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SUMMARY

This research investigates second harmonic generation in Rayleigh surface waves

propagating in 9%Cr ferritic martensitic steel. Previous experimental results show that

the nonlinearity parameter is sensitive to certain changes in a material’s properties such

as thermal embrittlement and hardness changes. Therefore, the nonlinearity parameter

can be used as an indicator of thermal damage due to changes in dislocation density and

precipitations. The specimens are isothermally aged for different holding times to create

progressive changes in the microstructure and obtain different levels of thermal aging dam-

age. As aging progresses the dislocation density decreases and precipitations are formed;

these microstructural evolutions lead to changes in the nonlinearity parameter β. Nonlinear

ultrasonic experiments are conducted for each specimen using a wedge transducer for gener-

ation and an air-coupled transducer for detection of Rayleigh surface waves. The amplitudes

of the first and second order harmonics are measured at different propagation distances, and

these amplitudes are used to obtain the relative nonlinearity parameter for each specimen at

different aging stages. Conclusions about microstructural changes are drawn based on the

nonlinear Rayleigh surface wave measurement and complementary measurements including

scanning electron microscopy (SEM) and Rockwell HRC hardness. The results indicate

that the nonlinearity parameter is very sensitive to the dislocation density and precipitate

formation, and thus can be used to track the microstructural change in this material during

the process of thermal aging.
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CHAPTER I

INTRODUCTION

1.1 Motivation and Objectives

Thermal aging of ferritic martensitic steel at temperatures of 600◦C and higher can pose a

high risk to components such as piping, turbines or steam vessels because of drops in the

mechanical properties of the steel such as strength or creep resistance. This unexpected

drop can lead to a dramatic failure during long-term operation.

Modified 9%Cr steel is a common material used in the power generation, chemical

and petroleum industries. Especially in the power generation industry, 9%Cr steel is an

attractive solution to handle the high temperature and pressure since it provides a sufficient

strength, resistance to corrosion and oxidation, low thermal expansion and adequate fatigue

resistance. Furthermore, it is relatively cheap compared to other materials such as austenitic

stainless steels, which are capable of satisfying the same requirements [16]. For this reason,

9%Cr steel is an effective trade-off to balance cost and high temperature. However, an

increased demand to improve the efficiency of power plants requires an exposure to higher

temperatures and pressures. The higher operating conditions (temperature about 650◦C)

need a careful consideration of the degradation mechanisms that occur during thermal aging.

The elevated temperature changes the microstructure since various precipitations re-

spond differently to altering environmental conditions. The changing microstructure and

an accelerating dissolution of lath martensite that contains a high amount of dislocations

cause a degradation of the steel’s mechanical properties. Nonlinear nondestructive eval-

uation techniques are preferred over conventional linear ultrasonic measurements because

of their ability to detect microstructural changes prior to significant drops in strength and

failure.
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Hikata et al. [14] derived a relationship between the pinning of dislocations and the

generation of a second harmonic component. This study was extended by Cantrell et al. [3]

by considering the stress field introduced by precipitates, which pins dislocations. The

findings of these studies and further experiments ( [20], [24], [27], [31], etc.) based on these

results justify the use of nonlinear ultrasound to investigate the change in the microstructure

due to thermal aging.

Rayleigh surface waves used in this research have some ideal features for nondestructive

evaluation since they have the natural ability to travel a longer propagation distance due

to less spreading, compared to bulk and shear waves. Furthermore, Rayleigh waves only

require single-sided access, making them particularly interesting for field application.

The objective of this research is to develop a non-contact detection method to track

changes in the microstructure of 9%Cr steel based on nonlinear Rayleigh waves with vary-

ing propagation distances. With the help of the measured nonlinearity parameter β, we

experimentally assess the stage of thermal damage for each sample. Once this objective

is achieved, complementary measurements (hardness tests, metallurgical analyses) are per-

formed to provide information on the mechanical properties and microstructure of the aged

steel, to complement the nonlinear ultrasonic results obtained and to help interpret the

trends observed in the measured β values.

1.2 Structure of the Thesis

Chapter 2 is a brief introduction to the basics of linear wave propagation in solid media and

characteristics of Rayleigh waves, followed by the derivation of the nonlinearity parameter

β in terms of the measurable out-of-plane displacement.

In a next step, chapter 3 describes the production, chemical composition and geometry

of the modified 9%Cr steel samples investigated in this research.

After the chapter on the material, chapter 4 describes briefly the performed heat treat-

ment schedule to obtain six samples in a different stage of thermal aging (holding times

of 0h, 200h, 500h, 1000h, 1500h and 3000h). Subsequently, the mechanisms during thermal

aging are described in detail, namely: (i) nucleation, growth and coarsening of precipitates;

2



(ii) dislocations and their interaction with precipitates; (iii) evolution of precipitates in

modified 9%Cr steel. Finally, the chapter shows the theoretical approach to explain the

contribution of microstructural changes on the nonlinearity parameter β.

Chapter 5 gives a brief overview on the setup and the components to measure Rayleigh

waves with an air-coupled transducer, followed by the necessary assumptions to process

the ultrasonic datas. Moreover, the chapter explains the procedure to perform the mea-

surements, which consists of determining the path of the acoustic beam and the actual

measurement along the propagation direction.

Chapter 6 evaluates the results of the complementary tests and the nonlinear measure-

ment and interprets the findings. Based on this interpretation, chapter 7 draws a conclusion

and gives an outlook for subsequent work.
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CHAPTER II

WAVE PROPAGATION IN SOLIDS

Wave propagation in elastic solids provides a useful tool in mechanical engineering to con-

duct nondestructive tests since the propagating wave interacts with microstructural changes

and macroscopic defects. This chapter discusses the fundamentals of wave propagation in

solid materials. On this basis, the Rayleigh wave is introduced as a special wave that can

propagate along a stress-free surface of an elastic half space. The last step focuses on wave

propagation in an elastic homogeneous material with a nonlinear stress-strain relationship.

Based on this relationship the nonlinearity parameter is defined as an indicator of the ma-

terial nonlinearity. Further down it is shown that the nonlinearity correlates with the state

of thermal aging.

2.1 Wave Equation in Linear Elastic Solids

The propagation of waves in an unbounded medium can be derived by using the equation

of momentum and compatibility. Furthermore, the constitutive relationship is necessary to

connect applied stresses or forces to strains or deformations. The derivation is in conformity

with Achenbach [1].

The balance of linear momentum for a body of volume V and surface S is given by
∫

S
tidS +

∫

V
bidV =

∫

V
ρüidV (1)

Here ρ denotes the material mass density, bi represents the body force, ti is the traction on

the surface S and üi represents the second derivative of the displacement ui with respect to

time. If the Cauchy stress formula

ti = njσij (2)

with σij as the Cauchy stress is substituted in equation (1) and the Gauss’ theorem is

applied to transform the surface integral into a volume integral
∫

V
ρ
∂2ui
∂t2

dV =

∫

V
∂jσijdV +

∫

V
bidV (3)

4



is obtained. Since the volume V is arbitrary and equation (3) has to be valid for any volume

V, the localization argument can be used. This results in Cauchy’s equation, also known as

linear momentum equation.

linear momentum equation

ρ
∂2ui
∂t2

= ∂jσij + bi (4)

Equation (5) gives the relationship between the strain ǫij and the displacement ui.

compatibility equation

ǫij =
1

2
(∂iuj + ∂jui) (5)

To derive the wave equation the constitutive relationship is the last necessary equation. It

connects applied stresses or forces to strains or deformations. In general, the relationship

between the stress σij and strain ǫkl tensor is given by the fourth order stiffness tensor Cijkl

by

σij = Cijklǫkl (6)

Cijkl contains the mechanical properties of the material. Since it is assumed that the

material is a linearly elastic, isotropic and homogeneous solid, the coefficients of Cijkl are

constant and can be described in terms of the Lamé constants λ and µ . Equation (7) is

the known Hooke’s Law in the three dimensional space.

constitutive relationship

σij = λǫkkδij + 2ǫij (7)

The Lamé elastic constants can be denoted by the material properties Young’s modulus E

and Poisson’s ratio ν. They are related by

λ =
Eν

(1 + ν)(1− 2ν)
(8)

µ =
E

2(1 + ν)
(9)

The wave equation expressed in index notation can be obtained by using equation (4), (5)

and (7) and the simplification ∇λ = 0 and ∇µ = 0. The spatial variation of the Lamé

constants λ and µ can be neglected in a homogeneous material. Furthermore, the body

5



force bi in the momentum equation is neglected.

ρ
∂2~u

∂t2
= (λ+ µ)∇∇ · ~u+ µ∇2~u (10)

Equation (10) represents a set of coupled partial differential equations which can be uncou-

pled by using the vector identity −∇×∇× ~u+∇∇ · ~u = ∇2~u. Thus, equation (10) can be

obtained in terms of

ρ
∂2~u

∂t2
= (λ+ 2µ)∇∇ · ~u− µ∇×∇× ~u (11)

By applying the vector identity, it is possible to separate the equation into a solution for

a compression wave (P-wave) and a shear wave (SV-wave). The solution of equation (11)

can be written as the Helmholtz decomposition

~u = ∇Φ+∇× ~Ψ (12)

where the displacement ~u is represented by the four functions Φ, Ψ1, Ψ2 and Ψ3. To

guarantee uniqueness of the solution an additional constraint ∇ · Φ = 0 is necessary. This

approach was introduced by Helmholtz and enables the study of partial differential equations

in both space and time. In our case, the Helmholtz decomposition uses the gradient of the

scalar Φ and the curl of the zero-divergence vector potential ~Ψ to separate the compression

and shear wave. This is only applicable because the whole derivation works in the linear

regime and the principle of superposition is valid.

To show that the Helmholtz decomposition leads to the uncoupled partial differential

equations, the divergence is applied to equation (11). Equation (12) can be solved for the

compression wave by using the mathematical identity ∇ · (∇× ~x) = 0.

ρ
∂2(∇~u)

∂t2
= (λ+ 2µ)∇2(∇ · ~u) (13)

By substituting Φ = ∇ · ~u the first wave equation can be written in terms of

∇2Φ− 1

c2D

∂2

∂t2
Φ = 0 (14)

with the phase velocity of the compression wave

cD =

√

λ+ 2µ

ρ
(15)

6



By taking the curl of equation (11) and using the identity that ∇×Φ = 0 for any scalar Φ.

