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CHAPTER 1

INTRODUCTION

Throughout the eighteenth century, scientists such as Coulomb, Ampere, Faraday, and

Maxwell studied the nature of electricity. In the late nineteenth century, the relationship

between electricity and magnetism was also discovered and studied. The electromagnetic

(EM) field consists of the electric field and the magnetic field. These fields are perpen-

dicular to each other and are perpendicular to the traveling direction of the wave. The

characteristic of a far-field EM wave is defined by the propagating direction, polarization,

frequency, magnitude, and phase. Analysis of EM waves from both the signal processing

and microwave design sides has grown significantly since the requirements of electronic

devices have become stricter in order to serve various applications.

One application of EM analysis is the EM wave propagation and scattering emulation.

EM wave emulation has long been studied in the radar communities [1] [2] [3]. There is a

growing need to simulate real-time complex EM wave interactions between multiple radar

targets, transmitters, and receivers (Figure 1.1). The study will permit the evaluation of

radar systems [4], antenna designs [5], and stealth technologies [6]. In radar scenarios, EM

waves from transmitters illuminate radar targets. Modulated EM waves are then scattered

toward the receivers. The modulation of the scattered signals is determined by the materials

and geometry of the radar target, impacting the propagation channel between receivers and

transmitters. The radar cross section (RCS) represents the reflection profile of a radar target.

It is known as the cross-section area of a perfectly electric reflecting sphere that produces

the same reflectivity as the target:

σ = lim
r→∞

4πr2
Ss

Si

(1.1)
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where Ss is the scattered power density from the target. Si is the incident power density

at the target. r is the distance between the target and the observer. The RCS can also be

defined as:

σ = lim
r→∞

4πr2
|Es|2

|Ei|2
(1.2)

where Es and Ei are the scattered and incident EM insensitivity, respectively. In addition,

RCS can represent the complex numbered reflection profile of a radar target and is an

angular dependent frequency response. Monostatic RCS data consists of RCS where the

incident angle and scatter angle are identical, while bistatic RCS data consists of RCS

where the angles differ as shown in Figure 1.2. The monostatic RCS data is a subset of the

bistatic RCS data.

Figure 1.1: Illustration of the real-time EM wave interaction for radar applications

(a) Monostatic (b) Bistatic

Figure 1.2: RCS for two scenarios

High performance computing (HPC) EM emulators can be used to simulate real-time

complex EM wave interactions between numerous radar targets. Conventionally, when the

HPC EM emulator simulates the scattering effect, the transmitted signal is decomposed

2



Figure 1.3: Black-boxed function

with Fourier transform. Then, each frequency component is multiplied by the RCS of the

scattering target at the aspect angle and corresponding frequencies. The total scattered

signal is computed as the summation of these modulated signals. The reflection profiles

of radar targets are oftentimes required to be stored as a table. The needed storage size

increases linearly with the frequency sampling density and the number of target types used

in the emulator. In addition, with denser aspect angle sampling, the needed storage size

increases quadratically in the monostatic RCS data and with the fourth power in the bistatic

RCS data. The large quantity of data needed often exceeds storage capability and limits the

feasibility of manipulation and representation of the objects. We implement optimization

methods to compress the data in a way such that the HPC emulators can use it directly as

part of the computations.

Another arising application of EM analysis is microwave design optimization problems.

The optimization problem can be written as:

min/max
x

f(x) subject to x ∈ X (1.3)

where x is the vector of input parameters, f(x) is the objective function, and X is the feasi-

ble range of input parameters, also called the design space. Linear and convex optimization

problems (LP and CP) can be solved efficiently using iterative methods or linear algebraic

techniques due to the properties of simple function surfaces [7] [8]. However, in microwave

design scenarios, the nonconvex function surfaces often consist of many local optima and

make the optimization problems more challenging. In addition, the black-boxed nature of

3



the problem (Figure 1.3) indicates the lack of gradient information. In addition, due to the

complex EM structures in microwave designs, the function evaluation f(x) often requires

lengthy EM simulations. We manage to optimize two emerging system designs, namely

the beamforming antenna in package design for wireless communication and the wireless

power transfer (WPT) for the Internet of Things (IoT), where the dimensionality of the

problems to be addressed needs to be quite large.
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CHAPTER 2

LITERATURE SURVEY

In this Chapter, methods of radar cross section (RCS) compression are reviewed. The

objective of these RCS compression methods is to identify a model that represents the

RCS of a given object. Multiple microwave design strategies are also reviewed along with

encountered issues while implementing Bayesian optimization to high dimensional design

problems.

2.1 Prior Arts for RCS Compression

RCS data is often compressed using the point scatterer model transformation. The point

scatterer model, also referred to as the scattering center model, includes the scatterer posi-

tions and a reflection profile of each scatterer. Hurst [9] proposed the damped exponential

point scatterer model, where the reflection profile is defined as an exponential function that

depends on the signal frequency. Potter [10] constructed a geometrical theory of diffraction

(GTD) based parametric model, where GTD is an extension of geometrical optics which

accounts for diffraction [11]. The GTD-based model also extracts frequency-dependent

scattering information. It estimates not only the amplitude of each point scatterer, but

also a parameter characterizing the geometry of each point scatterer. Compared to the

damped exponential model, the GTD-based model successfully describes more details of

the diffraction scattering behaviors.

Bhalla [12] found a 3D point scatterer model based on the shooting and bouncing ray

(SBR) technique, which is a ray-tracing algorithm used to simulate the RCS of realistic

object models [13]. The 3D image of the object is first computed with the SBR-based

inverse synthetic aperture radar (ISAR) algorithm [14] making use of the target motions

to create the synthetic aperture. Then, the CLEAN algorithm is used to extract the 3D
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positions and strengths of the point scatterers by choosing the dominating points from

the image. Gerry [15] also constructed frequency-dependent scatterer models to analyze

synthetic aperture radar (SAR) measurements.

Hugh [16] also created the ISAR image to obtain the reflective information of radar

objects. The locations of the scatterers are computed with a modified genetic algorithm

(GA), which mimics the process of natural selection and improves the performance using

mutation, crossover, and selection from a population in the parameter space. Wang and

Schuler conducted similar approaches to compute the point scatterer model by extracting

the highly reflected areas of the ISAR images [17] [18]. The results show good representa-

tions of the highly reflected areas yet ignore the nuances of the detailed reflection profiles

of the radar target. Also, these methods represent a small view angle range of the RCS with

a large number of scatterers. A binary space partition tree is required to select different

point scatterer models according to the aspect angle.

Analyzing the dominant features of a radar object is the most classical method for RCS

representation. A complex object can be represented using a number of primitive scattering

shapes (plates, cylinders, etc.). Each shape has its own RCS and can be computed analyt-

ically [19]. For example, the dominant RCS contribution of an aircraft is from the wings

and fuselages. Complex radar targets can also be modeled as a collection of scattering

elements randomly distributed throughout the spatial region of the radar target [20]. The

randomness of the RCS data can also be represented according to the probability density

functions. Delano [21] used this statistical model to analyze RCS and the glints of radar

targets.

2.2 Challenges for RCS Compression

The large quantity of storage needed for the RCS data table exceeds the capability and

limits the feasibility of manipulation and representation of the objects. The frequency-

dependent scatterer models mentioned in the previous section fit the RCS data well. Yet, the
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frequency dependency hinders the feasibility of HPC EM emulator computations. More de-

tails will be discussed in Chapter 3. In addition, these approaches generate a large number

of point scatterers needed for each radar object, which also hinders efficient EM emulations.

Although the larger RCS values of radar objects can be captured using primitive scattering

shapes, the lower values cannot be captured since the resonance effects are significantly

dependent to the complex geometric configuration. We propose to simulate real-time com-

plex EM wave interactions between multiple radar targets, transmitters, and receivers with

high performance computing (HPC) based EM emulators. The problem is described by

introducing a new perspective of the point scatterer model and channel model used for the

HPC EM emulator. Then, a number of innovative approaches for constructing 3D point

scatterer models are presented. By defining real numbered and frequency-independent re-

flection gains, the channel between the EM waves before and after the modulation can be

implemented as a finite impulse response (FIR) filter.

2.3 Prior Arts for Microwave Design Optimizations

Beamforming array antennas have been used in 5G/6G wireless communication systems to

ease to manufacture process and reduce component failures [22]. Beamforming array an-

tennas electronically steer the beam to the desired direction without physically moving the

antennas. This is achieved by the digital beam controllers, which are variable phase shifters

behind the array elements. As the operating frequency and number of array elements in-

crease, the negative effect from sidelobes becomes non-negligible and the interference from

other radiating sources may degrade the performance of the antenna.

One solution is constructing nonuniform spacing linear antenna array where the param-

eters are defined as the spacing between array elements of a linear antenna array. Zaman

[23] proposed to solve the spacing using the firefly algorithm and a modified particle swarm

optimization (PSO) algorithm. PSO is a powerful method for gradient-free optimization

problems. In this algorithm, a number of candidates, denoted as particles, are updated iter-
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atively using the information of the global optimal particle position and the local optimal

particle positions. The particles are guaranteed to converge to the global optima with a

sufficiently large number of particles and iterations [24]. The firefly algorithm is the gen-

eralized version of the PSO algorithm and mimics the flashing behavior of fireflies [25]

[26]. Both algorithms solve the optimization problem by improving a candidate solution

with regard to a given evaluation of cost in an iterative fashion. The allowed spacing dis-

tance between the elements is constrained to avoid mutual coupling between the elements.

