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0. Specific Aims 
 
Efforts to treat Alzheimer’s disease and other 
forms of dementia continue to make exciting 
progress. However, the absence of approved 
effective treatment options available to the 
exponentially growing number of patients is an 
increasingly deafening silence.  
 
This study contributes to the alternative strategy 
of developing sensitive diagnostics that allow 
clinicians to prevent the onset of severe 
symptoms altogether. It does so by applying a 
comprehensive series of neurocognitive 
assessments to old age and young age cohorts to 
produce profiles of neurocognitive health for 
each individual. Individuals also undergo a 
memory recall task where response time 
variability is recorded. Data from the 
neurocognitive assessments will be incorporated 
into a hierarchical linear model to investigate 
their relation to intra-individual variability in 
response time whilst accounting for their nested 
data structure. In this way, I contribute to the 
investigation of intra-individual variability in 
response time as a potential cognitive marker of 
early-stage cognitive impairment. 
 
1. Introduction 
1.1 Dementia: a growing problem 
 
In 2013, when there were an estimated 5.0 million 
individuals aged 65 years or older diagnosed with 
dementia or Alzheimer’s disease (AD) in the 
United States, Hebert et al. (2013) predicted that 
this figure would grow to 5.8 million by 2021. 
Alarmingly, they also reported a projected 
tripling of this figure by 2050. In fact, their model 
has underestimated the growth in cases thus far – 
with the current American population living with 
dementia or AD estimated at 6.2 million (n.a., 
2021). 
 
The mission to treat and cure dementia has seen 
extensive funding and inspiring innovation, yet 
there are few successful treatments to show for 
these efforts (Yiannopoulou, 2020). Many have 
argued that this shortcoming is not attributed to 
an incorrect approach to the problem, but rather 
an approach to the incorrect problem (Opar, 

2010). Current research endeavors attempt to 
treat neurocognitive damage at an advanced stage 
through disease-modifying techniques, leading to 
daunting tasks such as the reversal of protein 
accumulation or neural degeneration 
(Yiannopoulou, 2020). However, the task would 
become much easier if we could avoid these and 
other disease mechanisms altogether. Converging 
evidence demonstrates that the pathological 
substrates of dementia and AD begin to develop 
decades before overt symptoms arise (Opar, 
2010). Accordingly, the Alzheimer’s Association 
Research Roundtable has urged research to 
address the alternative problem of developing 
more sensitive diagnostic methods (Christ et al., 
2018). Such methods promise to identify 
neurocognitive disorders in earlier stages and 
empower clinicians to develop treatment plans 
that prevent – or meaningfully delay – the onset 
of overt symptoms. 

A diagnostic-based response to the projected 
increase in dementia cases will only be effective 
through mass screening, and corresponding 
logistical barriers ought to be considered from the 
beginning of the research process. Diagnostic 
methods dependent on expensive techniques or 
inaccessible materials run the risk of not only 
failing to screen a sufficient portion of the 
population, but also exacerbate socioeconomic 
disparities by systemically excluding certain 
demographics from screening. Because of their 
behavior- and task-based acquisition, cognitive 
signatures hold potential for low-cost, mass-
reproducible diagnostic techniques. Several 
papers have reported that cognitive deficits can 
be detected several years before dementia is 
clinically diagnosed, and thus can be used for the 
early detection or prediction of dementia (Linn et 
al., 1995; Locascio et al., 1995; Pasquier, 1998; 
Alves et al., 2018). 

1.2 Intra-individual variability 

Intra-individual variability (IIV) in repeated 
cognitive measures has received growing 
attention in the field of cognitive neuroscience 
because of its frequently reported relation with 
neurocognitive impairment (MacDonald et al., 
2008). Latency-based cognitive measures – 
where the time taken to respond is a relevant 
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factor – are particularly useful for the 
investigation of IIV, as they yield a larger range 
than other cognitive scores. Because of its 
latency-based nature, response time has been 
widely used in the literature and noted to be 
particularly sensitive to individual performance 
differences (Christ et al., 2018). However, most 
studies investigating IIV in response time (IIV-
RT) have not accommodated the data’s structure 
in the most effective way. Experimental 
paradigms investigating IIV-RT often yield an 
inherently nested – or hierarchical – data 
structure, where the cognitive measures produced 
by an individual are nested within the individual 
(that is, they belong to the individual). 
Researchers have classically dealt with this 
nested data structure by aggregating the data (i.e., 
reducing the repeated measures to an average data 
point that represents the individual), thereby 
losing rich information about the details of an 
individual’s performance (Woltman et al., 2012). 

This study will elucidate the neurocognitive 
processes that determine IIV-RT through a 
comprehensive neurocognitive battery, and to 
incorporate this data into a hierarchical linear 
model that accurately accounts for nesting. In 
doing so, we will investigate the relation between 
IIV-RT, neurocognitive health, and age more 
effectively – taking a step towards the 
development of more sensitive and accessible 
diagnostic measures for the detection of early-
stage cognitive impairment. 

2. Literature Review 
2.1 Cognitive impairment & intra-individual 
variability            

As converging evidence continues to support the 
notion that the biological mechanisms of AD and 
other forms of dementia begin to occur several 
decades before the onset of overt cognitive and 
functional changes, the importance of early 
intervention becomes increasingly evident. 
Correspondingly, the Alzheimer’s Association 
Research Roundtable has stressed the urgent need 
for more sensitive diagnostic methods that can 
detect and perhaps predict cognitive and 
functional changes at the earliest stages of the 
disease mechanism (Snyder et al., 2014). Such 

tools will empower clinicians to prevent or delay 
neurocognitive damage and disease acceleration, 
rather than attempting to reverse complex disease 
pathways or merely manage symptoms. 
Converging evidence demonstrates that cognitive 
deficits can arise years before the clinical 
diagnosis of dementia, implying their usefulness 
for earlier detection (Linn et al., 1995; Locascio 
et al., 1995; Pasquier, 1998; Alves et al., 2018). 
Correspondingly, the development of diagnostic 
techniques that do not necessitate expensive 
materials and devices is feasible. 

Over the past two decades, IIV in cognitive 
measures has gained traction as a measure with 
potential for diagnostic application due to its 
relation with cognitive impairment in both 
healthy and dementia-diagnosed individuals. 
MacDonald et al. (2008) define IIV as “lawful but 
transient within-person changes in performance, 
such as trial-by-trial fluctuations on a reaction 
time task”. The investigation of IIV represents a 
shift in the literature for dementia research from 
the classical approach of examining group-level 
differences to the analysis of individual-level 
trends. Li et al. (2017) stressed the importance of 
individual-level analysis, given the marked 
heterogeneity of cognitive functioning in late 
adulthood and old age. 