ρ
∂2(∇× ~u)

∂t2
= µ∇2(∇× ~u) (16)

The substitution ~Ψ = ∇× ~u simplifies the equation to the second wave equation

∇2~Ψ− 1

c2S

∂2

∂t2
~Ψ = 0 (17)

with the phase velocity of the shear wave

cS =

√

µ

ρ
(18)

It can be shown that Φ and ~Ψ are solutions of the two uncoupled wave equations. The

first equation is for a compression (also called dilatational, irrotational, pressure wave or

P-wave) and the second for a shear (also called transverse, rotational, distortional wave

or S-wave) wave. Furthermore, since both phase velocities have only a dependence on the

material mass density ρ and the Lamé constants λ and µ, it can be concluded that for any

material cD > cS .

2.2 Wave Phenomena

2.2.1 Plane Wave Propagation

This section considers a plane wave in an infinite media. The assumption of a plane wave

implies a wave of constant frequency f and amplitude A with wavefronts which are consid-

ered as an infinitely long straight line. The propagation direction ~p is perpendicular to the

wavefront. The mathematical representation is given by

~u = ~df(~x · ~p− ct) (19)

where c represents either the longitudinal or shear phase velocity cD or cS , respectively.

Furthermore, vector ~d denotes the direction of the particle movement, also called the dis-

placement vector. By substituting equation (19) into (11), we obtain

(µ− ρc2)~d+ (λ+ µ)(~p · ~d)~p = 0 (20)

7



Since ~p and ~d are different unit vectors, there are only two possible solutions to satisfy

the equation.

1. ~d = ±~p: this implies that ~p · ~d = 1; the particle displacement is in the same direction

as the propagating wave and equation (20) yields c = cD as shown in equation (15)

2. ~p · ~d = 0: this solution denotes a shear wave, since the motion of particles is perpen-

dicular to the propagation direction. Solving equation (20) leads to c = cS , as defined

in equation (18)

2.2.2 Harmonic Waves

Harmonic waves represent a special form of plane waves travelling with phase velocity c and

their direction is given by the unit vector ~p. The function can be written as

f(~x · ~p− ct) = eik(~x·~p−ct) (21)

where k stands for the wavenumber and is defined as k = ω
c = 2π

λ . With a given amplitude

A, which is independent of time t and position ~x, we can define the displacement field

expression for a general time harmonic wave

~u(n) = An
~d(n)eikn(~x·~p

(n)−cnt) (22)

with n denoting the wave type i.e. longitudinal (D) or shear wave (S).

2.2.3 Reflection on Stress-Free Surface

The above derived wave types independently propagate in an infinite medium. However,

nearly every application of ultrasound involves the interaction of waves with boundaries.

As soon as a finite medium is considered, boundaries between media generate reflection and

transmission. The general case of a boundary between two media can be found in [25].

In the further discussion, we only consider the idealized case of a boundary between

a medium and vacuum (e.g. idealized air). This coupling describes a stress-free surface

without transmission.
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The following figure 2.1 shows an example of an incident P- and SV-wave with the

incident angle θ0 and their reflected waves with the angles θ1 and θ2 for the reflected

P- and SV-wave. Both incident waves propagate in the x1x3-plane, with the boundary

perpendicular to the x3-axis. The resulting conditions for a stress-free boundary are τ33 = 0

and τ31 = 0, which are used to derive Rayleigh waves.

x1x1

x3x3

θ0θ0 θ1θ1
θ2θ2 P

P P SV SV
SV

Figure 2.1: Reflection of P-wave and SV-wave

Using equation (22) and the fact that ω does not change after the reflection, it is possible

to identify a correlation between the angles θ0, θ1 and θ2. To obtain a non-trivial solution

for the amplitudes An (here n=1, 2, 3), the angles have to satisfy Snell’s law

k0sin(θ0) = k1sin(θ1) = k2sin(θ2) (23)

2.2.4 Generation of Rayleigh Waves

The generation of Rayleigh waves is achieved by a longitudinal ultrasonic transducer at-

tached to a wedge-shaped body. Refraction in the boundary between the wedge and the

specimen creates the desired Rayleigh wave. The shape of the wedge, especially the angle

of the impinging wave (θ1), is crucial for the generation, as depicted in figure 2.2.

Again we can use Snell’s law (23) expressed in terms of the wave velocities (c1 = cD and

c2 = cR) to determine the angle θ1 = θD. Since the Rayleigh wave travels along the surface

θ2 = θR = 90◦, Snell’s law yields

θD = arcsin

(

cwedge
D

csample
R

)

(24)

This equation is only solvable for cwedge
D < csample

R , therefore the wedge has to be made up

of a material with a much slower wave velocity.

9



θ1

θ2

c1

c2

wedge

sample

x1

x3

Figure 2.2: Generation of Rayleigh waves

2.3 Rayleigh Waves

Rayleigh surface waves are a special type of acoustic surface waves that travel along a

stress-free boundary. They include both longitudinal and transversal motion, and as every

surface wave the displacement decays exponentially with depth, i.e., the effect is limited to

a shallow layer of approximately one wavelength below the surface.

The characteristic equation of a Rayleigh wave is derived by considering a two di-

mensional plane wave propagating in x1-direction with the phase velocity cR, and the

x3-direction points into the infinite half space, as shown in figure 2.3.

x1

x3

Wavelength λ

Direction of
particle
motion

Direction of wave propagation

Figure 2.3: Two dimensional motion of a Rayleigh wave in the x1x3-plane

The displacement of the Rayleigh wave can also be written as a displacement potential

~u = ∇Φ+∇× ~Ψ (25)

10



This potential expression is more general since it considers all possible motions in the half

space. The scalar potential Φ and the three components of the vector potential ~Ψ have the

form

Φ = Ae−κDx3ei(kRx1−ωt) (26)

Ψ = Be−κSx3ei(kRx1−ωt) (27)

where kR is the Rayleigh wavenumber and the relationship cR = ω
kR

provides the phase

velocity of the Rayleigh wave. For increased transparency, we define κD =
√

1− ( cRcD )2 and

κS =
√

1− ( cRcS )
2. As already mentioned, the derivation considers only a two dimensional

plane wave that propagates in x1-direction, therefore the potentials simplify significantly.

With u2 = 0:

• ∂
∂x2

= 0

• Ψ1 = Ψ3 = 0

• and Ψ2 = Ψ

If we apply these conditions and consider that a Rayleigh wave travels along a stress-free

surface why the normal τ33 and transverse τ31 stresses have to be zero at x3 = 0, we obtain

the Rayleigh characteristic equation

(κ2S + k2R)
2 − 4κSκDk

2
R = 0 (28)

The characteristic equation (28) shows that Rayleigh surface waves are nondispersive since

the phase velocity is completely independent of the frequency f . A good approximation of

the characteristic equation is given in [1] by

cR ≈ 0.862 + 1.14ν

1 + ν
cS (29)

This approximation is fulfilled by all solid materials since it is valid for 0 < ν < 0.5. For

traditional metallic materials is ν = 0.2...0.34 which implies that the Rayleigh velocity is

about 90% of the shear wave velocity. We have shown above that cD > cS for any material,

so we can conclude that the Rayleigh wave arrives after the shear and longitudinal wave

since cR < cS < cD.
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2.4 Extension to Nonlinear Wave Propagation

So far, we only consider linear wave propagation in materials with an ideally linear stress-

strain relationship. However, heterogeneous materials with different phases or materials

in a damaged stage do not follow the linear version of Hooke’s law. An extension of the

linear version of Hooke’s law is necessary. If a sinusoidal wave with a certain frequency is

introduced into a nonlinear material, the wave is distorted by the nonlinear elastic response

of the material and higher harmonics are generated, as depicted in figure 2.4.

A0cos(ωt) A1cos(ωt) A0cos(ωt)

A1cos(ωt)

A2cos(2ωt)

Ancos(nωt)

linear material nonlinear material

Figure 2.4: Generation of higher harmonics in nonlinear materials

The higher harmonics’ amplitudes, especially of the second harmonic, provide informa-

tion about the nonlinearity of the material. The non-dimensional nonlinearity parameter

β, derived in chapter 2.4.1, relates the first and second harmonic and is used as indicator

for the stage of thermal aging. The measurable nonlinearity is generated by different causes

like precipitations, dislocations, vacancies and microcracks (chapter 4).

2.4.1 Derivation of the Nonlinearity Parameter β

Since the whole derivation of the nonlinearity parameter β would be out of scope of this

research, this chapter deals with the main steps of the derivation. However, it is noteworthy

to refer on Hamilton and Blackstock [12], where a detailed derivation of the nonlinearity

parameter β can be found. It is based on the specific strain energy per unit mass W, which

is only dependent on local stretching and volume change.
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By combining the equation of motion (1) and the specific strain energy W, we obtain

the general nonlinear wave equation

ρ
∂2ui
∂t2

=
∂2uk
∂xj∂xl

(

Cijkl +Mijklmn
∂um
∂xn

)

(30)

where Cijkl depicts the fourth order stiffness tensor and

Mijklmn = Cijklmn + Cijlnδkm + Cjnklδim + Cjlnmδik (31)

the higher order stiffness tensor. Equation (30) can be simplified by considering a one di-

mensional longitudinal wave, propagating in the x1-direction and applying Voigt’s notation

for the second and third order elastic constants (Cijklmn = CIJK)

∂2u1
∂t2

=
1

ρ

∂2u1
∂2x1

(

C11 + (C111 + 3C11)
∂u1
∂x1

)

(32)

The elastic constants can be replaced by the second and third-order Huang coefficients Ae

and Be [12], respectively.

Ae = C1 + C11 Be = C111 + 3C11 (33)

where C1 represents the initial stress. Plugging equation (33) into (35), setting the initial

stress to zero and using c2D = Ae

ρ , we can express the nonlinear equation of motion for the

one dimensional case as

∂2u1
∂t2

=
∂2u1
∂2x1

c2D

(

1 +
Be

Ae

∂u1
∂x1

)

(34)

The nonlinearity parameter can be attained by

∂2u1
∂t2

=
∂2u1
∂2x1

c2D

(

1− β
∂u1
∂x1

)

for β = −Be

Ae
(35)

Moreover, the one dimensional wave equation can be set up in terms of a second order

elastic constant P and Q, where the latter is a combination of second and third order elastic

constants. This description is used in section 4.4 to derive the contribution of dislocations

in the lattice.

∂2u1
∂t2

=
∂2u1
∂2x1

c2D

(

P +Q
∂u1
∂x1

)

(36)

where, consequently

β = −Q

P
(37)
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yields the nonlinearity parameter.