The sidelobes reduction can also be achieved by other global optimization approaches as

well. Yet, the search spaces of the parameters are usually large and the algorithms become

time-consuming due to the large number of iterations.

Another approach for sidelobe nulling is to optimize selected elements in the linear

antenna arrays. For example, Mohammed [27] added a small number of controllable ele-

ments on each side of the linear antenna array. Then, the beam controllers, which include

the amplifiers and phase shifters, of the extra elements are optimized. Furthermore, he pro-

posed to optimize the beam controllers for the extra elements with less computational time

using GA. The method can be extended to creating multiple nulls at undesired directions to

reduce the unwanted gains towards certain aspect angles. The nulls are created by turning

off selected elements in the uniformly spaced linear arrays by means of binary GA [28].

For applications that require large arrays, the cost and size can be reduced by grouping

elements into subarrays as shown in Figure 2.1, that form the entire array. To reduce the

sidelobes, Haupt [29] computed amplitude tapers for each subarray, where the elements

in a subarray are tapered at the same amount. The result shows that the sidelobes are re-

duced, and the performance can even be further improved with GA. Yang [30] constructed

a large antenna array with subarrays of different orientations. The element positions of the

subarrays are optimized to obtain low sidelobe levels for the entire antenna using the PSO.

The spacing between elements is also constrained in this optimization process to reduce the

coupling effect. He further proposed a modified PSO algorithm to solve the optimization

8



problem with this constraint.

Figure 2.1: Top-view antenna array configuration illustration

A WPT system targets power transmission and conversion without wires or physical

links. The power is transmitted through the magnetic fields with inductive couplings by

coils. The challenges arise when the coils are operated at high frequency due to the low

efficiency and increased power loss [31] [32]. The goal of this design problem is to maxi-

mize the RF-to-DC conversion efficiency of IoT devices. Literature shows that increasing

the number of power receivers enhances the power transfer efficiency. Yet, it also increases

the cost, the number of design parameters, and space wastage of IoT devices. In addition,

the crosstalk between multiple receivers interferes the performance [33] [34]. As in the

problem of antenna designs, GA and PSO were proposed to optimize the matching capaci-

tors while maximizing the power transfer efficiency [35] [36].

The above mentioned microwave design problems are usually treated as black-boxed

functions, where the black-boxed nature of the problems indicates the lack of gradient in-

formation. Thus, gradient-free global optimization algorithms have been proposed to solve

optimization problems using heuristic methods [37]. For example, GA has also been used

for designing the 3-dimensional integrated circuits [38]. It has also shown promising re-

sults optimizing the shape and topology of EM structures [39]. Several other applications

using PSO for microwave design problems have been discussed as well [40] [41] [42]. Due

to the complex EM structures in microwave designs, the function evaluation often requires
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lengthy EM simulations. The accumulated computation time hinders the feasibility of GA

and PSO due to the large number of iterations that these algorithms require. Bayesian Op-

timization (BO) is a machine learning based method that enables fast convergence towards

a global optimum and is well-known for reducing the computation time by efficient sam-

pling. This is achieved by fitting a probabilistic surrogate model with existing data and

optimizing the acquisition function to decide the next sampling point in a heuristic manner.

This method has shown promising optimization results for functions without closed-form

expressions [43] [44] [45].

2.4 Challenges for Microwave Design Optimizations

A general problem with BO is the low dimensionality of the problem that needs to be ad-

dressed which is contrary to microwave design that often requires many parameters to be

optimized with precision. The challenges of implementing conventional BO to high dimen-

sional problems are due to the curse of dimensionality [46] [47]. For example, the search

space expands exponentially as the number of input parameters increases. Thus, the surro-

gate models cannot well represent a function without an extremely large number of data.

This is infeasible for microwave designs due to the CPU-intensive and time-consuming

EM simulations. In addition, the acquisition function optimization becomes unsolvable

or time-consuming, which leads to poor suggestions of the next sampling point. Existing

literature suggests a high to low dimensional linear mapping to the input space [48] [49].

However, this linear mapping is oftentimes not obtainable and provides unstable solutions.

Also, applying a linear mapping to a function without such linear characteristics leads to

poor function approximation. Another common solution to high dimensional BO prob-

lems is assuming additive structures [50] [51], which assumes that the objective function

is decomposed into a summation of multiple low dimensional functions. Yet again, this

decomposition is not always obvious. We propose an innovative method that prioritizes a

subset of the design parameters for GP regression and acquisition function optimization in
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each iteration, where the subset selections are based on the estimated sensitivity of each

parameter to the objective function. This process is then applied to two emerging system

designs, namely the beamforming antenna in package design for wireless communication

and the wireless power transfer for Internet of Things (IoT).

In the following chapters, we present a number of innovative approaches for construct-

ing concise point scatterer models that the HPC EM emulators can use as part of the compu-

tations to solve the RCS compression problem. To solve the high dimensional black-boxed

microwave design problems, we propose an innovative method that prioritizes a subset of

the design parameters for GP regression and acquisition function optimization in each iter-

ation, where the subset selections are based on the estimated sensitivity of each parameter

to the objective function.
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CHAPTER 3

POINT SCATTERER MODELS

Electromagnetic (EM) wave propagation and scattering emulation have long been studied

in the radar communities. High performance computing (HPC) based EM emulators are

used to simulate real-time complex EM wave interactions between multiple radar targets,

transmitters, and receivers. We describe the problem by introducing the point scatterer

model and the channel model used for the HPC EM emulator. Then, a number of innovative

approaches for constructing 3D point scatterer models are presented.

3.1 Problem Description

The reflection profile of a radar target can be represented as a point scatterer model, which

consists of a number of isotropic or anisotropic scatterers. An isotropic scatterer modulates

and scatters signals identically in all directions, while an anisotropic scatterer modulates

and scatters signals differently depending on the aspect angle. The aspect angle consists

of the incident angle and the scatter angle. The incident angle indicates the direction of

where the signal is illuminating the scatterer from. The scatter angle indicates the direction

Figure 3.1: Spherical coordinate illustration
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Figure 3.2: Single scatterer example

of the scattered signal. The incident angle and scatter angle are represented in elevation

0 ≤ θ ≤ π and azimuth 0 ≤ ϕ < π using spherical coordinates as shown in Figure 3.1 and

are denoted by Ψinc = [θinc, ϕinc]
T and Ψsca = [θsca, ϕsca]

T , respectively. We denote the

unit vectors of the incident angle and the scatter angle direction in Cartesian coordinates as

dinc and dsca, respectively. As shown in Figure 3.2, the point scatterer model possesses a

local coordinate origin in the 3D space. The position of each scatterer p is xp. τp is the time

delay between the signal illuminating scatterer p and the signal illuminating the scatterer at

the origin as shown in

τp =
− (⟨xp,dinc⟩+ ⟨xp,dsca⟩)

c
(3.1)

where c represents the speed of light and ⟨·, ·⟩ is the standard inner product in R3.

The RCS, namely the reflection frequency response, of the point scatterer model is

shown in Equation 3.1. It is important to note that Equation 3.1 accounts for the propagation

from the transmitter to the scatterer and the propagation from the scatterer scattering back

to the receiver.

G (f ;Ψinc,Ψsca) =
K∑
p=1

σpe
−i2πfτp =

K∑
p=1

σpe
i2πf(⟨xp,dinc)+⟨xp,dsca⟩)/c (3.2)

In Equation 3.2, K is the total number of scatterers, σp is the frequency-independent reflec-
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tion gain of the pth scatterer and f is the signal frequency. The σ of the isotropic scatterers

are identical across all aspect angles, while the σ of the anisotropic scatterers depend on

Ψinc and Ψsca. Constructing an isotropic point scatterer model means finding the positions

x and the angular independent reflection gains σ for all K scatterers, while constructing

an anisotropic point scatterer model means finding the positions x and the angular depen-

dent reflection gains σ (Ψinc,Ψsca) for all K scatterers, which best represent a given radar

target.

3.2 Defining the Channel Models

There are two channel models to choose from while simulating the EM propagation, namely

the path delay model and the scatterer separable model. The fundamental concepts of these

channel models are addressed below.

3.2.1 Path Delay Model

The path delay model views each end-to-end propagation path as a channel as shown in

Figure 3.3. The channel starts with a transmitter sending signals to a radar target. The

target then scatters the modulated signals to another target. The signals are repeatedly

scattered until a receiver receives the end signals. As shown in Equation 3.3, the bistatic

scattered frequency response is dependent to both the incident and scatter angles. The

channel model can include multiple objects.