This sentiment resonates with other researchers in 
the field, as IIV has been investigated through the 
variability of a variety of measures including 
trial-by-trial accuracy and day-by-day cognitive 
test scores. However, Christ et al. (2018) argued 
that “latency-based measures such as reaction 
time are particularly well-suited to IIV research 
because they have larger ranges than traditional 
cognitive test scores, thus making them more 
sensitive than traditional cognitive tests to 
individual performance differences.” 
Additionally, reaction time-based tasks are easily 
scalable to gather many samples of performance 
and, in this way, are less sensitive to re-test 
effects (Christ et al., 2018). As such, much of the 
literature regarding IIV employs IIV in reaction 
(or response) time (IIV-RT), and this will be the 
primary measure of interest in the present study. 
The remainder of this literature review will thus 
focus on IIV-RT.  
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It should be noted that IIV can be categorized into 
four main categories. Mella et al. (2013) describe 
these as, “Short-term or trial-to-trial, within-task 
variability, or inconsistency, denoting transient 
and rapid fluctuations that occur over short-term 
time scales… Intra-individual variability across 
tasks, or dispersion… Relatively permanent 
alterations that evolve slowly over relatively 
long-term time scales, through training, or 
development, that is, intraindividual change… 
[and] Interindividual or between-individual 
variability, also termed diversity.” It is critical to 
keep the distinction between these categories in 
mind when reading relevant literature, as reports 
relating to one category of IIV may not 
necessarily translate to another. IIV-RT is best 
described as ‘inconsistency’, and Mella et al. 
(2013) reinforced the repeatedly reported finding 
that inconsistency in performance is associated 
with both functional and structural neural 
substrates of cognition that are more statistically 
significant than the other categories of IIV. Given 
the noted greater statistical significance of its 
relation with relevant variables, the present study 
will explicitly investigate inconsistency in 
response time. 

2.2 Structural & functional determinants of 
IIV-RT 

Mella et al. (2013) reported a noteworthy relation 
between IIV-RT and white matter integrity 
through diffusion tensor imaging (DTI) – an 
established method for the imaging of white 
matter. This study is particularly comprehensive 
because it also integrates fMRI analysis to 
reinforce its conclusions. The relevance of white 
matter integrity to cognitive functioning is 
echoed throughout the literature. Li et al. (2017) 
applied functional connectivity MRI (fcMRI) – a 
form of resting state fMRI – to establish whole-
brain connectivity maps and relate these to 
cognitive ability on an individual basis. Their 
findings stress the crucial function of long-range 
and inter-network white matter projections on 
individual cognition, relative to local and intra-
network circuits. Given the complex coordination 
between brain regions required for cognitive 
function, the relevance of white matter tracts is 
expected. Indeed, evidence shows that deficient 
white matter myelination and neural noise can 

disrupt the efficiency of information propagation 
along axons, and in this way may underlie 
inconsistency in neurocognitive performance 
(Walhovd & Fjell, 2007). Moreover, the highest 
degree of between-subject variability is observed 
in white matter projections that are relevant to 
cognition (Li et al., 2017). Mueller et al. (2013) 
similarly cited evidence of higher inter-subject 
variability in long association white matter tracts 
implicated in higher-order association and 
integration tasks. This variability must be 
accounted for during white matter analysis to 
avoid mistakenly describing inherent variability 
in healthy subjects as pathological changes. 
These findings also suggest the possibility of a 
relation between the inter-individual variability 
in neural structures and the intra-individual 
variability in neurocognitive task performance 
that the structures are implicated in. 

2.3 Neuromodulatory determinants of IIV-RT 

The relation between IIV-RT and neurocognitive 
health has also been approached from the 
molecular perspective. In their 2009 paper, 
MacDonald et al. described the widely studied 
structural and functional determinants of IIV-RT, 
which have been described in this literature 
review. However, they propose a third avenue for 
the investigation of IIV-RT – neuromodulation. 
They cite literature that demonstrated that 
dysfunctional systems of dopamine (DA) and 
acetylcholine modulation led to increased neural 
noise (Backman et al., 2006). MacDonald et al. 
(2009) specifically focused on DA, using 
previous papers based on neurocomputational 
models to support their arguments (Li & 
Lindenberger, 1999; Li et al., 2001). According 
to these models, DA facilitates responsivity of 
neural networks in activity transmission both 
between and within networks. It enhances the 
neural signal relative to background noise, 
improving the signal-to-noise ratio and 
promoting firing frequency in innervated 
neurons. Reduced DA activity results in less 
distinct cortical representations, which translates 
to impaired performance on neurocognitive 
assessments and increased IIV-RT. 

MacDonald et al. (2009) further supported the 
connection between DA activity and IIV using 



 5 

genetic evidence related to COMT, an enzyme 
that degrades extracellular DA in the frontal 
cortex. A previous paper by Stefanis et al. (2005) 
showed that Val carriers, which have more active 
COMT and thus lower prefrontal DA activity, 
had higher IIV than Met carriers, who have less 
active COMT and greater prefrontal DA activity. 
This study established links between DA levels in 
the orbitofrontal cortex, anterior cingulate cortex, 
and hippocampal complex. The orbitofrontal 
cortex is known to be critical for decision making, 
while the anterior cingulate cortex is implicated 
in error detection, attention, conflict monitoring, 
and motivation. It is also noteworthy that the 
anterior cingulate cortex has connections to 
prefrontal and parietal cortices. In general, these 
findings offer a useful perspective in providing 
more comprehensive evidence for the implication 
of neural systems in IIV, rather than 
environmental or contextual factors. They also 
offer potentially causal relationships between 
neurocognitive performance and dysregulated 
neuromodulation. While the present study will 
not be able to directly explore neuromodulatory 
systems, this literature contributes 
comprehensive support for the relevance of IIV-
RT in dementia research. 

2.4 Contribution to the literature 

Whilst the relation between IIV-RT and cognitive 
impairment has been substantially investigated 
from a variety of perspectives, there remain 
shortcomings that ought to be addressed moving 
forward. A fundamental issue with many of the 
papers referenced here is the way in which the 
data is modeled. When collecting latency-based 
data via a memory paradigm, a nested data 
structure is typically created (Bauer et al., 2013). 
This is not an issue unique to this field of study. 
The mishandling of nested data structures has 
arisen in various other fields where such 
structures are present. In these cases, this problem 
has been successfully addressed by applying 
hierarchical linear models to accommodate 
nesting more accurately from a statistical 
perspective (Hox, 2010; Woltman et al., 2012). 

The present study will investigate the relation 
between IIV-RT and neurocognitive performance 
across young age (YA) and old age (OA) cohorts. 

Participants undergo encoding of word-picture 
pairs, and later engage in an associative memory 
retrieval task where their response latency (i.e., 
response time) is measured.  

Though this has been previously studied, I plan to 
handle this dataset by applying a hierarchical 
linear model (HLM) in order to accurately 
preserve the data’s nested structure at the 
statistical level. Specifically, the repeated 
measures of response time will be treated as a 
time variable, introducing a longitudinal 
modeling perspective that will maximize the 
number of observations of response times and 
more accurately capture their sequential 
progression (Snijders & Bosker, 2004; Hox, 
2010). Through this approach, I will elucidate 
more sensitively the within- and between-level 
relations between IIV-RT, neurocognitive 
performance, and age. 

3. Methods 

3.1 Participant recruitment 

Participants were recruited from a community 
convenience sample using informational flyers. A 
preliminary screening was performed to exclude 
participants with neurological exclusions, not 
within the study’s age categories (21-35 and 60- 
75), or physical exclusions relating to data 
collection within a mock fMRI scanner. 
Neurological exclusions include non-proficiency 
in English, learning disabilities, language 
disorders, neurologic or mental illness, and 
history of strokes or heart attacks. Physical 
exclusions include claustrophobia, implanted 
metal devices, and weight over 250 pounds. 
Given that this study aims to identify indicators 
of cognitive impairment that precede current 
diagnostic tests, the data set included only 
cognitively healthy individuals, as determined by 
standard examinations.  

