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SUMMARY 

Advances in computing power in the past three decades have broadened the 

prospects for computational modeling and simulation methods to substantiate our 

understanding of turbulent mixing and combustion in aerospace propulsion applications. 

High-fidelity and predictive capability of modeling and simulation techniques are 

prerequisite for effective use of numerical simulations in scientific research and 

development. Large eddy simulation (LES) is a one such powerful technique for turbulent 

flow research that offers a favorable balance between computational feasibility and level 

of phenomenological detail. While the LES methodology and accompanying subgrid scale 

(SGS) modeling have been developed and applied over decades, primarily in the context 

of low pressure, ideal gas conditions, their extension to complex multi-physics flows 

encountered in aerospace propulsion requires further refinement. In particular, the 

application of LES to turbulent flows at high-pressure supercritical conditions presents 

several new modeling challenges and uncertainties. The scope of this dissertation is to 

investigate the theoretical LES formalism and SGS modeling framework for compressible, 

multi-species turbulent mixing and combustion at supercritical pressures. The goal is to 

identify the deficiencies with the current methodology, and to establish a refined and 

consistent framework that accurately accounts for all the necessary physics. 

In this dissertation, a consistent theoretical formulation of the filtered governing 

conservation equations is derived without any prior assumptions or simplifications. The 

derived formulation reveals the presence of several new subgrid terms that are not 

considered in the conventional framework. To evaluate the relevance of these terms, two-



 xix 

dimensional direct numerical simulations (DNS) are performed for spatially evolving non-

reacting and reacting mixing layers at supercritical pressures. The complete set of terms in 

the filtered equations are quantified and analyzed using the DNS datasets. Based on the 

analyses, two new groups of subgrid terms are identified as important quantities to account 

in the LES framework – the subgrid convective fluxes associated with filtered 

thermodynamic quantities, and the subgrid diffusive transport fluxes. The distributions of 

these terms are examined to obtain physical insights regarding the origin and nature of 

these quantities. The use of Favre-filtered state variables is common in LES of variable 

density flows. The implications with the use of Favre-filtered state variables to compute 

filtered quantities in the LES formulation, such as the viscous stresses, heat flux, density, 

etc. are rigorously investigated, and the residual terms resulting from such simplified 

representations are quantified. Parametric analyses are performed as a function of the filter 

resolution to derive resolution considerations for practical LES applications. 

The performance and accuracies of two state-of-the-art subgrid modeling 

approaches for the traditional subgrid fluxes are assessed under the supercritical non-

reacting and reacting conditions. The study demonstrates the better performance of scale-

similarity based models over the eddy-viscosity based approaches. The decrease in model 

performances with increasing filter width are quantified, highlighting the importance of 

appropriate resolution requirements for accurate simulations. The model performances and 

predicted distributions are also found to be worse for the reacting case, revealing the 

insufficiency of adopting conventional subgrid modeling approaches such as the gradient 

diffusion hypothesis for LES of supercritical combustion. 



 xx 

An important modeling requirement identified in this study are the terms associated 

with filtered equation of state or the filtered density in the derived framework. To address 

this modeling requirement, novel subgrid modeling approaches are proposed to model the 

filtered density for the supercritical mixing case. A priori tests of these models are 

conducted and good improvements are demonstrated for the representation of the filtered 

density. 
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CHAPTER 1. INTRODUCTION 

1.1 Background and motivation 

Turbulence is an important phenomenon in a variety of engineering systems. 

Understanding the physics of turbulent mixing and its interaction with other physical 

aspects of fluid flows such as thermodynamics, compressibility, chemical reactions, etc. is 

primary for the development of reliable and efficient propulsion and other energy 

conversion systems. The multi-scale nature of turbulence and its coupling with non-linear 

physical processes occurring over a wide range of length and time scales presents severe 

challenges that impedes advancements in this area. This dissertation focuses on combustion 

systems that are central to aerospace propulsion applications where fluid mixing and 

combustion occur at extreme operating conditions. These systems involve a multitude of 

complex multi-scale, multi-physics phenomena such as turbulence, compressibility effects, 

multi-species/multi-phase mixing and chemical reactions. 

Experimental efforts in this area are often limited by the restrictions in 

measurement resolutions, inability to obtain simultaneous and detailed information of the 

complete flow field, or difficulty with establishing experimental measurements at extreme 

operating conditions. Moreover, the cost and time associated with such efforts could often 

be a severe deterrent factor. Computational fluid dynamics has growingly enabled the 

possibility of providing complementary and detailed description of complex flow fields in 

these systems. But such endeavors are limited by the available computational power. 

Several modeling and simulation methodologies for turbulent flows have been developed 

and explored over the years and applied to a broad range of applications. 
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In recent times, high-pressure combustion has emerged as an important regime of 

operation for propulsion systems, such as liquid rocket engines (LRE), gas turbines, and 

internal combustion engines [1]. Higher operating pressures offer several advantages for 

achieving the desired design goals such as increased cycle efficiency, increased power 

output, decreased combustor size requirements, and reduced pollutant emissions thereby 

lowering environment impact of combustion, and is thus suitable for high performance 

engines. Within these systems, the injection, mixing and reaction of propellants occur at 

pressures that largely exceed the critical value, in a thermodynamic regime termed as the 

supercritical state. Another promising application of high-pressure flows is in the use of 

supercritical CO2 cycles [2] for turbine power generation that can achieve higher cycle 

efficiencies than conventional steam-based cycles. In this fluid regime, real-fluid 

thermodynamic effects are prominent, and the physical behavior of fluids are drastically 

different from the behavior at lower pressures as will be described in the following section. 

 

1.2 Supercritical fluid flow modeling 

A fluid is said to be in a supercritical state when its pressure and temperature are 

above the critical values. Figure 1.1a shows the thermodynamic phase diagram of a 

representative fluid. Above the critical point, the distinction between a gaseous and liquid 

state ceases to exist as the enthalpy of vaporization and surface tension are close to zero [3, 

4]. This is also depicted in Figure 1.1b showing the T-v state diagram for oxygen. At 

subcritical pressures, a characteristic vaporization process occurs as shown by the constant 

pressure lines within the vapor-liquid saturation curve. However, at supercritical pressures 
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(pcr=5.04 MPa for oxygen), the transition from liquid-like to gas-like phase happens in a 

continuous fashion. 

 

Figure 1.1 - a) Thermodynamic phase diagram of a typical fluid (left) and b) T-v 
diagram of oxygen (right) [5]. Red solid line shows the vapor-liquid saturation curve. 

Several experimental investigations have characterized the differences between 

injection and mixing of high-pressure jets in subcritical and supercritical environments [6-

13]. Figure 1.2 shows visualizations of a liquid nitrogen jet injected into ambient gaseous 

helium at subcritical and supercritical pressures from the classical experiments by Mayer 

et al. [7]. Injection of a liquid jet at subcritical pressures exhibits a sharp interface between 

the injected propellants, and involves jet breakup, ligament formation and atomization 

processes leading to formation of droplets. The dispersed droplets then undergo 

vaporization and mix with the ambient fluid. On the other hand, in the supercritical regime 

a thickened interface is formed between the jet and the surrounding fluid across which the 

mixing is continuous and controlled by molecular diffusion. Chehroudi et al. [9] measured 

the spreading rate of cryogenic jets injected into a range of ambient pressures ranging from 

subcritical and supercritical, and found the jet mixing growth rate to match quantitatively 
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with the turbulent mixing characteristics of variable density gaseous jets. These findings 

have also been corroborated with detailed measurements of cryogenic injection by 

Oschwald et al. [12]. Dahms and Oefelein [14-17] developed a theoretical framework to 

characterize the mechanism and conditions under which transition from two-phase spray 

phenomena to diffusion-dominated mixing occur. They showed that the two-phase 

interface breaks down as a result of thickening of the interfaces and reduction in mean free 

molecular path, thereby entering the continuum regime where diffusive transport processes 

dominate. Their analysis showed this to be true for the range of operating conditions and 

propellant mixtures that are commonly used [15]. These observations support the single-

phase assumption that is commonly employed in numerical simulation of supercritical 

flows. 

 

 

Figure 1.2 - Injection of liquid nitrogen jet into gaseous helium atmosphere at a) 
subcritical pressure of 1.0 MPa and b) supercritical pressure of 6.0 MPa from 
experiments of Mayer et al. [7]. 
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In most combustion systems, the propellants are stored in compressed liquid state 

(at subcritical temperature and supercritical pressure) and injected into an environment 

which is at supercritical pressure and temperature. This is known as transcritical injection. 

The fluid undergoes transition from a liquid-like state to a supercritical state, through a 

process known as pseudo-boiling [18-20]. In this process, the thermodynamic and transport 

properties exhibit strong anomalies in the form of rapid variations. The specific heat peaks 

close to the critical point, and the other properties also show drastic variations. For 

illustration, Figure 1.3 shows the variation of density and specific heat of oxygen across 

the critical point. These variations manifest in the form of large thermodynamic and density 

gradients across the interface of transcritical mixing. In particular, the high density gradient 

magnitude regions which manifest through the distortion of the initial stratification and the 

jet mixing play an important role in determining the flow dynamics [21, 22]. Measurements 

of core length and spreading angles of supercritical jets have suggested the density ratio 

between the injected jet and the ambient to have an important effect on the jet 

characteristics and mixing [23, 24]. 

 

Figure 1.3 - Variation of density and specific heat of oxygen as a function of 
temperature [25]. 
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Numerical modeling and simulation of transcritical and supercritical mixing and 

combustion entails a new set of challenges in addition to the classical issues pertaining to 

the modeling of turbulent fluctuations and non-linear chemical kinetics. At these 

conditions, real-fluid effects are prominent and must be accounted. This necessitates a 

consistent theoretical framework derived from first principles of thermodynamics. Oefelein 

and Yang [26] introduced a framework for incorporating these real-fluid thermodynamic 

and transport effects within numerical simulations for modeling liquid rocket engine 

combustion. A systematic treatment of fluid thermodynamics for general fluid flows is 

presented in Meng and Yang [27]. Detailed review of modeling real-fluid thermodynamic 

behavior and its application to numerical simulations of flows can be found in other 

references [1, 3, 4] and will be discussed in Chapter 2. 

The non-linearities associated with real-fluid thermodynamics and the formation of 

large thermodynamic gradients within the diffused interface entails robust and stable 

numerical schemes. Studies have often reported the formation of spurious pressure 

oscillations that can destabilize the numerical simulation [28]. To handle the problem of 

spurious pressure oscillations that arise from the non-linearities of the equation of state, 

Terashima and Koshi [29, 30] have proposed an approach to solve a pressure evolution 

equation instead of the total energy equation. However, this does not guarantee proper 

conservation of energy and results in numerical errors with the computed temperature [31]. 

Other quasi-conservative approaches have been explored such as the addition of artificial 

dissipation [32, 33] or use of a double-flux model [34-36]. 

In majority of the literature in the past, the single-phase assumption is often 

employed in the modeling and simulation framework. However, there are uncertainties 
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regarding the validity of this approach in certain operating conditions for some mixtures. 

It is known that the critical conditions of a mixture could be significantly different from 

those of its constituent species [37]. In multi-species mixing, the critical pressure of the 

mixture at a certain composition could be higher than the local pressure resulting in a 

locally subcritical mixture, even when the injection pressure is supercritical with respect to 

the individual species. As a result, phase separation and coexistence of vapor and liquid 

phases could still occur, and these effects must be accounted while modeling the fluid 

thermodynamic and transport properties. Some experimental studies have reported the 

presence of spray droplets for different hydrocarbon fuels even at pressures nominally 

above the critical points of the injected fuel [38-40]. Modeling approaches that consider 

vapor-liquid equilibrium thermodynamics under such circumstances have been 

investigated in this context [35, 41, 42]. The problem of phase-separation is pertinent to 

multi-component mixtures, where the critical pressure of the mixture could be much higher 

than the constituent species. The disparity between the critical pressures seems to be more 

prominent for mixtures of long-chain hydrocarbons in general where is a large difference 

between the molecular configuration between the injectant and the ambient species, than 

for simpler fuels like hydrogen or methane [43]. 

Over the last two decades, much progress has been made in the modeling and 

simulation of supercritical mixing and combustion and some challenges persist [1, 44, 45]. 

An important aspect of supercritical flows that has not received sufficient focus is the effect 

of non-ideal, non-linear thermodynamics on the turbulent fluctuations and its implications 

for turbulence modeling in numerical simulations. Supercritical flows in most practical 

applications are inherently at high Reynolds numbers owing to the high liquid-like 
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densities and low gas-like molecular viscosities. The governing interfacial dynamics in the 

supercritical regime are diffusion-dominated, and turbulence plays an important role in the 

mixing and transport processes. Studies on supercritical mixing layers have highlighted 

several key differences in the flow dynamics and turbulence mechanisms of high-pressure 

flows as compared to atmospheric pressure flows [22, 46]. It is imperative that the 

turbulence modeling and simulation techniques employed in the study of high-pressure 

supercritical flows should be able to capture these effects. Before a discussion on these 

aspects is attempted, an understanding of the historical development of turbulence 

modeling and its current landscape is necessary. 

 

1.3 The state of the art in turbulence modeling and simulation 

Turbulent flows are characterized by non-linear physical processes occurring over 

a broad range of length and time scales, with the underlying processes at different scales 

being tightly coupled. This multi-scale, non-linear feature of turbulent flows at high 

Reynolds numbers is the most challenging aspect for numerical simulations. Resolving the 

entire range of scales numerically, called the direct numerical simulation (DNS), is the 

most straight forward approach. However, the computational cost for DNS scales as the 

cube of the Reynolds number and thus, this technique is restricted to flows at low Reynolds 

number in simple, confined domains. With significant advances in computing power over 

the past several years, DNS has been leveraged for multi-physics flows in different regimes 

[47-49]. However, it is perceived that even with the current and projected developments, 

DNS would not be amenable for realization of complex flows in practical configurations 



 9 

and operating conditions. Simulation methods must, therefore, employ some form of 

modeling to reduce the computational cost requirements while still be able to achieve a 

quantitative description of the flow to the desired level of phenomenological detail. 

Reynolds-averaged Navier-Stokes (RANS) is an approach where the effects of all turbulent 

scales are modeled, and an averaged flow field is computed. The RANS technique is 

computationally tractable but lacks in the level of fidelity and detail for complex flows 

where the unsteady dynamics of turbulent fluctuations play a key role. Large eddy 

simulation (LES) is an intermediate technique between DNS and RANS in terms of 

computational cost and fidelity of the solution and has found substantial success for the 

simulation of complex flows over the past years. 

1.3.1 Philosophy of large eddy simulation 

The philosophy of LES is based on Kolmogorov’s hypothesis of local isotropy 

which states that at sufficiently large Reynolds numbers, the turbulent motions at the small 

scales are statistically isotropic, and independent of the behavior of the large scales which 

depend on the flow configuration and boundaries. The large-scale eddies contain the most 

energy of the flow and play the most dominant role in the flow dynamics. The idea is to 

then separate and resolve the large-scale motions directly while accounting for the effect 

of the small scales upon the resolved scale motion. Since the turbulent dynamics at small 

scales is considered independent of the flow geometry, a universal modeling approach is 

potentially viable. The idea was first explored by Smagorinsky in the context of 

meteorological flows [50] and the first numerical LES simulation of a channel flow was 

conducted by Deardorff [51]. LES has been shown to provide accurate descriptions of 

flows that are governed by the large-scale turbulent structures. 



 10 

In most LES implementations, the scale separation is implicitly provided by the 

numerical discretization of the domain (grid) used in the simulation. By virtue of the 

numerical discretization, the turbulent field variations below the grid (subgrid) scale are 

inherently cutoff. The origin of subgrid scale effects is attributed to the non-linear nature 

of turbulent flows and can be understood from a physical perspective. The turbulent 

interactions at different length scales being non-linear and coupled, affect physical 

processes occurring at the remaining scales. The inter-scale interactions of physical 

processes induce additional effects on the physical dynamics of the resolved scale flow 

field. These interactions can be broadly perceived as 1) interactions of the resolved scale 

processes within themselves, 2) interactions of resolved processes with those occurring at 

the subgrid scales, and 3) the interactions of processes within the subgrid scales. While the 

interactions of type (1) are resolved directly in LES, the interactions of type (2) and (3) are 

unresolved but affect the dynamical evolution of the resolved scale field. This enforces the 

need for additional models, referred to as subgrid scale (SGS) models, to incorporate these 

effects on the resolved scales of turbulent motion. 

1.3.2 Subgrid-scale modeling for LES 

Subgrid scale modeling is a central topic of research in the development and 

application of the LES methodology. As discussed earlier, SGS effects stem from the non-

linearities in the governing flow physics. For incompressible flows, the source of non-

linearity is the convective flux in the momentum transport. Models which assume an eddy-

viscosity hypothesis are commonly used to model the subgrid term associated with the 

convective flux as a “subgrid stress”. The Smagorinsky model [50] is one of the earliest 

developed model of this form which has been widely used or has served as a foundation 
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for other modeling approaches. Limitations of the Smagorinsky model include the inability 

to account for backscatter of energy from the small scales to large scales [52], incorrect 

limiting behavior in near wall-regions, and ambiguities with the value of the model 

coefficient [51]. To address these limitations, Germano et al. [53, 54] proposed a dynamic 

modeling approach to determine the model coefficient within the simulation as a function 

of space and time using the local resolved flow field. Modeling approaches that do not 

assume an eddy-viscosity form have also been investigated such as the scale-similarity 

model [55, 56], gradient model [57], and approximate deconvolution models [58, 59]. 

Comprehensive reviews of SGS modeling for incompressible flows can be found in [60-

62]. 

For compressible flow applications, additional subgrid terms arise from the non-

linearities in the energy equation. SGS models for compressible flows have mostly been 

derived by extending the earlier described approaches for incompressible flows while 

considering the compressibility effects. Yoshizawa [63] generalized the Smagorinsky 

model by introducing a separate model for the isotropic part of SGS stress tensor. Using 

Germano’s dynamic modeling approach, Moin et al. [64] formulated dynamic eddy-

diffusivity models for the subgrid stresses and energy fluxes for compressible flows. 

Erlebacher et al.[65] extended the mixed model of Bardina et al. [66] for the subgrid terms 

in the momentum and energy equation in their study of compressible isotropic turbulence. 

Vreman et al. [67] further refined the compressible form of the mixed model by applying 

the dynamic modeling approach to evaluate the model coefficients and tested their 

approach for compressible mixing layers.  
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For reacting flows, the mixing of scalar quantities and subsequent chemical 

reactions essentially occur at the molecular level which is unresolved. Therefore, the 

filtered reaction rate in LES must be modeled entirely to account for the turbulence-

chemistry interactions, and this presents an additional set of modeling challenges. In 

reacting LES, subgrid models for the momentum and scalar transport developed for the 

non-reacting studies were retained along with the simplifying assumptions in the LES 

formulation, and efforts were mostly focused on modeling the subgrid turbulence-

chemistry interactions. A majority of these modeling approaches have been developed 

through extension of RANS models by using additional information from LES [68, 69]. 

These include the flamelet-based models [70, 71], conditional-moment closure [72], 

probability density function (PDF) based closure [73, 74], among others.   

DNS serves as a valuable research tool for deriving fundamental insights of the 

turbulence dynamics in representative conditions, and aid the development of models that 

can represent the physics of subgrid scales in LES applications [75-77]. Data from DNS 

simulations also provide a way to evaluate the accuracy and consistency of SGS models in 

an a priori fashion [57, 78]. In the context of incompressible flows, several studies have 

been undertaken in this direction that have been instrumental in providing an understanding 

of model characteristics, thereby enabling improvements of different modeling approaches 

[75, 79]. On the other hand, limited studies are available for compressible turbulence. 

Moreover, the realization of DNS has so far been possible only for low to moderate 

Reynolds numbers flows in highly simplified flow configurations, such as homogeneous 

isotropic turbulence, temporal mixing layers or wall-bounded flows with periodicity. These 

realizations do not necessarily represent the complete turbulent flow characteristics in 
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practical systems where the flows are inherently high-Re, anisotropic and inhomogeneous. 

Vreman et al. [67, 80] used DNS of temporal compressible mixing layers to evaluate the 

magnitudes of resolved and subgrid terms in the governing equations and assess different 

models for the subgrid terms. Similar analysis was performed by Martin et al. [81] using 

DNS of compressible isotropic turbulence. A comprehensive assessment of SGS models 

in more complex flow configurations and conditions is lacking. 

1.3.3 Deficiencies with LES of supercritical mixing and combustion 

LES was historically developed in the context of incompressible, single-species, 

ideal gas flows. LES of incompressible flows has been investigated in great detail and 

issues have been systematically identified and documented [60, 62, 82-84]. With 

advancements in computing capabilities over the years, the application of the LES 

methodology has extended to other multi-physics flow regimes, including compressible 

flows, and multi-species reacting flows [69, 85, 86]. The increasing interest and need for 

high-pressure combustion applications provided the motivation to adopt the LES 

methodology in a number of studies of high-pressure mixing and combustion for 

propulsion applications by several groups [32, 87-97]. The extension of the methodology 

incorporates the physical aspects of the flow such as the real-fluid thermodynamics and 

non-ideal transport phenomena. However, this has not been accompanied by a systematic 

treatment of the LES formalism and rigorous justification of the underlying simplifications 

and SGS modeling framework that have been carried over from the low-pressure 

framework.  
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Non-ideal gas flows, such as those in supercritical environments, pose a new set of 

modeling requirements for LES with respect to inclusion of the effects of non-ideal 

thermodynamics and their interaction with the turbulent fluctuations at the subgrid scales. 

Bellan and co-workers [21, 46, 98] have conducted a series of DNS of transitional temporal 

mixing layers at supercritical conditions for different binary species mixtures and Reynolds 

numbers. These studies revealed distinct effects of flow dynamics under these conditions 

that are summarized in [22]. A characteristic feature among them is the occurrence of 

regions with high density gradient magnitudes (HDGM) that are formed through species 

entrainment and mixing. These regions are found to have an important role in the vorticity 

dynamics of the flow. It is interpreted that these regions act as a strong source of anisotropy 

by transferring energy from the normal to tangential fluctuations. It was also shown that 

the dissipation in supercritical mixing layers contain a substantial contribution from the 

species and heat fluxes unlike ideal gas flows where most of the small-scale dissipation is 

attributed to viscous effects [98]. The dissipation was also found to be strongly correlated 

to the HDGM regions further highlighting their importance to the small-scale dynamics. 

These findings suggest that modeling approaches need to account for these physics, and 

the adoption of existing SGS models must precede a careful validation. 

Using these DNS databases, Selle et al. [99] evaluated the magnitudes of terms in 

the filtered equations to assess the validity of assumptions that are typically made in LES 

formulation of low-pressure flows. Their studies revealed that the subgrid terms associated 

with the filtered pressure and diffusive heat flux terms, which are considered negligible for 

ideal gas flows, are particularly relevant under supercritical conditions. A similar study has 

also been reported by Borghesi and Bellan [100] for multi-species mixing. Ma et al. [101] 
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examined reacting hydrogen shear layers and reported that the significance of these two 

additional subgrid terms are increased compared to non-reacting flows. The magnitudes of 

the terms were also found to increase with Reynolds number. Foster and Miller [102] 

investigated the subgrid contributions from the filtered diffusive mass fluxes in reacting 

hydrogen-oxygen mixing layers. Their findings suggest that the subgrid diffusive mass 

fluxes are considerable and comparable to the subgrid species flux in regions of high SGS 

scalar dissipation and temperature variance. Lapenna and Creta [103] performed DNS of 

temporal jets at transcritical and supercritical conditions, and  quantified the errors in the 

evaluation of various thermodynamic and transport properties when subgrid effects are not 

considered. The errors were shown to be particularly prominent in the transcritical case in 

which strong variation of properties occur across the pseudo-boiling interface. 

The enhanced significance of these terms in this flow regime can be attributed to 

the non-linearities associated with the non-ideal thermodynamics and the associated state 

relations which are used to compute the pressure and transport quantities such as the 

thermal conductivity and heat flux, etc. As a result of these non-linearities, the filtered 

representation of the terms become non-trivial, and the simplifications applied in the 

conventional LES formulation are no longer valid. 

One peculiar aspect with respect to modeling of high-pressure flows is the equation 

of state (EOS) that defines the relationship among the thermodynamic state variables – 

pressure, density, temperature, and mixture composition. This is an important modeling 

consideration for high-pressure flows where real-fluid effects are significant. Therefore, an 

accurate representation of filtered EOS in the LES framework for supercritical mixing and 

combustion applications is essential. Recent studies [99, 103, 104] have highlighted the 
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deficiencies with the conventional simplification and the need for incorporating subgrid 

scale effects in the closure of the real-fluid EOS. This problem is also relevant under ideal 

gas conditions for compressible, multi-species flows as pointed out by Ribert et al. [105], 

but gains more significance under supercritical conditions [104]. There have been some 

preliminary attempts to address this issue [100, 106, 107] with limited success but further 

studies are necessary before a SGS model that can be implemented in LES can be made 

available. 

A major limitation with the past studies on supercritical turbulent mixing is that 

they considered temporal shear layer configurations that do not depict the complete spatial-

temporal characteristics of spatially inhomogeneous turbulence. Moreover, the Reynolds 

numbers considered in these studies were in the transitional regime of the order of 1000-

4000, where the scale separation and dynamics of small scales are much different from 

those of practical high Reynolds number flows. Consequently, the conclusions reached 

regarding subgrid effects from these studies require further validation.  

 

1.4 Objectives and outline of the dissertation 

It is perceived that the realization of DNS for systems of practical interest will be 

limited in the foreseeable future even with projected advancements in high performance 

computing, and LES will remain an important tool for design and analysis of practical 

combustion and fluid-based power generation systems. Considering the uncertainties that 

exist around the LES formalism and its applicability at supercritical conditions, it is 

worthwhile to examine the current approach and identify the deficiencies. The overarching 
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goal of this dissertation research is to investigate the LES-SGS modeling framework for 

supercritical mixing and combustion and to provide a refined understanding of the 

modeling issues. Specifically, this thesis aims to address the following questions. 

1. The current LES formulation is founded on underlying assumptions and 

simplifications, most of which have been carried over from the historical 

implementations in much simpler flow regimes. Here the term “simpler” is used to refer 

to flows that are incompressible or weakly compressible, involving single species and 

at ideal gas conditions. Specifically, the formulation involves simplified 

representations of filtered terms and neglect of certain correlations and subgrid terms 

that are either absent or found negligible in other flow regimes. These assumptions 

require examination in the light of complex multi-physics flow conditions at 

supercritical conditions. To this end, a systematic derivation of the LES formulation is 

presented in Chapter 2. The derived formulation takes into account the coupled multi-

physics, multi-scale nature of the flow at these conditions, and highlights all the filtered 

terms that are obtained devoid of any simplifications.  

2. Data from highly resolved DNS simulations at relevant operating conditions is 

necessary to obtain a quantitative understanding of the terms in the derived filtered 

equations, undertake an a priori assessment of the relevance of different terms and 

determine the acceptable simplifications that can be made. As part of this dissertation 

research, DNS of turbulent mixing layers are performed at high Reynolds numbers 

under compressible, supercritical, non-reacting and reacting conditions. Data from 

these simulations is used to compute the complete set of filtered terms in the governing 

equations and assess the relevance of different terms to establish modeling 
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requirements for LES. These are reported in Chapter 4 and Chapter 5 for the non-

reacting and reacting cases respectively. 

3. There have been limited studies on the assessment of SGS models under supercritical 

conditions. Moreover, the performance of models as a function of filter or grid size is 

important to understand the efficacy of different models for practical LES applications, 

where grid resolution is a primary constraint for computational feasibility. Chapter 6 

presents an evaluation of two state-of-the-art modeling approaches that have been 

successfully used for low-pressure flows. The accuracies of the SGS models are 

evaluated at different filter widths for the non-reacting and reacting cases. 

4. Literature suggests that the subgrid effects in the filtered equation of state are relevant 

for multi-component mixtures, especially at supercritical conditions. A subgrid 

modeling approach to account for these effects is thus required, and modeling efforts 

in this direction are scarce. To address this problem, modeling approaches for the 

filtered equation of state are proposed and formulated based on existing turbulence 

theories. The accuracies of these models are investigated for the supercritical mixing 

case. The model formulations and a priori assessments are presented in Chapter 7. 

Finally, a summary of the research accomplishments, including key conclusions 

drawn from this research, and recommended directions for future efforts in this topic are 

provided in Chapter 8.  
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CHAPTER 2. THEORETICAL FORMULATION FOR LES 

This chapter introduces the governing equations for multi-component flows under 

the general compressible, high-pressure conditions, followed by the mathematical 

background required for LES filtering. A systematic derivation of the filtered equations for 

LES is then presented for flows at the described conditions. The derived formulation is 

devoid of any simplifications that are made in the incompressible, ideal gas formulation, 

and is therefore applicable to fluid flows over the entire range of thermodynamic 

conditions. The formulation highlights all relevant terms that result from the mathematical 

filtering operation, including those that vanish or are neglected in the current LES 

implementations. The mathematical and physical significance of these terms are discussed 

in the context of supercritical turbulent multi-species mixing. Finally, formulations of 

representative subgrid models that have been developed for the conventional subgrid fluxes 

are described. 

 

2.1 Instantaneous governing equations 

The governing equations for fluid motion in the continuum regime are differential 

equations that derived from the conservation principles of total mass, momentum, energy, 

and individual species masses, along with constitutive relations for the viscous stresses, 

diffusive fluxes, and a thermodynamic equation of state. The system of equations is valid 

at all scales of motions representative of turbulent flows and provides the theoretical 

framework to perform DNS simulations.  
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2.1.1 Conservation equations and constitutive relations 

Mass 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑗𝑗

= 0 (2.1) 

Momentum 

 𝜕𝜕𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

(𝜌𝜌𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 + 𝑝𝑝𝛿𝛿𝑖𝑖𝑖𝑖) =
𝜕𝜕𝜎𝜎𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

 (2.2) 

Energy 

 𝜕𝜕𝜕𝜕𝑒𝑒𝑡𝑡
𝜕𝜕𝜕𝜕

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜌𝜌 �ℎ +
1
2
𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖� 𝑢𝑢𝑗𝑗� =

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝑞𝑞𝑗𝑗 + 𝜎𝜎𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖� (2.3) 

Species 

 𝜕𝜕𝜕𝜕𝑌𝑌𝑘𝑘
𝜕𝜕𝜕𝜕

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜌𝜌𝑌𝑌𝑘𝑘𝑢𝑢𝑗𝑗� =
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝐽𝐽𝑘𝑘𝑘𝑘� + 𝜔̇𝜔𝑘𝑘 (2.4) 

Here 𝜌𝜌,𝑢𝑢𝑖𝑖 ,𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌𝑘𝑘 denote the density, velocity components, pressure, and mass 

fraction of species 𝑘𝑘, respectively. 𝜔̇𝜔𝑘𝑘 denotes the mass production rate of species 𝑘𝑘 due to 

chemical reactions in a reacting flow system. The specific total energy 𝑒𝑒𝑡𝑡 is defined as, 𝑒𝑒𝑡𝑡 =

𝑒𝑒 +  𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖/2, where 𝑒𝑒 is the internal energy per unit mass of the mixture and includes the 

sensible energy and the heats of formation of all the species in the given mixture. The 
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specific enthalpy of the mixture is defined as ℎ = (𝑒𝑒 + 𝑝𝑝/𝜌𝜌) and the corresponding total 

specific enthalpy is ℎ𝑡𝑡 = ℎ +  𝑢𝑢𝑗𝑗𝑢𝑢𝑗𝑗/2. The notation 𝑸𝑸𝒄𝒄 = { 𝜌𝜌, 𝜌𝜌𝑢𝑢𝑖𝑖 ,𝜌𝜌𝑒𝑒𝑡𝑡,𝜌𝜌𝑌𝑌𝑘𝑘} is introduced 

to denote the set of conservative quantities that are solved for in the above conservative 

formulation. 