G(f ;Ψinc,Ψsca) =
K∑
p=1

αp(Ψinc,Ψsca)e
−i2πf(−(⟨xp,dinc⟩+⟨xp,dsca ⟩)/c) (3.3)

3.2.2 Scatterer Separable Model

In the separable channel model, each transmitter, target, or receiver is represented as an

object that receives and/or transmits signals as shown in Figure 3.4. Each pair of two ob-

jects defines a channel. The received signals of an object come from all other objects in the
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Figure 3.3: Path Delay Model

Figure 3.4: Scatterer Separable Model

EM environment. The transmitted signals of an object include the signal generated from its

own source and the scattered signals. The modulation of the scattered signals is determined

by the point scatterer model of the illuminated object as described in Equation 3.4. It is

important to note that the reflection gains should be two separable functions of the incident

and scatter angles, respectively. This model is primarily used when the number of radar

targets is large or when accounting for signals that are scattered multiple times.

G(f ;Ψinc,Ψsca) =
K∑
p=1

αinc,p(Ψinc)αsca,p(Ψsca)e
−i2πf(−(⟨xp,dinc⟩+⟨xp,dsca ⟩)/c) (3.4)

By defining real numbered and frequency-independent reflection gains, the channel
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between the EM waves before and after the modulation can be implemented as a finite

impulse response (FIR) filter with K taps, where the tap locations are defined based on

the scatterer locations, and the tap coefficients are defined based on the reflection profiles

of the scatterers. In other words, when simulating the scenario of an object scattering

EM signals back to a radar, the signal received by the radar can be computed by passing

through the transmitted signal through the FIR filter. When K is reduced, the simulation of

the scattering effects can be performed efficiently in the hardware.

The complex numbered angular dependent frequency response, namely the RCS, de-

notes the magnitude and phase changes of the scattered far-field EM wave signal after the

EM wave interacts with the radar target. The RCS of a target can be either measured from

the real object [52] or generated approximately using an EM field simulation software such

as CST Studio Suite which uses physical optics-based methods [53][54]. Our objective is

to find a point scatterer model which has frequency-independent reflection gains, where the

point scatterer model best represents such RCS data.

3.3 Constructing the Scatterer Models

We proposed two modeling methods that are suitable for the path delay channel model:

• Shape Approximation

• Anisotropic Ellipsoid Scatterer Model

In addition, we proposed two modeling methods suitable for the scatterer separable channel

model:

• Isotropic Sphere Point Scatterer Model

• Spherical Harmonic based Anisotropic Point Scatterer Model
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3.3.1 Shape Approximation

A complex object can be represented using a number of simple shapes (plates, cylinders,

etc.), each with its own RCS, which can be computed analytically. Although the larger val-

ues of the RCS data of objects can be captured using this approach, the lower values cannot

be captured since the resonance effects are significantly dependent to the complex geo-

metric configuration. We therefore further propose constructing a more accurate scatterer

model using the RCS data of objects available from the EM solvers by solving a nonlinear

least square optimization problem.

3.3.2 Isotropic Sphere Point Scatterer Model and Anisotropic Ellipsoid Scatterer Model

In the isotropic sphere point scatterer model, each scatterer point is represented as a perfect

electric conductor (PEC) smooth sphere with radius r. The analytical RCS representation

of the scatterer is πr2 and the reflection gain is
√
πr2, which are constant at all aspect

angles. The scatterer separable model can be computationally efficient with the isotropic

scatterer model due to its separable property. We define the scatterer locations in the local

coordinate system and the radii of the spheres as control variables.

Besides spheres, other simple shapes such as plates and cylinders with anisotropic scat-

tering properties also have analytical RCS solutions. However, only the RCS of an ellipsoid

is frequency-independent, which is consistent with the channel models shown in Equa-

tion 3.3 and Equation 3.4. Therefore, we use the analytical RCS representation of a large

PEC ellipsoid shown in Equation 3.5, where a, b, and c represent the principal semi-axes of

the ellipsoid, as the basis function to determine the angular dependency of the RCS of each

scatterer [55]. Anisotropic scatterer models capture the reflection features better because

the ellipsoid model has high degrees of freedom as compared to the spherical model. We

define the scatterer locations, principal semi-axes, and rotation angles (defined as the offset

angles of θ and ϕ) of the ellipsoids as control variables.
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4πa2b2c2[(1+cosθinccosθsca)cos(ϕsca−ϕinc)+sinθincsinθsca]
2

[a2(sinθscacosϕsca+sinθinccosϕinc)2+b2(sinθscasinϕsca+sinθincsinϕinc)2+c2(cosθsca+cosθinc)2]2
(3.5)

The reflection frequency responses of both scatterer models can be computed as de-

scribed in Section 3.1, where αp is computed using Equation 3.6, and the model RCS,

σModel, is computed using Equation 3.7:

αp =
√
σp (3.6)

σModel = |G(f ;Ψinc,Ψsca)|2 (3.7)

where σp is the RCS of the pth sphere or ellipsoid. Ellipsoid scatterer models are limited

to the path delay channel model where its RCS fidelity is more accurate than the isotropic

point scatterer model.

Using the RCS data of the radar target, the problem is then posed as a least square

inverse problem with the loss function of a root mean square error (RMSE) between the

RCS data (from EM simulations) and the RCS of the point scatterer model as shown in

Equation 3.8:

Loss Function =

√
1

N

∑
[10log(σTrue)− 10log(σModel)]2 (3.8)

where σTrue and σModel represent the vectors consisting of the RCS data (from EM simula-

tions) and the RCS of the scatterer model, respectively, and N represents the length of the

vector. It is important to note that the vectors are the RCS values evaluated at all frequency

and aspect angle samples.

Since the RCS data at different aspect angles is significantly affected by the complex

geometric configuration, it is difficult to obtain a highly correlated result even if the number

of scatterer points is increased. We therefore divide the model into multiple regions, where
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each region covers a set of aspect angles. The RCS at each region is then represented by

a point scatterer model. We call this the “shadowing effect” since a radar target should be

represented using different point scatterer models at different aspect angles. For example,

if the incident and scatter angles are both on the front side of the radar target, the back

side of the target is shadowed, and only the front side geometry of the target contributes

to the reflection. Thus, a single optimization problem may be decomposed into multiple

problems, each with a smaller N .

Ellipsoid Model Simulation Results

We demonstrate the feasibility of the proposed approach using the monostatic RCS data of

a 60-meter-long aircraft made up of PEC. The incident and scatter angles are the same. The

aircraft geometry STL file is obtained from [56] and is shown in Figure 3.5. The RCS data is

generated from the EM simulator CST Studio Suite [53] [57] with horizontal polarization

at the 3 frequencies of 1GHz, 1.5GHz, and 2GHz. The angle sampling increment is 10

degrees for both θ and ϕ. We consider the shadowing effect by equally dividing the aspect

angles into 4 regions as shown in Figure 3.6 and discuss 6 cases:

(i) 16 isotropic point scatterer model without considering the shadowing effect.

(ii) 4 isotropic point scatterer model for each region.

(iii) 16 isotropic point scatterer model for each region.

(iv) 16 anisotropic point scatterer model without considering the shadowing effect.

(v) 4 anisotropic point scatterer model for each region.

(vi) 16 anisotropic point scatterer model for each region.

These case definitions are also shown in Table 3.1. We use the Sequential Quadratic

Programming solver in MATLAB [58]. The initial settings are shown in Table 3.2. The el-

lipsoid model of case (i) is shown in Figure 3.7. When using the anisotropic point scatterer
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Figure 3.5: Aircraft Geometry

Figure 3.6: Region division visualization
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model without considering the shadowing effect, as the number of ellipsoids increases, the

RMSE decreases steadily and the computation time steadily increases, as shown in Fig-

ure 3.8. Figure 3.9 presents comparison results of the RCS data from CST Studio Suite and

the modeled RCS in an image form. Figure 3.10 shows the 2D polar plot matching results

for the RCS data from CST Studio Suite and the modeled RCS at θ = 0◦ and ϕ = −90◦.

Table 3.3 shows the RMSE results of all cases.

Table 3.1: Case models definition

Case Number Scatterer Type Shadowing Effect Number of Points
i Isotropic Not considered 16
ii Isotropic 4 region, 4 point/region 16
iii Isotropic 4 region, 16 point/region 64
iv Anisotropic Not considered 16
v Anisotropic 4 region, 4 point/region 16
vi Anisotropic 4 region, 16 point/region 64

Table 3.2: Initial settings

Isotropic Model Anisotropic Model
Initial Positions [0, 0, 0] [0, 0, 0]

Initial Radii/ Semi-Axes 1m [1, 1, 1]m
Initial Rotations NA [0◦, 0◦]
Position Bounds [−10− 10] [−10− 10]

Radii Bounds [10−5 − 15]m [10−5 − 15]m
Rotations Bounds NA [−45◦ − 45◦]

The anisotropic scatterer model exhibits better fitting than the isotropic scatterer model

since cases (i), (iii), and (v) results in lower RMSE compared to cases (ii), (iv), and (vi),

respectively. For the same point number, though the shadowing effect results provide a

better correlation in the anisotropic case, it does not improve the results in the isotropic

case. This may be due to the lack of degrees of freedom used in the spherical isotropic

model. Anisotropic scatterer models are limited to the path delay channel model. The
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Figure 3.7: Ellip model of case (i)

Table 3.3: RMSE comparison between different models

Case Number RMSE
i 6.71
ii 6.78
iii 5.25
iv 5.97
v 5.43
vi 3.93

downside of the path delay model is that it is only applicable to a small number of radar

targets. Yet, its RCS fidelity is more accurate than that of the isotropic point scatterers.

