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SUMMARY

Acceleration constrainfs are used to e;lhance modeling techniques for dynamical systems.
In particular, Kane’s equations of motion subjected to bilateral constraints, unilateral con-
straints, and servo-constraints are modiﬁed by utilizing acceleration constraints for the pur—
pose of simplifying the equations and increasing their applicability.

The tangential properties of Kane’s method provide relationships' between the holo-
nomic and the nonholonomic partial velocities, and hence allow one to describe nonholo-
nomic generalized active and inertia forces in ‘trerms of their holonbmic counterparts,‘ ie.,
those which correspond to the system without constraints. Therefore, based on the mod-
eling process objectives, the holonomic and the nonholonomic vectof entities in Kane’s
approach are used interchangeably to model holonomic and nonholonomic systems. Wheh
the holonomic partial velocities are used to model nonholonomic systems, the resulting
models are full-order (also called nonminimal or unreduced) and separated in accelefa—
tions. As é consequence, they are readily integrable and can be used for generic system
analysis. Other related topics are constraint forces, numerical stability of the nonminimal
equations of motion, and numerical constraint stabilization.

Two types of unilateral constraints considered are impulsive and friction constraints.
Impulsive constraints are modeled by means of a continuous-in-velocities and impuls-e-
momentum approaches. |

In controlled motion, the acce]eratibn form of constraints is uﬁlized with the Moore-
Penrose generalized inverse of the corresponding constraint matrix to solve for the inverse
dynamics of servo-constraints, and for the redundancy resolution of overactuated manip-
ulators. If control variables are involved in the algcbraic constraint equations, then these
tools are used to modify the controlled equations of motion in order to facilitate control

system design. An illustrative example of spacecraft stabilization is presented.

xii



CHAPTER I

INTRODUCTION

1.1 Historical Perspective

The treatments of constraints in the field of dynamics haye distinguished two traditional
approaches to this science. These are the Newtonian approach, and the analytical approach.

The Newtonian approach (also called the vectorial approach) utilizes the laws of mo-
tion, discovered in the seventeenth and the eighteenth centuries [100, 39]. It is based on
freeing'the dynamical system from the influence of its constraints, énd aécounting for this
influence by means of forces and moments called constraint forces and moments. The
constraint forces are added vectorially to the forces applied to the system, and thé sum is
eqﬁéted to the time rate of change of the linear momentum of the system. Similarly, the
constraint moments and the moments of the constraint forces about the center of mass of
the system are added vectoﬁally to the applied moments and the moments of the applied
forces about the center of mass of the system, and the sum is equated to the time rate of
change of the angular momentum of the system.about its center of mass. ThlS explicit way
 of treating constraints renders this approach effective only to formulate equations of motion
for dynamical systems with few or no constraints. Examples are six degrees of freedom
aerospace vehicles.

The analytfcal approach (also called the Hamiltonian approach) is based on d’ Alembert’s
extension of the principle of virtual displacements to dynamical problems [32]. This prin-
ciple successfully formulates equations of motion for cohstrained dynamical syétems, re-
gardless of the nature of the constraint forces and moments. If the constraint forces and
moments are ideal, i.e., workless on the system, then the net work done on the system in an

arbitrarily chosen set of virtual displacements that comply with the constraints is solely the



contribution of the remaining applied 'fo>rces, in addition to the inertia forcés. As aresult,
no consideration of constraint fqrces and moments ié needed.

Utilizing the virtual mechc[mical work in d’AIerﬁbert’s principle made it pdssible to use
kfn_etic ene.rgyv and po{eﬁtia_l energy bf the dynamical system, in addition to some concepts
in variational calculus to derive different types of equations of motion. These are Hamil-
ton’s equations [51], Lagrange’s.equations [85, 106], Maggi’s equétions [94, 102], and the
Boltzmann-Hamel equaﬁbns [50, 991.

Because of the disappearance of constraint forces from the formulations of the ana-
lytical approach, modeling dynamical systems that are more complicated in teﬁns of the
number of degrees of freedom and the number of constraints has become easier.

Despite the fact that the principle of virtual displaéements has no limitations on the
nature of cohstraints, the variational approach that is based on this principlke has its limi-
tations. Among these limitations are nonholonomic constraints, which conﬁnued to be a
hurdle in the way of obtaining equations of motion for _dynarﬁical systems.

The reasdn for the difficulty in rhodeling systems with nbnhoionomic constraints is that
among the trajectories that satisfy these constraints, the physical trajectories of the sys-
tems do not render the augmented Hamiltonian functions stationary [116]. This limitation
is so_metimés lacking awareness in the engineering communities [49, 109], and false for-
mulations are frequently observed due to augméntations of nonholonomic constraints or
nonintegrable kinematical relations with the Hamiltonians, e.g., [95, 112, 23, 48, 110].

Several attempts have been made to come up with generalizatidns of Hamilton’s equa-
tions to include treatments of nonholonomic constraints. Some of these attempts yielded
false extensions to some classes of nonholonomic constraints, e_.g.,,[llO], and some en-
hanced the knowledge of the problem by giving justifications for the difﬁculty, e.g., [116,
105]. However, the problem of general variational extension of Hamilt_on’sécjua_tions to
nonholonomic constraints appears to have been settled in -the negative.

There are two ways in which nonholonomic constraints are treated in the analytical



approach. The first ‘way is using Laérdnge 's multipliers to adjoin the uncbnstrailnéd dif-
ferential equ_ations with the a]gebréic constraint equations. The other way is embedding
the constraint equations in the equations of motion of the unconstrained _syvstem, which
is equivalent to eliminating the dependent virtual displacements in d’Alembert’s principle,
and reducing the number of equations of motion to.the number of degrees of freedom. Both
ways are disadvantageous, as discussed later in the chapter. .

In the second half of the nineteenth century, Gibbs [43] and Appell [7] independently
utilized Gauss’ principle of least constraints [42] to derive their equations of motion, by
minimizing the acceleration energy of the constrained dynamical system relative to the
acceleration energy of its unconstrained counterpart, as stated by the principle. The advan-
tage of using Gauss’ principle to derive equations of rhotion is that the principle car be
castina différentia] form, which avoids the difficulty of nonholonomicity that is related to
the Hamiltonian variational approach. Other features of these eéuations, nafned later the
Gibbs-Appell equatiAons of motion, are using a differential forrﬁ of the constraint equations,
at the acceleration level, and using Quasi-coordiz1ates, which are linear combinations of the
time rates of change of the generalized coordinates. Careful chdi_ce of the quasi-coordinates
can remarkably reduce the complexity of the equations of motion. |

Interestingly ehough, Both Gauss’ principle and the Gibbs-Appell equations of motion
have received very little attention, and except for rare mentioning in some books, they
were almost forgotten. This rer‘n:ai‘ned the situation until very recently, when Udwadia and
Kalaba derived their generalized inverse equations of motion from Gauss’ principle [125,
126], and showed it to be a possible starting point for deriving the major equations that
describe constrained motion [124]. The acceleration form of the constraint equations was
used in deriving the equétions, together with the Moore-Penrose géneralized inQerse of the
constraint matrix. The Udwadia-Kalaba equations of motion added énothcr feature beyond
the Gibbs-Appell equations, which is the irreduced motioﬁ space. That is, the number of

the acceleration variables in the set of equations is for the first time equal to the number of



generz’ﬂized coordinates, not to the number of degrees of freedom; and this is accomplished
without employing Lagrange multipliers.

The Gibbs-Appe]] and the Udwadia-Kalaba equations of motion have set a different
trend in analytical dynanﬁcs, not only because they descend from a different source than
d’Alembert’s principle, but also because of the way nonholonomic constraints are dealt
with. The acceleration form of constraints creates a unifying framework for modeling
holonomic and nonholonomic systems, and fhe appearance of the acceleration variables
in the constraint equations in addition to the unconstrained equations of motion creates a
mathematical confofmity betweeh the two sets of equations.

During the fwentieth century; analytical dynamics had a significant influence on almost
all disciplines of engineering and physics. Among these disciplines is control systems,
which takes from analytical dynamics many of its concepts and methodologies, including
variational and energy schemes, as well as the treatments of constraints, which appear as
restrictions on system dynamics and/or available control authorities, and as requirements
that have to be satisfied.

In control systems, nonholonomic constraints cause the dynamical system to go outside
the capability of many of the methods used in the subjéct, like smooth stabilization [21] and

feedback linearization [60], even if the dynamical system is completely controllable.

1.2  Kane’s Equations of Motion

The need to formulate mathematical models for the purpose of dynamical system ahalysis,
design, and control has brought to existence many mode]ing methodologies during the
past three centuries. With the continuous increase in complexity of dynamical systerris
in industry, such as mechatronic systems, flexible multibodied structures, and aerospace
vehicles, there is a growing need to enhance the capabilities of modeling techniques for
such systems.

In classical dynamics, the modeling process starts by applying one of the physical



principles, namely Newton s laws, d Alembert’s prmmple or one of the denvatrves of
d’Alembert’s prmcrple Then the process relies on available mathematical tools to cast the
equations into the simplest useful form. This renders the modeling process to be dependent
on both the app]ication as well as tne analyst’s ability. - |

The advancement in digital computers has motivated the algorithmic approach of the
modeling process. One of the-key developments in this arena is the approach popularly re-
ferred to as “Kane’s method” and the associated “Kane’s eqnations.” The major framework
was first published in 1965 [72]. |

Kane’s method combines the advantages of the two main approaches to the subject of
dynamics. It has the simplicity of the Newtonian approach, because Kane’s equations are
actually force-moment balance equations. On the other hand, the generalized active forces
and generalized inertia forces are obtained by scalar (dot) multiplications of the active and
inertia forces, respectively, with vector entities that can be obtained for partic]es and bodies
in the system, equal_ in number to the number of degrees of freedom, called partial angu- |
lar velocities and partial velocities. This process delicately elirninates the contribution of
constraint forces, provided that they are ideal, i.e., orthogonal to the constraint manifold.
- Kane’s method shares this useful property with the analytical approach. For the purpose
of bringing these forces rnto evidence, fictitious degrees of freedom that violate the con-
straints, may be introduced [68]

The equations resulting from Kane s approach are s1mple and effective in descrlbmg the

motion of nonconservative and nonho]onomlc systems w1th1n the same framework requir-

ing neither energy methods nor Lagrange mu]tlpllers Furthermore, the partial velocities
- adopted in Kane’s method inspire: useful geometric features of the constrained motion [91].

Kane’s method implements the concept of generalized speeds, quasi-velocity coordi-
nates as a way to represent motlon‘ srmllar to what the concept of generalzzed coordinates

does for the configuration. Generahzed speeds are nonlmear combinations of the rates

of changes of generalized coordinates, and the relation between the two sets of variables



is chosen to Be reversible for all permissible configurations. The implementation of gen-
eralized speeds allows one to focus on the motion aspects of dynamical systems rather
than only on the conﬁgﬁraﬁon [68]. Therefore, it provides a suitable framework for treat-
ing nonholonomic constraints. Generalized speeds provide the ermuiation process with
a desirable flexibility because they can be chosen to satisfy the needs aﬁd interests of the
designer. The choice of the generalized speeds is crucial, for they significantly affect the
simplicity of the resulting equations of motioﬁ [96]. Historically, it should be recognizéd
 that the use of generalized speeds goes back at l‘east to the Gibbs-Appell equations [43, 7].

The sirhilarities énd differences between Kahe’s method and other well-established
modeling method_o]ogies have been the subject of interest and debate. One of the criti-
cisms that the originality of Kane’s method is subjected to is its similarity with the standard
application of d’Alembert’s principle for deriving dynamical equations of motion. This
similarity is not in doubt. Actually, every modeling technique for dynamical systems sub-
jected to ideal constraints has to use or to comply with d’ Alembert’s principle.

However, Kane’s method bypasses several steps that are needed when directly using
d’Alembert’s principle. Expressions for virtual displacements can be lengthy for com-
plex systems, especially if the displacements are représented in terms of moving reference
frames. In this case, the variations of the unit vectors of the moving frame are needed
also [13]. This difficulty can be eased by conétructing virtual displacements using velocities
expressions instead, because the time is held constant when forming virtual displacements.
This is called the kinematical Jourdanian approach, versus the analytical d ’Alembertian
approach for forming virtual displacements [44]. In Kane’s m.ethod, partial velocities aré
found trivially by inspecting the expressions of velocities for the coefficients of the gener-
alized speeds.

" The need to express dependent virtual displacements in terms of independent virtual
displacements in d’ Alembert’s principle is waived in Kane’s method, because the number

of partial velocities of a particle in the dynamical system is equal to the number of degrees



of freedom of the system. Also, it is di'fﬁ'cult, if possible at all, to use quasi-céordinates with
d’Alembert’s pﬁncipié; Using generalized speeds (general form of quasi-coordinates) is
one of the main features of Kane’s method, and a source of its power when usiﬁg computers
to form equations of mbﬁon and obtaining system response.

Another source of criticism is the similarity of VKane’s equations with the Gibbs-Appell
eciuations [33, 64, 34,' 92, 78, 113, 10, 56, 35, 36, 120, 55]. Thé final forms of Kane’s
équations ahd fhe Gibbﬁ-Appéll equations are identical for the same choices of quasi-
- coordinates. However, the derivations of the two sets of equations are entirely distinct.

Deriving the Gibbs-Appell equations requires forming the Gibbsian, a functibn that is
quadratic in the quasi-accelerations. These quasi-acce]erations are the time derivatives of a
subset of the quasi-velocities that is equal in numbér to-the number of degrees of freedom
of the systerﬁ, and are formed by eliminating the remaining quasi-velocities with the aid of
the constraint equations. The generalized inertia forces are obtained by takiﬁg the partial
derivatives of the Gibbsian with respect to the quasi-acpelerations. This partial differentia-
tion suffers from the curse of dimensionality, and hence the proéeduré loses efficiency for
large systems [13]. If the applied forces on the system are not from potential sources, then
the principle of virtual displacements is needed to obtain the generélized active forces [93].

On the other hand, Kaﬁe’s approach does not re(juire differentiations of a scalar function
or using the principle of virtual displacements. It is desirable for large multibodied systems
because the scalar-multiplicatiohs performed to obtain the generalized inertia and active
forces are computationally ¢fﬁcient, and the procedure for deriving partial velocities can
be mechanized and made suitable for computer implementation [13].

Kane’s equations have been applied to the formulation of explicit equations of motion
for complex flexible structures [65], as well és to formulate computationally efﬁcient equa-
tions of motion in the area of robotics [66, 67]. Among the recent épplications of Kane’s
method are the formulations of highly specialized computér—based methodologies for mod-

eling and simulatibn of multi-rigid and flexible-body constrained systems [115, 114, 2, 3,



4, 5], and the structural dynamic analyses of these systems [89].

1.3 Acceleration Constraints

Accelefatioh éonstraints can be defined as acceleration-involved. quantities that are being

‘ consefvéd as the dynamical sysiem evolﬁes in time. In a sense, kinetic equations of motion
are accelératioh constraints. Nevertheless, this definition will be taken to exclude quantities
thét contain control for_ces.

Acceleration constraints can be classified into the following categories:

1. Holonomic Constraints: geometrical and integrable kinematical constraints expressed
at the acceleration level by taking the time derivatives of the constraint equations. Ex-
‘amples are configuration and integrable velocity relations between the particles and

bodies comprising the dynamical system;

-2. Nonholonomic Constraints: nonintegrable kinematical and dynamical constraints on
the motion of the dynamical system. There are two types of nonholonomic accelera-

tion constraints;

(a) first-order nonholonomic constraints: kinematical nonholonomic constraints
expressed at the acceleration level as the time derivatives of nonintegrable ve-

locity relations between the system components, examples of which are energy

and momentum integrals;

(b) second-order nonholonomic constraints: nonholonomic dynamical constraints .
on the accelerations of the system components due to the difference between |
the number of degrees of freedom of the dynamical system and the number of
independent control forces. Examples are the acceleration-involved relations
that constrain the dynamics of underactuated systems. That is, if the dynamical

equations of motion of a system that has p degrees of freedom are

z = f(z) + g(z)T, ' ¢))



where z € RP is a column niatrix containing the velocity variabies, TeRisa
column matrix containing the control variables, f € R?, g € RP ?", then a matrix
gc(:z:) ‘€ RP(-1) that is an orthogonal cémplement of g(z) can be deﬁned such
that g°Tg = 0P~U*!, Pre-multiplying the above equations by ¢°(z) yields the

acceleration constraint equations

9 @)z - f(z)] =0, | @
which contain the acceleration variables , and are generally nonintegrable.

The number of degrees of freedom of the dynamical syétem may not be affected by energy
integrals, momentum integrals, and second-order nonholonomic constraints, in contrast to
all other types of constraints. |

Constraints that éhange the number of degreés of freedom of the system can be clas-
sified according to the nature of the constraint forces as passi've constraints or servo-
constraints. Passive constraints are caused by the interaction of the dynamical System With
its environment, while servo-constraints are enforced by control forces. The main ldiffer-
ence between the two types is that _the constraint forces of the first type are mostly ideal,
while those of the second type are not ideal in generél. Ih this work, passive éonstraints
are considered until the end of the sixth chapter. The seventh chapter is concerned with
servo-constraints, and the eighth chaptér is concerned with constraints of both types, that
involve control variables. | |

~ In this work, nonholonomic control systems are referred to controlled dynamical sys-

tems that involve nonholonomicity in the sense of servo-constraints, i.e., tracking functions
that the dynamics of the (possibly holonomic) system is required to follow or to avoid.
Nonhdlonomicity that results from underactuation (i.e., when the number of degrees of
freedom to be controlled exceeds the number of independent actuators) is not considered.

Historically there has been little mention of systenﬁatic use of the acceleration form in

modeling dynamical systems. One reason is perhaps' jtslack of a “physical” interpretation.
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The general understending was that most, if not ell, physical constraints are either in the
zeroth-order (i.e., finite) fo_rni or first-order form.

Among tlie exceptions, Ref. [106] adopted the acceleration form (which was called the
third form of the fundamental equatien) and explored a number of important applicétions.

4 By suggesting the possibility of ;‘_‘ large acceleration change, one is able to analyze problems
in which theaccelera{tion is discontinuous (such as a ball rolling off a table). In Ref. [106],
the third form was alse used to prove Gauss’ principle [42]. |

More recently, tlie acceleration form of constraints was utilized in the methods of co-
ordinate partitioning [134, 119] and undetermined multipliers [132, 57] for censtrained
dynamical systeins. Both methods lead to elimination of the Lagrange multipliers.

Eliminating Lagrange’s multipliers is advantageous. Beside the increase of dimen-
sionality, when using Lagrange multipliers one runs into the difficulties of controlling dif-
ferential algebraic equations and the costly process of solving for and/or controlling the
'multipliers. Nevertheless, many authors used Lagrange’s multipliers to include the effect
of constraints. For example, these variables were used in the control of nonholonomic sys-
tems [123], the solution of inverse ‘dynamics’problems [45, 46], the dynamic analysis of
flexible structures [1, 137], an(l in conjunction with tlie finite element method for modeling
flexible joints in multibody systems [16].

The equations obtained by the methods of coordinate partitioning and undetermined
multipliers, together with the a’cceleration form of consttaints, cOnstitute two sets of dif-
ferential equations. These equétions can be integrated simultaneously. They can‘also be
reduced to one set of differential equations in the independent accelerations by using the
constraint equations to eliminate the dependent velocities and accelerations. However, the
two sets of differential equations do not eonstitute, with the kinematical differential equa-
tions, a separated-in-accelerations, state-space modeldescription of the dynamical system
of the form & = f(x,t), because more than one acceleration term appears in the same equa-

tion. Therefore, this form cannot make use of certain techniques for studying the generic
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features of dynémical systems, like sfébi]ity, chaos, bifurcation, etc. The _reduced set is not
useful when information about the dependent veloci.ties and acceleratic)ns are' needed.
Further work in adopting thé acceleration fonh of constraint equations éan be found
in, e.g., Réfs. [29, 127, 124, 61]. By taking advantage of the mathematical conformity of
the acceleration form of constraints with the dynamical equations, explicit expressions for
constraint forces were derived without any need to appeal to the fréé-body approach. This
is particularly important in Lagrange’s mechanics formulations when the active forces are

~ dependent on the constraint forces, as it is in the case of friction forces [30].

1.4 Motivation

The purpose of this work is to make use of acce]eratioh constraints and the mathematical
conformity that they exhibit with dynamical equations, as tools of modeling; analysis, and
synthesis of nonholonomic control systems. Kane’s method is the frachofk chosen for
that reason. | | |
There are several reasons for choosing Kane’s method. One feason is that it yields the

same set of equations obtained by the approach of Gibbs and Appell. This set of equa-
tions is considered by many to be the most effective in treating nonholonomic cohstraints,
and “the pinnac]e of our understanding of the time evolution of constrained mechanical |
systems” [126]. in 1965, it was described by Pars as “probably the simplest and most com-
prehensive equations of motion so far discovered” [106]. With the additional advantages
of Kane’s approach in the intermediate'deﬁvations, it is not an exagvgerationbor advocation
to describe Kane’s method as the simplest and most practical in the history of man trying
~ to model constrained motion.

: 'Although not derived from an energy i)ﬁnciple, the relation between Kane’.s equations
and the Gibbs-Appell equations motivates a search for a possible adéptability with acceler-
ation energy and acceleration constraints to modify the sét of equations for the purposé of

extending its applications.
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Another reason for employing Kane’s approach is its ease of implementation on digital
computers, which made it the material of many computational procedures, and the main
contribution to the field of dynamics and its applications in the second half of the twentieth
century.. |
 Kane's equations are équal in numbér to the number of degrees of free.dom of the sys-
tem. They cén be put in fu]l{or.reduced-order form in terms of the dimension of the space |
of lgeneraiized speeds. | |

These equations, together with the kinematical differential equafioné and the constraint
equatiohs, can be utilized in dynamical system analysis and control system design in two
ways. One way is with the aid of differential-algebraic equatioris analysis and control tech-
niques.. This may cause difficulties, since most of the available time-domain techniques
related to these subjects are based on state-space models that are separated in the deriva-
tivéé of the states (position and velocity variables). In this work, the acceleration form of
constraint equations is utilized to resolve this difficulty.

The other way is to leave the equations in the reduced form and use the constraint
equations to eliminate the dependent velocities from the kinematical differential équations. '
This is actualiy desirable becaﬁse the resulting equations are free from the constraint drift

problem that results from numerical iniégration.‘ Nevertheless, there are applications under

which the appearance of all acceleration térms is important. For example, stability de-
duced from the reduced form cannot guarantee a stable behavior of the dependent velocity
variables. | | |

For those reasons, it is highly desirable to obtain a matﬁematical model that is full-
order, separated in the accelerations, and involves no Lagrange multipliers. This implies
obtaining a non-deficient “constrained” inertia matrix that yields (upon inversion) an ex-
plicit description of each of the accelerations in terms of only the configuration and kine-
matic variables, and possibly time. The first step in this direction was the Udwadia-Kalaba

equations [125, 126].
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The derivation of Udwadia-Kalaba équations utilizes the acceleration fdrm of the con-
straint equations, together with the generalized Moore-Penrose inver'se‘ of a scaled con-
straint matrix, and carries several desirable featufes. It presents a unified freatm_ent of
holonomic and nonholonomic constraints by using the acceleratipn form of constraints,
" and produces the concept of nomminimal nonholonomic form.