In addition, constitutive relationships are required for the diffusive fluxes, namely 

the viscous stress tensor 𝜎𝜎𝑖𝑖𝑖𝑖, the heat fluxes 𝑞𝑞𝑗𝑗 and the diffusive fluxes 𝐽𝐽𝑘𝑘𝑘𝑘  of species 𝑘𝑘. 

These are given as 
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� −
2
3
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𝐽𝐽𝑘𝑘𝑘𝑘 = 𝜌𝜌𝐷𝐷𝑘𝑘

 𝜕𝜕𝑌𝑌𝑘𝑘
𝜕𝜕𝑥𝑥𝑗𝑗

 (2.7) 

The thermodynamic and transport properties, including the dynamic viscosity 𝜇𝜇, 

thermal conductivity 𝜆𝜆, mass diffusivity of the 𝑘𝑘𝑡𝑡ℎ species 𝐷𝐷𝑘𝑘, specific enthalpy of the 𝑘𝑘𝑡𝑡ℎ 

species ℎ𝑘𝑘, mixture specific internal energy 𝑒𝑒 and mixture specific enthalpy ℎ, are 

evaluated from fundamental thermodynamic theories to be discussed in Section 2.1.3. In 

this formulation, radiation and body forces are neglected. The viscous stress tensor is based 

on the assumptions of Newtonian fluid and Stokes hypothesis. The heat and mass diffusive 

fluxes are assumed to follow Fourier and Fick’s laws respectively. Dufour and Soret cross-
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diffusion effects are neglected in Equations (2.6) and (2.7) respectively. Studies 

investigating their significance have yielded contrasting conclusions and a general 

agreement regarding the need for including these terms has not yet been reached [88, 108-

110]. Moreover, the diffusivity coefficients for these effects are difficult to obtain under 

flow conditions considered.  For these reasons, and to enable a focused discussion on the 

filtering procedure, these terms are not considered in this work. However, note that this 

assumption is not necessary for the derivation of the filtered equations presented in this 

chapter, and can easily be relaxed. Once the reader is acquainted with the derivation of the 

filtered equations and the subgrid terms that follow in Section 2.3, the filtered and subgrid 

components corresponding to the cross-diffusion terms can also be constructed and 

included in the formulation in future efforts if found necessary. 

For simulation of supercritical flows, a primitive-variable based approach is often 

used where the pressure and temperature are computed directly from the conservation 

equations instead of density and internal energy [103, 111, 112]. This approach eliminates 

the need for expensive iterative schemes to compute the pressure and temperature from the 

density and internal energy. The set of primitive state variables computed in this approach 

is denoted as 𝑸𝑸 = {𝑝𝑝,𝑢𝑢𝑖𝑖 ,𝑇𝑇,𝑌𝑌𝑘𝑘}, and all other secondary quantities are computed from the 

primitive variables in a form 𝜙𝜙 = 𝜙𝜙(𝑸𝑸). The set of conservative variables and primitive 

variables can be related to each other through a unique transformation 𝑸𝑸 = 𝐹𝐹(𝑸𝑸𝒄𝒄). The 

expression for the constitutive relations for thermodynamic quantities are easier to 

represent and compute using the primitive state variables, and this transformation is applied 

as an intermediate step even in conservative-variable approaches. 
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2.1.2 Equation of state 

The simulation of compressible flows requires a thermodynamic equation of state 

that provides the relationship among the thermodynamic state variables, such as pressure, 

temperature and density for a given mixture composition. For low-pressure gas flows, the 

ideal gas equation of state can be used. However, real-fluid effects become dominant at 

high-pressures and these need to be accounted through a real-fluid equation of state. Cubic 

equations of state such as Peng-Robinson (PR) [113], Redlich-Kwong (RK) [114] or the 

Soave-Redlich-Kwong (SRK) [115] are frequently used in practice to balance 

computational efficiency and model accuracy. These equations provide semi-empirical 

corrections to account for intermolecular forces and molecular volume effects. Although 

more accurate equations of state are also available, these are not amenable to CFD 

applications considering the computational cost. It is important to point to the fact that in 

simulation of real-fluid flows, the contribution of the real-fluid property evaluations alone 

could account for about 50% of the computational cost [116, 117]. 

Cubic equations of state can be represented in general form as  

 𝑝𝑝 =  
𝑅𝑅𝑅𝑅

(𝑣𝑣 − 𝑏𝑏𝑚𝑚) −
𝑎𝑎𝑚𝑚

𝑣𝑣2 + 𝑢𝑢𝑢𝑢𝑏𝑏𝑚𝑚 + 𝑤𝑤𝑏𝑏𝑚𝑚
2 (2.8) 

where the parameters (𝑢𝑢,𝑤𝑤) = (2,−1) for the PR and (1,0) for the SRK equations of state. 

𝑅𝑅 is the specific gas constant and 𝑣𝑣 is the specific volume which is the reciprocal of the 

density 𝜌𝜌. The coefficients 𝑎𝑎𝑚𝑚 and 𝑏𝑏𝑚𝑚 account for intermolecular interactions and 

molecular volume effects within the mixture, and these are functions of the temperature 
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and mixture composition. For a multi-component mixture, these coefficients are obtained 

from the coefficients of the respective components using the mixing rules derived from the 

extended corresponding states principle [118, 119]. 

 
𝑎𝑎𝑚𝑚 = ��𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗𝑎𝑎𝑖𝑖𝑖𝑖

𝑁𝑁

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 

𝑎𝑎𝑖𝑖𝑖𝑖 = �𝑎𝑎𝑖𝑖𝑎𝑎𝑗𝑗�1 − 𝑘𝑘𝑖𝑖𝑖𝑖� 

𝑏𝑏𝑚𝑚 = ��𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗𝑏𝑏𝑖𝑖𝑖𝑖

𝑁𝑁

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 

 𝑏𝑏𝑖𝑖𝑖𝑖 =
1
8
�𝑏𝑏𝑖𝑖

1
3 + 𝑏𝑏𝑗𝑗

1
3�

3

�1 − 𝑙𝑙𝑖𝑖𝑖𝑖� 

(2.9) 

𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖 are the coefficients of the individual pure components of the mixture. The 

values for a given species can be obtained as a function of the temperature and critical 

properties, depending upon the form of the equation of state used [120]. 𝑘𝑘𝑖𝑖𝑖𝑖 and  𝑙𝑙𝑖𝑖𝑖𝑖 are the 

binary interaction coefficients that account for intermolecular forces and volumetric effects 

respectively among the mixture components. Detailed expressions of the model 

coefficients and recommended values of the parameters can be found in [120]. 

The equation of state can alternatively be expressed in terms of the compressibility 

factor 𝑍𝑍 as  

 𝑝𝑝 =  𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 (2.10) 

The compressibility factor quantifies the deviation from the ideal gas behavior and 

𝑍𝑍 → 1 at low pressures and high pressures. The compressibility factor can be computed 

through an alternate form of the cubic equation of state as [1] 
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 𝑍𝑍3 − (1 + 𝐵𝐵 − 𝑢𝑢𝑢𝑢)𝑍𝑍2 + (𝐴𝐴 + 𝑤𝑤𝐵𝐵2 − 𝑢𝑢𝑢𝑢 − 𝑢𝑢𝐵𝐵2)𝑍𝑍 − (𝐴𝐴𝐴𝐴 + 𝑤𝑤𝐵𝐵2 + 𝑤𝑤𝐵𝐵3) (2.11) 

where 𝐴𝐴 =  𝑎𝑎𝑚𝑚
𝑝𝑝

𝑅𝑅2𝑇𝑇2
 and 𝐵𝐵 = 𝑏𝑏𝑚𝑚

𝑝𝑝
𝑅𝑅𝑅𝑅

. 

This form is explicit in terms of pressure and temperature and allows the 

compressibility function to be computed directly through an analytical solution. Here, the 

highly non-linear nature of Equations (2.9)-(2.11) is emphasized which will be shown to 

have important implications for LES filtering. 

In the primitive-variable approach where the pressure and temperature are 

computed directly, the equation of state is used to compute the density from the primitive 

state variables through the compressibility factor as 

 𝜌𝜌(𝑸𝑸) =  
𝑝𝑝

𝑅𝑅𝑅𝑅𝑅𝑅
 (2.12) 

Note that 𝑅𝑅 and 𝑍𝑍 are also functions of the primitive state variables 𝑸𝑸. 

2.1.3 Thermodynamic and transport properties for real-fluid mixtures 

The evaluation of thermodynamic properties, such as enthalpy, internal energy, 

specific heat, etc., for real-fluid mixtures is done in two steps. First, the properties of the 

mixture are computed at a reference pressure from the corresponding reference state 

properties of the component species. The reference pressure 𝑝𝑝0 is taken to be at a value 

where ideal gas conditions can be assumed, and the reference state properties of the 

component species are combined using the ideal gas mixing laws. Departure functions are 
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then computed to provide the dense-fluid corrections to account for high-pressure effects 

[120]. These departure functions are derived from Maxwell’s relations [121] and are given 

as 

𝐶𝐶𝑝𝑝(𝑇𝑇,𝜌𝜌) − 𝐶𝐶𝑣𝑣0(𝑇𝑇) = −� �
𝑇𝑇
𝜌𝜌2
�
𝜕𝜕2𝑝𝑝
𝜕𝜕𝑇𝑇2

�
𝜌𝜌
�
𝑇𝑇

𝑑𝑑𝑑𝑑
𝜌𝜌

𝜌𝜌0
+
𝑇𝑇
𝜌𝜌2

(𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕)𝜌𝜌2

(𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 )𝑇𝑇
 

ℎ(𝑇𝑇,𝑝𝑝) − ℎ0(𝑇𝑇) = −� �
1
𝜌𝜌

+
𝑇𝑇
𝜌𝜌2
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑝𝑝
�
𝑇𝑇
𝑑𝑑𝑑𝑑

𝑝𝑝

𝑝𝑝0
 

𝑒𝑒(𝑇𝑇,𝜌𝜌) − 𝑒𝑒0(𝑇𝑇) = −� �
𝑝𝑝
𝜌𝜌2

−
𝑇𝑇
𝜌𝜌2
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜌𝜌
�
𝑇𝑇
𝑑𝑑𝑑𝑑

𝜌𝜌

𝜌𝜌0
 

The thermodynamic derivatives in the departure function expressions are obtained 

directly from the chosen form of the equation of state. 

The computation of transport properties is done in a similar fashion. The reference-

state properties of the mixture are obtained from the corresponding reference-state 

properties of the component species. The deviations from the reference state can be 

obtained using the extended corresponding states methodologies of Ely and Hanley [122, 

123] or Chung et al. [124] for the mixture molecular viscosity and thermal conductivity. 

For the binary mass diffusivities, the corrections are computed using the corresponding 

states methodology given by Takahashi [125]. 

For multi-component mixtures, a mixture-averaged diffusion coefficient is 

considered for each species that represent the diffusivity of the species into the mixture. 

This is computed using Wilke’s mixing rule [126, 127] as 
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𝐷𝐷𝑘𝑘 =
1 − 𝑌𝑌𝑘𝑘

∑ 𝑋𝑋𝑖𝑖/𝐷𝐷𝑘𝑘𝑘𝑘𝑁𝑁
𝑖𝑖=1
𝑖𝑖≠𝑘𝑘

 

Detailed reviews of thermodynamic and transport property evaluation at high-

pressure conditions can be found in references [1, 3, 27, 128-130]. At this point, a 

discussion on the non-linearities in the thermodynamic and transport property evaluation 

framework are in order. For a compressible flow involving a thermally perfect, calorically 

imperfect gas, the temperature dependence of thermodynamic and transport properties are 

approximated as non-linear polynomial functions. The ideal-gas mixing rules involve a 

coupling of the mixture composition and the fluid properties, and thereby temperature. For 

the case of high-pressure non-ideal fluids, the departure functions pose further sources of 

complex non-linearities within the governing system of equations. These non-linearities 

among the different fluid properties and state variables coupled with the multi-scale nature 

of turbulent flows has important ramifications for the flow evolution at different turbulent 

scales. 

 

2.2 Mathematical background of LES filtering 

Before deriving the LES equations, it is necessary to establish a strong 

mathematical foundation of the LES filtering procedure and its mathematical properties. 

This will facilitate an understanding of the derivation of the LES equations and 

identification of the deficiencies with the current formulation. 
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2.2.1 Convolution kernel and its properties 

The governing equations for the large, resolved scales in LES are derived from the 

instantaneous equations by applying a low-pass spatial filtering operation that filters the 

small-scale information from the flow-field and retains the large-scale information. 

Accordingly, an instantaneous field variable 𝜙𝜙 can be decomposed as the sum of its filtered 

(resolved) component 𝜙𝜙� and the subgrid component 𝜙𝜙′. 

 𝜙𝜙 = 𝜙𝜙� + 𝜙𝜙′ (2.13) 

This is analogous to the classical Reynolds decomposition in RANS where the 

variable is decomposed into an ensemble-averaged and the corresponding fluctuating 

component. The filtered variable  𝜙𝜙� is, however, an unsteady term that includes information 

of the large-scale turbulent fluctuations in space and time.  

The filtering operation is defined by the convolution integral  

 
𝜙𝜙(𝒙𝒙, 𝑡𝑡)��������� =  � 𝜙𝜙(𝒓𝒓, 𝑡𝑡)𝐺𝐺(𝒙𝒙 − 𝒓𝒓, 𝑡𝑡;Δ�)𝑑𝑑𝒓𝒓

𝑉𝑉
 (2.14) 

where the kernel 𝐺𝐺 defines the filter function that filters out information from scales 

smaller than the cutoff length-scale Δ�, called the filter scale. 𝑉𝑉 denotes the volume of the 

domain in which the flow field occurs.  

A number of filter kernels have been considered such as the box (top-hat), Gaussian 

and spectral cutoff filters [131]. The properties of the filter that is used in implicitly filtered 
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LES is determined by the resolution characteristics of the numerical discretization scheme. 

The top-hat filter is characteristic of the explicit finite-volume/finite-difference schemes 

used in most CFD solvers. For a top-hat filter, the filter kernel is given by a constant within 

a local filter volume 𝑉𝑉∆ defined by a sphere of radius equal to the filter width Δ, and the 

convolution integral represents the volume averaged flow-field within the filter volume.  

 

𝐺𝐺(𝒓𝒓;Δ) =

⎩
⎨

⎧1
Δ�

|𝒓𝒓| ≤
Δ�
2

0 |𝒓𝒓| >
Δ�
2

 (2.15) 

 
𝜙𝜙(𝒙𝒙, 𝑡𝑡)��������� =  

1
𝑉𝑉Δ�
� 𝜙𝜙(𝒓𝒓, 𝑡𝑡)𝑑𝑑𝒓𝒓

𝑉𝑉Δ�
 

(2.16) 

For non-isotropic filters, as is the case for cartesian grid discretization, a filter width 

can be defined for each co-ordinate direction and the resulting filtering operation represents 

the volume-averaged field within the corresponding finite volume cell. The filter is a linear 

operator that is commutative with the spatial and temporal derivatives for homogeneous 

filter widths. However, for practical flows which are essentially non-isotropic and 

inhomogeneous, the grid and hence the filter kernel must be a function of space in 

accordance with the variation of turbulent length scales in different regions of the flow. In 

this case, the filtering operator is not commutative in general with the differential operator, 

and results in commutation errors. It has been shown that these errors are of the same order 

as the discretization errors of the numerical scheme [132]. Alternatively, one can consider 

the governing equation transformed in the computational space, as is typically done in 

numerical simulations using non-uniform grids and perform the filtering procedure in the 
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computational space. The filter width is then defined in the computational space and is 

uniform, and the filtering and derivative operations are commutative in the computational 

space, if appropriate filtered transformation metrics are considered [133]. Development of 

alternate filters that are commutative with the derivative operators on non-uniforms grids 

have also been attempted [134-136] with applications to explicitly filtered LES. These 

numerical issues will not be tackled in this dissertation and the filtering will be based on 

the computational space. 

The most important property of the convolution integral is that it is non-

commutative with respect to non-linear functions. For example, the filter of a product of 

two variables is not equal to the product of the respective filtered variables. More generally, 

the filtered value of a non-linear function is not equal to the function evaluated using the 

filtered parameters. This can be mathematically represented as 

 𝜙𝜙1𝜙𝜙2������� ≠ 𝜙𝜙1���� 𝜙𝜙2���� 

𝜓𝜓(𝜙𝜙1,𝜙𝜙2, … ,𝜙𝜙𝑛𝑛)��������������������� ≠ 𝜓𝜓(𝜙𝜙1����,𝜙𝜙2����, … ,𝜙𝜙𝑛𝑛����) 

(2.17) 

This inequality is the mathematical source of the subgrid terms. The basis of this 

inequality can be interpreted from a physical perspective. The filtered quantity on the left-

hand side represents the net contribution of the quantity at the resolved scales of motion 

and includes the effects of all interscale interactions across the resolved and subgrid scales. 

In contrast, the right-hand side represents contributions purely from the resolved scales of 

motion. The correlations of the left-hand side are generally not computed directly in LES 

since they require complete information of the correlation among the variables at all scales. 
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Hence the difference between the two quantities which represents the subgrid scale 

correlation must be modeled.  

2.2.2 Favre-filtering and its implications 

For variable density flows, an additional Favre-filtering operation is defined [137] 

to provide a simplified representation of the filtered governing equations in a form that 

closely resembles the unfiltered equations. The Favre-filtering operator is given as 

 
𝜙𝜙� =  

𝜌𝜌𝜌𝜌����
𝜌̅𝜌

 (2.18) 

and accordingly, a Favre decomposition can be expressed as 

 𝜙𝜙 = 𝜙𝜙� + 𝜙𝜙" (2.19) 

This operator is applied for the velocities, energy, and species mass fractions which 

occur together with density in the conservative formulation, while the Reynolds filtering 

(Equation (2.14)) is applied for pressure and density.  

From Equation (2.18), the Favre-filtering operator is interpreted to implicitly act as 

a density-weighted filtering operator. This aspect has important consequences for flow with 

large density stratifications or gradients. This is the case for strongly compressible flows, 

or flows involving large thermodynamic gradients in the form of temperature and/or 

species composition, as is frequently encountered in combustion. For transcritical and 

supercritical mixing, density is a strong non-linear function of the state variables, and 
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consequently the Favre-filtered variable is most likely to differ significantly from the 

Reynolds-filtered counterpart.  

 

2.3 Filtered equations for LES 

2.3.1 Filtered conservation equations 

The system of equations that govern the dynamics of the resolved large eddies can 

be derived by applying the filtering operator on the conservation equations (2.1)-(2.4). The 

filtered conservation equations can be written as 

 𝜕𝜕𝜌𝜌(𝑸𝑸)�������
𝜕𝜕𝜕𝜕

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

(𝜌𝜌(𝑸𝑸)�������𝑢𝑢�𝑗𝑗) = 0 (2.20) 

 𝜕𝜕�𝜌𝜌(𝑸𝑸)�������𝑢𝑢�𝑖𝑖�
𝜕𝜕𝜕𝜕

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜌𝜌(𝑸𝑸)�������𝑢𝑢�𝑖𝑖𝑢𝑢�𝑗𝑗 +  𝑝̅𝑝𝛿𝛿𝑖𝑖𝑖𝑖�

=
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

𝜎𝜎𝑖𝑖𝚥𝚥(𝑸𝑸)�������� −
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

𝜌𝜌(𝑸𝑸)��������𝑢𝑢𝑖𝑖𝑢𝑢𝚥𝚥� − 𝑢𝑢�𝑖𝑖𝑢𝑢�𝑗𝑗� 

(2.21) 

 𝜕𝜕�𝜌𝜌(𝑸𝑸)�������𝑒𝑒𝑡𝑡(𝑸𝑸)��
𝜕𝜕𝜕𝜕

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜌𝜌(𝑸𝑸)������� �ℎ(𝑸𝑸)� +
1
2
𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖� 𝑢𝑢�𝑗𝑗�

=
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝑞𝑞𝑗𝑗(𝑸𝑸) + 𝑢𝑢𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗(𝑸𝑸) − 𝜌𝜌(𝑸𝑸)��������ℎ(𝑸𝑸)𝑢𝑢𝚥𝚥� −ℎ(𝑸𝑸)�𝑢𝑢�𝑗𝑗� 

−
1
2
𝜌𝜌(𝑸𝑸)��������𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖𝑢𝑢𝚥𝚥� −𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖𝑢𝑢�𝑗𝑗�� 

(2.22) 
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 𝜕𝜕𝜌𝜌(𝑸𝑸)�������𝑌𝑌�𝑘𝑘
𝜕𝜕𝜕𝜕

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

(𝜌𝜌(𝑸𝑸)�������𝑌𝑌�𝑘𝑘𝑢𝑢�𝑗𝑗)

=
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝐽𝐽𝑘𝑘𝑘𝑘(𝑸𝑸) − 𝜌𝜌(𝑸𝑸)��������𝑌𝑌𝑘𝑘𝑢𝑢𝚥𝚥� −  𝑌𝑌�𝑘𝑘𝑢𝑢�𝑗𝑗�� + 𝜔̇𝜔𝑘𝑘(𝑸𝑸)��������� 

(2.23) 

Here, the Favre-filtering operator, inequalities associated with the filtering 

operation of non-linear quantities, and commutivity of the filtering and differential 

operators in the computational space are considered.  Commutivity errors associated with 

the grid transformation metrics are within the order of numerical accuracy and are not 

considered in this work. 

Upto this point, the filtered equations (2.20)-(2.23) closely resemble the 

conventional LES framework except for the way the filtered secondary quantities, such as 

the diffusive fluxes, internal energy, and density are treated. The notation 𝑸𝑸�𝒄𝒄 =

{𝜌̅𝜌, 𝜌̅𝜌𝑢𝑢�𝑖𝑖 , 𝜌̅𝜌𝑒𝑒𝑡𝑡� , 𝜌̅𝜌𝑌𝑌�𝑘𝑘} is used to denote the set of conservative variables that are computed in 

conservative variable-based LES and 𝑸𝑸� = {𝑝̅𝑝,𝑢𝑢�𝑖𝑖 ,𝑇𝑇� ,𝑌𝑌�𝑘𝑘} is the corresponding set of filtered 

variables in the primitive variable-based approach. 

2.3.2 Filtered equation of state 

Depending upon the numerical scheme used, different forms of the equation of state 

can be implemented either to calculate pressure or density as a function of other state 

variables. In the conservative variable approach with the equation of state used to compute 

pressure in Equation (2.8), the filtered pressure is given as 
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𝑝𝑝(𝑸𝑸)������� =  

𝑅𝑅𝑅𝑅
(𝑣𝑣(𝑸𝑸) − 𝑏𝑏(𝑸𝑸))
�������������������

−
𝑎𝑎(𝑸𝑸)

𝑣𝑣(𝑸𝑸)2 + 𝑢𝑢𝑢𝑢(𝑸𝑸)𝑏𝑏(𝑸𝑸) + 𝑤𝑤𝑏𝑏(𝑸𝑸)2
����������������������������������������

 (2.24) 

In current LES implementations, the filtered pressure is approximated in terms of 

the filtered state variables as  

 
𝑝𝑝�𝑸𝑸�� =

𝑅𝑅𝑇𝑇�

�𝑣𝑣(𝑸𝑸�) − 𝑏𝑏(𝑸𝑸�)�
−

𝑎𝑎(𝑸𝑸�)
𝑣𝑣(𝑸𝑸�)2 + 𝑢𝑢𝑢𝑢(𝑸𝑸�)𝑏𝑏(𝑸𝑸�) + 𝑤𝑤𝑏𝑏(𝑸𝑸�)2

 (2.25) 

Based on the derived understanding of the non-linearities associated with the 

computation of each model parameter in conjunction with the associated mixing rules for 

multi-component mixtures, and the inequalities that arise from the resulting non-

commutivity of the filtering operator (Equation (2.17)), additional subgrid effects are 

clearly relevant. This can be defined as the subgrid pressure 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 and given as 

 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑝𝑝(𝑸𝑸)������� − 𝑝𝑝�𝑸𝑸�� (2.26) 

Preliminary studies have shown the relevance of this quantity at high-pressure 

conditions [99, 104] and even for ideal, multi-component mixtures [105]. The filtered 

equation of state for a multi-component mixture can equivalently be written as 

 
𝑝̅𝑝 = 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌������� = 𝜌𝜌𝑅𝑅𝑢𝑢𝑍𝑍𝑍𝑍�

𝑌𝑌𝑘𝑘
𝑊𝑊𝑘𝑘

𝑛𝑛

𝑘𝑘=1

������������������
= 𝜌̅𝜌𝑅𝑅𝑢𝑢�

𝑍𝑍𝑍𝑍𝑌𝑌𝑘𝑘�
𝑊𝑊𝑘𝑘

𝑛𝑛

𝑘𝑘=1

 (2.27) 
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For ideal mixtures (𝑍𝑍 = 1), the expression involves temperature-species mass 

fraction covariances which are approximated in current formulations. For non-ideal 

mixtures, the introduction of the compressibility factor yields a triple covariance that 

involves a more complex coupling among the thermodynamic state variables.  

In the primitive variable-based approach where the equation of state given in the 

form of Equation (2.12) is used, the filtered density is given as 

 
𝜌𝜌(𝑸𝑸)������� = �

𝑝𝑝
𝑍𝑍(𝑸𝑸)𝑅𝑅(𝑸𝑸)𝑇𝑇

�
������������������

 (2.28) 

In current LES implementations, the filtered density is approximated in terms of 

the filtered variables as 

 𝜌𝜌�𝑸𝑸�� =
𝑝̅𝑝

𝑍𝑍�𝑸𝑸��𝑅𝑅�𝑸𝑸��𝑇𝑇�
 (2.29) 

The difference between the two expressions yields a subgrid term, which is termed 

as the subgrid density in this dissertation. 

2.3.3 Conventional subgrid terms for convective fluxes 

The subgrid terms that are generally considered in Equations (2.21)-(2.23) are those 

associated with the simplified representation of the covariances in the convective fluxes. 

These are the subgrid stresses 𝜏𝜏𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠, subgrid heat flux 𝑄𝑄𝑗𝑗

𝑠𝑠𝑠𝑠𝑠𝑠, and the subgrid species mass 

fluxes Φ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠 which are defined as, 
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 𝜏𝜏𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠 =  𝜌𝜌(𝑸𝑸)��������𝑢𝑢𝑖𝑖𝑢𝑢𝚥𝚥� −  𝑢𝑢�𝑖𝑖𝑢𝑢�𝑗𝑗� (2.30) 

 𝑄𝑄𝑗𝑗
𝑠𝑠𝑠𝑠𝑠𝑠 =  𝜌𝜌(𝑸𝑸)��������ℎ(𝑸𝑸)𝑢𝑢𝚥𝚥� −ℎ(𝑸𝑸)�𝑢𝑢�𝑗𝑗� (2.31) 

 Φ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜌𝜌(𝑸𝑸)��������𝑌𝑌𝑘𝑘𝑢𝑢𝚥𝚥� −  𝑌𝑌�𝑘𝑘𝑢𝑢�𝑗𝑗� (2.32) 

Using the Favre decomposition (Equation (2.19)) the subgrid fluxes associated with 

the convective terms can be further decomposed into three components, following 

Germano’s decomposition [138] for the subgrid stresses. The decomposition can be 

expressed in general form as 

 𝜌̅𝜌�𝜙𝜙𝑖𝑖𝑢𝑢𝚥𝚥�−  𝜙𝜙�𝑖𝑖𝑢𝑢�𝑗𝑗� = 𝐿𝐿𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑖𝑖𝑖𝑖 + 𝑅𝑅𝑖𝑖𝑖𝑖 (2.33) 

where, 

𝐿𝐿𝑖𝑖𝑖𝑖 = 𝜌̅𝜌 �𝜙𝜙�𝑖𝑖𝑢𝑢�𝚥𝚥�−  𝜙𝜙��𝑖𝑖𝑢𝑢��𝑗𝑗� 

𝐶𝐶𝑖𝑖𝑖𝑖 = 𝜌̅𝜌 �𝜙𝜙�𝑖𝑖𝑢𝑢𝚥𝚥"� + 𝜙𝜙𝑖𝑖"𝑢𝑢�𝚥𝚥�−  𝜙𝜙��𝑖𝑖𝑢𝑢𝚥𝚥"� − 𝜙𝜙𝑖𝑖"�𝑢𝑢��𝑗𝑗� 

𝑅𝑅𝑖𝑖𝑖𝑖 = 𝜌̅𝜌 �𝜙𝜙𝑖𝑖"𝑢𝑢𝚥𝚥"� + − 𝜙𝜙𝚥𝚥"�𝑢𝑢𝚥𝚥"� � 

𝐿𝐿𝑖𝑖𝑖𝑖, 𝐶𝐶𝑖𝑖𝑖𝑖 and 𝑅𝑅𝑖𝑖𝑖𝑖 are termed the Leonard, Cross, and Reynolds terms respectively. 

These terms are modified from the original Leonard decomposition [139] and satisfy 

Galilean invariance [140]. The Leonard term represents interactions among the resolved 

scales of motion. The Cross term is an interscale term representing interactions between 
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the resolved and subgrid scales, whereas the Reynolds term represents interactions within 

the subgrid scales that produce a net contribution on the resolved scales. Several modeling 

approaches for these subgrid fluxes have been investigated and routinely implemented in 

LES simulations. Some representative models will be discussed in Section 2.4. 