To conclude the isotropic sphere and anisotropic ellipsoid scatterer modeling, we pre-

sented an innovative approach for representing objects using a 3D point anisotropic scat-

terer model for use in a radar HPC emulator. Anisotropic point scatterer models are more

accurate than that of the isotropic point scatterers. The scatterer model that best represents

the RCS data is obtained by solving a least square inverse problem. To improve the cor-

relation with EM solvers, we further break down the optimization problem by considering

the shadowing effect and using multiple models to represent a subset of the RCS data.

The results show that the anisotropic scatterer model can effectively represent the RCS

data of complex targets. More detailed information can be found in our conference paper

[59]. Another anisotropic point scatterer model based on spherical harmonic functions is

discussed in the next Chapter. The reflection gains of the model are defined to be both
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(a) Effects on RMSE

(b) Effects on computation time

Figure 3.8: The effects of increasing the ellipsoid scatterer number when not considering
the shadowing effect

frequency-independent and separable, thus is suitable for the separable channel models.

23



(a) True RCS from CST (b) Case i (c) Case ii (d) Case iii

(e) Case iv (f) Case v (g) Case vi

Figure 3.9: Images of the RCS data at frequencies 1GHz, 1.5GHz, and 2GHz from top to
bottom, respectively
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(a) Case i (b) Case ii (c) Case iii

(d) Case iv (e) Case v (f) Case vi

Figure 3.10: 2D polar plot of the RCS data at frequencies 1GHz, 1.5GHz, and 2GHz from
top to bottom, respectively
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CHAPTER 4

SPHERICAL HARMONIC BASED ANISOTROPIC POINT SCATTERER

MODEL

So far, we developed an anisotropic point scatterer model using the RCS of ellipsoids as

basis functions [59]. By varying the sizes and shapes of the ellipsoids, the RCS power of

an object is captured. In this section, we present another innovative approach for construct-

ing a spherical harmonic based anisotropic 3D point scatterer model from the precomputed

RCS data. This inverse problem is solved as an optimization problem. This model is

constructed off-line and can be used by the HPC EM emulator to simulate EM wave inter-

actions in real-time. This proposed model outperforms the isotropic sphere and anisotropic

ellipsoid scatterer models in three aspects:

1. Spherical harmonic functions are orthogonal, therefore the spherical function that

represents the RCS can be approximated better.

2. The spherical harmonic based bistatic RCS model is separable.

3. The proposed model captures the complex-numbered RCS data while the ellipsoid

model captures only the RCS power.

Recall that a non-separable channel model considers each path of a transmitter, target,

and receiver as a channel and makes use of the function σ (Ψinc,Ψsca) in the simulation.

The separable channel model, on the other hand, enables the HPC EM emulator to more

efficiently simulate the EM wave interactions between multiple radar targets by separat-

ing the reflection gain σ into two spherical functions of the incident and scatter angles,

respectively, as shown below:

σp (Ψinc,Ψsca) = σinc,p (Ψinc)σsca,p (Ψsca) (4.1)

26



In the separable channel model, each transmitter, target, or receiver is represented as an ob-

ject that receives and/or transmits signals. The received signals of an object come from all

other objects in the EM environment. The transmitted signals of an object include the signal

generated from its own source and the scattered signals. The modulation of the scattered

signals is determined by the point scatterer model of the illuminated object as described in

Equation 3.3. By defining real numbered and frequency independent reflection gains, the

channel between the EM waves before and after the modulation can be implemented as a

finite impulse response (FIR) filter with K taps, where the tap locations are defined based

on the scatterer locations, and the tap coefficients are defined based on the reflection pro-

files of the scatterers. In other words, when simulating the scenario of an object scattering

EM signals to a radar receiver, the signal received by the radar can be computed by passing

through the transmitted signal through the FIR filter. When K is reduced, the simulation of

the scattering effects can be performed efficiently in the hardware.

Since we use spherical harmonics as the basis for the spherical functions, the mathe-

matical foundation of spherical harmonics is presented.

4.1 Spherical Harmonic

Spherical harmonic functions are well studied in mathematics and physical sciences [60][61].

We propose to use spherical harmonic functions to construct the reflection gains σinc and

σsca of each scatterer. That is, we assume that σinc and σsca of each scatterer are lin-

ear combinations of a finite number of spherical harmonics. Consider the real numbered

vector space of square integrable functions f(θ, ϕ) defined on the unit sphere or 2-sphere

S2 ≜ {u ∈ R3 : |u| = 1}, where | · | denotes the Euclidian norm. This spherical vector

space is parameterized by the elevation 0 ≤ θ ≤ π and azimuth 0 ≤ ϕ < 2π, and is a

Hilbert space with a valid inner product
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⟨f1, f2⟩ =
∫ π

θ=0

∫ 2π

ϕ=0

f1(θ, ϕ)f2(θ, ϕ) sin θdϕdθ (4.2)

Real numbered spherical harmonic functions Y m
l (θ, ϕ) of all degrees l ≥ 0 and orders

−l ≤ m < l form a complete orthonormal sequence of the spherical vector space as shown

in Figure 4.1. The spherical harmonics are defined as

Ylm(θ, ϕ) =

 P̄lm(cos θ) cosmϕ if m ≥ 0

P̄l|m|(cos θ) sin |m|ϕ if m < 0
(4.3)

where the normalized associated Legendre functions P̄lm are given by

P̄lm(µ) =

√
(2− δm0) (2l + 1)

(l −m)!

(l +m)!
Plm(µ) (4.4)

and δij is the Kronecker delta function. The unnormalized associated Legendre functions

are derived from the standard Legendre polynomials using the relations

Plm(µ) =
(
1− µ2

)m/2 dm

dµm
Pl(µ) (4.5)

Pl(µ) =
1

2ll!

dl

dµl

(
µ2 − 1

)l (4.6)

Basically, any spherical function can be decomposed into a sum of the orthonormal ba-

sis f(θ, ϕ) =
∑∞

l=0

∑l
m=−l c

m
l Y

m
l (θ, ϕ) , where cml is the coefficient of the corresponding

Y m
l (θ, ϕ). By assuming that the spherical functions which represent the reflection gains,

namely σinc and σsca, of each scatterer are linear combinations of a finite number of spher-

ical harmonics, the problem becomes finding the spherical harmonic coefficients.

The complex numbered angular dependent frequency response, namely the RCS, de-

notes the magnitude and phase changes of the scattered far-field EM wave signal after the

EM wave interacts with the radar target. The RCS of a target can be either measured from
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Figure 4.1: Spherical harmonic functions (figure from Wikipedia)

the real object [52] or generated approximately using an EM field simulation software such

as CST Studio Suite which uses physical optics-based methods [54] [57]. Our objective is

to find a point scatterer model which has separable and frequency-independent reflection

gains, where the point scatterer model best represents such RCS data. Next, we illustrate

methods to find the model by solving the position and the spherical harmonic coefficients

of each scatterer.

4.2 Constructing the Scatterer Model for Monostatic RCS Data

In this section, we use the monostatic RCS data, to solve the positions and spherical har-

monic coefficients of the scatterers. Since in the monostatic RCS data, the incident an-

gle and the scatter angles are the same, we define Ψ = Ψinc = Ψsca and σ(Ψ) =

σinc (Ψinc)σsca (Ψsca) for each scatterer. The problem is formulated as a linear least

squares problem which has a constraint. We solve this problem with a modified orthog-

onal matching pursuit (OMP) algorithm.

4.2.1 Least Squares Linear Problem

Two assumptions are made:
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1. The angular dependent reflection gain σ(Ψ) of each anisotropic scatterer is a linear

combination of Y m
l (θ, ϕ) with degree L. The number of spherical harmonics is H =

(L+ 1)2.

2. A finite number, K̄, of possible scatterer positions are known. For example, we

assume that all scatterers are located in a 10m×10m×10m grid in the local coordi-

nate system. That is, we assume the components of x of each scatterer are integers

between 0 and 10.

With these assumptions, solving the scatterer positions and the spherical harmonic co-

efficients becomes a linear least squares problem with a sparsity constraint. The problem

is defined in Equation 4.7∼Equation 4.11.

S̄α = r (4.7)

 SRe

SIm

α =

 rRe

rIm

 (4.8)

S =


e−i2πf1τ(x1,Ψ1)Y1 (Ψ1) . . . e−i2πf1τ(x1,Ψ1)YH (Ψ1) e−i2πf1τ(x2,Ψ1)Y1 (Ψ1) . . . e−i2πf1τ(xK̄ ,Ψ1)YH (Ψ1)

... . . . ...
... . . . ...

e−i2πfmτ(x1,Ψm)Y1 (Ψm) . . . e−i2πfmτ(x1,Ψm)YH (Ψm) e−i2πfmτ(x2,Ψm)Y1 (Ψm) . . . e−i2πfmτ(xK̄ ,Ψm)YH (Ψm)
... . . . ...