3.2 Participant analysis & neurocognitive 
assessments  

Participants’ demographic information was 
recorded, including years of education (YoE), 
ethnicity, race, and gender. A Mini-Mental State 
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Examination (MMSE) and Clock Drawing Test 
was performed as further screening for cognitive 
impairment that would exclude the participant 
from the study (Tombaugh & McIntyre, 1992; 
Aprahamian et al., 2009). Participants then 
underwent a cognitive battery consisting of 
several standardized examinations. The Trail- 
Making-Test (TMT) Part A measured visual 
scanning skills, attention, and processing speed, 
while TMT Part B further measured task- 
switching abilities and language-symbol 
manipulation (Gaudino et al., 1994). The 
Weschler Adult Intelligence Scale (WAIS) Digit 
Span test measured attention and short-term 
memory capacity when administered as a forward 
span, and executive function and working 
memory when administered as a backward span 
(Fink et al., 2014). Lastly, the WAIS Similarities 
test measured abstract thinking, concept 
formation, and verbal reasoning skills, while the 
WAIS Visual Puzzles test measured visual 
processing, attention, and fluid reasoning skills 
(Washington Center for Cognitive Therapy, 
2015). Table 1 displays basic information about 
the participant groups, divided into the YA and 
OA cohorts. 

Table 1. Participant Analysis | N = 38  
Sex (% Female) = 48% 
Young Age (SD)   Old Age (SD) 
N 19  N 19 
Sex (% F) 57%  Sex (% F) 35% 
Age 25.8 (3.8)  Age 64.9 (4.0) 
Age Range 21 - 35  Age Range 60 - 75 
YoE 17.1 (2.2)  YoE 15.4 (2.1) 

3.3 Encoding and retrieval  

During the encoding phase, participants learned 
120 word-picture pairs, where words were 
concrete nouns and pictures were either faces or 
houses. This process is visualized in Figure 1.  

Figure 1. Word-picture pair encoding method 

 

 

 

To increase task engagement and control for 
inconsistent memory strategies, participants were 
instructed to employ the ‘interactive imagery’ 
encoding strategy, where they describe a 
meaningful interaction between the word and the 
picture, and then rate their confidence that they 
will remember the pair in the future (Sahadevan 
et al., 2021). These encoding confidence (EC) 
ratings served as a measure of pre-test 
metamemory, also referred to as a prospective 
feeling-of-knowing (Chua et al., 2009). After 30-
60 minutes, the participants entered retrieval, 
where they underwent a recall task while in a 
mock fMRI scanner. A mock scanner was 
employed in preparation for the next phase of this 
research, which will look to replicate this study 
using an fMRI scanner. The use of a mock 
scanner allows for the use of this paper’s data as 
a pilot for the following experiment, because 
participants’ memory performance is less likely 
to differ significantly when in a real fMRI 
scanner.  

In the mock scanner, participants viewed 
previously encoded words and indicate with a 
button press whether the word had been paired 
with a face or a house, evaluating associative 
memory. This process is viewed in Figure 2. 

Figure 2. Associative memory retrieval task 

More 

specifically, their retrieval accuracy (whether 
their association is correct) and response time 
will be recorded. The order in which words were 
presented was randomized across all encoding 
and retrieval runs. Seven of the 38 participants 
did not complete all 240 retrieval trials, either 
because of technical malfunctions that began 
during the retrieval session or because of a 
delayed start time that led to conflicts with 
following mock scanner reservations. 
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3.4 Model construction 

The first step was to build a hierarchical linear 
model (HLM) for the composite cohort, including 
all YA and OA participants. All HLMs were built 
in R using the ‘lme4’ package and tested 
throughout construction using the ‘lmerTest’ 
package. The data was first organized in Excel 
and then imported to R, where it was formatted 
appropriately. The model was built by first 
defining the simplest model – the intercept-only 
model – then introducing level-1 explanatory 
variables, and finally level-2 explanatory 
variables. The individual effect of each 
explanatory variable was evaluated in a stepwise 
manner using several tests to determine whether 
the variable was significantly useful in explaining 
variance or if it should be removed from the 
model. Statistical tests included the Likelihood 
Ratio Chi-Square Test (referred to as the 
Likelihood Ratio Test, or Deviance Test), Type 3 
Analysis of Variance (ANOVA), and single-term 
deletions of random effects to generate ANOVA-
like tables (Christensen, 2020).  
 
The Likelihood Ratio Test yields a chi-square 
coefficient, which is the amount of deviance that 
is explained from one model to the next, and a p-
value, which indicates whether the amount of 
explained deviance is significant given the 
additional degrees of freedom that were 
introduced. This test also yields an Akaike 
information criterion (AIC) and Bayesian 
information criterion (BIC). Both these values 
evaluate the quality of the model’s fit; the BIC 
compares candidate models and assumes that the 
number of candidate models is fixed, whereas the 
AIC evaluates the predictive value of the current 
model to future unknown datasets (Vrieze, 2012). 
Lower AIC and BIC values are attributed to the 
model that is more likely to best fit the data.  
The Type 3 ANOVA yields a table of the model’s 
fixed effects as well as the interactions between 
fixed effects, as specified in a given model. 
Among the several calculated values are the F-
value and p-value. When associated with a p-
value that indicates significance, high F-values 
reflect a variable’s significant contribution to the 
model. The single-term deletions of random 
effects method applies a Likelihood Ratio Test to 
yield a table with p-values, chi-square 

coefficients, and AIC terms. P-values indicate 
significance when they are less than the α-value 
(α = 0.05). 
 
Note that the terms yielded by these statistical 
tests were considered collectively, rather than 
making decisions based on the outcome of a 
single parameter. Further, if tests indicate no 
significance for a variable but the inclusion of 
that variable is deemed necessary based on 
literature-backed presumptions about its 
interaction with another significant variable, then 
the non-significant variable should be included 
(Snijders & Bosker, 2004).  
 
All continuous variables except for response time 
are centered, which facilitates interpretation by 
equating the variable’s mean value across all 
observations to zero. Level-1 variables are 
centered within-cluster (CWC), whereas level-2 
variables are grand mean centered (GMC). For 
variable X with Xavg as its mean, XGMC and XCWC 
would be calculated as follows: 
 

𝑋!"# = 𝑋 − 𝑋$%&	$()*++	,-.,%,./$0+ 
𝑋#1# = 𝑋 − 𝑋$%&	2,34,-	&,%5-	,-.,%,./$0 

 
The effects of each variable are ultimately 
interpreted as a regression with other variables in 
the model. Centering allows the intercept of the 
variable’s regression slope to be interpreted as the 
variable’s average value across individuals 
(Snijders & Bosker, 2004). Response time is not 
centered because it is the outcome variable, and 
thus is not interpreted the way explanatory 
variables are. 
 
Missing values were sporadically present in the 
data set for a variety of reasons, ranging from 
technical malfunctions to participant errors. 
Missing values were imputed using a multivariate 
imputation by chained equations method via the 
‘mice’ R package. This allowed for the estimation 
of missing values based on observed values – 
rather than listwise deletion or available case 
analysis – to preserve the power of hypothesis 
tests (Snijders & Bosker, 2004).  
 
The intercept-only model (Model 0) is a linear 
equation defining the ith instance of response time 
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for the jth individual (RTij) as the mean RT across 
all individuals (the grand mean, γ00) plus or minus 
the jth individual’s variability in RT (IIV-RT, u0j) 
and the natural variability in RT between 
individuals (the residual effects, eij). 
 

𝑅𝑇!" = 𝛾## + 𝑢#" + 𝑒!" 
 