To solve equation (35), we apply the perturbation theory. This theory can be used if

we assume that the displacement u composes as follows

u = u0 + u′ (38)

with u0 as the displacement of the initially excited wave and u′ represents the first order

perturbation solution. If we take a harmonic excitation of the form u0 = A1cos(kDx− ωt),

kD = ω
cD

and apply this theory, it leads to the displacement

u = A1cos(kDx− ωt)−A2sin2(kDx− ωt) (39)

which can be solved as

u = u0cos(kDx− ωt)− β

8
k2u20xsin2(kDx− ωt) (40)

By comparing the coefficients of equation (39) and (40) the nonlinearity parameter equals

β =
8A2

1

A2k2Dx
(41)

The nonlinearity parameter β depends on the amplitude of the fundamental and second

harmonic wave (A1 and A2), the longitudinal wavenumber kD and the propagation distance

x. Thus, it is easy to determine β since the amplitudes A1 and A2 can be experimentally

identified by using a certain wavenumber kD and propagation distance x.

2.4.2 Nonlinearity Parameter β for Rayleigh Waves

The nonlinearity parameter β is only valid for longitudinal waves; however, a Rayleigh wave

propagates in a two dimensional space which complicates the derivation. While a longitu-

dinal wave is sensitive with respect to the generation of higher harmonics, the nonlinearity

of a shear wave vanishes in isotropic materials due to the symmetry of the third order coef-

ficient Be. But as we consider that Rayleigh waves are the superposition of a longitudinal

and shear wave, a Rayleigh wave should behave in a similar way as the longitudinal wave.

Therefore, β also depends on the ratio of A2 and A2
1.

The following derivation for the nonlinear Rayleigh wave is based on Hermann et al. [13],

Hikata et al. [14] and Viktorov [25]. As described in section 2.3, we consider a Rayleigh wave

14



propagating in x1-direction and the x3-axis points into the half space. According to [25],

the displacement potentials we use in (26) and (27) can be rewritten as

Φ = −i
A1

kR
e−κDx3ei(kRx1−ωt) (42)

Ψ = −i
B1

kR
e−κSx3ei(kRx1−ωt) (43)

If we apply the same boundary condition of a stress-free surface the constants A1 and B1

are related as follows

A1 = −i
2kRκD
k2R + κ2S

B1 (44)

Recalling the fact that a Rayleigh wave is the superposition of a longitudinal and shear

wave with the same trace velocity, the displacement can be decomposed into a longitudinal

(here x1) and shear (here x3) part and with the substitution of B1 with A1 (44)

ux1(ω) = A1

(

e−κDx3 − 2κDκS
k2R + κ2S

e−κSx3

)

ei(kRx1−ωt) (45)

ux3(ω) = iA1
κD
kR

(

e−κDx3 − 2k2R
k2R + κ2S

e−κSx3

)

ei(kRx1−ωt) (46)

According to Zabolotskaya [30], the second order harmonic in a material with a weak

quadratic nonlinearity is approximately given by

ux1(2ω) ≈ A2

(

e−2κDx3 − 2κDκS
k2R + κ2S

e−2κSx3

)

ei2(kRx1−ωt) (47)

ux3(2ω) ≈ iA2
κD
kR

(

e−2κDx3 − 2k2R
k2R + κ2S

e−2κSx3

)

ei2(kRx1−ωt) (48)

Since the shear wave contribution does not lead to the generation of higher harmonics, it is

permitted to relate the amplitudes of the fundamental and second harmonic by using the

nonlinearity parameter β. As for the longitudinal bulk wave, we obtain β that is dependent

on A1, A2, wavenumber kD and propagation distance x (here x1).

In this research an air-coupled transducer is used to detect the wave. The air-coupled

transducer only measures the out-of-plane motion of the Rayleigh wave, so we have to relate

the particle displacement ux3 on the surface of the infinite half space to β. From equation

(46) and (48), the ratio of the second harmonic to the fundamental amplitude is

ux3(2ω) |x3=0

ux3(ω) |x3=0
=

βk2Dx

8iκD

kR

(

1− 2k2
R

k2
R
+κS

) (49)
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The nonlinearity parameter β is related to the out-of-plane displacement by

β =
ux3(2ω) |x3=0

ux3(ω) |x3=0

8iκD
xk2DkR

(

1− 2k2R
k2R + κS

)

(50)

It has to be mentioned that the shear wave component does not produce nonlinearity by

itself. However, the second term in the brackets of equation (50) contains the contribution

of the shear wave component (i.e. κS) that interacts with the longitudinal one.
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CHAPTER III

PREPARATION AND MICROSCOPIC STRUCTURE OF MODIFIED

9%CR FERRITIC MARTENSITIC STEEL

As mentioned above, 9-12%Cr ferritic martensitic steels have attracted significant attention,

due to their high temperature performance (up to 650◦C and higher) [20]. 9-12%Cr steels

comply with the basic requirements of creep strength and oxidation resistance at a low cost.

Another well-known material, that satisfies these requirements, is austenitic stainless steel;

however, this steel is relatively expensive and thus from an economic point of view not

applicable. Furthermore, it contains a poor thermal cycling capability, so it is unsuitable

for thick-section components like piping, large forgings and castings of steam power plants.

Beginning with the 12CrMoV steel X20, introduced in the mid-1950s, alloy develop-

ments over the last decades have led to a steady increase in performance like the modified

P91 (1970s) and P92 (1980s) [7]. Improved creep resistance is achieved by small but impor-

tant changes in composition. These changes include additional small amounts of elements

like vanadium (V), niobium (Nb), nitrogen (N), tungsten (W) or molybdenum (Mb). His-

torically, isothermal tests with metallurgically stable material are expected to have a linear

relation between the logarithm of time and the logarithm of stress. However, their initially

evaluation of long-term thermal aging or creep strength at about 600◦C are not reliable

and a gradual decrease in mechanical properties at temperatures above 593◦C are reported

in Jablonski et al. [16]. The unexpected over-estimation of long-term properties is a con-

sequence of evolutions in the microstructure during operating temperature. The major

microstructural changes, namely the precipitates, are described in detail in section 4.3.

This research concerns the modified 9%Cr ferritic martensitic steel and begins with the

description of the production and geometry of the samples provided.
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3.1 Preparation of 9%Cr Steel

The specimens are normalized and tempered according to [8].

Table 3.1: Preparation of specimen

Temperature [◦C] Time [min/mm] Cooling method

Normalizing 1050 1 still air

Tempering 770 3 still air

Normalizing has to be around 1050◦C since it has to be inside the austenitic loop [7] to

obtain an exclusive austenitic microstructure. After cooling at still air to room temperature,

the steel should become fully martensitic with a high dislocation density. As the normalized

steel is hard and brittle, it has to be tempered at 770◦C to recover ductility of the steel.

The minimum chromium content of about 9% is determined by the oxidation resistance

at operation temperature, and the maximum content is restricted to about 12% in order

to stay in the austenitic loop. If we leave the austenitic loop and ferrite is present during

normalizing, the steel does not completely transform to martensite. This section indicates a

rough overview on the production, further details on this topic can be found in [7] and [16].

3.2 9%Cr Steel Composition and Mechanical Properties

The composition of 9%Cr steel comprises at least the following elements: chromium (Cr),

molybdenum (Mo), carbon (Cr), titanium (Ti) and other elements with the balance iron

(Fe). Table 3.2 breaks down the chemical composition of the provided specimens.

Table 3.2: Composition of modified 9%Cr steel

Element C Mn P S Si Cu Ni Cr Mo

Percentage(%) 0.117 0.443 0.020 0.0005 0.330 0.090 0.153 8.888 0.862

Element Al Nb V Ti N

Percentage(%) 0.011 0.073 0.192 0.003 0.0451
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In the following, we aim to present some elements to understand the importance of the

alloy and the later precipitations described in section 4.3.

As can seen from table 3.2, chromium (Cr) is the main alloying element since it gives

a satisfying level of hot corrosion resistance, and it is essential to ensure high temperature

oxidation resistance. This alloy does not only indicate the name of the steel, its considerable

amount enables the high temperature performance.

Molybdenum (Mo) is the second important alloy to achieve the desired properties. A

content of at least 0.5% Mo is needed for solution strengthening and improves the creep

strength. However, during service conditions in high temperature, Mo creates an intermetal-

lic phase, the so called Laves phase (section 4.3), that significantly impacts the toughness

and, moreover, its presence reduces the time of operation.

Titanium (Ti) provides the same properties as chromium, it improves the creep strength

and oxidation resistance. Specifically for this alloy element is the formation of large primary

and small secondary precipitates with carbon (C). The primary precipitates are responsible

for grain boundary pinning, whereas the secondary should impede the glide and climb of

dislocations throughout the microstructure.

Niobium (Nb) and vanadium (V) combine with carbon (C) and nitrogen (N) to form

a finely dispersed precipitation of the form (Nb,V)(C,N), which has a beneficial effect for

improving the long-term performance.

Table 3.3 provides results of mechanical tests, conducted at room temperature (20◦C)

by [8].

Table 3.3: Mechanical properties of modified 9%Cr steel

Yield strength R0.2% 620 MPa

Tensile strength Rm 755 MPa

Elongation A50 26 %

Vickers hardness 235 HV 10
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3.3 Geometry of Specimens

Figure 3.1 shows the geometry of the specimens. The dimension gauge of the rectangular

specimen is 8inches x 1.8inches x 0.5inches in length, width, and height, respectively.

1.8

0.
5

8.0

Figure 3.1: Drawing of the undamaged sample, all dimensions in inches

It has to be noted that the width and height must be chosen in such a way that the

Rayleigh wave can propagate unimpeded. The minimum height is determined by the rela-

tionship of the phase velocity cR, frequency f and wave length λ = cR
f . If we conservatively

take a phase velocity of 3000m
s and an exciting frequency of 2.1MHz, we obtain a wave-

length of around 1.43mm. This is equivalent to 0.0625inches, so the height is much larger

than the wave length (height >> λ). Since the Rayleigh wave only penetrates one time of

its wavelength into the material, no reflection from the back side (bottom) of the specimen

is expected.

The second geometric restriction is determined by the width of the wedge (1inch) and

the active diameter of the exciting transducer (0.5inches). If we very conservatively assume

that the beam of the transducer spreads over the whole width of the wedge, then the width

of the specimen should be at least 1inch. Since we have a width of 1.8inches, it can be said,

with a measure of certainty, that the edges do not influence the wave. Consequently, the

conservatively dimensioned specimen allows an unimpeded propagation of Rayleigh waves

and ensures that no interference will occur.
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CHAPTER IV

MICROSTRUCTURAL CHANGES DUE TO THERMAL AGING

During thermal aging certain alloy steels form precipitations that improve the hardness. The

initially supersaturated element produces finely distributed precipitations of an impurity

phase, which impede the free sliding motion of dislocations. The hardening effect is based

on the introduced obstacles (precipitates) that hinder the movement of dislocations and

increase the yield stress.