... . . . ...
e−i2πfF τ(x1,ΨM )Y1 (ΨM) . . . e−i2πfF τ(x1,ΨM )YH (ΨM) e−i2πfF τ(x2,ΨM )Y1 (ΨM) . . . e−i2πfF τ(xK̄ ,ΨM )YH (ΨM)

 (4.9)

α =

[
a1 a2 . . . aK̄

]T
(4.10)

ap =

[
a1p a2p . . . aHp

]T
(4.11)

where SRe and SIm represent the real and the imaginary parts of S, respectively. rRe and

rIm represent the real and imaginary parts of the monostatic RCS data vector, respectively.
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ahp represents the spherical harmonic coefficients of the hth spherical harmonic function of

the pth scatterer. The sizes of the matrices and vectors are SRe, SIm ∈ RFM×HK̄ ,α ∈ RHK̄ ,

and rRe, rIm ∈ RFM , where F and M is the number of signal frequency samples and that

of aspect angle samples, respectively.

If the optimal positions are known, meaning K = K̄, solving the least squares problem

with pseudo inverse gives us the spherical harmonic coefficients for all scatterers. With

these coefficients, the reflection gains σ(Ψ) of all scatterers can be formed and the modeled

RCS of the target can be computed from the point scatterer model. Yet, K̄ is often greater

than K. Therefore, solving the positions of the scatterers is also required. This can be

formulated as a sparsity constraint.

4.2.2 Sparsity Constraint

In addition to solving the linear least squares problem, a group sparsity constraint is used to

limit the number of scatterers by choosing K optimal scatterer positions among the finite

possible scatterer positions. We define all H coefficients of one scatterer as a “group”.

Our goal is to solve α with K groups consisting of nonzero coefficients while K̄ − K

groups consisting of zero coefficients. We propose a modified Orthogonal Matching Pursuit

(OMP) method to solve this problem.

OMP is a sparse approximation algorithm that solves a system of linear equations with

the specified number of nonzero entries in the variable vector [62]. The basic algorithm

iteratively and greedily finds the entry in the vector variable which corresponds to the col-

umn in the system matrix that is the most correlated with the residual. Instead of finding

the column in the system matrix that is the most correlated with the residual, the proposed

algorithm finds which vector space of group columns is the most correlated with the resid-

ual.

As shown in Algorithm 1, we first initialize the algorithm by setting the residual e as

the monostatic RCS data r. Let S̄j be the jth group of columns in S̄. With singular value
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decomposition (SVD), the orthonormal basis of S̄j can be computed and defined as S̄orth, j .

We can then use the standard inner product of S̄orth, j and the residual as the correlation

measurement. That is, we find the vector space:

λ = argmax
S̄j

∥êj∥2 = argmax
S̄j

∥∥〈S̄orth ,j, e
〉∥∥

2
(4.12)

where êj is the residual projected on the vector space of S̄j . We then define the group of

columns as λ and collect them into the set Λ. The columns in Λ are used to solve for the

corresponding entries in α. Then we update the residual and repeat by finding the next

vector space that is the most correlated with the residual.

With α solved, the reflection gains σ(Ψ) of K scatterers can be formed. The modeled

monostatic RCS of the target can be computed from the point scatterer model as well. This

approach provides a point scatterer model that represents the monostatic RCS data.

Algorithm 1: Modified OMP
Result: αn

Initialization: e1 = r,Λ0 = ∅;
Compute S̄orth ,j for all j with SVD;
for n = 1 → K do
λn = argmaxS̄j

∥∥〈S̄orth,j, en
〉∥∥

2
Λn = Λn−1 ∪ {λn}
αn (i ∈ Λn) = argminα ∥SΛnα− r∥2 ,αn (i /∈ Λn) = 0
en+1 = r − S̄Λnαn

end

4.3 Constructing the Scatterer Model for Bistatic RCS Data

In this section, we further construct the point scatterer model that can represent the full

bistatic RCS data. We assume that the scatterer positions are the same as the positions

solved from the monostatic RCS data. This leaves us with the problem of solving the

separable spherical functions of the incident and scatter angles for each scatterer, namely

σinc (Ψinc) and σsca (Ψsca). By assuming that these functions are linear combinations of
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spherical harmonics, the problem becomes solving 2HK spherical harmonic coefficients.

This can be formulated as a bilinear least squares problem.

4.3.1 Least Squares Bilinear Problem

The problem of solving the spherical harmonic coefficients can be formulated as a bilin-

ear problem as shown in Equation 4.13, which proceeds to the least squares optimization

problem with the cost, J(α,β), as shown in Equation 4.14.

αT Q̄mβ = rm (4.13)

min
α,β

J(α,β) = min
α,β

1

2FM

2FM∑
m=1

(
rm −αT Q̄mβ

)2
(4.14)

where α is the vector consisting of HK coefficients which form σinc (Ψinc), and β is the

vector consisting of HK coefficients which form σsca (Ψsca). r is a vector of the RCS

data at the sampled frequency and aspect angle, where its real and imaginary parts are

stacked vertically. Q̄ is the real and imaginary parts of the 3D matrix Q stacked in the

third dimension. Q̄m is the mth 2D slice of the first two dimension of Q̄. Each Q̄m is a

block diagonal matrix with block size H × H . Again, F and M are the number of signal

frequency samples and that of aspect angle samples, respectively. The sizes of the matrices

and vectors are α ∈ RHK , β ∈ RHK , Q̄ ∈ RHK×HK×2FM , and r ∈ R2FM as shown in

Figure 4.2. To better explain the matrices and vectors above, we give an example of α,β,

and Qm when H = 2 and K = 2:

α =

[
a11 a21 a12 a22

]T
(4.15)

β =

[
b11 b21 b12 b22

]T
(4.16)
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Qm = Q (fm,Ψinc,m,Ψsca,m) =



q11 q12 0 0

q21 q22 0 0

0 0 q33 q34

0 0 q43 q44


(4.17)

q11 = e−i2πfmτ(x1,Ψinc,m,Ψsca,m)Y1 (Ψinc,m)Y1 (Ψsca,m) (4.18)

q21 = e−i2πfmτ(x1,Ψinc,m,Ψsca,m)Y2 (Ψinc,m)Y1 (Ψsca,m) (4.19)

q12 = e−i2πfmτ(x1,Ψinc,m,Ψsca,m)Y1 (Ψinc,m)Y2 (Ψsca,m) (4.20)

q22 = e−i2πfmτ(x1,Ψinc,m,Ψsca,m)Y2 (Ψinc,m)Y2 (Ψsca,m) (4.21)

q33 = e−i2πfmτ(x2,Ψinc,m,Ψsca,m)Y1 (Ψinc,m)Y1 (Ψsca,m) (4.22)

q43 = e−i2πfmτ(x2,Ψinc,m,Ψsca,m)Y2 (Ψinc,m)Y1 (Ψsca,m) (4.23)
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q34 = e−i2πfmτ(x2,Ψinc,m,Ψsca,m)Y1 (Ψinc,m)Y2 (Ψsca,m) (4.24)

q44 = e−i2πfmτ(x2,Ψinc,m,Ψsca,m)Y2 (Ψinc,m)Y2 (Ψsca,m) (4.25)

Figure 4.2: Vectors and matrices dimension illustration

4.3.2 Normalized Iterative Algorithm

There are several methods for solving the bilinear least squares problem Equation 4.14

[63]. One commonly used approach is the normalized iterative algorithm. The costs in

Equation 4.14 with variables [α,β] and [zα, 1
z
β] are equal for constant scalar z. We can

restrict the variable vectors by assuming ∥α∥ = 1 and the first non-zero entry of α is

positive. The normalized iterative algorithm solvesα and β in a back-and-forward manner.

When either α or β is fixed, solving another becomes a linear inversion problem and can

be easily solved with the pseudo inverse. This algorithm is shown as Algorithm 2.

With solved α and β, the reflection gains σinc (Ψinc) and σsca (Ψsca) of all scatterers

can be formed. The modeled bistatic RCS of the target can be computed from the point
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scatterer model as well.

Algorithm 2: Normalized Iterative Algorithm
Result: αn,βn

Initialization:α0 = 1/
√
HK

for n = 1 → MaxIteration do
βn = argminβ∈RHK J (αn−1,β)

αn = argminα∈RHK J
(
α,βn

)
Let ξn = ±1 be the sign of the first non-zero entry of αn

αn = ξnαn/ ∥αn∥
βn = ξnβn∥αn |

end

4.4 Monostatic and Bistatic Point Scatterer Model Simulation Results

Same as in the previous simulation results section, we demonstrate the feasibility of the

proposed approach using the RCS data of a 60-meter-long aircraft made up of PEC. The

aircraft geometry STL file is obtained from [56] and is shown in Figure 4.3. The RCS data

is generated from the EM simulator, CST Studio Suite, with horizontal polarization.

Figure 4.3: Aircraft Geometry

We sample one frequency at 1GHz i.e. F = 1. The angle sampling increment is 20

degrees for θinc, ϕinc, θsca, and ϕsca which means M = 9× 18× 9× 18 = 26244. Our goal

is to find 16 scatterers (i.e. K = 16) where all scatterers are located in a 10m×10m×10m
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grid in the local coordinate (i.e. K̄ = 1000). Since we use spherical harmonics of degree

12, H = (1 + 12)2 = 169.

Using the computation mentioned earlier, the monostatic point scatterer model is con-

structed and shown in Figure 4.4. Each scatterer has a position coordinate and an angular-

dependent spherical harmonic based reflection gain. The brightness indicates the value of

the real numbered reflection gain at the corresponding aspect angle. The comparison of the

dB scaled RCS power between the true data from CST, the spherical harmonic model, and

the ellipsoid model [59] is provided in Figure 4.5.