This can be represented hierarchically, where 
terms pertaining to a single individual (i.e., age 
group, test scores) are clustered within the 
individual at level-2, while terms that generally 
describe instances at the trial level (i.e., RT, trial 
number) are at level-1. To model this, the 
coefficient β0j represents level-2 for the jth 
individual and is defined as the individual’s 
variance (u0j) from the grand mean RT (γ00). RTij 
is then expressed as the intercept β0j plus the 
residual variance at level-1, eij. 
 

Model 0. 
 

𝑅𝑇!" = 𝛽#" + 𝑒!" 
𝛽#" = 𝛾## + 𝑢#" 

 
‘Fixed’ and ‘random’ effects can now be defined 
in the context of Model 0. An explanatory 
variable is said to have fixed effects if the 
intercept of its regression varies across 
individuals – indicating notable differences in the 
variable’s average value (when the variable is 
centered). Fixed effects variables will thus have 
their own intercept term (γxx). An explanatory 
variable is said to have random effects if the slope 
of its regression varies across individuals – 
indicating notable differences in the variable’s 
distribution. Random effects variables will thus 
have their variance term (uxx). Variables can have 
both fixed and random effects, or just one of the 
two. If a variable does not have significant fixed 
or random effects, it is not a ‘useful’ parameter 
for the model and should be removed. 
 
Trial-level level-1 variables were added to Model 
0 in a stepwise manner, using the described 
statistical tests to determine whether the 
introduced variable should be modeled as a fixed 
effect, a random effect, both, or neither. As will 
be detailed later, it was determined that accuracy 
at retrieval (whether the subject correctly recalled 

the word-picture association) had fixed and 
random effects (Model 1): 
 

Model 1. 
 

𝑅𝑇!" = 𝛽#" + 𝛽$"𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦!" + 𝑒!" 
𝛽#" = 𝛾## + 𝑢#" 
𝛽$" = 𝛾$# + 𝑢$" 

 
Note that the coefficient that denotes the effects 
of accuracy, 𝛽67, is defined by both an intercept 
and a variance term. 
 
Retrieval trial number (out of a total of 240 trials) 
only had fixed effects (Model 2): 
 

Model 2. 
 

𝑅𝑇!" = 𝛽#" + 𝛽$"𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦!" + 𝛽%"𝑇𝑟𝑖𝑎𝑙!"
+ 𝑒!" 

𝛽#" = 𝛾## + 𝑢#" 
𝛽$" = 𝛾$# + 𝑢$" 

𝛽%" = 𝛾%# 

Note that the coefficient that denotes the effects 
of trial number, 𝛽87, is defined by an intercept 
term but not a variance term. 

At this point, level-2 variables were added to 
Model 2 in a stepwise manner, maintain the use 
of statistical tests to guide the decision-making 
process. Level-2 variables only have one value 
per individual, and thus have no within-
individual variance. Accordingly, they can have 
fixed effects but will never have random effects. 
Furthermore, level-2 variables do not directly 
influence response time on a trial-by-trial basis. 
Rather, they ‘moderate’ the effects that trial-level 
(level-1) variables have on response time. 

Determination of certain variables as irrelevant 
due to restricted range (MMSE, Boston Naming 
Test) and low moderating effects (YoE, TMT-A) 
resulted in the exclusion of certain potential 
level-2 variables. 
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Age Group (whether the participant is in the YA 
or OA cohort) had fixed effects and moderated 
the effects of trial number. 

Model 2.1 
 

𝑅𝑇!" = 𝛽#" + 𝛽$"𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦!" + 𝛽%"𝑇𝑟𝑖𝑎𝑙!"
+ 𝑒!" 

𝛽#" = 𝛾## + 𝛾#$𝐴𝑔𝑒	𝐺𝑟𝑜𝑢𝑝" + 𝑢#" 
𝛽$" = 𝛾$# + 𝑢$" 

𝛽%" = 𝛾%# + 𝛾%$𝐴𝑔𝑒	𝐺𝑟𝑜𝑢𝑝" 

Digit Span test results had fixed effects with no 
moderator interactions: 

Model 2.2 
 

𝑅𝑇!" = 𝛽#" + 𝛽$"𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦!" + 𝛽%"𝑇𝑟𝑖𝑎𝑙!"
+ 𝑒!" 

𝛽#" = 𝛾## + 𝛾#$𝐴𝑔𝑒	𝐺𝑟𝑜𝑢𝑝"
+ 𝛾#%𝐷𝑖𝑔𝑖𝑡	𝑆𝑝𝑎𝑛" + 𝑢#" 

𝛽$" = 𝛾$# + 𝑢$" 
𝛽%" = 𝛾%# + 𝛾%$𝐴𝑔𝑒	𝐺𝑟𝑜𝑢𝑝" 

TMT-B results had fixed effects and moderated 
the effects of trial number: 

Model 2.3 
 

𝑅𝑇!" = 𝛽#" + 𝛽$"𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦!" + 𝛽%"𝑇𝑟𝑖𝑎𝑙!"
+ 𝑒!" 

𝛽#" = 𝛾## + 𝛾#$𝐴𝑔𝑒	𝐺𝑟𝑜𝑢𝑝"
+ 𝛾#%𝐷𝑖𝑔𝑖𝑡	𝑆𝑝𝑎𝑛"
+ 𝛾#&𝑇𝑀𝑇	𝐵" + 𝑢#" 

𝛽$" = 𝛾$# + 𝑢$" 
𝛽%" = 𝛾%# + 𝛾%$𝐴𝑔𝑒	𝐺𝑟𝑜𝑢𝑝" + 𝛾%&𝑇𝑀𝑇	𝐵 

Finally, WAIS Similarities test results had fixed 
effects and also moderated the effects of trial 
number: 

 

 

Model 2.4 
 

𝑅𝑇!" = 𝛽#" + 𝛽$"𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦!" + 𝛽%"𝑇𝑟𝑖𝑎𝑙!"
+ 𝑒!" 

𝛽!" = 𝛾!! + 𝛾!#𝐴𝑔𝑒	𝐺𝑟𝑜𝑢𝑝" + 𝛾!$𝐷𝑖𝑔𝑖𝑡	𝑆𝑝𝑎𝑛"
+ 𝛾!%𝑇𝑀𝑇	𝐵" + 𝛾!&𝑊𝐴𝐼𝑆	𝑆𝑖𝑚" + 𝑢!" 
𝛽$" = 𝛾$# + 𝑢$" 

𝛽%" = 𝛾%# + 𝛾%$𝐴𝑔𝑒	𝐺𝑟𝑜𝑢𝑝" + 𝛾%&𝑇𝑀𝑇	𝐵"
+ 𝛾%'𝑊𝐴𝐼𝑆	𝑆𝑖𝑚" 

The finalized composite model (Model 2.4) was 
used to produce graphs and analyze the 
relationships between involved variables. 

3.5 Age group analysis 

To investigate differences between the YA and 
OA cohorts, I split the composite cohort into 
separate YA and OA data sets and applied each 
to Model 2.4 separately. The IIV-RT of each 
cohort was taken to be the level-2 variance term, 
given that individuals are represented in the 
model at level-2.  

3.6 Split-cohort analyses 

To further investigate this data set, I performed 
two sets of split-cohort analyses: one to 
investigate the effects of performance (in terms of 
retrieval accuracy) and one to investigate the 
effects of early versus late trials. 

