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SUMMARY 

In recent years, Unmanned Aerial Vehicles (UAVs) have been used extensively in 

military conflict situations to execute intelligence, surveillance and reconnaissance 

missions. However, most of the current UAV platforms have limited collaborative 

capabilities, and consequently they must be controlled individually by operators on the 

ground. The purpose of the research presented in this thesis is to derive algorithms that 

can enable multiple UAVs to reason about the movements of multiple ground targets and 

autonomously coordinate their efforts in real-time to ensure that the targets do not escape. 

By improving the autonomy of multivehicle systems, the workload placed on the 

command and control operators is reduced significantly.  

To derive effective adversarial control algorithms, the adversarial scenario is 

modeled as a multiplayer differential game. However, due to the inherent computational 

complexity of multiplayer differential games, three less computationally demanding 

differential pursuit-evasion game-based algorithms are presented. The purpose of the 

algorithms is to quickly derive interception strategies for a team of autonomous vehicles. 

The algorithms are applicable to scenarios with different base assumptions, that is, the 

three algorithms are meant to complement one another by addressing different types of 

adversarial problems. 

The first algorithm, the two-player decomposition approach, reduces the larger 

problem of having multiple UAVs intercept multiple targets, into multiple two-player 

differential games. The Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation is solved for 

each of the two-player games, and, based on the solution of each of the two-player 

games, each individual UAV is assigned a role of either intercepting a target directly or 

attempting to contain a target. This algorithm is applicable to scenarios in which the 

evading ground targets are slower and less agile than the pursuing vehicles.  



 xv 

The second algorithm presented utilizes the maximum principle approach to 

derive effective interception strategies. This approach solves the multiplayer differential 

games for situations where the size of the state space becomes too large to rely on the 

HJBI framework; however, additional smoothness requirements of the cost, constraint, 

and control functions are imposed on the problem formulation to utilize this approach.  

Finally, the third algorithm presented, the minimum-time decomposition 

approach, reduces the general multiplayer problem into several minimum-time problems. 

It is in many ways similar to the two-player decomposition approach; however, as 

opposed to the two-player decomposition approach, the minimum-time decomposition 

approach is applicable in situations where the evading targets are faster or more agile 

than the pursuers. 

The work presented in this thesis contributes to the field by providing:  

• Fast adversarial decision algorithms which enable multiple cooperating vehicles 

to engage multiple targets efficiently by, 

– Decomposing the complete multivehicle problem into smaller and more 

manageable two-player or minimum time problems. 

– Effectively assign tasks to the individual pursuing vehicles based on the 

derived performance estimates.   

• An effective approach to managing multiple unmanned systems in collaborative 

engagement scenarios. 

 Several simulations were conducted to verify the performance of the suggested 

approaches. 
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CHAPTER 1 

INTRODUCTION AND MOTIVATION 

In recent years, many military conflicts have taken place in an urban setting, and with 

increased experience in such conflicts, a demand for improving the existing military 

systems has emerged [1]. One of the main difficulties encountered in the urban warfare 

environment is the demand for rapid adaptation to changes in the environment. To 

facilitate a rapid response to a hostile move by an opposing force, it is necessary to 

provide the ground personnel with accurate and as close to real-time information as 

possible about the position and capabilities of the enemy. To address this need for real-

time intelligence, Unmanned Aerial Vehicles (UAVs) have been used to provide video 

surveillance. The control algorithms that are currently guiding these vehicles requires 

significant human supervision [2], and if there are multiple vehicles in the same sector, 

the workload placed on the command and control personnel is immense. Hence, the 

Department of Defense (DoD) released a roadmap in 2005 that outlines what capabilities 

should be incorporated into the UAV platforms in the near future [3].  As shown in 

Figure 1, it is the DoD‟s goal to have fully coordinated swarms of UAVs by the year 

2012. 

 

Figure 1. Trend in UAV autonomy. 
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 To reach this goal, the Air Force, Army, Navy and DARPA‟s UAV research 

budget presented by the President for the FY05-09 totaled 1,662 million dollars 

distributed as shown in Figure 2. 

 

Figure 2. Investment in Research and Development of UAV Systems for FY05-09. 

 The research presented in the following chapters addresses the demand for 

increased autonomy of UAVs operating in urban environments. In particular, the problem 

of enabling a team of UAVs to make fast and effective decisions when faced with an 

intelligent opponent is analyzed and viable control algorithms are presented. By 

improving the autonomy of the UAVs, it is possible for the team of UAVs to rapidly 

adapt to scenario changes with limited supervision by a human operator.  

 A typical urban warfare scenario is depicted in Figure 3. Two UAVs are tasked 

with surveying an area for potential targets, and, upon detection of potential targets, 

classifying and tracking them.  In this scenario, the targets are aware of the UAVs, 

therefore they will execute maneuvers that make interception as difficult as possible. It is 

the UAVs‟ objective to intercept the targets as fast as possible so that Command and 

Control is provided with timely and detailed information about enemy movements. 
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Figure 3. Two fixed wing UAVs are surveying an urban environment for potential targets. 

 When dealing with multiple pursuing UAVs and multiple evading ground targets, 

determining effective adversarial strategies is exceedingly difficult. The main difficulty 

encountered when solving such problems is the vast number of possible actions that have 

to be considered and the limited time available to make a decision. To further complicate 

matters, the movements of the targets and the UAVs are constrained by the vehicles‟ 

dynamics and the obstacles inherently present in an urban environment.  

1.1 Overview of the Approach 

To address these problems, several multiplayer differential game theory based 

approaches to adversarial reasoning are presented.  Game theory has for a number of 

years been used to solve problems in economics and applied mathematics. These 

problems consist of multiple decision makers that must interact with each other in an 

attempt to influence the outcome of a given situation to their advantage. To be a decision 

maker or a player two criteria must be met. First, the player must be able to influence the 

outcome of the situation. If the player is unable to influence the outcome, the player is 

simply not a part of the game and can therefore be eliminated from the problem 

description. Second, the player must have a vested interest in the outcome of the 

UAVs

Potential 
Target
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situation, since if the player is indifferent to the outcome, the influence that player may 

be able to exercise over the system can simply be modeled as a noisy system disturbance. 

 Since the actions of UAVs are commonly described by a set of differential 

equations, differential game theory can be utilized to guide the UAVs in adversarial 

situations.  Differential game theory is a branch of game theory dealing with problems in 

which the interaction between the players is a continuous process described by a set of 

differential equations. Hence, the players in a differential game must be able to analyze 

the outcome of a continuously evolving problem if they are to manipulate the situation to 

their advantage.  

 Since multiplayer differential games are very complex to solve even for very 

simple scenarios, many researchers have had difficulties solving differential games 

quickly [4]. The inherent complexity of differential games can easily be visualized by 

considering the classical traveling salesperson problem. In the traveling salesperson 

problem, it is the objective of a salesperson to visit a number of cities while minimizing 

the total distance traveled. This problem is not solvable in polynomial time due to the 

rapid increase in the number of possibilities that must be considered as the number of 

cities increases [5], however researchers have suggested approximation techniques that 

can be solved in polynomial time [6]. Since the traveling salesperson problem essentially 

only has one player, it is not strictly speaking a game, so to pose the problem more like a 

differential game, let the salesperson‟s or pursuing player‟s movements be governed by a 

set of differential equations. Furthermore, imagine that the cities that have to be visited 

are mobile and their movements are also governed by a set of differential equations. Now 

the traveling salesperson problem is solidly placed in the realm of differential games. It is 

the cities‟ goal to evade the salesman, or equivalently make the salesperson travel as far 

as possible, while the traveling salesperson will attempt to visit all the cities while 

traveling the shortest distance possible. This new problem is still not solvable in 

polynomial time, and the addition of having to solve large systems of differential 
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equations not only increases the algorithmic complexity but also imposes some 

theoretical limits concerning the type of problems that can be solved.  

 In essence, multiplayer differential games are in most cases very difficult to solve 

due to the vast number of combinations that have to be considered. Therefore, it is 

important to limit the number of possibilities before attempting to solve a differential 

game. The work presented here describes three effective ways to limit the space over 

which the differential games must be solved. First, a decomposition based technique is 

presented. The basic idea behind the approach is to reduce the general multiplayer game 

into several smaller and easier to solve two-player differential games, and based on the 

estimated interception times obtained from each of the smaller games, assign pursuers to 

each of the evading targets. To draw a parallel to the traveling salesperson problem, the 

decomposition approach would solve the problem by calculating the estimated distance to 

each of the cities, and then make the salesperson travel to the closest one. It is well 

established that such a greedy-type approach is not optimal for the traveling salesperson 

problem, and as such the decomposition approach will also provide suboptimal solutions.  

 The second approach presented addresses a particular situation in which the two-

player decomposition approach is guaranteed to fail. If the evading targets are much 

faster than the pursuers, the two-player games do not have a solution. Hence, the pursuers 

are required to leverage their numbers to arrive at a solution, that is, the prescribed 

capture conditions can only be reached if at least two players cooperate. 

 To effectively accomplish this cooperation between the pursuers without 

increasing the computational complexity, the multiplayer differential game is 

decomposed into several minimum-time problems. The resulting solutions to the 

minimum-time problems are then combined to a minimum-time map. Based on the map, 

effective containment points are determined, that is, the evading targets potential escape 

corridors are being closed off by the pursuers. The main idea behind this strategy is to 

reduce the worst possible case such that the targets are slowly being cornered. 
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 The last method used to solve the multiplayer game is based on the Maximum 

Principle. The Maximum Principle is a powerful tool used to solve optimal control 

problems. Instead of solving an optimal control problem for an entire family of problems, 

the Maximum Principle utilizes not only the prescribed termination conditions, but also 

the given initial conditions. By using all of this information it is possible to derive a 

single optimal trajectory. Hence, the overall computational complexity can be reduced 

significantly since the dimensionality of the problem is reduced. However, the technique 

is only appropriate for certain problems. For more detailed information about the 

Maximum Principle consult appendix A. 

 As a consequence of limiting the number of possibilities considered before 

attempting to solve the problem, the solutions are not guaranteed to be optimal. The 

challenge is then to show that the derived solutions are effective even though they are not 

optimal. Also, since the three approaches are meant to address three different types of 

adversarial problems, there are certain scenarios in which more than one of the 

techniques can solve the problem. However, given a particular conflict scenario, 

additional constraints such as available computational resources on board the UAVs or 

communication limitations may make one of the algorithms a better choice than the 

others. 

1.2 General Assumptions 

When deriving effective adversarial strategies, it is important for the members of the 

coalitions to not only know the state of the other players in the game but also know their 

capabilities. Hence, throughout this thesis it is assumed that all the players have access to 

the state information of the other players, and the dynamic constraints that each of the 

players must adhere to are also known. For differential games in which these assumptions 

hold are generally called complete information games. 
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 For the complete information requirement to be valid for the current UAV 

platforms, additional modules must be incorporated into their systems. In Figure 4, some 

of the required modules are depicted. The implementation of these modules is 

challenging, and image processing, target tracking, and model building are currently 

topics of intense research. 

 

Figure 4. Several algorithms must be used to extract the pertinent information from the sensor suite. 

 In addition to the complete information assumption, it is also assumed that there 

are only two coalitions involved in the adversarial scenarios. A coalition is a group of 

players or decision makers that have similar objectives and they are therefore combining 

their resources to achieve the best possible outcome. This assumption simplifies the 

problems considered significantly, and even though the techniques described in the 

following chapters may be extended to cover situations with multiple coalitions, such 

situations are considered to be outside the scope of the work presented. 

1.3 Organization of the Thesis 

To effectively convey the details of the three approaches, much of the more technical 

material is placed in appendices. In addition, the first couple of appendices are dedicated 

to background information about the Hamilton-Jacobi-Bellman (HJB) equation, the 

Maximum Principle and numerical solution techniques commonly used to solve the 

Sensor Suite
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Target 
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resulting differential equations. Some background information along with some current 

techniques used to solve adversarial problems is provided in chapter 2. Chapter 3, 4 and 5 

are each dedicated to the three suggested approaches to solve differential games in real-

time, and chapter 6 covers additional implementation considerations such as grid 

construction and refinement. Finally, in chapter 7 some concluding remarks and possible 

future extensions of the work are presented.  
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CHAPTER 2 

BACKGROUND 

2.1 Multivehicle Control Techniques 

Many researchers have studied the problem of effectively controlling swarms of robots in 

an attempt to utilize the collaborative benefits inherently present when multiple robots are 

in the vicinity of one another. One of the most commonly implemented architectures used 

to solve this problem is derived from observations made in nature. When a flock of birds 

migrates south for the winter, they do not have an agreed upon travel plan that every bird 

is following. Instead, each bird relies on its own senses to guide its movements in the 

flock, and ultimately the energy consumed by each individual bird in the flock is 

minimized by constructing a formation with the other birds. By emulating this flocking 

behavior in robotic swarms, it is possible to implement distributed guidance laws that 

effectively enable swarms of robots to collectively achieve goals at a minimum cost or 

perhaps even achieve goals that were otherwise unobtainable.  