Figure 4.4: Reflection gains σ(Ψ) and positions of the monostatic point scatterer model

We take the scatterer positions and proceed to the bistatic point scatterer model com-

putation. Note that matrix Q̄ ∈ R2704×2704×52488 is extremely large and hard to compute.

We leverage its low-rank property to resolve this issue. Figure 4.6 shows the constructed

bistatic point scatterer model. Each scatterer has a position coordinate and two angular-

dependent spherical harmonic based functions. The reflection gain is determined by the

multiplication of two functions evaluated at the incident and scatter angle, respectively, as

mentioned in Equation 4.1.
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Figure 4.5: Comparison of the dB scaled RCS power between the true data from CST, the
spherical harmonic model, and the ellipsoid model

Figure 4.7 shows the simulated bistatic RCS data from CST and the modeled bistatic

RCS of the point scatterer model at θinc = 80o and ϕinc = 260o. Figure 4.8 shows that

at θinc = 100o and ϕinc = 280o. As shown in Figure 4.7 and Figure 4.8, the real and

imaginary parts of the bistatic RCS data are effectively represented by the point scatterer

model, especially at the highly reflected areas. Particularly, in Figure 4.8, the simulated

RCS and the modeled RCS at ϕsca = 270o show the same pattern of dark and light distribu-

tion. Figure 4.9 shows the minimized error defined in Equation 4.14 between the modeled

RCS and the simulated RCS from CST using different spherical harmonic degrees (L) and

numbers of scatterers. As the number of spherical harmonics increases, the minimized cost

decreases. This figure also includes the minimized cost of the same simulation but with 24

scatterers (i.e. K = 24). The minimized costs are lower when more scatterers are used.

The root mean square errors (RMSE) can be obtained by taking the square root of the costs.

The lowest RMSE computed with 16 and 24 scatterers are 11.7 and 10.9, respectively. This

shows that the RMSE is reduced by 7% by increasing K from 16 to 24. The MATLAB

code of this example is publicly available at https://github.com/howeri/SH BiAnisoPSM.
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(a) σinc(Ψinc)

(b) σsca(Ψsca)

Figure 4.6: Reflection gains and positions of the bistatic point scatterer model
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To conclude the spherical harmonic based anisotropic point scatterer modeling, the

proposed spherical harmonic based anisotropic point scatterer model describes the bistatic

RCS data of a radar target with a finite number of scatterer positions and spherical harmonic

coefficients. With this model, the RCS can be reconstructed at a given aspect angle in less

than 1 millisecond while it takes 5 seconds to compute the RCS using CST. Thus, HPC EM

emulators can efficiently simulate the real-time EM wave interactions between multiple

radar targets. The more RCS data used in the optimization, the higher fidelity of the model

is. There exists a limitation to the number of data. That is, as FM increases to a certain

level, the storage size of Q̄ will become too large and limit the computations in Algorithm

2. More detailed information can be found in our journal paper [64].
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(a) Simulated bistatic RCS from CST

(b) Modeled bistatic RCS of the point scatterer model

Figure 4.7: RCS at θinc = 80o and ϕinc = 260o
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(a) Simulated bistatic RCS from CST

(b) Modeled bistatic RCS of the point scatterer model

Figure 4.8: RCS at θinc = 100o and ϕinc = 280o
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Figure 4.9: Error between the modeled RCS and the simulated RCS from CST using dif-
ferent spherical harmonic degrees (L) and numbers of scatterers
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4.5 Efficient Spherical Harmonic based Anisotropic Point Scatterer Model

The assumption of knowing a finite number of possible scatterer positions restricts the so-

lutions of the scatterer positions from the continuous space. By assuming that all scatterers

are located in a 10m×10m×10m grid in the local coordinate system, we can only compute

the scatterer positions as integer components between 0 and 10.

In this section, we illustrate an efficient method that finds the monostatic point scat-

terer model of continuous scatterer positions. The algorithm constructing this model with

large-scale RCS data is discussed. The scatterer position and the reflection profile of each

scatterer are solved using particle swarm optimization (PSO) and least squares methods. In

addition, the function evaluations in PSO are accelerated by taking advantage of the matrix

structure, making the algorithm 22 times faster compared to the naive approach. The re-

sults show that the point scatterer model can effectively represent the RCS data of a radar

target. Same as mentioned in the previous section, the position obtained with this algorithm

can be used to further compute the spherical harmonic based bistatic point scatterer model

using the full bistatic RCS data. By defining real numbered and frequency-independent

reflection gains, the channel between the EM waves before and after the modulation can be

implemented as a finite impulse response (FIR) filter.

4.5.1 Greedy Scatterer Position Search

We propose to greedily search for one optimal scatterer position at a time.

Define

r =

 rRe

rIm

 (4.26)
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S̄(p) =

 SRe(p)

SIm(p)

 (4.27)

S(p) =



w1(p)

w2(p)

...

wN(p)


⊗



H

H

...

H


(4.28)

wn =



ei2πfn(2⟨p,d1⟩/c)

ei2πfn(2⟨p,d2⟩/c)

...

ei2πfn(2⟨p,dM ⟩/c)


(4.29)

H =

[
h1 h2 · · · hL

]
(4.30)

, where rRe ∈ RMN and rIm ∈ RMN represents the real and imaginary part of the monos-

tatic RCS data vector, respectively. N and M are the number of the signal frequency sam-

ples and that of the aspect angle samples, respectively. SRe ∈ RMN×L and SIm ∈ RMN×L

represents the real and the imaginary part of S, respectively. p represents the scatterer

position. The operator ⊗ represents element-wise multiplication. hl ∈ RM represents the

lth spherical harmonic function at all M aspect angels shaped vertically. The size of H is

RM×L.

As shown in the Algorithm 3, we first initialize the algorithm by setting the resid-

ual e as r, which is the real part and the imaginary parts of the monostatic RCS data

stacked vertically. S̄all = [ ] is initialized as an empty array. The optimization problem

minαk

∥∥S̄(p)αk − e
∥∥
2

solves the spherical harmonic coefficients given a scatterer posi-

tion. The argminp operator solves the scatterer position, p∗k, such that S̄(p)αk is as close
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Algorithm 3: Greedy Scatterer Position Search
Result: p∗1:K ,α∗

Initialization: e = r, S̄all = [ ];
for k = 1 → K do
p∗k = argminpminαk

∥∥S̄(p)αk − e
∥∥
2

S̄all =
[
S̄all S̄(p

∗
k)
]

α∗ = argminα
∥∥S̄allα− r

∥∥
2

e = r − S̄allα
∗

end

to the residual as possible. The matrix S̄(p∗k) is then stacked horizontally with S̄all so

that the information of the solved scatterer positions is stored. Next, S̄all is used to com-

pute the spherical harmonic coefficients of all 1 to k scatterers obtained so far. That is,

α∗ = [c1,1, c2,1, ..., cL,k] The residual e is updated to indicate the difference between the

modeled RCS and the RCS data. The cost function for Algorithm 3 is the norm of this

residual, that is,
∥∥r − S̄allα

∗
∥∥. The above-mentioned steps are iterated K times where

each time one of the scatterer positions is solved. Since the proposed algorithm contains

a greedy search, a residual stopping criterion can be defined in advance. Once the search

stops, the output of the algorithm indicates the least number of scatterers needed for the

point scatterer model to best represent the RCS data.

4.5.2 Particle Swarm Position Search

In every iteration of the Greedy Scatterer Position Search (Algorithm 3), there are two

optimization problems to be solved:

1. p∗ = argminpminαn

∥∥S̄(p)αn − e
∥∥
2

2. α∗ = argminα
∥∥S̄allα− e

∥∥
2

The second problem can be solved efficiently using the least squares method, QR factor-

ization, due to its linearity. Yet, the first problem of solving the scatterer position is highly

nonlinear. Note that the dimension of the control variable in this problem is three, i.e. the x,

y, and z coordinates of the scatterer position. We propose to use PSO to solve this problem.
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PSO is a bio-inspired iterative heuristic algorithm used to globally optimize a cost func-

tion. The algorithm is not dependent on the gradient nor other differential forms of the cost

function and is suitable for solving continuous nonlinear functions. The application of the

PSO algorithm is shown in Figure 4.10. The algorithm hyperparameters, c1, c2, c3, and

the number of particles, are initialized. The position and the velocity of the jth particle

are denoted pj and vj . The positions and the velocities of all particles are also initialized.

The cost function minαn

∥∥S̄(pj)αn − e
∥∥
2

is then evaluated at all particle positions. The

position of each particle’s best record, denoted p̃local,j , is updated. The position of the best

record among all particles, denoted p̃global, is updated as well in order to keep track of the

potential optimal positions. pj and vj are updated with:

pj (t+ 1) = pj (t) + vj (t) (4.31)

vj(t+ 1) = c1vj(t) + c2
(
p̃local,j − pj(t)

)
+ c3

(
p̃global − pj(t)

)
(4.32)

The iteration ends when all particle positions converge or a stopping condition is satisfied.