The subgrid flux associated with the kinetic energy flux in the filtered energy 

equation (2.22) can be rearranged as 

 𝜌𝜌(𝑸𝑸)��������𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖𝑢𝑢𝚥𝚥� −𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖𝑢𝑢�𝑗𝑗� = 𝜌𝜌(𝑸𝑸)������� ��𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖𝑢𝑢𝚥𝚥� −𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖� 𝑢𝑢�𝑗𝑗� + (𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖�  − 𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖)𝑢𝑢�𝑗𝑗� 

𝜌𝜌(𝑸𝑸)��������𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖𝑢𝑢𝚥𝚥� −𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖𝑢𝑢�𝑗𝑗� = 𝜌𝜌(𝑸𝑸)��������𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖𝑢𝑢𝚥𝚥� −𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖� 𝑢𝑢�𝑗𝑗� + 𝜏𝜏𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢�𝑗𝑗  

(2.34) 

The first term is usually neglected, while the second term is modeled using the 

subgrid model applied for the subgrid stress. In some studies, this entire term is modeled 

along with the subgrid enthalpy flux using a gradient diffusivity model. However, there are 

uncertainties regarding treatment of a mechanical energy term in a manner used for the 

thermodynamic energy [81].  In this study, this term is considered in its original form 

without the usual subgrid models or assumptions.   

2.3.4 New subgrid terms for diffusive fluxes and thermodynamic quantities 

In addition to the subgrid terms for the convective fluxes, new terms arise that are 

relevant for compressible flows, especially those involving multi-component mixtures 

and/or supercritical conditions. In current LES formulations, it is customary to adopt a 

simplified representation for the secondary terms computed in terms of the resolved 

variables, without any associated correlations. However, considering the inequalities 
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associated with the convolutional integral of the filtering process as stated in Equation 

(2.17), this representation is fundamentally incorrect and gives rise to residual terms. 

 𝜎𝜎𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜎𝜎𝑖𝑖𝚥𝚥(𝑸𝑸)�������� − 𝜎𝜎𝑖𝑖𝑗𝑗�𝑸𝑸�� 

𝜎𝜎𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜇𝜇(𝑸𝑸) ��

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝚥𝚥

+
𝜕𝜕𝑢𝑢𝚥𝚥
𝜕𝜕𝑥𝑥𝑖𝑖

� −
2
3
𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

𝛿𝛿𝑖𝑖𝚥𝚥�
����������������������������������������

− 𝜇𝜇(𝑸𝑸�) ��
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢�𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

� −
2
3
𝜕𝜕𝑢𝑢�𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

𝛿𝛿𝑖𝑖𝑖𝑖� 

(2.35) 

 𝑞𝑞𝑗𝑗
𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑞𝑞𝚥𝚥(𝑸𝑸)�������� − 𝑞𝑞𝑗𝑗�𝑸𝑸�� 

𝑞𝑞𝑗𝑗
𝑠𝑠𝑠𝑠𝑠𝑠 = −𝜆𝜆(𝑸𝑸)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝚥𝚥

�����������
+ 𝜌𝜌(𝑸𝑸)�ℎ𝑘𝑘(𝑸𝑸)𝐷𝐷𝑘𝑘(𝑸𝑸)

𝜕𝜕𝑌𝑌𝑘𝑘
𝜕𝜕𝑥𝑥𝚥𝚥

𝑁𝑁

𝑘𝑘=1

���������������������������������

− �−𝜆𝜆�𝑸𝑸��
𝜕𝜕𝑇𝑇�
𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝜌𝜌�𝑸𝑸���ℎ𝑘𝑘�𝑸𝑸��𝐷𝐷𝑘𝑘�𝑸𝑸��
𝜕𝜕𝑌𝑌�𝑘𝑘
𝜕𝜕𝑥𝑥𝑗𝑗

𝑁𝑁

𝑘𝑘=1

� 

(2.36) 

 
𝐽𝐽𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐽𝐽𝑘𝑘𝑘𝑘(𝑸𝑸)�������� − 𝐽𝐽𝑘𝑘𝑘𝑘�𝑸𝑸�� = 𝜌𝜌(𝑸𝑸)𝐷𝐷(𝑸𝑸)

𝜕𝜕𝑌𝑌𝑘𝑘
𝜕𝜕𝑥𝑥𝚥𝚥

�������������������
− 𝜌𝜌�𝑸𝑸��𝐷𝐷�𝑸𝑸��

𝜕𝜕𝑌𝑌𝑘𝑘�
𝜕𝜕𝑥𝑥𝑗𝑗

 (2.37) 

The diffusive fluxes are expressed as a gradient diffusion term, with each flux term 

proportional to gradients of primitive variables through the corresponding transport 

property. For LES of single-component flows under incompressible or weakly 

compressible conditions, the transport properties are a weak function of temperature and 

can be treated to be roughly constant. Assuming density variations to be nominal, the terms 

can then be considered negligible as has been done in compressible LES [64, 65]. However, 
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this may not be justifiable when the transport properties vary strongly at the subgrid scale. 

To further understand the aspect of filtering the diffusive fluxes, consider a triple 

decomposition where the subgrid diffusive flux terms are split into three components based 

on the level of simplification of the filtering operator. 

For example, the subgrid viscous stress 𝜎𝜎𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠 can be decomposed as 

 𝜎𝜎𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜎𝜎𝑖𝑖𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠(1)
+ 𝜎𝜎𝑖𝑖𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠(2)
+ 𝜎𝜎𝑖𝑖𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠(3)
 (2.38) 

where 

 
𝜎𝜎𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠(1)

= �𝜇𝜇(𝑸𝑸) ��
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝚥𝚥

+
𝜕𝜕𝑢𝑢𝚥𝚥
𝜕𝜕𝑥𝑥𝑖𝑖

� −
2
3
𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

𝛿𝛿𝑖𝑖𝚥𝚥�
����������������������������������������

− 𝜇𝜇(𝑸𝑸)������� ��
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢�𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

� −
2
3
𝜕𝜕𝑢𝑢�𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

𝛿𝛿𝑖𝑖𝑗𝑗�� 

𝜎𝜎𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠(2)

= 𝜇𝜇(𝑸𝑸)������� ���
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢�𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

� −
2
3
𝜕𝜕𝑢𝑢�𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

𝛿𝛿𝑖𝑖𝑗𝑗� − ��
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢�𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

� −
2
3
𝜕𝜕𝑢𝑢�𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

𝛿𝛿𝑖𝑖𝑖𝑖�� 

𝜎𝜎𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠(3)

= �𝜇𝜇(𝑸𝑸)������� − 𝜇𝜇�𝑸𝑸��� ��
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢�𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

� −
2
3
𝜕𝜕𝑢𝑢�𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

𝛿𝛿𝑖𝑖𝑖𝑖� 

The first term represents the subgrid covariance between the molecular viscosity 

and the strain rate. The second term represents the contribution due to subgrid fluctuations 

of the primitive variables on the molecular viscosity. The third term is the error due to the 

difference between Favre-filtered and Reynolds-filtered velocities. A similar 

decomposition can be done for the diffusive heat and species fluxes as well. 
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For the diffusive heat flux this yields, 

 𝑞𝑞𝑗𝑗
𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑞𝑞𝑗𝑗

𝑠𝑠𝑠𝑠𝑠𝑠(1)
+ 𝑞𝑞𝑗𝑗

𝑠𝑠𝑠𝑠𝑠𝑠(2)
+ 𝑞𝑞𝑗𝑗

𝑠𝑠𝑠𝑠𝑠𝑠(3)
 (2.39) 

 
𝑞𝑞𝑗𝑗
𝑠𝑠𝑠𝑠𝑠𝑠(1)

= −𝜆𝜆(𝑸𝑸)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝚥𝚥

�����������
+ �𝜌𝜌(𝑸𝑸)ℎ𝑘𝑘(𝑸𝑸)𝐷𝐷𝑘𝑘(𝑸𝑸)

𝜕𝜕𝑌𝑌𝑘𝑘
𝜕𝜕𝑥𝑥𝚥𝚥

𝑁𝑁

𝑘𝑘=1

��������������������������������
 

−�−𝜆𝜆(𝑸𝑸)������� 𝜕𝜕𝑇𝑇
�

𝜕𝜕𝑥𝑥𝑗𝑗
+ �𝜌𝜌(𝑸𝑸)�������ℎ𝑘𝑘(𝑸𝑸)��������𝐷𝐷𝑘𝑘(𝑸𝑸)�������� 𝜕𝜕𝑌𝑌

�𝑘𝑘
𝜕𝜕𝑥𝑥𝑗𝑗

𝑁𝑁

𝑘𝑘=1

� 

𝑞𝑞𝑗𝑗
𝑠𝑠𝑠𝑠𝑠𝑠(2)

= −𝜆𝜆(𝑸𝑸)������� �
𝜕𝜕𝑇𝑇�
𝜕𝜕𝑥𝑥𝑗𝑗

−
𝜕𝜕𝑇𝑇�
𝜕𝜕𝑥𝑥𝑗𝑗

� + �𝜌𝜌(𝑸𝑸)�������ℎ𝑘𝑘(𝑸𝑸)��������𝐷𝐷𝑘𝑘(𝑸𝑸)�������� �
𝜕𝜕𝑌𝑌�𝑘𝑘
𝜕𝜕𝑥𝑥𝑗𝑗

−
𝜕𝜕𝑌𝑌�𝑘𝑘
𝜕𝜕𝑥𝑥𝑗𝑗

�
𝑁𝑁

𝑘𝑘=1

 

𝑞𝑞𝑗𝑗
𝑠𝑠𝑠𝑠𝑠𝑠(3)

= −�𝜆𝜆(𝑸𝑸)������� − 𝜆𝜆�𝑸𝑸���
𝜕𝜕𝑇𝑇�
𝜕𝜕𝑥𝑥𝑗𝑗

+ ��𝜌𝜌(𝑸𝑸)�������ℎ𝑘𝑘(𝑸𝑸)��������𝐷𝐷𝑘𝑘(𝑸𝑸)�������� − 𝜌𝜌�𝑸𝑸��ℎ𝑘𝑘�𝑸𝑸��𝐷𝐷𝑘𝑘�𝑸𝑸���
𝜕𝜕𝑌𝑌�𝑘𝑘
𝜕𝜕𝑥𝑥𝑗𝑗

𝑁𝑁

𝑘𝑘=1

 

Similarly, for the species diffusive fluxes, 

 𝐽𝐽𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐽𝐽𝑘𝑘𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠(1)
+ 𝐽𝐽𝑘𝑘𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠(2)
+ 𝐽𝐽𝑘𝑘𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠(3)
 (2.40) 

 
𝐽𝐽𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠(1)

= 𝜌𝜌(𝑸𝑸)𝐷𝐷(𝑸𝑸)
𝜕𝜕𝑌𝑌𝑘𝑘
𝜕𝜕𝑥𝑥𝚥𝚥

�������������������
− 𝜌𝜌(𝑸𝑸)�������𝐷𝐷(𝑸𝑸)������� 𝜕𝜕𝑌𝑌

�𝑘𝑘
𝜕𝜕𝑥𝑥𝑗𝑗
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𝐽𝐽𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠(2)

= 𝜌𝜌(𝑸𝑸)�������𝐷𝐷𝑘𝑘(𝑸𝑸)�������� �
𝜕𝜕𝑌𝑌�𝑘𝑘
𝜕𝜕𝑥𝑥𝑗𝑗

−
𝜕𝜕𝑌𝑌�𝑘𝑘
𝜕𝜕𝑥𝑥𝑗𝑗

� 

𝐽𝐽𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠(3)

= �𝜌𝜌(𝑸𝑸)�������𝐷𝐷𝑘𝑘(𝑸𝑸)�������� − 𝜌𝜌�𝑸𝑸��𝐷𝐷𝑘𝑘�𝑸𝑸���
𝜕𝜕𝑌𝑌�𝑘𝑘
𝜕𝜕𝑥𝑥𝑗𝑗

 

In addition, subgrid terms also arise from the non-linearities associated with 

computation of thermodynamic quantities such as density, internal energy, and enthalpy. 

The subgrid density resulting from the filtered equation of state was discussed in Section 

2.3.2. In the energy equation, additional subgrid terms result from the simplification of the 

filtered enthalpy, kinetic energy fluxes, and the viscous diffusion terms. These can be 

denoted as 

 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜌𝜌(𝑸𝑸)������� − 𝜌𝜌�𝑸𝑸�� (2.41) 

 𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜌𝜌(𝑸𝑸)ℎ(𝑸𝑸)������������� − 𝜌𝜌�𝑸𝑸��ℎ�𝑸𝑸�� (2.42) 

 
𝒥𝒥𝑗𝑗
𝑠𝑠𝑠𝑠𝑠𝑠 =

1
2
�𝜌𝜌(𝑸𝑸)𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖𝑢𝑢𝚥𝚥��������������� − 𝜌𝜌(𝑸𝑸)�������𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖𝑢𝑢�𝑗𝑗� 

(2.43) 

 𝒟𝒟𝑗𝑗
𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑢𝑢𝑖𝑖𝜎𝜎𝑖𝑖𝚥𝚥(𝑸𝑸)����������� − 𝑢𝑢�𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗�𝑸𝑸�� (2.44) 

2.3.5 Filtered equations for a priori analyses 

With the incorporation of the subgrid term definitions discussed in Sections 2.3.3 

and 2.3.4, the final set of filtered equations can be recast as 
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 𝜕𝜕𝜌𝜌(𝑸𝑸)�������
𝜕𝜕𝜕𝜕

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

(𝜌𝜌�𝑸𝑸��𝑢𝑢�𝑗𝑗) +
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

(𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢�𝑗𝑗) = 0 (2.45) 

 𝜕𝜕�𝜌𝜌(𝑸𝑸)�������𝑢𝑢�𝑖𝑖�
𝜕𝜕𝜕𝜕

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜌𝜌�𝑸𝑸��𝑢𝑢�𝑖𝑖𝑢𝑢�𝑗𝑗 +  𝑝̅𝑝𝛿𝛿𝑖𝑖𝑖𝑖� +
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢�𝑖𝑖𝑢𝑢�𝑗𝑗� 

=
𝜕𝜕𝜎𝜎𝑖𝑖𝑗𝑗�𝑸𝑸��
𝜕𝜕𝑥𝑥𝑗𝑗

−
𝜕𝜕𝜏𝜏𝑖𝑖𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝑥𝑥𝑗𝑗
+
𝜕𝜕𝜎𝜎𝑖𝑖𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝑥𝑥𝑗𝑗
 

(2.46) 

 𝜕𝜕�𝜌𝜌(𝑸𝑸)�������𝑒𝑒𝑡𝑡(𝑸𝑸)��
𝜕𝜕𝜕𝜕

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜌𝜌�𝑸𝑸�� �ℎ�𝑸𝑸�� +
𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖

2
� 𝑢𝑢�𝑗𝑗� +

𝜕𝜕𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢�𝑗𝑗
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�
𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖𝑢𝑢�𝑗𝑗

2
� 

=
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝑞𝑞𝑗𝑗�𝑸𝑸�� + 𝑢𝑢�𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗�𝑸𝑸��)� −
𝜕𝜕𝑄𝑄𝑗𝑗

𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝑥𝑥𝑗𝑗
−
𝜕𝜕𝒥𝒥𝑗𝑗

𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝑥𝑥𝑗𝑗
+
𝜕𝜕𝑞𝑞𝑗𝑗

𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝑥𝑥𝑗𝑗
+
𝜕𝜕𝒟𝒟𝑗𝑗

𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝑥𝑥𝑗𝑗
 

(2.47) 

 𝜕𝜕𝜌𝜌(𝑸𝑸)�������𝑌𝑌�𝑘𝑘
𝜕𝜕𝜕𝜕

+
𝜕𝜕�𝜌𝜌�𝑸𝑸��𝑌𝑌�𝑘𝑘𝑢𝑢�𝑗𝑗�

𝜕𝜕𝑥𝑥𝑗𝑗
+

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑌𝑌�𝑘𝑘𝑢𝑢�𝑗𝑗� 

=
𝜕𝜕𝐽𝐽𝑘𝑘𝑘𝑘�𝑸𝑸��
𝜕𝜕𝑥𝑥𝑗𝑗

−
𝜕𝜕Φ𝑘𝑘𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝑥𝑥𝑗𝑗
+
𝜕𝜕𝐽𝐽𝑘𝑘𝑘𝑘

𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝑥𝑥𝑗𝑗
+ 𝜔̇𝜔𝑘𝑘(𝑸𝑸)��������� 

(2.48) 

The terms in blue font represent the conventional subgrid convective fluxes for 

which modeling approaches have been considered and are used in practice. Some of these 

approaches will be discussed in the next section. The terms in red represent the new set of 

subgrid terms that need further investigation to determine their significance and behavior. 

These terms will be the primary focal point in Chapters 4 and 5. The filtered reaction rate 
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𝜔̇𝜔𝑘𝑘(𝑸𝑸)��������� presents a separate area of research in turbulent combustion modeling that has 

received significant focus in the community [68, 69, 141-144]. Hence, modeling of this 

term is not studied further in this dissertation. 

It is recognized that the magnitudes of the spatial derivatives of the resolved and 

subgrid terms are more relevant in determining the flow evolution than the magnitudes of 

the terms themselves. The form of the filtered equations (2.45)-(2.48) provides a basis for 

a priori evaluation of different terms in the exact style in which they appear in the 

governing system.  

 

2.4 Subgrid scale models for the conventional subgrid fluxes 

The SGS terms for the convective fluxes are the primary source of non-linearity in 

the governing equation for thermodynamically simple flows. Consequently, they have 

received significant focus in the SGS modeling literature. Several modeling approaches 

have been developed, investigated, and refined through past efforts, and reasonable success 

has been achieved in modeling these SGS terms. While most of the models were initially 

developed for incompressible flows, they have been extended for compressible flows as 

well. In this section, we briefly describe some of the widely adopted subgrid models for 

the convective fluxes in compressible LES. 
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2.4.1 Dynamic Smagorinsky/eddy-diffusivity models 

The Boussinesq eddy-viscosity hypothesis was adopted by Smagorinsky [50] for 

modeling the subgrid stresses 𝜏𝜏𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠. Accordingly, the deviatoric part of the subgrid stress 

tensor is modeled in a form analogous to the viscous stress tensor 

 
𝜏𝜏𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠,𝑑𝑑 = 𝜏𝜏𝑖𝑖𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠 −
𝛿𝛿𝑖𝑖𝑖𝑖
3
𝜏𝜏𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜈𝜈𝑡𝑡 �𝑆̃𝑆𝑖𝑖𝑖𝑖 −

𝛿𝛿𝑖𝑖𝑖𝑖
3
𝑆̃𝑆𝑘𝑘𝑘𝑘� (2.49) 

where 𝑆̃𝑆𝑖𝑖𝑖𝑖 is the resolved strain rate tensor given as 𝑆̃𝑆𝑖𝑖𝑖𝑖 = 1
2
�𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝜕𝜕𝑢𝑢�𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖
� and �𝑆̃𝑆� =

�2𝑆̃𝑆𝑖𝑖𝑖𝑖𝑆̃𝑆𝑖𝑖𝑖𝑖�
1/2

. 𝜈𝜈𝑡𝑡 represents the subgrid eddy viscosity and is modeled as the product of an 

appropriate length and velocity scales representing the subgrid turbulent fluctuations. In 

the Smagorinsky model [50], these characteristic scales are estimated in terms of the 

resolved strain rate 𝑆𝑆𝑖̅𝑖𝑖𝑖 and the local filter length scale (which is assumed to be equal to the 

local grid width). The model coefficient 𝐶𝐶𝑠𝑠 was taken to be constant with a value suggested 

by Lilly [145] using equilibrium assumption in the inertial sub-range.  

 𝜈𝜈𝑡𝑡 = −2𝐶𝐶𝑠𝑠Δ�2�𝑆̃𝑆� (2.50) 

The trace of the stress tensor, which is twice the subgrid turbulent kinetic energy, 

is modeled by Yoshizawa [63] as 

 𝜏𝜏𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠 = −2𝐶𝐶𝐼𝐼Δ�2𝜌̅𝜌�𝑆̃𝑆�

2
 (2.51) 
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Limitations with the use of a constant model coefficient were addressed through 

the dynamic model approach [53, 146]. The model coefficients are determined as a function 

of the solution in space and time through Germano’s identity [53]. This involves an 

additional level of filtering at a test filter scale Δ� that is slightly larger than the grid filter 

scale. The subtest filter stresses are given as 𝑇𝑇𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑢𝑢𝑖𝑖𝑢𝑢𝚥𝚥�������� −𝜌𝜌𝑢𝑢𝑖𝑖������  𝜌𝜌𝑢𝑢𝚥𝚥������ /𝜌̅𝜌�. The resolved 

turbulent stress (called the Leonard stress) is then expressed in terms of the turbulent 

stresses at the grid and test filter scales using Germano’s identity.  

 
ℒ𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑖𝑖𝑖𝑖 − 𝜏̂𝜏𝑖𝑖𝑖𝑖 = �

𝜌𝜌𝑢𝑢𝑖𝑖����� 𝜌𝜌𝑢𝑢𝚥𝚥�����
𝜌̅𝜌

�
�

−
𝜌𝜌𝑢𝑢𝑖𝑖������  𝜌𝜌𝑢𝑢𝚥𝚥������

𝜌̅𝜌�
 (2.52) 

Using the Smagorinsky model, the deviatoric component of ℒ𝑖𝑖𝑖𝑖 can be expressed 

as 

ℒ𝑖𝑖𝑖𝑖𝑑𝑑 = ℒ𝑖𝑖𝑖𝑖 −
𝛿𝛿𝑖𝑖𝑖𝑖
3
ℒ𝑘𝑘𝑘𝑘 = 𝐶𝐶𝑠𝑠ℳ𝑖𝑖𝑖𝑖 

where ℳ𝑖𝑖𝑖𝑖 = −2Δ�2 �Δ
�2

Δ�2
𝜌̅𝜌� �𝑆̆̃𝑆� �𝑆̆̃𝑆𝑖𝑖𝑖𝑖 −

𝛿𝛿𝑖𝑖𝑖𝑖
3
𝑆̆̃𝑆𝑘𝑘𝑘𝑘� −  𝜌̅𝜌 �𝑆̆̃𝑆� �𝑆̆̃𝑆𝑖𝑖𝚥𝚥 −

𝛿𝛿𝑖𝑖𝚥𝚥
3
𝑆̆̃𝑆𝑘𝑘𝑘𝑘�

��������������
� 

The ( . )��  notation represents a Favre-filtered quantity at the test filter level. Finally, 

the model coefficient is determined by Lilly’s least squares method [146] as 

 
𝐶𝐶𝑠𝑠 =

〈ℒ𝑖𝑖𝑖𝑖𝑑𝑑ℳ𝑖𝑖𝑖𝑖〉
〈ℳ𝑖𝑖𝑖𝑖ℳ𝑖𝑖𝑖𝑖〉

 (2.53) 
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The angular brackets indicate spatial averaging in the homogeneous direction to 

avoid large unphysical oscillations of the model coefficient that can destabilize the 

numerical solution. 

Subsequently, the approach has been extended for compressible flows including 

models for the subgrid heat flux and scalar fluxes [64]. The subgrid heat flux 𝑄𝑄𝑗𝑗
𝑠𝑠𝑠𝑠𝑠𝑠 is 

modeled through a subgrid thermal conductivity that is computed in terms of the eddy 

viscosity and a SGS Prandtl number 𝑃𝑃𝑃𝑃𝑡𝑡. The model formulation can be given as, 

 
𝑄𝑄𝑗𝑗
𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜌𝜌ℎ𝑢𝑢𝚥𝚥������ −

𝜌𝜌ℎ���� 𝜌𝜌𝑢𝑢𝚥𝚥�����
𝜌̅𝜌

=
−2𝐶𝐶𝑠𝑠Δ�2𝜌̅𝜌�𝑆̃𝑆�

𝑃𝑃𝑃𝑃𝑡𝑡
𝜕𝜕𝑇𝑇�
𝜕𝜕𝑥𝑥𝑗𝑗

 (2.54) 

The SGS Prandtl number is computed through the dynamic model approach as 

𝐶𝐶𝑠𝑠
𝑃𝑃𝑃𝑃𝑡𝑡

=
< ℒ𝑗𝑗ℎℳ𝑗𝑗

ℎ >
< ℳ𝑗𝑗

ℎℳ𝑗𝑗
ℎ >

 

where 

ℒ𝑗𝑗ℎ = �
𝜌𝜌ℎ���� 𝜌𝜌𝑢𝑢𝚥𝚥�����
𝜌̅𝜌

�
�

−
𝜌𝜌ℎ�����  𝜌𝜌𝑢𝑢𝚥𝚥������
𝜌̅𝜌�

 

ℳ𝑗𝑗
ℎ = −2Δ�2 �

Δ�2

Δ�2
𝜌̅𝜌� �𝑆̆̃𝑆�

𝜕𝜕𝑇𝑇��

𝜕𝜕𝑥𝑥𝑗𝑗
−  𝜌̅𝜌�𝑆̃𝑆�

𝜕𝜕𝑇𝑇�
𝜕𝜕𝑥𝑥𝚥𝚥

�
� 

Similarly, the subgrid diffusive flux are modeled with a subgrid species diffusivity 

in terms of a SGS Schmidt number as 
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Φ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜌𝜌𝑌𝑌𝑘𝑘𝑢𝑢𝚥𝚥������� −

𝜌𝜌𝑌𝑌𝑘𝑘����� 𝜌𝜌𝑢𝑢𝚥𝚥�����
𝜌̅𝜌

=
−2𝐶𝐶𝑠𝑠Δ�2𝜌̅𝜌�𝑆̃𝑆�

𝑆𝑆𝑆𝑆𝑡𝑡,𝑘𝑘

𝜕𝜕𝑌𝑌�𝑘𝑘
𝜕𝜕𝑥𝑥𝑗𝑗

 (2.55) 

The SGS Schmidt numbers are computed as 

𝐶𝐶𝑠𝑠
𝑆𝑆𝑆𝑆𝑡𝑡,𝑘𝑘

=
〈ℒ𝑗𝑗𝑘𝑘ℳ𝑗𝑗

𝑘𝑘〉
〈ℳ𝑗𝑗

𝑘𝑘ℳ𝑗𝑗
𝑘𝑘〉

 

ℒ𝑗𝑗𝑘𝑘 = �
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�
−
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𝜌̅𝜌�
 

ℳ𝑗𝑗
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Δ�2

Δ�2
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�
� 

2.4.2 Dynamic mixed model 

Mixed models are a class of models that combine a scale-similarity model with an 

eddy-diffusivity model. The scale-similarity model was originally proposed by Bardina et 

al. [66], and is based on the fractal nature of turbulence at the small scales. The scale-

similarity hypothesis postulates that the structure of turbulence at subgrid scales is similar 

to those at the smallest resolved scales.  The subgrid stress was modeled in terms of the 

filtered resolved velocity field. The scale-similarity model has been shown to yield 

significantly better correlation for the subgrid stresses but does not provide the required 

dissipation to the flow field. To alleviate this, the addition of an eddy-viscosity term was 

proposed yielding the mixed model. The mixed model can also be interpreted based on the 

Germano decomposition in Equation (2.33). The Leonard term can be computed directly 
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based on the resolved flow field and is identical to the scale-similarity model, while the 

Cross and Reynolds terms are modeled by the eddy-viscosity term.  

The mixed model formulation for the subgrid stresses can be written as 

 
𝜏𝜏𝑖𝑖𝑖𝑖 −

𝛿𝛿𝑖𝑖𝑖𝑖
3
𝜏𝜏𝑘𝑘𝑘𝑘 = 𝐴𝐴𝑖𝑖𝑖𝑖 −

𝛿𝛿𝑖𝑖𝑖𝑖
3
𝐴𝐴𝑘𝑘𝑘𝑘 − 2𝐶𝐶𝑚𝑚Δ�2𝜌̅𝜌�𝑆̃𝑆� �𝑆̃𝑆𝑖𝑖𝑖𝑖 −

𝛿𝛿𝑖𝑖𝑖𝑖
3
𝑆̃𝑆𝑘𝑘𝑘𝑘� (2.56) 

where 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝜌̅𝜌�𝑢𝑢�𝑖𝑖𝑢𝑢�𝚥𝚥� −  𝑢𝑢��𝑖𝑖𝑢𝑢��𝑗𝑗� is the scale similarity term, and 𝐶𝐶𝑚𝑚 is the modified 

Smagorinsky model coefficient.  The model coefficient value can either be prescribed with 

a constant value as done by Erlebacher et al. [65] for compressible simulations. 

Alternatively, these can be evaluated within a dynamic modeling framework. Following 

Germano’s approach, Zang et al. [147] formulated a dynamic mixed model for 

incompressible flows. Vreman et al. [148] have made further refinements to this model and 

also extended the formulation for compressible flow applications [67]. In the dynamic 

mixed model, the model coefficient is given as 

 
𝐶𝐶𝑚𝑚 =

〈�ℒ𝑖𝑖𝑖𝑖𝑑𝑑 −ℋ𝑖𝑖𝑖𝑖
𝑑𝑑�ℳ𝑖𝑖𝑖𝑖〉

〈ℳ𝑖𝑖𝑖𝑖ℳ𝑖𝑖𝑖𝑖〉
 (2.57) 

with ℋ𝑖𝑖𝑖𝑖 = 𝜌̅𝜌� �𝑢𝑢��𝑖𝑖𝑢𝑢��𝚥𝚥�� − 𝑢𝑢����𝑖𝑖𝑢𝑢���
�
𝑗𝑗� − 𝜌̅𝜌�𝑢𝑢�𝑖𝑖𝑢𝑢�𝚥𝚥� −  𝑢𝑢��𝑖𝑖𝑢𝑢��𝚥𝚥�������������

. 

Similarly, the formulation for the subgrid heat flux is given as 
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𝑄𝑄𝑗𝑗 = 𝜌̅𝜌 �ℎ�𝑢𝑢�𝚥𝚥� −  ℎ��𝑢𝑢��𝑗𝑗� −

2𝐶𝐶𝑚𝑚Δ�2𝜌̅𝜌�𝑆̃𝑆�
𝑃𝑃𝑃𝑃𝑡𝑡

𝜕𝜕𝑇𝑇�
𝜕𝜕𝑥𝑥𝑗𝑗

 (2.58) 

𝐶𝐶𝑠𝑠
𝑃𝑃𝑃𝑃𝑡𝑡

=
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and the subgrid species fluxes are given as 

 
Φ𝑘𝑘𝑘𝑘
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CHAPTER 3. COMPUTATIONAL FRAMEWORK FOR DIRECT 

NUMERICAL SIMULATIONS 

3.1 Overview 

This chapter describes the computational configuration, flow conditions, and 

numerical framework used to conduct the DNS simulations. DNS of a spatially evolving 

supercritical mixing layer constituted by methane and liquid oxygen (LOX) under both 

non-reacting mixing and reacting conditions are conducted. Study of flows at low Reynolds 

number, such as those reported in the majority of available literature [46, 98, 99, 103], does 

not furnish a complete understanding of the physics of small-scale motion due to the 

limited range of scales represented and lack of scale separation. The Reynolds number of 

the flow in this study is of the order of 104-105 which is representative of practical operating 

conditions. However, this would impose a large grid requirement for 3D DNS that can only 

be realized on large-scale computing systems which are limited at the time of this study. 