For the performance-wise split, I first calculated 
each participants’ average accuracy (which I will 
call their ‘performance’). Accuracy was encoded 
as 0 for a wrong association and 1 for a correct 
association. Correspondingly, performance was 
rated as a decimal between 0 and 1, where higher 
performers (those who were accurate more often) 
rated closer to one. I then found the average 
performance for each age cohort and then used 
this value to separate them into four sub-cohorts: 
a high performing YA cohort, a low performing 
YA cohort, a high performing OA cohort, and a 
low performing OA cohort. Each of these cohorts 
were then modeled using the same model that was 
constructed for the composite (all OA and all YA) 
data set (Model 2.4).  
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For the trial-wise split, I considered the first 120 
trials to be ‘early’ and the final 120 trials to be 
‘late’. The result was another four sub-cohorts: an 
early trial YA cohort, a late trial YA cohort, an 
early trial OA cohort, and a late trial OA cohort. 
Again, each of these cohorts were modeled using 
Model 2.4. Not that in the trial-wise split 
participants are not being segregated within the 
age cohorts. Rather, each participant’s data is 
being halved and analyzed separately. This is 
contrast to the performance-wise split, where 
participants were segregated within the age 
cohorts such that each sub-cohort consists of a 
distinct set of participants. 

For all models, IIV-RT was taken to be 
represented by the level-2 variance term, because 
the individual is represented at level-2. 

4. Results 

4.1 Insights during composite model 
construction 

The Likelihood Ratio Test was the primary test 
employed when including or excluding 
explanatory variables, given that it provides a 
variety of parameters that are relevant to the 
decision-making process. Table 2 provides the 
key parameters calculated through the Likelihood 
Ratio Test for all steps of model construction. 
 
Table 2. Results of Likelihood Ratio Test Across 
Models 
 Deviance p-value AIC BIC 
Model 0 21100 N/A 21106 21127 
Model 1 20643 2.20E-16 20655 20698 
Model 2 20470 2.20E-16 20484 20533 
Model 2.1 20445 2.88E-06 20463 20526 
Model 2.2 20440 2.41E-02 20460 20530 
Model 2.3 20414 2.60E-06 20438 20522 
Model 2.4 20402 2.71E-03 20430 20528 

Overall, the parameters included in Model 2.4 
decreased the unexplained deviance from Model 
0 by 698 and decreased AIC and BIC scores by 
676 and 599, respectively. The decrease in these 
scores indicates the development of a model that 
more accurately fits the given data set and 

accounts for previously unexplained variability in 
response time. Importantly, these values are 
paired with p-values consistently lower than the 
alpha value of 0.05, indicating that each model 
was significantly more ‘fit’ than its predecessor. 
Models that were excluded based on results from 
the Likelihood Ratio Test are not displayed, but 
the above parameters contributed to decisions to 
exclude models where encoding confidence, 
MMSE, WAIS Visual Puzzles, and other 
variables were included. 

Table 2 also denotes variables that were 
particularly useful. The inclusion of accuracy as 
a fixed and random effect (Model 1), for example, 
decreased deviance by 457, AIC by 451, BIC by 
429, and had a p-value of 2.20E-16 – a very 
significant test result. The addition of trial 
number as a fixed effect (Model 2), age group as 
a fixed effect and moderator of the trial number 
variable (Model 2.1), and TMT-B as a fixed 
effect and moderator of the trial number variable 
(Model 2.3) also had particularly significant p-
values.  

4.2 Insights from composite model 

Table 3 displays the results of a Type 3 ANOVA 
test on the final model (Model 2.4). Note that the 
p-values are necessary as context for what size F-
value is considered significant. 

Table 3. ANOVA for Model 2.4 

 F-value p-value <α 
Accuracy 9.8752 3.50E-03 Yes 
Trial Number 174.60 2.20E-16 Yes 
Age Group 0.0003 9.87E-01 No 
Digit Span 7.4635 9.96E-03 Yes 
TMT-B 3.7514 6.27E-02 No 
WAIS Sim. 2.2143 1.47E-01 No 
Trial Num : AG 52.030 5.94E-13 Yes 
Trial Num : TMT-B 13.130 2.92E-04 Yes 
Trial Num : WAIS Sim. 9.2651 2.34E-03 Yes 

This statistical test is useful because it details the 
significance and explanatory power of all the 
included variables in the context of each other, 
rather than in the sequential order that they were 
individually added (as shown in Table 2). The 
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results shown in Table 3 also highlight the 
important point that not all added variables were 
significant for their direct explanatory power, but 
for their significant moderation of other variables 
(moderation is denoted in tables as *moderated 
variable*:*moderator variable*). For example, 
age group membership, TMT-B scores, and 
WAIS Similarities scores all have p-values that 
denote insignificant fixed effects (0.987, 0.063, 
and 0.147, respectively). However, all three 
variables significantly moderate the fixed effects 
of trial number (5.94E-13, 2.92E-04, and 2.34E-
03, respectively). 

Table 3 also demonstrates the comparatively 
significant contribution to the model of trial 
number. This variable’s F-value (174.60) is more 
than triple the next highest (52.030) and is 
correspondingly accompanied by a highly 
significant p-value (2.20E-16). 

Table 4. Single-Term Deletion for Model 2.4 
 p-value Chi-Sq. Coef. 
Accuracy 2.20E-16 420.09 

 
While the Type 3 ANOVA confirmed the 
significance of accuracy as a fixed effect (F-value 
= 9.8752; p-value = 3.50E-03), the single-term 
deletion of random effects method confirms its 
additional significance as a random effect. Chi-
square coefficients are produced by the chi-
square test, which is a part of the Likelihood 
Ratio Test. These coefficients represent the 
deviance that is explained by the inclusion of 
each random effect. The inclusion of accuracy’s 
random effects reduced deviance by 420.09, a 
substantial portion of the total deviance explained 
(698). The produced p-value (2.20E-16) serves to 
emphasize the significance of accuracy’s random 
effects. Together, the data presented in Tables 3 
and 4 reveal that, though accuracy is significant 
in both its fixed and random effects, the latter are 
more critical to the model. 
 
4.3 Age cohort analysis 
 
The composite model was segregated into OA 
and YA models in order investigate in greater 
detail how age group affects IIV-RT and its 
implicated variables. Table 5 displays the results 

of a Type 3 ANOVA on Model 2.4 for the YA 
cohort. Note that, because all participants in this 
analysis belong to the same age group, the age 
group variable is redundant and thus not included. 
 

Table 5. ANOVA for YA Model 
 F-value p-value <α 
Accuracy 7.0585 1.78E-02 Yes 
Trial Number 118.14 2.20E-16 Yes 
Digit Span 3.8966 0.06668 No 
TMT-B 2.8490 0.11363 No 
WAIS Sim. 0.0002 0.98892 No 
Trial Num : TMT-B 3.4070 0.06499 No 
Trial Num : WAIS Sim. 1.7713 0.18329 No 

 
There are notable differences between Tables 3 
and 5. Namely, only trial-level variables were 
significant in determining response time 
(Accuracy F-value = 7.0585, p-value = 0.0178; 
Trial Num F-value = 118.14, p-value = 2.20E-
16). None of the level-2 cognitive assessment 
scores significantly contributed to the model. 
None of these level-2 variables significantly 
moderated the effects at level-1, either.  
 
As shown in Table 6, a single-term deletion of 
random effects method reveals that, as was the 
case with the composite model, the random 
effects of accuracy (p-value = 2.20E-16) are more 
significant than its fixed effects (p-value = 1.78E-
02), although both are significant. 

 
Table 7 displays the results of a Type 3 ANOVA 
on Model 2.4 for the OA cohort. 
 