Besides precipitation hardening, solid solution strengthening of molybdenum has been

associated with the creep strength of 9%Cr steels. According to [11], it can be expected

that solid solution strengthening does not significantly affect long-term microstructural

stability. Further information to support this assumption can be found in section 4.3.2.

So, precipitation hardening by pinning of dislocations and sub-grain boundaries is the most

significant strengthening mechanism. However, as mentioned in [5], [11] and [20] unexpected

drops in the mechanical properties appear, and since 9%Cr steels mainly rely on precipitates

for their high temperature performance, it is of major importance to understand the process.

Therefore, section 4.2 and 4.3 give a detailed description of the mechanisms that have

an impact on the nonlinearity parameter β. Section 4.4 describes the correlation between

the microstructural properties and the nonlinearity parameter. In other words, the change

in the microstructure can be related to the nonlinearity parameter β. Consequently, any

change in the nonlinearity may allow for an early assessment of the stage of thermal aging.

4.1 Thermal Aging and Preparation for Testing

The samples are received from the manufacturer and we choose a heat treatment schedule

(table 4.1) to obtain several precipitation stages. Every sample undergoes an isothermal

heat treatment at 650◦C for 200h, 500h, 1000h, 1500h or 3000h, respectively. We use a

small interval between exposure times in the beginning since we want to investigate the

early stages of the thermal aging.
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Table 4.1: Heat treatment of specimen

Sample # Temperature [◦C] Time [h]

Sample 1 650 0

Sample 2 650 200

Sample 3 650 500

Sample 4 650 1000

Sample 5 650 1500

Sample 6 650 3000

As can seen in table 4.1, sample 1 has a treatment time of 0h and it shall serve as

an untreated reference specimen. After the heat treatment schedule is conducted, the

surface is hand polished in order to remove all debris and visible texture effects from the

production and heat treatment, which may influence the ultrasonic measurements. To

receive comparable results, it is important to ensure the same surface quality.

4.2 Mechanisms During Thermal Aging of Modified 9%Cr Steel

The precipitation process can be subdivided in three stages; it starts with the nucleation,

followed, if the nuclei reaches a certain size, by the growth, and finally coarsening. Generally

speaking, the hardening mechanism is based on finely distributed precipitates interacting

with sub-grain boundaries or dislocations. This mechanism is very complicated and there

is a huge interaction during thermal aging. However, contribution of precipitated particles

to creep strength have similarities to the Orowan stress [7]; thus, the relationship can be

estimated by the Orowan stress. The following equation shows the relationship between

Orowan stress and the precipitate volume fraction fp, and radius of precipitated particles

rp:

σOrowan = 3.32
G|~b|

√

fp

2rp
(51)
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where G is the shear modulus and ~b represents the Burgers vector. For this research the

derivation of this equation is not as important as its interpretation. Equation (51) predicts

that larger volume fraction and smaller precipitates enhance the Orowan stress and thus

the creep strength.

4.2.1 Nucleation, Growth and Coarsening

Nucleation can be divided in a homogeneous and heterogeneous process. The former appears

spontaneously and randomly without a preferred nucleation site, whereas for the latter de-

fects in the crystal structure, like dislocations, grain boundaries or other precipitates, serve

as starting point. Since the specimen has many dislocations, the heterogeneous nucleation

is dominant. The process is mainly driven by thermodynamic forces and interfacial energy,

but the amount of the necessary element also affects the process. Therefore, we can modify

the precipitation by adjusting the composition. By controlling the precipitates, we are able

to benefit the creep strength because an increase in the amount of certain elements can lead

to a fast nucleation rate, many small particles form and strengthen the long-term properties.

If the rate is slow, the early nucleated precipitates have time to grow. This results in very

few big particles that have a negative impact (see equation (51)) on creep resistance.

As soon as the nuclei reaches a certain size, the growth phase begins. The growth

continues until the precipitates have the same chemical potential as the dissolved elements

in the matrix. In this phase the volume fraction fp and precipitate size rp grow influencing

the nonlinearity parameter β (section 4.4). The growth is primarily diffusion controlled

and highly depending on the type of particles. More information are given in section 4.3

and [11].

The last stage of precipitates is coarsening, also called Ostwald ripening [7]. This stage

can be characterized by the further growth of the largest particles by the expense of the

smaller ones. Since no new particles are formed, the number of particles declines but the

volume fraction fp remains the same. Obviously, this process impacts negatively the Orowan

stress since the finely distributed precipitates are replaced by coarse precipitates.
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4.2.2 Dislocations and Their Interaction with Precipitations

Dislocations are line defects in a crystal lattice that reduce the amount of free energy in the

system. Consequently, parts with a high amount of dislocations are relatively unstable. A

very detailed examination of dislocations and precipitation hardening is given in [10], [15]

and [18]; in this chapter only some selected information of the study may be mentioned.

The goal is to describe how dislocations and precipitates influence each other and the creep

strength.

Physically, the strengthening effect depends on the nature of the obstacles, like its

size, coherency, crystal structure and chemical characteristics. In the early stages, the

strength increases due to nucleation of many small precipitates, that operate as obstacles

for dislocation motion, as previously described. The dislocation passes the obstacle by

cutting, which results in a resisting force. The resisting force behaves proportional to the

size, so as the particle grows, cutting through it becomes more difficult and for a certain

radius rbow the obstacle is strong enough to withstand the dislocation, as depicted in figure

4.1a. If rp > rbow the shear strength and radius are reciprocal. The bowing radius is between

approximately 5nm and 30nm. Since the evolving particles during thermal aging have a

size of rp > 50nm the dominant strengthening effect is due to the bowing mechanism.

bowing

cutting

sh
ea
r
st
re
ss

τ d

radius rp of second
phase particle

rbow

τ ∝
1
rp

τ ∝ rp 2L

2L

(a) Shear stress τd over radius rp of second phase

particles

(b) Strong and weak obstacles distributed in a unit

area

Figure 4.1: Strengthening effect of dislocations and obstacles
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Figure 4.2(a) and (b) show the two bypass mechanisms for absolutely strong and less

strong obstacles, respectively. The Orowan mechanism (a) starts with a bowed dislocation

between two particles. If the dislocation yields after it becomes semi-circular in shape, an

Orowan loop around the particle is formed. This loop makes the motion more and more

difficult. Whereas, if yielding occurs before the dislocation becomes semi-circular in shape

(b), the dislocation only bows and passes the particle without forming a loop.

orowan
loop

2L 2L

2rp 2rp

particle particle

dislocation dislocation

T T

Fobs
Fobs

combined
force of T

Φc

(a) Orowan mechanism (strong obstacles) (b) Bowed dislocation (less strong obstacles)

Figure 4.2: Bypass mechanisms of dislocations for strong and less strong obstacles

The critical angle Φc for the dislocation to overcome the obstacle, the maximum resisting

force of an obstacle Fobs and the distance 2L determine the necessary shear stress τd that

leads to the hardening effect.

Fobs = 2L~bτd (52)

Furthermore, we can define the force as

Fobs = 2Tcos

(

Φc

2

)

(53)

With equation (52) and (53), we can say that

τd =

Tcos

(

Φc

2

)

~bL
(54)

where Φc ≈ 0 holds for a strong obstacle and Φc ≈ π for a weak.
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It seems that the hardening effect of strong obstacles is more effective because of the term

cos

(

Φc

2

)

≈ 1 compared to weak obstacles with cos

(

Φc

2

)

≈ 0. However, weak obstacles are

generally much smaller than strong obstacles. This implies that more weak obstacles are

distributed in a unit area, and therefore 2L is much smaller, as illustrated in figure 4.1(b)

So, even though Fobs is small, the shear stress τd can be large. This mathematical approach

is used in section 4.4 to derive the contribution of dislocations on the nonlinearity parameter

β.

Furthermore, not only the size of precipitates changes over aging time, but also the

dislocation density decreases while tempering and aging, [20] and [21]. According to results

of Sawada [21] with a similar material, the initial density after normalizing of 19 · 1014m−2

steadily diminishes to 6.1 · 1014m−2 after tempering and 1.6 · 1014m−2 after aging. Creep

deformation even accelerates the decrease in dislocation density. Moreover, Park et al. [20]

shows that the lath martensite, containing a high dislocation density, dissolves into sub-

grain after thermally aged. Consequently, the density quickly declines in the beginning

since more martensite is transformed, and reaches a certain equilibrium state, as qualita-

tively illustrated in figure 4.3. Furthermore, the aging temperature affects the decline and

the equilibrium state of the dislocation density. For higher temperature, the slope at the

beginning is higher and the density reaches a lower equilibrium state. Park et al. [20] showed

that an increase from 593◦C to 700◦C reduces the density after 5000h from 7 · 109cm−2 to

4.5 · 109cm−2 starting at 10 · 109cm−2.

d
is
lo
ca
ti
on

d
en

si
ty

Λ
(d
)

aging time t

higher aging temperature

Figure 4.3: Dislocation density Λ(d) over aging time
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4.3 Precipitates in Modified 9%Cr Steel

This section considers only the precipitates most frequently appearing and probably having

influence on the nonlinearity parameter β. The link between precipitates and β is established

in section 4.4. Table 4.2 divides the evolving precipitated particles into two classes. At the

top are the precipitates that evolve during tempering and at the bottom during thermal

aging.

Table 4.2: Most common precipitates in 9%Cr steels

Precipitate Chemical Formula Comments

M23C6 (Cr, Fe,Mo)23C6 Precipitates during tempering

most stable carbide

MX (Nb, V )(N,C) Undissolved during austenization

M2X Cr2N Precipitates during tempering

thermodynamically stable

Lave Phase (Fe,Cr)2Mo Precipitates during creep exposure

or thermal aging (T < 700◦C)

Z-Phase Cr(Nb, V )N Precipitates during creep exposure or

thermal aging but for longer holding times

There are other precipitates that will not be mentioned in this research but can be found

in [7]. Especially, the Laves phase and Z-phase are interesting since no one has perfectly been

aware of the destructive effects or even knowing whether these precipitates are detrimental.

Many researches are concerned with the issue of these two phases, like [20] and [29] with

Laves phase and [6], [7] and [23] with Z-phase. Figure 4.4 illustrates exemplary the most

common precipitates mentioned above in table 4.2, with the Laves and Z-phase highlighted

by a red box.

