	$0.00: 24$		$?$	2	2			4.0	
	5	2.41	3.00205		3	4	4			E． 0	
	10	0.83	0．0cl：15		13	18	13			12． 3	
	20	1.66	C．0．93		52	LE	I！			28.0	
	10	3.32	c．0166		56	91	25			15.2	
	E9	c． 65	0.0332		シ	－1	$3:$			5 5．0	
	100	$2: 3$	0.06 －		gz	zc	75			52.6	
	200	3.6	2．083							55.0	

MEİII
Effect of Masitge socentration Ther Adici：to tie 3entorite
cons．
$\because 2 c^{2}-8$
lage
$\begin{array}{rrrrrrrr}\text { B } & 0.2520 & 0.33 & 0.0015 & 10 & 15 & 24 & 11 \\ & 2.12540 & 0.63 & 0.60415 & 6 & 2 & 9 & 12 \\ & 0.05100 & 0.85 & 2.0 .425 & 5 & 6 & 6 & 7\end{array}$

TAEE I：

3 Fime to
ALé ध
in Eecrus 20 日吅

3

130	\bigcirc	$\therefore .6$	C．tres	31
2	20	1.0	c． 0.5085	28
7	20	2．6	3．fres	30

Project No. 849
Paze 6
Agr:2 23, 1946

Sooking the fuar fuctlege

Ten grams of guer Gl-5 mactlage were slurried in 1500 ml . of $0.25 ; 6$ torax solution and heates to 87° C. with airect steam. Then 67 ml . of 0.3 II HCL were added and the temperature was held $2 t 85-57^{\circ} \mathrm{c}$. for 10 minutes with continued stirring. After cooling the concentration was adjusted to 0.5%.

Making the Eandskeets.

The first series of hardsheets in Table IV were made somewhat inffererth: then tie late: sets.

Thirty zrams of the beaten julp wore measured out into a pail end 30 g . of bentonite which had been previously wetted first with 30 ml . of 95% alcohol and then with 250 ml . of water was added and stirred for \bar{y} mintes until t:e 1 mps dispersed. Then 30 g . of the mucilage salation (3.5% on the fiber) were added with $71 g o r o u s$ stirring. After 5 minutes the mixture was diluted to 0.5% fiber consistency and 12 handaheets (1.5 g . each) were mace in the regular marner. The followng sets of sheets were made in addition to tie zoove: (a) a blank with l. 5 for of macilage in which the jentonite was mitted $(0)=$ set in which the bentonite but no mucilage was added and (6) a set in which the mucilage was not added until the stock conteining the bertonite had been dilutei to 0.5% consistency.

All of the remaining gets of cheots were made by the following procedur e axcept where certair constituents were left cut for comparative purposes. Thirty grams of puip (C. D. basis) were measured out in a

Froject No. 849
$F_{\text {age }} 7$
April 23,1946

Project No. 849 Pege 5 April 23, ic46
grecuated cylinder and 30 grams of bentonite aded with stirring. The mixture was diluted to $0.5{ }^{\sharp}$ fiber consistency and then the desired ouantity of cooked guar mucilage added with stirring. Ther. 2% of rosin size (based on fioer) was added with 5 minutes etirring followed by 4.5% of alum and another 5 minute stirring period. The sheets were made as before except that sufficient $\mathrm{N}_{\mathrm{R}_{2}} \mathrm{SO}_{4}$ was added to the sheet mold to maintain the pr at 4.5 - 5.0 in ell furnishes containing rosin and alim.

With 3 and $\bar{y} y$ of mucilage $1 t$ was necossary to lower the bentonite addition to 50% on the weight of the fiber because drainage was exceedinely slow.

Resuits and Discussion:

The Flocculation Experiments

From an inspection of Table I and Figure lit may be sean that the type of flocc and completeness of floceing is dependent upon the amount of mucilage added to the bentonite dispersion. Bixilese A gave a straight line relationship when floculation volume bas olotted ageinst the percentage concentration of muciasace on the tertonite. This was not the case with macilage \equiv b.at after stending for a day there wes a tendercy foward the straight inne relationstip at lower concentrations. Chis difference in mucilage A and 5 cannot ie accounted for at present but it may be related to the degree of dispersinn, the viscosity and the state of degradation of the mucilase. Futher wort should be done on this pheromenon. It pould apeer that an analytical tool for mucilage might pessibiv develop from sich studies. whe corcentration
of the mucilage at the time of addition to the bentonite seemed to meice considerable difference in the flocculation volume but a wide variation of the time taken to add 20 drops of 0.5% mucilage did not seem to have any pronounced effect.