 A good overview of such systems can be found in [7, 8]. In [7] a thorough 

discussion of flocking algorithms is provided. Several interesting questions such as 

convergence and stability of flocks are covered. In addition, the problem of safely 

allowing a flock of autonomous vehicles to circumnavigate obstacles without causing 

collisions is discussed. However, in many cases the swarm of robots has to perform 

several different tasks, and consequently a decentralized approach to coordination that 

allows each member of the swarm to perform different actions must be adopted. The 

swarm is able to tackle more diverse problems effectively by providing each robot with a 

different skill set.   

 Such approaches often rely on behavior type control schemes in which each 

individual member of the swarm is assigned a particular role, and if it executes this role 
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well, the entire flock will benefit from the success of the individual [9]. Such systems 

have been implemented on RoboCup teams [10, 11] in which a team of autonomous 

robots play a game of soccer against an opposing team of robots. Since the robots in 

RoboCup do not have global situation awareness, the cooperative algorithms should not 

only handle soccer related tasks such as passing or blocking the ball, but also enable the 

players to explore the environment to determine the state of the other players in the game. 

In addition, the robots have limited computational resources onboard, which effectively 

exclude them from utilizing very complex planning algorithms. Consequently, low 

complexity ad-hoc assignment algorithms are commonly used to guide the robots during 

the soccer game. In [9], the complexity of some task assignment algorithms 

(ALLIANCE, BLE, M+, MURDOCH, First-price auction, Dynamic role assignment) is 

listed and similarities between the algorithms are highlighted. In [12], an interval 

programming approach is used to assign behaviors to an autonomous vehicle. The 

purpose of the interval programming approach is to effectively determine the best 

possible behavior given a set of competing interval programming functions and an overall 

objective function. The approach was demonstrated on autonomous marine vehicles. In 

[13], the dual problem of avoiding an obstacle was investigated, and a reactive navigation 

system was investigated and implemented on the MAGELLAN PRO platform from 

IRobot. 

 Determining the effective behaviors for the team of robots can be difficult. In 

many applications of the behavior based approach to team coordination, it is the 

researchers‟ task to determine a set of effective behaviors that will work in most 

situations. However, to make the control system more robust, it may be beneficial to have 

the robots derive their own strategies online. Such systems have been developed for 

simple adversarial problems consisting of only two players. Concepts from differential 

game and optimal control theory have been used to derive optimal control strategies 

online and the resulting guidance laws have been used to develop effective missile 
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control systems and to guide Unmanned Aerial Vehicles in adversarial situations [14, 15, 

16]. The differential game problem can be described as follows: A missile must intercept 

a moving target as fast as possible. The target is aware of the present danger and will 

attempt to stay alive for as long as possible by applying an evasive strategy. The problem 

is then to determine the optimal interception and evasion strategies. 

 R. Isaacs posed this question and presented a closed form solution for a given set 

of dynamic equations by applying two-player pursuit-evasion differential game theory 

[17]. However, since missile dynamics are significantly different from the dynamics used 

by R. Isaacs in his analysis, the problem is still being studied today. More recently, 

effective interception strategies for problems with quadratic cost functions have been 

found by applying extended linearization techniques and solving the resulting Riccati 

equations [14]. Other examples of determining optimal strategies for differential games 

consisting of only two players are discussed in [18, 19]. 

 For situations that do not easily lend themselves to linearization or for which the 

cost function is not quadratic, numerical techniques have been applied. In [4, 20, 21], 

collision avoidance strategies were found by applying a Gauss-Seidel [22] solution 

technique to the differential game problem. However, the computational complexity 

related to determining the optimal solution to multiplayer differential pursuit-evasion 

games is very high, since a global performance map must be constructed numerically for 

all the possible states of the game. Note that the resulting strategies will be optimal if a 

particular problem can be solved easily using multiplayer differential game theory. 

 To avoid the excessive computational burden related to solving multiplayer 

differential games, researchers have been investigating several different map building 

techniques. These techniques are very practical in nature, since the UAVs in the swarm 

collect information about the environment using their local sensor suite, and based on the 

information each member of the swarm provides, a global map is constructed. The map 

contains information about the obstacles present location and where the targets are most 
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likely to be [23, 24]. The collaborative strategies employed by the UAVs rely heavily on 

the information captured in the map. Many different ad-hoc type strategies have been 

tested on these systems, and the performance of these systems appears promising; 

however, it is difficult to provide very accurate performance guarantees.  

 In an attempt to derive some performance guarantees, some researchers have 

decomposed a map the environment into smaller triangular regions, and then 

superimposed a tree structure on the map. Given this tree structure, it is possible to 

guarantee that all the targets can be captured in finite time using a random tree search 

[25, 26]. By superimposing a tree structure onto the space over which the game is being 

played, and then proving performance based on the tree structure, the proof will only be 

valid for as long as the tree structure is a good approximation of the environment. As 

shown in Figure 5, this assumption may not hold true in environments containing 

obstacles. Figure 5 A through C depicts the ideal case, where the tree structure is a valid 

approximation of the game environment, while Figure 5 D illustrates an example where a 

cycle is introduced by an obstacle in the environment, which invalidates the performance 

guarantees. 



 13 

 

Figure 5. A) The game environment in which the pursuit-evasion game is played. B) The region is 

decomposed into triangular regions. C) A tree structure is imposed on the environment. D) A case in 

which the performance guarantees provided are invalidated by the presence of an obstacle. 

 The approaches presented in the following chapters are a mixture of the behavior 

type approaches and the differential game approaches. The underlying idea is to avoid 

prescribing a particular set of behaviors of which a potential opponent may take 

advantage. The individual behaviors are derived online by solving smaller and less 

complex differential games while the team objectives are assigned using matching 

techniques. The decoupling of the individual vehicles from one another ensures that the 

space over which the differential games are solved remains small. Consequently, it is 

possible to derive collaborative strategies fast and effectively. 

2.2 Solving Differential Games 

It is important to address the theoretical background to establish some of the limitations 

imposed by this framework. Strong ties exist between differential game theory and 

optimal control theory; therefore, appendix A, is dedicated to reviewing the Hamilton-

Game 
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Jacobi-Bellman and the Maximum Principle frameworks along with the underlying 

assumptions made when deriving them.  

 The main difference between a standard optimal control problem and a 

differential game is related to the adversarial nature of differential games. In an optimal 

control problem, it is the objective to either maximize or minimize a cost function, while 

in a differential game a saddle point or equilibrium point is being sought by the two 

conflicting parties. Hence, the standard Hamilton-Jacobi-Bellman equation given in 

appendix A is modified to include a maximizing and a minimizing term. Let the system 

to be controlled be described by a set of differential equations of the form, 

     (1) 

where  is the current state of the system,  is the control of the pursuing coalition,  is 

the control of the evading coalition and t is time. A coalition is, in this context, 

considered to be a group of players who collaborate to achieve a mutually beneficial goal. 

 Furthermore, let the objective function be given by,  

,   (2) 

where L() is the integral cost function, υ() is the final state cost, T is the termination time, 

and t0 is the initial time. The cost function captures the essence of the differential game 

problem. Since the pursuing coalition is attempting to minimize the quantity that the 

evading coalition is attempting to maximize, they are forced to consider each others‟ 

control strategies. Note, that the differential game description could be generalized 

further by considering the problem involving more than two coalitions. In such situations, 

there could potentially be several cost functions describing the different points of 

contention between the coalitions with a maximum number of  cost 

functions, where n is the number of coalitions. However, in this work we will for 

simplicity only consider two coalitions, namely a pursuing and an evading coalition. 
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 Given the dynamics and the cost function described by Equations 2 and 3, the 

Hamilton-Jacobi-Bellman-Isaacs equation is given by the following differential equation, 

  (3) 

where , , Up and Ue are the set 

of admissible controls for the pursuers and the evaders respectively, and denotes the 

inner-product of  and . 

 It is important to note the order in which the min and the max operations are 

performed, and how the ordering influences the outcome of the differential game. 

Definition 1: The Value of a differential game at a particular state,  

is defined to be the optimal cost of reaching the target state from , that is, 

    (4) 

Definition 2: Isaacs Condition: For any and , the equality 

   (5) 

is valid. 

 Isaac‟s condition does not always hold, that is,  

   (6) 

 A depiction of such a situation is shown in Figure 6. In the case where the Isaac‟s 

condition does not hold, two different solutions must be considered; namely, the upper 

value and the lower value. The upper value is associated with the solution in which the 

evading target has a slight advantage over the pursuer while the lower value is associated 

with the pursuer being favored. The concept of upper and lower values is not always 

related to the notions of super- and subsolutions introduced by the viscosity solution 

approach, but in some problems they have been shown to be equivalent [27]. Viscosity 
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solutions are used to find solutions to partial differential equations that are non-smooth. 

For a more detailed discussion of viscosity solutions consult appendix A and additional 

information about the general differential game framework can be found in [28]. 

 

Figure 6. If Isaacs condition does not hold, the upper and lower value functions may diverge. 

 

 The solution the differential game problem described will generally speaking 

satisfy the Nash equilibrium strategy [29]: 

Definition 3: Nash equilibrium strategy: Given the solution  where  are 

the solution to the differential game problem, then  and ,  

  and    (7) 

holds. In other words, it is impossible for the pursuing team and the evading team to 

improve their performance by changing their control effort.  

 Next, let us investigate the Hamilton-Jacobi-Bellman-Isaacs framework in detail. 

Since the order of the min and max operations may be important, two different versions 

of the dynamic programming principle will be used; namely, the dynamic programming 

principle of suboptimality and the dynamic programming principle of superoptimality. 

V

x
x(t0) x(T)
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For a more detailed derivation of the dynamic programming principle and the Hamilton-

Jacobi-Bellman-Isaacs equation, consult [30]. 

 First, let us define the upper value and lower value in terms of strategies. Given 

the set of controls Up(t) and Ue(t) a strategy of the pursuing coalition can be described by 

the mapping P: Ue(t) → Up(t), that is, if the evading coalition uses the control ueϵ Ue(t) 

the strategy P will dictate the controls the pursuing coalition should use. 

 Equivalently, let the evading coalition strategy be described by E: Up(t) → Ue(t). 

Finally, let Sp and Se be the set of all the pursuit and evasion strategies. The modified 

Bellman‟s optimality condition can now be described for the differential game 

framework. For the corresponding expression typically encountered in optimal control 

theory see Appendix A. 

Theorem 1: Bellman’s Optimality Condition (Adversarial Case):  

and σ > 0 such that , 

  (8) 

 

and 

   (9) 

A proof of theorem 1 can be found in [30]. It should be noted that theorem 1 mirrors 

Bellman‟s optimality principle in optimal control which is covered in appendix A. 

 Next, let us consider how the upper and lower value functions might be found. If 

the upper value function Vuppervalue ϵ C
1
([t0, T]×ℝn

) then Vuppervalue satisfies the equality 

given by: 

 (10) 
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and the lower value function Vlowervalue ϵ C
1
([t0, T]×ℝn

) then Vlowerrvalue satisfies the 

equality , 

 (11) 

For more detailed discussion of the above result, consult [31]. 

2.2.1 Minimum Time Differential Games 

 

The work presented in this thesis focuses on problems in which it is the goal of multiple 

pursuers to intercept multiple evading targets in minimum time. Hence, the cost function 

considered is given by 

   (12) 

 The corresponding Hamilton-Jacobi-Bellman-Isaacs equation mirrors that of the 

minimum-time formulation commonly found in the optimal control literature. 

   (13) 

 The value of the game upon termination is considered zero, that is, V(x(T),T) is 

zero. However, since time can no longer be used to terminate the optimization problem, a 

termination constraint must also be specified: 

     (14) 

 The termination constraint is determined based on how the operator defines 

capture. In the examples provided in the following chapters, a target is considered 

captured if a pursuer is within a circle of radius r of the target. 