The computational complexity added by the thermodynamic and transport property 

evaluation scheme [116, 117] further inhibit realization of 3D DNS within an affordable 

cost and time. DNS is, therefore, limited to a two-dimensional setup in this study to achieve 

a flow configuration that is representative of practical systems with a tractable 

computational cost. Two-dimensional DNS of supercritical mixing and combustion at high 

Reynolds numbers have been investigated in some past studies [88, 149, 150]. Such studies 

allow a compromise between computational feasibility and realistic Reynolds number 

which is essential to understand modeling issues for practical applications. It is recognized 

that the flow structures and turbulence energy cascade in 2D DNS are different from that 
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of realistic 3D turbulent flows. Studies on compressible non-reacting and reacting mixing 

layers [80, 151] have compared a priori subgrid assessments from 2D and 3D DNS. These 

studies have reported that the conclusions obtained from either setting are comparable in 

spite of quantitative differences in the subgrid terms. 

 

3.2 Problem description and computational framework 

3.2.1 Flow configuration 

For the baseline DNS study used to generate the database, a canonical 

transcritical/supercritical planar mixing layer configuration is considered. The mixing layer 

is constituted by LOX and gaseous methane streams that are initially co-flowing along a 

splitter plate as shown in Figure 3.1. This fundamental flow configuration is representative 

of many propulsion applications, such as fuel injectors. The computational domain and 

flow conditions are adopted from a previous study [152, 153] and chosen to represent 

conditions close to those of liquid rocket engine operation. Gaseous methane at 300 K is 

injected from the top of the splitter plate at a velocity of 60 m/s, while LOX at 120 K is 

injected from the bottom at a velocity of 10 m/s. The operating pressure is 100 bar, well 

above the critical pressures of methane, oxygen, and the resulting mixture at all 

compositions. The thickness of the splitter plate 𝛿𝛿 is 0.3 mm, comparable to the thickness 

of typical injectors employed in propulsion engines. A plate length of 1 mm is included to 

account for the effect of the boundary layer development before mixing occurs.  
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Figure 3.1 – Computational domain and flow conditions for the DNS study. 

The computational domain spans a distance of 10 mm downstream from the trailing 

edge of the plate and 5 mm in the transverse direction. A mean velocity profile following 

a one-seventh power law superimposed with broadband fluctuations of 5% turbulence 

intensity is used to provide a fully developed turbulent boundary layer at the inlet for both 

incoming streams. No-slip boundary conditions are applied on the surfaces of the splitter 

plate. Outflow conditions are prescribed along the top, bottom and exit boundaries. The 

Reynolds number based on the LOX density and viscosity, splitter plate thickness, and 

velocity difference across the plate is about 1.5x105. 

3.2.2 Grid resolution 

A grid with a total of around 19 million cells is used for discretizing the present 

two-dimensional problem. The grid is finer in the mixing layer region with 2000 grid cells 

used in the transverse direction to discretize the 0.3 mm rim of the splitter plate. The grid 

is gradually stretched in the y-direction away from the mixing layer. The transverse grid 

spacing is also stretched in the downstream direction to capture the expected growth of the 

mixing layer and evolution of turbulent scales. To estimate the sufficiency of the grid 
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resolution for DNS, a maximum turbulent velocity of  𝑢𝑢′ = 10 𝑚𝑚/𝑠𝑠 in the recirculation 

zone downstream of the splitter plate is assumed. The turbulent Reynolds number based on 

the local flow properties is about 1.6 × 104 with respect to the methane and 2.7 × 104 to 

the oxygen inlet flow conditions. The latter is taken to be the maximum local Reynolds 

number for resolution considerations. The ratio of the largest to the smallest (Kolmogorov) 

length scales based on this Reynolds number is estimated to be 𝑙𝑙0/𝜂𝜂 = 𝑅𝑅𝑅𝑅0.75  ≈ 2000. 

Considering the largest length scale to be of the order of magnitude of the plate 

thickness, 𝑙𝑙0 ≈ 3 × 10−4𝑚𝑚, the order of magnitude of the Kolmogorov length scale is 𝜂𝜂 ≈

0.15 𝜇𝜇𝜇𝜇 . The transverse grid spacing in the near field and along the center axis of the 

domain is about 0.15 𝜇𝜇𝜇𝜇. It should be noted that the values of local flow properties and 

turbulent velocities are conservative estimates. The local Reynolds number in reality would 

be at least one order of magnitude lower due to the low velocity in the recirculation region 

and reduction in density of oxygen caused by mixing. A posteriori estimates of the 

Kolmogorov scale was also computed from the DNS simulated flow field as 𝜂𝜂𝑘𝑘 =

(𝜈𝜈3/𝜀𝜀)1/4 , with the turbulent dissipation rate estimated as 𝜀𝜀 = 2𝜈𝜈𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖. The Kolmogorov 

scale estimates were found to be smallest in the core of the mixing layer with values in the 

order of 0.5-1 𝜇𝜇𝜇𝜇. The Prandtl number and Schmidt numbers estimated from the DNS flow 

field are in the range of 0.8-2.0 and 0.9-5.0 within the core of the mixing layer. The 

corresponding Batchelor scales 𝜂𝜂𝐵𝐵 = 𝜂𝜂𝑘𝑘(Pr𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆)−1/2 are also within the grid resolution 

considered. For the reacting case, the scales are further increased due to increased viscosity 

in the high-temperature flame regions. The spatial resolution in the mixing layer is, thus, 

deemed sufficient to resolve the entire range of turbulent length scales for both cases. 
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3.2.3 Theoretical framework and numerical schemes 

The DNS simulation is conducted using an in-house CFD solver that has been 

developed and validated for fluid flows at all speeds and at all fluid thermodynamic states. 

The solver implements the theoretical framework described in Section 2.1. To circumvent 

the numerical stiffness arising from rapid flow property variations in the supercritical 

regime, a preconditioned solution approach is used [111, 112]. All the thermodynamic 

properties, including those occurring in the preconditioning matrix, are computed based on 

a unified treatment of general fluid thermodynamics derived directly from fundamental 

thermodynamic theories [27]. The Soave-Redlich-Kwong equation of state [115] is used 

and the thermodynamic and transport property evaluation scheme is as described in Section 

2.1.3. The preconditioned formulation follows a primitive-variable approach and solves for 

the pressure and temperature as primary independent variables instead of density and 

internal energy. This eliminates the need for the laborious iterative procedure involved in 

solving for temperature from internal energy [112]. It also facilitates static load balance 

among computational blocks in a distributed computing environment. The resultant 

scheme is highly efficient and suitable for parallel computation. 

The numerical framework is based on a finite-volume methodology, along with a 

dual time integration technique [111]. Temporal discretization is done using a second order 

backward difference scheme for the real-time integration, while the pseudo-time 

integration is performed with a four-stage Runge-Kutta scheme. For the real-time 

integration, a time step of Δ𝑡𝑡 = 20 𝑛𝑛𝑛𝑛 is imposed with upto 40 pseudo time integration 

steps within each real time step to ensure convergence of the pseudo time derivative. 

Spatial discretization is achieved using a fourth order, central-difference scheme in 
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generalized coordinates. A nine-point stencil is employed to evaluate the convective flux 

in each spatial direction to improve the spectral resolution of small-scale turbulence 

structures. Fourth-order matrix dissipation with a total-variation-diminishing switch 

developed by Swanson and Turkel [154] is applied to ensure numerical stability and 

minimize oscillations in regions with steep property variations. 

Finally, a multi-block domain decomposition technique is employed to facilitate 

the implementation of parallel computing with message passing interfaces (MPI) at the 

domain boundaries. The parallelization methodology is robust, and the speedup is almost 

linear. The theoretical and numerical scheme used is well established and has been applied 

to a variety of numerical studies of multi-scale, multi-physics problems in the context of 

supercritical fluid and combustion dynamics [155], including the vaporization, mixing, and 

combustion of liquid droplets under supercritical conditions [156, 157], cryogenic fluid 

injection [89, 158], and mixing and combustion in both shear coaxial and swirl injectors 

[90, 93, 159]. 

 

3.3 Combustion modeling approach for the reacting case 

The computational configuration, grid discretization, and numerical framework for 

the reacting DNS are identical to those employed in the non-reacting study. For the reacting 

case, the Reynolds number is lowered in the mixing layer due to thermal expansion caused 

by heat release and the consequent reduction in density and increase in gas viscosity. The 

spatial resolution in the mixing layer is, thus, considered sufficient to resolve the entire 

range of turbulent length scales for both cases. 
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DNS of turbulent combustion involves the solution of appropriate chemistry 

mechanisms, often containing tens or hundreds of chemical species and reaction steps. 

These reaction processes and the governing conservation equations are to be solved on a 

grid that is sufficiently fine to resolve the length and time scales associated with the 

turbulence and flame. For high pressure combustion, added computational costs are 

incurred for the evaluation of real-fluid thermodynamic and transport properties which 

scales with the number of species 𝑁𝑁 as 𝒪𝒪(𝑁𝑁2) or greater according to the mixing rules. 

The computation of real-fluid properties could constitute over 50% of the total 

computational time depending on the number of species [116, 117]. For reacting flows with 

multi-species transport and detailed chemical kinetics, the computations associated with 

finite-rate kinetics would further increase the computational complexity by an order of 

magnitude depending on the number of species and the reaction mechanism used to 

represent the chemical processes. Given these considerations, DNS of high-pressure 

combustion with finite-rate chemical kinetics is computationally prohibitive for realistic 

flow configurations unless some simplifications are made. 

To circumvent this problem, the flamelet approximation is used in this study to 

model the combustion process. A fundamental assumption of the flamelet model is that the 

reaction processes are infinitely fast compared to the fluid dynamic processes. The 

turbulent flame is therefore considered to behave as an aggregate of locally one-

dimensional laminar flames that are convected by the turbulent flow structures. The idea is 

to decouple the solution of the turbulent flow field from the solution of chemistry and solve 

for the evolution of chemical species in the mixture fraction space [160]. The flamelet 

concept is believed to be valid when the Karlovitz number is smaller than 100 [143]. The 
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Karlovitz number is defined as the ratio between the chemical time scale to the smallest 

Kolmogorov time scale. 

 𝐾𝐾𝐾𝐾 =  
𝑡𝑡𝑓𝑓
𝑡𝑡𝜂𝜂

 (3.1) 

In other words, the flamelet assumption holds when the time scales of the flame are 

much smaller than the Kolmogorov scales. The characteristic time scale of the flame can 

be estimated as [143] 

 
𝑡𝑡𝑓𝑓 =

𝑓𝑓𝑠𝑠𝑠𝑠2(1 − 𝑓𝑓𝑠𝑠𝑠𝑠)2

𝜒𝜒𝑞𝑞
 (3.2) 

where 𝑓𝑓𝑠𝑠𝑠𝑠 is the stoichiometric mixture fraction. For the methane-oxygen mixture 

considered in this study, 𝑓𝑓𝑠𝑠𝑠𝑠 = 0.2. The extinction (quenching) scalar dissipation rate 𝜒𝜒𝑞𝑞 

can be obtained from solutions of counterflow diffusion flames of oxygen and methane at 

the given operating conditions. The value is estimated to be 3.6 × 105𝑠𝑠−1 at the 

stoichiometric condition at 10 MPa [161]. This gives a flame time scale of 7.1 × 10−8𝑠𝑠. 

The Kolmogorov time scale 𝑡𝑡𝜂𝜂, calculated from the Reynolds number, integral length scale, 

and reference velocity, is estimated to be of the order of  10−6 − 10−7𝑠𝑠. The resulting 

Karlovitz number is thus of the order of 10−1 − 10−2, and the flamelet assumption is 

justified for the flow configuration considered in this study. 

The flame thickness of a non-premixed flame depends on the pressure and strain 

rate. The maximum strain rate in the current configuration for the non-reacting flow is 

found to be 6 × 105𝑠𝑠−1. The corresponding laminar flame thickness is about 20 𝜇𝜇𝜇𝜇, based 
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on the half maximum width of temperature [162, 163]. The mesh resolution in the flame 

zone is of the order of 1 𝜇𝜇𝜇𝜇, which is much smaller than the flame thickness. Thus, all the 

relevant turbulent and flame scales are resolved directly. The coupling of flamelet-based 

models with DNS simulations have been considered in previous works [164-166] to 

overcome the computational challenges associated with detailed chemical kinetics. 

Mukhopadhyay et al. [167] have shown that coarse DNS combined with a filtered flamelet 

approach can reproduce the resolved DNS results if the grid size is of the order of the flame 

thickness. The grid employed in this study is already fine enough to fully resolve the flame 

thickness, and therefore a filtered approach is not necessary and the laminar flamelet 

solution is used directly to represent the chemistry at each cell. 

The flamelet model implemented in this study uses pre-computed laminar flamelet 

solution obtained from simulations of one-dimensional counterflow diffusion flames that 

incorporates real-fluid thermodynamics and validated chemical kinetics [161, 162]. The 

oxygen/methane chemistry is modeled based on the reduced chemical mechanism of Sung 

et al. [168, 169]. The solutions are tabulated in a look-up table that is given as input to the 

CFD solver. The mixture fraction (𝑓𝑓) and scalar dissipation rate (𝜒𝜒) are used as input 

parameters, to obtain the species composition from the table at each time step. The flamelet 

solutions are only tabulated at a reference pressure corresponding to the prespecified 

operating condition. This is a reasonable assumption since pressure fluctuations in the flow 

are within 1% of the reference pressure. For the DNS simulation, the conservation equation 

for the mixture fraction is given as: 
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𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕𝑢𝑢𝑗𝑗𝑓𝑓
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�𝜌𝜌𝜌𝜌
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𝜕𝜕𝑥𝑥𝑗𝑗

� (3.3) 

The scalar dissipation rate is computed as 

 
𝜒𝜒 = 2𝐷𝐷 �

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�
2

 (3.4) 

where the diffusivity 𝐷𝐷 is estimated from the mixture thermal conductivity with the 

assumption of unity Lewis number. Accounting for real-fluid mass diffusivities of 

individual species could be important in determining the flame characteristics [170], but is 

reserved for future studies. It is emphasized here that the primary focus of this study is to 

investigate inconsistencies associated with LES filtering and subgrid modeling at 

supercritical conditions. The flamelet model offers a computational balance to obtain a 

representative, fully resolved, multi-species reacting flowfield upon which the LES 

modeling issues can be analyzed. 

 

3.4 Filtering procedure for a priori evaluation 

The resolved terms and the associated subgrid terms in the LES formulation 

described in Section 2.3.5 are computed exactly from the DNS database through explicit 

spatial filtering employing a box filter. The filtering is performed in the computational 

space which offers some advantages. The filter width in the computational space is kept 

homogenous. As a result, the filter operator is commutative with the spatial derivatives in 

the computational space [132, 133]. A constant filter width in computational space also 
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renders a non-uniform LES grid in the physical space which preserves the same grid 

stretching as the DNS. This is desirable since it provides a direct examination of the LES 

formulation on grid topologies that are applied in practical non-homogeneous flows.  

The filtered quantities are represented on a grid which is coarser than the DNS grid 

by a factor Δ𝑓𝑓. The filter width factor Δ𝑓𝑓 is defined as the ratio between the local LES cell 

size to the corresponding DNS cell size in the computational space. 

 Δ𝑓𝑓 =  
Δ𝐿𝐿𝐿𝐿𝐿𝐿
Δ𝐷𝐷𝐷𝐷𝐷𝐷

 (3.5) 

Three values of Δ𝑓𝑓 are chosen – 2, 5, and 10 to represent fine, moderate, and coarse 

resolution LES grids. Based on the LES grid defined in the computational space, the 

filtered quantities are computed by evaluating the discrete box filter defined in Equation 

(2.16). For the evaluation of spatial derivatives, the corresponding derivatives are 

computed in the computational space using second order central difference schemes and 

then transformed to the physical space using the transformation metrics of the LES grid. 

With this methodology, the evaluated spatial derivatives based on the filtered variables are 

consistent with the filtered spatial variables since the commutation is valid in the uniform 

computational space. There still remain residual errors that are isolated and within the order 

of accuracy of the filtered grid metrics [133]. These residual errors are to be treated along 

with the numerical discretization errors and are not considered in this study.  
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CHAPTER 4. NON-REACTING BINARY-SPECIES MIXING 

STUDIES 

4.1 Overview 

This chapter presents a systematic examination of the terms in the LES formulation 

for the non-reacting, binary-species turbulent mixing case. The primary objective is to 

quantify the complete set of terms in the filtered conservations equations for LES derived 

in Chapter 2 and assess the validity of the currently employed LES simplifications. In 

particular, the relevance and significance of the new set of subgrid terms identified in 

Section 2.3.5 are evaluated to determine the need to model these terms. 

A global order of magnitude analysis is performed to reveal the relevance of 

different subgrid terms with respect to the leading order terms in the governing equations. 

The differences between Favre-filtered and Reynolds-filtered variables are investigated. 

The modeling errors associated with the computation of the filtered thermodynamic and 

transport coefficients using resolved Favre-filtered quantities are also quantified. The 

analyses are done at different filter widths to provide insights to modeling requirements for 

LES at different resolutions. 

 

4.2 Flow field description 

Instantaneous visualizations of the flowfield are shown in Figure 4.1 in terms of 

distributions of density, mixture fraction, magnitude of second derivative of density 
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(shadowgraph) and vorticity magnitude. No distinct interface is observed between the 

liquid oxygen and methane stream, as the surface tension and enthalpy of vaporization are 

close to zero across the critical mixing temperature. Strong vortices develop due to the 

velocity difference, and stringy, finger-like structures appear along the liquid oxygen 

stream. The mixing layer behaviour is similar to classical variable-density fluid mixing, as 

observed in the experiments of Chehroudi et al. [9]. 

Another important observation from the density and shadowgraph images is the 

rapid variation of density and resulting steep density gradients across the mixing layer. The 

large density gradient regions that are a characteristic feature of transcritical and 

supercritical mixing are highlighted in the shadowgraph visualizations. As the LOX stream, 

which is initially at a subcritical temperature of 120K, meets the warmer gaseous methane 

stream downstream of the splitter plate, its temperature increases. The oxygen stream 

subsequently goes through a transcritical regime, where thermodynamic and transport 

properties are known to be very sensitive to changes in pressure and temperature, resulting 

in strong variations of these quantities. For illustration, the transverse variations of density 

and specific heat across the mixing layer is shown in Figure 4.2. This feature imposes a 

strict resolution requirement for accurately resolving the flow variations, especially at the 

smallest turbulent scales. 

The DNS database captures the complete spatio-temporal evolution of the 

inhomogeneous flow field and provides rich information that is lacking in previous studies 

that employed temporal flow configurations with periodic boundaries. Figure 4.3 shows 

the flow evolution through instantaneous snapshots of density at various time instants. The 

spatial and temporal motions of the fine turbulent scales are captured in very high detail.  
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Figure 4.1 – Instantaneous visualizations of the non-reacting flow field: distributions 
of density, mixture fraction, vorticity magnitude and second derivative of density 
(shadowgraph image) (from top to bottom). 
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Figure 4.2 – Transverse variation of density and specific heat across the mixing layer. 

 

 

Figure 4.3 – Spatio-temporal evolution of the density field at various time instants. 

 

4.3 Order of magnitude analysis of terms in the filtered equations 

To assess the significance of terms in the governing filtered equations, the order of 

magnitude of each term is quantified. The terms are considered in the same spatial 
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derivative form as they appear in the governing equations to provide a true understanding 

of their contributions. The 𝐿𝐿2 norms of the terms computed within the core of the mixing 

layer field is used as the metric for the analysis. The 𝐿𝐿2 norms are normalized by the total 

number of cells over which the norms are computed. The 𝐿𝐿2 norms and 𝐿𝐿∞ norms computed 

over the entire flowfield were also evaluated for comparison and the trends were found to 

be identical. Global 𝐿𝐿2 norms have been used to quantify the order of magnitudes of terms 

in several past studies [99, 100, 171]. The distributions of resolved terms and their subgrid 

terms are found to follow a similar trend with maximum and minimum values in the same 

regions. Therefore, the use of a global metric is considered reasonable for obtaining a 

preliminary overall understanding of the contribution of different terms. In addition to the 

global magnitudes, the spatial distributions of the terms are also of interest since the flow 

is inhomogeneous. These distributions are also analyzed for each conservation equation. 

The new subgrid terms associated with the diffusive fluxes and thermodynamic quantities 

that are introduced in this work are of particular interest. The relative magnitudes of these 

terms with respect to their corresponding resolved term is presented to understand their 

relevance. 

The analyses are carried out for three different filter widths. The filter width factor 

is defined as the ratio between the local LES filter (grid) width and the DNS grid width 

Δ𝑓𝑓 = Δ𝐿𝐿𝐿𝐿𝐿𝐿/Δ𝐷𝐷𝐷𝐷𝐷𝐷. Filter width factors of 2, 5 and 10 are chosen to represent fine, moderate, 

and coarse resolution LES. Note that the filter width factors should be interpreted in the 

computational space where the filtering is defined rather than the physical space where the 

local DNS and LES filter sizes are non-uniform. 
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4.3.1 Total mass conservation equation 

The order of magnitude of terms in the filtered total mass conservation equation are 

presented in Table 4.1. It is seen that the residual mass flux terms associated with the 

subgrid density are two orders of magnitude lower than the resolved mass flux terms at Δ𝑓𝑓 

= 2. It may possibly be acceptable to neglect these terms at this resolution and retain only 

the resolved terms. However, this must be strictly justified with a posteriori analyses to 

evaluate the effect of neglecting this term even though it is small. With increase in filter 

width, the magnitudes of the resolved terms decrease while those of the residual terms 

increase. The amount of subgrid contributions increases with filter width in general. In the 

continuity equation the resolved and residual terms represent the convective mass fluxes 

occurring at the resolved and subgrid scales respectively. As the filter width is increased, 

the convective flux at the subgrid level increases, leading to increased magnitude of the 

residual terms. As a result, the residual terms become increasingly significant with respect 

to the corresponding resolved term. For example, the order of magnitude of the mass flux 

in the streamwise direction (𝜕𝜕𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢�/𝜕𝜕𝜕𝜕) is about 1% compared to the corresponding 

resolved term �𝜕𝜕𝜌𝜌�𝑸𝑸��𝑢𝑢�/𝜕𝜕𝜕𝜕� at Δ𝑓𝑓 = 2 and increases to about 8.5% at Δ𝑓𝑓 = 10. The 

contribution of the transverse flux is slightly higher because of larger gradients in the 

transverse direction.  
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Table 4.1 – Order of magnitude of terms in the filtered continuity equation at 
different filter widths (non-reacting), unit: x108 kg m-3s-1. 

Δ𝑓𝑓 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌�𝑸𝑸��𝑢𝑢�) 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌�𝑸𝑸��𝑣𝑣�) 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢�) 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣�) 

2 2.07 1.39 2.27e-2 6.18e-2 

5 1.59 1.20 6.11e-2 1.09e-1 

10 1.06 0.92 9.06e-2 1.39e-1 

To derive a detailed understanding of the distribution of the residual terms, the 

relative magnitude of the residual fluxes are computed as the ratio between the 

instantaneous residual flux term and the corresponding resolved flux term at each LES cell. 

The distribution is shown in Figure 4.4. The trend of increasing relative magnitude of the 

residual contributions with filter width is observed. The relative magnitudes are more 

significant than those interpreted from the 𝐿𝐿2 norms. The peak magnitudes are around 4% 

for the finest resolution and increases above 20% for the coarsest resolution. In fact, there 

are localized regions where the relative magnitude is as high as 40%. The regions where 

the residual fluxes attain significance are closely correlated with the interface between the 

pure LOX stream and the mixing layer core. In these regions, large variations of density 

occur as a result of transition from transcritical LOX to a supercritical mixture. Considering 

the relevance of the residual terms, it is deemed important to account for and model the 

subgrid density or equivalently the filtered density especially at coarser grid resolutions.  
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Figure 4.4 – Relative magnitude of residual flux terms in the filtered continuity 
equation at different filter widths (row-wise) (non-reacting). x-derivative flux (left) 
and y-derivative flux (right). 

 

4.3.2 Momentum conservation equations 

The order of magnitude of the terms in the filtered x- and y-momentum 

conservation equations are presented in Table 4.2 and Table 4.3 respectively. The 

convective flux terms, pressure gradient, and the conventional subgrid convective fluxes 

are the leading order terms, which is expected in high Reynolds number flows. Similar to 

the continuity equation, the magnitudes of the resolved convective flux terms decrease 

while the magnitudes of the subgrid conventional flux terms increase with filter width. An 

interesting observation is that the residual convective flux terms associated with the subgrid 
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density are one magnitude higher than the conventional subgrid fluxes. The magnitudes of 

these residual terms also increase with filter width. At Δ𝑓𝑓 = 5 and 10 they are comparable 

in magnitude to the pressure gradient terms particularly in the x-momentum equation. This 

re-emphasizes the need for accurate representation of the filtered density. 

The resolved viscous fluxes are about 4 orders of magnitude lower than the 

convective fluxes, compliant with the Reynolds number of the flow. The subgrid viscous 

fluxes are one order of magnitude lower than the viscous fluxes for Δ𝑓𝑓 = 2. The resolved 

viscous fluxes decrease in magnitude with increasing filter width, while their subgrid 

contributions remain roughly same. At Δ𝑓𝑓 = 10, the subgrid viscous flux contributions are 

comparable in magnitude to the resolved viscous fluxes. It is not clear to what extent these 

terms would affect the accuracy of the equation. One argument that can be made is that the 

resolved viscous fluxes must be considered in the equation even though they are much 

lower in magnitude compared to the convective fluxes and pressure gradient terms. 

Therefore, the subgrid viscous fluxes which are comparable in magnitude must also be 

accounted for. The viscous forces originate at the molecular level and therefore act 

primarily at small scales. In that sense, it is potentially important to account for these 

subgrid effects to accurately model the viscous dissipation. 

In a recent study on temporal mixing layers by Ovais et al. [171], the subgrid 

viscous flux was found to be one to two orders of magnitude smaller than the resolved flux. 

Their Reynolds number was of the order of 600. This underscores the need to consider 

realistic Reynolds numbers for subgrid modeling investigations. 
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The relative magnitude of the residual flux terms associated with the subgrid 

density in the u-momentum equation are presented in Figure 4.5. The trend is similar to 

that observed for the residual terms in the continuity equation. The magnitude of the terms 

become significant with respect to the resolved convective fluxes as the filter width is 

increased. At Δ𝑓𝑓 = 10, the magnitudes of the terms reach upto 20-40% of the resolved 

convective fluxes and must be accounted. Figure 4.6 shows the relative magnitude of the 

subgrid viscous fluxes with the corresponding resolved viscous fluxes. The trend is 

different from that observed in Figure 4.5. Unlike the subgrid terms associated with the 

subgrid density which peak in the LOX interface of the mixing layer, the subgrid viscous 

fluxes are significant within the entire core of the mixing layer. This can be attributed to 

the intense turbulent mixing and continuous variation in mixture composition and 

molecular viscosity/viscous fluxes at the subgrid level. These subgrid effects are not 

captured within the resolved viscous fluxes that are computed purely based on the resolved 

field variables. These effects gain significance with increased filter width as more 

variations occur at the subgrid level. The peak values of the subgrid viscous fluxes are 

higher than the resolved viscous fluxes in some cells implying that the viscous effects are 

incorrectly captured if the subgrid contributions are not considered. 

  



 71 

Table 4.2 – Order of magnitude of terms in the filtered x-momentum equation at 
different filter widths (non-reacting), unit: x108 kg m-2s-2. 

Δ𝑓𝑓 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌�𝑸𝑸��𝑢𝑢�𝑢𝑢�) 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌�𝑸𝑸��𝑢𝑢�𝑣𝑣�) 𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

2 79.71 31.06 4.29e-2 6.07e-2 

5 61.49 26.58 1.67e-1 2.98e-1 

10 40.12 20.19 3.44e-1 5.66e-1 

 

Δ𝑓𝑓 𝜕𝜕𝑝̅𝑝
𝜕𝜕𝜕𝜕

 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢�𝑢𝑢�) 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢�𝑣𝑣�) 

2 3.94 0.68 0.38 

5 3.75 1.89 1.40 

10 3.45 2.87 2.22 

 

Δ𝑓𝑓 𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥�𝑸𝑸��
𝜕𝜕𝜕𝜕

 
𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥�𝑸𝑸��

𝜕𝜕𝜕𝜕
 

𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

2 1.21e-2 7.68e-2 1.48e-3 7.38e-3 

5 6.60e-3 4.75e-2 2.26e-3 1.17e-2 

10 3.20e-3 2.70e-3 2.07e-3 9.24e-3 
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Table 4.3 – Order of magnitude of terms in the filtered y-momentum equation at 
different filter widths (non-reacting), unit: x108 kg m-2s-2. 

Δ𝑓𝑓 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌�𝑸𝑸��𝑢𝑢�𝑣𝑣�) 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌�𝑸𝑸��𝑣𝑣�𝑣𝑣�) 𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

𝜕𝜕𝜏𝜏𝑦𝑦𝑦𝑦
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

2 22.03 20.24 3.74e-2 5.98e-2 

5 17.23 17.46 1.32e-1 3.04e-1 

10 12.06 13.25 2.37e-1 6.47e-1 

 

Δ𝑓𝑓 
𝜕𝜕𝑝̅𝑝
𝜕𝜕𝜕𝜕

 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢�𝑣𝑣�) 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣�𝑣𝑣�) 

2 3.74 0.19 0.51 

5 3.68 0.53 1.20 

10 3.57 0.79 1.65 

 

Δ𝑓𝑓 𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥�𝑸𝑸��
𝜕𝜕𝜕𝜕

 
𝜕𝜕𝜎𝜎𝑦𝑦𝑦𝑦�𝑸𝑸��

𝜕𝜕𝜕𝜕
 

𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

𝜕𝜕𝜎𝜎𝑦𝑦𝑦𝑦
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

2 1.29e-2 2.90e-2 2.15e-3 7.85e-3 

5 7.52e-3 1.88e-2 3.33e-3 6.63e-3 

10 4.00e-3 1.08e-2 3.12e-3 6.55e-3 
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Figure 4.5 – Relative magnitude of residual convective flux terms associated with the 
subgrid density in the filtered x-momentum equation at different filter widths (row-
wise) (non-reacting). x-derivative flux (left) and y-derivative flux (right). 
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Figure 4.6 – Relative magnitude of subgrid viscous flux terms in the filtered x-
momentum equation at different filter widths (row-wise) (non-reacting). x-derivative 
flux (left) and y-derivative flux (right). 