27



MX

MX

M2X

M23C6

M23C6

M23C6

Laves

Laves

phase

phase

Z-phase

Z-phase

400 nm

Figure 4.4: Exemplary illustration of the precipitates in 9%Cr steels [7]

4.3.1 M23C6, MX and M2X

All these phases form during the tempering process and they are thermodynamically stable.

Cipolla [5] and Hald [11] conduct heat treatments with similar materials (amount of some

composition varies) to determine the microstructural evolution during thermal aging. The

following graphs and values are derived from their results.

M23C6 represents the most stable carbide after tempering. In general, it is the most

abundant precipitation after tempering. The nucleation mainly occurs on prior austenite

grain boundaries and martensite lath boundaries. At the beginning of the thermal aging,

the average radius of the carbides is about 100nm with a relatively high coarsening rate

but even after 10000h at temperature 650◦C is the critical radius of 250nm not reached [5],

as depicted in figure 4.5 (green broken line).

The nitrogen content determines the stability of M2X precipitates but even with a low

nitrogen it is relatively stable. It tends to occur with lower tempering temperatures by

substituting MX precipitates. However, M2X is rarely desired since it usually gets large

and decreases creep strength.

28



The last particles, precipitating before thermal aging, have the form MX. They primar-

ily form in V and Nb rich areas combining with N or C, respectively. We can subdivide these

precipitates into two groups; austenization produces the primary MX and the secondary

MX evolves during tempering. However, additional information can be obtained in [7].

Both types are very stable against coarsening, as illustrated in figure 4.5 (blue dotted line),

and can be seen as the backbone of the long-term stability.
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Figure 4.5: Microstructural size evolution of M23C6, MX and Lave phase in 9%Cr steels

4.3.2 Laves Phase

Laves phase results due to Mo containing in the steel. It is an intermetallic phase having the

general composition A2B and a hexagonal crystal structure. In particular, the two linking

atoms have to have a size ratio of about
√

3
2 ≈ 1.225 to form Laves phase. This explains

why a molybdenum atom (2.01Å) tends to create an intermetallic phase with iron atoms

(1.72Å).

ratioLave =
rMo

rFe
=

2.01Å

1.72Å
≈ 1.17 (55)

Laves phase may also contain little amounts of Cr and Si. It is very unstable at high

temperature (above 700◦C) [5], therefore it does not nucleate during tempering as the other
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precipitates. It forms during thermal aging and rapidly grows up to a size of about 400nm

the first 1000−10000h, as depicted in figure 4.5 (red solid line), and it has a long nucleation

and growth phase [11]. From the creep strengthening point of view, Laves phase has two

aspects. On the one hand, high amounts of Mo are transformed into an intermetallic

phase, resulting in a creep instability due to the loss of the solid solution strengthening

effect from Mo. This opinion was supported by the breakdown of creep strength of several

9%Cr steels [11]. However, good long-term results of the 9%Cr steel P92 contradicts the

opinion. Furthermore, the actual contribution of the solid solution strengthening mechanism

is sparse since the experimental proof to demonstrate and quantify its effect is difficult. This

contradiction is consistent with improved creep strength by compositional changes resulting

in changes of the precipitation populations.

On the other hand, the increased volume fraction at the beginning of the precipitation

phase enhances the creep strength since Laves phase is a finely dispersed phase (see Orowan

equation (51)). However, as mentioned above, the growth rate is comparatively high, so

the radius of the particles reaches quickly very large sizes with a detrimental effect.

4.3.3 Z-Phase

The Z-phase is the most stable nitride in 9%Cr steel but it only forms after exposure for

several thousand hours at 600−650◦C [7]. Historically, the Z-phase is very interesting since

its perception has varied greatly, from beneficial to insignificant to detrimental, and it is still

debated. Very little is known about the behavior; however, recent researches are dealing

intensively with the impact on long-term properties and partly claim that MX particles

may be replaced by the more stable Z-phase, which precipitates as coarse particles and

weakens the creep strength. Danielsen [7] provides a detailed consideration of the original

and the modified Z-phase and its impact on 9-12%Cr steels. This research does not go into

further detail since these precipitates appear only after several thousand hours of exposure.

Moreover, the Z-phase is barely observed in steels with a chromium content below 9% [11].

Therefore, we assume that the Z-phase does not precipitate with a maximum thermal aging

time of 3000h and a chromium content of 8.888%.
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4.4 Impact of Dislocations and Precipitations on Nonlinearity

So far, we examine the microstructure of the material in detail and consider all relevant

mechanisms during thermal aging. This section provides the theoretical background that

enables the assessment of the stage of thermal aging. Based on the derived nonlinearity

parameter β in section 2.4.2, we can use the fundamental achievements of Hikata et al. [14],

who investigated the impact of pinned dislocations, and the further studies on the relation-

ship between nonlinearity parameter and volume fraction fp and radius of the precipitates

rp by Cantrell et al. [4].

4.4.1 Mathematical Derivation of the Contribution of Dislocations and Pre-

cipitates on β

We can derive the relation between applied stress and displacement of dislocations, by

considering a small longitudinal stress σ having a resolved shear stress component τd = Rσ

in the slip plane. R represents the conversion factor that enables the calculation of a shear

stress τd based on an applied longitudinal stress σ.

ds

L L

Φ

~b

r

τd

Figure 4.6: Bowed out dislocation undergoing shear stress

If the dislocation is pinned at two points with the distance 2L, it is bowed out by a

shear stress τd and forms a dislocation line to be in an arc shape with radius r and angle

2Φ, as depicted in figure 4.6. If we assume that the dislocation density is small enough that

the interaction among them can be neglected, the shear stress can be expressed by

τd =
µ|~b|
2r

(56)
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r

Figure 4.7: Infinitesimal dislocation line under line tension T

Considering an infinitesimal line segment with the length ds, the line tension acts on

both sides, as illustrated in figure 4.7. That results in a projected force F , showing towards

the center of the arc. The force can be written as F = 2Tsin(Φ) and the angle Φ can

be related to the line segment ds and radius r by sin(Φ) = ds/2
r . Combining these two

equations, it leads to

F =
Tds

r
(57)

Assuming the dislocation is approximately bowed by the same order of the length of the

Burger’s vector, we can define the force as F = τd|~b|ds. Subsequently, we substitute the

force F with equation (56) and (57)

T =
1

2
µ|~b|2 (58)

where the line tension T is independent of the radius of curvature r. Generally speaking,

the shear strain γd in a dislocation network can be written as follows

γd =
Λ(d)|~b|
2L

Sd (59)

where Λ(d) stands for the dislocation density and Sd denotes the area swept out by each

dislocation loop, which can be calculated by

Sd = r2
(

Φ− 1

2
sin(2Φ)

)

(60)
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Using equation (56), (60) and substituting in equation (59), we obtain the shear strain

in terms of a longitudinal stress σ

γd =
2

3

Λ(d)L2R

µ
σ +

4

5

Λ(d)L4R3

µ3|~b|2
σ3 (61)

where the first, third and fifth powers in the series expansion of sin(Lr ) are neglected. Since

we apply a longitudinal stress σ, the material undergoes an elastic strain ǫe that provides

the total stress ǫ by combining with the strain contributed by bowed dislocations ǫd.

ǫ = ǫe + ǫd (62)

If we use the same approach as in section 2.4.1, we obtain the longitudinal stress σ in terms

of ǫe and the second and third order Huang coefficient.

σ = Aeǫe +
1

2
Beǫ

2
e (63)

or rearrange to solve for ǫe

ǫe =
1

Ae
σ − 1

2

Be

A3
e

σ2 (64)

The total strain ǫ can be expressed by plugging equation (61) and (64) into (62) and using

the conversion factor Ω introduced by Hikata et al. [14]. The factor has the same purpose

as R, it converts the shear strain γd into ǫd.

ǫ =

(

1

Ae
+

2

3

Λ(d)L2RΩ

µ

)

σ − 1

2

Be

A3
e

σ2 +
4

5

Λ(d)L4R3Ω

µ3|~b|2
σ3 (65)

The inverse relation of equation (65) is based on Cantrell [3], who derives ǫd by applying

a stress perturbation. Hikata et al. [14] examine a Taylor series expansion centered at an

initial stress σ0 resulting in an initial strain ǫ0. The infinitesimal perturbation ∆σ causing

a difference in the strain ∆ǫ. The stress σ = σ0 +∆σ can be expressed as follows

σ = σ0 +

(

∂σ

∂ǫ

)

∆ǫ+
1

2

(

∂2σ

∂ǫ2

)

∆ǫ2 (66)

or the inversed version according to Cantrell [3]

σ = σ0 +

(

∂ǫ

∂σ

)−1

∆ǫ− 1

2

[(

∂2ǫ

∂σ2

)(

∂ǫ

∂σ

)−3]

∆ǫ2 (67)
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where the perturbation can be written as

∆σ =

(

∂ǫ

∂σ

)−1

∆ǫ− 1

2

[(

∂2ǫ

∂σ2

)(

∂ǫ

∂σ

)−3]

∆ǫ2 = P∆ǫ+
1

2
Q∆ǫ2 (68)

If we take the partial derivative of ǫ with respect to σ of equation (65), we obtain

P =

(

∂ǫ

∂σ

)−1

=

(

1

Ae
+

2

3

Λ(d)L2RΩ

µ
− Be

A3
e

σ +
12

5

Λ(d)L4R3Ω

µ3|~b|2
σ2

)−1

(69)

Furthermore, by considering that the applied stress σ is usually in the range of MPa, terms

multiplied by σ can be neglected in the further derivation because the terms involving Ae

and µ are in the range of GPa. So, we obtain for P and Q

P =

(

1

Ae
+

2

3

Λ(d)L2RΩ

µ

)−1

(70)

Q =

(

Be

A3
e

− 24

5

Λ(d)L4R3Ω

µ3|~b|2
σ0

)(

1

Ae
+

2

3

Λ(d)L2RΩ

µ

)−3

(71)

If we use the nonlinearity parameter defined in equation (37), we can express β as

β = −Q

P
=

−
(

Be

A3
e
− 24

5
Λ(d)L4R3Ω

µ3|~b|2 σ0

)

(

1
Ae

+ 2
3
Λ(d)L2RΩ

µ

)2 (72)

By examining equation (70), it can be shown that the second term in the denominator is

negligible compared to the first term, so we can simplify the nonlinearity parameter to

β = −Be

Ae
+

24

5

Λ(d)L4R3ΩA2
e

µ3|~b|2
σ0 (73)

From this equation, we can easily distinguish the nonlinearity due to the nonlinear stress-

strain relationship βlat and dislocations βdisloc. As previously in section 2.4.1

βlat = −Be

Ae
(74)

therefore, the second term describes the contribution of dislocations and is dependent on

parameters, like dislocation density Λ(d) and pinning distance of a dislocation 2L.