Similar to the Gibbs-Appell equations, the Udwadia-Kalaba éqﬁations were shown to
be derivable from Gauss’ principle [124]. This raises a question‘on a hidden relationship
between Kane’s equations and acceleration constraints.

The disad'vantage of the Udwadia-Kalaba approach is that the Moore-Penrose gener-
alized inverse is generally a discontinuous function in the matrix elements. This is a
concern in regard to the existence and uniqueness of solutions to the resulting equatidns
of motion [79], and was highlighted in the otherwise objectionable criticizing article by
Bucy [23]. A special attention is given to this issue in the derivation of the nonminimal -
nonholonomic form presented in this work.

- The present work takes the advantage of the acceleration form of the constraint equa-
tions together with the tangential properties of Kane’s method to derive a version of Kane’s .
equations for linear and nonlinear nonholonomic systems that is both full-order and sepa-

‘rated in the derivatives of the generalized speeds, and extend the treatment to other types

of constraints, namely impulsive constraints, friction constraints, and servo-constraints.'
1.5 Overview

In the next two chapters, versions of Kane’s equations for linear and nonlinear nonholo-
nomic systems that are both full-order and separated in the derivatives of the generalized
'speeds are derived. A square matrix inversion that is needed in the derivations is shown al-
ways possible for all configurations and velocities that satisfy the constraints and all choices

of generalized speeds, except for certain configurations of systems that involve toggle po-

sitions.
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It is shown in the third chapter that manipulating linear nonholonomic constraint equa-
tions to yield non]mear nonholonomic constraint equations substantially alters the con-
straint vioiation dynamics, and can reduce the deterioration in accuracy of the numerical
simulations.

Another numerical issue is the constraint violation dynamics caused by the integration
errors due to enfoi'cing a differentiated form of the constraint equations. Although the nu-
merical solution of the resulting equations of motion is not difficult, the propagated errors
resulting from integrating the accelerations causes the disp]acements and velocities to vio-
late the constraint equations, which makes it necessary to come up with a way to suppress
this violation. The nonminimal equations are modified in the fourth chapter to suppress the
resulting constraint drift, by augmenting Baumgarte stabilization terms with the constraint
equations.

Two approaches for modeling impulsive constraints are employed in this woric. The
first élpproach is called the continuous in velocities approach, and is aimed at predicting the
kinematics of the colliding bodies during the impact time (which is not assumed ignorable)
and estimating the resulting impu]siVe constraint forces in terms of their relative displace-
ments and velocities. For that purpose, certain coefﬁcients that represent the material com-
pliance and damping of the colliding bodies are needed. Some works assume that these
coefficients are known constants of the materials. Examples are Refs. [37, 38, 131, 90].
Others use kinetic-elastic energy relations to calculate these coefficients. Examples are
[54, 82, 86]. |

The continuous in velocities approach is used in the fifth chapter to medel friction con-
straints also. Friction and impulsive constraints are the main types of unilateral constraints.

The other approach for modeling impulsive constraints is called the impulse-momentum
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approach. This approach was adopted- in Kane’s approach in Refs. [73, 26]lfor both holo-
nomic and nonholonomic constraints, but was not until recently applied to multibody im-
pulsive motion using Kane’s method [27]. It was also applied to different modeiin g method-
ologies. Examples are the method of coordinate partitioning [135, 52] and Hamilton’s
equations of m;)tion [87].

- The basic assumption in the ifnpulse-r’nomentum approach is that the duration of the
impact is very_short compared vto the time interval of the motion, such that the impact can
be considered a di.screte event, and the change in the configuration of the system during
the impact is ignorable, although the changes in the velocities of the system components
can be si gniﬁcant.' This allows for converting the differential equations that govern the dy-
namics of the system to algebraic equations, through iﬁtegrating the equations in general
terms over tﬁe infinitesimal period of impact. The relationship between the velocities prior
to and after the impact are given by an experimentally evaluated constant _that-is dependent
on the material and the geometry of the collided surfac_es, calied the coefficient of restitu-
tion [47]. The sixth chapter uses the impulse-momentum approach fof modeling impulsive
constraints. v

The first approach for modeling impulsive constraints is focusing on the short, but im-
portant period of time in which the constraint impulsive forces act. The second approach |
is suitable for stu.dying the general behavior of dynamical systems encountering impl_llsive
motion, without dealing with the details 1of impact. Both ways for analyzing impulsive mo-
tion are employed in the framework of the nonminimal nonholonomic fomﬂ, whether the
constraints apply only over an instant or over a finite time interval.

The seventh and the eighth chapters in the thesis are concerned with controlled motion. |
The nonminimal form of the equations of motion is utilized in the seventh chapfer to solve
for the control forces that are required to enforce servo-constraints, and to obtain the ideal
form of these forces. This is used to solve the redundancy i)roblem in overactuated systems

(i.e., systems with number of control actuators exceeding number of controlled degrees of
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freedom), when the optimization criterion is the acceleration energy of the system, as stated
by Gauss’ pri_ncipie. The acceleration form of constraints is used in the eighth chapter
| fogether with the Moore-PenroSe geheralized inverse to obtain simplified mathematical
models that facilitate control design fbr dynamical systems subjected to passive constraints
and sér‘vo-con’stfaints, when thé constraint equations involve control variables. For the
later type, an illustrative exampie of spacecraft stabilization is presented, where the servo- |
co_nstraint equation is a Lyapunov equation governing the desired decay in kinetic 'energy
_ of the spacecraft. | |
The thesis is concluded with the ninth chapter, which discusses the main résults, and

suggests further ideas to proceed with.
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CHAPTERII

NONMINIMAL KANE’S EQUATIONS OF MOTION
FOR SIMPLE NONHOLONOMIC SYSTEMS

2.1 Introduction

During the past three 'decades’, Kanve"s equations of motion were succeséfully applied to
multibody systems numerical analysis and simulation. The original treatment of using the
minimal (reduced) set of equations [67] becomes l,ess-usefui when the multibody system
is composéd of a large number of bodies that are heayily constrained, as the resulting
equations of motilon increase in complexity, and hence become more dﬁifﬁc'ult to analyze
and less efficient for time simulations. To alleviate this p-roblem,.' dynamical equations
with orders exceeding the numbers of degrees of fréedom were derived. Examples are
Refs. [132,2, 114,11, 6]..

The purpose of this chapter is to use the tangential properties of Kane’s method together
with the acceleration form of constraint equations to derive a version of Kane’s équations
for simple nonholonomic systems that is both full-order and separated in the derivatives of
the generalized speeds. This implies obtaining a non-deficient “constrained” inerti‘a- matrix
that yields (upon inversion) an explicit description of each of the accelerations in terms of

only the configuration and kinematic variables, and possibly time.

2.2 Kane’s Equations of Motion

- Consider a p degrees of freedom nonholonomic dynamical system S consisting of a set
of v particles and p rigid bodies, and let R be an ine_rti'al frame of reference in which the

configuration of the system is described by a set of n generalized coordinates g, . . ..,qn.
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The velocity of a generic particle P of this nonholonomic system relative to R can be

written as

. - n
RyvP =3 "Ryl (q,t)ur + v (g, 1), 3)

r=1

where the géneralized speeds u; . . . uy, are scalar variables satisfying some nonholonomic
constraint relations, as discussed later in the chapter. They also satisfy the kinematical
- differential equations

i = Cla,tyu+D(g,) | @

" Inthe above equations, ¢ denotes a column matrix containing the n generalized coordinates,
u denotes a colurﬂn matrix containing the generalized speeds, C € R**", D € R", C1
exists for all ¢ € R", and all ¢ € R, and () = d()/dt. The holonomic partial velocities

RvP.. ;Rv,}: in Eq. (3) are vector entities that can be obtained by inspecting the velocity
expressién of the particle for the coefficients of the generalized speéds. In a similar manner,
the angular velocity of a generic body B of the system relative to R may be written as

RwP = "RwP (g, tyu, + RwP(g, 1), (5)
r=1 ’
where the vector entities *wf ... ®wE are named the holonomic partial angular velocities
of the body, and can be obtained by inspecting the expression of the angular velocity of the
body for the coefficients of the generalized speeds.

‘Remark. A simple choice of generalized speeds is u = ¢, obtained by setting C(g,t) to
be the identity matrix I,yy, and D(q,t) a column matrix with n zero elements. For this
choice of generalized speeds, the final fdrm of Kane’s equations is reduced to Lagrange’s
equations if equations are formed in full symbolic form. This choice does not usually yield
the simplest foﬁn of the equations of motion. |

Let R; be the resultant active force on the i*" particle, P;. The resultant active forces on

the ith rigid body B; are equivalent to a force Z; on the center of mass of B;, denoted by b;,

together with a torque T; evaluated about point b;. The holonomic generalized active force
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F. is [68]

: v .k
F(gu,t) = Z (Fr)p, + Z (Fr) s,
i=1 i=1 .
v L 7
= D PR+ Y BV Zit ) PP Ty, r=1...,n. (6)
i=1" i=1 i=1

Also, let mp, ana mp, denote the masses of P; and B;, respectively, and let RaP, Ra%, and
'RaB" denote the acceleration of P;, the acceleration of the center of mass of B;, and the
angular acceleration of B;, relative to R, respectively. The central angular momentum of
B; in R, RHE, is |

RHB¢ — lB,- R wB.', ' B (7)

where 17 is the central inertia dyadic of B; relative to b; [68]. The inertia torque of B;

relative to R is [68] :

- RRHB; RR o Bi . : _
R* = = — B _R,,Bi R HB", 8
= —RgBi. lBi —R B x lB.' R B » | ©)

The holonomic generalized inertia force F is [68]
v

F(q,u,,1) =Z(F:)R+Z(F:)B,
i=1

i=1

v [ LM
— Ry, Pi R, P R, Bi R bi R,,Bi R
—-—_5_ vt -mp, a',-—g v, ' - mp, a'—E w - Ty,
i=1 L i=1

=1

r=1,...,n. (10)

Remark. Expanding the velocities and the angular velocities of the nonholéhomic system
| _«S' components in terms of the n generalized speeds allows to 'deﬁne quantities that are
related to the corresponding holonomic system, i.e. the system obtained by removing the
nonholonomic constraints. This is crucial for the present development, as it permits to con-
struct the equations of motion for the nonholonomic system from the equations of motion

of its holonomic counterpart.
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Other ways to write the velocities and angular velocities are in terms of the minimal set
of generalized speeds, u; . .. u,. The velocity of P relative to R can be written as

. p
RyP = S RGP (g, ) + R (1), r=1,...,p, - an

r=1.

and the angular velocity of B relative to R can be written as

.
RwbB =3 RoP(g,t)ur +@f(g,), r=1,...,p. (12)

r=1

The coefﬁcients,of the generalized speeds in Egs. (11) and (12) are called the nonholonomic
partial velocities of P relaﬁye to R and the nonholonomic partial angular velocities of
B relative to R, respectively. Their use in Egs. (6) and (10) instead of the holonomic
partial velocities and the holonomic partial angular velocities yields the definitions of the
nonholonomic genefalized active forces and the nonholonomic generalized inertia forces
as

v . u - u
Fi(g,ut) = YRR -Ri+ ) ®9¥-Zi+) Rofi-T, r=1,..,p, (13)
i=1 )

i=1 i=1

and

v u '. © '
Tk C oy RGP, RoPi RoB; | R b; R~B; R rp
FX(q,u,0,t) = — E mp, "Vt at — E mp, V. - *a% — E @, -~ Ty,
o i=1 i=1 . =1

r=1,...,p. (14)

Kane’s dynamical eqhations of motion for nonholonomic systems are [68]
Flowt)+F(guut)=0, r=1...p. s

2.3 Simple Nonholonomic Constraints

A simple nonholonomic constraint is defined by the requirement that a nonintegrable con-
figuration and time dependent linear combination of generalized speeds is equal to a spec-
ified function of generalized coordinates and time. Therefore, if the system has n general-

ized coordinates and p degrees of freedom, the (n — p) nonholonomic constraints can be
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written as

up+,=Zp:A,sus+B,, T:l,...,n—p"' P ¢ ()|
_ Sy
where the scalars A, and B, are functions of the generalized coordinates gy, . . . , ¢,, and £.
Let
u=|uy...up)" = lur” uDTJT, _ (17)

where uy = |u;...u,|T and up = |upy1...u,|T. Hence, the matrix representation of
(16) is -
| up = A(g, tyur + B(g, 1), __ s

where A € R-9*?r B ¢ R*?, Eq. (18) can be written as

Ay(g,t)u = B(g,1), | o)

where _ . '
A1=[_A 1]._ | 20)
Differentiating Eq. (18) with Vrespéct to ¢, and dropping the arguments of the matrices fbr.
simplicity, yields: , ‘ _
ip = A us + Ais + B, | @n
which can be written as 7 _
Ani=Au + B (22

s

2.4 Holonomic v.§. Nonholonomw Partlal Velocztzes and Par-
tial Angular Velocztzes

It is convenient to write Eq. (3)‘;n the matrix form
R P =R P(q t)'ll,] + VDP(Q) t)uD +R vtP(Qa t): (23)

where

Rytf = R P Ry, P ' (24)
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and

Rypf = [Rv,,+1P...RvnPJ. (25

Substituting the expression (18) for u D in Eq. (23) yields
RyP = PP (g, Our 4R vol (g, )[Alg, tur + Bla, )] +7 v (g, ) 26)
= [*i"(g,1) +7 vo" (6, ) Alg, )ur +7 vp"(g,8) B(g, ) +™ V4" (4,1)-27)
Alsé, it is éonvenient to write Eg. (11) in the matrix form
PR u R (), @8
where RVF is th_e row matrix containing the nonholononﬁc partial velocities |

' R;P = [Re . R]). | (29)

Comparing the coefficients of u; in Eqgs. (27) and (28) gives the relations between the

holonomic and the nonholonomic partial velocities of a pértic]e in .the system as
n—p
ReF =F ’”’+Zp7a VP Aa(g,t) T=1,...,p. (30)
In a similar manner, the two expressions (5) and (12) for the angu]ar velomty RwB can
be used together with Eq. (18) to obtain the relatl_ons between the holonomlc and the
nonholonomic partial angular velocities of a body in the system. These felations take the
form |

n—p

Rop =Rwl + > Rwl pra’ Agr(g:8) T=1,...,p. G

s=1

2.5 Holonomic vs. Nonholonomic Generalized Active and
Inertia Forces |

Using Egs. (30) and (31) in the expressions (13) and (14) for the nonholonomic generalized

active and inertia forces yields
n—p n—p

Fi(g,u,t) = ZPv”* + Rvii] Ri+ Z[’Rv"' +) v,
=1 s=1 . =1 s=1
n—p
+ Z[RwB + Z"wp+sAs,(q,t)] -T;, r=1,...,p, (32

=1
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and

F:(qaua ’ll, t) = ZmP,[R B +ZR p+sAsr q, t)] R P‘
i=1 s=1 .
n—p
_Zme[va‘ +ZR p-l-s 81‘ q) ] R b'
=1 s=1
. nep
el 3 R A ) " Ty r=1,...,p. 33)
i=1 s=1

- The above two relations are representations of the nonholonomic generalized active and
‘inertia forces in terms of the holonomic generalized active and inertia forces (6) and (10),

and can be written by omitting the arguments for simplicity as

n—p . :
Fr = Fit) Fpysher N € )
s=1
Fr = F*+Z rAa  T=1,p. | (35)
s=1 v - : ' -

Therefore, Eq. (15) can be written as

- n-p
FAFr 4y (Fuo+ Fl) A =0, r=1....p. (36)

s=1
or in matrix form as ‘
AF* = —AF, (37)
where | | |
| = [1 _AT] - , - 069
~ The accelerations and angﬁ]ar accelerations are linear in ;. it follows that thé géneralize_d

inertia forces are as well. Consequently, F™* can be written in the form
F* = —Q(g, )i — L{g, v, 1), o | (39)
where @) is a symmetric positive definite matrix. Then, Egs. (37) become

A2(q, t)Q(q, t)u = A2P(Qa u, t)7 v l (40)
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where
- P(g,u,t) = —L(g,u,t) + F(g, v, 1), (41)

and @ is the generélized inertia matrix of the systerh.

2.6 Nonminimal System of Equations
Egs. (22) and (40) can be used to form the matﬁx system
Ta=V, _ | (42)

where T' := [AlT [AzQ]T] T, and V := |_[Au; + BJT [AZP]TJT. The matrix T'isa
constrained geneialized inertia matrix for the nonholonomic system S. It is invertible for |
all choices of generalized coordinates and generalized speeds that rendér the elerhents of
the constraint matrix A finite. To show this, it is npticed that the row spaces of A; and
‘A, are orthogonal complements. That is, both matrices are full row ranks, and AiAgT =
0. The row space of A2 is unaltered if the rowé of A, are scaled by nonzero scalars.
Therefore, T is full rank if the holonomic system (39) is diagonal, i.e. the inertia matrix )
is diagonal. This diagonalization is possible by a proper choice of generalized speeds, and
can be performed starting from an arbitrary choice of generalized speeds, by a Graham-
Schmidt orthogonalization of the corresponding partial velocities [91]. The invertibility of

T for this speciél choice of generalized speeds, denoted say by w, implies the invertibility
of T for any other choice of generalized speeds. This can be seen by equating the right

sides of the equations

q = Cl(Qat)w+D1(Qat) : : (43)

d = 02(q, t)u =+ D2 (qa t) (44)
which gives
w = P1(g,t)u + P2(g,1) (45)
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where

& = Cy YDy - Dy). @7)

Eg. (45) is a unique invertible transformation between the two sets of generalized speeds,
which implie§ the ehuivale.ncy of the existence of solution for one set and the existence of
solution for the other. Therefore, ; ,
i=T7V. @y

~The required inversion of the matrix T in getting from form (42) to (48)' can be done
numeﬁcally orline for the ‘pﬁfpose Ofl time simulations. However, to obtain the analytical
form of the equations, the s»ymbollic iﬁversion of thé matrix T is needed; which cannot be
done for excc_ssi_vely Iarge fully-populated matrices.

Remark. The holonomic and nonholonomic partial velocities/angular' velo?ities are re-
lated to each others by the scalars A,,, as seen from Egs. (30) and (31). This cause& A |
to appear in the equations of motion, Egs. (40), beside its appearance in the constraint
equations, Egs. (22). This is a key point in the derivation, since it provides a mathematical
relationship between the constraints and the constraiﬁed motion. |

Remark. The possible configurations of the dynamical system 'might involve singular con-
figurations that cause numerical explosions of the constraint matrix A for a specific choice
of the independent generalized speéd.s uy, e.g. a toggle position of a four-bar linkage. In
this case, different choices of uy must be employed in the neighborhoods of these configu-
rations such that finite values of the elements of the matrices A, and A, are bbtained, and
T remains invertible. The dependency of the constraint equations dée.f not affect the invert-
ibility of T, because A, and A, always héve linearly independent rows, regardless what
(finite) values the elements of A mig_ht have. Thus, one need not as&umé that the constraint
equations are linearly independent, and any set of cbnstraint equations can be included

without the need to extract the largest independent set.
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The procedure of using the acceleration form of constraints in obtaining full order and
decoupled equatioﬁs of motion is summarized as follows:

Step 1. A set of generalized speeds is chosen. The dependency among the set is de-
scribed by Eq. (18). The matrix A is used to construct the matrices A; and A. If éonﬁg—
uration constraints are involved, the coﬁesponding equations are differentiated in time to
appear in the séme kinematical form.

- Step 2. Eq. (18) is differentiated in time, resulting in Eq. (22).

Step 3. Expfessi_ons are obtained for ho‘lonbomic partial velocities/angular velocities by
inspecting the corresponding éxpressiqns for linear/angular velocities, as the coefficients
of the generalized speeds. |

Step 4. Holonomic generalized active and inertia forces are found from the scalar
(dot) product of the impressed and gravitational forces with the holonomic partial veloci-
ties/angular velocities, and used together with A, to form Eq. (40).

~ Step 5. Egs. (22) and (40) are"used to form the matrix equation, Eq.r (42); and T is

inverted to yield the resulting equations of motion, Eq. (48). The following two exbarhples

illustrate the procedure.

2.7 Example 2.1: Motion of a particle subjected to holo-
nomic constraints

Consider the three-dimensional rhotioh’ of a particle P of mass m as shown in Fig. 1. Let
R be an inéﬁial frame in which the coordinate system (X, Y, Z) is fixed, and let'r be the |
radial distance from the origin of (X, Y, Z), 6 be the polar ahgle from the X -axis, and ¢ be -
the cone angle from the Z-axis. The particle’s motion is restricted by the ideal holonomic
constraint r¢ = ¢, where ¢ is a nonzero constant. This constraint is enforced by means of
a surface (nqt shown in Fig. 1) defined by the holonomic relation. Because of the nature of
the constraint, it is more convenient to use the spherical coordinate system (r,0,¢). Let the

particle be at the ori gin of the coordinate system (X', Y”, Z') where X' is along r, attached
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to a unit vector i, and pointing outward relative to O; Y’ is parallel to the XY plane,
attached to a unit vector j pointing to the positive rotation direction relative to the Z-axis;
and Z' is perpendicular to both ' and ¥/, attached to a unit vector k such that k = i x j.

The resultant active force on the particle is given by

- F=F.i+Fj+ Fyk ) -9 |
The particle’s velocity in R is |
RyvP = i+ rsin ¢dj — rék. | o (50)
Let the géhéralized speéds be u; = 7, up = rfsin ¢, and ug = —rq7>. Then one can write
RyP = i + upj + usk, o | »(51)

so that the partial velocities are v; = i, vo = j, and vs = k. The acceleration of the -

particle in R is
RgRvP ug? + ug? wiug  ugu
R P _ . _u2 37\ ; 12 u2u3 .
T ETa (u1 B )l+( + rtan¢)J+( += +rtan¢)k
- (52
The generalized inertia forces are
2 2
Ff = —mRaP.vi=-m (U1 .1‘2_—_:_&) (53)
F.-; — 'R P Vo |
= —m u U]’UQ UgU3 . o (54)
‘ _ T rtan¢
Fy = -m™a.vg '
2
UIU3 U9g .
= 55
- ( T rtan ¢) (55)
In matrix form,
~m 0 0| [u m (w2t
Fr=10 —m 0|{ag+] m(Rey-us) . (56)
0 0 -m| i) [m(-um-_ )
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The generalized active forces are

F1 =lF'V1=Fr
'F2=F~V2=Fg
F3'=F'Y3=F¢.

Differentiating the holonomic constraint r¢ = ¢ with respect to ¢ yields

7¢ + ré =0,
or |
‘ug = Pu;.
Therefore,
A=[¢ 0],
and | '
B =0.