 Currently, the most commonly used approach to solve the minimum-time problem 

described by Equations 1, 12, 13, and 14, is to view the problem as a propagating 

interface problem. Hence, a method known as the Fast Marching Method [32, 33] is an 

effective technique, derived from the standard Level Set Techniques [34], to solve 

minimum-time problems quickly. 
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2.2.2 Current Differential Game Results 

Since the 1950s, much work has been done on solving differential games. Since linear 

problems with quadratic cost functional are relatively simple to manipulate, some 

interesting results were derived early in the development of the differential game theory 

framework [35]. In [36] an N-player non-cooperative Linear Quadratic (LQ) differential 

game was posed as an extended Riccati Differential Equation and solved using standard 

solution techniques. A comparison study was conducted in [37] in which it was shown 

that imposing a LQ framework on a problem that is not actually LQ can cause significant 

loss of performance. A thorough discussion on LQ differential games for which the 

Riccati equation approach fails along with some illustrative examples can be found in 

[38].  

 The LQ game problem with noise introduced into the dynamics has also been 

studied intensively. In [39], a LQ game with Gaussian noise introduced into the dynamic 

model was analyzed and it was shown that the players were guaranteed a lower bound on 

performance given the derived control law. In [40] a thorough introduction to stochastic 

differential games is provided along with some insights into methods for constructing 

solutions to stochastic differential games. 

 The maximum principle was used in [19] and [41] to solve two-player non-linear 

differential games. The advantage of applying the maximum principle to solving 

multiplayer differential games lies in the reduced space over which a solution is 

generated. In [42], the computational burden related to determining efficient pursuit-

evasion strategies was reduced by only optimizing over a limited time horizon. The 

resulting UAV evasion strategy proved to be very promising against a much faster human 

piloted aircraft. 
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CHAPTER 3 

DECOMPOSITION APPROACH 

3.1 Overview of the Approach 

As discussed in chapter 2, one very important issue that must be addressed when solving 

multiplayer differential games using the Hamilton-Jacobi-Bellman-Isaacs framework is 

how to handle the inherent computational complexity. To address this issue, the 

decomposition approach eliminates the exponential complexity with respect to the 

number of players in the game by constructing a collaborative engagement strategy from 

information derived from solving multiple two-player games. In essence, the multiplayer 

strategies are constructed by considering a relatively small number of cross sections of 

the state space and extending the information contained in these cross sections to the rest 

of the state space. 

 The decomposition is performed in two stages: 

Low-Level:   

 The interception strategy for each of the pursuers is determined by solving several 

two-player stochastic differential pursuit-evasion games. 

High-Level:   

 Each pursuer is assigned a target and a role. The pursuer‟s role can be either to 

intercept directly or to contain the target. The roles that are assigned to the pursuers 

depend on a dynamic performance-based region of responsibility (DPRR) derived from 

the two-player game solution. A representation of the interactions between the stages is 

shown in Figure 7. 
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Figure 7. The decomposition of the multiplayer game into several two-player problems. 

By performing the decomposition, the cooperation between the pursuing players 

is not considered. Hence, at the high level of the decomposition approach, cooperation 

must be reintroduced to improve the performance of the entire team of pursuers. Each of 

the pursuers is assigned a DPRR based on the estimated interception time derived in the 

low-level decomposition stage. If an evader is in a pursuer‟s DPRR, then it is that 

pursuer‟s responsibility to intercept the evading target, that is, the pursuer is assigned the 

“intercept” role. However, if there are no evaders in a particular pursuer‟s DPRR, then 

the pursuer will move toward a virtual target in an attempt to contain the target. The 

virtual target is the point on the boundary of the pursuer‟s DPRR with the largest 

difference between the estimated time to capture and the time it takes the evader to reach 

the point. This point is where it is most likely for the evader to cross into the pursuer‟s 

DPRR.  

Finally, if there are multiple targets in a single pursuer‟s DPRR, the assignment 

strategy becomes more complex. Since the cost of intercepting each target is known for 

all the pursuers, it is possible to assign “support” roles to the other pursuers. For the 

minimum time problem considered throughout this work, it is the objective of the 

“interceptor” and the “support” players to minimize the maximum estimated interception 
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time. Consequently, the worst estimated interception times are removed until a suitable 

match of pursuers to evading targets is found. A graphical representation of this 

assignment algorithm is shown in Figure 8. 

 

Figure 8. Top Left: The estimated interception times between each pursuer and the corresponding 

evaders is determined by solving the two-player games. Top Right: The worst case performance 

estimates are removed. Bottom Left: The removal process is repeated until an assignment must be 

performed. Bottom Right: The pursuers are assigned to the evaders in the best possible fashion. 

  

Figure 9 illustrates the target assignment. The evading target in the center of the 

figure is attempting to escape the three pursuers. Only the pursuer at the top of the picture 

is tasked with intercepting the evading target directly. The other two pursuers are asked 

to contain the target by heading toward the virtual targets in an attempt to block the 

evader‟s possible escape routes. It should be noted that the DPRR for each pursuer is 

updated regularly; consequently, the tasks assigned to the pursuers also changes 

frequently depending on the actions taken by the evading target. 
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Figure 9. Three pursuers attempt to capture the evading target located at the center. One of the 

pursuers attempts to intercept the target directly, while the other pursuers perform containment 

maneuvers. 

 

The decomposition approach is advantageous, since it is computationally much 

simpler to solve the two-player games than general multiplayer games. The approach is 

able to adapt rapidly to changes in the scenario. Hence, if new pop-up targets are 

encountered the roles of each of the pursuers is reassigned to effectively handle the 

unexpected change to the scenario. Additionally, the algorithm can easily be 

implemented in a distributed fashion, that is, the computational resources onboard all of 

the UAVs can be utilized effectively. 

3.2 Implementation Considerations  

 

As described in chapter 2, one of the problems encountered when solving differential 

games is how to find the saddle point in the Hamilton-Jacobi-Bellman-Isaacs equation. 

Since it is assumed that the solution to the problem is non-trivial, the solution scheme 

must find the optimal set of controls for the pursuer and the evader numerically. Finding 

the minimax solution is in itself difficult; however, since the minimax solution has to be 

found repeatedly, the solution must also be found very fast.  To find the solution fast, a 

gradient descent technique is run four times with randomly selected starting points, and 

the best overall set of controls from the four iterations is used as the solution to the 
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minimax problem. The multiple starting points are used to ensure that the algorithm does 

not get stuck at a local minimum or maximum point. 

It should also be noted that the pursuers minimize the Hamiltonian before the 

evader maximizes it. This will provide the evader with a slight advantage, since the 

pursuers control choice is considered known to the evader, and consequently, the derived 

solution and the performance estimates are conservative. 

One of the advantages of using the decomposition approach to solve stochastic 

multiplayer differential games lies in the inherent ease with which it can be implemented 

in a distributed fashion. The distributed implementation approach is shown in Figure 10. 

The computer onboard the UAVs solves the required two-player differential game, while 

a central planner combines the information provided by the individual UAVs to 

determine the best resource assignment. The planner should be located on the UAV with 

the best onboard computational resources. 

 

 
Figure 10. A Information flow diagram between the UAVs' onboard computers and the mission 

planner. 

 

The UAVs then execute their assignments as received from the planner and relay 

refined performance information back to the planner as the interception strategy is 
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executed. As a consequence of this feedback loop, target handoff is implicitly 

incorporated into the control architecture. It should be noted that one of the bottlenecks in 

implementing the algorithm in a distributed fashion lies in transmitting the two-player 

value function between the UAVs and effectively combining the solutions to construct 

the performance-based regions of responsibility. Therefore, to improve the 

decomposition approach on current UAV platforms, the derived value function 

information may have to be compressed to effectively share the performance data 

between the UAVs. 

3.3 Simulation Results 

 

The approach was tested using the following system dynamics: 

     (15) 

where (xpi, ypi, θpi) and (xp, yp, θp) are the position of and heading of the pursuers and the 

evader respectively. Cpi, Cei, ωpi, ωei are the control variables. 

For simulation purposes, the system was rewritten in the pursuers‟ reference 

frames: 

 

 The value function was constructed using a narrow band level set method described in 

[33]. The motion of each point on the terminal manifold is projected onto a line 

perpendicular to the terminal manifold. The length of the new vector at point (x, y, θ) is 

labeled Fx,y,θ. Fx,y,θ is essentially the perpendicular propagation speed of the terminal 



 26 

manifold. Then, in an attempt to determine the value of the points in the neighborhood of 

the manifold, the following relation was used: 

 (16) 

where 

  

 and    (17) 

Since Vx,y,θ is the only unknown in Equation 16, it is computationally simple to 

determine the values of each of the points in the neighborhood of the terminal manifold. 

Once the values of the neighboring points have been determined, they are added to the set 

of points in the terminal manifold. Then, a new neighborhood is constructed around the 

new manifold, and the process is repeated until the entire value function is constructed. 

For this example, the game was terminated once the evader was within a circle of radius  

10 around the pursuers. 

The algorithm can be broken down into the following steps: 

Step 1: Label points within the termination condition as “Alive”, and label all the 

points in the four-connected neighborhood as “Neighbors” and estimate 

their value. All the other points are labeled as “Far Away”. 

Step 2: Select the point amongst the “Neighbors” with the lowest value and label 

it “Alive”. 

Step 3: Add all “Far Away” points in the four-connected neighborhood as 

“Neighbors” and estimate the value of all the neighbors. 

Step 4: Go to Step 2 for as long as there are points labeled “Neighbors”. 

The complexity of the algorithm is  where n is the number of 

sample points in the state space. 
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Figure 11 depicts the output of a single iteration of the decomposition algorithm. 

The individual value functions for each of the three pursuers are generated, and based on 

the combined cost map, the pursuers are assigned a region of responsibility. The bottom 

left graph in Figure 11 shows a very interesting issue that might occur when the value 

functions are generated. Since the game essentially is bounded by the region over which 

the value function is constructed, the edge might introduce unforeseen errors. In this case, 

the edge of the region acts as an obstacle, and it is very difficult for the pursuer to capture 

the target if it is located directly behind it. 

  

  
Figure 11. Top Left: The regions of responsibility are superimposed on a plot of the pursuer 1’s value 

function. Low value regions are blue, while high value regions are red. Top Right and Bottom Left: 

Pursuer 2 and 3’s value functions. Bottom Right: The combined value function map with the regions 

of responsibility superimposed.  
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In Figure 12, the dynamic nature of the combined value function map is shown. 

Notice, that the DPRRs are not necessarily connected, especially if the vehicle dynamics 

are non-linear, so determining best point to intercept the target must be implemented very 

carefully. 

  

Figure 12.The left and the right graphs depict the DPRRs at 3 seconds and 15 seconds after the 

interception is commenced. 

  Figure 13 depicts the difference between the estimated interception time 

and the time the pursuers actually needed to intercept the target. Ideally, the estimated 

interception curve should be a line as indicated by the yellow curve. However, due to the 

conservative estimate of performance and discretization errors, the estimate is much 

higher than the ideal interception time. 

 

 Figure 13. Performance Graph: The interception estimate is higher than the ideal curve due to the 

conservative nature of the approach. 
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3.4 Important Additional Considerations 

When the differential game was decomposed into several two-player differential games, 

one implicit but very important assumption was made; specifically, it was assumed that 

the two-player differential games had a solution. This detail becomes very important in 

situations where the evading targets are significantly faster than the pursuers. In such 

situations the estimated interception time becomes infinite, and hence it is impossible for 

the planner to determine the DPRRs. Consequently, all the pursuers will attempt to 

intercept the evader directly which may not be the best interception strategy. 

3.5 Performance Considerations 

To illustrate a couple of interesting aspects that arise when analyzing multiplayer 

differential games, let us consider the three player game consisting of two pursuers and a 

single evading target played on the line. This example is very simple; however it also 

illustrates a number of interesting problems that must be considered when analyzing 

multiplayer games. Assuming that the evading target is captured if it is within one unit of 

either of the two pursuers, then the game termination points is described in three 

dimensions by the solid depicted in Figure 14. 

 

 
Figure 14. The termination states of the three player game is described by a set of plates with a 

thickness of two units. 
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The blue “plate” describes the points in the state space for which Pursuer 1 

terminates the game and the red describes the points for which Player 2 terminates the 

game. The intersection of the two plates describes the set of points for which the two 

pursuers collaboratively captures the target. To simplify the discussion a little, the next 

couple of illustrations will describe the state of the game in the evaders reference frame. 

By rewriting the system in this fashion, it is possible to illustrate the game in the plane as 

shown in Figure 15. The system considered in this simple example is described by 

     (18) 

where uPi = [-1, 1] and uE = [-.9, .9]. 