The पandsheet Experiments

In the first series of experiments of Table IV the marked ability of the bentonite-mucilage complex to increase the ash content of handsheets was ouite apparent. The aidition of loof of bentonite on the weight of fiber gave an ash content of 8.7% and when 1.5% of mucilage was adied the ash increased to 20.1%. The interesting point about this data was the strength properties of the sheets. The sheet containing 20.1% ash hed a bursting strength equivalent to the sheet containing 3.7% ash. The addition of the mucilage to the stock after \therefore ilwion to 0.5 fiber onnsifincy made on even greater improverent in bursting strength. For this reason subsequent sheets were made in this menner.

The basis weight, of the sheats containing bentonite and macilafe were unacaoutably low, wich may prevent strict comperisor of the strength properties with the blank and the controls. Zowever it is believed that the B. and N. sheets may be compared with one another with valic results.

Several other interesting coints are inciceter from the det? of Table.IV. (1) At the Schopper-Riegler freeness 625 less bentonite was retained by the fiber alone than at freeness 570 and the addition
of rosin and alum cii not increase this value. Since bentonite is flocculeted by elum soiutions it seems unusual that greater retention did
 incresed from 5.3% ash for the blant to 15.0% ash and the bursting strength was the same. $W 1+h 5 \%$ and 50% bentonite the ash became 19.5若 and the burst value was greater than that of the control. It was necessary to use 50% bentonite with the higher mucllage concentrations (3 and 5,) in order to form the sheets winich drained very slowly and had rather poor formation. The very high Gurley porosity values show indirectly just hou slow these furnishes really were.

Further work:

It is believed that this method of loadine may impart some uniode properties to the sheet and further work is being done. The leage cuantitios of inentorite $u s e$ in these engerinents have serveu it show the feasioility of a high ash content in this rather light weight sheet. Tutire experiments will be made from the other direction startine with smiler aicitions of bentonite nina yorisig toward the higher velues. It is ifzely tret a significart part of the muctlage is taken up by the excess bentonits and thereby at least partially inactivated. Therefore, experiments made with lower amounts of bentonite should give a better insignt into how much strength can je gained per anit of mucilage and sst adjed.
. Turther wort should sleo be dore with mixtures of bentonite and other filiers provided the bentonite comciex manifests an advantrge ove: streight beater clay-mucilfee mixtures.
jws/og

PROJECT REPORT FORM

PROJECT NO..-849_, \times
COOPERATOR_Instituta
REPORT NO._-20

Copies: Files
Mr. Steele
Dr. Rowland
Mr. Swanson

SOME RXPERIMGETS WITH THE RFTECTS OF GUAR MUCILAGE ON DOUGLAS PIR PULP

INTRODUCTION:

The principle difficulty encountered in substituting Douglas fir kraft pulp for hemlock which is becoming scarce is in developing sufficient bursting strength. Douglas fir gives a long fiber which has plenty of tearing resistance when made into a sheet but the maximum bursting strength falls conelderably ahort of that of hemlock and certain other pulps. It was belleved that guar mucilage might possibly supplement this strength deficiency. This report is concerned with geveral preliminary experiments made to determine the effectiveness of guar Q4-5 on this pulp.

EXP $\operatorname{HRIMENTAL:~}$

The pulp used was a commercially produced sample obtained from the Crown Zellerback Corporation in the form of wet lap. Our sample, taken from the large skid in the pulp laboratory, contained an average of 53.5 moisture.

Beating of Pulps A and B. Three hundred sixty grams (O.D. basis) of the wet lap were slushed for 5 minates with 22,625 ml. of water in a valley beater. Then a weight of 5500 g was placed on the bedplate and the pulp vas beaten for 5 minutes. The weight was removed and the stock slushed while 10.5 liters were removed and designated as Pulp A. (Schopper Riegler freeness 870). The remainder of the stock was then
beaten for an additional 25 minutes and designated as Pulp B. (S. R. freeness 800). These pulps were used for making the blanks and the samples to which cooked ©lt-5 mucilage was added.

Beating of Pulps A and B with Dry Glum Mucilage. The procedure was similar to that above except that after the first 5 minutes slushing period the appropriate quantity of dry Glf-5 mucilage was added to make $0.5,1 . C$ or 2.0% on the 0 . D. weight of fiber present. A and B pulps were removed after the appropriate beating intervals.