Differentiating the constraint matrix A with respect to ¢ yields

i-|-2 o

Also, v . :
A= [—A I] =|-¢ 0 1].
Thus, Eq. (22) for this systemis | |

S lu
. uy
=6 0 Ulap=|-2 of
u2
U3
On the other hand,
Ay = |I AT]
T
10 ¢
010

57
(58)
(59)

(60)

61)

(62)

(63)

(64)

(65) -

66)

- (67)

(68)



s0 that Eq. (40) for this system is

-m 0 0| |u m(titus’) S F,
10 ¢ _ 104
o1 ol Y10 T YY) mEEE I (T L WP
o : 2
0 0 -m| |us m(—m}i—;tﬁgﬁ) : Fy)
' (69
or
U ug?4ug? wu “ug? -
-m 0 -m¢ Jo b —m(¥2) + m@(HE + Zeg) — Fr — ¢Fy (70)
; 0= .
0 -m O 4 fm(r—"é%%—w)—Fo
3 .

Therefore, Eqs. (66) and (70) can be used to form the matrix system

( ’ "y
_wug ' .
T

¢ 0 1 |[|u

N

—m 0 —mé| 4 — I (ug? + ug? — Guyug — P2 ¢) F,— ¢F¢ . (D)
0 -m o0 | |as |
. 7urue — 353) — Fo J
Solving for 1,
, -1
al -6 o 1 —um
gt =|-m 0 -—m¢ —2(ug? + ug? — Puyuz — ¢tan¢ — F, — ¢F,
i 0 -m 0 2 (uup — 1253) — Fy
|-m2¢ -m 0 _ —uts
= % 0 0 —m(¢?+1)] § —2(u® +us? — duyuz — ¢—2—¢g) ¢F¢ )
m? | —m¢ 0 | 2 (ujug — tan¢) Fy |

(72)
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X

0 | L/ Y

o ‘Figure 1: Schematic for Example 2.1

‘where a := m?(1 + ¢?). Therefore, the final form of the equations is

U

Uy

RS

m
-;(Fr+¢F¢)

2 2
m 2, 2_ 4 U2
+ ar ~(u2 +s ¢-tan ¢)

'Fg 1( u2u3) :
— — = Uujuz —

m r tan ¢

mo

Td) (Fr + ¢F¢) .

L m¥ [ 2 us? Urus
T (’%2 st ¢tan¢> T

(73)

(74)

(75)

Remark. The particle is subjected to one holonomic constraint. Thus two generalized

coordinates and two generalized speeds are sufficient to form the equations. However, since

the holonomic constraint equation is differentiated with respect to time, the constraint is

treated as nonholonomic, and one pseudo-generalized coordinat_e is added, together with

one dependent generalized speed that satisfies Eq. (18).

Remark. The system of equations (73)-(75) satisfy the passivé constraint equation ¢ = c,

regardless what nature the generalized active forces F;, Fy, Fy may have. For instance,

these generalized active forces might be constants, time variants, or dependent on the gen-

eralized coordinates and/or generalized speeds. They may also be control forces that are
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intended to satisfy some objective(s), (but not to enforce the passive constraint). The equa-
tion set does not show the constraint forces that enforce the passive constraint. A procedure

will be provided in the fourth chapter to bring these forces to evidence.

2.8 Example2.2: Motzon of a par tzcle subjected to nonholo-
nomzc constraints

Consider the three-dimensional motion of a particle P of mass m subjected to the nonholo-
ﬁomic constraint

§ = 26+ aft), - o (76)
where o(t) is a prescribed smooth function of time. The active forces in the Cartesian
coordinate system (z, y, z) are Fy, F,, F,, respectively. Assume that (a:l, Y, 2) 18 vﬁXed to an
inertial frame R, and define thé generalized speeds as u; = Z, up = 2, u3 = . Then, the

above nonholonomic constraint equation can be written as

u

us=|z 0] +a®). -

Uz
Therefore,

A=z 0], B=al) B

Differentiating the constraint matrix A with respect to time yields

= w2 0], | S (9)
The matrix A; is therefore
A1=[—A I]=|_"Z o 1. ~(80)
Thus, Eq. (22) for this system is
Uy
. | '
|-z 0 1]4¢q,p=[us 0] +a (81)
Uz
U3
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The matrix A is
10 =
Ay = [I AT| = . (82)

The velocity of the particle in R is
7-"'VP = U1Vvy + Ugva 4 u3zvs ' (83)

= @i+ 2k + g - (84)
so that vy =1, \}2 = k, v = j, where i, j, and k are unit vectors parallel to the z, y, and 2
axes, respectively. |

The generalized active forces are Fy = F, F, = F,, and F3 = Fy. The generalized

inertia forces are

L Fy = —miy : (86)
Ff = —mi,. - (87)
In matrix form
- _ -m 0 0 U
Fr=10 -m 0 |Su,- (88)
S0 0 -m| |u |
Hence, Eq. (40) for this systemis
-m 0 0| |u | F,
froz | 10 z -
0 -m 0 Uy f = — F, (89)
010 , 010
0 0 -m| |us | F,
or
U F,
-m 0 -—mz 10 z
g ¢ =— SF ¢- (90)
0 -m O 010
- U3 Fy
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Eqgs. (81) and (90) can be put in the following matrix form

Solving for 1

where g =

U
ug

U

U1
U

ES

0 1 Uy
0 —mz Ug ¢ =
—m 0 113
-2 0 1
= |J-m 0 -—-mz
—-m 0
—m 2
= o o = ﬁ
2 ZF 0]

F;

m

¥4 .
(uquz + @) +

ULU9 + o

—F; — Fyz

m(1 + 2). Therefore, the final form of the equations of motion is -

1

= % (urup + &) + Z(Fz + F,2).

2.9 The Generalized Inertia Matrix

©1)

(92)

. (93)

(94)
95)

%6

The nature of matrix @ is now considered by using the kinetic energy of the system. For a

nonholonomic system of v particles and p rigid bodies, the rth nonholonomic generalized

inertia force can be written as[68]
=E+ ) BA
_ Z aK
B dt

n-p

k=1
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where W = C~ 1(q, t), and K is the system’s kinetic energy relative to an inertial frame,

and 18 glven by

K = Zk”'+2k3'

: i=1-

= —Zmp‘ PooyPig = ZmB, "V ‘+2ZwB' Ip -w

i=1 i=1

- The kinetic energy K can also be represented as
1 :
K =5 u"M(g, t)u+ N(q,t)u + R(g, 1),

where M € R**"*, N € R1** R € R. Hence,
0K _ 0K u
dq Ou 0q
= [uTM + N]W

Therefore; the matrix representation of Eq. (97) is |

AsF* = —AWT (g [WTMu +WTNT] - KqT>
T T d T d TN T T
= —AW (WMu+dt[WM] Ut — [WN]—-K )

where

K, = |K,-...Kg]
oK
0q’

If Eq. (39) is multiplied by A, and compared with Eq. (104), we obtain

Q := WTWTM, |
L:=WwT (jt[WTM] + 2 Z[W7NT] - K.,T).

Although @ is not necessarily symmetric, its spectrum set satisfies
Spec[Q] = Spec [WT MW ] = Spec[M].
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Therefore, provided that M is positivc. definite, () is of full rank, and has positive real
eigenvalues. Hence, the row subspaces of A, and A,Q have the same dimension, and the
invertibility of T" implies thét they are the same subspaces. |

Remark. It is not desirable to use kinetic energy to derive the matrices () and L. It
is easier to obtain EX directly ‘by constructing the appropriate acceleration and inertia

torque vectors.

210 Summary

By taki“ng advantage of the conformity of the two sets, the acéele'ration form of the con-
~ straint equations is used with Kane’s equétions of motion, resulting in equations 6f motion
that are both full-order and separated in the generalized accelerations. This means that
the time derivatives of all generalized speeds appear in the equations, but only one in each
cquatiori.’ Thus, one.obtains a singie éet of consistent equat_ions without reducing the di-
mensionality of the space of generalized speeds from the number of generalized coordinates
to the mi_mber of degrees of freedbm. Furthermore, this full dimensionality is maintained
without employing Lagrange multipliers.
The r¢su1ting nonminimal set of equations is effective.in descn'bing complex con-
strained motion. This is because of its full-order nature. It facilitates study of the effects of
constraints on the behavior of the dynamical system, by compan'ng with the corfesppnding
behavior of the same system without constraints. Further advantages include that there is
no loss of information, as.compared with the reduction of the dimension of the space of
generalized speeds, because the whole set of generalized accelerations appear in ihe dif-
ferential equations. The complexity is decreased relative té an analysis using Lagrange
‘multipliers.
If the generalized speéds are chosen such that the constraint n'latrixv is well-defined for
all configurations, then the constrained inertia matrix inversion involved in the derivation

is guaranteed for all values of configurations and velocities that satisfy the constraints.
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Moreover, this is true without having to assume bthat the constraint equations are linearly
independent, so th_at any set of constraint equations can be included without the need to
extract the largest independent set. With the kinematical differential equations, the non-
minimal form of Kané’s equations compose a complete state-space représentation of the
system. The resulting formulation is simple and useful in performahce analysis and con-
trol system design for constrained dynamical systems. Applications are presented in the
seventh chapter. ’

The symbolic manipulator computer program AUTOLEV™ has been adapted to the
present method and used to check the validity of the resulting equations of mbtioh obtained
in the examples introduced in jthis chapter. Simulation results confirm that the models are
equivalent. However, it is noticed that enforcing the constraint ecjuations at the ﬁccelération
level causes the numerical solutions of the resulting equations of motion to be sensitive to
the finite précision and accuracy errors. It can thus cause cohtinuous violations of the con-
straint equations, especially in the case of holonomic constraints, as the equations are twice
integrated to obtain the generalized coordinates. A remedy to this problem is presented in
the fourth chapter.

Finally, a study of the generalized inertia matrix is conducted with the aid of kinetic
energy. The eigenvalues of this matﬁx are shown to be invariant under the choice of the
generalized speeds. “No conclusion is drawn on the sign-deﬁniteness of the generalized
inertia matrix. Its positivity remains a fact as there exists no known ;:ouhterexainple in

nature.
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CHAPTER III

NONMINIMAL KANE’S EQUATIONS OF MOTION
FOR NONLINEARLY CONSTRAINED SYSTEMS

3.1 Ilztroduction

Dynamicists have noticed the absence of nonlinear nonholonomic constraints from daily
life observations, and some argued the nonexistence of known examples of such constraints
in nature [111]. Among the few examples of dynamical systems with nonli_hear nonholo-
nomic constraints in the literature of analytical mechanics is the one due to Appell [8] and
Hamel [SO].

In the Appell-Hamel mechanism example, the constraints were-modéled as nininear
in the velocities by a limiting process on the nonholonomic 'constraint‘ equations. However,
the validity of the resulting equations of motion was criticized [99] because of the reduc- _
tion in order associated with this limit condition, which results in-a qualitative change in
the system behavior and a huge difference in the corresponding results from thé results as-
sociated with taking the limit after obtaining the equations of mbtion. The reinterpretation
of nonholonomic constraints of the rolling type as nonlinear is originally due to Saletan and
Cromer [118]. A further study of thé'AppelI-Hamel problem for the purpose of analyzing
- nonlinear nonholonomic constraints in the context of Kane’s method is found in Ref. [136].

An example of nonlinear nonholonomic constraints of the nonintegrable .in accelera-
tions type is due to Kitzka [84]. The system was dismissed in Ref. t4i] as nonlinearly con-
stfained, “and an alternative derivation of the constraint equations as linear nonholonomic
was presented. | |

Despite the controversy on the feasibility of nonlinear nonholonomic constraints of the
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passive type; active constraints (also called servo- or program constraints) certainly can be
nonlinear nonholonomic. Furthermore, they need not be ideal [20] (of the Chetaev type)
or limited to .s_econd order in the generalized coordinates [62]. The importance of under-
standing servo-constraints for control system analysis and synthesis can be considered the
main reason for studying fhe vaﬁqus categories of constraints, including nonlinear nonholo-
nomic constraints, the material of this chapter..A study of servo-constraints is presented in |
the seventh chapter. |

Nonlinear nonholonomic constraints Ueatrﬁent in Kane’s approach Began with the ex-
tension 'of Passerelle-Huston equation to include such constraints [58]. Later, Huston’s
method of undete_rmined multipliers [132, 1_33] Was generalized [136] to include nonlinear
nonholonomic constraints.

The use of the acceleration form of nonlinear> constraint equations with Kane’s equa-
tions was first depicted in Refs.' [132, 136, 57], where the (nonunique) orthogonal com-
plement of the constraint matrix is multiplied by the full-order, constrained form of Kane’s
equations to eliminate the contribution of the generalized constraint forces. It was shown in
the previous chapter that a particular choice of the orthogonal complement matrix is embed-
ded in the minimal Kane’s equations and is obtained by expanding these equations in terms
of the unconstrained generélized active and inertia forces. This particular choice implies
the consistency among the governing equatfons because it guarantees the nondeficiency of
the augmented matrix, which becomes a generalized “constrained” inertia matrix.

-The purpose of this chapter is te eXtend the nonminimal formulation of Kane’e equa-
tions of motion to nonlinearly constrained inu]tibody systems, With the aid of the acceleré—
tion form of constraints. It is shown that the previous treatment is also capable of handling
nonlinear constraints. This is exploited from the fact that the acceleration form of con-
straint equations is linear in the generalized accelerations, even if the nonholonomic con-

straint equations are'nonlinear in the generalized speeds. On the other hand, the relations
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bet;iveen the holonomic and tﬁe.nonh‘olonomic partial velocities and palftiai angul‘ar veloc-
ities of the system are preserved in the case of nonlinear nonholonq'mic_ constraints, and
hence the special structure of thé resulting constraint matrices A; and A, is_albso preserved.

Next, the system of v particles and y rigid bodies considered in the previous chapter is

revisited, with a set of nonlinear nonholonomic constraints.

3.2. Constraints Involving Nonllineai‘ity in Generalized Speeds

The m nonholonomic constraint equations take the form

#(g,u,t) =0, | | (110)

where ¢ is the column matrix _ o
$=1¢1...6ml", - | (111)

in which ¢(g,u,t) is in general nonlinear in its arguments. Differentiating the constraint

equations, Egs. (110), with respect to time ¢, one obtains

dq u : .

Substitution of the kinematical differential equations; Eqgs. (4), in the above equation results

in the acceleration form of the constraint equations

é(Q) u, 7:", t) = g—i'u =+ Bl (Q1 u, t)u + B2(Qa U, t) = 07 : (l 13)

where
d | : |
Bilg,ut) = 520(0.Y (114)

N 0¢ op |
Bz(q, u,t) = %D(q, t) + e | (115)
Let

u= T upT|", (116)
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3.3 Holoﬂomic vs. Nonholonomic Partial Velocities and Par-
| tial Angular Velocities

The velocity of the particle P of the system can be written in terms of the holonomic partial

velocities as

RyP Ryl AR P @ up 4RV (@), (123)

where | |
Rvif = |*v, P Ry, P ‘ : (124)

and A
Rvp? = [*vpi? .. BvaP]. (125)

Hence, the acceleration of the particle relative to R is

. ) Rd[RviP(g,t
RaP =% viP(q, )i +™ v (g, t)iip + Mw

dt |
Rd[*vpF(g,1)] Rd[*v{(g,1)]
| | + dt up + - (126)
Substituting Eq. (120) for 4p in Eq. (126) gives |
RaP = [FviP(g,t) +* voP (g, 1) Alg, u, D]y
' Rd[RviF (q,t
o vpf(g)Blg ) + ey,
R P R AR, P

_ dt dt
Also, the velocity of the particle P éan bé writteh in terms of the nonholonomic partial
velocitiesas , | _
RyP =R §P(q, t)uy +7 7P (g,1), o (128)

where ®¥¥ is the row matrix containing the nonholonomic partial velocities
RoP = |ReT . R9]. (129)

Differentiating Eq (128) with respect to time in R gives

' ' - RJ[RGP RJ[RGP
RaP <R 5P (g, )iy + ‘;t(q’t)]uﬁ d[R‘;;t(q’t)].

(130)
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“where uy = |u;.. .,un_mJT and up = |Ups1-.-Un |T. Define the m x p matrix |

- -

[l [l
- Juy 7 s Oup
Ji(g,u,t) =
9¢m . Om
| Bur. ° Bup |
00
= 0 , ‘ 117
and the m x m matrix
[ 60 om
. Oupyr °°°  Bug
Jo(g,u,t) =
O¢m_ 9¢m
| Bupyr " Bua
0¢
= 118
Bus (118)

We assume that 4,44, ..., u, can be chosen such that the matrix J» is nonsingular for
all g, u, and t that satisfy the constraint equations, Egs. (110). Thus, Eq. (113) can be |

written as

#(q,u, 0, ) = Jyity + Joiip + Bi(g, u,t)u + By(g,u,8) =0. . (119)

Solving for 4 p yields

up = A(g,u,t)u; + B(g,u,t), - (120)
where » | | |
Mowt) = —H
B(g,u,t) = —J;5'[Bi(g,u,t)u+ Ba(g,u,t)].

' 'Eq. (120) can be written in matrix form as

A (g, u,t)u = B(qg,u,1), ‘ (121)
where

A= [—A 1] . (122)
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Comparing the coefﬁci_ents of 4y in Eqgs. (127) and (130) gives the relations between the
holonomic and the nonholonomic partial velocities of a particle in the system as

R =V Y PV A ut) T=1,.,p. as1n

s=1
Similarly, the relations between the holonomic and the nonholonomic partial angular veloc- -
ities of a body in the system is found by matching the coefficients of % in two expressions
of the angular acceleration ®aB. The first is obtained by taking the time derivative of Rw?

given by the equation

n v .
B = "RwB(g,tyu. +Rwl(g,t), r=1,...,n, (132)
r=1 :
resulting in
d[RwB(q dIRwB (0.t
Ra? = 3Bl i+ 3 L@, AR
r=1 Cor=1
) d[®w?(q,t d wB(q,t ‘
= Rwi(g,t)ir + *wp (g, t)ip +Z F (q Ay, 4 jﬁ(q 1, 33
r=1 :
where »
RwP = |Rwf Rwf] ' (134)
and
" R,,B R, ,B 'R. BJ (135)

Wp = Wpt1 -

Substituting the expression (]:20)‘ for iup in Eq. (133) yields

RaB . = [RwIB(qat) + szB)(q,t)A(q,u t)]'&]

dIRwB ' R B
+ng(q,t)B(q?u,t)v+; d[*w dt(q,t)]'_“r_‘*' df ;t(q,t)].

(136)

The second expression for *a® is obtained by taking the time derivative of Rw? repre-

sented in terms of the nonholonomic partial angular velocities,

ZR Bq,t)ur+wa(q,t) r=1,...,p (137)

r=1
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resulting in

'R. B R .
RoB — ZR B(q,t)ur+zd[ (g,0)] +d[ dt(q,t)] =1,
’ r=1 r=1 :
: Z" d*&7 (g t)] d[*&] (g,1)]
— R-~B r \Y i )
- Wi (Q1 t)ul + - dt Ur dt )

where
Rop = |Rer .. Faf).

- Comparing the coefficients of 4 in Egs. (136) and (138) gives the relations |

n—p L
=RwB 4 Zpr+sAs,(q,u ) r=1,...,p.

s=1

(138)

(139)

(140)

Remark. The relation between 4y and up given by Eq.(]20) is similar to the relation

between uy and up in a simple nonholonomic system, except that the matrices A and B

are functions of u. This results in relations between the holonomic and the nonholonomic

partial velocities and partial angular velocities for nonlinearly constrained nonholonomic

systems that are similar to their relations in a simple nonholonomic system [68], except

that the matrix A is a function of u also, as given by Egs. (131) and (140).

3.4 Generalized Active and Inertia Forces

Egs. (131) and (140) can be used to represent the nonholonomic generalized active and

inertia forces in terms of the holonomic generalized active and inertia forces. Omitting the

arguments for Simplicity, these relations become

n—p

F, = F4) Fpha
F";‘*‘ = F*+Z p+s 31‘7 T=17"'7p'
e s=1 ’

Therefore, Kane’s equations of motion can be written as -

n—p _ '
Fot Ff 4+ (Fpys+F) A =0,  r=1,...,p.
s=1
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or in matrix form as

| AP = —AF, (144)
where v | _ | |
Ag = [] ATJ . L (145)
The acéelerations and angular accelerations are linear in 4; it fol]owé that the generalized

inertia forces are as well. Consequently, F™* can be written in the form
F* = —Q(g,t)i — L(g,u,1), | (146)
where @ is a symmetric positive definite matrix. Then, Eqgs. (144) become

A2(g,v,0)Q(q, )2 = A2P(g,u 1), - (147)

where

P(q,u,t) = —L(g,u,t) + F(q,u,t), (148)

and Q) is the generalized inertia matrix of the system. |

3.5 Nonminimal Sy_stem of Eqﬂatio_ns

Egs. (121) and (147) can bé used to form the matrix system
Ta=YV, : : (149)

where T := [AIT [ A2Q]T] T, and V := | BT [A,P|7|". The matrix T is a constrained
generalized inertia matrix for thé nonholonomic system S. It is invertible for all choices of
generalized coordinates and genﬁera]ized spéeds that render the e_]err_ients of the constraint
matrix A finite. Therefore, | _
| =TV (150)
Remark: The appearance of the constraint matrix A in the dynamical equations (144)

as well as in the constraint equations (121) exploits the feature of deriving the nonminimal
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form of equations for a nonholonomic system by simple manipulations of tlie equqﬁons of
motion for the cvorrespondingvholonomic system. | N
The two sets of ordinary differential equations (4) and (150) form a comp]eie separated-
ih-accelerations state-space model for the constrained dynamical system, and involves no
reduction in the dimension of the space of generali.zed speeds from the number of general-
ized coordinates to the number of degrees of freedom. Furtherrﬁore; this is obtained without
employing Lagrange multipliers. Therefore, it enables the uée of system analysis and con-
~ trol techniques that are reiated to state-space model representation, in a uniﬁéd treatment -
of holonomic and nonholonomic constraints. This complements the previous differentia]
algebraic equations (DAE) approach [107].
‘The procedure of using the acceleration form of consfraints in obtaining a consistent set
of separéted in accelerations equations of motion for systems with nonlinear nonholonomic

constraints is summarized as follows:

1. A set of generalized speeds satisfying Eq. (4) is chosen, and the nonlinear nonholbf
nomic constraints, Eq. (110) are differentiated with respect to time. 'fhe sth of gen-
eralized speeds is partitioned according to Eq. (116), and the dependency arﬁohg the
set is described at the acceleration level by Eq (120). If holonomic constraints are

involved, the corresponding equations are twice differentiated in time to appear in

the same acceleration form.

2. The matrix A is used to constru'ct‘the matrices A; and A,, Eq. (122) and (145).

3. Expressions are obtained for holonomic partial velocities/angular velocities by in-
specting the corresponding expressions for linear/angular velocities, as the coeffi-

cients of the generalized speeds.

4. Holonomic generalized active and inertia forces are found from the scalar (dot)
product of the impressed and gravitational forces with the holonomic partial veloci- '

ties/angular velocities, and used together with A, to form Eq. (147).
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5. Egs. (121) and (147) are used to form the matrix equation, Eq. (149), and T is in-

verted to yield the reéulling equations of motion (150).