 

4.3.3 Total energy conservation equation 

The orders of magnitude of the terms in the filtered energy equation as a function 

of filter width is presented in Table 4.4. The resolved convective enthalpy fluxes are the 

leading order terms. The conventional subgrid enthalpy fluxes are two orders of magnitude 

lower at Δ𝑓𝑓 = 2. The magnitudes of the resolved enthalpy fluxes decrease, while those of 

the subgrid enthalpy fluxes increase with increasing filter width. Another set of terms of 

significance with respect to the convective fluxes are the residual terms involving 

𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠 arising from the filtered product of the density and enthalpy. The magnitudes of these 
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terms are comparable and slightly larger than the subgrid enthalpy flux, and the magnitudes 

increase with filter width. These terms rank second in the order of magnitude of all terms 

in the energy equation and therefore neglecting this term in the filtered equation is not 

reasonable. 

The contributions from the kinetic energy fluxes are 3-4 orders of magnitude 

smaller than the enthalpy fluxes. The contributions from the subgrid turbulent diffusive 

fluxes 𝒥𝒥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠  are even smaller by about two orders of magnitude compared to the 

corresponding resolved kinetic energy fluxes. Similarly, the residual kinetic energy flux 

terms associated with the subgrid density are also about two orders of magnitude lower 

than the resolved kinetic energy fluxes. The magnitudes of these terms increase with filter 

width but remain much lower compared to other leading terms. Thus, neglecting these 

terms could be justifiable at these flow conditions. The residual kinetic energy flux terms 

associated with the subgrid density could easily be accounted if the filtered density is 

modeled correctly. 

The next set of terms of importance are the diffusive heat flux terms. These terms 

appear larger in magnitude than the resolved kinetic energy fluxes, particularly the flux 

term in the y-direction owing to the larger transverse thermal and scalar stratifications. The 

contributions from the corresponding subgrid diffusive heat fluxes 𝑞𝑞𝑗𝑗
𝑠𝑠𝑠𝑠𝑠𝑠are only one order 

of magnitude smaller than the resolved counterparts at Δ𝑓𝑓 = 2 but become comparable in 

magnitude at Δ𝑓𝑓 = 10 due to decrease in magnitude of the resolved heat fluxes. 

The viscous diffusion terms are the lowest in magnitude compared to all the other 

terms. The resolved contributions from these terms are 6-7 orders of magnitude smaller 
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than the leading order terms, and the corresponding subgrid contributions are one order of 

magnitude smaller than the resolved components. Even though the subgrid viscous 

diffusion terms are significant with respect to the corresponding resolved viscous diffusion, 

the overall magnitude of these terms with respect to the other terms suggest that neglecting 

subgrid contributions in these terms might not have a considerable impact for modeling, 

atleast at similar conditions. 

Figure 4.7 and Figure 4.8 show the distribution of the magnitude of the subgrid 

convective flux associated with the subgrid enthalpy 𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠 and the subgrid diffusive heat 

flux 𝑞𝑞𝑗𝑗
𝑠𝑠𝑠𝑠𝑠𝑠, scaled relative to their corresponding instantaneous resolved flux terms. The 

trends are quite similar to those observed for the counterpart terms in the momentum 

equations.  

Table 4.4 – Order of magnitude of terms in the filtered energy equation at different 
filter widths (non-reacting), unit: x1012 kg m-1s-3. 

Δ𝑓𝑓 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌�𝑸𝑸��ℎ�𝑸𝑸��𝑢𝑢�) 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌�𝑸𝑸��ℎ�𝑸𝑸��𝑣𝑣�) 𝜕𝜕𝑄𝑄𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

𝜕𝜕𝑄𝑄𝑦𝑦
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

2 135.21 109.10 1.16 1.60 

5 102.69 95.17 3.87 6.18 

10 72.88 78.00 6.46 10.28 
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Table 4.4 continued 

Δ𝑓𝑓 𝜕𝜕
𝜕𝜕𝜕𝜕

�𝜌𝜌�𝑸𝑸��𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖𝑢𝑢�� 
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝜌𝜌�𝑸𝑸��𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖𝑣𝑣�� 
𝜕𝜕𝒥𝒥𝑥𝑥

𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

𝜕𝜕𝒥𝒥𝑦𝑦
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

2 2.15e-1 7.88e-2 2.40e-4 3.02e-4 

5 1.65e-1 6.68e-2 8.55e-4 1.52e-3 

10 1.07e-1 5.00e-2 1.93e-3 2.84e-3 

 

Δ𝑓𝑓 𝜕𝜕𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢�
𝜕𝜕𝜕𝜕

 
𝜕𝜕𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣�
𝜕𝜕𝜕𝜕

 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖𝑢𝑢�) 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖𝑣𝑣�) 

2 3.17 8.47 1.51e-3 7.65e-4 

5 8.31 14.93 4.20e-3 2.70e-3 

10 11.65 18.69 6.53e-3 4.30e-3 

 

Δ𝑓𝑓 𝜕𝜕𝑞𝑞𝑥𝑥�𝑸𝑸��
𝜕𝜕𝜕𝜕

 
𝜕𝜕𝑞𝑞𝑦𝑦�𝑸𝑸��
𝜕𝜕𝜕𝜕

 
𝜕𝜕𝑞𝑞𝑥𝑥

𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

𝜕𝜕𝑞𝑞𝑦𝑦
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

2 3.16e-1 2.87 7.68e-2 8.38e-1 

5 1.70e-1 1.52 6.50e-2 7.62e-1 

10 4.11e-2 0.71 3.51e-2 4.47e-1 
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Table 4.4 continued 

Δ𝑓𝑓 

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑢𝑢�𝜎𝜎𝑥𝑥𝑥𝑥�𝑸𝑸��

+ 𝑣𝑣�𝜎𝜎𝑥𝑥𝑥𝑥�𝑸𝑸��� 

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑢𝑢�𝜎𝜎𝑥𝑥𝑥𝑥�𝑸𝑸��

+ 𝑣𝑣�𝜎𝜎𝑦𝑦𝑦𝑦�𝑸𝑸��� 

𝜕𝜕𝒟𝒟𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

𝜕𝜕𝒟𝒟𝑦𝑦
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

2 4.14e-5 2.41e-4 3.90e-6 2.23e-5 

5 2.25e-5 1.56e-4 6.38e-6 3.68e-5 

10 9.82e-6 7.99e-5 6.46e-6 3.10e-5 

 

 

Figure 4.7 – Relative magnitude of residual convective flux terms associated with the 
subgrid enthalpy in the filtered energy equation at different filter widths (row-wise) 
(non-reacting). x-derivative flux (left) and y-derivative flux (right). 
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Figure 4.8 – Relative magnitude of subgrid diffusive heat flux terms in the filtered 
energy equation at different filter widths (row-wise) (non-reacting). x-derivative flux 
(left) and y-derivative flux (right). 

 

4.3.4 Species mass conservation equations 

The order of magnitude of terms in the filtered mass conservation equations for the 

CH4 and O2 species are shown in Table 4.5 and Table 4.6 respectively. The trends observed 

in both equations are similar with minor differences. The resolved species convective 

fluxes are the leading order terms in both equations. The magnitudes of the resolved 

convective flux terms for O2 are one order higher due to the larger variation of density 

associated with oxygen. The subgrid species convective fluxes are of similar magnitude 

for both species and increase with filter width. For CH4, the magnitudes of the subgrid 
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species convective fluxes are around 1% of the resolved convective fluxes at Δ𝑓𝑓 = 2 and 

increases to about 10-15% at  Δ𝑓𝑓 = 10. For O2, the contribution of subgrid species 

convective fluxes increase from around 0.2% to 2%. The residual species flux associated 

with the subgrid density are higher than the subgrid species fluxes, especially in the O2 

transport equation where the residual fluxes are one order of magnitude higher than the 

corresponding subgrid species fluxes. This once again highlights the need for an accurate 

modeling of the filtered density through the filtered equation of state and accounting for 

necessary subgrid effects in the filtered equation of state. 

The resolved species diffusive fluxes are three and four orders of magnitude lower 

than the leading resolved convective fluxes in the CH4 and O2 equations respectively. The 

corresponding subgrid diffusive fluxes are smaller by one order of magnitude with respect 

to the resolved diffusive fluxes with increasing relative significance at higher filter widths. 

The distributions of the relative magnitude of the subgrid convective fluxes 

associated with the subgrid density and the subgrid diffusive fluxes with respect to their 

resolved counterparts are shown in Figure 4.9 and Figure 4.10 respectively. The overall 

trends are similar to those of the equivalent terms in the momentum and energy equations. 

However, the relative magnitudes of the subgrid diffusive flux terms are much higher by 

almost a factor of 2 and are even greater than the resolved diffusive fluxes in certain regions 

at higher filter widths. Accounting for this term is considered important from a modeling 

perspective. The species diffusive fluxes also play an important role in modeling the 

subgrid mixing of species which is essential for combustion applications. 
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Table 4.5 – Order of magnitude of terms in the filtered CH4 species mass conservation 
equation at different filter widths (non-reacting), unit: x107 kg m-3s-1. 

Δ𝑓𝑓 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌�𝑸𝑸��𝑌𝑌�𝐶𝐶𝐶𝐶4𝑢𝑢�) 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌�𝑸𝑸��𝑌𝑌�𝐶𝐶𝐶𝐶4𝑣𝑣�) 
𝜕𝜕Φ𝐶𝐶𝐶𝐶4,𝑥𝑥

𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

𝜕𝜕Φ𝐶𝐶𝐶𝐶4,𝑦𝑦
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

2 2.67 2.23 2.48e-2 3.62e-2 

5 1.98 1.94 8.26e-2 1.40e-1 

10 1.38 1.57 1.37e-1 2.33e-1 

 

Δ𝑓𝑓 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑌𝑌�𝐶𝐶𝐶𝐶4𝑢𝑢�) 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑌𝑌�𝐶𝐶𝐶𝐶4𝑣𝑣�) 

2 5.07e-2 1.36e-1 

5 1.32e-1 2.41e-1 

10 1.82e-1 3.00e-1 

 

Δ𝑓𝑓 𝜕𝜕
𝜕𝜕𝜕𝜕

𝐽𝐽𝐶𝐶𝐶𝐶4,𝑥𝑥�𝑸𝑸�� 
𝜕𝜕
𝜕𝜕𝜕𝜕

𝐽𝐽𝐶𝐶𝐶𝐶4,𝑦𝑦�𝑸𝑸�� 
𝜕𝜕
𝜕𝜕𝜕𝜕

𝐽𝐽𝐶𝐶𝐶𝐶4,𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠  

𝜕𝜕
𝜕𝜕𝜕𝜕

𝐽𝐽𝐶𝐶𝐶𝐶4,𝑦𝑦
𝑠𝑠𝑠𝑠𝑠𝑠  

2 6.22e-3 5.64e-2 1.51e-3 1.64e-2 

5 2.29e-3 2.98e-2 1.28e-3 1.50e-2 

10 8.00e-4 1.38e-2 6.92e-3 8.81e-3 
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Table 4.6 – Order of magnitude of terms in the O2 species mass conservation equation 
at different filter widths (non-reacting), unit: x107 kg m-3s-1. 

Δ𝑓𝑓 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌�𝑸𝑸��𝑌𝑌�𝑂𝑂2𝑢𝑢�) 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌�𝑸𝑸��𝑌𝑌�𝑂𝑂2𝑣𝑣�) 
𝜕𝜕Φ𝑂𝑂2,𝑥𝑥

𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

𝜕𝜕Φ𝑂𝑂2,𝑦𝑦
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

2 21.08 14.24 2.83e-2 3.62e-2 

5 16.17 12.19 7.73e-2 1.40e-1 

10 10.75 9.28 1.10e-1 2.33e-1 

 

Δ𝑓𝑓 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑌𝑌�𝑂𝑂2𝑢𝑢�) 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑌𝑌�𝑂𝑂2𝑣𝑣�) 

2 1.81e-1 4.97e-1 

5 4.92e-1 8.92e-1 

10 7.46e-1 1.14 

 

Δ𝑓𝑓 𝜕𝜕
𝜕𝜕𝜕𝜕

𝐽𝐽𝑂𝑂2,𝑥𝑥�𝑸𝑸�� 
𝜕𝜕
𝜕𝜕𝜕𝜕

𝐽𝐽𝑂𝑂2,𝑦𝑦�𝑸𝑸�� 
𝜕𝜕
𝜕𝜕𝜕𝜕

𝐽𝐽𝑂𝑂2,𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠  

𝜕𝜕
𝜕𝜕𝜕𝜕

𝐽𝐽𝑂𝑂2,𝑦𝑦
𝑠𝑠𝑠𝑠𝑠𝑠  

2 3.12e-3 2.83e-2 7.60e-4 8.24e-3 

5 1.15e-3 1.50e-2 6.41e-4 7.53e-3 

10 4.02e-4 6.94e-3 3.47e-4 4.42e-3 
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Figure 4.9 – Relative magnitude of residual convective flux terms associated with the 
subgrid density in the filtered CH4 species conservation equation at different filter 
widths (row-wise) (non-reacting). x-derivative flux (left) and y-derivative flux (right). 
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Figure 4.10 – Relative magnitude of subgrid species diffusive flux terms in the filtered 
CH4 species conservation equation at different filter widths (row-wise) (non-reacting). 
x-derivative flux (left) and y-derivative flux (right). 

 

4.4 Differences between Favre- and Reynolds-filtered variables  

In most LES formalisms, Favre-filtered variables are considered within the 

theoretical framework for the velocities, temperature (or enthalpy) and the species mass 

fractions. This definition was introduced to simplify the mathematical structure of the 

filtered equations for compressible flows, and to avoid the introduction of additional 

residual terms for the time derivative terms that would require closure. Favre-filtering is a 

density-weighted filtering operator. As a result, a Favre-filtered quantity is biased towards 

the corresponding values of the quantity of the denser species based on the distribution at 
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the subgrid level. This issue might not be so serious for weakly compressible flows with 

low subgrid density variations. However, for flows with strong small-scale density 

stratifications and/or gradients, Favre-filtered quantities are expected to differ vastly from 

the corresponding Reynolds-filtered quantities. This applies for supercritical turbulent 

mixing flows which are characterized by large density gradients at different length scales. 

In LES, Favre-filtered variables are used to compute the resolved flow quantities 

such as the viscous stresses, diffusive fluxes, and all thermodynamic and transport 

properties. In the previous section, it was revealed that the subgrid diffusive fluxes are of 

considerable magnitude. In Section 2.3.4, a decomposition of the subgrid diffusive fluxes 

was introduced that showed contributions resulting from the differences between Favre- 

and Reynolds-filtered variables, and the corresponding errors accrued due to computation 

of thermodynamic and transport properties. It is therefore important to quantify the 

differences between Favre-filtered and Reynolds-filtered primitive variables as a first step 

to understand the major contributions to the subgrid diffusive fluxes.  

Figure 4.11 presents the comparison between Favre-filtered (y-axis) and Reynolds-

filtered (x-axis) velocity (row 1), temperature (row 2) and CH4 mass fraction (row 3) at 

different filter widths (column wise). The difference between Favre-filtered and Reynolds-

filtered velocities are minimal, even though slight differences become noticeable with 

increasing filter width. The reason that the differences are negligible could be due to the 

weak correlation between density and velocity. Within the mixing layer, the velocity 

mixing happens much more rapidly than the scalar mixing as a result of which the velocities 

between the two species components are indistinguishable at the subgrid level. Therefore, 

the density-weighting has no impact on the filtered velocities. On the other hand, the 
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differences between the Favre-filtered and Reynolds-filtered temperature and species mass 

fractions are considerable, and the differences become more significant with increasing 

filter width. This can be attributed to the fact that the density, temperature, and mixture 

composition are strongly coupled through the non-linear equation of state. Moreover, the 

impeded scalar mixing at high pressures results in a non-uniform distribution of 

temperature and species mass fractions at the subgrid level. As a result, the Favre-filtered 

temperature and species mass fractions are biased towards those of the denser species 

within the subgrid mixture, i.e., O2. The corresponding state values for O2 are lower than 

those of CH4. This is the reason why the Favre-filtered temperature and CH4 mass fraction 

are underpredicted. The mass fraction of O2 would be overpredicted for the same reason. 

Figure 4.12 quantifies the relative difference between the Favre-filtered and Reynolds-

filtered temperature and CH4 mass fractions at different filter widths. The relative 

difference for a primitive variable is defined as 

 
𝜀𝜀𝑸𝑸 =

𝑸𝑸� − 𝑸𝑸�

𝑸𝑸�
 (4.1) 

The relative difference in filtered temperature is mostly within 3-5% at ∆𝑓𝑓= 2, 

although the errors are higher in some cells. With increasing filter width, the errors increase 

and peak errors about 10-15% or more are observed at ∆𝑓𝑓= 10. The relative error in species 

mass fraction follows a similar trend with respect to increasing filter width. However, the 

relative error in mass fraction is almost 2-3 times higher than those for temperature. This 

could be a contributing factor for the increased significance of the subgrid diffusive fluxes 
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through the residual term 𝐽𝐽𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠(2)

 arising from the difference between the Favre- and 

Reynolds-filtered mass fractions.  

 

Figure 4.11 – Comparison between Reynolds-filtered (x-axis) and corresponding 
Favre-filtered state variables (y-axis) at different filter widths (non-reacting). 
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Figure 4.12 – Relative difference between Reynolds-filtered and Favre-filtered state 
variables at different filter widths as a function of mixture fraction (non-reacting). 

 

4.5 Error in representation of filtered thermodynamic and transport properties  

In current LES formalisms, the filtered thermodynamic and transport coefficients 

are represented as their values computed through the state relations using the Favre-filtered 

temperature and species mass fractions. The omission of subgrid correlations within the 

non-linear thermodynamic and transport property evaluation schemes, and the differences 

between the Favre-filtered and Reynolds-filtered quantities are expected to have 

ramifications for the represented filtered quantity. The resulting deviations contribute to 

the additional subgrid terms as discussed in Section 2.3.4.  
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Figure 4.13 and Figure 4.14 show the distributions of relative errors in the 

representation of different filtered thermodynamic and transport coefficients. The transport 

coefficients are considered in the form in which they appear in the governing terms. For 

example, in the diffusive flux term 𝜌𝜌𝐷𝐷𝑘𝑘 is relevant than 𝐷𝐷𝑘𝑘 itself. Similarly, in the energy 

equation 𝜌𝜌ℎ and 𝜌𝜌ℎ𝑘𝑘𝐷𝐷𝑘𝑘 quantities are relevant. The relative error of a secondary quantity 

𝜙𝜙(𝑸𝑸) is defined in terms of the difference between the exact filtered quantity and the 

corresponding term represented in terms of the Favre-filtered state variables. 

 
𝜀𝜀𝜙𝜙 =

𝜙𝜙(𝑸𝑸)������� − 𝜙𝜙�𝑸𝑸��
𝜙𝜙(𝑸𝑸)�������  (4.2) 

The relative error in filtered density is mostly within 10% at Δ𝑓𝑓 = 2 and increases 

with filter width showing around 20-40% peak errors at Δ𝑓𝑓 = 10. The error is mostly 

negative implying that the density computed using the Favre-filtered temperature and 

species mass fractions overpredicts the true filtered density. This can be explained by the 

choice of Favre-filtered state variables. The temperature and mixture composition states of 

the local mixture are biased to those of O2. This causes the computed density to be biased 

to that of O2, which being higher results in overprediction of the filtered density. Note also 

that the density is a monotonically decreasing as a function of the mixture fraction and 

temperature for this case. In contrast, the behavior is slightly different for the dynamic 

viscosity and thermal conductivity, which are non-monotonic functions of temperature 

within the range of temperatures considered. These quantities decrease with temperature 

in the liquid-like state and increase with temperature in the gas-like state. The error 

distributions of these properties exhibit both positive and negative values in different 
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regions and the magnitudes of the error are relatively lower within 5-10%. In general, the 

computed properties are complex functions of the instantaneous species concentrations, 

temperature, and pressure, and the individual species properties. It is not easy to obtain a 

monotonic error distribution for certain quantities. The overall magnitudes of the errors of 

all properties, however, increase with filter width.  

The specific enthalpy and species diffusivity of oxygen are much lower than that 

of methane, and the corresponding filtered values are also under-estimated. However, the 

overall trend for the transport coefficients that are considered in Figure 4.14 namely 𝜌𝜌𝐷𝐷𝐶𝐶𝐻𝐻4, 

𝜌𝜌ℎ and 𝜌𝜌ℎ𝐶𝐶𝐶𝐶4𝐷𝐷𝐶𝐶𝐶𝐶4 depend on the combined trend of both density and the other properties 

and the associated correlations among the properties. The error distributions of 𝜌𝜌ℎ closely 

follow the trend of density errors, even though the trend of enthalpy is completely opposite 

(see for reference [153]). The error distribution of the 𝜌𝜌𝐷𝐷𝐶𝐶𝐶𝐶4 shows significant errors with 

peak errors as high as 30-50% at the larger filter widths. This is considered an important 

contributor to the increased significance of the subgrid species diffusive fluxes. The trend 

of the errors in the 𝜌𝜌ℎ𝐶𝐶𝐻𝐻4𝐷𝐷𝐶𝐶𝐶𝐶4 quantity is more complex owing to different behaviors of 

the three individual properties. The errors of this quantity are also high, like the 𝜌𝜌𝐷𝐷𝐶𝐶𝐶𝐶4 

quantity.  
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Figure 4.13 – Relative error in representation of filtered density, dynamic viscosity, 
and thermal conductivity (row-wise top to bottom) at different filter widths (column-
wise) as a function of mixture fraction (non-reacting). 
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Figure 4.14 – Relative error in representation of enthalpy, mass diffusivity, and 
thermal diffusivity due to species flux (row-wise top to bottom) at different filter 
widths (column-wise) as a function of mixture fraction (non-reacting). 

 

4.6 Summary 

A quantitative a priori investigation of the terms in the governing filtered equations 

was undertaken for the case of a non-reacting binary-species mixing layer system. Based 



 93 

on the order of magnitude analysis, the significant terms were identified. In addition to the 

conventional resolved and subgrid flux terms, two sets of terms are found to be important. 

These are the residual convective flux terms associated with the subgrid density and 

enthalpy, and the subgrid viscous and diffusive flux terms in the momentum, energy, and 

species conservation equations. The magnitudes of the residual convective flux terms are 

comparable to the leading order terms in the respective equations, and often greater than 

the conventional subgrid fluxes. The subgrid viscous and diffusive fluxes, although much 

smaller in magnitude with respect to the overall set of terms, are relevant in magnitude 

with respect to their corresponding resolved diffusive flux terms. In particular, the subgrid 

species diffusive fluxes in the filtered species conservation equations was found to be 

significant and important to account for. The relevance of these subgrid terms increase with 

filter width, enforcing the need to model these terms in practical LES applications. 

Differences between Favre-filtered and Reynolds-filtered state variables were 

quantified. The deviations between Favre-filtered and Reynolds-filtered temperature and 

species mass fractions were found to be considerable and increasing with filter width. The 

resulting errors in representation of filtered thermodynamic and transport properties were 

also analyzed. Substantial errors were found for the density, mass diffusivity, and enthalpy 

terms, which increase with filter width. These errors are contributing factors for the 

increased significance of the subgrid density-related fluxes and the subgrid diffusive 

fluxes. It is concluded that these subgrid flux terms are relevant at practical LES resolutions 

and therefore must be accounted for at these operating conditions. A posteriori tests are 

required to ascertain the degree to which the inclusion or exclusion of these terms affect 

the evolution and dynamics of the resolved scale motion. 
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CHAPTER 5. REACTING MULTI-COMPONENT STUDIES 

5.1 Overview 

This chapter extends the study done in Chapter 4 for the case of a reacting multi-

species mixing layer system at supercritical pressures. The interactions among turbulent 

mixing of multiple species, thermodynamics, chemical reactions, and heat release result in 

highly stratified distributions of temperature, species composition and associated 

thermodynamic quantities at different turbulent length scales. The interest here is to 

understand how the subgrid scale interactions affect the representation of the filtered terms 

in the governing LES equations. There have been very limited multi-species mixing [172, 

173] and reacting DNS case studies at supercritical pressures [149, 174] and LES modeling 

issues are yet to be investigated under these conditions. 

The modeling approach for the reacting DNS simulation is described in the Section 

3.3. The spatio-temporal data obtained from the DNS simulation is postprocessed to obtain 

the various filtered and subgrid terms in the LES framework described in Chapter 2. The 

order of magnitude of each term is quantified through the 𝐿𝐿2 norm metric to identify the 

terms in the governing equations that are important for modeling. The modeling 

discrepancies associated with the Favre-filtered representation of primitive state variables, 

and the subsequent computation of the filtered thermodynamic and transport quantities for 

multi-component mixtures are investigated in detail. The analyses are performed at 

different filter widths to determine modeling requirements for practical LES applications. 
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5.2 Flow field description 

Figure 5.1 shows the instantaneous flowfield distributions of density, temperature, 

and OH species mass fraction, along with a simulated shadowgraph visualization for the 

reacting case. Fine scale turbulent flame structures are adequately captured in the DNS 

results. The flame is anchored in the recirculation zone immediately downstream of the 

splitter plate. It then spreads as the vortices roll up and develop downstream. The predicted 

scalar dissipation rate in the near field of the splitter plate is too small to quench the 

flamelets, so the flame is stabilized at the LOX post. Since the flame is mixing- and 

diffusion-controlled, the flame structure correlates strongly with the mixing layers. The 

combustion process introduces large temperature gradients, and thus induces rapid 

thermodynamic variations. The distributions of species mass fractions and density display 

shedding of unburnt oxygen from the liquid oxygen stream due to the shear stress from the 

hot combustion products, resulting in broad expansion of the flame. The unburnt oxygen 

ligaments continue to mix with methane in the outer region and form a secondary flame, 

which persists for a short time before the oxygen parcels are completely depleted through 

reaction with rich mixtures. It then either merges with larger flame structures through 

vortex rolling/pairing or disappears by dilution into the low temperature fuel stream. The 

secondary flame is also observed in Singla et al. [175], but through a different mechanism. 

Here, the secondary flame is formed from large scale mixing of fuel and oxidizer, whereas 

in Singla’s experiments droplet penetration accounts for the secondary flame. As the flame 

is convected downstream, multiple pairings of vortices modify the flame structure to a big 

multi-fold plume. The small flame structures then mix with cold reactants and lose energy. 

The flame generally continues to follow the oxygen stream and remains close to the high- 
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Figure 5.1 – Instantaneous visualizations of the reacting flowfield: distributions of 
density, temperature, OH mass fraction, and second derivative of density 
(shadowgraph) (top to bottom). 
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density oxygen. A small fraction of LOX is heated to form gaseous oxygen, which is 

sufficient to react with the methane entrained by turbulent mixing. 

 

5.3 Order of magnitude analysis of terms in the filtered equations 

5.3.1 Total mass conservation equation 

Table 5.1 presents the order of magnitude of terms in the filtered total mass 

conservation (continuity) equation. The trends are comparable to those observed for the 

non-reacting case. The resolved convective mass fluxes are the leading order terms, and 

their magnitudes decrease slightly with filter width. The residual fluxes associated with the 

subgrid density show a slight increase. These terms are two orders of magnitude smaller at 

∆𝑓𝑓 = 2, and at ∆𝑓𝑓 = 10 they are just one order of magnitude smaller. The relative magnitude 

of the subgrid fluxes, which is the ratio of the instantaneous subgrid fluxes to the 

corresponding resolved fluxes, increase from about 3-5% at ∆𝑓𝑓 = 2 to about 13% at ∆𝑓𝑓 = 

10. Figure 5.2 shows the distribution of the relative magnitudes of the residual fluxes at 

different filter widths. The relative magnitudes are slightly higher compared to the non-

reacting case and appear distributed over a wider region, implying an increased 

significance of subgrid contributions. The terms appear most significant at the flame 

interface between the hot mixing layer stream and the pure LOX stream. In the flame 

region, there are rapid variations of density by over three orders of magnitude. The 

resulting error in the representation of filtered quantities, such as density, result in the 

amplification of the associated subgrid fluxes in the governing equation. The subgrid 

contributions are also prominent in the vicinity of the secondary flame. This occurs 
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between the unburnt cold methane stream and the hot product zone. The density variations 

in this region are also considerable, although not as prominent as the LOX interface since 

the methane is already in a gas-like supercritical state. The significance of the subgrid 

fluxes increase with the filter width. 

From a physical perspective, the magnitudes of subgrid contributions depend upon 

the non-linear behavior of the thermodynamics coupled with the turbulent fluctuations in 

a local flow region. For example, the subgrid contributions are zero away from the mixing 

layer even though it is supercritical since the subgrid thermodynamic fluctuations are 

negligible. In this study, the operating pressure is almost twice the critical pressure of the 

individual species as well the resultant mixture. For a different operating pressure, where 

the reduced pressure is close to 1 or only slightly above, the thermodynamic non-linearities 

could be much higher. The subgrid contributions could then be expected to be higher. 

On the other hand, subgrid contributions are found even in the hot product gas 

regions in the reacting case where the behavior of gases is close to ideal. The contributions 

are, although, much smaller than those seen in the supercritical regions. In the ideal (hot) 

gas regions, there are terms associated with the temperature-species mass fraction 

covariances in the EOS which provide subgrid contributions [105]. These are observed in 

local regions within the hot mixing layer where the compressibility factor is close to 1. 

Within the flame there also exist local regions of unreacted and reacted mixtures, leading 

to subgrid fluctuations in the thermodynamic behavior. The subgrid terms are significant 

in these regions. The largest subgrid terms are, however, found in the supercritical regions 

between the pure LOX/CH4 and the hot product streams across which there are strongest 

thermodynamic variations. 



 99 

Table 5.1 – Order of magnitude of terms in the filtered continuity equation at 
different filter widths (reacting), unit: x108 kg m-3s-1. 