Notice that only four points on the termination surfaces correspond to situations 

where multiple players terminate the game in a collaborative fashion. The situations 

where the game is terminated on the two points that are located in the first and third 

quadrant is trivial, however the two points that are located in the second and fourth 

quadrant provide significant insight into multiplayer differential games. 

 
Figure 15. Capture regions described in the evader’s reference frame. 
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Due to the symmetry of this problem, only the case where the game is terminated 

on the termination point in the second quadrant will be analyzed (the arguments are 

exactly the same for the fourth quadrant case). The region between the termination 

regions is divided into smaller sections as shown in Figure 16. The green “Pure Two-

Player Solution” regions are the states within which the evading target can completely 

ignore one of the two pursuers, that is, the evading target starts out too close to one of the 

pursuers, and will therefore not reach the other player no matter what strategy the evader 

uses. Pursuer 1‟s and Pursuer 2‟s advantage regions describe the set of states within 

which the evading target is closer to being captured by Pursuer 1 or Pursuer 2 

respectively; however, the evading target cannot disregard the other player since both 

players might be able to terminate the game depending on the strategy used by the 

evading target. Finally, the states along the balanced three-player game solution, describe 

situations where the evading target is equally close to both the two pursuers. 

One interesting aspect of the multiplayer game played on the line can be observed 

in the control effort of the evading target. If the game is in either the advantage regions or 

in the balanced three player solution region, it does not matter what control decision the 

evading target makes as long as the target remains in the multiplayer region of the game‟s 

state space. This aspect of the game is illustrated in Figure 17. The evading target can 

either move to the center point between the two pursuers directly as indicated by strategy 

2, or the player can move around a little before returning to the center as indicated by 

strategy 1. In essence, there are multiple optimal trajectories that the evading target can 

follow; however, there is only a single optimal strategy for the pursuers. 
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Figure 16. The state space between the capture regions is divided into multiple regions interesting 

regions. 

To see that the target‟s evasion strategy is not unique, consider the Hamilton-

Jacobi-Bellman-Isaacs equation: 

  (19) 

 

Equation 19 only holds if the game is terminated by both of the pursuing players, 

that is, the boundary condition for the game played in the second quadrant is the point (-

1,1). Since the boundary condition is non-differentiable, determining the spatial 

derivatives of the value function on the boundary becomes difficult. In this case the 

partial derivatives can have any value in the ranges  and 

. For instance, strategy 1 in Figure 17 corresponds to the 
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termination condition where , while strategy 2 corresponds 

to the solution where . 

In cases where a continuous and differential multiplayer termination surface is 

provided, it becomes much simpler to determine the best possible termination of the 

game. Such a scenario is shown in Figure 18. Not only do the pursuers terminate the 

game at different states, but the spatial derivative of the value function around this point 

is also unique. 

 
Figure 17. Strategy 1 and strategy 2 will result in the same capture time. 
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Figure 18. The evader’s strategy influences the pursuers’ approach angle at termination. 

 

3.5.1 Performance Estimates 

The multiplayer value function will be different from the combined value function; 

however, as shown in Figure 16, for large regions of the multiplayer game state space the 

two value functions are equivalent. Determining the performance of cooperative 

multivehicle systems is a non-trivial exercise, and due to the assignment algorithm 

utilized when multiple targets are encountered, the overall performance of the 

decomposition algorithm cannot be guaranteed. Additional details on the assignment 

algorithm and particularly why it is inherently suboptimal is provided in chapter 4. 

However, it is possible to establish some performance guarantees when multiple pursuers 

are attempting to intercept a single target. Again, it is assumed that the solution to the 

two-player differential game exists, but in addition to this assumption, it is also assumed 

that the evading target performs optimally, the value functions are continuous, and the 

pursuers‟ dynamics are uncoupled.  

 Since the decomposition algorithm ensures that the target will be captured, it may 

be of interest to determine how accurate the estimate of the interception time is. Let us 

consider the case in which n pursuers are attempting to intercept a single evading target. 
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In this case, the system of two-player games for the n pursuers along with the individual 

termination condition can be written as: 

  (20) 

and the complete game formulation for the multiplayer game is: 

   (21) 

where up is the control of all the pursuers, upi for i = 1, 2, …, n is the part of the control 

vector up that player i has access to, VT is the total value function, Vpi is the value function 

for the two-player game consisting of the evading target and pursuer i,  is the complete 

state space, and  is the state of pursuer i with respect to the evading target. 

 The value function generated by the decomposition algorithm is pieced together 

by the two-player value functions, that is, 

    (22) 

An important question is: What is the discrepancy between the approximated 

value function Vdecomp and the total value function VT?   

First, to simplify the notation, let us assume that ue is always chosen optimally; 

hence, the max term in Equation 20 and 21 will be implied. Due to the independence of 

the fpi()‟s it is possible to rewrite Equation 21 as: 

  (23) 
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 Consider the case where pursuer i takes part in the termination of the game, then 

we know that .  

Lemma 1: Given that pursuer i terminates the game,  where such 

that for  which satisfies, 

   (24) 

Proof of lemma 1: This proof is very simple. If Lemma 1 is not true, then at point  

there exist an ε < 0 such that for at least one pursuer (say pursuer i), 

. However, since a pursuer can always be removed from the game, pursuer 

i’s best strategy is not to play at all. Hence, the contribution of all the pursuers will at 

most be 0, that is, , so . 

As a consequence of lemma 1, and Bellman‟s optimality principle, we see that 

 which implies that . 

 Next, let us consider how the error accumulates over time. At point  we 

know that ε = 0 if pursuer i terminates the game alone, since 

. The bound on ε is  where  and  are the change in states with 

respect to time for pursuer i for the multiplayer and the two-player game respectively, 

where pursuer i is the pursuer that dictates the value Vdecomp for a given state. This bound 

is determined by considering what happens if all the pursuers intercept the target 

simultaneously. Then the n inner products in Equation 23 are all non-zero. However, 

since all the pursuers intercept the target simultaneously, the contributions from each of 

the inner products is equal, that is, 

  (25) 

Since the contribution to the total value from each of the pursuers is equal, the 

control effort changes, that is, . Consequently, for pursuer i to reach a particular 
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state in the delta neighborhood of the termination manifold, the difference in the two 

value functions become: 

     (26) 

 It is difficult to extend this error bound in the neighborhood of the terminal 

manifold to the entire state space since the two trajectories generated by the multiplayer 

and two-player game algorithms are different. Hence, it is not possible to integrate the 

error along the trajectory and compare the accumulated difference. 

3.6 Problems with Stochastic Disturbances 

Consider a scenario in which the dynamics of the pursuing and the evading vehicles are 

subject to some disturbances either from internal measurement error or from external 

sources.  If the noise is assumed to be accurately characterized by a standard Brownian 

motion W(t) (with W(0) = 0), the dynamics may be described by, 

. 

where x is the state of the game, up and ue are the controls of the pursuers and the evaders 

respectively and σ(·) is the diffusion functional.  The corresponding minimum-time 

generalized Hamiltonian is given by: 

    (27) 

where i, j = 1,2, …n. 

 The second order term given in Equation 27 will in many cases help alleviate 

some of the numerical difficulties often encountered when solving the Hamilton-Jacobi-

Bellman-Isaacs equation. The second order term of cause imposes additional smoothness 
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constraints on the boundary conditions; however, due to the diffusive nature of the 

second order term, potential discontinuities may be smoothed. 

 To determine the numerical solution to the problem described by Equation 27, it 

is necessary to modify the fast marching scheme slightly. One of the main difficulties lies 

in ensuring that there are enough support points to determine the solution, that is, in the 

deterministic case, it was possible to estimate the interception time at a given point based 

on one point on the propagating surface. With the second-order partial differential 

equation, it is necessary to have at least two support points as shown in Figure 19. To 

ensure that the fast marching algorithm will work for the stochastic version of the 

problem, termination surface is propagated backwards twice. During the first pass, if 

there are any points for which it is impossible to estimate the second-order derivatives, 

the value for that point is determined using only the deterministic version of the problem. 

During the second pass, the second-order derivatives at the same problem points are 

determined based on the value from the first pass. Even though it is possible to achieve a 

better approximation to the solution by sweeping multiple times, the sweep is only 

performed twice in an attempt to reduce the overall computational complexity. 

 

Figure 19. Estimating the value of point B based on point A is possible since there is an additional 

point behind point A, while estimating the value of point C based on point A is not possible. 

3.7 Simulation Example 

To illustrate the smoothing properties of the stochastic terms in the differential game 

formulation, the value functions for a deterministic two-player game and a corresponding 
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stochastic two-player game are constructed. For simplicity the variance was chosen to be 

constant throughout the game. However, to emphasize the differences in the two value 

functions, the state space was approximated with a low number of samples. The 

deterministic value function is shown in Figure 20. The collapsed representation of the 

value function shown at the top of the figure appears to be relatively smooth; however, 

when one takes a closer look at the cross-sections of the value function, significant 

discontinuities appear. 

 

  
Figure 20. Top: The two-player value function collapsed using the MIN operator. Bottom: Two 

cross-sections of the four-dimensional value function. 

 

 The value function corresponding to the same two-player game with a disturbance 

term introduced into the system dynamics is depicted in Figure 21. The value function is 

significantly smoother due to the diffusive effect of the stochastic term introduced into 

the system dynamics.  



 40 

 
Figure 21. Cross-section of the four-dimensional value function with stochastic disturbances. 

 

 It should be noted that there are still numerical problems due to the low spatial 

resolution chosen, however the diffusive properties of the stochastic term significantly 

smoothes the discontinuities. 
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CHAPTER 4 

MAXIMUM PRINCIPLE APPROACH 

Attempting to solve the Hamilton-Jacobi-Bellman-Isaacs equation for a multi-player 

differential pursuit-evasion game is very time consuming, mainly due to the space over 

which the value of the game must be found. In an attempt to combat the complexity of 

the problem, the approach to solving multiplayer differential games presented in chapter 

3, decomposed the problem into several two-player differential games which ensures that 

certain types of problems can be solved rapidly. However, in situations in which the 

vehicle dynamics can only be accurately described using a large number of states, even 

the decomposition approach becomes computationally infeasible for real-time 

applications. 

Instead of relying on dynamic programming techniques to solve the problem, the 

maximum principle approach can be used to determine good interception strategies. The 

maximum principle generates a characteristic strip of the value function found by solving 

the Hamilton-Jacobi-Bellman-Isaacs equation. Hence, by using the current state of the 

game and the termination condition, it is possible to generate a solution to the differential 

game problem without having to reconstruct the entire value function. 

One of the important challenges that must be considered when utilizing the 

maximum principle to solve a differential game is related to the difficulty encountered 

when attempting to accurately describe the boundary conditions of the set of differential 

equations that must be solved.  If the maximum principle is applied correctly, the set of n 

differential equations will have n boundary conditions. Unfortunately, some of the n 

boundary conditions are given at the beginning of the game, while the rest are given at 
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termination. Hence, to derive a solution to most differential games, it is necessary to use 

numerical solution techniques such as the shooting method to convert the two-point 

boundary value problem to either an initial or terminal value problem [43, 44, 45]. 

Another problem that must addressed when the maximum principle is applied to 

the multiplayer differential game problem is how to plan the complete interception 

strategy.  

 

Figure 22. Greedy algorithm applied to an interception problem with 10 static targets and a single 

intercepting vehicle. 

 

A simple interception plan for a single pursuer and ten static targets is shown in 

Figure 22. The strategy used by the pursuer is a simple greedy-type algorithm, that is, the 

pursuer will move toward the closest target until it is captured and then move on to the 

next. On the other hand, if the pursuer plans the entire trajectory as shown in Figure 22, 

not only does the pursuer have to consider all the possible ways that the evading targets 

can be captured, but the evading targets will also be able to utilize the pursuer‟s long-

term plan to help them improve their collective performance. Consequently, to avoid 
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having the targets gain a significant advantage, the pursuer must replan continuously 

which becomes computationally infeasible for even the simplest cases. 

 To ease this computational burden, a multiplayer greedy-type assignment 

algorithm is used to assign targets to the pursuers. The matching problem is setup as a 

bipartite graph matching problem as shown in Figure 23. The pursuers are assigned to the 

target that it can intercept the fastest while ensuring that the entire team of pursuers 

attempt to intercept as many targets as possible. 

 

Figure 23. Graph representation of the target assignment problem. 