βdisloc =
24

5

Λ(d)LR3ΩA2
e

µ3|~b|2
|σ0| (75)

34



The model, used to derive the contribution of dislocations on β, can be expanded to the

stress initiated by precipitations if we consider an unconstraint precipitated particle with

radius r0(1 + δ) inserted into a lattice structure with radius r0. If we introduce the bulk

modulus K of the precipitates, the shear modulus µ of the lattice and the actual misfit

parameter ε, we obtain

rp = r0(1 + δ) ε =
3K

3K + 4µ
δ (76)

as derived by Martin [17].

A precipitate introduces a radial stress field σ(r) in the lattice structure that can be written

as

σ(r) = −
4µεr3p
r3

(77)

If we evaluate the stress at the midpoint r = L
2 , as shown in figure (4.8) [3], it yields

σ0 = −
64µεr3p
L3

(78)

which is the superposition of the two adjacent radial stress fields. By combining equation

(75) and the local stress due to precipitations (equation (78)), we obtain βdisloc characterized

by parameters of the dislocation and precipitated particles

βdisloc = 307.2
Λ(d)L4R3ΩA2

er
3
p

µ3|~b|2
3K

3K + 4µ
|δ| (79)

Like the Orowan stress (equation (51)), in practical applications the volume fraction

fp of precipitates is an important indicator for changes in the microstructure, and thus

provides information about the stage of thermal aging. Consequently, Cantrell et al. [4]

relate the radius of precipitates rp and the average distance L between two precipitates to

the volume fraction fp by

L =
2rp
3
√

fp
(80)

If we substitute equation (80) into (79), we come up with a far more elegant description of

βdisloc since it is in terms of the volume fraction and radius of precipitates.
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Figure 4.8: Bowing of dislocation line resulting from radial stress field of precipitates [4]

4.4.2 Evolution of the Nonlinearity Parameter β during Thermal Aging

The total nonlinearity consists of contributions by the lattice and the interaction of dislo-

cations and precipitations. If we assume that βlat remains constant for thermal aging and

βdisloc changes as time passes, then the total nonlinearity parameter β changes with thermal

aging and provides information on the microstructural evolution.

Dislocation density Λ(d), precipitation radius rp and volume fraction fp alter with aging

time and can be related to the nonlinearity parameter by

β ∝
Λ(d)r4p

3
√

fp
(81)

The resulting effects of equation (81) on β are summarized in table (4.3)

Table 4.3: Microstructural changes and their effects on β

Mechanism Change in β Comments

Dislocation density ⇓ Λ(d) monotonically decreases

Nucleation ⇓ many small precipitates rp

Growth ⇑ precipitate radius rp and volume
fraction fp increases

Coarsening ⇓ precipitate radius rp increases,
volume fraction fp remains constant and
precipitates lose their coherency
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CHAPTER V

NONLINEAR ULTRASONIC MEASUREMENTS

The measurement setup, shown in figure 5.1, to generate and detect the nonlinear Rayleigh

wave consists of an air-coupled transducer and a narrow band contact piezoelectric trans-

ducer, exciting a longitudinal wave. The exciting transducer is coupled to a plexiglas wedge,

which is essential to generate the Rayleigh wave. A function generator is used to introduce

a sinusoidal tone burst of 20 cycles at 2.1MHz. To measure second harmonic waves in the

specimen, we have to amplify the output signal of the function generator with the RITEC

GA-2500A high power gated amplifier. The high-voltage signal travels as a Rayleigh wave

along the surface and the air-coupled transducer receives the longitudinal acoustic wave

that is leaked from the Rayleigh wave. The received signals are post-amplified to achieve a

better signal-to-noise ratio, then recorded and averaged by the oscilloscope.

oscilloscope

post-

amplifier

air-coupledair-coupled

transducer

transducer

Rayleigh wave

lubrication oil

wedge

exciting
RITEC

function

generator

trigger

lift off dis-

tance loff

Figure 5.1: Experimental setup for nonlinear ultrasound measurements
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5.1 Components

Detailed descriptions of the components are given in Thiele [24]. Thus, the purpose of this

section is to give a summary of the key information and small adjustments made to ensure

reliable results.

5.1.1 Function Generator

The function generator produces a tone-burst signal with a frequency of 2.1MHz and a

peak to peak voltage of 800mV . To ensure a sufficiently long steady state portion for the

subsequent signal processing, we use an exciting signal containing 20 cycles.

5.1.2 High Power Amplifier

RITEC GA-2500A achieves the desired high-voltage excitation signal that is necessary to

introduce waves with high acoustic energy, which is required to obtain a good signal-to-

noise ratio for the significantly smaller component of the second harmonic. It emerges that

a suitable gain factor for this type of amplifier is 7.4 (in the dial gauge) since any higher

value deteriorates the signal or could even destroy the exciting piezoelectric transducer. It

must be noted that the high power amplifier has to be turned on for at least 30 minutes

before performing measurements. Otherwise, the device cannot guarantee a stable output

signal, as shown by Walker [27].

5.1.3 Transducers

A Panametrics piezoelectric half inch narrow band transducer of type X is used to transform

the electric input signal of the function generator into a longitudinal wave. We apply a

frequency of 2.1MHz since the nominal frequency of the transducer is located at 2.25MHz

and it is absolutely imperative that the excitation frequency is not the same as the nominal

frequency.

The center frequency of the air-coupled transducer has to be close to the frequency of

the second harmonic (around 4.2MHz) to ensure the highest sensitivity. The air-coupled

transducer converts the detected wave back to an electrical signal. In this study, an Ultran
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NCT4-D13 with a nominal frequency of 4MHz and an active area of 12.5mm is used to

detect the propagating waves (figure 5.2(b)).

5.1.4 Plexiglas Wedge

Theoretically, the generation of a Rayleigh wave is based on Snell’s law that relates the

geometry of the wedge (here angle θw) to the sound speeds of the wedge and the sample,

cwedge
D and csample

R , respectively. Snell’s law can be written as follows

θw = arcsin

(

cwedge
D

csample
R

)

(82)

where the wave speed cwedge
D and csample

R can be obtained from the mechanical properties

E, µ and ρ. As depicted in figure 5.2(a), by introducing a longitudinal wave into the wedge

with a known wave speed cwedge
D and Rayleigh velocity csample

R on the surface of the sample,

we can determine the necessary angle θw to achieve a transformation from a longitudinal

to a Rayleigh wave.

csample
R cwedge

D

θw

(a) Plexiglas wedge to transform longitudinal waves

to Rayleigh waves

(b) Clamped wedge with exciting transducer and

air-coupled transducer

Figure 5.2: Exciting transducer attached to wedge and receiving air-coupled transducer

Another factor that strongly affects the result of the measurement is the acoustic cou-

pling condition achieved by light lubrication oil. The coupling condition is influenced by

several factors, like the amount of oil, the clamping force and the surface condition of the

sample. To achieve uniform results, it has to be ensured that all three boundary conditions

are consistent in all measurements. Furthermore, time may be a relevant factor, since [27]

observed a settling effect of the wedge. This phenomena is caused by the change of the

thickness of the oil film, which slowly squeezes out over time. To meet this effect as well,
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it is crucial to clamp the wedge to the sample at least 30 minutes before conducting the

actual ultrasonic measurement. After this time, the influence due to settling is negligible

and a stable coupling condition is accomplished.

5.1.5 Post-Amplifier

Further improvement of the signal-to-noise ratio is obtained by post-amplifying the signal

of the air-coupled transducer with a Panametrics 5072PR pulser-receiver. Without am-

plification a lift off distance loff (figure 5.1) of less than 2mm leads to a peak-to-peak

voltage of approximately 1mV , which is not usable for data acquisition with the oscillo-

scope. Therefore, the signal is enhanced by 40dB to obtain a measurable voltage of about

200mV .

5.1.6 Acquisition of Data

Last component of the setup is the oscilloscope that records the amplified electrical output

signal with an sampling rate of 250MS/s averaged over 256 sequences. Figure 5.3 shows a

typical example for a signal averaged over 256 sequences in the time domain with a steady

state portion, where a Hann window is applied [19], shown as red function. The purpose

of the window is to remove the ringing effects in the beginning (voltage overshoot) and the

end (ringing voltage).

The time domain signal has to be mapped to the frequency domain by applying fast

Fourier transform (FFT). The resulting frequency spectrum is given in figure 5.4, where

the contribution of the fundamental and second harmonic is clearly visible. However, we

are not able to conclude from these voltage amplitudes to absolute particle displacement

amplitudes in the material. Therefore, we have to introduce the electrical amplitudes Ael
1

and Ael
2 , which can be related proportionally to the nonlinearity parameter β.
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Figure 5.3: Typical output signal in time domain averaged over 256 burst and Hann window
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5.2 Technical Approach to Measure Nonlinearity

The main goal of the technical approach is to minimize the influence of unwanted non-

linearities from the electrical system and other sources in the measurement system. The

electrical components like transducer, amplifier and also the coupling condition introduce

nonlinearity into the system that we are not interested in. Therefore, an increase in the exci-

tation voltage, which means at the same time an increasing Ael
1 , is not applicable, although

the amplitude of the second harmonic increases. Figure 5.5(a) depicts the ideally linear

relationship between the squared amplitude of the fundamental (Ael
1 )

2 and the amplitude

of the second harmonic Ael
2 wave, where the obtaining amplitudes are contributions of the

amplifier, transducer, coupling condition and material nonlinearity. To simplify the graph-

ical exposition of figure 5.5(a), we assume that all of the individual nonlinearities linearly

change with an increase of (Ael
1 )

2. This leads to the problem that unwanted nonlinearities

of amplifiers, transducers and coupling condition cannot be isolated from the material non-

linearity since the actual shares of the several nonlinearities in the total nonlinearity are

unknown. Therefore, no statement about the material nonlinearity can be drawn.

material
material

transducer

transducer

amplifier

amplifier

coupling
coupling

(Ael
1 )

2 propagation distance

A
el 2

A
el 2

(a) Qualitative nonlinearity with increasing excita-

tion voltage

(b) Qualitative nonlinearity with increasing propa-

gation distance

Figure 5.5: Qualitative nonlinearity for an increasing excitation voltage and propagation

distance

Instead of increasing the excitation voltage, we can change the propagation distance x1

to determine the material nonlinearity since A2 ∝ x1. The increase due to the change of

the propagation distance can be explained by the energy transfer from the fundamental

to the second harmonic. Theoretically, as depicted in figure 5.5(b), the nonlinearity due
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to electrical devices stays at the same level for all measurements along the propagation

distance. This allows a separation of unwanted nonlinearities and the material nonlinearity.