Table 7. ANOVA for OA Model 

 F-value p-value <α 
Accuracy 2.8617 0.10774 No 
Trial Number 2.2653 0.13238 No 
Digit Span 2.1721 0.16149 No 
TMT-B 2.5323 0.13343 No 
WAIS Sim. 7.3785 0.01603 Yes 
Trial Num : TMT-B 9.7660 0.00179 Yes 
Trial Num : WAIS Sim. 10.087 0.00150 Yes 

Table 6. Single-Term Deletion for YA Model 

 p-value Chi-Sq. Coef. 
Accuracy 2.20E-16 143.75 
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The results of this table are almost 
complementary to those of Table 5. Here we see 
that no trial-level variables were significant in 
determining response time. However, WAIS Sim. 
scores significantly contributed to the model (F-
value = 7.3785; p-value = 0.01603) and 
moderated the effects of trial number (F-value = 
10.087; p-value = 0.00150). TMT-B scores also 
significantly moderated the effects of trial 
number (F-value =9.7660; p-value = 0.00179). 
 
4.4 Performance-wise split-cohort analysis 
 
The average performance (ranging from 0 for 
100% inaccurate to 1 for 100% accurate) was 
0.773 for YA participants and 0.670 OA 
participants. The ratio of below-average to 
above-average performers was 7-12 for the YA 
cohort and 10-9 for the OA cohort. For both OA 
and YA participants, low performers (LP) had 
greater IIV-RT (LP OA = 0.461 sec.; LP YA = 
0.602 sec.) than high performers (HP; HP OA = 
0.343 sec.; HP YA = 0.311 sec.). For reference, 
the average response times were equal for both 
cohorts (2.33 sec.). See appendix for scatter plots 
of response time by trial number for each 
individual in the LP OA (Supp. Fig. 1), HP OA 
(Supp. Fig. 2), LP YA (Supp. Fig. 3), and HP YA 
(Supp. Fig. 4) sub-cohorts. 
 
Table 8 displays the results of a Type 3 ANOVA 
on the LP YA and HP YA models. The 
significance of trial number in determining 
response time seen in the general YA cohort 
model (Table 5) persists across both LP (F-value 
= 67.36; p-value = 5.26E-16) and HP (F-value = 
40.11; p-value = 2.82E-10) YA participants. 
Accuracy was a significant determinant of 
response time for HP YA participants (F-value = 
13.81; p-value = 0.007), as were Digit Span 
scores (F-value = 8.414; p-value = 0.019). 
Neither of these variables were significant for LP 
YA participants. Notably, the lack of between-
level interactions observed in the general YA 
cohort model persists across both LP and HP YA 
participants. 
 
 
 
 

 
Table 8. ANOVA for LP and HP YA Models 

 F-value p-value <α 
----------------Low Performers (LP) ---------------- 

Accuracy 0.015 0.906 No 
Trial Number 67.36 5.26E-16 Yes 

Digit Span 0.115 0.757 No 
TMT-B 1.144 0.363 No 

WAIS Sim. 0.195 0.689 No 
Trial Num : TMT-B 0.402 0.526 No 
Trial Num : WAIS 

Sim. 3.224 0.073 No 
----------------High Performers (HP)---------------- 

Accuracy 13.81 0.007 Yes 
Trial Number 40.11 2.82E-10 Yes 

Digit Span 8.414 0.019 Yes 
TMT-B 5.204 0.051 No 

WAIS Sim. 0.232 0.643 No 
Trial Num : TMT-B 0.469 0.493 No 
Trial Num : WAIS 

Sim. 0.315 0.575 No 
  
Table 9 displays the results of a Type 3 ANOVA 
on the LP OA and HP OA models. 
 
Table 9. ANOVA for LP and HP OA Models 

 F-value p-value <α 
----------------Low Performers (LP) ---------------- 

Accuracy 0.047 0.833 No 
Trial Number 0.184 0.668 No 

Digit Span 0.282 0.614 No 
TMT-B 0.219 0.656 No 

WAIS Sim. 0.363 0.568 No 
Trial Num : 

TMT-B 8.354 0.004 Yes 
Trial Num : 
WAIS Sim. 0.755 0.385 No 

----------------High Performers (HP)---------------- 
Accuracy 62.21 6.75E-05 Yes 

Trial Number 4.037 0.045 Yes 
Digit Span 0.093 0.772 No 

TMT-B 3.365 0.124 No 
WAIS Sim. 0.251 0.639 No 
Trial Num : 

TMT-B 4.554 0.033 Yes 
Trial Num : 
WAIS Sim. 8.895 0.003 Yes 

 
As was the case for the general OA cohort, trial 
number is not a significant determinant of 
response time for LP OA participants. However, 
it is significant for HP OA participants (F-value 
= 4.037; p-value = 0.045). Similarly, accuracy is 
not a significant determinant of response time for 
LP OA participants, but it is very significant for 
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HP OA participants (F-value = 62.21; p-value = 
6.75E-05). 
 
There is also a continuation of the between-level 
interactions observed in the general OA cohort 
(Table 7). TMT-B scores significantly moderated 
the effects of trial number in both LP (F-value = 
8.354; p-value = 0.004) and HP participants (F-
value = 4.554; p-value = 0.033). WAIS Sim. 
scores significantly moderated the effects of HP 
OA participants only (F-value = 8.895; p-value = 
0.003). 
 
4.5 Trial-wise split-cohort analysis 
 
Within the YA cohort, early trials were associated 
with greater IIV-RT (0.375 sec.) than late trials 
(0.218 sec.). With the OA cohort, early trials were 
associated with lesser IIV-RT (0.289 sec.) than 
late trials (0.898 sec.). See appendix for scatter 
plots of response time by trial number for each 
individual in the early trial OA (Supp. Fig. 5), late 
trial OA (Supp. Fig. 6), early trial YA (Supp. Fig. 
7), and late trial YA (Supp. Fig. 8) sub-cohorts. 
 
Table 10 displays the results of a Type 3 ANOVA 
on the early trial (ET) YA and late trial (LT) YA 
models. 
 
Table 10. ANOVA for ET and LT YA Models 

 F-value p-value <α 
---------------------Early Trial (ET)-------------------- 

Accuracy 7.002 0.018 Yes 
Trial Number 7.331 0.007 Yes 

Digit Span 2.417 0.14 No 
TMT-B 1.501 0.238 No 

WAIS Sim. 0.596 0.451 No 
Trial Num : TMT-B 0.172 0.678 No 
Trial Num : WAIS 

Sim. 8.477 0.004 Yes 
---------------------Late Trial (LT)-------------------- 

Accuracy 8.177 0.014 Yes 
Trial Number 3.731 0.054 No 

Digit Span 5.306 0.043 Yes 
TMT-B 3.859 0.074 No 

WAIS Sim. 0.164 0.693 No 
Trial Num : TMT-B 1.592 0.207 No 
Trial Num : WAIS 

Sim. 1.837 0.175 No 
 

The significance of trial number in determining 
response time for YA participants reported in 
Tables 5 and 8 is again seen in early trials (F-

value = 7.331; p-value = 0.007), but not late trials. 
Similarly, WAIS Sim. scores significantly 
moderated the effects of trial number in early (F-
value = 8.477; p-value = 0.004) but not late trials. 
Accuracy, however, significantly determined 
response times across both early (F-value = 
7.002;, p-value = 0.018) and late (F-value = 
8.177; p-value = 0.014) trials. 

Table 11 displays the results of a Type 3 ANOVA 
on the ET OA and LT OA models. 