Beating of Pulp for Freeness 480. The procedure was similar to that used for Pulps A and B made for evaluation of cooked mucilage except the pulp was beaten for 2 hours. S. R. Freeness 480 . This degree of beating was evaluated only with cooked mucilage.

Procedure for Cooking Ghe5 Mucilege. Five grams of Gltaf were slurried in 300 ml . of 0.25% borax solution and this mizture was heated With direct steam to 87° c. for 5 minutes. After stirring for 10 minutes while cooling, the mixture was diluted to 0.5% concentration for use.

PRISPARATION OT HANDSHRETS

Blank. Twenty-five grams (O. D.) of stock (1460 ml) were diluted to 0.5% consistency and eight 1.5 g . handsheeta were made in a valley sheet mold using 4 stirring strokes and a 35 second interval of standing before forming the sheet. The sheets rere pressed and dried in the usual manner.

Sheets Containing Cooked G4-5 Mucilage. The procedure was similar to that for the blank but the appropriate quantity of 0.5%. mucilage solution was added to the pulp and stirred in for 5 minutes before dilution to 0.5% pulp consistency. Sets of sheets vere made at $0.5,1.0$, and 2.0% of $04-5$ macilage based on the weight of 0 . D. fiber.

Sheets Containing Dry olf-5 Mucilage. An aliquot of the appropriate stock which had been beaten in the presence of the dry added mucilage was measured out and diluted to 0.5% consistency. The sheets were made as above.

Sheets Made with 耳o Standing Time in Mold. The above sets of sheets were all made with a 35 second interval of standing after stirring but prior to formation of the sheets. This was done to emphasize the formation improving effects of the guar micilage. At freeness 480 however, two sets of sheets, a blank and one containing 20 cooked mucilage, were made witnout a standing time.

RRSULTS AND DISCUSSION
The data are presented in Table I where it is quite apparent that guar mucilaga does build strength in this Douglas fir puip. The experiments, thus far, have not produced a sheet of quite the desired bursting strength when compared with hemlock pulp. According to data obtained by the puip lab for hemlock puip a bursting strength of about 148 points per 100 ibs. is desired. It is believed that further experiments might reach this value with the fir pulp.

Project 849
Apri1 8, 1946

The formation values seem to be somewhat erratic, showing ifttle improvement with added guar mucilage. This is probably the result of the technique used. The 35 second interval prior to forming the sheet is undoubtedly too long for this extraordinarily long fibered stock. The sets of sheets made with practically no interval in the sheet mold after stirring showed a decided formation improvement when guar mucilage was present.

JWS/EG

PROJECT REPORT FORM

Copies：Piles
Zr．Steele
Dr．Fcwland．
Mr．Swanson

INCREASING TET TET STEDNGTH OF DADS BY ADDITION OF BORAX AND MAGNESIUM WETAFCBATE TO A FTPNIST CONTAINING GUAR MLOILABE

Introduction：hiannogalactan micilaces would probably find wider use In the f⿴囗十力 setting up the borate gel could be devised．Heretofore，it has been necessary to apply the borate solution in a secondary operation such as spraying，modified size pressing，or running the solution onto a modified dendy mil．Each of these operations possesses disadvantages sufficient to discourage the use of mucilage for wet strength．The work of this report is concerned with several preliminary experiments on methods of setting up wet strength properties by addition of borates to the furnish prior to sheet formation．

Experimental：

Mesnesiun hetaborate
A．Monty－five Eras 0：borax was diceclved in 353 ml ．of peter and warmed to 5000.

B．Wirteen grans of $\because \mathrm{HCl}_{2} \cdot \mathrm{St}_{2}$ pes dissolved in 16.5 mi ． of water and the solution was added to A．A precipitate of $\mathrm{K}_{2}\left(\mathrm{SO}_{2}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ formed which amounted to 2% of the to tail re sit present．

Seating of Pulp
－True hundred sixty grams（O．D．basis）of Ter： bleached sulfite pulp was beaten in a Valley beater with 4500 g ．（plus 1000 g．balance weight）on the bed plate to

Proiect zlo,

Page 2

Cooking of Gl4-5 fricilage
Tro end one-helf grams of Gh-5 was added with stirring to 250.ml. of 0.25 borax solution and the misture heated with direct steam to 87°. C. DIlute $\mathrm{HCl}(12.5 \mathrm{ml}$. of 0.3 N) was adied to $=$ or of $4-5$: The temperature was held at about $55^{\circ} \mathrm{c}$. for 10 minites before diluting to 0.5% mucilage soncentration for use.