However, this technical approach does not allow the performance of absolute measurements

of β because of the following reasons:

1. Measured electrical amplitudes Ael
1 and Ael

2 still need to be related to the absolute

particle displacement

2. Constant nonlinearity of transducers and amplifiers over propagation distance is un-

known (figure 5.5(b))

3. Coupling condition, frequency response of transducer and lift off distance of air-

coupled transducer influence Ael
1 and Ael

2

It has to be noted that it is essential to ensure that the coupling condition, transducer and

distance of the air-coupled transducer is always identical to guarantee comparable results

among the measurements and the different specimens.

5.2.1 Assumptions to Process Ultrasonic Datas

So far, we assume that the propagating Rayleigh wave is a plane wave, where no diffraction

happens and the nonlinearity parameter is proportional to A2

A2
1
. This is not, however, the

case for the three dimensional case, where diffraction and also attenuation influence the

propagation of the wave. As a consequence, the nonlinearity parameter is not directly

proportional to the ratio anymore. As Walker [27] and Thiele [24] previously examined,

these effects are negligible for small propagation distances used, and thus a linear fitting

can be applied to obtain the nonlinearity parameter β. The slope obtained by the linear

fit is not equal to β, but it is proportional with a minimal influence of the unwanted

nonlinearities. Thus, we have to introduce the relative nonlinearity parameter β′ that

results from the measured electrical output signal Ael
1 and Ael

2 of the transducer. For the

relative nonlinearity parameter β′ yields the following relationship

β′ =
Ael

2

(Ael
1 )

2x1
∝ A2

A2
1x1

∝ β (83)
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Since measurements with the absolute nonlinearity parameter β go beyond the scope of

this study, we consider the relative parameter β′ by evaluating the electrical contribution

of the first and second harmonic wave Ael
1 and Ael

2 , respectively. This implies that all

results are relative and are used to compare only the specimens measured under the same

conditions. In the following the index ”el” for the electrical first and second harmonic Ael
1

and Ael
2 will no longer be used since we set these amplitude proportional to β (this implies

the proportionality to A1 and A2) and, furthermore, we measure exclusively in the relative

regime.

Shull et al. [22] establish a model that accounts for diffraction and attenuation effects in

the propagation of nonlinear Rayleigh waves, which is briefly summarized because it helps

understand the trend of (A1)
2 and A2. By assuming that the wave field is generated by a

line source of a Gaussian amplitude distribution, we can write the amplitude of the first

harmonic as follows

A1(x1) =
iω1A1,0e

−α1x1

√

1 + ix3
ξ1

e[i(k1x1−ω1t−ϕ1,0)] (84)

where α1 is the attenuation coefficient in x1-direction and ξ1 = k1a2s
2 with as as the radius

of the Rayleigh wave source. Moreover, A1,0 represents the initial first harmonic amplitude

with the corresponding frequency and phase are indicated as ω1 and ϕ1,0, respectively.

The interaction with nonlinearity sources lead to the generation of the second harmonic

amplitude

A2(x1) =−
√
πβω1A2

1,0k
2
1a

2
s

8cR
√

i(α2−2α1)(ξ1+ix1)
e−α2x1+i(α2−2α1)ξ1

[

erf

(

√

i(α2 − 2α1)(ξ1 + ix1)

)

−

erf

(

√

i(α2 − 2α1)ξ1

)]

e[i(k2x1−ω2t−ϕ2,0)]

(85)

with α2 as the attenuation coefficient of the second harmonic amplitude. The expression

”erf” indicates the Gauss error function and is defined as [2]

erf(x) =
2√
π

∫ x

0
e−t2 dt (86)

To take account of the nonlinearity of the exciting transducer and the electrical system, we

have to introduce the initial second harmonic AT
2,0 that diffracts and attenuates along x1.
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It has the same mathematical expression as the fundamental amplitude in equation (84)

AT
2 (x1) =

iω2A
T
2,0e

−α2x1

√

1 + ix1
ξ2

e[i(k2x1−ω2t−ϕ2,0)] (87)

where ω2 is the frequency and ϕ2,0 the phase of the second harmonic. The summation of

equation (85) and (87) leads to the amplitude of the second harmonic

|A2(x1)| = |AM
2 (x1) +AT

2 (x1)| (88)

The unknown parameters α1, α2, A1,0 and A2,0 can be determined using the experimental

results. This model of attenuation and diffraction of Rayleigh waves explains the trend of

(A1)
2 and A2 over the propagation distance x1 in figure 5.7.

5.2.2 Determination of the Acoustic Beam Path and Measurement along Prop-

agation Direction

The exciting transducer is clamped to the wedge on the sample and by moving the air-

coupled transducer in the x1x2-plane, we can perform a measurement of the first and second

harmonic amplitudes along the propagation direction.

The angle between the air-coupled transducer and the surface of the specimen must be

accurately adjusted to detect the leaked longitudinal wave. Theoretically, the angle can be

calculated by using Snell’s law but in practice an excited wave is used to find the true leak

angle. We can modify the relative angle of the air-coupled transducer until the signal has

the highest value (here at about 1.2◦) for the electrical amplitudes, as depicted in figure

5.6(a). The relative angle is the value on the dial gauge and depends on the preceding

adjustment by hand to find the area of the highest value.

In addition, according to Thiele [24] and experimentally observations, a determination

of the acoustic beam path has to be carried out to find the propagation direction of the

Rayleigh wave beam since the beam does not come straight out of the middle of the wedge.

Not only an offset from the center but also an angle between the expected normal and

actual beam direction can be observed.
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Figure 5.6: Typical determination of acoustic path with a frequency of 2.1MHz for the
angle of the air-coupled transducer and the propagation distances x1 = 25mm, x1 = 49mm
and x1 = 71mm

By measuring along the x2-direction, we can state that the peak of A1 and A2 move

from a relative x2 position of 8.25mm and 8.35mm in the beginning (xbeg = 25mm), to

8.00mm and 8.35mm in the middle (xmid = 49mm), up to 7.80mm and 8.25mm in the

end (xend = 71mm), as shown by figure 5.6(b-d). In some cases, the determination of the

acoustic path reveals the problem that the peak of A1 is not located at the same position as

the peak of A2. If this is the case, we determine that we always measure along the peak of

the first harmonic amplitude to guarantee consistent results. Once we establish the actual

path from the determination at 3 different distances, nonlinear measurements are performed

along this predetermined path.
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The air-coupled transducer can also move in the x3-direction that changes the lift off

distance loff . However, to ensure comparable results it must always have the same distance

from the surface of the specimen.

The actual measurement starts with adjusting a distance of 25mm between the wedge

and the middle of the air-coupled transducer. This is followed by recording the value of A1

and A2 each 2mm along the predetermined propagation path. The 24 data points collected

provide an increasing trend for A2 and a decreasing trend for A1, as depicted in figure

5.7(a). A1 decreases almost monotonically with increasing propagation distance, which can

be explained by the energy transfer taking place. Furthermore, attenuation and diffraction

affect the fundamental amplitude and further enhance the decrease, as introduced by the

model of Shull et al. [22]. As shown in figure 5.7(a), the nonlinear interaction leads to a

monotonic increase of A2 in the beginning of the measurements, and then levels off due to

attenuation and diffraction, as also explained by the model in the previous section.
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Figure 5.7: Typical results for a measurement with a frequency of 2.1MHz for sample 1
(untreated sample)

Figure 5.7(b) delineates the ratio A2/A
2
1 where the slope of the linear fit represents

the relative nonlinearity parameter β′. Chapter 6 provides more detailed information on

the results achieved for each sample. It has to be noted that for each measurement 24

measurement points (propagation path up to 71mm) are used for the linear fit.
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CHAPTER VI

EXPERIMENTAL RESULTS AND INTERPRETATION

In addition to the above mentioned nonlinear ultrasonic measurements, hardness tests and a

scanning electron microscopy (SEM) are conducted for each specimen to provide sufficient

information on the microstructure. This chapter summarizes the results obtained from

each test, followed by an interpretation to establish a relationship between the nonlinearity

parameter β′ and the microstructure.

6.1 Complementary Measurements

The scanning electron microscopy (SEM) is performed with a JOEL JSM-7600F micro-

scope. Furthermore, element mapping and energy dispersive X-ray microanalyses (EDX)

are conducted to emphasize the distribution and concentration of the three more important

alloying elements chromium, molybdenum and iron.

Additionally, Rockwell hardness test for each specimen is conducted to receive informa-

tion about the progress of the mechanical properties.

6.1.1 Scanning Electron Microscopy Results

To obtain the metallographic results, the specimens are carefully ground with emery paper

to a grade of 1200 and subsequently polished with a 1µm diamond solution and cloth.

The microstructure is revealed using a Villela’s reagent, which is a common metallographic

etchant for heat treated steels and martensitic stainless steels. It contains 100ml ethanol,

5ml HCl and 1g of picric acid.

Figure 6.1(a-l) shows the sequence of the SEM images which is completed by the cor-

responding element mapping that indicates the distribution of the three more important

alloying elements Fe, Cr and Mo. The number 1, 2, 3 and 4 marks the position, where

energy-dispersive X-ray spectroscopy (EDX) is applied to determine the element concentra-

tion (table 6.1).
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(a) SEM image of specimen with
a holding time of 0h

(b) SEM image of specimen with
a holding time of 200h

(c) SEM image of specimen with
a holding time of 500h
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(d) Element mapping of specimen
with a holding time of 0h

(e) Element mapping of specimen
with a holding time of 200h

(f) Element mapping of specimen
with a holding time of 500h
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(g) SEM image of specimen with
a holding time of 1000h

(h) SEM image of specimen with
a holding time of 1500h

(i) SEM image of specimen with
a holding time of 3000h

2µm2µm2µm CrCrCr MoMoMo FeFeFe

(j) Element mapping of specimen
with a holding time of 1000h

(k) Element mapping of specimen
with a holding time of 1500h

(l) Element mapping of specimen
with a holding time of 3000h

Figure 6.1: SEM image (a-c, g-i) and element mapping (d-f, j-l) of all specimens
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We determine the element concentration of the matrix and an arbitrary particle for the

untreated specimen, and furthermore two arbitrary precipitated particles for the specimen

with a holding time of 3000h.