3.6 Example 3.1: The Appell-Hamel Problem

The mechanism shown in Fig 2 consists of a frame with two legs that slide without friction
on the z-y plane and supports two massless pulleys that are a distance p apart A thread is
passed around the pulleys, hanging a weight P that is idealized as a particle of mass m, and
its movement is-restricted to be along the vertical bar of the frame. The thread is wound
around a drum of radlus b, which is fixed to a wheel W of radius a, mass M, mass center
W*. The wheel rolls on the z-y plane, where ¢ is its angle of rotatlon in its own plane. For
simplicity, it is specified that the wheel has equal axial and polar moments of inertia, . The
plane of W makes the angle @ with the z axis, and the frame keeps it vertical relative to tlle
z-y plane. Let z,y, z be the coordinates of tlle center of mass of P in the zyz coordinate
system, which is fixed to an inertial frame of reference. The configuration parameters can
be chosen as z, y, 2, 0, and ¢. Finally, let1, j, and k be .unit vectors parallel to the positive z,
y, and z directions, respectively, and let i, j,,, and k,, be wheel-fixed unit vectors parallel
toi, j, and k, respectively when 6 = 0 and ¢ = 0. The no slip condition of W on the plane

xy gives rise to two relations that describe the velocity of the center of the wheel o,
I, = .aq'S cos | : o (151)
Jo = agsind. - - (152)
The velocity of [ ean also be described in terms of the velocity of P by the relations
fo = :i:+pésin9 o (153)
Jo = y— pbcosh. - (154)

The relations (151) and (152) can be manipulated in order to create the nonlinear nonholo-

nomic constraint equation [118, 9]
2 4 92 = a%¢?, ~ (155)
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| Figure 2: Schematic for the Appell-Hamel mechanism
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and the l_ine'ar'nonholonomic constraint equation
&,5in 6 — g, cos = 0. (156) |
Substituting Eqs..(]53) and (154) into Egs. (155) and (156) yield;
(& + pb ;in 0)% + (§ — pf cosB)? — a%¢? =0, : 157)
and | |
isin@—jeos@+pf=0. (158)
‘Th'e inextensibility éf the thread gives rise to the vho]onomic constraint equation -

2= —bp+z, | - (159)

where z; is a constant. Hence, the system has two degrees of freedom. Considering the
generalized speeds u; = (}, Up = éS, Uz =2=I,Us =Y, u5 = 2, and taking the time derivatives

of the constraint equations (157)-(159), the acceleration form of the constraint equations is

(uz + puy sin 6) (i3 + pity sin 6 + pu? cos 6)

+ (uq — pu; cos 0) (g — pu1 cos 0 -+ pu?sin 0) = aupti, (160)

Ug sin 0 + ujuz cos @ — 14 cos @ + uyuysinf + pi; =0 (16'1)

s = —bilg. | (162)

Let
ur = |u ue] (163)
up = |us ug us), | (164)
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then the matrices J; and J; for the systém are

‘ -nl 712-
= 1p 0 ' - (165)
..0 b-
- ng (N 0—
Jo = |sing —cosf 0, | | .'(166)'
I 0 -0 1_
where
n = pPu;+ pﬁa sin § — puy cos 6 R (167)
ny = —dluy o aes)
ng = usz+ puy sinf ' : (169)
ng = ug— puycost. - (170) |

The matrices A and B in Eq. (120) for the system are

—png —nycosf@ —ngcost

Aq,u,t) = ;15— pn3 —nysin —nysinf _ E aa71).
| 0 -
and
—uy (14 + pu; cos )
B(q,u,t) = gf ul(ﬁg ~ puy sinf) | 4 172) |
. : _
where
nsg = ngcosf+nygsinf (173)
ne = ug c056+u4sin€. (174)
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Therefore, the matrices A; and A, are

png+nj cosé no cosf 100

ns ng
A = —pnz+n1sin@ ngsind 010 (175)
ns ns .
0 b 00 1]
and ‘ :
‘ |1 o zemazmicesd  pna—msing
Ay = o om | . 76)
01 =nzcosé =ngsinf = _g
) ns . ns

The inertial velocity of P is

vl = ugl +uqj + usk, | | 177)
and its inertial acceleration is

aP = dgi + 114f + sk (178)
Th?: applied force on P is
-  Fp = —mygk, . - 179)

where g is the gravitational constant. Hence, the generalized active forces on P are con-

tained in the column matri){
FP= 0000 —mg]T. (1805
Similarly, the generalized inertiaforces are %:ontained in the colurr_in matrix
5= [0 0 —mrasi —miy —mas|T. - (181)

Since the applied forces acting on W are all in the vertical direction, they do not contribute

to the generalized active forces. The inertial angular velocity of W is
wW = —u, sin 01 + ug cos 0j + u; k, (182)
~ and its angiilar acceleration is

aV = (—tgsin @ — uyug cos ) i+ (U cosf — ujupsinf) j+ k. . (183)
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The velocity of ihe center of mass of .tAhé wheel is
v% = (ug + pu, sin )i + (ug — puy cos 0)j, o . | (]84)
and its acceleration is o
a® = (13 + piy sin 0 + pu? cos 0)i + (g — piiy cosf + pu? sin 0)j. | (185)

The generalized inertia forces of the wheel are given by

Fly =F% 0+ Ty -V, | . 186)

where the inertia force F} is
F* = —Ma®, ¢ £:7)

and the inertia torque Ty, is
T@:—aw-lw —w¥ x . WY, : | | (188)

Here, I denotes the central inertia dyadic of W [68]. The relation between the whéel-ﬁxed

and the inertial frame-fixed unit vectors is given by:

i, cos¢gcosf cos¢sinf ‘—sinqb i
jw¢=| —sind cos 0 |<i¢- - (189)
ky, sin.qﬂcqse - sin ¢sinf  cos¢ k '
Hence, | N
I = I(iuiy + jujw + kwkw) | S 190)
= I(ii+ jj + kk), o e

and the inertia torque is,

T%, = —Iiyk — Itfcos 6 — sin 6] — uyusI[— cos8i — sin 6j). (192)
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Therefore, the contribution of the wheel to the generalized inertia forces is given by

Fyy = —M(pPin + pitgsin6 — pisg cos) — Ty (193)
Ry, = —Iiy (194)
Fys = .—M(iz3 + piiy sin 6 + pulz.cos 6) | } (195)
F{}“ = —'M(zl4 — pitg cos @ + puy® sin 6) | (196)
Fyy = 0. | (197)

The generalized inertia forces for the system are giVen by
F* = F%+ Fly. | | (198)

Therefore, with the above mentioned choice of generalized speeds,

Mp2+I‘ 0 Mpsinf —Mpcosf 0W
4_ o I o0 o of |
Q = | Mpsinf 0 M+m 0 ol (199)
—Mpcosf 0 0 M+4+m 0
0 o 0 0 m
L \ i
0
0 | |
P = J——Mpz:tl?ckos'ﬂ - - (200)
—M pu,?sin @
\ /
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Forming Egs. (121) and (147) for this'system and augmenting the two equations yields

Eq. (149). The equations of motion are

6. 6 : '
Py -+ n COS‘ iLl Ng COS ,112 + ,&3 — _@ul(n‘l + pPUy COS 9) (201)
ng ng N5
_ i ing. . in0) )
pn3 + ny Sin 9,&1 N2 S Uy + Uy = @m (n3 — puy sin 6) (202)
ns ns s
bug + us =0 _ - (203)
‘ o —nasing '
[Mp2-+1+ pra — M S, ing — P8~ Masin Mpcose] U
| ng Ny ’ .
: — N4 — 01 .
" +Mpsinf + (M+m) [ T4 nmcos ]_us
5
- in@ .
+ [—Mpcos@ PR L (M + m)] Us
ny sin @

—png — my cos B
= [ P nnl cos ] Mpuy? cos6 — [pns
5

[—nzcos()M sin

Ny
n 0
+ [ o COS
n

1 cos 0

ns

6 —
(M+m)] U +

M pu,? cos 0 +

] Mpu,%sinf (204)
Ny

—E;SJI—QMPCOS 9] ’l:l.1 + ’l:Lz
5

[___nz sinf (M + m)] 124-— _b-m'&s
Ny .

T2 Sin 6 20 -5)

b
Mpu,?sin @ + —mg.
Ny i Ny

T ,
@ can be obtained by inverting the coefficient matrix T' := [ AT AzQ]T] . This can
be done for all values of generalized coordinates and generalized speeds that give nonzero

values of 7.

The inversion of the matrix 7" can be done either numerically or symbolically. The
symbolic inversion results in lengthy é:_xpressions that are not needed for our purpose. The
~ time simulations must run with initial conditions that satisfy the constraint equations. These
are chosen to be § = ¢ = 1.0 rad/sec, & = 1.0 m/sec, § = 5.0 m/sec, 2 = ‘——'0.5 nl/seo,
| z = 30 m, aod zero initial conditions for the femaining generalized coordinates. Time
simulations are performed witha=1.0m, b 05m,p=50m,m=1.0Kg, M =50 Kg,
zp =30 m. Figs. 3 and 4 show the responses of 0 and ¢ respectively. The responses of
the time rates of change of these angles,

) and ¢ are shown in Figs. 5 and 6 respectively.

The angle 6 tends to reach a constant steady state value as the wheel continues to roll over
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Figure 3: Example 3.1: 6 versus ¢

the z-y plane, as shown in Fig. 7. Also, the load P intercept on the :zf-y plane is shown in

Fig. 8, and the time history of its height z is shown in Fig. 9.

3.7 Nonlinear Nonholonomic Constramts and Numerwal
Stability of the Equatzons of Motion

The problem of numerical drift of cons_traints and integrals of motion is well known in the
“solutions of differential equations subjected to constraints. Several methods were intro-
- duced in remedy for this problem. Every method has its advantages and disadvantages, but
| a}l these methods involve modifications to the dynamical equatiohs in order to suppress the

numen'éa] violation. Stabilizing the constraint equations and the dynamical equations are

interfering, and one should be carefulrwhen implementing a constraint sfabilizing ééheme,

as the modification can alter the dynamics of the whole system in addition to its effect on
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the constraint dynamics. Alternatively, it is possible to consider the issue of numerical sta-
bi]ity during the médeling phase, to avoid the need to correct the motion by modifying the
already formulated equations of motion.

For a given systém; modeling the constraints to be nonlinear in the velocities resﬁlts in
equatiohs of motion that are different in appearance from the equations of motion resulting
from modeling the constraints as linear in the velocities. However, the solutions of the re-
sﬁlting equations of motion and the time simulations should not be differént, irrespeétive 6f
the way the conStraint equations are manipulated in order to be augmented with the dynam-
ical equations. Nevertheléss, tﬁe numerical stability of the solution is certainly affected by
the constraints modeling. In that regard, it can be beneficial td use the noniinearity of the
constraint equations aé a passive tool to suppress the numerical errors. To illustrate that,
we create the lihea: nonholonomic constraint equations by equating the equations (151)

and (152) with the equations (153) and (154). The reéulting constraint equations are

a¢pcosd — i — pfsinf =0 o ~ (206)

a¢sing — g+ pfcosd = 0. © (207

The holonomic constraint ¢qﬁétion in the kinematicai form is |
5= —bgi. | (208)
Taking the time derivatives'of :Eqsf g2.06')‘-(208), tﬁe same procedﬁre can be used to obtain

the equatioﬁs of motion for tliéiAppéli-jHamel mechanism Witil the constraints modeled as

linear nonholonomic. The constraint matrices are

psing —acosd 1 0 0
A= —pc050 —asind 01 0 (209)

0 b 00 1

1 0 —psinf pcosfd O :
Ay = P P (210)

0 1 acos@ asinf b
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P -

—auy Uy sin § — puy? cos |

B =| —pu;?sin 6 + auyuycosf| S - (211)

0

and the equations of motion become

psin 8y — a cos g -+ s = —auyup sin @ — pity® cosf | - (212)
—pcosfiy —a sin 01 + 45 = —pup?sin@ + augupcosf  (213)
bitg + s = 0 ' | | (214) -
iy — mpsin O3 + mp cos 9@, =0 ‘ (215)

. Uz +acos0(M + m)is + asin (M + m)itg + bmits |
= —aMpu,% — bmg. o o (216)
By running the time simulations for both systems of equations, a common ﬁumeﬁcal vio-

lation measure can be tested, that is the total energy F of the mechanism. Considering the

zy plane as the datum for computing the potential energy, E is given as

I M .
E= 5(1112 + ug?) + -—2—[(u3 + puy sin )2 + (ug — pu; cos 0)?]
+ 590+ T (us® + ug + us?) + mgz. (217)

Fig. 10 shows the plots of E by using the state variables 6btained from integrating the
equations of motion that cc}xfespond to the two types of constraint modeling, where AE is
~ the difference between the computed value of the energy and its initial value. It is noticed
that the nonlinearity in the constraint equations subdues the growing deviation in the total
~ energy of the mechanism. |

| Nevertheless, the error dynamics for nonlinear systems depends on the initial errors in
the state variables, and on the input forces on the system. These can vary substantially
during the simulation process, and manipulating the constraint equations provides no guar-

antee of error convergence, which frequently necessitates an implementation of a corrective
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scheme. A constraint numerical stabilizing scheme for the derived nonminimal equations

is introduced in the fourth chapter. -

3.8 Summary

Nonholonomic constraint equations that are nonlinear in velocities are incorporated with
Kane’s dynamical equations by ﬁti_lizi_:ng‘ the acceleration form of constraints, resulting in
Kane’s nonminimal equations of motion, i.e., the equations that involve the full set of gener-
alized accelerations. Together with the kinematical differential equations, these equations -
form a state-space model that is full-order, separated in the derivatives of the states, and
involves no Lagrange multipliers. The method is illustrated by using it to obtain nonmini-
mal equations of motion for the classical Appell-Hamel problem when the constraints are

modeled as nonlinear in the velocities. It is shown that this fictitious nonlinearity has a

predominant effect on the numerical stability of the dynamical equations, and hence it is

63



possible to use it for improving simulations accuracy. Although the numerical a_céuracy
may increase, the complexity in the dynamical equations resulting frdm_ this nonlinearity
makes it difficult to use the équations for system analysis. For the plirpose of system anal-
ysis, the simpler model that corresponds to the linear nonholonomic constraint equations is

preferred.
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CHAPTER IV

- CONSTRAINT FORCES
4.1 Introduction

Similar to Lagrzinge’_s fundamental equations, Kane’s equations do not identify the con-
| straiiit forces directly. The'way introduced in Ref. [68] to bring these forces into evidence
" isto define a set of generalized speeds that violate.the constraints, without considering more
generalized coordinates. This results in an increase in the number of partial velocities, and
the riurhber of the governing equations, from which the constraint forces and moments are
determined. The choice of these generalized speeds is not unique.

In this chapter, the acceleration form of the constraint equations is used to simply and
systematicélly obtain explicit analytical expressione for the constraint forces and moments,
Without the introduction of auxiliary generalized speeds or Lagrange multipliers. The pro-
cess is outlined with an illustrative example.

In spite of the advantages of modeling multibody systems using the acceleration form

of constraint equations, the accuracy of numerical simulations may degenerate due to con-

straint violations caused by enforcing the constraint equations at the acceleration level. This
is especially true for the case of holonomic constraints, as the equations must be numeri-
cally integrated twice to obtain the generalized coordinates. The explicit appearance of the -
acceleration form of constraint equations facilitates the augmeniation of Baumgarte type |
damping terms [18] prior to using the acceleration form of the constraint equations with
the dyhamical equations and inverting the generalized inertia matrix, in case it is necessary
to modify the dynamical equations in order to suppress this violation. The procedure is
illustrated by stabilizing the nonminimal equations for a holonomically constrained pendu-

lum with a varying length.
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4.2  Analytical Expressions for Constraint Forces

Since the constraint equations are differentiated with respect to time in our framework,
it can be assumed, without loss of generality, that the dynamical system is subjected to
nonholonomic constraints only; hence, in this context, “holonomic” and “unconstrained”

have the same meaning. The equation
F(g,u,t) + F*(q,u,u,t) =0 _ (218)

is considered the equation for constraint-free systems in this sense.

Consider now a constrained system S consisting of a set of v particles an‘d u rigid
bodies. Let the resultant forces and moments exerted on .S by the constraints be the force
Fep, on the ith particle, F°QJ. on the point (); of the jth body, and the moment M€ B; on the
] jth bodj, z= 1...v,5=1...p. Also,let v, v?’ , wi? be the rth part1a1 velocny of the
zth particle, the rth partial v_elocity. of the point (;, and the rth partial angular velocity of
the jth body, res'peetively{ These holonomic (unconstrvained)ipartial velocities and partial |

angular velocities satisfy the relations

vii = Zurvp‘ +v;* o (219)
‘ r=1 . o .
v = Zu,v?*+v?j _ (220)>
r=1 ] '
wi = Y wwltw, (221)
r=1

where n is the number of generalized coordinates, the u,’s are the generalized si:eeds de-
fined for the system, and vt , v?’, wf 7 are possibly time-varying functions ,of the gen-
- eralized coordinates but are independent of the generalized speeds. We define F*© as the
generalized constraint force the rth component of which is given By

ZF%, vP=+ZF°QJ vQ‘+ZM°BJ wps r;l,...,n. - (222)

i=1 j=1 j=1

Since the deviation in % from an unconstramed value can occur only because of the

constraint force, an equation for constrained motion can be written by adding F*° to the left
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hand side of Eq. (21.8), so that
F(q,u,t)+ F*(q, u, @,t) + F°(q,u,t) = 0. (223)
Substitutin g the repfeséntation (146) fo; generalized inertia forces
F*=—Qu - L(q,u,t) | ' (224)
into Eq. >(7223) yieids |
| o F(q, u,t) — Qu — L(g, u,t) + F(q,u,t) =0 : (225)
Substituﬁng thel e;;pressioh (48) for u into Eq. (225), énd solvihg for Fe gives
F¢=—F(q,u,t)+ QT"IV + L(g, u, t). | (226)

Remark. Generalized constraint forces derived here are inertially based, because the
‘velocities and accelerations used to derive Eq. (226) are in an inertial frame. In gen-
eral, active fbrces may contain acceleration terms [28]. Examples are control forces that
depend on the accelerations of the'éontrolled plant;. In such cases, the _generafized con-
straint forces would be dependent on 1. For simplicity, we consider the active forces to be
dependent only on g, u, and t, and indépendent of 1.

The procedure for finding constraint forces is summarized:

1. Generalized active and inertia forces satisfying Eq. (218) are derived for the corre-

sponding unconstrained system.

2. Expressions for generalized accelerations are obtained by the procedures outlined in

chapters 2 and 3.

3. Generalized accelerations and generalized inertia and active forces are substituted

into Eq. (223) to solve for generalized constraint forces.

67



4.3 Example 4.1: Motio.n' of a particle on an ellipiical path

The two-dimensional motion of a particle P of mass m in the horizohtal‘plané is shown in
Fig. 11. The particle is forced to follow the frictionless elliptic track foﬁned by arigid wire
ﬁxed to an inertial frame R. The coordinate system (:r, y) is fixed to R, with its origin at
O. A spring with a stiffness constant X is attached from its two ends at the particle P and
the point O. We are interested in finding the inplane cor.lstrai'nt force exerted by the' wire on

- the particle P. The elliptic motion of P defines the holonomic constraint
aZ? + by? =, . 2

where Z = z — xy, such that xy, a, b, and c are positive constants. Differentidting the above

equation with respect to ¢ yields:
aFd + by =0. - (228)

Let the generalized speeds be u; = £, and uy = . Eq. (228) can be written as

Uy = —€Uy, | | \(229)
where € = §2. Therefore, | '
| - A=—¢, B=0. | (230)
The matrix A4, is
| A= [;A '1] =le 1J. | (231)
Thus, Eq. (22) for this system ié |
L o
U2
The matrix Ayis |
Ay = [I AT] =1 -—¢. | T (233)
The velocity of P in R is |

RyP = wpi + woj, (234)
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where i and j are are unit vectors parallel to the positive z and y axes, respectively. Hence,

the partial vel_ocitiés are vi = i, and vy = j. P is subjected to the spring force
F, = —K(zi+ yj).
Hence, fhe generalized activé forces on P are
F=-Kz, F,=-Ky.

The acceleration of P in R is

RaP = ’l:l,li + u2j.

The generalized inertia forces on P are
F} = —mRaf . vy = —miy

Fy= —mRal . vy = —mi,.
Therefore, the generalized constraint force F° can be written from Eq. (223) as

Fe m 0| [a| T
1. (= +K
Eq. (37) for this system is |
o U - a a '
|-m me] o =—F +eFy= (1—5) K.'z.—i-zKa:o.