Δ𝑓𝑓 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌�𝑸𝑸��𝑢𝑢�) 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌�𝑸𝑸��𝑣𝑣�) 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢�) 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣�) 

2 1.27 6.42e-1 4.45e-2 4.15e-2 

5 8.40e-1 5.45e-1 7.32e-2 5.84e-2 

10 5.24e-1 4.35e-1 7.30e-2 5.30e-2 

 

 

Figure 5.2 – Relative magnitude of residual flux terms associated with the subgrid 
density in the filtered continuity equation at different filter widths (row-wise) 
(reacting). x-derivative flux (left) and y-derivative flux (right). 
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5.3.2 Momentum equations 

The order of magnitude of terms in the filtered x- and y-momentum equations are 

given in Table 5.2 and Table 5.3 respectively. A major difference in the rank of significance 

of terms is that the pressure gradient is the leading order term in the reacting case. The 

pressure gradient term is of the same order as the convective flux terms in the x-momentum 

equation and one order higher than the convective fluxes in the y-momentum equation. The 

conventional subgrid fluxes are 3-4 orders of magnitude smaller than the resolved 

convective fluxes and slightly smaller than those obtained in the non-reacting case. This 

implies that the grid is still over-resolved at these filter widths due to the relatively larger 

Kolmogorov scales in the reacting case. The residual convective fluxes associated with the 

subgrid density are, however, significant in magnitude and greater than the conventional 

subgrid fluxes, similar to the trend observed in the non-reacting case. Figure 5.3 shows the 

relative magnitude of these residual convective fluxes with respect to the corresponding 

resolved fluxes. The qualitative trends are identical to those observed for the residual 

convective fluxes in the continuity equation. The relative magnitudes increase with filter 

width, implying the need to account for this term for coarse resolution LES simulations. 

The magnitudes of the resolved viscous flux terms are slightly higher than the non-

reacting case, which can be attributed to the increased viscosity in the high temperature 

regions. The order of magnitude of the subgrid viscous flux terms decrease slightly with 

filter width in contrast to the non-reacting case. However, the relative magnitude of the 

subgrid viscous fluxes with respect to the corresponding resolved viscous fluxes increase 

with filter width as shown in Figure 5.4. The relative magnitudes are higher and more 

prominent in the reacting case compared to the non-reacting case.  
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Table 5.2 – Order of magnitude of terms in the filtered x-momentum equation at 
different filter widths (reacting), unit: x108 kg m-2s-2. 

Δ𝑓𝑓 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌�𝑸𝑸��𝑢𝑢�𝑢𝑢�) 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌�𝑸𝑸��𝑢𝑢�𝑣𝑣�) 𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

2 29.11 11.07 3.85e-2 1.46e-1 

5 18.96 9.55 3.47e-2 9.39e-2 

10 11.55 7.92 4.73e-2 1.57e-1 

 

Δ𝑓𝑓 𝜕𝜕𝑝̅𝑝
𝜕𝜕𝜕𝜕

 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢�𝑢𝑢�) 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢�𝑣𝑣�) 

2 21.35 0.81 0.48 

5 16.36 1.25 0.72 

10 9.74 1.25 0.68 

 

Δ𝑓𝑓 𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥�𝑸𝑸��
𝜕𝜕𝜕𝜕

 
𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥�𝑸𝑸��

𝜕𝜕𝜕𝜕
 

𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

2 3.75e-2 1.22e-1 1.14e-2 4.26e-2 

5 1.94e-2 7.03e-2 7.05e-3 3.08e-2 

10 8.92e-3 4.00e-2 5.66e-3 2.21e-2 
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Table 5.3 – Order of magnitude of terms in the filtered y-momentum equation at 
different filter widths (reacting), unit: x108 kg m-2s-2. 

Δ𝑓𝑓 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌�𝑸𝑸��𝑢𝑢�𝑣𝑣�) 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌�𝑸𝑸��𝑣𝑣�𝑣𝑣�) 𝜕𝜕𝜏𝜏𝑥𝑥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

𝜕𝜕𝜏𝜏𝑦𝑦𝑦𝑦
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

2 5.24 3.53 2.69e-2 3.51e-1 

5 3.80 2.87 2.50e-2 1.89e-1 

10 2.56 2.24 3.67e-2 2.95e-1 

 

Δ𝑓𝑓 
𝜕𝜕𝑝̅𝑝
𝜕𝜕𝜕𝜕

 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢�𝑣𝑣�) 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣�𝑣𝑣�) 

2 67.18 0.14 0.22 

5 64.38 0.20 0.25 

10 57.12 0.20 0.21 

 

Δ𝑓𝑓 𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥�𝑸𝑸��
𝜕𝜕𝜕𝜕

 
𝜕𝜕𝜎𝜎𝑦𝑦𝑦𝑦�𝑸𝑸��

𝜕𝜕𝜕𝜕
 

𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

𝜕𝜕𝜎𝜎𝑦𝑦𝑦𝑦
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

2 3.76e-2 1.89e-1 9.76e-3 1.19e-1 

5 2.02e-2 9.80e-2 7.31e-3 3.30e-2 

10 1.00e-2 7.42e-2 4.77e-3 1.80e-2 
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Figure 5.3 – Relative magnitude of residual convective flux terms associated with the 
subgrid density in the filtered x-momentum equation at different filter widths (row-
wise) (reacting). x-derivative flux (left) and y-derivative flux (right). 
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Figure 5.4 – Relative magnitude of subgrid viscous flux terms in the filtered x-
momentum equation at different filter widths (row-wise) (reacting). x-derivative flux 
(left) and y-derivative flux (right). 

 

5.3.3 Total energy conservation equation 

The order of magnitude of terms in the filtered energy equation at different filter 

widths are shown in Table 5.4. The leading order terms are the resolved convective 

enthalpy fluxes as also observed in the non-reacting case. The magnitudes of the resolved 

convective fluxes decrease, while the magnitudes of the conventional subgrid enthalpy 

fluxes increase with filter width. However, the magnitudes of the conventional subgrid 

enthalpy fluxes are much smaller in magnitude than the resolved enthalpy fluxes. The 

increased turbulent length scales results in over-resolution even at the largest filter widths 
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considered. On the other hand, the magnitudes of the residual fluxes associated with the 

subgrid enthalpy are significant even at these highly resolved conditions. This implies that 

the errors associated with neglecting these terms are expected to be much larger in typical 

LES simulations where the conventional subgrid fluxes account for roughly 10% of the 

total filtered fluxes. The relative magnitudes of these terms are shown in Figure 5.5 and it 

is seen that the significance of these terms are enhanced compared to the non-reacting case. 

The next set of terms of significance are the diffusive heat flux terms. The 

magnitudes of the resolved diffusive heat fluxes are much larger compared to the non-

reacting case. This is due to the increased temperature and species gradients in the turbulent 

flame and product zones resulting in increased conductive and species diffusive fluxes. The 

corresponding subgrid diffusive heat fluxes are also considerable in magnitude as shown 

in Figure 5.6. Note that the colorbar legends are adjusted to provide an appropriate 

representation over the entire flowfield, and do not represent the maximum/minimum 

values within the flow field. The peak contributions of the subgrid fluxes are found to be 

as high as 100-200% in some cells, suggesting that the resolved heat fluxes provide a very 

inaccurate representation of the actual filtered heat fluxes. 

The resolved kinetic energy fluxes are much smaller in magnitude than the leading 

terms and the associated subgrid terms are even smaller by 1-2 orders of magnitude. 

Therefore, it might be justifiable to neglect these subgrid terms. The same argument can 

be extended for the subgrid viscous diffusion terms which are about seven orders of 

magnitude smaller than the leading convective flux terms.  
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Table 5.4 – Order of magnitude of terms in the filtered energy equation at different 
filter widths (reacting), unit: x1012 kg m-1s-3. 

Δ𝑓𝑓 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌�𝑸𝑸��ℎ�𝑸𝑸��𝑢𝑢�) 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌�𝑸𝑸��ℎ�𝑸𝑸��𝑣𝑣�) 𝜕𝜕𝑄𝑄𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

𝜕𝜕𝑄𝑄𝑦𝑦
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

2 138.02 85.89 1.47e-1 1.72 

5 98.61 78.26 2.41e-1 8.37e-1 

10 67.49 68.28 3.16e-1 8.91e-1 

 

Δ𝑓𝑓 𝜕𝜕
𝜕𝜕𝜕𝜕

�𝜌𝜌�𝑸𝑸��𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖𝑢𝑢�� 
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝜌𝜌�𝑸𝑸��𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖𝑣𝑣�� 
𝜕𝜕𝒥𝒥𝑥𝑥

𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

𝜕𝜕𝒥𝒥𝑦𝑦
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

2 5.90e-2 2.55e-2 3.85e-4 6.97e-4 

5 4.14e-2 2.30e-2 3.31e-4 5.15e-4 

10 2.60e-2 1.98e-2 4.90e-4 8.78e-4 

 

Δ𝑓𝑓 𝜕𝜕𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢�
𝜕𝜕𝜕𝜕

 
𝜕𝜕𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣�
𝜕𝜕𝜕𝜕

 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖𝑢𝑢�) 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖𝑣𝑣�) 

2 2.10 2.24 1.09e-3 6.43e-4 

5 3.48 3.13 1.59e-3 8.26e-4 

10 3.61 3.00 1.53e-3 7.79e-4 
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Table 5.4 continued 

Δ𝑓𝑓 𝜕𝜕𝑞𝑞𝑥𝑥�𝑸𝑸��
𝜕𝜕𝜕𝜕

 
𝜕𝜕𝑞𝑞𝑦𝑦�𝑸𝑸��
𝜕𝜕𝜕𝜕

 
𝜕𝜕𝑞𝑞𝑥𝑥

𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

𝜕𝜕𝑞𝑞𝑦𝑦
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

2 4.48 22.33 1.52 8.15 

5 2.00 11.40 1.43 6.46 

10 1.22 6.06 1.06 4.31 

 

Δ𝑓𝑓 

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑢𝑢�𝜎𝜎𝑥𝑥𝑥𝑥�𝑸𝑸��

+ 𝑣𝑣�𝜎𝜎𝑥𝑥𝑥𝑥�𝑸𝑸��� 

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑢𝑢�𝜎𝜎𝑥𝑥𝑥𝑥�𝑸𝑸��

+ 𝑣𝑣�𝜎𝜎𝑦𝑦𝑦𝑦�𝑸𝑸��� 

𝜕𝜕𝒟𝒟𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

𝜕𝜕𝒟𝒟𝑦𝑦
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

2 1.61e-4 5.12e-4 6.29e-5 2.98e-4 

5 7.65e-5 2.92e-4 3.04e-5 1.17e-4 

10 3.09e-5 1.71e-4 2.09e-5 7.94e-5 
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Figure 5.5 – Relative magnitude of residual convective flux terms associated with the 
subgrid enthalpy in the filtered energy equation at different filter widths (row-wise) 
(reacting). x-derivative flux (left) and y-derivative flux (right). 
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Figure 5.6 – Relative magnitude of subgrid diffusive heat flux terms in the filtered 
energy equation at different filter widths (row-wise) (reacting). x-derivative flux (left) 
and y-derivative flux (right). 

 

5.3.4 Species mass conservation equations 

For the filtered species mass conservation equations, two representative species are 

studied for discussion – a reaction product CO2 and a reaction intermediate OH. The order 

of magnitudes of terms in their respective filtered mass conservation equations are 

presented in Table 5.5 and Table 5.6. Note that the reaction rate terms are not reported in 

this study. For both species, the resolved convective fluxes are the leading terms, and their 

corresponding subgrid species fluxes are roughly one order of magnitude lower. The 

residual flux terms associated with the subgrid density are significant in the CO2 mass 
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conservation equation but are the least significant terms in the OH conservation equation. 

The relative magnitude of the residual CO2 species mass fluxes associated with the subgrid 

density with respect to the corresponding resolved fluxes are presented in Figure 5.7. These 

terms attain peak significance in the flame regions close to the LOX stream. Slightly lower 

magnitudes are also observed in the secondary flame regions close to the methane stream 

and within the core of the mixing layer where the flame is convoluted by the large-scale 

structures with local pockets of unreacted species. The distributions for the OH flux terms 

follow a similar qualitative trend but with a much lower magnitude. 

For both species, the resolved and subgrid diffusive fluxes are significantly 

enhanced owing to the increased species gradients and mass diffusivity in the flame and 

product regions. The order of magnitude of these terms are comparable to those of the 

conventional subgrid fluxes. The relative magnitude distributions of the subgrid diffusive 

fluxes to the resolved diffusive fluxes are shown in Figure 5.8. The figure shows that the 

subgrid diffusive fluxes are significant especially at larger filter widths and cannot be 

neglected. Studies on multi-species supercritical mixing layers have suggested the presence 

of uphill diffusion [173, 176]. Accurate modeling of the filtered diffusive fluxes including 

subgrid contributions is thus imperative to capture these complex physical phenomena for 

an accurate representation of species mixing, reactions and heat release in combustion 

systems. 
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Table 5.5 – Order of magnitude of terms in the filtered CO2 species mass conservation 
equation at different filter widths (reacting), unit: x105 kg m-3s-1. 

Δ𝑓𝑓 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌�𝑸𝑸��𝑌𝑌�𝐶𝐶𝐶𝐶2𝑢𝑢�) 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌�𝑸𝑸��𝑌𝑌�𝐶𝐶𝐶𝐶2𝑣𝑣�) 
𝜕𝜕Φ𝐶𝐶𝐶𝐶2,𝑥𝑥

𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

𝜕𝜕Φ𝐶𝐶𝐶𝐶2,𝑦𝑦
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

2 6.98 5.12 9.79e-2 7.59e-1 

5 5.16 4.49 1.60e-1 5.00e-1 

10 3.65 3.86 2.11e-1 6.32e-1 

 

Δ𝑓𝑓 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑌𝑌�𝐶𝐶𝐶𝐶2𝑢𝑢�) 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑌𝑌�𝐶𝐶𝐶𝐶2𝑣𝑣�) 

2 1.79e-1 1.76e-1 

5 2.70e-1 2.38e-1 

10 2.58e-1 2.23e-1 

 

Δ𝑓𝑓 𝜕𝜕
𝜕𝜕𝜕𝜕

𝐽𝐽𝐶𝐶𝐶𝐶2,𝑥𝑥�𝑸𝑸�� 
𝜕𝜕
𝜕𝜕𝜕𝜕

𝐽𝐽𝐶𝐶𝐶𝐶2,𝑦𝑦�𝑸𝑸�� 
𝜕𝜕
𝜕𝜕𝜕𝜕

𝐽𝐽𝐶𝐶𝐶𝐶2,𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠  

𝜕𝜕
𝜕𝜕𝜕𝜕

𝐽𝐽𝐶𝐶𝐶𝐶2,𝑦𝑦
𝑠𝑠𝑠𝑠𝑠𝑠  

2 3.77e-1 1.55 1.09e-1 4.38e-1 

5 1.30e-1 7.87e-1 7.98e-2 3.41e-1 

10 4.90e-2 4.06e-1 4.19e-2 2.05e-1 
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Table 5.6 – Order of magnitude of terms in the filtered OH species mass conservation 
equation (reacting), unit: x105 kg m-3s-1. 

Δ𝑓𝑓 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌�𝑸𝑸��𝑌𝑌�𝑂𝑂𝑂𝑂𝑢𝑢�) 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌�𝑸𝑸��𝑌𝑌�𝑂𝑂𝑂𝑂𝑣𝑣�) 
𝜕𝜕Φ𝑂𝑂𝑂𝑂,𝑥𝑥

𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

𝜕𝜕Φ𝑂𝑂𝑂𝑂,𝑦𝑦
𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜕𝜕
 

2 2.73 1.60 2.52e-2 1.10e-1 

5 1.84 1.36 3.71e-2 1.10e-1 

10 1.22 1.10 4.10e-2 1.49e-1 

 

Δ𝑓𝑓 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑌𝑌�𝑂𝑂𝑂𝑂𝑢𝑢�) 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑌𝑌�𝑂𝑂𝑂𝑂𝑣𝑣�) 

2 6.67e-3 5.19e-3 

5 1.49e-2 2.17e-2 

10 2.22e-2 3.21e-2 

 

Δ𝑓𝑓 𝜕𝜕
𝜕𝜕𝜕𝜕

𝐽𝐽𝑂𝑂𝑂𝑂,𝑥𝑥�𝑸𝑸�� 
𝜕𝜕
𝜕𝜕𝜕𝜕

𝐽𝐽𝑂𝑂𝑂𝑂,𝑦𝑦�𝑸𝑸�� 
𝜕𝜕
𝜕𝜕𝜕𝜕

𝐽𝐽𝑂𝑂𝑂𝑂,𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠  

𝜕𝜕
𝜕𝜕𝜕𝜕

𝐽𝐽𝑂𝑂𝑂𝑂,𝑦𝑦
𝑠𝑠𝑠𝑠𝑠𝑠  

2 4.07e-1 1.55 1.27e-1 2.46e-1 

5 1.30e-1 7.78e-1 8.52e-2 2.31e-1 

10 4.64e-2 3.97e-1 4.21e-2 1.72e-1 
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Figure 5.7 – Relative magnitude of residual convective flux terms associated with the 
subgrid density in the filtered CO2 mass conservation equation at different filter 
widths (row-wise) (reacting). x-derivative flux (left) and y-derivative flux (right). 
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Figure 5.8 – Relative magnitude of subgrid diffusive heat flux terms in the filtered 
CO2 conservation equation at different filter widths (row-wise) (reacting). x-
derivative flux (left) and y-derivative flux (right). 

 

5.4 Differences between Favre- and Reynolds-filtered state variables 

The use of Favre-filtered state variables to compute Reynolds-filtered quantities 

contributes to the new set of subgrid fluxes. To quantify these contributions to the subgrid 

fluxes, the deviations between Favre- and Reynolds-filtered variables are investigated in 

Figure 5.9. The deviations between the two filtered velocities are minimal, similar to the 

non-reacting case. In contrast, significant deviations are seen for the temperature and 

species mass fractions, which appear to be greater than those seen in the non-reacting case. 

Deviations of temperature as high as 500-1000 K are found at the large filter widths. The 
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chemical reactions coupled with the turbulent mixing result in substantial variations of 

chemical composition and temperature at different scales across the mixing layer. The 

strong temperature variations at the small scales arise from local pockets of unreacted and 

reacted species. The resulting variations in density at the subgrid scales skew the Favre-

filtered variables towards the values corresponding to the denser species at the subgrid 

level. In this case, the density of the unburnt mixture is much higher and the corresponding 

temperature and 𝑌𝑌𝐶𝐶𝐶𝐶2 are lower compared to the burnt mixture. Therefore, the Favre-

filtered temperature and 𝑌𝑌𝐶𝐶𝐶𝐶2 are lower than the corresponding Reynolds-filtered 

quantities. 

 The relative differences between the Favre and Reynolds-filtered temperature and 

species mass fractions are quantified in Figure 5.10. Unlike the non-reacting case, where 

the relative errors are highest in the intermediate mixture fraction regions in the core of the 

mixing layer, the peak errors for the reacting case are obtained at the extreme lean (just 

above 0) and extreme rich (just below 1) mixture fractions. These regions correspond 

respectively to the primary and secondary flames, which form the interfaces of the unburnt 

LOX and methane streams with the hot reacted products in the mixing layer. Strong 

variations in density occur across these interfaces which are further enhanced by turbulent 

mixing. The relative errors at the LOX/product interface are higher than at the 

methane/product interface owing to larger density variations across the LOX/product 

interface. Peak errors in these regions are as high as 50-75% at moderate and large filter 

widths. These deviations partially explain the increased significance of the subgrid 

diffusive fluxes.  
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The large discrepancies between Reynolds-filtered and Favre-filtered temperatures 

and species mass fractions are expected to have important consequences for the 

representation of the filtered reaction rate in the conventionally used quasi-laminar 

chemistry model [177-179], where the filtered reaction rate is modeled as the reaction rate 

computed in terms of Favre-filtered state variables. These issues need further investigation.  

 

Figure 5.9 – Comparison between Reynolds-filtered (x-axis) and corresponding 
Favre-filtered (y-axis) state variables at different filter widths (reacting). 
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Figure 5.10 – Relative difference between Reynolds-filtered and Favre-filtered state 
variables at different filter widths as a function of mixture fraction (reacting). 

 

5.5 Errors in representation of filtered thermodynamic and transport properties 

The differences between Reynolds-filtered and Favre-filtered primitive state 

variables lead to associated differences between the filtered thermodynamic and transport 
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co-coefficients and the corresponding quantities evaluated using Favre-filtered state 

variables. Figure 5.11 and Figure 5.12 show the distributions of the relative error of 

relevant coefficients at different filter widths as a function of mixture fraction. The relative 

error is computed according to Equation 4.2. The distributions of the errors are 

quantitatively and qualitatively different and more complex than their counterparts in the 

non-reacting flow. First, the errors are significantly larger for most quantities than those 

observed for the non-reacting case, especially for the molecular viscosity and thermal 

conductivity. Second, the errors are prominent over a wide region in the mixture fraction 

space. The peak errors in the reacting case occur in the leanest mixture fraction regions 

which correspond to the interface between the LOX stream and the hot mixture in the 

mixing layer where the properties variations at the small scales are the highest. 

In the non-reacting flow, the variation of temperature is relatively smaller, whereas 

chemical heat release broadens the range of variation for temperature in the reacting case. 

The local mixture composition and temperature also vary rapidly in the reacting flowfield 

in accordance with the turbulent mixing and coupled interactions with flame structures. 

The thermodynamic and transport properties are a non-linear function of temperature and 

species concentrations, and this dependence is more complex for multi-species reacting 

flows. Each species component has a unique thermodynamic behavior which could be very 

different from those of the other components. The thermodynamic properties of the 

resulting mixture are determined by the instantaneous species composition through the 

non-linear mixing laws. The critical points of the mixture could also be significantly 

different from those of the constituent species, and the mixture could undergo transition 

from ideal gas to supercritical fluid and vice-versa in the flame regions. The rapid variation 
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of thermodynamic state variables in conjunction with the non-linear thermodynamic and 

transport property relationships gives rise to significant variation of these quantities at 

various length scales. The first moments of the primitive state variables cannot accurately 

represent the thermodynamic status of the fluid parcel enclosed by the LES filter. 

Neglecting the contributions of these turbulence-chemistry-thermodynamic interactions at 

the subgrid scales, therefore contribute to complex deviations between exact filtered and 

approximated representations. This issue is recognized for the reaction rate terms [178, 

180-182] but largely neglected for other dependent quantities. The magnitude of errors 

shown in this work reinforces the need to account for subgrid scale effects in the 

thermodynamic and transport property calculations for multi-component real-fluid 

mixtures. 

The error in the filtered density in the intermediate mixture fractions are smaller 

compared to the non-reacting case. This can be attributed to the fact that at high 

temperatures, the mixture exhibits close to ideal behavior where the equation of state is 

more linear. The compressibility factor 𝑍𝑍 of the hot gases are close to one, thereby 

removing the effect of subgrid fluctuations of 𝑍𝑍 on the filtered density. Errors due to the 

subgrid fluctuations in the temperature and species mass fractions. Large errors also occur 

close to the LOX interface, and these errors contribute to significance of the new set of 

residual convective flux terms that are associated with the subgrid density. 
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Figure 5.11 – Relative error in representation of filtered density, dynamic viscosity, 
and thermal conductivity (row-wise top to bottom) at different filter widths (column-
wise) as a function of mixture fraction (reacting). 
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Figure 5.12 – Relative error in representation of enthalpy, mass diffusivity, and 
thermal diffusivity due to species flux (row-wise top to bottom) at different filter 
widths (column-wise) as a function of mixture fraction (reacting). 

 

5.6 Summary 

A priori analyses of the subgrid terms in the filtered conservation equations for LES 

are performed for the case of a multi-species reacting flow system at supercritical pressure. 
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It is found that the conventional subgrid fluxes are lower in magnitude than the values for 

the non-reacting case. However, the residual convective fluxes associated with the subgrid 

density and enthalpy are still substantial in magnitude and relevant with respect to the 

leading resolved convective fluxes, especially at high filter widths. Additionally, the 

resolved diffusive heat and species fluxes are found to be higher in magnitude compared 

to the non-reacting case, owing to the increased diffusivity and thermal/species gradients. 

These resolved terms and the corresponding subgrid diffusive fluxes are found to be 

significant in the corresponding to the energy and species mass conservation equations. It 

is recognized that modeling of the filtered diffusive fluxes in the LES formulation should 

necessarily account for the subgrid contributions for accurate modeling of molecular 

diffusion and mixing in reacting flow systems. 

Differences between the Favre-filtered and Reynolds-filtered temperature and 

species mass fractions are shown to be substantial especially in the flame interfaces close 

to the unburnt mixtures. The errors in the representation of filtered thermodynamic and 

transport properties are also quantified. It is shown that the errors in density are relatively 

smaller while those of the other transport coefficients are significant increased compared 

to the non-reacting case. These errors are contributing factors for the subgrid diffusive flux 

terms, underscoring the importance of modeling these subgrid effects. 
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CHAPTER 6. A PRIORI ASSESSMENT OF CONVENTIONAL 

SUBGRID SCALE MODELS 

6.1 Overview 

The subgrid terms that are important to account for in the filtered equations have 

been identified in Chapters 4 and 5. Models have been investigated and applied for a subset 

of these terms. These terms are the conventional subgrid fluxes originating from the filtered 

convective flux terms, namely the subgrid stresses 𝜏𝜏𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠, the subgrid enthalpy fluxes 𝑄𝑄𝑗𝑗

𝑠𝑠𝑠𝑠𝑠𝑠 

and the subgrid species fluxes Φ𝑘𝑘𝑘𝑘
𝑠𝑠𝑠𝑠𝑠𝑠. The definitions of these terms were introduced in 

Section 2.3.3. A priori assessment of models for these terms is performed in this chapter. 

Two representative modeling approaches are identified as candidates for the study - the 

dynamic Smagorinsky/eddy-diffusivity model (DSM) [53, 64, 146] and the dynamic mixed 

model (DMM) [67, 147, 148]. The model formulations are described in Section 2.4.  

There are three primary objectives of this study. Before attempting to model the 

remaining set of subgrid terms, it is first useful to investigate the existing subgrid modeling 

approaches to determine if the underlying principles of these approaches can be extended 

to other terms. The second objective of this study is to evaluate the accuracy of existing 

models under supercritical conditions to determine their validity and accuracy under these 

conditions. These subgrid models were originally developed for application to 

incompressible turbulent flows. The extension and application of these models for 

compressible flows have been investigated in past studies [65, 67, 81]. However, limited 

studies exist for turbulent supercritical mixing. Selle et al. [99] have conducted a priori 
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analysis of different constant-coefficient models for the subgrid fluxes using temporal 

mixing layer data. Taskinoglu and Bellan [107, 183] investigated dynamic models in 

conjunction with subgrid corrections for the pressure and heat flux terms. The focus of 

their studies was to evaluate the influence of the new subgrid corrections rather than the 

conventional models. These studies are limited to temporal mixing configurations at low 

Reynolds numbers. Similar studies for high Reynolds number inhomogeneous flows and 

supercritical reacting flows are lacking [184, 185]. The final objective of this study is to 

quantify the performance of different models at different LES resolutions. This is required 

to establish guidelines and recommendations for LES resolutions for practical applications 

where validation data is not easily available. 

The DNS data described in Chapter 4 and Chapter 5 for the non-reacting and 

reacting cases are used to compute the exact values of the subgrid fluxes on LES grids of 

different filter widths. The corresponding modeled fluxes are computed purely based on 

the filtered (or Favre-filtered depending upon the definition) state variables (density, 

velocity, enthalpy, species mass fractions) on the LES grid level. This is done in a manner 

consistent with the procedure in an LES simulation, without using any information from 

the DNS data. The test-filtering for the dynamic model evaluation is performed at a filter 

width which is twice the LES filter width [53]. The grid-filtering for the scale-similarity 

term is performed at the same filter width as the LES grid. The numerical implementation 

of grid and test-filtering are extended from the approach of Zang et al. [147]. While Zang 

et al. [147] use linear interpolation to numerically evaluate the filters on uniform grids, the 

current study follows a quadratic interpolation based on Lagrange polynomials using a 9-

point stencil around the LES cell to account for the presence of non-uniform cells. 



 125 

6.2 Assessments of models for the non-reacting case 

6.2.1 Subgrid stresses (velocity-velocity covariances) 

The subgrid stresses 𝜏𝜏𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠 represent subgrid covariances between velocity 

components. The dynamic Smagorinsky model is used to model the deviatoric components 

of the subgrid stress tensor, while the isotropic components are either combined with the 

pressure term or modeled separately using the Yoshizawa model [63]. In this study, the 

assessments are done only for the deviatoric subgrid stress tensor. Figure 6.1 shows the 

comparison of the distributions of the subgrid stress component 𝜏𝜏𝑥𝑥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠 from different models 

at three different filter widths. The top row shows the subgrid stress field computed from 

the DNS, which are considered the true (exact) values. The middle and bottom rows show 

the corresponding field distributions modeled by the dynamic Smagorinsky and mixed 

models. With increasing filter width, the magnitudes of the subgrid stresses increase as 

more information is contained within the filter scale. Qualitatively both models capture the 

overall pattern of the subgrid stress distribution. However, the dynamic Smagorinsky 

model underpredicts the magnitudes of the subgrid stress. The magnitudes of the subgrid 

stress predicted by the dynamic mixed model are much closer to the exact values obtained 

from the DNS. The results for the other subgrid stress components provide similar trends 

and are not shown here. 

To quantify the accuracy of the model predictions, the correlation coefficient 

between exact and model predicted values is used as a metric. This is a widely used 

measure for a priori quantification of model accuracies [56, 78, 81]. The correlation 

coefficients for the various subgrid stress components modeled using the dynamic 
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Smagorinsky and dynamic mixed models are computed at different filter widths and 

presented in Table 6.1. The dynamic mixed model shows significantly higher correlations 

than the dynamic Smagorinsky model for all three components. The correlations for the 

𝜏𝜏𝑥𝑥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠,𝑑𝑑 term are lower than the other two terms for both models. The correlation coefficients 

decrease with increasing filter width implying a reduction in model accuracy at coarser 

grid resolutions. Both these models are founded on the principle of scale-similarity, either 

for dynamic evaluation of the model-coefficient as in the dynamic Smagorinsky model, or 

for direct evaluation of the stress component through the scale-similarity in the mixed 

model. The notion of scale-similarity is strictly valid only in the inertial length scale regime 

where the turbulent energy transfer is in equilibrium. This imposes limits on the filter 

widths or grid resolution that can be considered acceptable for high-fidelity LES 

simulations.  

The performance of the dynamic mixed model even at higher filter widths is higher 

than that of the dynamic Smagorinsky model at low filter widths. From a fundamental 

viewpoint, the subgrid stress tensor is modeled in terms of the resolved strain through a 

scalar eddy-viscosity in the Smagorinsky and other eddy-viscosity based modeling 

approaches. This enforces the alignment of the principal axes of the subgrid stress and 

strain rate tensors, which is not necessarily true for complex flows. The inclusion of the 

scale-similarity term relaxes this assumption and significantly increases the correlation of 

the subgrid stresses [55]. From another perspective, the mixed model directly computes the 

resolved Leonard stress component of the subgrid stress tensor, requiring less contribution 

from the eddy-viscosity term. It was also found in this study that the scale-similarity model 

without the eddy-viscosity component in fact provides a higher correlation coefficient. 
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However, it has been shown that this model by itself does not provide the necessary subgrid 

scale dissipation to the flow [55] and is therefore not considered in practice. The better 

performance of the dynamic mixed model at higher filter widths renders support for its use 

in practical LES applications. 