Vakine the Sheets
Thirty grams of pulp (O.D. basis) were measured out at i. 45 consictency and 90 g . of 0.5064 mucilege $(1.5 \%$ on以ulp! was added with vigorous stirring. After 5 minutes the appropriete puantity of magnesium metaborate suspension ras added to give the desired percentage based on the fiber. Wire mixture rar aibuted to $0.5 \because$ nulo concietercy end seren
1.5 g. sheets were made in the regular manner.

In those experimente in which borax alone was added to the stock containing mucilare, the borax was first inssolved
 sheet mold were in the range $9.35-10.0$.

4 set of control sheets ras made mith 1.5 mucilage. After drying, some of these sheets were dipoed in 1 borax solution and redried.

```
Profect E40
Varch 26, 10,6
Page 3
```

Eesulte anci Discuesion
The data are fresented in Table I wnere it nev bé seen that small amounts of marnesium metaborate and borax, 5-15, did not produce a noticeeble wet tercile strength. One hundred percent of borax ons the Weignt of ifber otili did not snow improvement but simultaneoue addition of 100\% of masnestum metaborate and. 100% of borax about equalled the Wet tensile strength developed in the borax dipoed control sheets.

It, aopears that the amount of borate neceasary to deveiop the ret tensile mient be economically nrohibitive cut further experiments. With this method should be made before a definite conclusion is reached. The use of NaOR or $\mathrm{Va}_{2} \mathrm{On}_{3}$ along mith barax and magnesium metaborate mav intensify the effect and enable müch smaller ountitios to be used.
Pro eect zlo March 26 , iol 6
Dare 4
TABLD I

Dovies to: Plies
Mr. Steele
Dr. Bowland
Mr. Swanson

Dextrinization of Mannozalactan Yucilaeses
I Locust Dean Gum

Introduction:
On of the simolest and cheapest gethods of converting or reducing the potential viscosity of polysaccharides is heat dextrinizetion In the presence of an acid catalyst. It seemed destrable to apply this Orocedure to manozelacten muctlages for wiving tijsizing cnd coeting adhesives. The preliminary expertments of this report were made with locuet bean efum. Bxperiments with guar mucilage are in progress and will be reported upon soon.

Experinental:
Dextrinizing Eouimment.
A Cenco De Khotinsky constrant temperature oven was laid on its side and a mechanism installed in the intorion for rotating a $2-1$ iter pyrex bottle. A piece of spring steel was nlaced betwoen tro of the shelf suprorts and a sheet netal flaneed holeer for the cottle atteched by means of a salli bolt. A $1 / 2$ inch hollow sheft was pano tircuge a oearing pleced in the thermometer hole in the side of the oven and attached to the bottle by means of a rutber stcoper. Sxall bolted coliers mintelnod risiaity are prevented sliding of the saft. A six tas bulley was atteched to the outsilie end of the shat ani roteted by a belt arrangement from a $1-1 / 2$ inch pulley and veriable speed Cenco
stirrine motor. The speed of rotation of the bottle could thereby be chansed by R3justing the motor.

Addition of Evdrochloric Acic Gas.
The ECl ges mac genereted oy 3ropeing concentrateć hyùrochloric
 wore places in ε one liter suction fiesk fitted with a rubber stonoer containing a $5 . \mathrm{ml}$ burette and a glese tuke reaching below the surface of the aci. The glass tube mas connected to an air pressure line and a flow meter and the air flow adjusted to epproximately 600 iml ner minute. The sice arm of the flask res connected to a trap end then to a long slass tube inserted tarough the rotating shaft into the bottle.

Fifty tc 150 g of locust bean gnin (14. \% moisture) were minced 1. the bottle which was attached tc the rotating mechanisn. Twenti-three porcelain bells were also olaced in the bottle to prevent lumine of the mucileze. Thile rotating the mechanism fairly rapisiy, at room ternerature, gaseous rol and air vere passed into the bottle by dronpinz vericus

 added. A eample of the mucilsge was then removed for detsmminatior of acts sontent.

Erocedure.
A one gran samole of tie mucilage was weighed accurately and susวended it 350 ml of distilled nater ir a 500 ml Erlenmeyer flest. The mixture was heated juet to the boiling noint and intreted mith

Project 84,
Page 3
Jenuary 16, 1046
O.IN NaOH to a phenolphthalein end ovint. According to this method the untreated locust rean gum contained an average of 0.331% of acid calculeted as HCl.