Egs. (232) and (241) can be used tb form the matrix system

Su=U,
where
€ 1
S = ,
: —m  me
and ‘ |
r=1°

(235)

(236)

(237)

- (238)

(239)

(240)

(241)

(242)

(243)

(244)



where

_ abuy (—yu; + Tuyp)

= 245
€1 = (by)? ) (245)
a a a '
= (1-= - = -7, 4
eri= (1-3) Ko+ 7 Koo =K [o— 23] | (246)
Solving for ,
= S"U. : ' - (247)
- This yields
i = — (meey — e3) - | (248)
1= 1— €2
. 1 y
Uy = — (mey + 66_2)’ (249)
~ where -
d:=¢e +1. : (250)
Therefore, the constraint fofces are found from Eq. (240) as
- ,
Ff = 3 (meey — e2) + Kz . (251)
Ff = % (mey + eex) + Ky. _ v - (252)
In vector form
_ . | . | _
Fe = E (mee; —e2) + Kx] i+ [2 (mey + eez) + Ky] J. (253)

For the purpose of comparison, we use the method introduced in Ref. [68] to perform
the same task. The system can be described in terms of one generalized coordinate. How-
- ever, we will consider the same set of generalized coordinates and generalized speeds as

| above, using Eq. (228) to put the system in simple nonholonomic form. Therefore,

RvP = wituj : © (254)
= w(i-q). | ©56)
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Figure 11: Schematic for Example 4.1

Hence, the partial velocity is -

viz=i—¢. o (257)
The acceleration of P is
R.P _ o« (v s ab(Zus — yuy) . 258
a = wi-¢)+tu——7p— oy)? - (258)
= U1i+ (;ﬂlf -+ el)j. _ (259)
Therefore, the generalized inertia force for the system is
F* = —mRaf.v; . - (260)
= —m[d'lll - 616]. (261)
Tﬁe generalized éctive force for the system is
F=Fs-v; = —K(zi+yj) -(i—-€j) - (262)
= —€a. . ) (263) ’
Formulating Kane’s equation and solving for 4, yields
R 1 €9 :
= =€ — —. 264
U = —ere— —= (264)

which is identical to Eq. (248). Now, we introduce an auxiliary generalized speed w such

that

RyP = wyvy + wr (265)
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‘where the partial velocity 7 is a unit vector orthogonal to the elliptic path of P, defined by

the holonomic constraint,

€it]
= . (266
| Vi (@9
The constraint force F¢ = F°t is found from the equation
(-mRaf +F+F°) .7 =0 | 267)
which gives
1 .
'—-——E[mel + K(ex +y)]+ F°¢=0. - (268)
Therefore,
F¢ = L[me + K(ex + y)|7
'\/E 1 Yy ‘
' ., 1 : : .
= Sfme;+ K(ew +y)li+Smer + K(ew+p)li. (@69

Figs. 12 and 13 show the systeﬁl_ response to initial conditions satisfying Eqs. (227) and
1 (229). Also, time simulations for Egs. (253) and (269) are shoWn in Fig. 14, and identi-
cal values are noticed for constraint forces throughout the trajectory of the system for the
same initial conditions. However, the introduction of the éuxiliary generaiiied speed is not
needed in the present treatment.- An algebraic verification of the equivalency of Eqgs. (253),

and (269) can be done also. Subtracting the two expressions of constraint forces yields

E (meél —e)+ Kz — zel-[me1 + K(ex + ?/)]] i

+ B (mey + eeé) + Ky — —:z[mel + K(ex + y)]] j 70) -

) | . - . |
= [—di% + Kz — E[K(e:c-i-y)]] i+ [% + Ky — —(ex + y)] i @n
[l e S e 1]

€ a_ K .
+ [zK[:c - Ex] + Ky — 7(537 +y)]J (272)
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Figure 12: Example 4.1: Time history of generalized coordinates

Kz Kz K
_[-T+Ka:—e T]l+[ [——x]+Ky—7]J . (273)
Kz Kz |. € a_ ez K aZ
= .[—62+1+Kx—e €2+1] + [——-—€2+1.K[—-5:c]+Kb—6 1% ]J (274)
—-Kz + Kz(e? +1) — Kz , .
= 7
23T i+ 2+1]K z|j (@275)
€ a
— 0 k2= | 2
01+[€2+1[ Kbx]+ 2+1[K a:]] (276)
=01 +0j. (277)

The values of generalized coordinates and generalized speeds that result from integrating
Eqgs. (248) and (249) together with the kinematical relations should satisfy the holonomic
constraint équation, Eq‘.v.(227)v, and i;s kinematical equivaleni, Eq. (229), for initial con-
ditions that abide by these equations. However, small violations of these equations are
noticed due to the accumulative numerical errors. This problem is common when the equa-
tions of motion subjected to constraints are numerically intégfated, and becomes tangible
for long-time simulations. A strategy for overcoming this problem is presented later in the

chapter.
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44 Example 4.2

Now let us revisit Example 2.1 (section 2.7) to obtain the constraint forces that enforce the

passive constraint 7¢ = ¢. The generalized active forces on the particle are given by

| F,
- Flg,u,t)=<S Fpp, o | - (278)
Fy |
" and the generalized inertia forces are given by
w0 0] (@ m (M) | |
Floui)=|0 —m 0 |{ap+{ m(a—_um) . @9
I 0 0 -m| |us m(—ylrﬁi—;%a%) ‘A

Therefore, the genei‘aliied constraint forces are obtained from Egs. (223) as
- Fg,u,t) = —F(g,u,t) — F*(g,,4,), (280

where % corresponds to the constrained system. Substituting the expressions (503)-(505)

for the generalized accelerations in the above equation yields

. ~ m?’-a m2¢ mi_uz?
Flgwt) = e Tt Ty tan ¢
3 _ 2 2
+(m am) (’LLg' + ug?) @81)
_ ar .
F5(g,u,t) = 0 | | - (282)
m2¢ m2¢? —a m3¢ ‘ u{" '
Fc 1 - -7 i S "y 2 2 _
Saut) = TR T Zop T (uz +ug _¢tan¢)
2 .
mug
rtan¢’ (283)

Remark: The generalized constraint forces do not depend on the second component of the
generalized active forces Fy, and the second component of the generalized constraint forces.

F£(q,w,t) is zero. This implies that 1, the component of the generalized accelerations
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along the second partial velocity vo = j is the same for both the constrained and the
unconstrained sysiems, provided that the generalized active forces are the same for both

systems.
4.5 Elimination of Constraint Drift

The problem of constraint drift is generally unavoidable when a differential form of the
constraint equations is used to formulate the equations of motion. Such a problem be-
. comes more serious for the case in which the acceleration form of holonomic constraints
is enforced, since two integrations are needed at each time step to obtain the generalized
coordinates. The purpose of this section is to modify the derived equations of motion to
suppress the errors resulting from this integration process. The explicit use of the accel-

eration form of constraint equations suggests the employment of the classical numerical

stabilization method by Baumgarte [18]. Let ¢ be the column matrix

=l¢1...¢m]T, o (284)

in which ¢(g, », t) is in general nonlinear in its arguments. Instead of using the acceleration
form of the constraint equations

¢(g,u,t) =0, (285)

the equations used are the Baumgarte type equations
$(a,u,9,%) = T(g,u,1) = 0. - (286)

Here I' € R™*™ js a matrix that has eigenvalues with strictly negative real parts, and

_ ) ¢ o0 o6 o
¢(q,uut) _q +5- +5t— (287)

Substitution of the kinematical differcntial equations, Egs. (4), in the above equation results
in

. 0
Barusist) = T2+ Bu(g,w u+ Bala, 1) sy
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where

BMmﬁ==QﬂMﬁ _’” | (289)
Blgut) = eD@t)+ 5. (290)

Letting
u=lu® wp|", @)

where uy = |u; .. upJT andup = [upt1 - - Un) T, and defining the m x p matrix J; (g, u, t)
as in Eq. (117) and the matrix J»(g, u,t) as in Eq. (118), and assuming that up;rl, y Un
can be chosen such that the matrix J2 is nonsingular for all ¢, u, and ¢ that satlsfy the

* constraint equations, Egs. (285), Eq (288) can be written as
d}(q,'u, u,t) = Jur + Joip + Bi(g,u,t)u+ Ba(q,u,t). (292)
Therefore, Egs. (286)'b'ecor>ne
| ; lelz’—l; Jotip — f‘qj(q, u,t) + Bi(g, t)u + Bo(g,t) =0. | | (293)

Solving Eq. (293) for up yields

ap = A(g,t)ur + B(g, u,t), (294)
where
Algu,t) = —=J7'0 - (2%5)
B(g,u,t) = Blg,u,t)+J;T(q,u,t). @9
Eq. (294) can be written as
Ai(g u,tyi= B(gu,t), 97
where -
Ai(g,u,t) = [—A(q, u,t) I] . o (298)
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Eqgs. (297) together with Egs. (147) form the matrix system
Ti=V, (299)
. ) T . . T
where T' := [ AT AzQ]T] and V= lBT [A2P]TJ . Therefore,
| i =T, | (300)

‘A similar treatment can be developed for holonomic constraint equations. Instead of the

acceleration form of the constraint equations, the following constraint equations are used:

{{;(q, u, 'l.L, t) - Flé(%u) t) - F2¢(q’t) = 03 (301)

where I'; and -I"2V are chosen such that the dynamics of Eq. (301) is stable. In this case, B

in Eq. (297) becomes
B(g,u,t) = B(g,u,t) + J5 [T1¢(q, u, t) + Taip(g, t)]. (302)

Remark: The mlatrices I, T4, I’ can be thouéht of as feedback gains of al control
Vsy‘sfem that is aimed to regulate the constraint ﬁlﬁcn'ons ¢ at the zero value. In order to
obtain from the numerical in;egrat;'_on scheme a true and accurate staté of the dynamical
sysiem, these gains must also keep the entire system of Egs. (300) stable. The choice of
the gain'matrices can affect the stability of Egs. (300), beside its effect on the convergence

rate of ¢. For adaptive choices of gain matrices for Baumgarte type of constraint violation

stabilization, the reader is referred to Ref. [25].
The procedure for deriving nonminimal form of Kane’s equations of motion that is
free of constraint drift for dynamical systems subjected to nonholonomic constraints is -

summarized as follows:

1. Stable constraint djnafnics équations are constructed by augmenting the constraint
vfunctions ¢ with their differentiated forms by means of the matrix I" in case ¢ is
nonholonomic, resulting in Eq. (286). In case ¢ is hdlonomic, both ¢ and ¢ are
augmented with ¢ by means of T’y and Ty, resulting in Eq. (301). In both cases, these

matrices are chosen to damp out any nonzero values of ¢.
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2. A generalized speeds partitioning according to Eqs. (291) is used to put the equations
in the form (294), which results in the upper subsystem of the nonminimal form,

Egs. (297).

3. Egs. (297) are used with Egs. (147) to form the system of equations (299), which can

be solved for @ by inverting the matrix T' to obtain Egs. (300).

The following example illustrates the procedure for numerically stabilizing a holonomic

constraint equation.

4.6 Example 4.3: Pendulum of Varying Lehgth:

A pendulum that consists of a massless rod of variable length | = \/xz—ﬂﬁ is shown in
Fig. 15. The z-y coordinate system is fixed in an inertial reference frame R, and a particle
P of mass m is attéched to the end of the rod. The pendulum adju_sts its lerigth according
to the holonomic c_oﬁstraint equation | |

' 2

$(z,y) = y+ —

—lp=0, (303)
lh ,

where [, is a positive constant equal to the rod length when either z = 0 or y = 0. Consider
z and y as the configuration parameters, and let the generalized speeds be u; = & and
up = 3. Also, let's aﬁd j be unit vectors in the z and y directions, respectively. The position
vector of the particle P is | |

- p =zi + 9j. _ | (304)
The inertial velocity of tﬁe particle is

RyvP = ugi + ugj.

The velocity form of the constraint equation above is thus

fi)(x, u) = ug + lziwl =0,
0
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“and the acceleration form is

.

lo
Choosing uy = uy,
9 _
A1 = I_'—l‘ 1J,
lo
2
A2 = |_1 — 'I—IE_I,
0
and v
-2
B=—=u2
_ b
“The ﬁnconstrﬁined.equations of motion are
'il.l =0
’L'l,z = g.
Eq (42) for this system is
| | 2 .
—TU; + Up = —U
lo lo :
dy— Zpip = —2gp

Given the parameter lp =1.0 m, solving for 4, and 1, yields,

4 — —2z(g + 2u?)
T 1442

) 4gz? — 2u?

Uy = — 1
. 1+ 422

N .2 :
¢(z, u, ) = g + —(uf + ziy) = 0.

(305)

(306)

(307)

(308)

(309)

(310)

(311)

Setting the initial condition z(0)=1.0 m, and using the Kutta-Merson numerical integration -

scheme, the above system of equations is solved for z, y, u;, and u,, with the constraint vi-

olation ¢ evaluated at each time step. The time history of ¢ after 500 seconds of simulation

time is plotted for two small values of the time integration step At, as shown in Figs. 16

and 17. It is clearly seen that ¢ grows with time. Both the pattern and the magnitude of ¢

are affected by the choice of At. Reducing At reduces the growth of ¢, at the cost of in-

creasing the required time to perform the simulation. The same is concluded for a constant
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v
y
'Figure 15: Schematic for Example 4.3

of motion of this conservative system, namely the ehergy integral E. This is simply the

sum of kinetic and potential energieé of the system,
1 o -
E=K+V= -ém(uf + u3) + mg(lo — v), (312)

where the datum for cdfnputing the poten.tia] energy is chosen as yg = lp. For m = 1.0 Kg
~and [y = 1, Figs. 18 and 19 show the deviations in E for tﬁe two choices of At after 500

seconds of simulation time.
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Figure 16: Example 4.3: Constraint violation, ¢: At = 0.01 sec.
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Figure 17: Example 4.3: Constraint violation, ¢: At= 0.001 sec.

Next, Eq. (301) for this system is used. The resulting Eq. (299) with [y =1.0 m becomes

20ty +dy = —2u] +T1d(z,u) + Tag(2,y,u)
iy — 20l = —2gz. | (313)
Solving for % yields -

) —Ty(1 —y — 22) — g — 2u? + Ty (ug + 27uy)

= 2 314
“ _ _:L‘» 14422 14)
. 4gx® —To(1 —y — z2) — 2u2 + Ty (ug + 2zuy)

= . 315
“2 14 4z2 G13)

. The time history of ¢ after 500 seconds is shown in Fig. 20. It is noticed that the constraint
violation becomes bounded during the time simulation period. Arbitrarily small bounds
can be obtained by increasing the values of I'; and Fg However, this also increases the

relative magnitudes of the damping terms, which results in an increase in the stiffness of
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Figure 18: Exaniple 4.3: Energy integral: At = 0.01 sec.
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FiQUre 20: Example 4.3: Constrairit'violation, ¢: f‘l-:, —20,Ty = —100, At =0.001 sec.

the differential equations, and requires smaller time steps. For I' = -20 sec™! and Iy=-
100 sec™2, a bound of || < 2.0 x 10~ m is obtained for At = 0.001 seconds. The
choice of Ty and T affects the numerical stability of the whole nonminimal system of
equations, as discussed below. For the purpose of comparison, Kane’s minimal equation

may be derived. The solution of this equation is free from the constraint drift, because the

constraint equation is used in its algebraic form. Substituting y from Eq. (303) into Eq.

p = zi +[1 — 2°j. o (316)
The first and second time derivatives of the above equation relative to R are the inertia

velocity and acceleratiop Qf P, represented in terms of u; and 1,

RyP = wi+[1 - 2zu)j - (317)

wifi — 23], - (19)
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and .
R_aP = 1i — [2u;® + 2z, )j. _— B - (319)
 The coefficient of uy in Eq. (318) is the holonomic partial velocity of P,

RyP =i—2zj. (320)

The holonomic generalized active force F on the pendulum is the contribution of gravity,

given by
F = mgj-va ‘ o - (321
= -2mgr, - . (322)
and the generalized inertia force is
F* = —mRaf.RyP | (23
= —mliy + 2z(2us? + 2ziy)]. (329

Kane’s dynamical eqﬁation of motion is
F 4+ F*=0, | ' L (329)

yielding to |
| 298+ + 20(2u% + 20) = 0. - (326)
To illustrate the improvement in the numerical solution of the nonminimal equations re-
~sulting from the augmentation of the damping terms, the s_olutions for y after 1 hour of
- simulation time obtained from the integrations of Egs. (310)-(311) and Eqs'.‘ '(3 14)-(315)
- are compared with the most accurate one obtaiﬁed from the intégrétion of Eq. (326), as
éhown. in Fig. 21. To reduce the computer memory and time costs, a larger integration step
At of 0.1 seconds is chosen. Clearly, the damping of constraint violations is crucial for
accurate fast long-term simulations df such systems. It should be noticed, however, that

despite the correction in the computed holonomic constraint violation, this does not imply
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Figure 21: Example 4.3: y solution after 1 hr, At = 0.1 sec.: M minimal, N nonminimal,
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Flgure 22: Example 4.3: Energy integral deviation AE: I'; = —20,Ty = 41_00, At =
0.001 sec.

necessarily an improvement in the accuracy of the individual states. The energy integral -
provides a check on the stability of the whole system of nonminimal equations of motion,.

and is independent from the constraint violation measure ¢. Fig. 22 shows the deviation

in the energy for the constraint-stabilized system. This deviation represents a deterioration
in accuracy compared to the constraint-unstabilized system for the same At as noticed by
- comparing with F1g 19. Careful chorce of I'y and [yis therefore important to preserve the
stability of all the states. Nevertheless, the only tangible effect of the constraint stabilization

in this example is favorable on y, as illustrated in Fig. 21.

4.7 Summary

Explicit expressions for constraint forces are derived in the first part of the chapter, without

the introduction of auxiliary generalized speeds. This may complement existing approaches
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based on ‘intr-oduction of auxiliary generalized speeds, (i.e., fictitious degrees of freedom)
or using Lagraﬁge multipliers.

In the second part of .the chapter, a systematic procedure is provided to modify the
equations of motion for the purpose of suppressing the constraint violétion due to numer-
“ical integration errors, by augmver_lting the constraint equations with damping terms of the
Baumgarte type. The associated coefficients can be chosen to obtain any desired constraint
dynamics without affecting the invertibility of the generalized constrained inertia matrix,
as .the coefficients of the acceleration terms in bbth the dynamical and the constraint equa-
tions remain unaltefed. An illustrative example shows a significant reduction in a holo-
nomic constrairﬁ violation, although the effect on the whole system of equations is slightly
destabilizing. Therefore, the coefficients of the stabilizing terms must be chosen such that
the improvement in the numerical stability of the constraint equations does not deteriorate

the numerical stability of the resulting nonminimal system of equations.
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CHAPTER V

UNILATERAL CONSTRAINTS

5.1 Introduction

A Unilateral constraints (also named one-sided constraints) are constraints that can be mod-
eled by inequalities involving the state and/or control of the dynamical system. Therefore,
a unilateral constraint is best described by a constrained model that is active in some phases
of motion, and inactive in others. Either part of the inequality “ < ”, i.e. the éﬁ'iCt equality
and inequality parts, can be the one representing the constrained phasé, depending on the
application. |

A constrained phase of motion corresponds to a fewer degrees of freedom and different
equations of motion. Hence, it is necessary to form several models to describe the dynarn-
ics of the system at different phases. During the time instants when the .strict 'part of a
unilateral constraint is active, the dynamics of the system is governed by the coxreépbnding _'
constrained model, while the unconstrained model is the one that govern the dynamics of
the system when the strict parts of all constraints are inactive. The criterion for switch-
ing between a model and another is the tendency of the sysfem to obey or to violate the
corresponding constraint. :

Traditional techniques for mode]ing constrained dynamical systems yield differential
equations that are eQual in number to the number of degreeé of freedom of the dynamical
- system dun'ng the corresponding phase, together' with algebraic equations that describe the
| éonstrainfs. Due 't‘o the Idi‘ffelrence in nature and in number of equations of motion that
' borréspo’nd to each phase, both the formulation and the solution of these equations can be
difficult and cumbersome for systems with numerous degrees of freedom and constraints.

The nonminimal nonholonomic form can be utilized in modeling a unilateral constraint
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by forrrﬁng constrained models that alternate in action with the unconstrained one. All these
models have the same number of differential equations, equal to the number of generalized
coordinates 6f the dyn-aifrxical system, and séparéted in the generalized. accelerations. The
activation of each set of equatipns is performed by simple and readily computer imple—
mentaBle manipulations of the matrices 6f the unconstrained model and the corresponding
constraints.
| Howéver, a critical issue in modeling unilaterally constrained dynamical systems is
- the treatment of singularities at the switching points, i.e., when vthe sudden changes in
| the dynamical equations occuf, which imply discontinuities in the accelerations for some
configurations. These are accompanied with abrupt changés in velocities in very short
periods of time, and hence large changes in momentum and impulsive forces that may affect
the high-frequency characteristics of structures, and cause vibrations or even structural
failures. Examples are impact forces in landing geérs at the instants of ground touches,
the éontact forces generated when mechanical gears are meshed one with another, and the
high-frequency phenomenon related to friction when transitions frorh roiling to slipping or
from slipping to rolling occur. . |
Most classical models of unilaterally constrained motion idealize the changes in ve-

locities at the discontinuities to be instantaneous, and the relations between the velocities

before and after contacts to be govemed qithcr by geometrical and kinematical constraints
or by means of the coefficient of :rc;,StitutiOn. However, the chahges in velocities during
the moments of contact are not really instantaneous, and ignoring the velocity‘ beﬁavior in
these periods implies ignoring one of the most important phenomena related to impulsive -
motion, the impulsive forces that take place in the moment of contact.

The modified constrained phase dynamical equations derived in chapter 4 can be used to
resolve the above mentioned concern. The constraint stabilization property of these equa-
tions can be utilized in approximating rapid changes in velocities, and hence augmenting

the impact short period dynamics to the overall motion, and showing the different in time
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scales behaviors invan integrated manner, within the same numerical simﬁlation_ scheme.
This is performéd by setting a tolerance for the uncbnstrained phase such that the modified
constrained dynamical equatiohé are activated whenever this tolerance is ¢Xceeded. The
intermittent motion and the corresponding changes in velocities and impulsive forces take
place in this tolerance, where the continuous veloéity behavior at the time instant the strict

part of the unilateral constraint becomes active is exhibited. .

5.2 Unilaterally Constrained Dynamical Systems

Several types of constrained dynamical systemé that appear to be different in thé nature of
constraints can be rﬁode]ed using unilateral constraints. A unilateral constraint that affects
_ the motion of a dynamical system falls under one of two classes. The first class is impulsive
cdnstraihts. The constrained phase for this class of constraints is represented by the equality
part. The second class is friction constraints. The inequality part is the.oné representing -
the constrained phase of motion for this class. The relation between these different types
of m_otions was first investigated in Ref. [53]. o | |
In this chapter, the.c‘ontinuous in velocities approach in modeling motion constrained
by unilateral constraints is used for the two classes of unilateral constraints, in the context
of the nonminimal equations of motion. It is emphasized that the contimiity meant here
is inlvelocities and configurations, and does nof imply using the same model to describe

different phases, as the accelerations are generally discontinuous.

5.3 Impulsive Constraints

This class refers to constraints that are suddenly applied to, or removed from the course
~of motion of the dynamical system.v These activations or deactivations might be isolated
events in time, where the'~constiaints are added or deleted within sufﬁciently long periods
of time. On the other haﬁd, the cénstraint addition and deletion can be consequent events

that take place in very short periods of time. The corresponding motion is referred to as the
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impact motio.n.

The con‘tir_lu.ous' velocity distribution approach is aimed at predicting the kinematics of
the colliding 'bodif_:s during the impact time (which is not assumed ignorable) and estimat-
ing the resulting impulsive constrainf forces in terms of their relative displacements and
velocities. For that purpose, cerfain coefficients that represent the material compliance and
damping of the colliding bodies are needed. Some works assume that these coefficients
are known constants of the materials. Examples are Refs. [37, 38, 131, 90].‘ Others use

kinetic-elastic energy relations to calculate these coefficients. Exarhples are [54, 82, 86].

5.4 Constraint Activation and Deactivation

The motion of the unconstrained dynamical system from time £ = 0 to ¢ = ¢; is governed

by the unconstrained model. If the constraint
$(d,t) =0 | (327)

is suddenly activated at time ¢;, then there exists a small positive number §¢ such that for all
time ¢ > t; -+ dt, the motion of the dynamical system is governed by Eq. .(48). In the time
period [t;, ; + 6t], there exist répid changes in the velbcities of the dynamiéal system, such
that the time derivative of the constraint, ¢ = 0, is satisfied for ¢ > ¢; + 0t. This implies an
abrupt change in x;nomentum, v_vhich. can occur only by the influence of an impulsive force.
This is unavoidable unless the above ‘me'ntioned restrictive derivative condition is sétisﬁed
before the time instant t = t;. | |

For the numerical simulation to capture the impulsive forée and velocity distributions ’
 immediately after the moment the constraint is activated, a tolerance d¢ is now provided
to the constraint function ¢, such that the unconstrained model continues to govern the
dynamics if ¢ — ‘6¢ < 0. Otherwise, the unconstrained model is augmented with constraint

equations of the form

é(qa u, '&a t) - Alé(Qa u, t) - A2¢(Qa t) = 0) . (328)
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Figure 23: Unilateral constraints: (a) actual trajectory; (b) modified frajeciory

and is activated to draw the trajectory towards the strictly constrained ﬁel.c.l, ¢ =0, as
illustrated in Figure 23.‘ Theﬂconstants A; and A, are depehdent on the materials of the
bodies in contact, and their values approximate the dynamics duﬁng the instants of contact.
For the purpose of this work, they are assumed to be known in advance. By using this
acceleration form of constraint equations, the discontinuity is kept at the acceleration level,
and a realistic continuous behavior of velocity is attained.