 

An outline of the assignment algorithm that was used to test the performance of 

maximum principle approach is shown in Table 1. 

Table 1. Assignment algorithm used to assign pursuers to the evading targets. 

Step Description 
1 Determine the weights in the bipartite graph 
2 Remove the highest weight while remembering the pursuer and the 

evader associated with the weight. 
- If one of the evader vertices become isolated then: 

3A If the number of evaders is less than or equal to the number of 
pursuers, then assign the pursuer associated with the removed 

weight to the evader and remove the pursuer vertex. 
3B Else remove the evading target vertex from the problem. 
5 If a pursuer vertex becomes isolated then assign he pursuer to the 

evader. 
6 Go to step 2 until all the pursuers have been assigned a target. 
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Since a global interception plan is not constructed, the evading targets are 

provided with four evasion strategies: 

1. The evaders attempt to increase the distance to the closest pursuer. 

2. The evaders attempt to increase the distance to the closest evader. 

3. The evaders attempt to increase the distance to the closest targeted evader. If an 

evader is targeted, then it will increase the distance to the closest pursuer. 

4. The evaders move away from the center of the swarm of evaders. 

The term distance in the above list of strategies do not refer to Euclidian 

distances, but rather the time it takes for a pursuer to cover a given gap either between a 

pursuer and an evader or between two evaders. 

The first strategy appears to be rather ineffective when considering multiple 

evading targets, due to a lack of dispersal of the targets. Strategies two and four have very 

nice dispersal properties, but the evading targets tend to get captured quickly since many 

of them will run directly into the pursuers. 

The best strategy appears to be strategy three, since it reflects an integral property 

of the interception problem. In most multiplayer problems, a pursuer will capture one of 

the evading targets first. Hence, by increasing the distance between the evading targets 

while not moving directly into the pursuers‟ interception trajectories, it is possible for the 

targets to increase the capture. 

A simple example of the four interception strategies is shown in Figure 24. The 

pursuers and the evaders are able to change their velocity vector instantaneously; 

consequently, the Euclidian distance is proportional to the interception time. The example 
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consists of two pursuing and twenty evading players. The pursuers are 33% faster than 

the evading targets.  

 

Figure 24. The four plots illustrate the distribution of the evading targets (indicated by the blue 

circles) after five time units of simulation using the four different evasion strategies. In each of the 

four examples the two pursuing players start at a random position within a circle of radius of two 

units and centered on the origin. The 20 evading targets were randomly in band centered on the 

origin and the distance to the origin between 15 and 25 units. 

 

The graphs shown in Figure 24 provide some insight into how the different 

evasion strategies might perform given the prescribed pursuit strategy. However, to gain 

some additional insight into these different evasion strategies it is useful to compare 

actual interception times. The first set of trials consists of five pursuing players 

intercepting a variable number of evading targets. Since the initial deployments are 

randomly chosen, each strategy simulation was executed a thousand times. The first 

performance graph shown in Figure 25 shows the interception times with the pursuers 

deployed within a circle centered on the origin. The evading targets were deployed at a 
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distance between 13 and 23 units away from the pursuers‟ deployment circle. The second 

performance graph shown in Figure 26 shows the interception times the same scenario, 

except the pursuers and evading targets are all deployed within the same circle with a 

radius of 25 and centered on the origin. A depiction of the initial deployment regions is 

provided in Figure 27. 

 

Figure 25. Given an initial distribution of the 20 evading targets in a circle around the pursuers, the 

average performance of the four evasion strategies after 1000 trial runs indicated that strategy 3 was 

significantly better than the others. 

 

0

20

40

60

80

100

120

2 5 10 15 20

Ex
p

e
ct

e
d

 T
im

e
 t

o
 C

o
m

p
le

te
 C

ap
tu

re

Number of Evaders

Strategy 1

Strategy 2

Strategy 3

Strategy 4



 47 

 

Figure 26. Given an initial distribution of the 20 evading targets in a circle with the pursuers, the 

average performance of the four evasion strategies after 1000 trial runs indicated that strategy 3 was 

significantly better than the others. 

 

 

Figure 27. Left: The evading targets are placed randomly placed in the region around the pursuers 

deployment areas. Right: The pursuers and the evaders are placed randomly in the same region. 

 

4.1 Maximum Principle Formulation 

Consider the vehicle dynamics 

,     (28) 
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where x is the state vector of the game, up and ue are the controls of the pursuers and the 

evaders respectively, and t is time. The corresponding minimum-time Hamiltonian is 

given by, 

 

where  denotes the inner product. The evolution of the costates (λs) is given by the 

following differential equations: 

      (29) 

 

The optimality conditions that have to be satisfied for each of the control vectors up and 

ue are given by the following equalities: 

      (30) 

 

Furthermore, the following transversality condition must hold, 

 

,      (31) 

 

where tf  is the termination time. To solve the system of n differential equations given by 

Equation 28 and 29, n boundary conditions must be provided. The players‟ known initial 

positions provide half of these conditions, and the game termination points along with 

Equation 30 provide the remaining conditions. 

However, the approach cannot be implemented directly as described above. The 

trouble lies in the times at which the boundary conditions are prescribed. Since half of the 

boundary conditions are given at the termination time and the other half of the boundary 

conditions are given at the initial time, solving the system of differential equations is not 

simple. However, the shooting method can overcome this problem by propagating the 
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solution forward multiple times and perform parameter correction to arrive at a stable 

solution. 

Two very important assumptions are needed to ensure that Equations 28 through 

31 are sufficient for an optimal solution, namely that f(·) is C
1
 continuous in x and that the 

control domain is a convex body, that is, the control domain is convex and has a non-

empty interior. 

4.2 Constraint Considerations 

 

In situations where constraints such as buildings, trees or even bounds on the control 

variables are introduced into the differential game, the Hamiltonian must be modified to 

accommodate the additional path constraints. Generally, the constraint will be given by 

the inequality, 

, 

 

and consequently the expression for the Hamiltonian becomes: 

, 

where C
\q

(x,t) denotes the q
th

 time-derivative of C(x,t).  The time derivative of the 

constraint is taken to ensure that the controls are represented explicitly in the constraint 

condition. For instance, if the C(x,t) expression must be differentiated three times to make 

the function an explicit function of the control variables, then q = 3. 

If the constraint becomes active at any point, then C
q
(x,t) = 0, λ’ > 0 and 

 , otherwise λ’ = 0 and . In addition, upon entering and leaving a 

constrained region, the trajectory must enter along the tangent of the constraint, that is, 

C(x,t) = 0, C
1
(x,t) = 0, …, C

q-1
(x,t) = 0. 
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Since state constraints often introduce discontinuities in the derived optimal 

trajectories, it is important to maintain continuity at “corner” points, that is, points at 

which the control strategy changes significantly. Hence the following equalities must 

hold: 

, 

 

where N = (C(x,t), C
1
(x,t), …, C

q-1
(x,t))

T
, M

T
 is a vector consisting of q constant Lagrange 

multipliers. 

4.3 Two-player Game Example 

To illustrate the approach, some numerical experiments are conducted using the 

following vehicle dynamics: 

 

 

 

 

where (ap, ωp) and (ae, ωe) are the pursuing and the evading players control, x, y, V, and 

θ are the players‟ position, velocity and heading states, k1 and k2 are the players‟ drag 

coefficient, and α1 and α2 are positive constants that ensure that the velocity is always 

greater than zero. 

The targets are considered captured if the pursuer is within a circle of radius four 

of the target. In the examples where there are multiple targets, the targets that have been 
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captured are removed from the game, while the remaining players continue the game 

until all the targets have been captured. 

The Hamiltonian used to derive the optimal control strategies are given by: 

 

where  are the players control bounds. 

From the Hamiltonian, the following optimality conditions can be derived: 

 

 

The termination condition is given by: 

 

 

 Therefore at termination the costates become: 
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Determining the time-derivatives of the multipliers is done by determining the change in 

the Hamiltonian with respect to the states: 

 

     (32) 

 

From Equation 32, we know that the costates do not change over time; hence, the 

mapping of the termination conditions to the initial conditions is simple.  

The two player game has been reduced to a parameter optimization problem given 

two parameters λxp ϵ [-2, 2] and λxe ϵ [-2, 2], where the evading target attempts to increase 

capture time by varying λxe, and the pursuer attempts to minimize the capture time by 

varying λxp.  
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Figure 28. A) Trajectory with λxp = -1 and λxe = 1. Termination happened at t = 15.3 seconds., B) 

Trajectory with λxp = -.42 and λxe = .40. Termination happened at t = 15.0 seconds. 
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Figure 29. Trajectory with λxp = -1.88 and λxe = 2. Termination happened at t = 11.8 seconds. 

 

In Figure 28 A), two simulations using different values of λxp and λxe are shown.  

The pursuer is performing suboptimally, since a simulation run where the pursuer 

intercepts the target directly from behind, reduced the interception time to 14.9 seconds. 

After several successive optimization steps were taken, the optimal interception and 

evasion strategy of the pursuer and the evader was found to result in the graph shown in 

Figure 28 B).  

Since the above interception strategy was determined by optimizing over the 

costates, several suboptimal solutions had to be considered. One such attempt is shown in 

Figure 29. The purpose of this example is to show that it may be possible to guide the 

optimization of λxp and λxe, such that many poor costate choices are excluded. In the 

multi-player example, the values of the λs are updated while the simulation is executed, 

and likely initial values of the λ’s are chosen based on interception observations. This 

enables the algorithm to run significantly faster since the costate search space is reduced 

significantly. 
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4.4 Multiplayer Game Example  

 

The multiplayer game problem emphasizes the benefits derived from applying the 

maximum principle instead of relying on solving the Hamilton-Jacobi-Bellman-Isaacs 

(HJBI) equation. In this example, three pursuers must intercept three evading targets. The 

dynamics of each player are still described by the four-state model described in Section 

1.3. Hence, even if the system is rewritten in relative coordinates, the value function 

derived from the HJBI equations can only be described completely in 20 dimensions, 

whereas the Maximum principle only requires that the value of six costates are correctly 

prescribed when the game is started. 

-5 0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

P1

P2

P3
E1 E2

E3

 
Figure 30. Multiplayer Game example with three pursuers intercepting three evading targets. 
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Figure 31. Termination of the game after 13.6 seconds. 

 

In Figure 30 and Figure 31, a simple game consisting of six players is shown. In 

an attempt not to have to run the simulation multiple times, some heuristic rules were 

used to guide the optimization of the initial conditions on the costates. One of these rules 

is based on the behavior of the target right before capture. If the target is about to get 

captured by a pursuer it will use all its control authority to move away from the pursuer. 

Therefore, the target will attempt to move the line connecting the pursuer to the evader 

such that it will be pointing in the opposite direction of the evader‟s direction of travel. 
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Figure 32.  Evolution of the costate estimates. 

 

 

As the test game is being played, the chosen costates are changed based on the 

evolution of the game. Hence, as the pursuers approach the evaders the multipliers 

become more and more accurate. Naturally, if an evading target is captured, the entire 

game is changed, and the costate estimates change abruptly. This change is shown in 

Figure 32 A and B. Since Pursuer 1 captures its target before Pursuer 2, a discontinuity 

occurs in the costate estimate indicated by the red boxes. The change does not affect 

Pursuer 2 greatly since the target that it is attempting to capture is still present; however, 

a small but much smoother change does occur as shown in Figure 32 C and D. 
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In Figure 33, the solution using the steady state values of the costate estimates are 

shown. Since the game essentially changes three times throughout the run, the costates 

should also be changed to account for the overall change in the objective. Consequently, 

once an evading target has been captured new values of the costates must be determined. 

 
Figure 33. Simulation Example using the Steady State values of the Costates. 

 

 
Figure 34. An example of a scenario in which there are more evading targets than pursuers. The 

position and heading of the pursuers is indicated by a blue triangle, while the position and heading of 

the evading targets are indicated by a red triangle. 
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Figure 35. The control effort of the three pursuing players. 
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CHAPTER 5 

PERFORMANCE MAP APPROACH 

As mentioned in chapter 3 and chapter 4, the decomposition approach and the maximum 

principle approach require that solutions to the individual two-player differential games 

exist. Hence, it is assumed that the pursuers are slightly faster and more agile than the 

evading targets. However, one important reason for enabling multivehicle systems to 

cooperate is to allow these systems to accomplish tasks that the individual vehicle cannot 

perform on its own.   

As a natural extension to the decomposition work, one might consider if it is 

possible to capture much faster targets if the number of pursuers is larger than the number 

of evaders. To address this problem, minimum time information from each pursuer and 

evader is used to derive containment and, if possible, interception strategies.  