4.5.3 Efficient Function Evaluation

When evaluating a scatterer position, p is fixed, and therefore QR factorization can be

applied to evaluate the cost function minαn

∥∥S̄αn − e
∥∥
2
. Yet, it causes a long computation

time due to the large dimension of S̄. The accumulated computation time of the PSO

becomes unacceptable since PSO is an iterative algorithm and the cost function is evaluated

numerous times at different scatterer positions. We propose an efficient function evaluation

method taking advantage of the matrix structure and reducing the computation time of the

PSO algorithm.

Instead of applying QR factorization, the problem minαn

∥∥S̄αn − e
∥∥
2

can be solved

with pseudoinverse. At first glance, it may seem that the computation time is longer com-
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Figure 4.10: Particle swarm optimization application
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pared to that when applying QR decomposition since pseudoinverse involves matrix inver-

sion. Yet, by taking advantage of the matrix structure of Equation 4.28, the pseudoinverse

method can be simplified and solves the problem in a more efficient way.
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Define

W n = diag (Re (wn)) (4.33)

WN+n = diag(Im(wn)) (4.34)

The simplification is shown below:

α∗
n =

(
S̄

T
S̄
)−1

S̄
T
e

=


[
HTW 1 . . . HTW 2N

]
W 1H

...

W 2NH




−1

S̄
T
e

=

(
2N∑
n=1

HTW 2
nH

)−1

S̄
T
e

=

(
HT

(
2N∑
n=1

W 2
n

)
H

)−1

S̄
T
e

=
(
HT (NI)H

)−1
S̄

T
e

= N
(
HTH

)−1
S̄

T
e

= N
(
HTH

)−1
[
HTW 1 . . . HTW 2N

]
e

= N
(
HTH

)−1
HT

2N∑
n=1

wn ⊗ en

(4.35)

Note that in the fifth line of Equation 4.35,
∑2N

n=1W
2
n is simplified as NI since each diag-
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onal entry of the resulting matrix is the summation of the squares of N real and imaginary

pairs derived from the exponential terms with the magnitude of one as shown in Equa-

tion 4.29. The dimension of the matrix that requires inversion is RL×L. This inversion only

needs to be computed once for the evaluation at any scatterer position since it is indepen-

dent of the scatterer position. After solving α∗
n, the evaluation cost of the scatterer location

is computed with
∥∥S̄αn∗ − e

∥∥
2
. The computation time of the PSO algorithm is reduced

significantly since

1. No extra matrix inversion is required.

2. The high dimensional multiplication, S̄T
S̄, is exempted.

Originally, at each function evaluation, the complexity of the floating point operations

(flops) is around O(L2MN). Using the proposed efficient function evaluation, the com-

plexity of flops is reduced to O(L2M).

4.5.4 Efficient Monostatic Point Scatterer Model Simulation Result

The feasibility of the proposed approach is demonstrated using the monostatic RCS data of

a 14-meter-long aircraft made up of PEC. The aircraft geometry STL file is obtained from

[65] and is shown in Figure 4.11. The complex numbered RCS data is generated by the

EM simulator, CST Studio Suite, with horizontal polarization. The frequency samples are

between 100MHz and 150MHz with 1MHz increment, i.e. N = 51. The angle samples for

[θ, ϕ] range from 30o to 150o and 210o to 330o, respectively, and the increment is 1 degree.

That is, M = 121× 121 = 14641. This range is chosen to indicate the RCS of the bottom

of the aircraft. The total number of the complex numbered RCS data is N ×M = 746691.

The RCS data image at 100MHz is shown in Figure 4.12.

In this experiment, 16 scatterers (i.e. K = 16) are solved in the local coordinate where

each scatterer position ranges from −10 to 10 in the x, y, and z coordinates. The reflection

gain of each scatterer is constructed with spherical harmonic functions of degree 11, which
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Figure 4.11: Aircraft geometry

means that L = (1 + 11)2 = 144. Figure 4.13 represents the residual between the RCS

from CST and the modeled RCS using one scatterer when moving the scatterer position

in the x, y, and z coordinates, respectively. The figure shows the nonlinearity of the cost

function. When applying the Greedy Scatterer Position Search Algorithm, the computa-

tion time of each function evaluation minαn

∥∥S̄αn − e
∥∥
2

is 14.17 seconds using the QR

decomposition because of the extremely large size of the matrix S̄ ∈ R1493382×144. The

accumulated computation time becomes unacceptable since the cost function is evaluated

numerous times (around 36000 times in this example). Using the proposed simplified pseu-

doinverse, the computation time is reduced to 0.62 second, which is 22 times faster than

that of the QR decomposition.

The constructed monostatic point scatterer model is shown in Figure 4.14. Each scat-

terer has a position coordinate and an angular-dependent spherical harmonic based reflec-

tion gain. The brightness indicates the value of the real numbered reflection gain at the

corresponding aspect angle. Figure 4.15 shows the modeled RCS image at 100MHz. By

comparing Figure 4.12 and Figure 4.15, we observe that the real and imaginary parts of the

RCS data across aspect angles are effectively represented by the point scatterer model. The

error distribution between the RCS from CST and the modeled RCS at 100MHz is shown
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Figure 4.12: RCS data image from CST at 100MHz.

in Figure 4.16, where the error is centered around the highly reflected region. Figure 4.17

shows the comparison between the RCS from CST and the modeled RCS at 100MHz and

ϕ = 270 when varying θ. Figure 4.18 shows the comparison at [θ = 30, ϕ = 210] and

[θ = 90, ϕ = 270] when varying the frequency. The RCS data across frequencies is ob-

served to be effectively represented by the point scatterer model as well. The ellipsoid

model [59] is compared with the proposed spherical harmonic based point scatterer model

as shown in Figure 4.19. The structural similarity index is used to quantify the accuracy

of the models [66]. The similarity of the RCS power in the dB scale between the CST

data and the ellipsoid model converges to 0.11 in 30 minutes. The similarity between the

CST data and the proposed spherical harmonic based point scatterer model continuously

increases to 0.38 in 6 hours. The spherical harmonic based model is thus 27% more accu-

rate than the ellipsoid model. The MATLAB code of this example is publicly available at

https://github.com/howeri/SH MonoAnisoPSM PSO.
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Figure 4.13: Residual while moving the first scatterer position in the x, y, and z coordinate.

Figure 4.14: Monostatic point scatterer model.
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Figure 4.15: Modeled RCS data image at 100MHz.

Figure 4.16: Error between the RCS from CST and the modeled RCS at 100MHz.
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Figure 4.17: Comparison between the RCS from CST and the modeled RCS when varying
θ.

Figure 4.18: Comparison between the RCS from CST and the modeled RCS when varying
the frequency.
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Figure 4.19: RCS comparison between the ellipsoid model and the proposed spherical
harmonic based point scatterer model.

The proposed anisotropic point scatterer model describes the monostatic RCS data of a

radar target with a finite number of scatterer positions and spherical harmonic coefficients.

The point scatterer model is constructed off-line and can be used by the HPC EM emulator

to simulate EM wave interactions between multiple radar targets in real-time. To increase

the model fidelity of the point scatterer model, one can

(i) Use more RCS data in the model generation process.

(ii) Increase the number of spherical harmonic basis functions so that the reflection pro-

file of each scatterer becomes more complex.

(iii) Increase the number of scatterers.

Approach (i) and (ii) increase the computation time of the point scatterer model generation

procedure since the algorithm involves more matrix computations. Approach (iii) not only

increases the computation time of the model generation procedure, but also slows down the

HPC EM emulator since the FIR filter will include more taps. Therefore, it is important to

use as less scatterers as possible. Figure 4.20 shows the residual and the computation time

of the point scatterer model as the number of scatterers increases.

To summarize this section, the spherical harmonic based monostatic anisotropic point

scatterer model is proposed specifically for HPC EM interaction simulations where the scat-
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Figure 4.20: Residual and computation time

tering response can be computed with an FIR filter. An efficient algorithm for constructing

this model with large-scale RCS data is discussed. The scatterer position and the reflection

profile of each scatterer are solved using PSO and least squares methods. In addition, the

function evaluations in PSO are accelerated by taking advantage of the matrix structure,

making the algorithm 22 times faster compared to the naive approach, making the iterative

method feasible. The results show that the point scatterer model can effectively represent

the RCS data of a radar target. Same as mentioned in the previous section, the position

obtained with this algorithm can be used to further compute the spherical harmonic based

bistatic point scatterer model using the full bistatic RCS data.