Rcmark A simz’iar analys_is .c‘an be done if the constraint relation ¢ = 0 is nonholonomic.
In this case, the constraiﬁed model is obtained by augmenting the unconstrained. model

with the equations

(g, u, 0, t) — Ad(g, u,1) = 0. (329)
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5.5 Example 5.1: Geometrically constrained double pendu-
lumm

The mechanism shown in Fig. 24 consists of ;a disc D of radius R and mass mp, and a
uniform bar B that is attached to the disc at the point ¢, and has mass mp and length L.
.The disc is free to rotate in the vertical plane about its mass center o. The central moments
of inertia of the disc D and the bar B are I and I, respectively. The disc is driven by
akmotor of controlled torque 7, applied at the point o, and the bar B is acted upon‘ by the
control torque 7, at _the point ¢, by means of a motor that is mounted on the disc. The point
o is fixed to an inertial reference frame N. The mechanism configuration is constrained
according to the relation |
3L

Reosfy +Loosfy S R+, | © (330)

which models an inertially fixed and rigid obstacle that reSt_rains the movement of the dou-
ble pendulum. Let the generalized coordinates be 6; and 6. The angular velocities of D

and B relative to A are

NwP = 4k - (331)

NwB = bk (332)
The velocities of the points ¢ and a relative to N are

Ny = 6, R(—sin6yi+ cosfyj) 4 (333)

Nyt = Nyey éz%(— sin 021 4 cos 6). (334)

If the generalized speeds are chosen as u; = 01 and uz = 0}, then the angular velocities of

the disc D and the bar B relative to A can be written as

NP = wyk (335)

NwB = uk, (336)
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Figure  24:‘ Schematic for example 5.1

97



from which the partial angular velocities of the disc and the bar are found to be

NwP = NP =k (337)

NwP = NP =y | (338)
The velocities of the points ¢ and, a can be written as

Ny =y R(—sinfyi+ cosbij) (339)

N

a

ve = Nyey uz-gi(— sin @i + cos 623) (340)

subject to R(1 — cos;) > L(cos b — 3), from which the partial velocities of the points ¢

and g are found.to be

Nye = Ny8 = R(—sin6yi+ cosbyj) (341)
Nye = 0 o - (342)
Nys = -g(—sihﬁzi+cosegj). (343)

The angular accelerations of the disc and bar are
NaP = ik | (344)
“and the inertial accelerations of the points ¢ and a are
Na® = 4y R[—sin6yi+ cos6:j] — us?Rcos 6 + sin 03] - (346)
N.c L, . . . L 2r . . . o7 )
a® = a4 §u2[— sin 51 + cos 623] — Sl [cos B2i + sin 6] (347)

The motion of the double pendulum can be analyzed by two phases:
Unconstrained Phase: When the double pendulum is in the unconstrained region, the

generalized active forces are

F]_ = :—mBgRsin01 +711— 7 ' (348)

B = —_mBg-‘;isin02+¢2, ' - (349)
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and the generalized inertia forces are
\ 2. Lo L
FY = —mp{R*l + -2-Ruz cos(6; — 6,) + ERuz sin(f; — 02)} — Ipu; (350)
\ L’ L. L . oy
F2 = —mB{—4—u2 + ERUI_COS(GI - 92) + —2-Ru1 sm(02 - 01)} - IBUQ. (351)
Therefere, the unconstrained phase of dynamics can be represented by the model
Q(g,t)a = P(q,u,t) + G(g,u, )T, , (352)

where the matrices @, P, and G are

mpR2+1 mpLR cos(fd —l0
Q — B D B7o (1 2) N (353)

mgchos(Gl - 92) mE!’;-i-IB

—mpgRsin 6, — mpLRus?sin(6; — 6

P o= | BY | 1 B iUz (1 2) (354)
k—mBg-é—’ sin 6y + mB%Rulz sin(6; — 62) '

1 -1 .
G = - ’ (355)
0 1 _ ,

Constrained Phase: When the configuration is such that the double pendulum tends to .
violate the constraint, the equality part of the constraint becomes active. This corresponds
to the case when the tip of the rod B is on the boundary of the admissible region. Therefore,
the strict part, ¢, of the unilaterally constraint is

: ¢=Rcost9‘1‘+Lcos(92—R—3—f-. (356)

The velecity and acceleration forms of the constraint equation are respectively
¢ = —Ru;sin; — Luysinb,, o | (357)
¢ = —Rsinbiy — Lsin ity — Rcosbyu,® — L cos faus®. (358)
Therefore, letting uy = u3 and u b = u,, the constraint equation (328) can be written in the

form

ip = Ai; + B, (359)
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where A and B are

Rsin 6, R
- 360
4 Lsin6, _ ( )
B = - 1 {Rcos 61us% + Lcos Opus® + Al[—Rul sin 0; — Lug sin 6] (361)
L sin 6, : .
+Ag[Rcosf; + Lcosf, — R — %]} - (362)
Hence, the donstrained equations of inotioh are
-1
A B S
U= , (363) .
AQ As[P + G1] ' '
where _
: Rsin 91 :
= ' : . 364
_ A lLsinHz lJ o (364)
' Rsin 6,
A, = |1 - . 365
- [ Lsin 92J o (363)
To simulate instantaneous changes of velocities when the bar touches the obstacle, large
values of the constants A; and A, are assumed; A; = —3 x 102 and A, = —102, respég:—
tively. |

With initial conditions 6; = 6, = 1 rad., Figures 25 and 26 show the r_esponsés of 6y,
u = 61, and 6, up = 6, to constant applied torques 7 = 1.0 Nm. and = 3.0 N
* m., respectively. For the purpose of overall kinematical analysis, 6; and 6, can be viewed
as disconti_r_woué wheﬁ contacts take place. However, adopfing this continuous vclocity
modeling scheme has the benefit of increasing the accuracy of the model by capturing
more physics of the motion, through elx'hibiting'the generélized conétraint forces behavior
during these v'i‘olent incidents. To achieve that, the constraints are relaxed by adding the

- generalized constraint forces I to the right hand side of Eqn. (352) and solving
F¢=Q(q,t)i — P(g,u,t) — G(g, u, t)T, - (366)

where 1 is the column matrix that contains the generalized accelerations of the constrained
system, obtained directly from Eqs. (363). Figures 27 and 28 are plots of the obtained

generalized constraint forces.
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Figure 25: Example 5.1: 6y, 6; vs. ¢

An advantage of the present method is showing the indirect effect of the contact, partic-
ulary at its initial time when the impulsive action occurs, on the dynamics of components
that are not involved in the process of contact, the disc in this example. Figures (29) and

(30) show approximate “microscopic” views of the generalized contact forces at the initial

moments of the first contact cycle. The spikes that take place at'the moment of contact,

= 1.49 seconds, are clearly shown. The intensities of the spikes depend on the values of
A; and A,, which are dependent on the elastic properties and geometries of the materials
of the bodies in contact. More realistic models of contact dynamics are considered next, in

the context of impact.
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Figure 26: Example 5.1: 6,, 6, vs. t _
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Figure 27: Example 5.1: F¥ vs. ¢ -
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Figure 28: Example 5.1: Fy vs. t
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Figure 29: Example 5.1: F{ vs. t; Initial moment of 1°¢ contact cycle
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- Figure 30: Example 5.1: F¥ vs. t; Initial moment of 1_"‘ contact cycle

5.6 Im_pact _

The acceleration form of constraints can be used to approximate the collision dynamics

according to the Kelvin-Voigt second-order model [40]
mi + ci + kz = 0, | (367)

where the damping coefficient ¢ and the stiffness coefﬁcientlk are dependent on the nia-
terials and the geometries of the colliding objécts, and z is the relative displacement due
to penetration of one body in another. "fhe advéntage of the Kelvin-Voigt is its simplicity.
: However its validity was criticized in Ref. [54], as it contfadicts some of the physics of
impact by indicating a tensile force between the bodies before separation. Also, it violates
the known Goldsmith impacting velocity-damping energy loss ;elation [47], by predicting
it to be quadratic instead of cubic. Instead, the damping and stiffness were modified such

that the collision dynamics takes the form
mi + (Az")z + k2" =0, (368)
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where 7 is a material constant, ) is an empirical dampirig constant that can be estimated

with the aid of kinb-elasti_c relations to be [54]
A = nok, ' . (369)

and ¢ is a material constant. By using any of the above two impacf models, the nonminimal
nonholonomic form can be used fo solve the problem of interaction between the impacting
bodiés and other rhechénical components that constitute the dynamical system, because the
second-order relations (367) or (368) are augménted in the formulation with the dynamical

equations of the bodies without contact, to obtain a realistic représentation of the dynamics.

5.7 Example 5.2: Continuous velocity zmpact model of un-
actuated double pendulum

The double pendulum in example 5.1 is considered, where 3 = 7 = 0. It is assumed

_that»the impact of the rod with the Aobstacie can be modeled by Eq. 368, where n = 2,
o= -5X 107, and k = 1. Hence; A — —7.5 x 107, and the second-order nonlinear impact
model (368) becomes _ |

| | | §— (7.5 x 1073)i + 52 = 0, (370

where z is the normal penetration displacement of the tip of the rod in the horizontal surface
of the obstacle,

x = Rcosb, +Lcos€z-—R~-§. ' | | (371)

‘ Whén there is n(_j?_cdntact‘betwecn the rod and the surface, the governing equatibns are
(352). During contact, a constrained model is obtained by augfnenting equation (370) with
the uncbnstrained model equations (352). The constraint equation (370) can be put in the
form |

up = Atuy + B, 372)

where u; = u; and up = uy. The variables A and B are

_ Rsin®,
A_—,Lsinag - (373)

- 105



B= [Rcos 61u,® + L cos Opuy?

1
Lsin @, _ |
+ 7.5 x 10"7*/2(—Rsin u; — Lsin bpup) — 2%/%]. (374)

The constrained model takes the form (363), where the constraint matrices A; and As
are givén by (364) and (365).

Time simUlatiqns are shown next. Figures 31 and 32 show the angular displacement
6, and angular raie 6, of the disc. The correéponding quantities for the rod, 0, and 6,
are shown in Figures 33 and 34. The vertical displacement of the tip of the rod, z, is
shown in Figure 35. The penetration of the rod in the obstacle is exhibited by using a small
displacemént axis scale for z, as shown in Figure 36. The value of z does not reach exactly
zero because of numerical inaccuracy. Because of the fact that the friction between the
rod and the obstacle is not modeled, it is noticed that the mechanism retains an undamped
harmonic behavior as the penetration dynamics vanishes. Modeling of friction is the subject |

of the next section.

5.8 Friction

Friction is a contact related phenomenon that involves complex interaction mechanisms

between the surfaces in contaci [108, 101]. An accurate model of a dynamical system

must involve a consideration of friction forces, as well as thé resulting changes in system
configuration, velocities, and accelerations. Friction is a highly nonlinear phenomenon.
Therefore, a realistic model of fric_tioh. is highiy nonlinear, and simulations of models in-
volving friction are difficult, because of sudden changes in the velocities and accelerations
of fhe system, that vary from zero and infinitesimal to high values. -

| - There exist several models to approximate the contaét-with-ﬁiction process. These
models can be classified as continuous and discontinuous models. Among the continuous
models are the Dahl friction model [31], the friction circle model [17], and the viscous

friction model [121]. The main discontinuous model is the classical Coulomb dry friction

106



25— ! T T e ! ! ! )

45k ., ......... ..... .......... .......... .......... .......... ........ . ........ ..

P T 0 0 A L L L L L L

_1-U ....... ........ SRR SRPRS Bereenens RRTRRE IRRRRNE e freeeeens Feeeenen .

0 10 20 30 40 50 60 70 80 90 100

10 20 30 40 50 60 70 80 90 100

Figure 32: Example 5.2: 0, (rad/sec) vs. t (sec)
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Figure 34: Example 5.2: 0, (rad/sec) vs. t (sec)
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Figure 36: Example 5.2: z (m) vs. t (sec); small displacement scale
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model [108]. Comparisons between these two classes are found in Refs.  [97, 14].

The aim from modeling friction as a continuous process is to avdid-the difficulty én—
countered in simulations as the relative velocity between the contact surfaces vanishes.
Nevertheless, approximating the friction induced discontinuous relation between the rela-
tive contact velocity and the tangént—to-surface force as continuous is disadvantageous, for

several reasons:

1. It does not provide detail information about the stick-slip nature of the motion, be-
cause using the approximating smoothing functions makes it impossibie'to satisfy

the condition of vanishing relative velocity between the bodies in contact.

2. The smoothing of the stick-slip process alters the physical behavior of the._dynan']ical

system, and hence affects the accuracy of simulations.

3. Tt causes numerical difficulties for large deviations between static and kinetic coeffi-
cients of friction, because the continuous friction law does not distinguish between

kinetic and static friction laws [15].

The above reasons leave the Coulomb friction model to be the highly desirable approach.
Severél attempts were made to avoid the above mentioned numerical difficulty related
to the Coulomb friction model. In [75] and f12], an inte_rfnediate phase of motion be-
tween sticking and slvipping is introduced, named “the transition phase”. The aim from
introducing this phase is to reduce the numerical simulation impgding that is related to the
 vanishing contact velocify, by providing a small tolerance that replaces the zero value of the
constraint function at small values of contact velocities. Despite the success of this model
for relativelyvsmall systems, it causes a cbmplexity as the number of bearings or surfaces of
contact increase’é. To solve this difficulty, a continuous version of the transition-slip phases
was introduced in Ref. [97]. However, this model runs i‘nto the same difficulties relafed to

continuous friction models.
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In this section, the nonminimal form of the equations of motion is used to generate a
friction model that avoids some of the disadvantages related to the two classes of friction
modeling mentioned above. To perform this task, the motion is divided into two phases. -
The first phase is the ho slippih_g phase, taking place when there is no relative motion be-
tween the su_rféces of contacf of the bodies, because of the domination of the friction forces
over the inertia and the applied forces. The governing equations of motion corresponding to
this phase are constrained by the holonomic stiction condition or the nonholonomic. rolling
without slipping condition. The second phase is the sliding phase, taking place when the
inertia and the applied forces dominate the friction forces. The unconstrained equations of
motion are formed, and the friction forces take their dynamic values. |

To avoid singularities at vanishing sliding velocities, a tolerance is provided for the
activation of the no slipping condition, such that the sticking (or rolling) is activated at
creeping values instead of exactly zero values. Whilé solving the singularity problém, this
‘waives the need to introduce the transition phase, keeping the humber 6f equation sets equal
to two. To damp out the creeping velocities in the no slipping phase, damping tenns‘may
be augmented with the corresponding equations of motion.

The activétion criterion of the no slipping condition is the decrease of the relative ve-

locity of the bodies in contact below the tolerance value. The activation criterion of the
sliding or the rolling with slipping phase is the increase of the net inertia and applied forces

over the friction force.

5.9 Example 5.3: Springs-masses system

The two connected blocks B; and B, shown in Figure 37 slide on a rough surface. The
blocks are connected to each other by a spring s,, and to the wall by a spring s;. The
masses of the blocks are m; and ms, respectively. The static and kinetic coefficients of
friction of the surfaces of contact of the blocks B, and B, with the surface are pis,, fik;s

and p,,, [k, respectively. The block B, is acted upon by the tangential sinusoidal force
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T = Asinwt, where A is a positive constant, and w is the excitation frequency of 7.
Letting the generalized coordinates be the displacements of the blocks from the springs

unstretched positions, the kinematical differential equations are chosen as .

@ = u - | (375)
G = ua - | ~ (376)

The spring forces are
F, = Kia @37

F,, = Kz((lg—%), - (378)

For simplicity, the static and dynamic friction coefficients are assumed to be equal and

identical fof both blocks, and have the value u. The friction forces f; and f, are
fi = pmg S e 379
f2 = pmag. | (380)

The dynamical equation of motion for the block B; is dependent on its velocity relative to

the surface, and on the magnitude the net spring force acting on it relative to the friction

force. Introducing the small tolerance 6, if |ug| > 6, then

. 1 -
Uy = _[Fsz — Fy — sgr_l(ul)fl]’ (381)
my .
where sgn(.) is the sign function:
sgn(z) =+1 if z>0 - - t382)
and
sgn(z) = -1 if z<=0. (383)

The above expression for 4, is still valid when |u;| < 0 provided that fy < |F,, — Fy,|. If

‘both u; < |6 and fy > |F,, — F,,| then

’I:Ll = —au, (384)
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Figure 37: Schematic for Example 5.3 -

where a is a positive real constant such that the small creeping value of u; is caused to

damp out. Similarly, when ] > J, the dynamical equation for the block B, is
. 1 '
Uz = ——'[T - Fsz - sgn(u2)f2]a ' (385)
which still holds true if both |us| < § and fo < |T — F,,|. Otherwise,
iy = —bus, \ ‘ (386)

where b is a positive constant, introduced to damp out the creeping vélocity of block Bs.
The values of the constants chosen are A =10 N, w = 1.5 rad/sgc., my = my = 0.1 kg, .'
K, =K, = 5..0 N/m, p = 1.0, g = 9.810 m/secz. Figures 38 and 39 show the forced
response displacements and velocitiés of the blocks B; and Bz, for zero initial conditioris
on the displacements and velocities ¢, go, U1, u2. The damping constants are chosen to be

a=b=2.
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Figure 38: Example 5.3: Displacement and velocity of block B,
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Figure 39: Example 5.3 :Displacement and velocity of block B,

5.10 Summary

A unifying framework for modeling dynamical systéms subjected to unilateral constraints
is presented, by using the nonminimal dynamical equations of motion. The two types of
unilateral constraints considered are impulsive constraints and friction constraints.

For impulsive constraints, the acceleration form of constraints is utilized to approximate
the continuous force-velocity reigtion during the impulsive action. This is performed by
differentiating the strict equality constraint equation and using it with the lower order forms, -
provided that the duration of contact is sufficiently long. The numerical impedance problem
is solved by providing a small tolerance, such that the constrainéd model is activated only
if this tolerance is exceeded.

In a problem involving impact, a model_with continuoué velocity distribution can be

achieved by utilizing a force-deformation relationship for deformable bodies, like the Hertz
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léw, together with a kino-elastic eneréy balance relationship, to obtain the acceleration .
level constraint equation (Kelvin-Voigt model for instance). This equétion is used with fhe
dynamical equations to obtéin the nonminimal constrained model.

For friction constraints, it is recommended when modeling bearings, joints, and other
mechanisms that are affected by friction to employ a discontinuous Coulomb friction model,
and enforce the sticking constraint while avoiding the numerical siﬁgulaﬁty at the discon-
tinuities. This is also achieved in the context of the nonminimal equations of motion, by
replacing the stiction condition by a damped dynamics that is activated when the relative
velocity falls below a predetermined small toierance, and deactivated when the friction
force is not capable of holding stiction.

An advantage of using the nonminimal equations to model the intérrnittenf motion of
a multibody dynamical system is to show the effect of the sudden activation of constraints
on all the elements of the system, by solving a state-space model that is equal in order_ ’
to the unconstrained one, and is obtained from the unconstrained model by simple matrix

manipulations, and augmentations with the unilateral constraint matrices.

116



CHAPTER VI

EXTENSION TO THE IMPULSE-MOMENTUM
| - APPROACH

6.1 Introduction

The impulse-momehtum apprc)ac_h for modeling impact was adopted by Kane [73, 26]ina
general form for both holonomic and nonholonomic constraints. The basic assumption in -
the approach is that the duration of the impact is very short compared to the time interval
of the motion, such that the impact can be considered a discrete event, and the change
in the configuration of the system during impact is ignorable, although the chahgeg in
velocities of the system components can be significant [68]. This allows for converting
fhe differential equations that govern the dynamics of the system to algebraic equations,
through integrating the equations in general terms over the infinitesimal period of impact.

The impulse-momentum approach does not assﬁme that energy is cénserved during
impact [74]. The relationships between the velocities prior to and after impact are given by
an experimentally evaluated constant that isvdependent on the material and the geometry of
the collided surfaces, called the coefficient of restitution [47].

The impulse-momentum approach for modeling impact wés applied to differeﬁt mod-
eling methodologies. Examples are the method of coordinate p.ar[itioning [135,52] and the
Hamilton equations of motion [87]. .

The impulse-momentum approach was followed successfully in the area of mﬁltibody
system dynamics to model the intermittent motion of both of rigid [52] and flexible [81]
systems, but it is interesting to notice that using the approach in the context of Kane’s

equations of motion was not done until recently [27].
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In this chapter, the same approach is extended to the nonminimal nonholonomic form,
by explicitly including the effect of nonholonomic constraints on the fapid changes of fhe
generalized speeds. This ié achieved by integrating the acceleration form of constraints
over the time period during which the impulsive forces act.

The advantages of using the nonminimal form of the equations of motion apply here
as well. In'particular, this form provides a convenient way to analyze the intermittent
motion of both nonholonomic systems and complex holonomic systems with numerous
configuration settings but relativély low numbers of degrees of freedom. The latter case
pertains to analyses in which pseudo-generalized coordinates (i.e. additional configuration
variables) are needed to facilitate the formulation, and hence more holonorﬂié constraints
are added. |

In the next section, nonholonomic generalized impulses and momenta are defined, and

are related to their holonomic counterparts by means of the constraint matrix. -

6.2 Generalized Impulse and Momentum

An inertial reference frame R is considered, in which n generalized coordinates are usedto -
describe the configuration of a set of v particles and p rigid bodies forming a nonholonomic

system S possessing p degrees of freedom. Let R; be the resultant active force on the ith

particle, F;. The resultant active forces on the ¢th rigid body.Bi are equivalent to a force
Z; on a point Q; on B;, together with a torque T;. Also, let ¢, and to be the initial and ‘
final instants of time that are close endﬁgh such that the generalized coordinates g; . . . qn
“can be considered as constants throughout the interval bounded by ¢, andftz.‘ The rth
nonholonomic generalzzed impulse 7, is defined as [68]
T.(q,u,t) = Z/ vh R,dt+Z/ Tl Zdt+2/  Tdt
1—1 i=1

F(q, t)dt, r=1L,...,p, (387)

i1
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where 1%, ¥9i are the rth nonholonomic partzal velocities of P; and @);, respectively; and
&P is the rth nonholonomic partial angular velocity of B; [68]. Alternatively, a full-order
impulse variable can be introduced for the system .S. The rth component of the holonomic
generalized impulsé is defined as

T (g, u, ) = Z/t vP &dt+Z/ vo. Zdt+Z/ w5 Tydt

i=1 i=1 i=1

/ F.(q, ) r=1,...,n, : (388)
t1 :

where vf i vQ" are the rth holonomic partial veldcities of P; and Q;, respectively; and wB"
is the rth holonomlc partial angular velocity of B; [68]. By usmg the relation between the
holonomzc and nonholonomic part1a1 velocities and partlal angular velocmes given by Eqs

(131) and (140), Eq. (387) can be written as

v t2 n—
) / (VP‘ +Z P+8A"> 'Ri
i=1 |

ir(Q:uatl) =
s=1
B aty n-p -
o5 [ (8B s
i=1 Yt s=1 :
: 4 to n-—p )
+> / (w£f+2wf;;s,43,> - T a (389)
. i=1 Yt s=1
i ©. n—p ,
= [N R@o+ Y B anen| e G0
t s=1
_ - nep .
= T (q,u,t) + ZIP.H;(q, u,t1)Ase(g, 1), 7 =1,...,p.  (391)
s=1 ’

Remark If the dynamical system is holonomic or constrained by simple nonholonomic
constraints, then the constraint matrix A is only dependent on the vgeneralized coordinates
Q1y---,qn and t; and independent of the generalized speeds uy,.. .., Uy. This implies that
A can be regarded constant in the interval [t,, to) during the evaluation of the generalized
impulses, and can be taken to be its value at the interval entry, t = 1.