Table 11. ANOVA for ET and LT OA Models 
 F-value p-value <α 

---------------------Early Trial (ET)-------------------- 
Accuracy 0.264 0.123 No 

Trial Number 0.025 0.874 No 
Digit Span 2.449 0.139 No 

TMT-B 2.435 0.139 No 
WAIS Sim. 11.77 0.003 Yes 
Trial Num : 

TMT-B 2.382 0.123 No 
Trial Num : 
WAIS Sim. 13.59 2.33E-04 Yes 

---------------------Late Trial (LT)-------------------- 
Accuracy 24.42 1.98E-04 Yes 

Trial Number 4.645 0.031 Yes 
Digit Span 3.631 0.076 No 

TMT-B 2.456 0.138 No 
WAIS Sim. 2.605 0.126 No 
Trial Num : 

TMT-B 0.192 0.661 No 
Trial Num : 
WAIS Sim. 0.08 0.777 No 

For OA participants, trial number significantly 
determined response time in late trials (F-value = 
4.645; p-value = 0.031) but not in early trials. 
Similarly, accuracy very significantly determined 
response time in late trials (F-value = 22.42; p-
value = 1.98E-04), but not in early trials. 
Conversely, WAIS Sim. scores very significantly 
moderated the effects of trial number in early 
trials (F-value = 13.59; p-value = 2.33E-04), but 
not late trials. 

5. Discussion 

The results reported in this paper provide further 
support for the relation between IIV-RT and 
neurocognitive health. More specifically, these 
results may be suggestive of a difference in 
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cognitive strategy between age groups. While YA 
participants seem to approach the associative 
memory retrieval paradigm in a highly task-
dependent manner, OA participants seem to rely 
more on their cognitive reserve. This is in line 
with existing evidence that OA individuals have 
a greater CR than YA individuals (Zihl et al., 
2014). These differences are evident in several 
facets of the presented analyses, which I will now 
discuss. 

5.1 Age group 

The evidence that contributes to this hypothesis 
in the most straightforward manner is that 
presented in Tables 5-7. Table 5 demonstrates 
that, when the YA cohort was modeled 
independently of the OA cohort, response time 
was significantly determined by accuracy and 
trial number and nothing else. Accuracy and trial 
number are the only two variables in the 
presented models that correspond to the task that, 
at any given trial, a participant is engaged with. 
That is, while level-2 variables that correspond 
with a participant’s age or neurocognitive health 
are static across all 240 trials and thus not task-
dependent, accuracy and trial number change as 
the 240 trials progress. 

In contrast, when the OA cohort was modeled 
independently of the YA cohort, neither of the 
task-dependent variables significantly 
determined response time. Instead, WAIS Sim. 
and TMT-B scores’ interactions with trial number 
were significant. Remember that HLMs are 
structured such that level-2 variables cannot 
directly determine the outcome variable 
(response time). Instead, they exert their 
influence on the outcome variable through the 
moderation of level-1 variables, which is possible 
even when such variables are not themselves 
significant. 

These results directly suggest that during the 
recall process, after accounting for variables that 
are task-dependent and those that pertain to the 
cognitive reserve, YA participants use strategies 
that implicate task-dependent variables whereas 
OA participants use strategies that utilize their 
cognitive reserve. 

5.2 Trial number 

Trial number, a variable that essentially 
represents the ‘location’ of a participant across 
the 240 retrieval trials, proved to be a highly 
significant variable (Table 3). Although this can 
be interpreted as a mere demonstration that 
response times are not static across trials, it also 
indicates that any given response time is 
significantly determined by its context. In other 
words, in attempting to predict what a response 
time will be, it is useful to consider whether the 
response time is early or late in the 240 trials. 
This, in and of itself, is a critical takeaway 
because it demonstrates that there is value to the 
HLM approach. Without this approach, a 
response time’s location is lost in the process of 
aggregation, where all response times are 
collapsed into a single data point. 

It is also noteworthy that all significant 
moderating interactions involved trial number. 
No level-2 variables significantly moderated the 
effects of retrieval accuracy. However, all except 
for digit span significantly moderated trial 
number. The fixed effects correlation matrix from 
the composite model (see Supplemental Table 1) 
shows that people with lower TMT-B scores (i.e., 
people that completed the task faster and thus 
performed better) have response times that are 
influenced by response time to a lesser extent. 
Similarly, people with higher (i.e., better) WAIS 
Sim. scores have response times less susceptible 
to trial number. Together, these two interactions 
provide evidence that individuals that performed 
better on neurocognitive assessments (and are 
assumed to be more neurocognitively healthy) 
have more stable response time patterns. 

5.3 Early-to-late trial adaptations 

The role of trial number was investigated further 
by performing a trial-wise split-cohort analysis. 
This analysis revealed a notable number of 
differences in relevant variables between early 
and late trials. It also yielded evidence for the 
previously mentioned concept of task-
dependence versus cognitive reserve. 
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Table 10 shows that the response times of YA 
participants were significantly determined by 
accuracy and trial number in early trials, 
reflecting a high degree of task-dependence in the 
production of response times. No level-2 
variables were themselves significant for the 
early trial YA model, although higher WAIS Sim. 
scores did moderate trial number such that it had 
a lesser effect on response time (see 
Supplemental Table 2). In contrast, the response 
times of OA participants in early trials were not 
determined by task-dependent variables (Table 
11). Instead, WAIS Sim. scores were the only 
significant variable. These results suggest that 
OA participants depend less on task-dependent 
factors as they produce response times, and more 
on static measures of their cognitive ability – 
contributing to the hypothesis that they resort to 
cognitive reserve more than YA participants.  

As participants progressed through the late trials, 
however, the significance of variables changed. 
Task-dependent variables became more 
prominent in the OA cohort, with accuracy and 
trial number both becoming more significance, 
whilst WAIS Sim. scores lost their significance. 
Although trial number lost its significance in the 
YA cohort’s late trials, accuracy remained an 
important factor. These changes suggest that 
factors associated with later trials, such as 
fatigue, cause participants to adapt towards more 
task-dependent strategies such that a trial’s 
context and accuracy affect response time to a 
greater extent. 

An individual’s ability to rely on their cognitive 
reserve for a task is as dependent on the cognitive 
load of the task as it is on the individual’s 
cognitive health (Montemurro et al., 2019). If we 
assume that later trials are associated with a 
greater cognitive load – due to increased recall 
difficulty, distractions, and fatigue – we might 
expect that OA participants’ dependence on their 
cognitive reserve would leave them vulnerable to 
late-trial performance that resemble greater 
cognitive deficits. Indeed, the OA cohort’s IIV-
RT increased from 0.289 seconds in early trials to 
0.898 in late trials. Meanwhile, the YA cohort – 
presumably less dependent on cognitive reserve – 
decreased their IIV-RT from 0.375 seconds to 
0.218 seconds between early and late trials. 

This finding has several implications. First, we 
must consider that, because the cognitive load of 
a task and the cognitive health of an individual 
affect cognitive reserve in similar ways, studies 
must be weary that differences in cognitive load 
represent a potential confound when attempting 
to measure cognitive deficits. In this study, it is 
possible that the increase in cognitive load from 
early to late trials exacerbates the increase in OA 
IIV-RT that may otherwise have been fully 
attributed to OA participants’ greater cognitive 
deficits. On the same note, however, if we accept 
that differences in cognitive load interact with 
cognitive reserve similarly to differences in 
cognitive deficits, then these results may be taken 
as preliminary evidence that IIV-RT can 
successfully differentiate degrees of cognitive 
load (and thus cognitive deficits) in cognitive 
reserve-dependent tasks. Future experiments may 
build on this by engaging the cognitive reserve 
while controlling for cognitive load and seeing if 
IIV-RT successfully differentiates degrees of 
cognitive deficits. 