After the acid had been absorbed, the macilage was allowed to conition or temper at room temperature for at 1 east $16-24$ hours before dextrinizine in order to instribute the actd as untformly as possiole.

Tubstzing.
Fifteen grame of the iextrinized mucilage naving a vorixable viscosity mere mixed with 250 nl of distilled water and heated with drect etean to $87^{\circ} \mathrm{C}$. The temperature mes held at $35-87^{\circ} \mathrm{C}$. for 10 minutes and then $s^{t i r}$ ired for 10 minutes more rinile cooling. The mixture Tas dilutec to 4% concentration and 2 so used as a tubsize at $55-6000$.
 one per cent concentration and $30^{\circ} \mathrm{C}$. using modified Cstrald Viscometers.

Results and Piscussion:
The conversion riata are siven in Toble I and the trosize data

It apreser fron the tuisize data that this method of convercion Vielas mrojucts oneoessing untetanding moperties az tubsize aihesives. Pronat olay-554 dextrinized for 8 hr . at $150^{\circ} \mathrm{C}$. and en acia concentration of 0.47% mave a 50% increase in wrating strength and $242 .\{$ and 1 ch: increase in tre machineat aross directions resoectively in ioijins endurance. Further zextrinization progressively lomered these strengtr incresses but the lower

TASLE I
Convercion Data on Dextrinization of Locust Bean Gum at Various Temperatures ano Acid Contents

$\begin{aligned} & \text { Sode } \\ & \text { No. } \end{aligned}$	```Conc.ECl एsed ml```	Arount 0 ́․ Gur: in grens		$\begin{aligned} & \mathrm{HCl}, \\ & \ln \\ & \text { Gum } \end{aligned}$	$\begin{aligned} & \text { Dex } \\ & \text { Temp } \\ & \text { oc. } \end{aligned}$	ntion Time Yours	```Relative Visoosity 1% and 30```
6140-654	-	50	-	8.3*	80°	-	--
G142-5j4	1	50	112.	0.507*	100°	0	31 c .5
						1	66.2
					100	2	15.6
					100	3-1/4	5.73
					100	4-1/4	3.95
					100	5-1/4	3.32
9122-1- 534	2	50	202	1.24*	30°		
6142-2-0554	0.5	50	43	0.464*	80°		
61+3-554	0.5	50	96	$0.407 *$	25°	0	1432.
				0.525	150°	1	,
						2.5	4.31
						5.5	2.27
6143-1-654	0.2	50	48	$0.27{ }^{*}$	25°		
6143-2-554	0.1	50	23	$0.204 *$	25°		
61 $43-3-654$	0.02%	50	23	0.183*	25°		
914 4655	0.2	50	82	0.213*	25°		
6144-1-654	0.2	50	45	$0.213 *$	25°	0	to hish to measure
					80	1	
					80	2	
-	\cdots	. -	- -		80	5	to high to neasure
3151-054	1.5	150	288	0.474	25°	--	-
					150	3	20.5
					150	5	10.5
					150	8	3.59
					150	10	2.73
					150	12	2.13
					150	14	1.84
					150	19	1. 36

* not boilea fin ieterminatior of acisity

Project 849
Page 5
Jenuary 15, 1946
TABLE II
Tubsize Chsracteristics of Dextrinized Locust Bean Gums
100% rag stocl:

Code	Hours Dextrin- ized	Concen- tration $\%$	Temp. ${ }^{\circ} \mathrm{C}$.	$\begin{aligned} & \text { Pasis } \\ & 7 / 7 / 20 / 500 \\ & 17 / 2 ? / 50 \end{aligned}$	Caliner inch	Puretinf Pointa	Strength Pts. per 100 lbs .	Per Cent Increase in Burst	In	Fold Across	Gurl. Poros nec/ cc	$\begin{aligned} & \mathrm{y} \\ & \mathrm{tan} \\ & \mathrm{In} \end{aligned}$	Elmendorf Tear g/sheet Across	```Institute File No.```
Blank	5	1.	--	19.6	0.0034	30.2	154	--	221	65	232	94	108	121514
G143-654	5.5	4.0	55	20.1	. 0.0039	114.5	221	42.9	471	117	286	99	10 ?	12153.0
	5.5	2.0	58	20.0	0.0039	110.4	202	31.2	2.92	78	210	96	110	121511
G151-554		4.0	61	20.0	0.0039	45.1	231	50.0	760	191	386	92	205	121521
	8.0	2.0	61	19.7	0.0039	40.4	205	33.1	103	+95	21.6	105	117	121522
	10.0	4.0	59	19.9	0.0039	45.0	$2 ? 6$	46.7	631	145	314	99	203	121523
	10.0	2.0	59	20.0	0.0039	39.5	198	28.6	346	80	218	104	116	121524
	12.0	1.0	61	20.0	0.0040	14.1	221	12.9	557	121	304	91.	100	121538
	12.0	2.0	60	20.0	0.0040	40.3	204	32.5	310	88	204	95	106	121539
	14.0	4.0	59	19.9	0.0039	42.7	215	39.6	413	109	$2 ? 9$	9	102	121539 121540
	14.0	2.0	60	19.7	0.0039	39.0	198	28.6	296	88	176	95	101	121541
	19.0	4.0	61	13.9	. 0.0039	113.0	206	33.8	343	105	199	95	105	121542
	19.0	2.0	61	19.7	0.0039	37.7	101	24.0	253	84	171	100	108	121543