Let L?, L3, and H5: be respectively the linear momentum of the ith particle, the linear

momentum of the ith body, and the angular momentum of the ith body of the system. If
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mp, is the mass of the ith particle P;, mp, is the mass of the ith body B;, By is its center of

mass, and I is its central inertia dyadic, then

LY = mpvhi(t) o (392)
L% = mpvB() (393)
CHE = BwB(p). o N . (394)

The rth nonholonomic generalized momentum P, is defined as
Pr(gu,t) =P LB+ 95 LB + o5 . HB, r=1,...,p. (395)

Therefore,

v 7 u - S
'PT(Qavuat) = Z mPi{’fi : vP’.(t) + ZmBi{};‘Bi * VB: (t) + Z‘:’fi ';[.Bi * wBi (t)a

i=1 i=1 =1

cr=1,...,p. (396)

The use of the full set of generalized speeds in the expressions of velocities and angular
velocities of the particles and bodies comprising a nonholonomic system makes it feasible

to introduce the rth holonomic generalized momentum,
| Pr(Qauat) = Vfi * LPi +VrB: 'LBi +wf* °.HB", T = 1,. (N (397)

Therefore,

7Dr(q, u, t) = Z mPivfi ) YPi (t) + ZmBini v (t) + wai '.IB‘ - WP (t),

=1 © =1 i=1

r=1,...,n. (398)

Similar to the generaliied impulse, the relations (131) and (140) between the holonomic
and nonholonomic partial a’ngulafr velocities aﬁd partial velocities can be used to obtain the

nonminimal representation of the nonholonomic generalized momentum

n—p S . .
73T=Pr+ZPP+3A8rs T=11""p' : (399)

s=1
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Considering the kinetic energy K of the system,

K = ikﬁ_+ik5i

- i=1 i=1

v Ln I .
N N 1 * * 1 o . .
= % E mp,vH -_vP" +3 E mp,v5 - vB 4 5 E wBi 1B . w8, (400)
i=1 i=1 i=1

the following identities relate both of the holonomic and nonholonomic generalized mo-
menta to the kinetic energy, and can be verified by evaluating the partial derivatives of the

kinetic energy expression (400) with respect to generalized speeds.

=% 1..p (401)

Ou, _ _

P, = 8K, r=1,...,n, (402)
ou, ,

where the generalized speeds uy,...,u, in Eq. (401) are the coefficients of the partial

velocities in the nonholonomic representation of generic particles of the system,

b _
v=> g, t)ur + V(g t), (403)
r=1 ' .
and uy,...,u, in Eq. (402) are the coefficients of the partial_ velocities in the holonomic
representation | o .
_ n _ _
v=Y v u vt (404
r=1 - .

The above usage of kinetic energy often facilitates the evaluation of generalized momenta [68]. |

6.3 Nonminimal Im’pl‘i‘l‘séLMomentum Relations

Both the holonomic and the nonholonomic generalized momenta can be related to the gen- -
eralized inertia forces of system. The rth generalized inertia force of the particles and
bodies comprising a nonholonomic system is given by

dLf g dLB o dHP

B iy) =~ —m =% - = =07 =,

r=1...p.  (405)

Integrating the above expression of £* from t; to t,, one obtains

t2 _ t2 dLF: « dLBi dHB:
" : - _ P .22 L gB S B dt 406
3 F}(q,u,u,t)dt /tl [v, 7 + Vr 7 + @; o ] . ( )
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Because t; & t, such that the conﬁg_urétion of the éystem is invariant in the period [t1,22)s
the partial angular velocities and partial velocities of the particles and bodies comprising the
system are considered to bé constants, as these quantities are dependent on the generalized
coordinates, and independent of the generalized spéeds. Therefore, Eq. (395) can be used

to write the above equations as -

t2 I o . o
/ (g, i, )dt = B (g, u(te)) — Pr (g, ults)). @o7)
t o

1

Similar relations between the holonomic generalized active forces and the holonomic gen-

eralized momenta can be derived as

t2

t1

F}(g,u,@,1)dt = Pr(g,u(t)) = Prlg ulte). (408)

The equations of motion for impulsive motion are

t

12 N . ' ‘ )
/ [F (g,u,t) + £ (g, u, 4, t)] dt = 0. | (409)
From Egs. (387) and (407), the above equations becomes

Z.(q,uh) = Prlg, ulta) - Prlg,ult)), r=1...p. @10

If all the constraints are holonomic, then the above equations are written as

(g, u, t1) = Pr(g, u(t2)) — Prg, u(tl))) r=1...n. | (411)

From Egs. (391) and (399), Eq. (410) can be written as

n-p

Pr(q, 'U'(t2)).+ Z Pp+s (q’ u(t2))Asr (Qa tl) =P (q’ u(tl)) + Ir(q’ u, tl)

8=1
n—p :

+ 3 Pore(@u(t) + Tpral@, 0 10)] Aur(g,t),  7=1,...,p. (412)

s=1

6.4 Constraints Effect on Impulsive Motion

If the constraint equations are simple nonholonomic, i.e., satisfy relations (16), then the
acceleration form of constraints takes the form of Egs. (22). To obtain the effect of con-

straints on the impulsive motion, this form is integrated from ¢, to ¢;. If time ¢ does not
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appear explicitly in matrix A, then the time dependency of A is implicit in g(t). Therefore,
A t2 t2 . t2 . :
Ayidt = / Awugdt + f Bdt. (413)
t t1 13}
The integral on the left hand side is
t2 . . . -

t

The integrals on the right hand sides of Eq. (413) are

pto . : to
Awdt = A [us(ts) —w(t)]— | Adgdt (415)
11 . t1
: = A [ur(tz) —wr(ta)] — 4 [us(tz) — us(t)] (416)
= 0, | _- - 417)
t2 .
/ Bdt = B(t,) — B(t;) = 0. (418)
. : _

This implies that the effect of constraints during the impulsive motion of the dynamical

system is such that
- Ai1(Q)u(t) =¢, 419)

where c is a constant that can be determined from the values of the generalized coordinates

and the generalized speeds at the beginning of the time interval of the impulsive action.

6.5 Impulsive Dynamical Equations of Motion

The nonminimal form of the impulsive equations of motion can be obtained by using Egs.

(412) with Egs. (419). It is noticed that Egs. (412) can be put in the form

A3(q)Pr (g, u(t2)) = 42(9) [Pr (0, u(tr) + To(gywta)] 7 =1,...,m 420

Furthermore, integrating the expression (39) of F™* from ¢; to t,, and using (408)‘, the

following equality is obtained

Pr(g,u(ts)) — Prl(g, u(ta)) = / "pa=— [ Q@i+ Leuld @)

1 o t
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The second term on the right hand side is an integral of a variable quantity over the time
interval [t;,ts]. Nevertheless, it is a multivariablepolynomial in the generalized speeds,

and its integral over a finite .interval is zero. Hence Eq. (421) becomes
Pr(g, u(t1)) — Prlg, ulte)) = Qlg, t)v () —u)].  (422)
Substituting Eq. (422) in Eq. (420) yields |
A0 v = 4@Tawt) @)

Egs. (419) and (423) form the matrix system

Ai(q) 0
[u(tz) — u(t1)] = (g w,ta). . (429)
A2(q)Q(g, 1) | 42(9) |

Remark The coejﬁciént matrix in Eq. (424) is the same as the matrix T in Eq. (42). The

invertibility of T for all admissible configurations and velocities is guaranteed. Therefore,

u(ts) = T (g, 1) B(q,wta), @)

where
_Az(Q)Q(q, t1)
B - | Ax(g)u(ts) ) @2
_Az(Q) [Q(g,t1)u(tr) + (g, u, ta)]|

6.6 Example 6.1: Four-Bar linkage:

The four-bar linkage shown in Figure (40) moves in the vertical Iﬁlahe, and has the dimen-
sions bl =1.0m, L, = 3.0 m, L3 = Ly = 2.5 m. The linkage OQ is fixed to the inertial
frame R. Two particles P, and P, have masses m; and mso, respectively, are ﬁxed to two
vertices of the linkage, as shown in the figure. The mechanism is at rest at ¢, = 0.0 rad.

when the particle P, is struck by an impulse force M = 10%[i + jJKN. It is required to
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Figure 40: Schematic for Four-Bar Linkage

obtain the resulting changes in the values of the generalized speeds due to the impulsive
“action.

The mechanism has one degree of freedom. Nevertheless, three configuration variables,
q1, g2, and g are defined for convenience, as shown in the figure. The generalized speeds

are defined as

up = Gila, _ (428)
u = ¢, i=23. o (429)
The velocities of the particles relative to the inertial frame R are .

'R.VP1

u; (cos q1j — sin i), (430)

RyPr = yidugj, (431)

such that the partial velocities of the particles are

va‘ = cosqij— sinqi, 'va‘ =R vfl=0, (432)
Ry = 0, Rvlr=1i, Rviz=j. o @33
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The corresponding accelerations relative to R are

2 a2
.. 31 . . 5 P I
RaPt = | _4;singy — ——cosq|i+ |4 cosq — —sing | j
L ot
P, e ..
a = Uol - Ug).
The generalized inertia forces are
—maft vt —myaf vl =
—myaft vt —moaf? vl = —myi,
—myatt vt —mpa® vl = —mgis.
Therefore, the matrix @) in Eq. (424) is
my 0 0
Q =10 mgy O
0 0 moy

Two holonomic constraint equations relating the generalized coordinates are

g2 + g3 — L3 =

Ly+q3— \/Lz2 — (g2 — Ly cos »¢I1)2 — L;sing = 0.
Differentiation of the co.nstraints leads to: |
Qu2 + gsus =0
and
X (uy sinqy + up) 4 us — uy cos gy =0,

where _
g2 — Lycosq

© VIF—(g2— Lycosqy)?

(434)

(435)

- (436)

@437)

(438)

(439)

(440)

(441)

- (442)

(443)

(444)

Letting u; = u; and up = lus us]|T, Eqgs. (442) and (443) can be used to form the matrix

system

g2 q3| | ue 0

I

) Uj.
X 1 Uz cosq; — X singq
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Therefore, the constraint matrices A and B of Eq. (18) are

-1

A = 92 Qs ‘ ‘ _ .(446)_
X 1 cosq; — Xsing
_ Cosg — Xsing; | —qs ‘ ' 447)
g—Xgs . %@ : :
0
B = (448)
0
~ The impulse force M can be written as
M = Mji+ Msj. . (449)
Therefore, the holonomic generalized impulses are
T, = M-vB=0 | . (450)
T, = M-vEP =M =10°KN @5
T, = M-v=M,=10°KN. @)

The given geometric condition is g; = 0.0 rad. The remaining generalized coordinates are

found from Egs. (440) and (441) to be
g = —1.8773409 m , . (453)
g3 = —1.6509363 m. ’ (454)
The corresponding value of X is -3.388800, and the constraint matrix A is

—0.2200487
A= . | (455)
0.2512489 - :

Specify m; = my = 1.0 kg, and given that the entry conditions for the generalized speeds
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are u;(t;) =0,7=1...3, the matrices T and E are

_0.2209487 1 0 ]

T = |—0.2512489 0 1 (456)
_. 1 - —0.2209487 0.2512489_ '
= . -

E = 0 : (457
| —0.2209487M, + 0.2512489 M,

With My = M, = .103 KN, the generalized speeds just after the action of the impulsive

force are
ults) = T-E, o © (458)
or
uy(tz) = 2.7250 x 104 m/sec. - (459)
us(tz) = —0.6021 x 10* m/sec. (460)
uz(ts) = 0.6846 x 10* m/sec. | (461)

It is possible to use different numbers of configuration variables to derive different forms
of the impulse-momentum eqliations. However, the complexity of the resulting equations
increasés as the number of configuration variables decreases. For example, it becomes
very difficult to use one genéralized coordinate to derive a minimal impulse-momentum
equation for this one degree of freedom mechanism.

Nevertheless, to preserve the minimality in the number of impulse-momentum equa-
tions, the mechanism may be treated as simple nonholonomic by considering the same
generalized coordinates and eliminating two of the gencraliied spéeds in favor of the third.
Therefore, if the generalized speeds are chosen as Eqgs. (428) and (429), then the velocities
of P, and P, felative to R are given by Egs. (430) and (431). Letting

Uur = U (462)

up = |uz ug)’, (463)
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and using the expressions (447) and (448) for the matrices A and B to eliminate u and us,

RvFz becomes , : _ |
cos ¢ — X sin ] o
'Rng =y Q1 1N ¢ ["q;-;l + Q2J] . ) . (464)
2 —Xg3 |

Hence, the nonholonomic partial velocities of the particles are

Rw”/f ! = cosqj—singi ' - (465)
- cosq; — X singy . . : :
Rep? = L D [~ gsi + goi] - , . (466)
g2 —Xqs :

The nonholonomic generalized momenta before and after the impact are

Pt) = 0 | - (467)
P(ty) = mPvh Rl 4By RGP
cosq — Xsing 1°
= myus(ts) + maus (1) [ o Xa "’*] G+al @6
The nonholonomic generalized impulse is
I = MRyl O (469)
— Xsi ’ . . . :

cosq sin g [ My + M2J] . ‘[—431 + qﬂ] (470).
@—X as . ‘
2080~ XM 1f, gy + Mo @

g2 — Xgs »

Therefore, at q1- = 0.0 deg., an impulsive action of M = 103i+103j KN implies a nonholo-
nomic generalized impulse of I; = 2.7251 x 104N, résulting in a change in the genéralized
momentum of P, (t;) = 1.1119 u(t2) N.sec. Eq. (410) can be solved for u; (tz), giving
the same vélue of Eq. (459). Solving Eq (18) results in the values of uz and u3 given by
Eqé. (460) and (461).

The two fnentioned methods for writing impulse-momentum eciua.tions are comparable
in the required effort and in complexity of the resulting equations. However, writing all exit
generalized speeds (at ¢ = t5) és an explicit vector ﬁ_eid that is dependent on géneralized
coordinates, generalized impulses, and all inlet generalized speeds (at { = ¢;) is mofe

beneficial whenever the Jacobian of this vector field is needed. An example is minimizing
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a function of exit generalized speeds over the admissible configuration settings for some

known values of inlet generalized speeds and generalized momenta.

6.7 Summary

With the aid of the acceleration form of constraint equations, the discontinuous-in-velocities
approximation approach to studying impulsive motion is followed in the context of the non-
minimal equations. For that purpose, the concepts of holonomic generalized impulse and
holonomic generalized mome_ntlim are defined and related by means of the constraint ma-
trix to their nonholonomic counterparts. These quantities are used to expand the standard
Kane’s impulse-momentum eqUatiohs, prior to their augméntation with the acceleration
form of the constraint equations.

Based on the assumption of unchanging generalized coordinates during the action of
impulsive forces, the resulting nonminimal Kane’s impulse—momentum equationé appear
.inl én algebraic form. The equations can be used either to study the effects of impacts,
or to study the effects of sudden a_ctivations and deactivations of holonomic and/or.non—
holonomic constraints. In the later case, the constraints can be ihstantaneously applied and
removed from action, or applied and continued to act. In all cases, the equations are used
in a discrete manner to describe the “nb transient time” change in velocitie;s.

The nonminimal impulse-momentum equations form an alternative way to study im-
pulsive constraints, and gain the advantage of simplicity over the equations presented in
Ref. [68] if the difference between the number of configuration and motion parameters is
large. It also eliminates the need of usihg nonholo'nohﬁc partial velocities to simplify the
resulting equations. The éxplicit r'epresentation‘ of all exit generalized speeds in terms of
quantities that are dependent on all inlet generalized speeds is particularly beneficial in
studying the effects of configuration settings, initial velbcities, and impulsive loadings on

the velocities of various parts of mechanisms and structures.
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on two related matrices. The required controls are found with the aid of the generalized
inverse of one of these matrices: | |
Another subject is obtaining the ideal form of servo-constraints for the purpose of emu-
lating passive constraints and solving the redundancy resolution of redundant manipulators.
In this chapter, the constrained full order state-space model derived in previous chapters is

used for that purpose. An illustrative example is presented.

7.2 Servo-constfaints'Realization

Servo-constraints realization is the problem of moving the state of the dynamical system
ina prc—spéciﬁed constraint manifold with the aid of the available control forces. In this
section, the acceleration form of constraints is used to solve for the forcés required to réélizé
servo-cqnstraints, where the generalized inverse of the constraint matrix derived from the
servo-constraint equations is the one utilized to express the redundancy. The considered

dynamical equations of motion of a controlled dynamical system is of the forrh

i = C(g,t)u+D(g1) “72)

Qe t)ye = P(g,ut)+C(gu,t)r, - “73)

where ¢, u € R” denote the column matrices containing the configuration parameters and

the velocity parameters, ¢ and 4 are the derivatives of ¢ and u with respect to ¢, respectivély.
The square matrices involved in the two equations above are C, Q € R"*", such that C~1,
Q! exist for all generalized coordinates and for all ¢ € R. The control matrix G € Rﬁx’ is
such that [ < n, and the column matrices D, P € R". The éolumn matrix 'r€ R' contains
the control variables. Equations (472) and (473) form a complete stéte-space model.

The acceleration form of the constraint equations cén be used to determine the con-
trol forces that are necessary to realize servo-constraints for the dynamical system above.

Assume that the dynamical system is required to track the prescribed velocity-dependent
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trajectory described by the m nonholonomic con.s'traint equations
P(@ut)=0,  PER™ @74)

where the servo-constraints ¢ may be multi-objective, i.e. represent sifnultaneous require-
ments. The purpose is to find the control forces that are necessary to enforce the above
equations, and to relate them to the available control authority. The acceleration form of

the servo-constraint equations is

(g, u;0,t) = g—'ﬁa + X (g,u,t) =0, (475)

‘where X is found from Eq. (472) to be
' %Y 3 Gy, S
X(g,u,t) = 3 Clg, t)u+ 3 D(g,t) + ;- (476)

The following modified constraint equations at the acceleration level are considered

¥(g, v, 0, t) — OP(g, u,8) = 0, @77

where © € R™*™ is a prescribed matrix that has strictly negative-real eigenvalues. Substi-
P y neg al e1g

tuting  from Eq.(473) into Eq.(477) yields

S(q,u, )7 = 2(q, 4,2), ‘ (478)
where
S = 6—1/'62‘1G @79)
ou .
: = ~Pop_xioy. - . (480)
ou ,

If the above system of equations is consistent at some specific values of generalized coor- :
dinates and generalized speeds, i.e. z is in the rénge space of S, then it is possible to solve
for 7, | |

T=8%z+ (I - 5*S)y, (481)
where the superscript “+” refers to the Moore-Penrose generalized inverse, and y G R! is
arbitrary. Therefore, depending on the nature of S and z, the servo-constraints realization

problem can be categorized as one of the following:
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1. The problem has a unique solution: z is in the range space of S, and ! < m.
2. The problem has no solution: z is not in the range space ofS.

3. The problem has infinite number of solutions: z is in the range space of S, and the
null space of S7 is not trivial. In this case, the flexibility provided by y can be used

to achieve further requirements beside realization of servo-constraints.

The procedure for enforcing servo-constraints, Eqs. (474), is summarized in the following

steps:

1. The expression for ¢ obtained from the dynamical equations of motion (473) is sub-

stituted in Egs. (475).

2. The resulting expression for 9 is used to form Eqgs. (477), where © is chosen such
that the first-order servo-constraint dynamics is stable. Eqs. (477) s put in the form

of Egs. (478).

3. Using the generalized Moore-Penrose inverse of S, the expression for 7, Eqs. (481),

is formed, where the column matrix y can be chosen arbitrarily.

A similar treatment for holonomic servo-constraints can be done. In this case, the servo-

constraint equations take the form
- ¥(g,t) =0. - 482
The above equations are twice differentiated, and the desired dynamics takes the form

").[;(q’ u, i‘: t) - GI'QL(Q’ u, t) - @2"/1(% t) = 0, . . (483)

where ©; and ©; are chosen such that the servo-constraints dynamics is stable. The above

~ equations can be put in the form of Eqs. (478), from which the procedure follows.
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7.3 Redundancy Resolution

If the number of independent actuators is more than the necessary to enforce servo-constraints,
then the set of 'req'uirec_l control forces is not unique. This redundancy has been studied ex-
tensively for over three decades [22] in the area of robotics, at both kinematic and dynarrﬁc
levels. The Jacobian matrix of the manipulators and its generalized inverse are the main
tools in these studies. |

- The redundancy resolution problem is concerned with finding the control forces that are
necessary to enforce a predetermined dynamics of the system based on optimizing some
criterion, like the required control effort [77], the kinetic energy of the mechanism [SOj,
or the distance from a desired trajectory [117]. This dynamics may involve holpnbmié
and/or nonholonomic constraints. Also, the desired motion can be a combination of several
requirements, e.g., tracking some prescribed trajectory while presefving the total energy of
thé dynamical system. Removing the redundancy implies that the required control forces
aré unique; although the system tfajectories are not unique.

The equations of motion derived in the previous section can be used to solve the inverse

dynamics for the natural éontrol forces, i.e. those equivalent to passive joint reactions.
This is eQuival_ent to minimizing the instantaneous acceleration energy of the dynamical

system relative to its unconstrained status, at every configuration and velocity [63]. In doing

that, the accelerations of the generated nonminimal constrained model and the controlled
equations of motion are matched. Equating the expressions of @ from equations (150) and
(473) yields

G(g,u,t)T = R(g, u, 1), (484)

where

R(q,u,t) = QTV — P, (485)

For some specific values of generalized coordinates and generalized speeds, if the matrix
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‘R is in the range space of G, then there exists a solution of 7 that is given by
=GR, o (486)

where GG = I holds true because ! < n. If the dynamical system is fully-actuated, i.e.
the number of independent control variables is equal to the number of degrees of freedom,

we have that | = n, and the matrix G is of full-rank. In this case, 7 is given by
T=G"R. ' (487)

Remark If the solution to this inverse dynamics problem exists, then the solution is unique.
The control forces Gt in Eq. (484) compeﬁsate for reaction forces that ébrrespond to
equivalent passive constraints on the dynamical systems. This implies that these control
Jorces satisfy d’Alembert’s principle, and the accelerations of the controlled system satisfy
Gauss’ principle of least constraints.