5.4 Differences between low and high 
performers 

The other significant level-1 variable was 
retrieval accuracy. Although it is incorporated in 
a different manner than the level-2 cognitive test 
scores, retrieval accuracy is itself also a measure 
of neurocognitive health. Ultimately, one would 
expect individuals that remember the encoded 
word-picture pairs better to have healthier 
underlying neural substrates, and thus lower IIV-
RT (Walhovd & Fjell, 2007). 

The performance-wise split-cohort analysis 
found just this (Tables 8 and 9). Across both YA 
and OA cohorts, those who recalled the word-
picture pairs with above-average accuracy had 
lower IIV-RT than those who had below-average 
accuracy. This serves as another demonstration 
that IIV-RT is a useful measure of cognitive 
ability and can successfully differentiate between 
high and low performers of a cognitive task. 

The performance-wise split-cohort analysis also 
demonstrated that, across YA and OA cohorts, 
accuracy only significantly determined response 
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time for high performers. That is, whether a given 
recall was correct or incorrect was not a relevant 
factor in determining the response time of that 
recall for low-performing individuals, regardless 
of age. This suggests that high performers engage 
active retrieval strategies that implicate 
conscious, knowledge-based processes that are 
affected by success (culmination in a correct 
response). In contrast, low performers may 
engage in a retrieval strategy that is simpler and 
less associated with the access of encoded 
knowledge, where the ultimate success of 
retrieval is less relevant. 

Yonelinas and Jacoby (1994) have proposed a 
model for distinguishing the neural processes of 
recall based on recollection versus familiarity, 
called the ‘two-factor theory of recognition 
memory’. They argue that recollection is a 
conscious process that involves knowledge-based 
memory (i.e., descriptions), whereas familiarity 
is a non-conscious process involving simple 
memory (i.e., discriminations) without 
qualitatively descriptive information.  

Importantly, recollection is associated with less 
mistakes at recall (Jacoby, 1991). It would thus 
be consistent that low performers engage in the 
more error-prone process of familiarity-based 
recall, whilst high performers engage in the more 
accurate recollection-based recall. Furthermore, 
whereas the only significant level-2 variable 
across the two low performer models was TMT-
B scores’ moderation of trial number in the OA 
cohort, there was demonstrated significance of 
Digit Span scores for YA high performers and 
significant moderations of trial number by TMT-
B and WAIS Sim. scores for OA high performers. 
This increased significance of cognitive 
assessment scores is suggestive of greater 
involvement of cognitive processes in high 
performers, relative to low performers. This is 
consistent with Yonelinas & Jacoby’s proposition 
that recollection is a more cognitively complex 
process than familiarity.  

5.5 Conclusion 

This paper has provided evidence that lower IIV-
RT is significantly related to performance on 

cognitive assessments such as TMT-B and WAIS 
Similarities that reflects greater neurocognitive 
health. It has also demonstrated that individuals 
that recall previously encoded word-picture pairs 
with above-average accuracy have lower IIV-RT 
than below-average counterparts within their age 
group. 

By segregating the initial HLM by age, the results 
of this study have suggested that, during an 
associative memory recall task, YA individuals’ 
response times are determined more by task-
dependent variables than variables pertaining to 
their cognitive reserve, whereas the opposite is 
true for OA individuals. Moreover, a further 
segregation of the age-specific HLMs into early 
versus late trials revealed that OA participants’ 
suggested dependence on cognitive reserve 
leaves them vulnerable to the effects of an 
increased cognitive load, resulting in IIV-RT 
scores that resemble that of greater cognitive 
deficits. 

Finally, a segregation of age specific HLMs into 
high versus low performers suggested that high 
performing individuals utilize a more cognitively 
demanding recall strategy called recollection, 
whereas low performing individuals utilize a less 
cognitively demanding recall strategy called 
familiarity. 

5.6 Future Directions 

There are elements of the reported data that 
remain to be explained, either through further 
theoretical consideration or experimental 
investigation. For example, the YA cohort 
surprisingly had higher IIV-RT in the early 
cohorts than in the late cohorts – contradicting the 
expected effects of fatigue. Also, to better 
understand differences in retrieval strategies 
between high and low performers, future 
instantiations of this recall paradigm should 
prompt participants to rate how confident they are 
in their response after each retrieval trial. These 
confidence ratings will provide insight into 
whether a given response was intentionally given 
based on conscious recollection or non-conscious 
familiarity.  
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The logical next step for this project is to move 
past the dependence on neurocognitive 
assessments, which are ultimately secondary 
measures of neural health, and collect direct 
measures of neural health via functional magnetic 
resonance imaging (fMRI). Neurocognitive 
assessment scores should not be abandoned but 
combined with fMRI data in a HLM of similar 
structure for a more comprehensive investigation 
of the relation between IIV-RT and neural health.  

Mueller et al. (2013) reported a correlation 
between brain folding pattern and functional 
variability – where brain folding pattern is 
defined by sulcal depth variability. They 
replicated existing findings that sulcal depth 
variability was highest in the lateral frontal and 
temporoparietal regions. The lateral frontal 
region contains the inferior frontal gyrus, which 
is involved in language processing. The left and 
right lateral temporoparietal regions are 
implicated in language comprehension and the 
ventral attention network, respectively. These are 
cognitive processes that are critical to many 
memory paradigms, including the one engaged in 
the present study. Thus, these ROIs should be 
specifically investigated in future projects, along 
with whole-brain analyses to identify any 
potential ROIs that are unique to this 
experimental paradigm. 

White matter integrity is evidently implicated in 
the neural substrates of IIV-RT, and it should 
certainly be investigated in future studies using 
diffusion tensor imaging techniques. However, it 
is also important to investigate the relationship 
between IIV and task-related brain function. 
MacDonald et al. (2008) account for task-related 
brain function by first performing whole-brain 
fMRI analysis to identify regions of interest 
(ROIs) that are (statistically) significantly 
activated during individual trials, then 
investigating correlations between the degree of 
activation of these ROIs and degree of IIV-RT. 
They reported several ROIs, including the 
supramarginal gyrus – which again implicates 
folding patterns – and the hippocampal complex.  

This study provides an ideal steppingstone 
towards more direct measurements of the neural 
substrates of IIV-RT, which represents a crucial 

step towards using IIV-RT as a diagnostic 
measure for more sensitive detection of early-
stage cognitive impairment. 
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Matrix for Composite Model 
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Matrix for ET YA Model 
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Supplemental Figure 1: Trial Number by Response Time for Low Performing OA Individuals 

 
Supplemental Figure 2: Trial Number by Response Time for High Performing OA Individuals 
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Supplemental Figure 3: Trial Number by Response Time for Low Performing YA Individuals 

 

Supplemental Figure 4: Trial Number by Response Time for High Performing YA Individuals
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Supplemental Figure 5: Trial Number by Response Time for Early-Trial OA Individuals 

Supplemental Figure 6: Trial Number by Response Time for Late-Trial OA Individuals 
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Supplemental Figure 7: Trial Number by Response Time for Early-Trial YA Individuals 

Supplemental Figure 8: Trial Number by Response Time for Late-Trial YA Individuals 