 

Figure 6.1 – Comparison of 𝝉𝝉𝒙𝒙𝒙𝒙
𝒔𝒔𝒔𝒔𝒔𝒔 distributions obtained from DNS (top row), and those 

modeled with dynamic Smagorinsky (middle) and dynamic mixed models (bottom) at 
different filter widths (column wise) (non-reacting case).  
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Table 6.1 – Correlation coefficients between exact and modeled subgrid stresses at 
different filter widths (non-reacting case).  

 DSM DMM 

𝚫𝚫𝒇𝒇 2 5 10 2 5 10 

𝝉𝝉𝒙𝒙𝒙𝒙
𝒔𝒔𝒔𝒔𝒔𝒔,𝒅𝒅 0.17 0.15 0.14 0.59 0.53 0.39 

𝝉𝝉𝒙𝒙𝒙𝒙
𝒔𝒔𝒔𝒔𝒔𝒔 0.33 0.27 0.26 0.97 0.84 0.66 

𝝉𝝉𝒚𝒚𝒚𝒚
𝒔𝒔𝒔𝒔𝒔𝒔,𝒅𝒅 0.30 0.27 0.25 0.94 0.83 0.69 

 

6.2.2 Subgrid enthalpy and species fluxes (velocity-scalar covariances) 

The subgrid enthalpy and species fluxes represent the interactions between the 

velocity and scalar fields at the subgrid level, known as the subgrid velocity-scalar 

covariances. The term scalar here refers to enthalpy (or temperature) and species mass 

fractions. These terms are modelled as gradient diffusive terms following an eddy-

diffusivity approach, analogous to the eddy-viscosity hypothesis. In the dynamic eddy-

diffusivity framework, the subgrid heat/species diffusivities are modelled in terms of the 

eddy-viscosity and turbulent Prandtl/Schmidt numbers. Detailed formulations are provided 

in Section 2.4.1. In the mixed model, the scale-similarity terms provide the Leonard 

contributions to the subgrid fluxes. 
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Figure 6.2 and Figure 6.3 show the subgrid enthalpy flux 𝑄𝑄𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠 and the subgrid CH4 

species flux Φ𝐶𝐶𝐶𝐶4,𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠  distributions obtained from DNS (exact) and the model predictions at 

different filter widths. The qualitative trends of the two model predictions compare 

reasonably well with the exact subgrid fluxes. The dynamic eddy-diffusivity model slightly 

underpredicts the magnitude of the subgrid fluxes. As the filter width increases, the 

differences between the model and exact subgrid fluxes become more evident, especially 

in the far-field mixing regions where large scale vortical structures are present. 

 

Figure 6.2 – Comparison of 𝑸𝑸𝒙𝒙
𝒔𝒔𝒔𝒔𝒔𝒔 distributions obtained from DNS (top row), and 

those modeled with dynamic Smagorinsky (middle) and dynamic mixed models 
(bottom) at different filter widths (column wise) (non-reacting case).  
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Figure 6.3 – Comparison of 𝚽𝚽𝒙𝒙,𝑪𝑪𝑪𝑪𝑪𝑪
𝒔𝒔𝒔𝒔𝒔𝒔  distributions obtained from DNS (top row), and 

those modeled with dynamic Smagorinsky (middle) and dynamic mixed models 
(bottom) at different filter widths (column wise) (non-reacting case).  

Table 6.2 presents the correlation coefficients of the two model predictions for the 

different subgrid flux components at different filter widths. The trends are similar to those 

identified for the subgrid stresses. The dynamic mixed model shows significantly higher 

correlations for all flux components than the dynamic eddy-diffusivity model. The 

correlations of both models decrease with increase in filter width. However, the correlation 

of the dynamic mixed model at the largest filter width is still greater than the correlation 

of the dynamic eddy-diffusivity model at the smallest filter width. At higher filter widths, 
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the correlations for the subgrid velocity-scalar covariances are also seen to be lower than 

those of the subgrid velocity-velocity covariances. The correlations of the dynamic eddy-

diffusivity model at moderate and high filter widths are too low suggesting that may not be 

appropriate for application at these resolutions. 

Table 6.2 – Correlation coefficients between exact and modeled subgrid enthalpy and 
species fluxes at different filter widths (non-reacting case).  

 DSM DMM 

𝚫𝚫𝒇𝒇 2 5 10 2 5 10 

𝑸𝑸𝒙𝒙
𝒔𝒔𝒔𝒔𝒔𝒔 0.19 0.14 0.13 0.95 0.78 0.59 

𝑸𝑸𝒚𝒚
𝒔𝒔𝒔𝒔𝒔𝒔 0.37 0.14 0.04 0.93 0.73 0.49 

𝚽𝚽𝑪𝑪𝑪𝑪𝑪𝑪,𝒙𝒙
𝒔𝒔𝒔𝒔𝒔𝒔  0.19 0.14 0.14 0.95 0.78 0.59 

𝚽𝚽𝑪𝑪𝑪𝑪𝑪𝑪,𝒚𝒚
𝒔𝒔𝒔𝒔𝒔𝒔  0.36 0.14 0.11 0.93 0.73 0.49 

 

6.3 Assessments of models for the reacting case 

6.3.1 Subgrid stresses (velocity-velocity covariances) 

The exact and modeled deviatoric components of the subgrid stresses are computed 

using the DNS and filtered DNS data respectively for the reacting case. Figure 6.4 shows 

the distributions of the 𝜏𝜏𝑥𝑥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠 component computed at different filter widths. The distribution 



 132 

of the subgrid stress is qualitatively and quantitatively different than those observed in the 

non-reacting case. Qualitatively, the peak subgrid stresses in the reacting case are found to 

occur in the peripheral regions of the mixing layer corresponding to the primary and 

secondary flame branches. In the non-reacting case, the peak subgrid stresses occur within 

the core of the mixing layer. Quantitatively, the magnitudes of the subgrid stresses in the 

reacting case are lower by almost a factor of 5 compared to the non-reacting case. The 

reason for this can be attributed partly to the increase in the smallest turbulent length scales 

due to heat release accompanied by increase in kinematic viscosity. The dynamic mixed 

model predictions compare reasonably well with the exact subgrid stresses, while the 

dynamic Smagorinsky shows significantly underpredicted values.  

The correlation coefficients of the modeled subgrid stress components are 

presented in Table 6.3. The correlation coefficients are reduced compared to the non-

reacting case, especially for the dynamic Smagorinsky model at high filter widths. The 

performance of the dynamic mixed model is still reasonable, and better than that of the 

dynamic Smagorinsky model. The findings support the use of the dynamic mixed model at 

reasonable grid resolutions for LES of reacting flows at supercritical conditions.   
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Figure 6.4 – Comparison of 𝝉𝝉𝒙𝒙𝒙𝒙
𝒔𝒔𝒔𝒔𝒔𝒔 distributions obtained from DNS (top row), and those 

modeled with dynamic Smagorinsky (middle) and dynamic mixed models (bottom) at 
different filter widths (column wise) (reacting case).  
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Table 6.3 – Correlation coefficients between exact and modeled subgrid stresses at 
different filter widths (reacting case).  

 DSM DMM 

𝚫𝚫𝒇𝒇 2 5 10 2 5 10 

𝝉𝝉𝒙𝒙𝒙𝒙
𝒔𝒔𝒔𝒔𝒔𝒔,𝒅𝒅 0.24 0.17 0.03 0.47 0.28 0.17 

𝝉𝝉𝒙𝒙𝒙𝒙
𝒔𝒔𝒔𝒔𝒔𝒔 0.21 0.14 0.03 0.70 0.55 0.31 

𝝉𝝉𝒚𝒚𝒚𝒚
𝒔𝒔𝒔𝒔𝒔𝒔,𝒅𝒅 0.30 0.22 0.09 0.73 0.65 0.37 

 

6.3.2 Subgrid enthalpy and species fluxes (velocity-scalar covariances) 

Figure 6.5 and Figure 6.6 show the distributions of the exact and modeled subgrid 

enthalpy flux 𝑄𝑄𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠 and the subgrid CH4 diffusive flux Φ𝐶𝐶𝐶𝐶4,𝑥𝑥

𝑠𝑠𝑠𝑠𝑠𝑠 . The dynamic mixed model 

predictions show a qualitatively good correlation to the exact subgrid fields. The dynamic 

eddy-diffusivity models on the other hand show very poor comparison. Apart from the 

evident underprediction of the dynamic eddy-diffusivity modeled fluxes, it is found upon 

careful observation that the predicted signs of the subgrid fluxes are also opposite to those 

the exact subgrid fluxes in several regions. Such negatively correlated regions are found 

especially in the downstream flame region close to the LOX stream. Studies on reacting 

flows at low pressures have identified the presence of counter gradient scalar transport 

especially at larger filter widths [186, 187]. It is questionable whether the classical gradient 
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diffusion hypothesis can be assumed to model subgrid scale fluxes under these conditions. 

The correlation coefficients of the model predictions presented in Table 6.4 also show that 

the correlations for the dynamic eddy-diffusivity models are significantly lowered and 

close to zero at higher filter widths. The dynamic mixed models on the other hand still 

show a reasonable correlation. The strength of this model can be ascribed to the scale-

similarity term which does not assume gradient diffusion hypothesis. The dynamic mixed 

model also maintains a reasonable accuracy at high filter widths.  

 

Figure 6.5 – Comparison of 𝑸𝑸𝒙𝒙
𝒔𝒔𝒔𝒔𝒔𝒔 distributions obtained from DNS (top row), and 

those modeled with dynamic Smagorinsky (middle) and dynamic mixed models 
(bottom) at different filter widths (column wise) (reacting case).  
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Figure 6.6 – Comparison of 𝚽𝚽𝑪𝑪𝑪𝑪𝑪𝑪,𝒙𝒙
𝒔𝒔𝒔𝒔𝒔𝒔  distributions obtained from DNS (top row), and 

those modeled with dynamic Smagorinsky (middle) and dynamic mixed models 
(bottom) at different filter widths (column wise) (reacting case).  
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Table 6.4 – Correlation coefficients between exact and modeled subgrid enthalpy and 
species fluxes at different filter widths (reacting case).  

 DSM DMM 

𝚫𝚫𝒇𝒇 2 5 10 2 5 10 

𝑸𝑸𝒙𝒙
𝒔𝒔𝒔𝒔𝒔𝒔 0.10 0.05 0.01 0.62 0.57 0.49 

𝑸𝑸𝒚𝒚
𝒔𝒔𝒔𝒔𝒔𝒔 0.12 0.10 0.01 0.54 0.38 0.30 

𝚽𝚽𝑪𝑪𝑪𝑪𝑪𝑪,𝒙𝒙
𝒔𝒔𝒔𝒔𝒔𝒔  0.05 0.09 0.03 0.59 0.42 0.40 

𝚽𝚽𝑪𝑪𝑪𝑪𝑪𝑪,𝒚𝒚
𝒔𝒔𝒔𝒔𝒔𝒔  0.09 0.09 0.03 0.50 0.35 0.24 

 

6.4 Summary 

A priori assessment of two representative SGS models for the conventional subgrid 

fluxes are undertaken using the DNS data generated for the non-reacting and reacting 

supercritical mixing layer cases. For the non-reacting case, the predictions from both 

models correlate reasonably with the exact subgrid fluxes. The dynamic mixed model 

performs significantly better than the dynamic Smagorinsky/eddy-diffusivity model. The 

latter is found to underpredict the magnitude of the subgrid fluxes. The performance of 

models decreases with filter widths, indicating that resolution limits must be considered 

for high-fidelity simulations. The dynamic mixed model provides reasonable performance 

even at high filter widths than the dynamic Smagorinsky model at low filter widths. For 
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LES of complex flows requiring affordable grid resolutions, the choice of dynamic mixed 

model would be advantageous to balance computational cost and accuracy. 

For the reacting case, the performance of the dynamic Smagorinsky/eddy-

diffusivity models are drastically reduced. The model predictions exhibit opposite trends 

at higher filter widths for the subgrid scalar fluxes. The dynamic mixed models provide 

reliable predictions with reasonable correlations for all the subgrid fluxes. The key 

strengths of the dynamic mixed model include the relaxation of the gradient diffusion 

assumption which enables the model to accurately capture complex physics, and the ability 

to achieve higher correlations at moderate and high filter widths. Based on this study, the 

dynamic mixed model is recommended over the eddy-viscosity/diffusivity-based models 

for practical reacting flows simulations requiring a tractable grid resolution. The reduced 

performance of the models in the reacting case compared to the non-reacting case also 

warrant further investigation to refine the physical basis of these models and adequately 

replicate complex phenomena at the subgrid scales. 
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CHAPTER 7. SUBGRID SCALE MODELING OF THE 

EQUATION OF STATE FOR SUPERCRITICAL MIXING 

7.1 Overview 

In Chapter 4 and Chapter 5, the subgrid density and subgrid enthalpy terms were 

identified as important contributing terms in the filtered equations that need to be accounted 

for. In particular, the subgrid density resulting from the filtered equation of state (EOS) 

appears in all the filtered conservation equations. There have been a few investigations on 

the relevance of the subgrid equation of state term for supercritical mixing. Selle et al. [99] 

found that the subgrid pressure term resulting from the filtered EOS is an important 

modeling consideration in supercritical mixing layers. They proposed a modeling approach 

for this term based on a Taylor series expansion, which showed moderate performance for 

a low filter width but the performance was poor at a higher filter width. Taskinoglu and 

Bellan [107] refined this approach and conducted a posteriori evaluation of their model in 

conjunction with the other models for the SGS convective flux terms. Borghesi and Bellan 

[100] have investigated a scale-similarity approach for modeling the subgrid pressure term 

and tested in a preliminary study [188]. Using 1D laminar premixed and non-premixed 

flamelets, Ribert et al. [104] investigated the subgrid EOS contributions for low- and high-

pressure methane flames. They reported that the subgrid terms associated with the EOS 

were more prominent for CH4-O2 flames at high pressures where a real-fluid EOS is used. 

Lapenna and Creta [103] examined the errors in the modeling of the filtered EOS and other 

thermodynamic quantities using DNS of temporal mixing layers of transcritical and 

supercritical nitrogen jets. They proposed a presumed-PDF approach that showed good 
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improvement over the current no-model approach. A limitation of these works is that they 

considered temporal mixing layers at relatively low Reynolds numbers, which do not 

provide a complete description of turbulent flows at realistic conditions. 

In this study, the DNS database developed in Chapter 4 is utilized to understand the 

role of subgrid turbulence effects in the filtered real-fluid EOS, and to investigate modeling 

approaches for subgrid closure that can be applied to practical LES simulations. Prior 

modeling approaches proposed in literature [105, 106] are investigated and refined in this 

work. In addition, novel modeling approaches are explored by extending the conventional 

dynamic and scale-similarity approaches. A priori analyses of the models are conducted 

and the performance, strengths and limitations of the models are discussed in detail.  

 

7.2 No-model approach and the subgrid density 

In the no-model approach, which is the currently used representation of the filtered 

EOS, the filtered density is directly evaluated using the filtered pressure 𝑝̅𝑝, and the Favre-

filtered temperature and species mass fractions �𝑇𝑇� ,𝑌𝑌�𝑘𝑘� as  

 𝜌𝜌�𝑸𝑸�� =
𝑝̅𝑝

𝑍𝑍�𝑸𝑸��𝑅𝑅�𝑸𝑸��𝑇𝑇�
 (7.1) 

Using the DNS data, the subgrid density can be computed as 

 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜌𝜌�𝑸𝑸�� − 𝜌𝜌(𝑸𝑸)������� (7.2) 
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Figure 7.1 shows the spatial distribution of the subgrid density for a filter factor 

∆𝑓𝑓= 5. This filter factor corresponds to an LES grid that is 5 times coarser than the DNS 

in each direction, which is appropriate for LES simulations. The subgrid density 

distribution qualitatively follows the turbulent mixing layer, with the magnitude of the 

terms peaking at the interface between the mixing layer and the LOX stream. In these 

regions, turbulence is generated through shear and the gradients of flow properties are 

highest, especially those of the scalar fields (temperature and species mass fraction). The 

oxygen stream is initially at a temperature of 120 K, which is below its critical temperature 

of 154.6 K, and hence the stream is in a pseudo-liquid state. Upon contact with the warmer 

gaseous methane stream, the LOX undergoes a process called pseudo-boiling [19] and 

transitions to a supercritical state. Within this transcritical regime there is a steep variation 

of density as a function of temperature and mixture composition. The turbulent scalar 

mixing results in a locally inhomogeneous mixture with varied thermodynamic states. 

These two effects in combination result in steep density gradients at the small scales that 

are filtered out in LES. The subgrid density is representative of the effect of density 

variations at the subgrid scales on the resolved density. Since density (or equivalently 

mass) is coupled with the other transport equations, the subgrid density plays an important 

role in representing the underlying convective transport of momentum, energy, and species 

fluxes at the subgrid level. 
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Figure 7.1 – Spatial distribution of the subgrid density computed using the DNS 
data, ∆𝒇𝒇= 𝟓𝟓. 

The subgrid density is always positive for this case, implying that the modeled 

filtered density 𝜌𝜌�𝑸𝑸�� is higher than the exact filtered density 𝜌𝜌(𝑸𝑸)�������. This is also depicted 

in Figure 7.2 which shows a comparison between the exact filtered density and the modeled 

filtered density. In the no-model approach, the filtered density is computed using Favre-

filtered variables. The Favre-filtering operator is a density-weighted filtering operator, 

implying that the filtered quantities are biased toward the denser species. Thus, the 

thermodynamic states represented by the Favre-filtered variables (𝑇𝑇� ,𝑌𝑌�𝑘𝑘) are skewed 

towards the denser species, and the properties evaluated from these variables should also 

be closer to those of the denser species. In this case, the denser species is O2, so the Favre-

filtered primitive state variables (𝑇𝑇� ,𝑌𝑌�𝑘𝑘) and the modeled filtered density are biased toward 

those of O2. Bias toward the denser species naturally produces an overprediction of the 

modeled filtered density. Figure 7.3 shows the distribution of relative error in the modeled 

filtered density as a function of the mixture fraction. The relative error is defined as the 

subgrid density divided by the exact filtered density. The contribution of subgrid density 



 143 

is low in the extreme rich and lean regions, where the effects of subgrid mixing and 

variation in scalar fields are minimum, and peaks in the intermediate mixture fraction 

regions, where the species mixing due to turbulence is in effect. 

 

Figure 7.2 - Comparison of DNS-filtered density with filtered density evaluated using 
the no-model approach, ∆𝒇𝒇= 𝟓𝟓. 
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Figure 7.3 - Distribution of relative error (in percentage) in computed filtered density 
in the mixture fraction space, ∆𝒇𝒇= 𝟓𝟓. 

 

7.3 Evaluation of filtered density in terms of Reynolds-filtered quantities 

Considering the bias associated with the Favre-filtering operator, it would be 

natural to consider the representation of the filtered EOS in terms of Reynolds-filtered state 

variables. Ribert et al. [105] investigated a similar approach for computing the filtered 

pressure in the ideal gas EOS, by evaluating the EOS in terms of Reynolds-filtered species 

mass fractions instead of Favre-filtered mass fractions. The approach was proposed and 

analyzed for ideal, multi-component mixtures, and reasonable improvement was found. In 

this section, the extension of this approach for real-fluid, multi-component mixtures is 

investigated. 



 145 

It is important to bear in mind the difference in complexities between the ideal-gas 

and real-fluid EOS; the non-linearities in the thermodynamic behavior of individual species 

and the resultant mixture are different, and the filtered EOS involves covariances of three 

variables (𝑍𝑍,𝑇𝑇,𝑌𝑌𝑘𝑘) in the case of real-fluids (Equation (2.27)) instead of two variables 

(𝑇𝑇,𝑌𝑌𝑘𝑘) in the case of ideal-gas EOS. In Ribert et al. [105], the filtered EOS was represented 

in terms of the Favre-filtered temperature and the Reynolds-filtered species mass fractions 

(𝑇𝑇� ,𝑌𝑌�𝑘𝑘). However, for the real-fluid EOS the inclusion of the compressibility factor 𝑍𝑍, which 

itself is a function of the thermodynamic state, complicates the representation of an 

equivalent expression. An alternate representation is proposed in which the filtered density 

is modeled in terms of all Reynolds-filtered primitive variables. The model designated as 

the Reynolds-filtered model (RFM) can be expressed as 

 𝜌𝜌(𝑸𝑸)������� ≈ 𝜌𝜌(𝑸𝑸�) (7.3) 

where 𝑸𝑸� = (𝑝̅𝑝,𝑢𝑢�𝑖𝑖 ,𝑇𝑇� ,𝑌𝑌�𝑘𝑘) represents the set of Reynolds-filtered primitive variables. 

It should be noted that these quantities are not usually directly computed in LES. For a 

priori evaluation of the approach, we compute them from the DNS data. The representation 

in Equation (7.6) is not exact and a subgrid term must still be included. The goal here is to 

first evaluate if the approximation in Equation (7.6) provides an improvement over the 

current approximation for the filtered density. 
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7.4 Dynamic Gradient Model 

Following the idea of functional modeling for the subgrid fluxes, such as the 

Smagorinsky model [50] or the Clark model [57], an analogous model of the subgrid 

density in terms of the gradients in the flow field is sought. The DNS data indicates that 

the subgrid density is prominent in regions of strong mixing where the gradients of scalar 

fields are large, suggesting a possible correlation between these quantities. Based on this 

observation and the physical significance of this quantity as discussed in Section 7.2 , a 

model form for the subgrid density is hypothesized which can be expressed as a function 

of the resolved gradients of density, temperature, and/or species mass fractions. To validate 

this hypothesis, the correlations of the subgrid density with gradients of density, 

temperature and species mass fraction are computed using the filtered DNS data. It is found 

that density gradient has the highest correlation coefficient (around 65%) with subgrid 

density, while temperature and species mass fraction gradients have about 39% and 30% 

correlations respectively. The pressure variation in the flow field is less than 1% of the 

reference pressure, and the density variation corresponding to this pressure variation is 

negligible. The effect of pressure gradient is not expected to contribute significantly to the 

subgrid term here and is not included in our modeling approach, but naturally it would need 

to be included for flows involving strong pressure gradients, such as shocks. 

Based on the high correlation, a model form analogous to the Smagorinsky model 

is proposed where the subgrid density is expressed as a function of the local density 

gradient magnitude and the local LES filter size through a model coefficient 𝐶𝐶 as  
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 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐶𝐶∆�  �∇𝜌𝜌�𝑸𝑸��� = 𝐶𝐶∆�  𝜌𝜌𝑔𝑔�𝑸𝑸�� (7.4) 

Here the notation 𝜌𝜌𝑔𝑔(𝑸𝑸) =  |∇𝜌𝜌(𝑸𝑸)| is used as a shorthand to represent the 

magnitude of the density gradient, and ∆� denotes the local filter (grid) scale. The model 

expression above can also be derived following arguments of dimensional analysis or by 

filtering a Taylor series expansion of density around the LES computed density and 

truncating second order terms. Model forms including the gradients of the temperature and 

species mass fractions were also investigated, but the difference from the baseline model 

was found to be minimal [189]. 

The model coefficient in Equation (7.4) can be evaluated from the DNS data using 

a least-square error minimization as in linear regression analysis, by minimizing the square 

of the difference between the exact and modeled subgrid term. The value of 𝐶𝐶 was 

computed using flow fields at different time instants and considering data from different 

subsets of the domain that included only the core of the mixing layer, and the value was 

consistently found to be close to 𝐶𝐶 ≈ 21.6. Using this coefficient value, the model 

correlation with the exact value is found to be around 65%. For perspective, the 

Smagorinsky model has been shown to have a correlation of 20% or less for the subgrid 

stresses and energy fluxes, while that of dynamic models is about 60-70% [81]. In sum, the 

proposed model for the EOS offers reasonable performance, while also being tractable in 

an LES simulation.  

A priori analysis of the model performance was reported in a previous work [189]. 

Improvement in accuracy of the filtered density was achieved over the no-model approach, 
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especially in the peak error region near the stoichiometric mixture fraction, where the 

gradients and turbulent mixing are the highest. The subgrid density was, however, over-

predicted in regions away from the mixing layer, where the subgrid density is negligible. 

This trend is attributable to the use of a globally determined model coefficient that does 

not consistently represent the subgrid scale physics in different regions of the flowfield, 

especially in regions of low turbulent mixing. The same limitation has been recognized 

with the constant-coefficient Smagorinsky model in transitional and near-wall regions. 

Another limitation of this modeling approach is in the generalizability of the model 

coefficient. Since physical reasoning cannot be presented for this value at this point, it must 

be assumed that the value of the coefficient for a different species mixture and different 

operating conditions might be different. It is speculated that the value of this coefficient 

might be dependent on the thermodynamic behavior of the species mixture through the 

EOS, but this point needs further investigation. 

To overcome the limitations of the constant-coefficient model, a dynamic modeling 

approach for the model coefficient is sought. Using the gradient model (Equation (7.4)) as 

a baseline, a dynamic model can be derived following Germano’s approach [53]. Dynamic 

models derived using Germano’s identity have demonstrated reasonable success as 

compared to constant-coefficient models in providing a more physical representation of 

subgrid scale physics and reproducing the correct limiting behavior in different flow 

regions. In a dynamic model, the scale-similarity assumption is applied to evaluate the 

model coefficient locally in space and time according to the local filtered flow features. 

The scale-similarity hypothesis assumes that the structure of turbulence and the interscale 

processes between the smallest resolved scale (grid-filter scale) and the slightly larger 
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scales (test-filter scale) are similar to those between the smallest resolved scale and the 

largest unresolved scale. An explicit filtering operation is applied to the LES solution at a 

slightly larger scale than the grid-filter width, called the test-filter scale, producing a test-

filtered field. The model coefficient is then obtained by relating the subgrid term at the 

grid-filtered (LES) and the test-filtered solutions, at each point in space and time. 

Considering subgrid density as the unclosed term of interest, 

 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠 =  𝜌𝜌�𝑸𝑸�� −  𝜌𝜌(𝑸𝑸)�������  ≈  𝐶𝐶∆�  𝜌𝜌𝑔𝑔�𝑸𝑸�� (7.5) 

At the test-filtered level, 

 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡 = 𝜌𝜌 �𝑸𝑸��� −  𝜌𝜌(𝑸𝑸)��������  (7.6) 

where the top-hat symbol represents a filtered quantity at the test-filtered level. We 

then define the Leonard term as 

 ℒ𝜌𝜌 =  𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡 − 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠� = �𝜌𝜌 �𝑸𝑸��� −  𝜌𝜌(𝑸𝑸)���������− � 𝜌𝜌�𝑸𝑸��� −  𝜌𝜌(𝑸𝑸)��������� 

=  𝜌𝜌 �𝑸𝑸��� −  𝜌𝜌�𝑸𝑸���  

(7.7) 

This can be expressed in terms of the gradient model approximation, following the 

principle of scale similarity, as 

 
𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡 − 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠� =  𝐶𝐶∆��  𝜌𝜌𝑔𝑔 �𝑸𝑸��� − 𝐶𝐶∆�  𝜌𝜌𝑔𝑔�𝑸𝑸��������� 

�
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𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡 − 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠�   =  𝐶𝐶∆��  𝜌𝜌𝑔𝑔 �𝑸𝑸��� − 𝐶𝐶∆�  𝜌𝜌𝑔𝑔�𝑸𝑸��� =  𝐶𝐶∆� � 

 ∆��

∆�
 𝜌𝜌𝑔𝑔 �𝑸𝑸��� − 𝜌𝜌𝑔𝑔�𝑸𝑸��� �

= 𝐶𝐶∆�ℳ𝜌𝜌  

(7.8) 

where ℳ𝜌𝜌 =   ∆��

∆�
 𝜌𝜌𝑔𝑔 �𝑸𝑸��� − 𝜌𝜌𝑔𝑔�𝑸𝑸��� . 

Each of the terms in the expressions for ℒ𝜌𝜌 and ℳ𝜌𝜌 can be evaluated at the test-

filter level using the LES resolved flow variables. Combining Equations (7.7) and (7.8), 

and following Lilly’s least-squares approach [146], the coefficient in the gradient model 

can be obtained as 

 
𝐶𝐶∆�=  

〈ℒ𝜌𝜌ℳ𝜌𝜌〉
〈ℳ𝜌𝜌ℳ𝜌𝜌〉

 (7.9) 

The angular brackets indicate an averaging operation, which is usually done to 

avoid unphysical oscillation of the model coefficient. For the dynamic eddy-viscosity 

models for the subgrid convective fluxes, a summation over the tensor or vector 

components, along with spatial averaging in homogeneous directions, is adopted to 

overcome this issue [53, 146] whenever a homogeneous direction is present. In this case, 

due to lack of homogeneity in the flow and due to the coefficient ascribed to a scalar 

quantity, such a procedure cannot be adopted. An alternative is to use a dynamic 

localization procedure [190] or local averaging [147]. In this case, we perform a local 

averaging over the adjacent neighboring cells, following the approach by Zang et al. [147] 

With the dynamic formulation, the gradient model generalizes to 
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𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠 =  

〈ℒ𝜌𝜌ℳ𝜌𝜌〉
〈ℳ𝜌𝜌ℳ𝜌𝜌〉

�∇𝜌𝜌�𝑸𝑸��� (7.10) 

The dynamic gradient model (DGM) formulated in Equation (7.10) is parameter-

free, except for the choice of the ratio between the grid- and test-filtered levels ∆�� ∆�⁄ . A 

choice of test-filter width which is twice the grid filter width, i.e.  Δ��  =  2Δ�, which is widely 

used for dynamic models of the subgrid fluxes [53, 147], is adopted in the present study. 

For the a priori study, the test-filtering is applied only on the filtered LES solution, as 

would be done in an LES simulation. For the test-filtering, a discrete box filter is used, 

employing trapezoidal rule and quadratic interpolation of variables within the test-filter 

volume. The procedure accounts for the presence of non-uniform and non-orthogonal cells. 

With the modeled subgrid density, the filtered density is then evaluated from Equation (7.2) 

as 𝜌𝜌(𝑸𝑸)������� = 𝜌𝜌�𝑸𝑸�� − 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠. 