The inverse dynamics for the ideal control forces can be viewed as a specialization of
the servo-constraints realization pfoblem, where the matrices G and R stand for S and
z, respectively, and the second term in the ﬁght hand side of Eq. (481) vanishes because
G*G = I. Since the nonminimal nonholonomic form that is used to obtain R results in

the accelerations of an equivalent passively constrained system, the interaction between the

servo-constraints and the dynamics of the system is i'd'eal, i.e.; the reaction forces are nor-
mal to the constraint manifold, with the corresponding virtual displacements satisfying the
principle of virtual displacements. The procedure for solving the inverse dynamics problem

by using the nonminimal nonholonomic form is summarized in the following steps:

1. The expressions for 4 obtained from Eqs. (150) and (473) are equated, resulting in
Egs. (484).

2. Eqs. (484) are solved for 7, resulting in expressions (486) or (487), depending on the

degree of actuation of the dynamical system.
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7.4 Example 7.1: Double pendulum

ReConsiden’n‘g the mechanism shown in Fig. 24, but without the constraint (formed by the
rigid obstacle). It'_ is required to determine the necessary controls to bring the total energy
of the vr_hechar‘;ism to a prescribed value E;. | 7

Let the generalized coordinates be 6 and ,, and the generalized speéds be ¥ w? and -

NwE, Eqs. (472) for the mechanism are
6 = NP | (488)
b, = Nw?, (489)

and the matrices @, P, and G in Eqgs. (473) are the same as (353), (354), and (355),

respeciively. The total energy of the system is given by

E = K+V

+mpg [R(l —cosf;) + g(l — cos 02)]
1 1 1 L? L :
= -é-ID’lL12 + "2"13’11,2% + EmB [R2U12 + qu - ERulm COS(91 —. 02)]

+mpgg [R(l — cosfy) + £2J-(1 — COs 02)] ,

where the datum for calculating the potential energy is the vertical position of the center of

“mass of the bar when 6; = 6, = 0. The servo-constraint equation is
Yp=FE-FE;=0. : (490) -
Taking the time derivative of 9, X in Eq..(475) is found to be
' L. o e . L.
X= mBZR(ul Uy — uyUo”) sin(fy — ;) + mpg | Rsin 6yu; + 5 sin Orus |
and the desired servo-constraint dynamics, Eq.(477), is

E-O(E-E)=0, 0<0. ©(491)
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Figure 41: Exémp]e 7.1: Servo-constraint dynamics

The expressions (479) and (480) for S and z are now formed, and Eq. (481)is u_sed to solve .
for 7, where S for the row matrix S is given by [128]

ST

=2 @92)
115113

S+

where ||S]; is the Euclidian norm of the row matrix S. The column matrix y can be
choéen arbitrarily. For © = —1, E; = 1, the enforced servo-constraint dynamics is shown
in Figure 41. The servo-constraints can be enforced by inﬁnite number of ways, depénding
on the choice of y. Each choice results in different responses of the generalized coordinates
and generalized speeds, bﬁt all choices yield to the same servo-constraint dyrllamics,’ as
given by Eq. (491). ‘

Nevertheless, an interesting chbicc of the control forces is the “ideal” one. The non-
minimal nonholonomic form can be used to solve for this special type-of control forces.

Let uy = 4y, and up = u,. The servo-constraint dynamiés can be put in the form

up = At + B, ‘ | (493)
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where the matrices A and B for this system are

—IDUI — mBR[Ru1 —_ %uz 008(01 - 92)]

A Ipuy + mpZ[Lu; — Ruy cos(6; — 6,)] (494)
B Igup + mpZ[Lu, i Rujcos(6; — 6,))" . (495)
| and
= —-IiméRuluz' sin(fy — 02)(u1 — u2) — %IDU12 - %IBmz - mBgR sin 0y u;
_ | _mj,g% sin fhu, — mpg [R(l — oS 6,) + -I2i(1 — oS 02)]
_%mg [R2u12 + %Zuﬂ - %Ruluz‘cos(& - 02)] ) (496)

The nonlinear nonminimal nonholonomic form, Eq. (149), can be constructed for the sys-
tem, and the matrices T and V are used to form R, where T is finite and invertible for all
configurations and velocities, except at u; = us = 0.

- Next, the corresponding expression, Eq. (487), for the control torques matrix 7 is
formed. Figures 42 and 43 show the responses of the generalized coordinates 6, and 6,
and the generalized speeds u; and ug, respectively, and Figure 44 shows the correéponding
control torques. It is noticed that, if the servd-constraint dynamics reaches its steady state,
then the required control tofques reach the zero values. This agrees with the fact that, if the
sources of nonconservatism are removed, tﬁen the total energy of the system remains un-
changed, and confirms that the nonminimal nohhiolonomic form (150) is the natural choice
to enforce the servo-constraint dynamics. | |
Remark Although the redundancy in the cbnt_roll system can be utilized in different man-
ners, the servo-constraints. must be kinematiéally and geometrically possible, for every
possible configuration and velocity. For éxample, if the controls are required in addition
to regulating the total energy of the double pendulum to cause it to track the prescribed

trajectory

Rcos6; + Lsinf, =0, (497)
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then the requirements can be written as
¢1 (Qa u, u) - el"/’l(Qa u) =0
1;2(% uau) - e21¢2(Qa u) - 922¢2I(Q) = Oa
where
t = E-—Ej
¥y = Rcos6; + Lsin,.
The resulting linear in accelerations equations form the matrix system
%’f,’—: 3—1’,’; Uy = —%I;—Iu + ©1¢
%ﬁ)—f g_;f: Uz —ung—?u + 0Oy %’I:-u —+ OO0

(498)

(499)

(500)

(501)

(502)

for some chosen values of ©1, O, and O4. It can be verified that the above matrix system

has no solution. A sufficient condition for the satisfaction of servo-constraints to render the

motion possible is that m < n.
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7.5 Example 7.2: Trajectory Tracking

Reconsidering the passively constrained dynamical system in Example 2.1 (section 2.7).

The dynamics is governed by the equations

iy = = (Frt §F,) +

2 2
+ = (U22 +ug? — ) - (503)
ar tan ¢
Uy = & _.'.]; (uluz - u2u3> R (504)
m T tan ¢
. m .
uUg = _a(é (Fr + ¢F¢) v
mé (5 o u? ) wug
+ ar (u2 + s —¢tan ¢) T (50)

where a := m(1 + 22). It is required to solve for the control forces F;., Fy, F¢ that drive the

particle to the vertical plane defined by the servo-constraint equation
6-k=0, | (506)

where k is a predetermined constant. Following the previous definition of generalized

speeds
u = (507)
u, = rfsing (508)
ug = —rg, (509)
the time derivative of the above servo-constraint equation is
22—, | S (510)
rsing :
Differentiating one more time yields the acceleration form of constraints
7 sin g — [u; sin ¢ — uglus —o. B )

[r sin ¢]?

The servo-constraint dynamics (483) is therefore,

7 sin ¢tip — [uy sin @ — ugluy Uz ' _
[ sin ¢]2 ~ (T_S-ﬁ_l—d)) B 92_ (0 -k)=0, (512)
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where ©; and ©, are chosen such that the dynamics of
Y=0-k (513)
‘is stable. Substituting the expression (504) in Eq. (512) yields

rsin ¢ [% -3 (Ul'l.tz — %%)] — [u1sin ¢ — ug) uy

[r sin ¢J? o
U9 '
- —0,(0—k) =0. (514
o (Tsin ¢) 0, (0—k)=0. (514)
Hence,
r = Fy | | (515)
. _ ,
S= mrsin 6 v (>16)
rsin ¢ [—-} (u1u2 — -,:%‘%)] — [uy sin ¢ — us) uz _
2 = | e (517)
[rsin ¢]?
: up | o
_ B, 5
+0, ('rsingb) + 02 (0 — k) S (518)
Eq. (481) can now be constructed, where
1 .
St = 5 =mrsin 6. (519)

For©®; =—2,0, = —1,and k =1, the reqﬁired control 7 is

' rsin¢ [—% (ulué‘— tﬁa?ni%)] — [uy sin ¢ — u3) '“2' 2, .
F9=mrsm6’{ frsin 67 _'rsingb_(o—l) .

(520) -
Remark It is noticed that the matri_x S is a scalar. Therefore, S*S is unity, and the last
term on the right hand side of Eq. (481) vanishes, resulting in a unique control law. It is
noticed also that the servo-constraint dyﬁamics do not depend on 1, and us, which causes

this control law to be independent of F, and F.
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7.6 Summary

The acceleration form of constraint equations is utilized in this chaﬁtér'to solve for the
inverse dynamics of servo-constraints. A condition for the existenée of controls that en-
force servo-constraints is derived, together with a baraﬁetdzation of the solution for these
controls in terms of the generalizéd Moore-Penrose inverse.

In the case of redundant manipulators, the separation in accelerations of the nonminimal
nonholonomic form provides a convenient way to obtéin the ideal control forces, and min-
imizing acceleration energy of the dynamical system. The corresponding time marching of -
the generalized coordinates and the generalized speeds shows the way that the dynamical
system will evolve in time if the constraints were passive ideal. |

The present approach corrip]ements and generalizes the computed tofqué methods, ina
unified treatment of h.olonom.ic and nonholonomic servo-constraints, where the constraints-
free nature of the equations alleviates the need to measure, or to incorporate the effects of

the constraint forces.
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CHAPTER VIII

' CONSTRAINTS INVOLVING CONTROLS

8.1 Introduction

The developments in the previous chapters deal with constraints that depend on the state of
the dynamical system, i.e., the set of generalized coordinates and generalized speeds. The
nonminimal equations of ‘motion for the constrained system in these cases have the sarﬁe
order as the equaiions of motion of the dynamical system without qonstraints.

The constraint equations might involve control variables also. In this case, the accel-
eration form of constraint equations developed in the second and third chapters involves
_ﬁrst derivatives of these control vaﬁables; and the nonminimal form contains both of the
control vaﬁables and their derivatives. It is convenient in these cases to consider the control
variables to be state variables in the nonminimal equations of motion, and introduce their
derivatives as new control i/ariables by adding new equations, equal in number to the num-
ber of cdntrol variables. This forms an augmented separated in accelerations state-space

model, in which the states become the generalized coordinates, the generalized speeds, and

the control variables.

If the dynamics of the system is fast, then an approximate model can be constructed
that involves control variables in the kinematical differential equations. In this case, the
secoﬁd derivaﬁves of these variables appear in the acceleration foﬁn of constraints, and the
augmented stafe variables include the derivatives of the control Qariables also. The new
control variables become the second derivatives of the true control variables.

The advantage of the above mentioned procedures becomes clear when it is prefer-
able to use a single set of equations of motion to represent the dynamical system and its

constraints. An example is the path-constrained optimal control problem, when the path
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éonstraints involve control variables. The single set of equations in this case waives the
necessity to introduce another set of Lagrange’s multipliérs to augmeht the Lagrangean of
the system with the path coﬁstraints.

For servo-constraints, the acceleration form of constraints can be utilized in construct-
inga séparated in accelerations state-space model by using the Mpore—Penrose generalized
inverse of the matrix of coefficients of the control variables time derivatives, and parame-
terizing al]l control variables that enforce the constraints in terms of free parameters column
matrix. In this chapter, ihis latter method for treating servo-constraints invoivi_ng control
variables is adopted. |

In the next section, the methodology for deriving equations of motion for dynamical

systems with controls-involved servo-constraint equations is presented; '
8.2 Controls-Involved Constraints and Servo-constraints
The following equations of motion for a controlled dynamical system are considered

¢ = Clgt)u+Dlg1) G2

fla,u,7,t), | - (522)

U

where ¢,u € R" denote the column matrices co_ntainiﬁg the configuration parameters and
the velocity parameters, ¢ and 1 are the derivatives of g and u With respectto ¢, respectivély.
The square matrix C € R®*" is such that C- exists for all géncralized coordinates and
forallt € R, and D € R". The column matrix 7 € R! contains the control variables, and
f:R*xR* x R x R — R" is a vector field mapping its arguments to the generalized
accelerations column matrix %. The above sets of equations form a complete state-space

model. It is assumed that the system is required to follow the servo-constraint equations

Haumt) =0, - 523)
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where ¢ € R™. A solution for 7 is obtained by differentiating equations (523) with respect

to time to obtain

0¢ . 54’ 3¢ 0¢
aqq+a it g Tt =0

Substituting expression (521) for ¢ into Eq. (524) gives

where the matrices A € R™*! and B € R™ are’

. ) @
" BTa o 0 8¢
= P, % 2 _9
- aq 6q D ou (q’ u,T, t) ot’

Solving for 7,

T=AtB+[I - AT Aly,

(524)

(525)

(526)

(527)

(528)

‘where A1 € R!*™ is the Moore-Penrose generalized inverse of A, and y € R! is arbitr.
g Yy ary

at a specific point, provided that the point is in the controllability sub‘spaCe of the dynamical

system, i.e., the matrix B is in the range space of the matrix .4 at that point. The example

in the following section illustrates the method.

8.3 Example 8.1: Spacecraft stabilization

The following Euler equations form a mathematical model for a spacecraft.

I, - I

. 3

w; = 7 Wolds + T1
1

. Is—-1,

we = T w3wy + T2
2

; L-1

w3 = 7 wiwe + T3,
3

(529)
(530)

(531)

where w;, w, and ws are the angular velocities about the principal axes of the spacecraft.

The control variables for the system are the applied torques 71, 72, 73 about the corre-

sponding axes. The principal moments of inertia of the spacecraft are I, I5, and I3. The
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servo-constraint equation used to stabilize the spacecraft is the Lyapanov equation
K+4+aK =0, a>0, B (532)

where K is the kinetic energy of the spacecraft

K =. % [I1(JJ12 + Ingz -+ 13(4)32] . T (533)
Therefore, Eq. (532) is
. . . a 2 2 2] — -
I1w1w1 + Igwgwg + I3L¢J3UJ3 —+ E [Ilwl -+ I2w2 -+ I3Q3 ] = 0. (534)

Substituting expressions (529)-(531) in the above equation, one obtains

Lwny + Lwets + I3wsts =

I2—’I3 I3—Il I1 —,-Iz
Il + I2, +, I3

a N .
=3 [I1w12 + Lw)? + Iswaz] — WiWalds [

] . (535)

Differentiating the above equation gives

L 71 + LwoTs + I3wsts =

- I1d)17'1 - I2d)27'2 — 13(2)37'3 — aIlwlo'Jl - afzwz(;)z‘— aI3w3d)3

IL—I, Is—I IL—1I
2 3+3 1+1 2

A 2 A } (536)

) — [d)]_(dg&)a -+ (4.’1(.2)2(4)3 -+ wlwz{.;);:,] [

Substituting the expressions (529)-(531) for angular accelerations in the above equation

gives

Ilwl'fl + Izwz’f'z + I3w3'i'3 =

I3

Is — 1.
-1 [ 2 3w2w3_+7'1] n—1I [ 2

lw;;wl + T2] To — I3 [ !
L

2
wiwse + 7'3] T3

L-1

I3

— aIl-wl [I2 — Isw2w3 + 7'1] — alywy [Ia —h waw; + 7'2} — alzws [

T T lez + T 3]

1,3. 2&)1(&)2'!‘7’;-;]]
IQ—Ia IS—Il Il'_I2
[ I * I * I

Ig - I3 IS — Il . 1
— A Wowsz -+ T | Watvg + wq T wW3wi + To| w3 4+ wiws

] . (537)
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Hence, the matrices .A and B for the system are

A= |Lw, Lws Iws (538)

B= ——I]_ [I2;1I3

Is

I—1

Wolz + 7'1] nn—1Ip [ waw; + 7'2] To—1I3 [ 1 2w1w2 + 7‘3] T3

. :
?wgwg + 71| — alaws 8 ¢ lwawl + 79| — alsws 1
L I

I3

T, 2w1w2+73]]
12—13 Ia—Il II—I2
[Il L T

I
—alyw; [ 2 2w1w2 + Ts]

I,—1I3 I;—- 1, 1
— Il w2w3 + 1| Walvg + Wy I2 Wil -+ 7o W3 “+ wiws

] . (539)
The Moore-Penrose generalized inverse of A is

I1w1
1

(f1w1)? + (Towz)? + (Tsws)? Loz
I3(.d3

At = (540)

The expression (528) for 7 is now formed. For some specific choice of y, integrating
these equations together with Euler’s equations in time gives the trajectories of angular
velocities of the dynamical system and the required éontfol torques. All choices of y result
in satisfying the servo-constraint equation (532). |

The .initial conditions of the control variables should satisfy the servo-constraint equa-
tion, and the constant a can Be any positive nufnber. Increasing the value of a increases
the damping rate of K. The simﬁlations are performed for I; = 1‘0 Kg.m?, I, = 6.3
Kg.m2, I; = 8.5 Kg.m?, and a = 1, and the initial conditions on angular velocities _‘
w1(0) = w2(0) = w3(0) = 0.1 rad./sec. The initial conditions on the control variables
that satisfy Eq. (532) are chosen to be 71 (0) = 72(0) = 0.1 N.m, 73(0) = —0.3376 N.m.
The first order dynamic of K is shoWn Fig. (45).

Although the servo-constraint dynamics is satisfied irrespective of the choice of y, some
choices may result in unsatisfactory performance of the controlled system. For example,

choosing y; = y» = y3 = 0 results in the angular velocities shown in Figs. (46)-(48),
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and the required control variables shown in Figs. (49)-(51). Clearly, the chattering of the
control variables aﬁd the angular velocities are undesirable.

A better choice of .y is y;

—7;, i =1...3 shown in Figs. (52)-(54). This choice is
made based on the structure of the controls dynamics given by Eqgs. (528). These equations
can be written as.

F=y+ A [B— Ay.

(541)
Hence, the first term on the right hand side will have a stabilizing effect if y;

= T i=
1.-..3 are chosen. This stabilizing effect dominates the dynamics of the system, as noticed

from the corresponding smooth behaviors of the control variables and the angular velocities
shown in Figs. (55)-(60).

8.4 Summary

An extension to the procedure of deriving nonminimal equations for constrained motion

is introduced in this chapter for passive constraint equations containing control variables,
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Figure 56: Angular velocity component about spacecraft body axis y; y = —7
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resulting in elimination of algebraic path constraints.
Another procedure is introduced for converting algebraic servo-constraint equations

involving control variables into dynamic constraint equations that complement the state-

space model of the dynamical system, provided that the variables are in the controllable

subspace of the dynamical system.
The introduction of the parameters y as fictitious control variables is beneficial in affin-
ing the control problem, ie., fm;iking the state-space model linear in the control variables,

and hence allowing using the wealth of related methodologies for control systems analysis

and design.
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CHAPTER IX

CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

This work is concerned with formulating mathematical models for constrained dynamical
systems, by focusing on increasing the simplicity and the applicability of these models.
Kane’s approach is adopted for that reason, making use of its flexibility and algorithrrﬁc 7
nature.

Dividing the work into chapters is done mainly on the basis of the type of constraints
considered, and the common featuré among all parts is using a differentiated form of the
constraint equations. The two main classes of constraints considered are passive constraints
an'dvservo-c‘:onstraints. The five chapters after the introduction chapter are concerned with
passive constraints, the seventh chapter is concerned with servo-_constraints, and the eighth
is concerned with constraints of both types, involving control variables.

Simpié nonholonomic and nonlinear nonholonomic constraints are treated in the sec-
ond and third chapters. A method for identifying the corresponding constraint forces is
introduced in the fourth chapter. The resulting equations of motion are explicit in the gen- |
eralized accelerations, and invqi\;e:no Lagrange multipliers. The derivation is based on
simple mathematical operations bn fhe unconstrained equations of motion. This is particu-
larly advantagébus in the case Wﬁeré the equations are already derfved and more constraints
are to be added to the system for: the purpose of improving its deSign or studying its perfdr—
mance, because the method doéé not require a totally new derivation.

Obtaining a constrained model that has the same order as the unconstrained one is

advantageous. It facilitates, for instance, solving Euler-Lagrange equations or forming
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Hamilton-J acobi-Bellman equations for closed loop path-constrained optimal control sys-

tems, by using the standard procedures for single set unconstrained 'dyrvlamicall'equations.of

motion, without the need td use more Lagrange’s multipliers to augment the Lagrangean

with the path constraints. This also waives the need to take higher derivatives of the con-

straint equations to enforce the appearance of control variables, because their appearance

becomes unnecessary to begin with. The material of these chapters form the backbone of
the work, and the basis for all later developments.

Unilateral constraints are considered in the fifth chapter. The two types of unilateral
constraints considered are the impulsive and the friction constraints. A reconsideration of
impulsive éonstfaints in the context of the impulse-momentum approach is the subject of
the sixth_chapter. | |

Unilateral constraints can be described by multiple models that are activatéd in different
phases of motion. Nevertheless, the two primary issues in modeling unilateral constraints
are the treatment of singularities that impede the switching between a model and another,
and the velocity behavior at the switching points. These issues are solved in the fifth
chapter, and an approximation of the velocity as discontinuous as implied by the irhpulse- ;
momeﬁtum approach is followed in the sixth chapter, both in the context of the nonminimal

equations of motion.

The seventh chapter is concerned with the iﬁverse dynamics of servo-constraints. That
is, to obtain, if feasible, the control forces that enforce servo-constraints, and particularly
the ideal control forces. This is achieVéd by métching the controlled system equations of
motion with the constrained nonminimal equations of motion, and solving for the control
- variables.

In the eighth chapter, procedures are introduced for including constraint equations that
involve control variables in the nonminimal equations of Amotic‘).n, with the aid of the accel-
eration form of constraints. For passive constraints, this results in a single set of dynamical

equations with no accompanying algebraic constraint equations, which is advantageous in
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several applications. For servo-constraints, the resulting extended models facilitate synthe-

sizing control laws to stabilize dynamical systems.

9.2 Recommendations

The nohminirﬁal nonholonomic form is a single set of constrained equations of motion that
is separated in the acceleration variables.

Any system analysis or control method related to this type of modeling will beneﬁt from
this form. For éxample, stability of the constrained motion can be determined directly by
applying Lyapunov’s second r.nethod'to this form. The possibility of the existence of limit
cycles can be tested by applying the Poincare-Bendixon thedrems this form. The chaos
behavior of dynamical systems can be studied as well by using this form. For time simu-
lations, this fonﬁ is recommended because it is readily iﬂtegrable by using many available
numerical schemes. | |

" In optimal control, this form together with the cost index and the boundary condi-
tions are what are needed to write Euler-Lagrange equations and Hamiltdn—] acobi_-Bellman
equations. Using algébraic’ cor_lstraiﬁt equations is rhore expensi\}e for deriving and solving
Euler-Lagrange equations and might make it impossible to write Hamilton-Jacobi-Bellman
equations. | B _

Linearization of the constrained equations of motion does not preserve exact satisfac-

tion of constraints, unless both of the unconstrained equations and the constraint equations

are linear to begin with. This fact makes it impossible to employ linearized models to track .

nonlinear constraints. In model reference adaptive control, the reference model is usually

linear. The nonminimal nonholonomic form provides a constrained nonlinear model that
may be used as a model reference for nonlinear tracking.

| Expanding the work of the sixth chapter to include nonlinear nonholonomic impulsive

constraints may also be investigated.
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