5.1 Evaluating the Players’ Capabilities 

 

Some information about the capabilities of the players must be obtained before a 

containment strategy can be derived. The computational burden associated with 

determining a solution using the classical differential game framework is too high in all 

but the simplest scenarios. Therefore, the standard minimum time Hamilton-Jacobi-

Bellman-Isaacs equation, 

    (33) 

will be replaced by a collection of simpler Hamilton-Jacobi-Bellman (HJB) minimum 

time problems, 
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   (34) 

where, up = {up1, up2, …, upn} are the controls of the n pursuers, ue = {ue1, ue2, …, uem} are 

the controls of the m evaders, x ϵ R
(n+m)·s

, s is the size of each of the players‟ state space, 

xei ϵ R
s
 for i = 1, 2, …m, xpj ϵ R

s
 for j=1, 2, …n, and Vei (and Vpj) is the minimum time it 

takes evader i (and pursuer j respectively) to reach a particular state. It should be noted 

that Equation 33 and the system of equations shown in Equation 34 are not generally 

equivalent, that is, by reducing the space over which the optimization is performed some 

information is lost.  

Given the initial positions of the players and appropriately chosen termination 

conditions, it is possible to propagate each of the systems listed in Equation 34 forward 

using the Fast Marching Method presented in [33]. Solving Equation 34 instead of 

Equation 33 is computationally much simpler, since the space over which the 

optimization is performed is much smaller. For the general multiplayer game, the 

optimization space is a subset of R
(n+m)·s

, while the systems shown in equation 30 are only 

optimized over a subset of R
s
 (m+n) times.  

Once the minimum time problems have been solved, the performance estimates 

are combined into a minimum time map. The map consists of m+n regions, where each 

region describes a subset of the state space for which a particular player can reach any 

state before the other players get to that state. For the evading targets, each of these 
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regions is considered safe. That is, none of the pursuers can intercept the evaders while 

they are moving within their region. 

Containment and capture of a target is closely related to the targets‟ safe regions. 

If an evader has a safe region, it is guaranteed to be able to avoid capture for at least as 

long as the highest value within its region. Hence, if the largest value within evader i's 

region is Vei = τ seconds, then the evader can avoid capture for at least τ seconds. It is the 

primary objective of the pursuing players to ensure that all the evading players‟ combined 

regions do not become infinitely large, since this implies that containment of the players 

is not maintained. The secondary objective is to attempt to reduce size of the combined 

regions to zero which ensures that all the targets will be captured.  

5.2 Strategy Considerations 

To determine the general containment strategy, it is beneficial to consider certain 

scenarios for which Euclidian distance measures provide a good estimate of time to 

intercept. It should be noted, that the approach is not restricted to such situations, since 

the minimum time problems are solved directly from the HJB equations, but, from a 

conceptual perspective, the simple distance considerations aid in determining effective 

containment strategies. 

Several strategies will be considered, however all of them will rely on the 

performance based feedback loop shown in Figure 36. The performance information will 

be used extensively in an attempt to construct an adaptable framework for containing and 

intercepting the targets. 
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Figure 36: Closed Loop representation of The Containment Controller. 

 

5.2.1  The Simple Evasion Strategy 

Based on the derived minimum time regions, it is easy to determine if a simple evasion 

strategy is enough to ensure that an evading target can escape the pursuing players. 

Definition 1: A Simple Evasion Strategy is a strategy determined at the beginning of the 

game resulting in a single predetermined trajectory which is not changed throughout the 

game. 

The simple evasion strategy is surprisingly effective in containment problems. 

The reason for the simple strategy‟s effectiveness resides in the fact that the pursuers 

cannot assume that the evaders are using such a strategy; hence, the pursuers will have to 

spend time on securing all the possible escape routes while the evaders can concentrate 

all their efforts on one particular escape corridor. 

The simple escape strategy is guaranteed to work if the following axiom holds: 

Axiom 1: If the minimum time region of an evading target is not enclosed by the 

minimum time regions of the pursuers then there exists a simple evasion strategy which 

ensures that the evader is not captured. 
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Equivalently, the pursuers cannot win a game for which their combined regions 

do not enclose all the evading targets. It should be noted that this condition is sufficient 

for the evaders but only necessary for the pursuers. Figure 37 shows a simulated example 

in which the evader is capable of escaping the pursuers using the simple escape strategy. 

The longer it takes a player to reach a particular state, the darker the corresponding color 

is. 

 

Figure 37. Depiction of a scenario in which the evading target is guaranteed to escape using a simple 

escape strategy. In this example, The Target is 40% faster than the pursuers. 

5.2.2 Determination of Possible Escape Points 

The simple evasion strategy hinges on the ability of the evader to determine the best 

possible escape corridors. If at all possible, the evading target should attempt to move 

toward points that it can reach before any of the pursuers; however, this requirement does 

not provide information about how close the evading target is to escaping the pursuers. In 

fact, the evader will attempt to move outside the enclosure formed by the pursuers. 
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Figure 38. Two points ‘A’ and ‘B’ that the target can reach before the Pursuers. 

As shown in Figure 38, it is advantageous for the target to move toward point B, 

since that point effectively eliminates Pursuer 1 and Pursuer 4 from the game.  Hence, it 

is the objective of the evader to breach containment by maximizing the time to all the 

pursuers whose minimum time regions are adjacent to the minimum time region of the 

evading target.  

Proposition 1:  The targets will attempt to reach points that maximize the sum of the 

values of the subset of pursuers that are adjacent to the targets‟ minimum time regions. 

Hence, if X is the set of states that can be connected to the current state of the evader ei 

by a trajectory „C‟ such that  x‟ on C, . Furthermore, let Spei 

be the set of pursuers for which 

,  

then the critical escape point satisfies: 

  (35) 

The performance value of the critical point will be the corresponding sum of the 

minimum time values. It should be noted that the critical escape points are not unique 

Target

Pursuer 2

Pursuer 3

Pursuer 1

Pursuer 4

A

B
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which is advantageous for the evading target since the pursuers will have to handle all the 

critical points simultaneously. 

5.2.3 The Adaptive Pursuit and Evasion Strategies 

As the game progresses, avenues of opportunity may present themselves to the evaders. 

In such instances, the evaders should update their strategies based on the current state of 

the game. Hence, the determination of the critical escape points has to be done 

continually throughout the game, and since the critical points are dependent on the 

underlying minimum time problems, these problems will also have to be solved 

repeatedly throughout the game. 

The pursuers must adopt a strategy that is dual to the evasion strategies, since the 

pursuers must tailor their containment strategy based only on the current state of the 

targets. Hence, even if the targets adopt the simple evasion strategy, the pursuers must 

ensure that all other escape routes are covered.   Such a situation is depicted in Figure 39, 

in which the evader uses a simple escape strategy but the pursuers will have to ensure that 

all the best escape routes are covered. 

 

Figure 39. Left: Initially The Four Pursuers are cutting the left, the top and the bottom escape routes 

off. Right: later pursuer 3 ensures that the target does not escape through the right escape corridor. 

The evader was 20% faster in this example. 
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Ideally, the pursuers‟ strategies are efficient; however, due to the computational 

burden related to determining the underlying performance map, there is a reaction delay 

which the targets may be able to take advantage of. The evasion strategy that should be 

adopted to take advantage of the computational delay is quite simple: Pick the best escape 

route the pursuers are not attempting to block. The purpose of this strategy is to increase 

the performance estimate of the escape corridor such that it becomes more critical than 

the ones the pursuers are concerned with. Hence, the pursuers must use some resources 

(time) to close the new corridor.  

Ultimately, such a strategy is only successful if the performance estimates of the 

different corridors are close to one another or if a particular pursuer is forced to handle 

two important escape corridors. A scenario depicting the latter is shown in Figure 40. 

Pursuer 2 is responsible for closing the two best escape corridors, and is therefore forced 

to let one of the evading targets escape. 

 

Figure 40. Left: initial Target Assignment forces Pursuer 2 to intercept Evader 0. Right: Evader 1 

escapes through the corridor forced open by Evader 0. The two evaders are 20% faster 
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5.3 Target Capture Condition 

Determining when it is possible to contain and intercept all the targets is nontrivial. In the 

previous section an example was shown in which the two evading targets initially 

appeared to be contained. However, due to the collaboration between the evading targets, 

one of the evaders was able to escape capture by forcing one of the pursuers to choose 

between the two targets. 

Consequently, whether or not the targets can be intercepted is not only dependent 

on the individual player‟s capabilities, but also strongly dependent on the initial 

conditions. Hence, to ensure that a given problem can be solved, one must show that the 

value at the critical points discussed in proposition 1 is not only decreasing but also 

converges to zero. If this condition holds, containment and interception of the targets is 

guaranteed. On the other hand, if the convergence to zero cannot be shown but it can be 

shown that the value of the critical points is decreasing, then interception cannot be 

guaranteed but the targets will be contained. These conditions are not necessary but 

sufficient to show capture and/or containment. 

5.4 Global Constraints 

In many pursuit evasion problems, the environment can be used by the players to either 

outmaneuver the pursuers or to trap the evaders. Hence, when designing the adversarial 

strategies, it is important to consider the possibilities present in the environment. The 

interactions between the players and the environment can be incorporated into the 

underlying performance map. If a particular region is difficult to pass through, the 

velocity of the players can be reduced as they are passing through the region. The Fast 
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Marching Method can accommodate such constraints on the vehicle dynamics quite 

easily, as long as the effects can be accounted for using the vehicle states.  

Impassable constraints such as buildings, water ways or very dense forest actually 

improve the performance of the algorithm, since the states that lie within the constraints 

will take infinitely long to reach, and will therefore not have to be determined when the 

underlying performance map is constructed.  Figure 41 depicts a situation in which a 

barrier effectively prevents Pursuer 2 from participating in containing the target. From 

the evading target‟s perspective, Pursuer 2 simply does not exist, due to the dense forest 

separating the two. Since Pursuer 2‟s minimum time region is not adjacent to the evaders 

region, it is not assigned an interception point. It should be noted that in the case depicted 

in Figure 41, the evading target is not benefiting from the introduced barrier even though 

Pursuer 2 is effectively eliminated from the problem.  

 

Figure 41: Left: The underlying grid with an inserted barrier. Right: the corresponding Performance 

Map. The target is 20% faster than the pursuers. 

5.5 Algorithm Implementation 

 

Since generating the underlying performance map must be done rapidly to insure that the 

containment is performed effectively, it is important to implement the Fast Marching 
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Method to run as efficiently as possible. The method used to generate the simulation 

results relies on the Ordered Upwind Method, which decouples the nonlinear systems by 

using information about the characteristic directions. The particular method used in this 

case was developed by J. Sethian and A. Vladimirsky [33]. 

The algorithm is implemented over a triangular mesh stored in a linked list. Since 

the propagation of the solution is performed for each player, the grid is constructed such 

that each point can contain the information about all the players. This significantly 

decreases the data management overhead.  

The value update is determined based on the following equation: 

   (36) 

Where 

 (37) 

where  and NS(x) are the points in the neighborhood of x.  A 

graphical representation of a single update step is shown in Figure 42. f(x,vα) is the speed 

associated with moving from the point on the line connecting xi to xj to the point x. As 

shown in Equations 36 and 37, the minimum value is found by considering all the 

combinations of vertices in the neighboring set of x, and interpolating between these 

points to improve the performance estimate.  
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Figure 42: Example of updating the point 'x' based on a convex combination of the points xi and xj. 

The outline of the algorithm is as follows: 

1. The points in the mesh are marked as Far for each player, and the corresponding 

value is set to a maximum value. 

2. The points inside the termination manifolds are set to Accepted for the 

corresponding player. 

3. The points adjacent to the Accepted points are marked Considered, and the points‟ 

values are updated using the update rule described above. References to the 

Considered points are then added a Considered list. 

The following steps are repeated until the value of all the points in the grid has been 

determined, that is, as long as the Considered list is not empty: 

4. Find the point with the smallest value in the considered list, mark it Accepted and 

delete it from the Considered list. 

5. Add the Far points that are adjacent to the removed point to the Considered list. 

6. Update value of the Considered’points that are adjacent to the removed point. 

x

xi

xj

f(x, vα)
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Even though this algorithm is very efficient, it should still be noted that for real-time 

applications it is important to work with vehicle dynamics that can be described using as 

few states as possible.  