viscosity products af hish aciosite strength were much better than starch tubsize ainesives.

One detrimental property of the aextrinized mucilage is the dark brom color. It is believed that this may be zileviated to a considerable extent by using a bleaching type of acidic catelyst such as chlorine.

Future Fork:
Tork on dextrinization of suicer mucilage will be pusked Ex ranidy as nosziole. other acidic cetalysts mil ne forestizetec.

STUDIES ON FANNOGALACTAN COIVERTING WNZYMES I. The Relative Rate of Sugar Production Under Verious Conditions

INTRODHCMION

Enzymes capable of converting mannogalactan mucilages suitable for tubsizing were prepared and described in Report No. ló of this project. The strength features of the converted mucilages prepared with these enzymes were not as great as expected or desi red. The reasons are unienown at present but several were suggested in the discussion of Report No. 16. One of these reasons-rapid suger production--hes been investigated to some extent. It was conceivable that the rates of both sugar production and reduction of viscosity might differ materially at various temperatures and $p H$ values because of the effects of these concitions on various components of the enzyme mixture. Tine present report is concerned with several experiments of this nature.

EYPERIMENTAL

It was decided that the best technioue would be one in which both viscosity and sugar could be measured on the same sampie at any specific degree of hydrolysis. After several series of orienting experiments the following method was decided upon:

One hundred grams of 0.5% borax cooked G4-H mucilage wes weighed into a 250 ml . Erlenmeyer flesk and the appropriate quantities of ouffer End water adder, leeving room for the enzyme. The flask was olaced in a water bath at the desired temperature, and after 15 minutes,

Page 2
Project 849
Report ijo. 17
January 24, 1946
0.0025 ml . of the enzyme was added with shaking (0.5 ml . of a solution made by dissolving 0.5 ml . of the concentrated enzyme in weter to make 100 ml.$)$. At $10,30,60$, and 120 minute intervals, 25 ml . aliguots of the hydrolyzed mixture were removed end added to large test tubes containing 2 drons of 5 sodium hydroside. The tube was immedistely cooled under the tap (if necessary) and 10 ml . added to an Ostweld Viscometer at $30^{\circ} \mathrm{C}$. The ∇ iscosity was determined end calculated as the percentage of the original viscosity of a blant.

The remeinder of the sample was used immediately for determingtion of the aporent percentage of sugar by a modified Somogyi micromethod.

The copper reagent had the following comoosition:

$2 \mathrm{uSO} .5 \mathrm{E}_{2} \mathrm{O}$	$7.5 \mathrm{~g} . /$ liter
$\mathrm{KNaC}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{E}_{2} \mathrm{O}$	25.0 g.
$\mathrm{Na}_{2} \mathrm{CO}_{3}$	25.0 g.
NaCCO_{3}	20.0 g.
XI	5.0 g.
KIO_{3}	0.535 g.

The chemicals were dissolved in the orcier given in 850 ml . of cistilled water. The KIO_{3} was dissolved separately and added to the solution guantitatively. Two liters of solution were made up at one time and the bottle fitted with a siphon and soca-lime tube.

A Somogyi reagent containing potassium oxalate was also tried but found to be unsuitable.