 

7.5 Scale-Similarity Model 

The principle of scale-similarity was introduced by Bardina [55] and has been 

applied to directly model the subgrid stress tensor [56]. Cook and Riley [70] have also used 

this principle to model the subgrid scalar variance. Following this principle, a model for 

the subgrid density is formulated as 

 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠 ≈ 𝐶𝐶𝑠𝑠𝑠𝑠 �𝜌𝜌 �𝑸𝑸��� −   𝜌𝜌�𝑸𝑸��� � (7.11) 
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where the quantities in the model are evaluated at the test-filter level based on the 

resolved variables at the LES grid level. This represents the subgrid density between the 

test-filter and grid-filter levels. The model coefficient 𝐶𝐶𝑠𝑠𝑠𝑠 can be taken to be unity for the 

sake of simplicity, as done by Cook and Riley [70]. For 𝐶𝐶𝑠𝑠𝑠𝑠 = 1, it is interesting to note 

that the scale-similarity model is the same as the term ℒ𝜌𝜌 in the dynamic gradient model. 

In fact, when the density gradients at the grid-scale and test-filter scale are equal, ℳ𝜌𝜌 would 

be equal to 𝜌𝜌𝑔𝑔�𝑸𝑸��, and the subgrid density computed with the scale-similarity model would 

be equal to that computed by the dynamic gradient model. 

A more rigorous method is to compute the model coefficient in a dynamic manner. 

For this, the model is modified such that the test filter is equal to the LES filter, similar to 

Bardina’s model for the subgrid stress [55]. 

 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠 ≈ 𝐶𝐶𝑑𝑑𝑑𝑑 �𝜌𝜌 �𝑸𝑸��� −  𝜌𝜌�𝑸𝑸���������� (7.12) 

Following the dynamic modeling approach, the model term ℳ𝜌𝜌 can be written as 

 
ℳ𝜌𝜌

𝑠𝑠 = 𝐶𝐶𝑑𝑑𝑑𝑑 ��𝜌𝜌 �𝑸𝑸��
��� −  𝜌𝜌 �𝑸𝑸������������

�− �𝜌𝜌 �𝑸𝑸��� − 𝜌𝜌�𝑸𝑸����������������������
� (7.13) 

and the Leonard term is as given in Equation (7.7). The dynamic scale-similarity 

model is formulated as  

 
𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠 =  

〈ℒ𝜌𝜌ℳ𝜌𝜌
𝑠𝑠〉

〈ℳ𝜌𝜌
𝑠𝑠ℳ𝜌𝜌

𝑠𝑠〉 �𝜌𝜌 �𝑸𝑸
��� −  𝜌𝜌�𝑸𝑸���������� (7.14) 
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where the test-filtering and spatial averaging procedures as in the dynamic gradient 

model are adopted. In this paper, we report the results from the scale-similarity model with 

𝐶𝐶𝑠𝑠𝑠𝑠 = 1. The dynamic scale-similarity model was also evaluated, and the differences were 

found to be minimal. 

 

7.6 Presumed filtered density function approach 

The filtered density function (FDF) is an analog of the probability density function 

(PDF), and is used in LES to represent the PDF of the subgrid scale fluctuations [131]. 

Closure of subgrid terms using the FDF approach has been explored in several studies, 

including for conserved scalars in combustion problems [74, 191, 192]. Recently, Lapenna 

and Creta [103] investigated the application of a presumed beta-PDF for the evaluation of 

filtered density and specific heat under transcritical and supercritical conditions. Using 

DNS of temporal N2 jets, they showed good comparison of the DNS-extracted PDF to the 

presumed beta-PDF. In their studies they considered relatively low Reynolds number jets 

and a single species, with the density computed as a function of the temperature alone. In 

a posteriori studies of reacting flows [106], they implemented the EOS evaluation within 

the flamelet model framework. The density was evaluated based on the mixture fraction 

and its variance, which uniquely determine the species composition and temperature for a 

given value of scalar dissipation rate. 

Here the presumed-FDF approach is investigated for the CH4-LOX mixing case, 

with corrections for two discrepancies identified with the original approach by Lapenna 

and Creta [103]. First, with the assumption of adiabatic mixing, the relation between 
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temperature and species composition is not linear. Moreover, the DNS data suggests that 

the fluctuations in temperature and species composition does not necessitate a unique 

mapping between the two quantities, since the governing transport processes are different. 

Therefore, fluctuations in both scalar quantities must be considered separately for the 

determination of the filtered density at a given computational cell. It is assumed that the 

fluctuations in the temperature and mixture fraction are statistically independent, and 

therefore the joint FDF of the density can be represented as the product of the marginal 

FDFs with respect to the temperature and mixture fraction 𝑧𝑧. That is, 𝑃𝑃(𝑇𝑇,𝑓𝑓) = 𝑃𝑃(𝑇𝑇)𝑃𝑃(𝑓𝑓). 

The subgrid scale fluctuations in pressure are neglected since these fluctuations are much 

less than 1%, and the effect of these fluctuations on the density is negligible. However, for 

other cases involving larger subgrid pressure fluctuations, their effect may need to be 

accounted for. 

Second, it is noted that the presumed beta-PDF form for the scalars should be 

attributed to the subgrid scale Favre-FDF (not the FDF) when the moments of the scalars 

are expressed as Favre-filtered quantities [193]. The Favre-filtered FDF 𝑃𝑃�(𝜓𝜓) is a density-

weighted form of the FDF 𝑃𝑃(𝜓𝜓) [194] representing the density-weighted subgrid 

fluctuation. The Favre-FDF is used to evaluate a Favre-filtered quantity 

 
𝜙𝜙�(𝜓𝜓) = � 𝜙𝜙(𝜓𝜓′)𝑃𝑃�(𝜓𝜓′|𝜓𝜓)𝑑𝑑𝑑𝑑

∞

−∞

′ (7.15) 

From the definition of Favre-filtering,  𝜌̅𝜌𝜌𝜌−1� = 𝜌𝜌𝜌𝜌−1������� = 1. Therefore, the consistent 

way to evaluate the filtered density is 



 155 

 
𝜌̅𝜌 =

1
𝜌𝜌−1�

= ���
1

𝜌𝜌(𝑇𝑇,𝑓𝑓)
𝑃𝑃�(𝑇𝑇,𝑓𝑓)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

∞

0

1

0

�

−1

 (7.16) 

The joint scalar Favre-FDF 𝑃𝑃�(𝑇𝑇,𝑓𝑓) is assumed to be the product of the marginal 

Favre-FDFs of the two scalars. Here, the species composition is considered in terms of the 

mixture fraction 𝑓𝑓, which for the LOX-CH4 mixing case corresponds to the mass fraction 

of CH4. 

Each of the marginal Favre-FDF forms is presumed to follow a beta-PDF 

distribution given as 

 
𝑃𝑃�𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝜉𝜉) =

Γ(𝛼𝛼 + 𝛽𝛽)
Γ(𝛼𝛼)Γ(𝛽𝛽) 𝜉𝜉

𝛼𝛼−1(1 − 𝜉𝜉)𝛽𝛽−1 (7.17) 

The shape parameters of the pdf (𝛼𝛼,𝛽𝛽) are computed based on the Favre-filtered 

mean (𝜉𝜉) and subgrid variance (𝜉𝜉"2� ) of the scalar fields. 

𝛼𝛼 =  𝜉𝜉 �
𝜉𝜉
𝜉𝜉"2�

− 1� ,𝛽𝛽 =  �1 − 𝜉𝜉��
𝜉𝜉
𝜉𝜉"2�

− 1� 

Since the beta-pdf distribution is defined over the interval [0,1], the temperature is 

normalized as 𝑇𝑇∗ = �𝑇𝑇 − 𝑇𝑇𝑜𝑜2�/(𝑇𝑇𝐶𝐶𝐶𝐶4 − 𝑇𝑇𝑜𝑜2). The joint Favre-FDF is then given as 

𝑃𝑃�(𝑇𝑇∗,𝑓𝑓) = 𝑃𝑃�𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑇𝑇∗) × 𝑃𝑃�𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑓𝑓), and the filtered density is evaluated as 

 
𝜌̅𝜌�𝑇𝑇� ,𝑓𝑓� =

1
𝜌𝜌−1�

= ���
1

𝜌𝜌(𝑇𝑇∗,𝑓𝑓)𝑃𝑃
�(𝑇𝑇∗,𝑓𝑓)𝑑𝑑𝑇𝑇∗𝑑𝑑𝑑𝑑

1

0

1

0

�

−1

 (7.18) 
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For implementation, the density as a function of the scalar field (𝑇𝑇∗,𝑓𝑓) is computed 

and stored on a grid over the interval (𝑇𝑇,𝑓𝑓) ∈ �𝑇𝑇𝑜𝑜2 ,𝑇𝑇𝐶𝐶𝐶𝐶4� × [0,1] with ∆𝑇𝑇 = 1 𝐾𝐾 and ∆𝑓𝑓 =

0.01. For a priori analysis, the filtered and subgrid scalar variance values are computed 

from the DNS database, and the corresponding FDF and integrals are evaluated at each 

LES cell to calculate the filtered density according to Equation (7.18). 

 

7.7 A priori assessments of model performance 

To evaluate the effectiveness and usefulness of the proposed modeling approaches, 

several different metrics are considered. Figure 7.2 shows a comparison of the filtered 

densities computed from the DNS database (exact) and those evaluated using the no-model 

approach, and Figure 7.4 shows the same comparison for the filtered densities evaluated 

with the modeling approaches described in the previous sub-sections. As discussed in 

Section 7.2, the filtered density is overpredicted by the no-model approach, in which the 

density is computed directly using the Favre-filtered temperature and species mass 

fractions. On the other hand, the density computed based on the Reynolds-filtered variables 

underpredicts the filtered density. The density computed using Reynolds-filtered variables 

does not contain information pertaining to the interactions (covariances) between the 

resolved primitive variables at the subgrid level and therefore, excludes the effect of 

subgrid mixing in the computed density. The addition of these subgrid effects through a 

subgrid term might improve the prediction. For example, Ribert et al. [105] use a scale-

similarity based model to account for this term. However, an analogous term could also be 

considered based on the Favre-filtered quantities, as in the scale-similarity model in Section 
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7.5. This would also eliminate the need for an additional step to compute the Reynolds-

filtered variables from the corresponding Favre-filtered variables and therefore reduce the 

overall computational cost of the model. 

The dynamic gradient and scale-similarity models show overall improvements to 

the modeled filtered density. The subgrid density and the filtered density evaluated with 

the dynamic gradient model exhibit a slight scatter in the predicted values; the scatter is 

worse in the absence of spatial averaging. A subgrid model in principle represents the 

statistical effect of unresolved scales and should only be evaluated in a statistical sense. 

Non-statistical evaluation of the model coefficient results in over-specification and 

oscillation of the value in certain regions of the flows, and statistical averaging is thus 

required. In this study, the local spatial averaging was confined to a three-point stencil in 

each spatial direction, or a total of 9 cells in the vicinity of an LES cell for 2D. It is possible 

that this averaging might not be sufficient for the filter size considered. There is also a 

concern regarding the evaluation of the test-filter across the transcritical interface between 

the two streams, which presents a sharp density gradient in the mean field. When the filter 

operator is applied in these regions, information on the density gradient is incorrectly 

represented as a fluctuation associated with subgrid scale turbulence. This contribution 

could be more significant than realistic subgrid fluctuations, causing an inconsistency with 

modeling approaches which inherently assume that all subgrid fluctuations are turbulent in 

nature. This subject has been broached in the context of compressible flows with shocks 

[195, 196], but it is still in the preliminary stage and the issues are not fully understood. 

Test-filtering is found to smear the density gradient, resulting in incorrect prediction of the 

test-filtered density gradient magnitude, 𝜌𝜌𝑔𝑔�𝑄𝑄���  in Equation (7.8). The associated errors 
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feed into the denominator ℳ𝜌𝜌 term in the model coefficient, which manifest in the form of 

oscillations of the model coefficient. The scale-similarity model, on the other hand, does 

not exhibit this level of scatter, and the overall trend seems to be better than the gradient 

model. Results using the scale-similarity model with 𝐶𝐶𝑠𝑠𝑠𝑠 = 1 and the dynamic variant were 

found to exhibit similar performance with nominal differences. 

The filtered density modeled using the presumed FDF approach matches very 

closely with the exact filtered density, with almost negligible deviation. The original 

formulation by Lapenna and Creta [103] was also compared, and it was found that the 

results obtained with the model form proposed in Section 7.6 were more accurate, owing 

to the mathematical consistency of the formulation. 

The relative error in the filtered density evaluated with different models is presented 

as a distribution in the mixture fraction space in Figure 7.5. The relative error is defined as 

the difference between the modeled and exact filtered densities normalized by the exact 

filtered density. These are compared with the corresponding distribution for the no-model 

approach shown in Figure 7.3. The error in the filtered density evaluated with the 

Reynolds-filtered model is of the same magnitude and qualitative distribution as the no-

model approach, with the difference that the error is of the opposite sign due to under-

prediction. This is contrary to the findings of Ribert et al. [105] for the filtered ideal gas 

EOS. The discrepancies are indicative of the complexities associated with the non-linear 

nature of the real-fluid EOS and the important role of subgrid interaction among turbulent 

mixing and thermodynamics in the supercritical regime. With the dynamic gradient and 

scale-similarity models, the magnitudes of the errors are decreased. Most of the cells 

display an error close to zero with a narrow error margin. The remaining scatter in the 
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figures represents data from cells where the modeled filtered density is inaccurate. The 

subgrid density predicted by the models is sometimes over-estimated, causing the modeled 

filtered density to be lower than the exact value, as seen by the points with negative error. 

This is attributed to the oscillation of the model coefficient in some cells. The presumed-

FDF model shows the most improvement, with the modeling errors confined to less than 

2%. The remaining errors could be a result of the numerical errors with the discrete 

representation of the integral, or deviations from the presumed FDF form, or a 

combination. 
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Figure 7.4 - Comparison of DNS-filtered density with filtered density evaluated using 
different modeling approaches, ∆𝒇𝒇= 𝟓𝟓. 
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Figure 7.5 - Distribution of relative error (in percentage) in filtered density evaluated 
from different models as a function of mixture fraction, ∆𝒇𝒇= 𝟓𝟓. 

The performance of the models are further quantified using two metrics - 

correlation between the exact subgrid density and the modeled subgrid density, and the 𝐿𝐿2 

norm of the error in the modeled filtered density. These performance metrics are presented 

in Table 7.1 for the moderate and coarse filter widths. The correlation coefficient between 

the exact and modeled terms is computed using the standard relation [81]. For comparison, 
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the subgrid density for the Reynolds-filtered model and the presumed-FDF model are 

defined as the difference between the filtered density with the no-model approach 𝜌𝜌�𝑸𝑸�� 

and the filtered density evaluated with the corresponding model. The error in the modeled 

filtered density is the difference between the exact filtered density (DNS) and the filtered 

density calculated using a particular model. The 𝐿𝐿2 norm of the error is computed over all 

the cells in the domain and normalized by the total number of cells. With increase in filter 

width, the modeling errors are increased significantly. All the proposed modeling 

approaches show improvement over the no-model approach with respect to reduction in 

the error norm. This performance ranking is consistent with the inferences from the 

previous metrics. The improvements however become less effective at the coarser 

resolution. The presumed-FDF approach shows the best performance in terms of the error 

norm as well as the correlation coefficient of the model prediction. The reduction in error 

at coarser resolution is also significant compared to the other models. The correlation 

coefficient of the dynamic gradient model and scale-similarity model are relatively lower 

but are still comparable to those obtained for the conventional SGS models. 

There are advantages and limitations associated with each modeling approach 

proposed in this work. There remain outstanding issues with the dynamic gradient and 

scale-similarity modeling approaches regarding the application of test-filtering, and these 

concerns also apply to the currently used dynamic eddy-viscosity models. However, the 

overall improvement in the predictions is encouraging for further refinement of these 

models. A consistent technique for statistical averaging of model parameters and 

evaluation of the test-filter is expected to improve the dynamic gradient model performance 

further. 
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Table 7.1 – Correlation coefficients between the exact and modeled subgrid density, 
and the L2 norm of error in the modeled filtered density for different models. 

Model Correlation coefficient 𝐿𝐿2-error 

 ∆𝑓𝑓= 5 10 5 10 

No-model   11.3 76.15 

Reynolds-filtered -0.94* -0.95* 6.76 52.82 

Dynamic Gradient 0.78 0.70 4.43 37.39 

Scale-similarity 0.75 0.63 4.75 43.39 

Presumed FDF 0.97 0.97 1.64 6.44 

The presumed-FDF model is a mathematically consistent approach and shows the 

best performance among all the models investigated in this work. A limitation with this 

approach, however, is that it requires additional models for estimating the subgrid scale 

variances of the temperature and species fields. To evaluate these quantities, modeled 

transport equations must be solved. Alternatively, a scale similarity approach [70] or a 

scaling law [197] can be used. However, either of those approaches is expected to introduce 

additional model uncertainties and errors in the framework that are equivalent to the 

deficiencies in the dynamic model discussed earlier. Furthermore, the evaluation of the 

integrals in the model imposes additional CPU and memory costs. This is especially 

relevant for transcritical mixing and combustion cases, where a fine-grained density 

mapping in the thermodynamic state space is required to account for the strong variations 



 164 

in the density. This could be partially alleviated by pre-computing and storing the integrals 

in a tabulated framework, as is done in the use of flamelet models for combustion [198, 

199]. 

 

7.8 Summary 

The inconsistencies and errors associated with the representation of the filtered 

EOS in the LES framework are investigated in the context of supercritical mixing. It is 

recognized that the direct evaluation of the filtered density (or pressure) based on the Favre-

filtered thermodynamic state variables does not represent the subgrid scale interactions 

between the thermodynamics and turbulent mixing, resulting in errors in the computed 

filtered density. The magnitudes of the density-weighted Favre-filtered variables are biased 

towards those of the denser states at the subgrid level. This results in overprediction of the 

filtered density computed based on these quantities for the LOX-GCH4 mixing 

configuration considered in this study. Different modeling approaches were proposed to 

account for these effects and to obtain an accurate estimate of the filtered density using the 

real-fluid EOS. The models were evaluated using different performance metrics to assess 

the accuracy in modeling the filtered density as compared to that obtained from the DNS. 

The Reynolds-filtered model, in which the EOS is evaluated based on the Reynolds-filtered 

state variables rather than the Favre-filtered variables, does not provide any improvement 

over the no-model approach. 

Two modeling frameworks are proposed extending the approaches used for 

modeling the subgrid convective flux terms. First, a gradient model is proposed as a 
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functional model analogous to the Smagorinsky model. The formulation is based on the 

qualitative and quantitative correlation of the subgrid density to the resolved density 

gradient magnitude in the flow. To evaluate the model coefficient, a dynamic modeling 

procedure is formulated by extending the ideas of Germano’s identity, rendering the 

dynamic gradient model. Likewise, a scale-similarity model is proposed to directly 

evaluate the subgrid density. Both of these models are found to show improvement in 

modeling the filtered density and overall reduction in errors. Some errors persist due to 

unphysical variation of the model coefficient stemming from evaluation of the test-filtering 

across sharp density gradient regions and lack of sufficient statistical averaging. These 

issues are known to exist even for compressible, ideal-gas flows and require further 

refinement. Lastly, a PDF-based approach is proposed, assuming a beta-PDF form of the 

Favre-FDF to model the subgrid scale fluctuations of the temperature and species 

composition. This model showed the best correlation of the filtered density with the DNS 

data and the smallest modeling errors. This approach requires additional information 

regarding the subgrid variances of the temperature and species mass fractions, which 

entails supplementary models for these quantities. 

While the a priori assessments in this work are done using 2D DNS data, the model 

formulations are founded on physical principles that are well-established in the turbulence 

modeling literature and are thus expected to be valid even for realistic 3D turbulence. 

Assessment of the models using 3D DNS data and a posteriori LES validations are 

warranted whenever such studies are computationally feasible.  
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CHAPTER 8. CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

The overarching goal of this dissertation is to address the deficiencies and 

uncertainties surrounding the extension of the current large eddy simulation (LES) 

framework to application of flows at high-pressure, supercritical conditions. The specific 

objectives identified in Chapter 1 provided a progressive pathway for this endeavor. These 

objectives are revisited, and a summary of the important milestones and conclusions 

achieved through this dissertation are outlined as follows. 

The first objective of this dissertation was to determine a consistent theoretical 

framework for the LES of a supercritical multi-species flow. A systematic derivation of the 

filtered conservation equations that govern the evolution of the large-scale flow is 

conducted, following a detailed background of the fundamental constitutive relations and 

the filtering operation adopted in LES. The derived system of equations presented in 

Chapter 2 is devoid of the usual assumptions and simplifications that are invoked under the 

low-pressure incompressible or compressible flow regimes and is thus applicable for flows 

under all thermodynamic regimes. The derived framework highlights the presence of 

several new unclosed terms that are not considered in the conventional LES framework. 

These terms represent important effects of the subgrid scale physics on the dynamics of the 

resolved large scales. The non-ideal, non-linear thermodynamics under these conditions, 

and their impact on the representation of the filtered convective and diffusive fluxes are 

discussed from fundamental and mathematical viewpoints. Based on these discussions, it 

is postulated that the representation of the filtered thermodynamic and transport fluxes are 
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no longer trivial as is considered under incompressible or weakly compressible flows at 

low pressure conditions. 

The second objective was to quantify the different terms in the derived filtered 

equations in order to identify the terms that are to be considered relevant for modeling, and 

those that can be neglected under the conditions of interest. To enable such a study, direct 

numerical simulations (DNS) are conducted for the case of a spatially evolving mixing 

layer comprised of co-flowing methane and liquid oxygen streams, at an operating pressure 

of 100 bar. This fundamental configuration is representative of propellant injection in 

liquid rocket engines. An important merit of this work that distinguishes it from previous 

studies, is that it considers a spatially evolving, inhomogeneous turbulent flow at realistic 

Reynolds numbers corresponding to practical systems. DNS datasets are generated for two 

cases – 1. a non-reacting binary-species case, and 2. a reacting multi-species case, to 

investigate the effects of multi-species mixing and heat release on the interactions between 

turbulence and thermo-chemical processes at the subgrid level, and their combined effect 

upon the resolved scale flow dynamics. 

A priori analyses of the terms in the filtered equations are conducted using the 

generated DNS datasets. First, an order of magnitude analysis is performed to quantify the 

various terms and identify the leading terms in the governing equations. The relative 

magnitudes of the subgrid terms with respect to their corresponding resolved scale terms 

are then quantified. Parametric analyses are conducted as a function of filter widths to 

derive useful trends for LES. Based on these analyses, two new sets of subgrid terms are 

shown to be relevant for the non-reacting and reacting cases. These are the subgrid 
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convective fluxes associated with the thermodynamic quantities (density and enthalpy), 

and the subgrid diffusive transport fluxes resulting from the non-ideal transport properties. 

In the non-reacting case, the subgrid convective fluxes associated with the subgrid 

density/enthalpy are found to be comparable in magnitude with respect to the leading order 

resolved convective fluxes, and even greater than the conventional subgrid fluxes in most 

cases. The magnitudes of these terms are shown to be highest in the transcritical interface 

of the mixing layer with the LOX stream, where strong density gradients occur. The 

subgrid diffusive fluxes are among the lowest order terms in the respective governing 

equations. However, the magnitudes of these terms are comparable to the resolved 

diffusive fluxes, especially at higher filter widths. The physical significance of these terms 

requires further investigation. The differences between Favre-filtered and Reynolds-

filtered state variables are quantified. Significant deviations, which increase with filter 

width, are found for the thermodynamic state variables (temperature and species mass 

fractions). The associated errors in representation of filtered thermodynamic and transport 

properties are also shown to be significant especially at coarser resolutions. 

In the reacting case, the contributions from the two sets of subgrid terms are 

increased compared to the non-reacting case. The subgrid terms are found to most 

significant in the primary and secondary flame regions where large density gradients occur. 

The deviations between Favre- and Reynolds-filtered thermodynamic state variables, and 

errors in computation of filtered thermodynamic/transport properties are also increased, 

and the distribution of these errors are much more complex compared to the non-reacting 

case. 
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The third objective of this dissertation was to assess the performance of existing 

subgrid modeling approaches employed for the conventional subgrid fluxes. The study 

demonstrates the superior performance of the dynamic mixed model over the dynamic 

Smagorinsky model. Although the accuracies of both models decrease with increasing 

filter widths, the performance of the dynamic mixed model at higher filter widths is still 

better than the performance of the dynamic Smagorinsky model at low filter widths. The 

dynamic Smagorinsky model is also found to perform worse in the reacting case. It is 

concluded that the eddy-diffusivity hypothesis is not strictly valid under complex flow 

conditions. Based on the study, the dynamic mixed model is recommended for practical 

LES of flows in this regime. It is also considered that deficiencies in the model arise 

because the existing subgrid models do not incorporate information of non-ideal 

thermodynamic processes. Model refinements are warranted through future studies. 

The final objective of this dissertation was to investigate modeling approaches for 

the filtered equation of state used to compute the filtered density. Four different modeling 

approaches for the filtered density are proposed and assessed in an a priori study. The 

representation of the filtered equation of state in terms of Reynolds-filtered state variables 

does not provide appreciable advantages over the current no-model approach. A dynamic 

gradient model and scale-similarity model are formulated using the subgrid modeling 

principles that have been investigated for the subgrid stresses. These models provide good 

improvements to the computation of the filtered density, with some outstanding issues that 

require further refinements. The presumed-FDF approach in which a beta-PDF is used to 

represent the subgrid scale distribution of the scalar field shows the overall best 

performance with errors less than 2-5% even at coarse filter resolutions.  
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8.2 Major contributions of this dissertation 

The most important contributions from this dissertation are summarized as follows. 

1. A consistent theoretical framework of the filtered conservation equations for LES of 

supercritical mixing and combustion is established. The derived framework is suited 

for all multi-physics flow regimes and provides a basis for future investigations. 

2. Direct numerical simulations of non-reacting and reacting methane-oxygen mixing 

layers are conducted at realistic operating conditions representative of liquid rocket 

engine operation. These unique datasets describe high Reynolds number, spatially 

evolving, inhomogeneous turbulent flows at supercritical conditions, and provide rich 

information that can be used to derive key insights for refining modeling approaches in 

this regime. 

3. Two new groups of subgrid terms are shown to have important significance to the 

governing filtered equations in the supercritical regime. The discrepancies associated 

with the use of Favre-filtered state variables for computation of thermodynamic and 

transport quantities are quantified. Parametric studies as a function of filter width have 

broadened the understanding regarding the relevance of these outstanding issues for 

LES resolutions employed in practice. 

4. Assessments of two state-of-the-art turbulence models are conducted for non-reacting 

and reacting cases. The superiority of tensorial models, such as the scale-similarity 

model, is demonstrated. It is also shown that resolution requirements are to be 

considered to ensure model accuracies for high-fidelity simulations, especially for 

reacting flows. The quantitative trends established in this work offer guidelines for 

resolution requirements for accurate LES simulations. 
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5. Modeling approaches for the filtered equation of state are proposed and investigated in 

an a priori sense for the supercritical mixing case. Improved accuracy in the 

representation of the filtered density is demonstrated. The modeling frameworks are 

conceived to serve as a foundation for future modeling efforts. 

 

8.3 Recommended directions for future work 

The long-term goal of this research is to develop a refined and consistent subgrid 

modeling framework for LES of supercritical mixing and combustion that accurately 

represents all relevant complex physico-chemical thermodynamic processes at the subgrid 

level. Reflecting upon the conclusions reached in this dissertation, and the limitations with 

the current work, the following directions are recommended for future work in this topic. 

8.3.1 Three-dimensional DNS studies 

A major limitation with the current work is the use of two-dimensional DNS data. 

This approximation was considered necessary at the time of this study owing to limitations 

in availability of computational resources and to enable realization of spatially 

inhomogeneous flows at realistic Reynolds numbers within the available resources. The 

conclusions reached from this study are valuable in identifying focal points for future 

research. Recent studies [99, 101, 102, 171] focusing on the subgrid modeling issues in 

supercritical turbulent flows at low Reynolds numbers also corroborate these findings. 

Future studies should focus on realizing three-dimensional DNS simulations for similar 

operating conditions, whenever such studies are computationally feasible. The data from 

such a study would be useful to provide more detailed physical insights regarding the 
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effects and importance of accounting for the subgrid terms. The degree of agreement 

between results from future three-dimensional studies and the conclusions of this study 

would possibly render more support for analyses of two-dimensional data for parametric 

study of the effect of flow conditions on the subgrid contributions. 

In addition to the magnitude analysis of the resolved and subgrid fluxes conducted 

in this work, the directional properties of the fluxes are also relevant to accurately represent 

the transport phenomena at the subgrid scales, and in turn the resolved scales. Preliminary 

studies in this dissertation have found that there are differences between the orientations of 

the resolved and the exact filtered fluxes. These effects are especially relevant for 

multicomponent mixtures where complex phenomena are encountered, such as 

countergradient diffusion [22, 176, 186]. These effects have a direct impact on the species 

mixing, chemical heat release and flow dynamics in reacting flows. Three-dimensional 

data is essential for investigating such issues. 

8.3.2 Subgrid model development 

Although there seem to be a lot of new subgrid terms in the derived filtered 

equations, half of those terms are related to the EOS. The subgrid terms associated with 

the EOS are also the terms are most relevant in magnitude. These terms can be accounted 

for by modeling the filtered EOS consistently. The subgrid modeling approaches proposed 

for the equation of state in Chapter 7 can be used as a starting point but need to be rigorously 

tested under different flow conditions before they can be incorporated into LES 

simulations. Further refinements to the modeling approaches are also warranted to resolve 

outstanding issues pointed out in Chapter 7.  
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The remaining terms are those associated with the diffusive fluxes. Their 

magnitudes are small with respect to the leading order of the equations. As a first step, they 

could possibly be neglected, and emphasis laid on the larger terms associated with the EOS. 

The need for modeling the subgrid diffusive fluxes also requires further insights through 

detailed three-dimensional data. It is essential to understand the degree to which these 

terms affect the physics at the resolved scales, before modeling efforts are undertaken. In 

principle, scale-similarity approaches could be extended to model the subgrid diffusive 

fluxes, under the strict criterion that similarity of scales is valid for the range of filter scales 

and flow regime considered. For example, Martin et al. [81] investigated the scale-

similarity approach to model the turbulent diffusion and subgrid viscous diffusion terms 

for compressible flows. Another potential candidate is the use of approximate 

deconvolution [58, 200] or inverse filtering methods that can provide an estimate for the 

unfiltered flow fields, thereby allowing a direct computation of the filtered fluxes. 

The benefits of modeling the subgrid terms and the effectiveness of the developed 

models also need to be verified in a posteriori LES studies. Efforts in this direction would 

require substantial computational resources and time, but is essential before the adoption 

of the refined framework.   
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