5.6 Simulation Results 

The simulations used to verify the players‟ strategies were based on the following simple 

vehicle dynamics, 

         (38) 

where vplayer is the maximum velocity of a given player which the vehicle can move in 

any direction. The simple dynamic model ensures that the state space the optimization is 

performed over remains small enough to maintain fast execution of the algorithm.  

As discussed earlier, the strategies were tested in several different scenarios, involving 

four pursuers and up to two evaders. The pursuers‟ initial positions were kept constant 

and are summarized in Table 2. 

Table 2. Initial Positions of the Pursuers. 

Pursuer 

Number 

xinitial yinitial 

0 10 10 

1 40 10 

2 10 40 

3 40 40 

The pursuers‟ velocity was kept constant at unit velocity, and a target was 

considered captured if it was within 5 units of any of the pursuers. The grid resolution 
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was set to 2 units. Table 3 summarizes the single vehicle results obtained by using the 

adaptive strategy. 

Table 3.Results for a Single Target using adaptive escape strategy. 

Target’s Velocity xinitial yinitial Interception Time 

1.20 20 25 13 Time Units 

1.30 20 25 14 Time Units 

1.40 20 25 Containment Breached 

1.40 25 25 15 Time Units 

The interception times are not the maximum times that the evading target could 

obtain. The target could accept being contained, and by doing so extend the time to 

intercept slightly. 

Table 4. Results for Two faster evading targets using an adaptive Escape strategy. 

Targets’ 
Velocities 

xinitial, target 0 yinitial, target 0 xinitial, target 1 yinitial, target 1 Interception 
Time 

1.10 20 25 25 30 Containment 

Breached 

1.10 25 25 25 25 12 Time 

Units 

1.20 25 25 25 25 22 Time 

Units 

1.25 25 25 25 25 Containment 

Breached 

 

As shown in Table 4, the targets‟ velocities can be reduced significantly while 

still enabling them to escape capture. In the instances where the targets escaped, the 
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solution relied on the fact that one pursuer is unable to cover two different escape 

corridors. This behavior is not explicitly implemented into the targets‟ escape strategy, 

however as the scenario unfolds, the evading targets quickly identify such weaknesses 

and exploit them. 

5.7 Additional Experiments  

 

The approach used to capture multiple evading targets could possibly be extended to 

other scenarios. For instance, in the above analysis, the number of evading targets was 

assumed to be less than the number of pursuers. However, if the speed of the evading 

targets was decreased it may be possible for a set of pursuers to contain a much larger 

collection of evading targets. In such a case, the decomposition technique suggested in 

chapter 3 would be applicable since it is possible to obtain solutions to the two-player 

differential games. However, it is advantageous in many situations to have the pursuers 

contained before attempting to intercept them. Consequently, the pursuers should adopt 

the containment approach while the targets are enclosed by the pursuers, and switch to 

the two-player differential game approach if the targets are able to breach containment.   

Figure 43 shows an example of four pursuers attempting to contain five evading 

targets. The targets are slower than the pursuers in this example; however, they are still 

able to breach containment. Once containment is breached, the pursuers should change 

their strategy to intercept the targets directly using the two-player differential game 

approach. 
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Figure 43. An Example with four pursuers and five evaders where The evaders’ maximum velocity is 

85% of the pursuers’. 

Table 5 summarizes several numerical experiments performed on the scenario 

involving four pursuers and five evaders. The pursuers‟ initial positions were kept at the 

positions listed in Table 2, while all the evading targets started out at: (x, y) = (25, 25). 

Table 5. Numerical experiments with four pursuers and five slow evaders. 

Evaders’ Velocity Relative to 

the Pursuers’ 

Time to Capture 

50% 17 Time Units 

55% 16 Time Units 

60% 17 Time Units 

65% 19 Time Units 

70% 21 Time Units 

71% 22 Time Units 

72% Containment Breached 
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Containment was considered breached if the targets were able to reach the edge of 

the considered area before the pursuers could intercept them. If containment is breached, 

it is likely that multiple targets are able to escape since the primary objective of the 

pursuers is to keep all of the targets contained. Hence, if a single target is breaching 

containment the pursuers will utilize all the available resources to reestablish 

containment. 
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CHAPTER 6 

ADDITIONAL IMPLEMENTATION NOTES 

Using the dynamic programming principle to solve the individual two-player differential 

games is unfortunately still a problem that remains exponentially complex with respect to 

the size of the individual player‟s state space.  Hence, in order to solve these problems 

rapidly, special care must be taken to reduce the space over which the problem is solved 

and optimize the solution process. Reducing the optimization space is dependent on the 

specific problem considered, that is, if the two-player games are played in three 

dimensions, it may be possible to reduce the problems to ones played in the plane. In the 

cases where it is not possible to solve the differential game problems fast enough, 

researchers have utilized a limited look ahead approach [42], that is, only attempt to 

optimize the players‟ strategies over a smaller but computationally feasible planning 

horizon. However, for many games such an approach does not provide consistent 

strategies, since the system is not brought all the way to termination. 

 In an attempt to optimize the solution process, the underlying grid over which the 

Hamilton-Jacobi-Bellman-Isaacs equation is propagated will be optimized. A couple of 

methods to construct the regular grids will be discussed followed by an approach to 

reducing the overall computational complexity by reducing the number of vertices in the 

grid. Finally, the pseudo code of the algorithms used in the simulation environment will 

be provided along with some important implementation considerations. 

6.1 Constructing the Grid 

 

A grid is a collection of vertices and edges. The vertices contain the information required 

to construct the solution to the partial differential equation, and the edges describe which 

vertices are adjacent to one another, or equivalently, which of the neighboring vertices a 

given vertex can rely on to determine the solution.  
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 For simple applications, it is very tempting to construct grids such that some of 

their structure is captured in the container in which they are placed. For instance, if a two-

dimensional grid has to be constructed, one might initially use a two dimensional array to 

represent the grid, that is, the elements in the array contain the vertex information while 

the relative placement in the array describes the edges. Representing a grid in this manner 

is very intuitive and utilizes the system memory efficiently. However, if the number of 

edges is very large it is necessary to implement additional logic to determine which of the 

vertices are adjacent.  

 To address more exotic grids, a linked list approach can be adopted. The elements 

in a linked list contain the vertex and the edge information, that is, each element in the 

list keeps track of its neighbors, and it is therefore possible to construct any regular and 

irregular grids. However, since each element has to contain more information, it requires 

additional memory to represent a given grid, and it takes more processing time to 

initialize the grid. 

 With the additional computational and memory requirements the linked list 

approach may not seem to be a very attractive alternative. However, when grid 

refinement is discussed in the next section the advantage of the linked lists becomes 

apparent. 

6.2 Grid Refinement 

 

 In some scenarios, the players in the game may have different constraints imposed 

on them by the environment. For instance, if a UAV is asked to intercept a ground target, 

the ground target could be constrained by buildings, trees or large bodies of water, while 

the UAV remain unconstrained by passing over the obstacles. Hence, the speed at which 

the solution to the Hamilton-Jacobi-Bellman-Isaacs equation propagates forward is 

dependent on those constraints. By exploiting this feature it is possible to optimize the 
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underlying grid used to represent the solution to the problem, and thereby increase the 

execution speed of the algorithm.  

 If the evading target is constrained, the parts of the grid that is not within the 

constraints should be of higher resolution especially if the target has to maneuver through 

narrow corridors. In scenarios where the pursuers are constrained by the environment, a 

solution to the game may not exist. For instance, if a ground target is attempting to 

capture a UAV, the UAV will either remain within a constraint that the pursuer cannot 

enter or move such that the pursuer will have to negotiate the obstacles repeatedly, 

thereby ensuring that the ground vehicle is unable to capture the UAV. 

 The idea behind grid refinement is to reduce the grid resolution in certain parts of 

the state space while maintaining the required resolution in other parts. There two classes 

of grid refinement algorithms that can be adopted to refine grids. The first class is one in 

which a coarse grid is provided, and then additional points are added into the state space 

in the places where a higher resolution is required. The second class is essentially 

opposite to the first in that it assumes that a sufficiently fine grid is superimposed on the 

state space, and then vertices are removed from the parts that do not require the high 

resolution. The algorithm outlined here will be of the latter class for reasons which will 

be made clear in the next section. For other grid refinement approaches see [46]. 

6.3 The Refinement Algorithm  

 

 The algorithm consists of several non-trivial steps, and care should be taken to 

ensure rapid execution of each of them.  The steps are: 

1. Construct a linked list of the highest resolution required in any region of the state 

space. 

2. If a vertex is in a region which does not require high resolution, mark the vertex 

as a potential “candidate” for reduction, otherwise mark the vertex as “fixed”. 
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Repeat the following until there are no “candidates” left: 

3. Pick a “candidate” vertex, say vertex “A”. 

4. If the vertex has no neighbors that are also “candidates” then go to step 9. 

5. Pick a neighboring “candidate” vertex “B”. 

6. Determine the largest distance from “A” to its neighbors (DA) and the largest 

distance from “B” to its neighbors (DB), and compute the quantities DA+DB/2 

and DB+DA/2. 

7. If DA+DB/2 and DB+DA/2 are less than the required resolution, copy the 

neighborhood of vertex “B” to vertex  “A”, reposition vertex “A” between the two 

vertices, announce to “A”‟s new neighbors that “A” is their neighbor, and delete 

vertex “B”. 

8. Go to step 5 until vertex “A” has no other “candidate” neighbors that it can merge 

with.   

9. Mark vertex “A” as fixed and go to Step 3. 

 When implementing the above algorithm, step 7 must be executed carefully, or an 

infinite loop may be constructed. Vertex “B” contains a reference to the neighboring 

vertex “A”, and unless it is removed the algorithm will get stuck in an infinite loop or 

“A” may simply disappear depending on how the linked list is implemented. 

Insert Figures of a grid before refinement and one after. 

 An example of the grid refinement is shown in Figure 44. Notice that the number 

of neighbors that are adjacent to the vertices in the low resolution parts of the grid has 

increased significantly. This is a consequence of the interface between the high resolution 

areas and the low resolution areas. It is mainly due to this fact that it was decided to 
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construct a high resolution grid and then reduce the number of vertices instead of 

constructing a coarse grid and improve the resolution in the areas that required it. 

 

Figure 44. Left: Original grid before vertex reduction. Right: Same grid after vertex reduction. 

 

 When the high resolution regular grid is constructed it is simple to determine the 

neighbors of each vertex in the grid, since the vertices are a predetermined distance from 

one another. However, if a vertex has to be added to a particular region in order to 

improve the overall resolution, it becomes somewhat tedious and computationally 

expensive to determine its neighbors. Hence, by constructing a fine grid and then reduce 

the resolution, memory is sacrificed to improve execution speed. 

6.4 Practical Implementation Limitations 

 

As mentioned in section 6.2, the number of sample points in the state space greatly 

impacts the speed at which the solution can be generated. Hence, if the vehicles‟ dynamic 

models are represented by a large number of states, the computational burden may 

become too great to solve the problem quickly, simply due to the number of sample 

points in the state space. Consequently, it is important to attempt to simplify the vehicle 

dynamics as much as possible before attempting to solve the problem using the 

Decomposition Approach or the Performance Map Approach. Since the state space must 

be limited to only a few number of states, the Decomposition and the Performance Map 
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approaches cannot be applied to problems where the dynamics can only be described in a 

very high dimensional space. Additionally, if the problem formulation is not continuous 

and at least once differentiable, the Maximum Principle approach cannot be applied 

either. In such cases, it may be necessary to rely on algorithms that are not as tightly 

coupled with the underlying dynamics. 

 Practically speaking, it is very difficult to determine good strategies for systems 

that have either very limited computational resources or are very complex in nature, so 

techniques that decouple the adversarial problem from the low-level dynamics are 

currently the only option in such situations.   
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CHAPTER 7 

CONCLUSION AND POSSIBLE FUTURE WORK 

With the increased utilization of UAVs to perform intelligence, surveillance, and 

reconnaissance missions, a demand for algorithms that will effectively manage and utilize 

the cooperative capabilities of multiple UAVs have emerged. The work described in this 

thesis addresses this need by providing three complimentary differential game based 

approaches to solving the multivehicle interception problem. The three approaches all 

rely on optimal control principles to evaluate the capabilities of the cooperating UAVs; 

however, the underlying assumptions that the three approaches are built around are all 

different.  