A standard sugar curve was mede with a mixture of mannose and galectose. Vacuum dried d-mannose, 0.3744 g . and d-galactose, 0.2656 g . were dissolved in water, three drops of toluene edded and the mixture diluted to 100 ml . Then 5 ml . of this solution was diluted to 100 ml. . various volumes placed in large test tubes (5, 4, 3, 2, $1,0 \mathrm{ml}$; two eaci) and sufficient water adied to maze 5 ml . in each tube. Five ml. of the copper reagent was added to each tube and the tubes heated in a joiling water beth 30 minutes, acidified with 5 ml . of $\mathrm{N}_{2} \mathrm{H}_{2} \mathrm{SO}_{4}$ and titrated with $0 . C 05$ N sodium thiosulfate in the usual manner. Blanks were also run and the differences in ml. of 0.005 thiosulfate between the blank and the sugar sample were plotted ageinst the amount of sugar present. This curve was used in subsequent experiments to determine the apparent amount of sugar present. In the enzyme hydrolyzed sample...

TABLE I

```
THIOSULFATE ZOUIVALEOS FOR A YIXUNES OF MAHOSE ASD GALAOMOSE
    (53.5% d-mannose, 41.5%/d-galactose)
            m!g.
            0.00 0.00
            0.32 1.89
            0.64 3.92
            0.0,6
            1.28
            1.c8
                                    Thiosulfate Enuivalent
                                in ml. of 0.005 N
            6.13
                    8 . 1 1
                        10.03
```

Amount of Suger

Page 4
Project 349
Report Šo. 17
Jonuary 24, 1946

Determination of Apparent Sugar Present in the Enzyme Hydrolyzed Mucilage

- It was necessary to first determine the effect of the length of heating the sample in the oresence of the copper reagent. A sample of G4-H was hydrolyzed with 0.5% of enzyme 10.97 at a consistency of $0.45 \%, 30^{\circ} \mathrm{C}$. and pH of 5.2 for verious lengths of time. Samples were removed at 10 minute, 60 minute and 22 hr . Intervals and the apparent sugar determined at various intervals of heating in the boiling water bath. The data are presented in Table II where it may be noted that a 10 minute hycrolyzed product reached a constant apparent sugar value at 35 minutes and remained fairly constant up to 60 minutes.

TABLE II

 FOR VARICUS IERTEVAS.*

$\begin{gathered} \text { Fydrolysis } \\ \text { mime, } \\ \text { minutes } \end{gathered}$	Time Heated in Boiling Water Bath	Thiosulfate Feouirement 0.005 N	Apparent Percentage of sugar
10	0	0.0	0.000
	15	0.60	0.422
	35	0.75	0.511
	45	0.75	0.511
	50	0.78	0.533
	70	0.65	0.444
60	35	1.10	0.778
	45	1.22	0.867
	60	1.20	0.845
	70	1.05	0.733
	80	0.80	0.555
22 hr.	15	4.55	3.22
	35	6.77	4.78
	45	7.05	4.98
	00	7.15	5.04
	70	7.25	5.11

$* 0.45 \% \mathrm{G} 4-\mathrm{H}$ as substrate
0.0025 ml. No. 97 enzyme
$\mathrm{pH}=5.2$

A 60 minute enzyme hydrolyzed product reouired about 45 minutes heating and a. 22 hr . hydrolysis reouired better than 70 minutes heating although the increase beyond 50 minutes is perhads negligible. On the basis of these findings it was believed that a 50 minute heating period would be adequete for the determination of apparent sugar in the enzyme hydrolyzed mucilages.

Procedure for Determining Apparent Susar

Five ml. of the same alicaline semple used for viscosity measurements was placed in each of two 8×1 inch test tubes containing 5 ml . of the Somogyl copper reagent and loosely stoppered. The tubes were placed in a wire rack and immersed in a vigorously boiling water beth for exactly 50 minutes. They were cooled imnediately to $20-25^{\circ} 0$. in tap water with the stoppers pressed on tight and then allowed to stand at room temperature until titrated. Pive ml . of $1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ was acded to the tube-to betitrated and after shaing and standing for 2 minutes the liberated iodine was titrated with $0.005 \mathbb{Y}$ thiosulfate usine starch indiceior for the end point. A blank on the reagents was also determined in the same way.

The data for conversion of G4-E mucilage with enzyie No. 97 at 30° and $65^{\circ} \mathrm{C}$. and verious pH values are siven in Teble III, and are plotted in Figures 1 and 2. Conversion data for enzyme No. 97-2 a.t $65^{\circ} \mathrm{C}$. For sources of these enzynes ent methods of preparation Report No. 16 should be consulted.