In general, the precipitation sequence depends mainly on the composition of the steel

but the diffusivities of the alloy elements and the ease of nucleation are also important

considerations determining the favored carbide phases [28].

Initially, particles are seen to be evenly distributed in the matrix and at the bound-

ary of grains. As can observed in figure 6.1(b), iron (green) and molybdenum (blue) are

homogeneously distributed, whereas chromium (purple) shows a higher concentration in

some areas, however, it still has some level of regularity in its distribution. The element

mapping also reveals that prior to heat treatment the particle radius rp << 1µm. Table

6.1 represents the element concentration of two particles and the matrix for the specimen

with a holding time of 0h and 3000h.

As aging time progresses, the diffusion of chromium forms bigger particles located at

sub-grain boundaries and at former austenite grain boundaries [9], as depicted in figure

6.1(l). Particularly the chromium and molybdenum particles gather and create areas with

a higher chromium content, as evidenced by the element concentration of the particles in

table 6.1.

The chromium concentration after 3000h holding time is almost three times higher as

in the untreated specimen. Expressed in numbers, if we compare the precipitated particle

(2) with the precipitated particle (3), an increases from 11.2% to 29.1% is observable,

leading to a sharp decline of the iron concentration from 70.1% to 42.3%. From table

6.1, we can also see that all precipitated particles are richer in carbon (8.8%), chromium

(11.2%) and molybdenum (0.9%) than the matrix (1), which consequently results in the

assumption that the particles may be a chromium carbide type. Vitek [26] also investigates

the precipitation of chromium carbides. Furthermore, the particle size increases for each

further aged specimen and after 3000h particles reach a size of about 1µm in diameter.
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Table 6.1: Element concentration for specimen with 0h (matrix (1) and particle (2)) and
for specimen with 3000h (particle (3) and particle (4))

Element [wt. %] [wt. %]
matrix (1) particle (2)

Iron 82.1 70.1

Carbon 4.4 8.8

Chromium 7.0 11.2

Vanadium 2.3 1.9

Molybdenum 0.5 0.9

Silicon 0.3 0.3

Element [wt. %] [wt. %]
particle (3) particle (4)

Iron 42.3 48.7

Carbon 11.3 8.7

Chromium 29.1 26.4

Vanadium 3.3 3.1

Molybdenum 0.3 0.1

Silicon 0.1 0.2

6.1.2 Hardness Results

A clear decrease of hardness with increasing holding time is observed in figure 6.2 for the

heat treated specimens. The modified 9%Cr steel indicates an initially drastic decrease up

to a holding time of 500h. The averaged value drops from 22.5HRC to 19.8HRC within

500h. After that time, the hardness gradually reduces to a value of 18.5HRC.

A similar trend of rapid decrease, followed by a slight decrease in the hardness are

reported by Wendell [28], who investigates the behavior for different temperatures and has

found out that with increasing temperature the initial slope becomes steeper. These findings

correlates to the behavior of the dislocation density in section 4.2.2, which has the same

trend for an increasing temperature.

This correlation can be explained with the characteristic of the hardness. At the begin-

ning of the thermal aging process, the high amount of lath martensite dissolutes containing

a high dislocation density Λ(d). Consequently, the decrease of Λ(d) is at first high and slows

down since as time passes there is less lath martensite to dissolute.
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Figure 6.2: Rockwell C hardness of the specimens over holding time

6.2 Nonlinear Ultrasonic Results

The nonlinear ultrasonic measurements are conducted as described in chapter 5. We perform

at least 10 measurements for each specimen; one measurement consists of the determination

of the acoustic beam path and the actual measurement along the predetermined path. In

figure 6.3, the relative nonlinearity parameter β′, normalized by the mean value of the

untreated specimen, is plotted over the aging time in hours. The error bar indicates the

maximal variation of the results for each specimen. The maximal error was 10% for the last

specimen, which is still an acceptable value for a nondestructive evaluation purpose.

Figure 6.3 shows an initially rapid decrease of β′ followed by an increase after the aging

time of 500h. In the first 500h drops the nonlinearity parameter from 100% to about 70%.

This drop of 30% can be explained by the reduction of the dislocation density. The further

increase up to 3000h is reasonable because the precipitated particles start to grow and after

3000h the nonlinearity parameter β′ reaches a value of 113% compared to the base sample.
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At some point the structure coarsens because the large particles grow at the expense of the

small ones resulting in a decrease of the nonlinearity parameter β′.
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Figure 6.3: Relative nonlinearity parameter β′ averaged by the mean value of the untreated
sample over holding time

With the significant changes of β′, we can conclude that the nonlinearity parameter

is very sensitive to the microstructural evolution including dislocations and precipitations.

This trend is supported by Park et al. [20] who also measure the nonlinearity parameter

for a 10.5%Cr steel with a different composition of alloying elements. They investigate this

material for several aging temperatures and results of the nonlinearity parameter show a

similar trend as the results in figure 6.3.

Figure 6.3 can be subdivided into an initial phase dominated by decreasing contributions

and a second phase dominated by increasing contributions on β′. Up to an aging time of

500h the decrease in second harmonic generation might be caused by the reduction of

dislocations and the precipitate nucleation process. This phase is followed by an increasing
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phase, where the growth of precipitated particles predominates. However, this hypothesis

needs to be further investigated since the quantitative effect of dislocations and precipitated

particles on β′ has not been finally clarified. Furthermore, as explained in section 4.2.2,

the interaction between dislocation and precipitates is very complicated and a more precise

insight into the microstructural evolution is necessary including the determination of the

dislocation density Λ(d), the exact size of the particles rp and their volume fraction fp.

6.3 Comparison of the Results

This section compares the nonlinear measurements obtained with the air-coupled transducer

to the complementary measurements. As previously mentioned the nonlinearity parameter

can be divided in two phases, as depicted in figure 6.4.
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Again the nonlinearity parameter β′ and the Rockwell C hardness is averaged by the

mean value of the untreated sample. The qualitative curve of the dislocation density (dashed

line) and the radius of precipitated particles (dotted line) is extracted from other studies

on similar steels ( [20], [21] and [5], [6], [11] respectively).

The initial phase clearly shows a simultaneous decrease in the hardness and nonlinearity

parameter. One can qualitatively see that in this phase the dislocation density Λ(d) drops

significantly and at the same time the radius of the precipitated particles rp increases. From

the characteristic of β′ and hardness, we can conclude that the microstructural change

associated with the dropping dislocation density is the dominating mechanism.

The second phase indicates a proceeding slight decrease in the hardness, whereas the

nonlinearity parameter climbs again after passing the minimum at 500h. It even exceeds for

an aging time of 3000h the starting value by approximately 13%. In this phase the reduction

of Λ(d) flattens and simultaneously the earlier nucleated particles grow in size. The results

obtained imply that the second phase is probably dominated by the contribution of the

growing precipitates.
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CHAPTER VII

CONCLUSION AND OUTLOOK

This study investigates isothermally aged ferritic martensitic steel using nonlinear Rayleigh

surface waves. Rayleigh waves are generated with the contact wedge method and detected by

an air-coupled transducer. To obtain the relative nonlinearity parameter β′, the propagation

distance is varied by moving the air-coupled transducer along a line in the propagation

direction. This procedure allows a decoupling of the system nonlinearity and the desired

material nonlinearity. However, this procedure only measures relative values of nonlinearity,

because the quantitative correlation between the measured electrical output signal from the

air-coupled transducer and the absolute amplitude of the propagating wave has not yet been

determined. Furthermore, the nonlinearity from the coupling condition and the contribution

from the electronic devices are not yet fully quantified.

Additionally, background information on the generation of the second harmonic due to

dislocations and precipitated particles is provided, since these microstructural changes are

indicators for the thermal aging process. A brief summary of the most common precipita-

tions and the mechanism during thermal aging is given to enable the interpretation of the

nonlinear results obtained. Finally, complementary measurements are conducted to explain

and support the nondestructive investigation.

A heat treatment schedule with various holding times is performed to obtain a sequence

of heat treated 9%Cr ferritic martensitic steels. The nonlinear ultrasonic results indicate an

initially rapid decrease in the generation of the second harmonic, followed by an increase in

the nonlinearity parameter β′. The initial phase is dominated by decreasing material non-

linearity contributions from the microstructure like the decrease of dislocation density. As

the second phase starts, the reduction of the dislocation density slows down and increasing

material nonlinearity contributions such as the growth of precipitated particles becomes the

decisive influence, which causes the measured increase in β′.
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The scanning electron microscopy and hardness measurements support the results obtained

by the nonlinear ultrasonic measurements. The monotonic decrease in hardness serves as

an indicator for the decrease of the dislocation density since the curve of the hardness can

be described by the dissolution of lath martensite that contains a high dislocation den-

sity. Furthermore, the scanning electron microscopy reveals the growth of the precipitated

particles as the aging process progresses. The untreated specimen contains small, evenly

distributed chromium containing precipitates. SEM images show that the further the aging

process advances, the bigger the precipitates are.

The nonlinearity parameter β′ provides an understanding of, and information on the

microstructure and hardness. However, for an absolute assessment, one needs to develop a

quantitative model that describes this evolution process and the corresponding changes in

β′.

Further work needs to be done to investigate the performance of the air-coupled trans-

ducer in terms of determining the peaks of the acoustic energy. Studies have shown that

the peak value of the first and second harmonic amplitude may not always lie on top of

each other. In this context, it is also important to examine more closely the reasons for the

offset and the path of the acoustic energy.

Moreover, an investigation of smaller samples with the air-coupled transducer has re-

vealed problems with possible interferences from the edges. This problem can be analyzed

by using different sized samples and describe the influence of the size on the amplitudes

measured.

As soon as the reliability of the air-coupled transducer is assured, further work can be

done to completely characterize the correlation between the second harmonic generation

and the microstructural evolution. To find an appropriate model, which describes the

contribution of precipitated particles and dislocation density on the nonlinearity parameter,

it is inevitable to gather more accurate data including the dislocation density, the exact size

and type of the precipitated particles for each stage of thermal aging. These data allow a

more quantitative evaluation of the changing nonlinearity parameter β.
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Finally, samples with a longer holding time would be an interesting addition to the

already existing study, to monitor the further progress of the aging process up to the point

of a visible damage. Also, samples with a different amount of chromium would be interesting

and helpful to understand the microstructural evolution in this class of materials.
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