 The decomposition approach solves multiple two-player differential games using 

the dynamic programming framework, and then combines the resulting value functions in 

an attempt to approximate the solution to the complete game. The underlying 

assumptions that must be satisfied for this approach to be effective are that the pursuers 

are faster and more agile than the evading target, that the dynamics of each individual 

vehicle can be accurately described in a low-dimensional state space, and that the 

resulting two-player value functions are continuous. The advantage of decomposing the 

multiplayer game into multiple two player games is that the exponential complexity with 

respect to the number of players is effectively removed. However, the exponential 

complexity with respect to the size of the individual vehicle‟s state space is still present. 

 The maximum principle approach mirrors the decomposition approach in that the 

complete multiplayer game is decomposed into several two-player games. The main 

difference between the two approaches is that the maximum principle approach only 

determines a single optimal interception trajectory while the dynamic programming 

approach determines the solution to an entire family of problems. Consequently, the 
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maximum principle simplifies overall computational requirements needed to find a 

solution by computing the solution of the individual two-player games quickly. However, 

this approach can only be used if, in addition to the assumptions made for the 

decomposition approach, the problem description is sufficiently smooth. 

 Finally, the performance map approach addresses the problem where the two-

player games cannot be solved, that is, the evading targets are either faster or more agile 

then the pursuing vehicles. Instead of capturing the vehicles‟ capabilities by solving 

multiple two-player games, several minimum-time optimal control problems are solved 

using the dynamic programming principle. By constructing a composite performance 

map, it is possible to determine where the evading targets are likely to attempt to escape. 

The pursuers then attempt to close these escape corridors in the fastest possible manner, 

that is, the primary objective of the pursuing vehicles is to contain the targets and the 

secondary objective is to intercept the targets. One important difference between this 

approach and the decomposition and maximum principle approaches is that capture of the 

evading targets is not guaranteed. 

 Several simulations is performed to verify the performance of the three 

multivehicle interception algorithms. However, since the complete multivehicle game 

solution is not actually computed, the escape strategies of the evading targets had to be 

approximated. For the scenarios used to test the decomposition and maximum principle 

algorithms, it is shown that the most effective escape strategy was not to simply rely on 

the value function of the nearest pursuer. For instance, if the targets that are not being 

targeted directly moved away from the nearest targeted evaders, the overall cost of 

intercepting all of the targets increased significantly. However, for simplicity the escape 

strategy used by the evading targets were simply to increase the expected cost of 

interception with respect to the nearest pursuer.  

 The evasion strategy used to test the effectiveness of the performance map 

approach was much simpler. While a given scenario is being tested, the evaders 
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determine the best possible escape corridors by leveraging the minimum-time 

information determined by solving the multiple minimum-time problems. Since the 

pursuers use a fixed interception strategy, it is simple to determine the best possible 

escape strategy for the evaders.  

7.1 Contributions 

The work presented in this thesis contributes to the field by providing:  

 Fast decision algorithms which enables multiple cooperating vehicles to engage 

multiple targets efficiently by, 

o Decomposing the complete multivehicle problem into smaller and 

more manageable two-player problems. 

o Effectively assigning tasks to the individual pursuing vehicles 

based on the derived performance estimates.   

 An effective approach to managing multiple unmanned systems in collaborative 

engagement scenarios. 

Several simulations were conducted to verify the performance of the suggested 

approaches. 

7.2 Possible Future Work 

To implement the three collaborative engagement algorithms on current UAV platforms, 

several issues must be addressed. The complete information assumption made when 

deriving the interception algorithms is a very difficult satisfy. First, the problem of 

locating a target, estimating its current state, and determining its dynamic model using 

the sensor suite onboard the UAVs must be solved. These three topics are in themselves 

very challenging and are all active research topics in robotics. Additionally, to utilize the 

computational power of the entire team of UAVs it is, as indicated in chapter 3, desirable 

to implement the cooperative engagement algorithms in a distributed fashion. However, 
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transmitting performance information over a network of UAVs can be very costly, 

especially when comparing performance information over the entire state space is 

needed. 

 To limit the amount of data transmitted between the vehicles, it may be useful to 

consider the structure of wireless ad-hoc networks. Broadcast trees have been used to 

route communication in ad-hoc wireless networks [47, 48]. Such tree structures could 

potentially provide the necessary structure to transmit the two-player value functions over 

a network. Each parent node could merge the performance data received from its 

children, and then only pass on the combined performance data to its parent node. Not 

only will such an algorithm limit the amount of information transmitted over the network, 

but since the children of a parent node commonly are close to one another, it is likely that 

they are assigned to the same target. 
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APPENDIX A 

OPTIMAL CONTROL PRINCIPLES 

 

Optimal control theory is the branch of general control theory that attempts to derive the 

best possible controllers given a certain performance metric. Consequently, optimal 

control problems consist of a set of constraints and a performance metric.  

 Optimal control theory is an extensive field of study, which relies equally on 

engineering and mathematical insight. The purpose of this appendix is to provide the 

mathematical foundation to understand the differential game concepts introduced 

throughout the thesis. The two approaches to solving optimal control problems 

highlighted in this appendix; namely, the Dynamic Programming and the Maximum 

Principle approaches, are not meant to be an exhaustive introduction to optimal control. 

However these two techniques are used extensively in optimal control problems and used 

almost exclusively in the work presented in this thesis.  

 It is assumed throughout this short introduction, that the system to be controlled is 

given by a set of differential equations of the form, 

      (39) 

where  is the current state of the system,  is the control and t is time. 

 The performance metric or cost functional will be given by, 

,   (40) 

where L() is the integral cost function, υ() is the final state cost, T is the termination time, 

and t0 is the initial time. Since most of the focus in this thesis is placed on minimum time 

problems, additional emphasis is placed on the minimum time versions of the Dynamic 

Programming and the Maximum Principle approaches. The cost functional for such 

problems is given by, 
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.     (41) 

Dynamic Programming Approach 

 Dynamic programming is a technique used to describe an entire family of optimal 

control problems, that is, given a system model the dynamic programming technique 

determines the optimal control solutions for a set of initial conditions. The relationship 

between the families of solutions is given by the Hamilton-Jacobi-Bellman equation 

which is a non-linear first-order differential equation. 

 The solution to the family of problems is represented by a value function, that is,  

, 

where  is the control minimizing the cost function J, x is the state of the system and t is 

time. 

 Before arriving at the Hamilton-Jacobi-Bellman equation, it is important to 

understand Bellman‟s principle of optimality. 

Bellman’s Principle of Optimality: 

 Given any pair (ta, xa) ϵ [t0, T], 

. 

where U is the set of admissible controls for which  is measureable. In other words, the 

value of a particular state at an earlier time can be determined by utilizing the values of 

the states at a later time, or equivalently, the last part of an optimal trajectory is optimal. 

 Two important assumptions are made when proving Bellman‟s principle of 

optimality, and those are: 

1. (U, d) is a separable metric space. 

2. f(), L(), and  are uniformly continous, and there , k > 0 such that for 

,  or   
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 These two assumptions must be verified before attempting to apply Bellman‟s 

principle of optimality. 

 In an attempt to simplify the determination of the continuously differentiable 

 value function V(),  the following partial differential equation along 

with a set of termination conditions can be used to generate the value function: 

 (42) 

where , and  denotes the inner-product of  and 

. Equation 42 is commonly referred to as the Hamilton-Jacobi-Bellman 

equation, and  is commonly referred to as the Hamiltonian and 

is abbreviated by . 

 Solving an optimal control problem using the dynamic programming approach 

and a set of initial conditions consists of three steps: 

1. Determine the value function by solving the Hamilton-Jacobi-Bellman equation. 

2. Given the value function, determine the control that maximizes the Hamiltonian 

with . 

3. Reconstruct the optimal trajectory from the provided initial conditions. 

Viscosity Solutions 

 As mentioned earlier, the Hamilton-Jacobi-Bellman equation admits only C
1
 

smooth solutions, which limits the applicability of the technique severely. Hence, the 

notion of viscosity solutions was introduced by Crandall and Lions in the early 1980s 

[49, 50]. In the viscosity solution framework, the standard derivatives are replaced by 
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super- and subdifferentials, and the actual solution is considered to lie between the two 

solutions generated by the super- and subdifferentials. By finding the solution in this 

manner, the smoothness assumptions can be relaxed. 

Definition: Viscosity Super- and Subsoltions: 

 A function v ϵ  is called a viscosity supersolution of equation 

40 if 

,   

and for any v’ ϵ , whenever v - v’ attains a local minimum at 

, we have 

 

 Similarly, a function v ϵ  is called a viscosity subsolution of 

Equation 42 if 

,   

and for any v’ ϵ , whenever v - v’ attains a local maximum at 

, we have 

. 

Finally, in order to relate the super- and subsolutions of Equation 42 to the value 

function, it is important to define the super- and subdifferentials. 
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Definition: Super- and Subdifferentials:  

The superdifferential is given by: 

 

and the subdifferential is given by: 

 

The super- and subsolutions and the super- and subdifferentials notions can be related to 

the value function by the following theorem. 

Theorem 2:  

 The value function Vϵ  is the only function that 

 satisfy the following: 

 

 Since theorem 2 is derived from Bellman‟s optimality principle, the two 

assumptions made when Bellman‟s optimality principle was derived must also hold for 

theorem 2.  
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Maximum Principle Approach 

 Instead of determining the optimal control strategy for an entire family of 

problems, the Maximum Principle utilizes information about the starting and termination 

conditions along with the Hamiltonian to determine a particular solution to the optimal 

control problem. In essence, the Maximum Principle constructs only a single optimal 

trajectory instead of deriving the value of the problem over the entire state space.  

 The maximum principle relies on the zero-derivative condition for the 

unconstrained optimization problem and the Karush-Kuhn-Tucker condition for the non-

linear constrained optimization condition to establish a set of necessary conditions for an 

optimal solution. As mentioned in the dynamic programming subsection, the Hamiltonian 

is given by: 

. 

 The maximum principle for a non-stochastic optimization problem described by 

Equation 39 and Equation 40, is given by the following set of differential equations: 
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where U is the set of admissible controls for which  is measureable. It should be noted 

that the number of boundary conditions must equal the number of differential equations, 

that is, if n differential equations must be solved, the  and  constraints must 

provide at least n boundary conditions.  

 In order to derive the above system of equations, the following three assumptions 

must hold: 

1. (U, d) is a separable metric space. 

2. f(), L(), and  are measureable, and there , k > 0 and a modulus of 

continuity  such that for ,

 or  , 

 

3. f(), L(), and  are C
1
 continuous in x, and there exist a modulus of continuity 

 such that for ,  or 

 , 

 

  

 The maximum principle is a very powerful tool to solve optimal control problems; 

however, since some of the boundary conditions are given as initial conditions and others 
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at termination, solving the system of differential equations is not easy. In addition, the 

differentiability assumption may not be a valid assumption for a particular problem. 

 The mixed initial and final boundary constraints problem, can be solved using the 

shooting method [40, 41]. The shooting method approach attempts to iteratively convert 

the given two-point boundary value problem into an initial value problem, by 

successively guess initial values and, based on the resulting solution, improve the guess 

until a suitable solution is reached. Another approach to solving the two-point boundary 

value problem, is to rely on Adomian decomposition as described in [39].  

Minimum Time Problems 

 Minimum time problems are a special case of the optimization problem described 

by equation 38 and 39. The objective is to reach a given goal as fast as possible, that is, 

the termination time is not given but is instead a variable that must be minimized. A 

typical minimum time cost function is given in Equation 41.  

 One of the properties of the minimum-time problem that distinguishes it from 

other optimal control problems is the termination condition. In a fixed time problem, time 

is used as a termination condition; however, since no final time is given in the minimum-

time problem, a different termination condition must be provided: 

 

Minimum-Time Maximum Principle Formulation 
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 In a minimum-time optimal control problem, L = 1 and υ = 0, which implies that 

the Maximum principle formulation can be changed to: 

  (43) 

 Notice that the termination condition has changed due to the change in the 

termination condition. When time was used as a termination condition, the following 

expression was used to determine the value of the costate  at termination: 

 

 However, since we have introduced a constraint at termination, the new 

expression becomes: 

 

 However the additional condition introduced into the problem adds a term into the 

cost variation and by ensuring that this term is zero we obtain the expression, 
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as given in equation (42). 

Minimum-Time Hamilton-Jacobi-Bellman Formulation 

 The Hamilton-Jacobi-Bellman equation does not change significantly in the 

minimum-time problem. The system to be solved is expressed by the following system, 

 

 The termination condition , provides the boundary conditions 

needed to back-propagate the solution in time. In essence, the termination condition can 

be viewed as an interface that is being propagated backwards in time until it covers a 

predetermined part of the state space. 
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