Pase 6
Project 849
Report Ne. 17
Jenuary 24, 1946
TABLE III
VISCOSITY--SUGAR DATA FCR CCNVERSION OF GUAR G4-H WITE ENZYRE NO. 97 at various pH ATD TEMPRRATURES

Time of Hycirolysis, minutes	Temp. 0 .	pH	$\begin{gathered} \text { Percent } \\ \text { Original } \\ \text { Viscosity } \end{gathered}$	Percent Sugar in Sample
0	30	3.1	100	$0.41 *$
10	30	3.1	13.3	0.49
20			8.47	-
30^{-}	30	3.1	6.25	0.52
60	30	3.1	3.77	c. 59
120	30	3.1	2.38	1.04
20 hr .	30	3.1	1.05	3.96
10	30	5.2	10.2	0.53
20	30	5.2	6.1	-
30	30	5.2	4.51	C. 50
60	30	5.2	2.84	0.89
120	30	5.2	1.94	1.16
10	30	8.75	48.0	0.42
20	30	8.75	34.5	-
30	30	8.75	25.8	0.49
60	30	8.75	14.7	0.41
120	30	8.75	8.4	0.46
20 hr .	30	8.75	1.08	3.20
- 10	65	3.1	3.91	$\cdots 0.84$
30	65	3.1	2.04	1.29
60	05	3.1	1.49	1.73
120 ...-	65	3.1	1.19	2.18
10	65	8.7	74.3	0.47
30	65	8.7	72.9	0.49
00	05	8.7	64.3	0.47
120	65	8.7	52.2	0.42
10	65	6.9	4.37	0.57
30	55	6.9	2.15	1.18
50	65	6.3	1.58	1.46
120	65	6.9	1.25	1.75

```
Eaze 9
Project 2449
Report No. 17
January 2L, }194
```

TABLE IV
VISCOSITY--SUGAR DATA FOR COIVERSION OF GUAR GL-H EHzYTE NO. 97-2 AT VARIOUS DE AND $65^{\circ} \mathrm{C}$.

Time of Eydrolysis, minutes	pH	Percent Originel Tiscosity	Percent Sugar in Sample
0	3.13	100.	0.53
10	3.13	3.22	1.04
30	3.13	1.32	1.52
60	3.13	1.32	1.96
120	3.13	1.07	2.75
240	3.13	0.96	3.47
10	7.9	5.7	0.58
30	7.9	3.16	0.75
60	7.9	2.65	0.845
120	7.9	2.56	1.04
10	8.15	7.9	0.80
30	8.15	5.4	0.733
60	8.15	5.0	0.59
120	8.15	4.82	0.82
240	8.15	4.37	0.87
10	7.15	4.41	0.59
30	7.15	2.25	0.59
. 60	-7.15	-- 1.74.	1.12..
120	7.15	1.41	1.56

Page 11
Project 349 Report No. 17 January 24, 1946

TABLE ∇

VISCOSITY--SIGGAR DATA FOR CONVERSION OF LOCUST BIAN GUR WITH EIZYYES NO. 26 AND 97-2. njdrolysis at $05^{\circ} \mathrm{C}$.

Enzyme	Mime of Hydrolysis, minutes	pH	Percent Original Viscosity	Persent Sugar in Sample
26	0	6.49	100.	0.00
	10	6.49	17.5	0.133
	30	6.49	7.41	0.20
	60	6.49	4.73	0.38
$97-2$	120	6.49	3.38	0.31
	10	5.77	4.77	0.29
	30	5.77	2.86	0.69
	60	5.77	2.25	1.02
	120		5.77	2.00

DISCUSSION OF RESULTS
From an inspection of the data plotted in Fisures 1 to 3, it appears that the amount of sugar produced is not excessive. Two hours hydrolysis at $65^{\circ} \mathrm{C}$. produced an apparent sugar content of 2.18% There were only small differences in the rate of apparent sugar production at different $p \mathrm{~B}$ values although the differences at 65° C. were relatively greater than at $30^{\circ} \mathrm{C}$. because of inactivation rates. This is apparent from the non-linear sugar curves at various pH values at 65 0 . (Fig. 2). Autoclaving the mucilage solution at $120^{\circ} \mathrm{C}$. for 30 minutes cid not increase the ajoparent suzar content of the blank.

On the basis of the fact that somewhat less sugar is produced at pH values of 7.0 a tubsize conversion was made at this pH velue. It reciired several times the usuel ouantity of enzyme $97-2$ to reduce the viscosity to a worizable value and the tubsize characteristics were not outstanding (see m131-054).