In this Chapter, HPC-based EM emulators are discussed to simulate real-time complex

EM wave interactions between multiple radar targets, transmitters, and receivers. RCS

of the radar targets is required to be stored as a table. The needed storage size increases

dramatically with the angle and frequency sampling density. We present innovative ap-

proaches of constructing concise point scatterer models that the emulators can use as part

of the computations. These point scatterer models are constructed directly from the pre-

computed RCS data. The isotropic sphere and anisotropic ellipsoid scatterer models are
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obtained by solving least square inverse problems. To improve the correlation with EM

solvers, we further break down the optimization problem by considering the shadowing

effect and use multiple models to represent a subset of the RCS data. Next, spherical har-

monic based anisotropic point scatterer models are presented. We use only the monostatic

RCS data and compute the spherical harmonic based monostatic point scatterer model by

solving a linear least squares problem which has a group sparsity constraint. Then, we

further compute the spherical harmonic based bistatic point scatterer model using the full

bistatic RCS data. This problem is formulated as a bilinear least squares problem and

solved using the normalized iterative algorithm, which linearly solves two parameters in

a back-and-forth manner. The results show that the point scatterer model can effectively

represent the bistatic RCS data of a radar target. Lastly, we lift the restriction of having

to know a finite number of possible scatterer positions, which restricts the solutions of the

scatterer positions from the continuous space. This is achieved by the proposed efficient

monostatic point scatterer modeling technique, which takes advantage of the matrix struc-

ture, making the algorithm 22 times faster compared to the naive approach.
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CHAPTER 5

HIGH DIMENSIONAL BAYESIAN OPTIMIZATION FOR MICROWAVE

DESIGN

Another arising application of EM analysis is microwave design optimization problems.

The mathematical optimization problems can be written as:

min/max
x

f(x) subject to x ∈ X (5.1)

where x is the vector of input parameters, f(x) is the objective function, and X is the feasi-

ble range of input parameters, also called the design space. Linear and convex optimization

problems (LP and CP) can be solved efficiently using iterative methods or linear algebraic

techniques due to the properties of simple function surfaces. However, in microwave de-

sign scenarios, the nonconvex function surfaces often consist of many local optima and

make the optimization problems more challenging. In addition, the black-boxed nature of

the problem (Figure 5.1) indicates the lack of gradient information. Gradient-free global

optimization algorithms, such as genetic algorithm (GA) and particle swarm optimization

algorithm (PSO) have been proposed to solve optimization problems using heuristic meth-

ods. Yet, due to the complex EM structures in microwave designs, the function evaluation

f(x) often requires lengthy EM simulations. The accumulated computation time hinders

the feasibility of GA and PSO due to the large number of iterations that these algorithms

require. Bayesian Optimization (BO) is a machine learning based method that enables fast

convergence towards a global optimum and is well-known for reducing the computation

time by efficient sampling. This is achieved by fitting a probabilistic surrogate model with

existing data and optimizing the acquisition function to decide the next sampling point

in a heuristic manner. This method has been applied to multi-physic microwave design
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Figure 5.1: Black-boxed function

applications with experimental validation as shown in [67][68].

The general problem with BO is the low dimensionality of the problem that needs to

be addressed which is contrary to microwave design. We propose an innovative method

that prioritizes a subset of the design parameters for Gaussian process (GP) regression

and acquisition function optimization in each iteration, where the subset selections are

based on the estimated sensitivity of each parameter to the objective function. To illustrate

the advantage obtained using BO with parameter prioritization, we apply this modified

BO to two emerging system designs, namely the beamforming antenna in package design

for wireless communication and the wireless power transfer (WPT) for Internet of Things

(IoT), where the dimensionality of the problems to be addressed needs to be quite large.

The results based on the modified BO described in this paper show that the optimization is

possible with a smaller number of function evaluations.

The mathematical background of BO is introduced. Next, we propose the methodology

that further improves the performance and include the algorithm pseudo code. Simulation

results of the antenna and WPT designs are presented and the results between multiple

algorithms are compared.
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5.1 Bayesian optimization

The majority of microwave design problems require CPU-intensive and time-consuming

simulations of multiphysic structures. BO is a well-known method for optimizing expen-

sive black-boxed functions where a closed-form expression is unavailable. BO is an active

learning algorithm including two steps in each iteration:

1. Learning a GP surrogate model that represents the data, where the posterior distribu-

tion of the function is obtained from the prior knowledge of the previously sampled

points.

2. Using the GP model along with an acquisition function u(x) to choose the next

sampling point xt+1 for evaluation.

5.1.1 Gaussian Process Regression

GP is an extension of standard multivariate Gaussian distribution to the function space,

where a finite number of samples form a joint Gaussian distribution. The prior of a GP

model is defined with two quantities, namely a mean µ and a covariance matrix K, given

by:

y = f(x) ∼ N (µ(x), K) (5.2)

where N represents a GP, x ∈ RD represents the input of the function, and y represents the

function evaluation. For general nonlinear regression, a constant mean function µ(x) = m

is used [69]. The covariance matrix K(X) describes the relation between a number of

pointsX in the function and is written as:

KX =


k (x1,x1) . . . k (x1,xt)

... . . . ...

k (xt,x1) . . . k (xt,xt)

 (5.3)
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Appropriate kernel functions can be applied to capture different patterns in the dataset. For

example, the Matern 5/2 kernel is commonly used [69][70]:

k (xi,xj) = σ2
f

(
1 +

√
5r +

5

3
r2
)
e−

√
5r (5.4)

r =

(
D∑

d=1

(xi,d − xj,d)
2

σ2
d

) 1
2

(5.5)

where σf is the output scale and σd is the length scale of the dth dimension. [σf , σ1, ..., σD]
T

is defined as θ and represents the hyperparameters of KX . These hyperparameters are

updated during the training process by minimizing the negative log marginal likelihood of

the GP using the dataset D = {X,Y }:

θ∗ = argmin
θ

− log p(Y |X,θ) (5.6)

After training, the GP model can then predict the unknown function evaluation ỹ of a new

input data x̃ ∈ RD using the following conditional rules [44]:

p(ỹ,Y |x̃,X,θ∗) = N


µX
µx̃

 ,

 KX KX,x̃

KT
X,x̃ Kx̃,x̃


 (5.7)

ỹ ∼ N (µ̃(x), K̃) (5.8)

µ̃(x) = KT
X,x̃K

−1
X f(X) (5.9)

K̃ = Kx̃,x̃ +KT
X,x̃K

−1
X KX,x̃ (5.10)

Along with the trained GP model, an acquisition function chooses the next sampling
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point to be evaluated.

5.1.2 Acquisition Functions

There are three commonly used acquisition functions, namely the probability of improve-

ment (PI), expected improvement (EI), and upper confidence bound (UCB) given by:

I(x) =


0 f(x) > f ′

1 f(x) ≤ f ′
(5.11)

I2(x) = max (0, f ′ − f(x)) (5.12)

uPI(x) = E[I(x)] (5.13)

uEI(x) = E[I2(x)] (5.14)

uUCB = µ(x) + βσ(x) (5.15)

where f ′ is the optimal evaluation so far, β is a hyperparameter [44] [71]. EI outperforms

PI since PI ignores the amount of improvement and thus oftentimes converges to an unsatis-

fying local optimum. UCB is used when the trade-off between exploration and exploitation

is defined. The set of input parameters that maximizes u(x) is selected as the next sam-

pling point, xt+1. Since u(x) is no longer a CPU-intensive or time-consuming black-boxed

function, the maximization or minimization procedure can be performed more easily. A ro-

bust and commonly used optimization method for acquisition functions is as follows: First,

create a number of quasi-random points from the design space, X . Next, assign weights

to the points according to the acquisition function evaluations. A number of samples are
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Figure 5.2: Graphical illustration of BO [67]

then drawn according to these weights. Lastly, these new samples are used as initial points

for gradient descent methods to reach the maximal u(x). In summary, BO transforms the

original optimization problem into a series of smaller and easier optimization problems,

which enables less number of function evaluations. The detailed illustration of BO can be

found in [45] and the graphical illustration is shown in Figure 5.2. In the next section, an

innovative method to address high-dimensional optimization problems is proposed.
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5.2 High Dimensional Bayesian Optimization

A general problem with BO is the low dimensionality of the problem that needs to be ad-

dressed which is contrary to microwave design that often requires many parameters to be

optimized with precision. The challenges of implementing conventional BO to high di-

mensional problems are due to the curse of dimensionality [46] [47]. For example, the

search space, X , expands exponentially as the number of input parameters increases. Thus,

the surrogate models cannot well represent a function without an extremely large num-

ber of data. This is infeasible for microwave designs due to the CPU-intensive and time-

consuming EM simulations. In addition, the acquisition function optimization becomes

unsolvable or time-consuming, which leads to poor suggestions of the next sampling point.

Microwave design often requires many parameters to be optimized. Yet, BO has been

observed to perform poorly on high-dimensional problems. We propose to prioritize a

subset of the design parameters for GP regression and acquisition function optimization in

each iteration, where the subset selections are based on the estimated sensitivity of each

parameter to the objective function. These sensitivity estimations are obtained from the

automatic relevance determination (ARD) kernel functions.

5.2.1 Automatic Relevance Determination

A GP regression with ARD kernel functions assumes independent relations between each

dimension to another and applies independent priors over the length scales in the kernel

functions [70]. Matern 5/2 kernel, as shown in Equation 5.4, is an ARD kernel since

each hyperparameter σd represents only the length scale of the dth dimension. Due to the

independency, these length scales can be used as sensitivity estimations. For example,

consider maximizing a 2-dimensional function with BO using 10 sample points:

y(x) = −((x1 − 0.5)2 + 4(x2 − 0.5)2) (5.16)
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(a) True function

(b) Approximated function

Figure 5.3: Simple function

, where x = [x1, x2]
T ∈ R2. The Z-axis represents the function surface. As shown in

Figure 5.3, the function is well captured with the GP model after the training process. The

updated hyperparameter σ1 and σ2 is 1.06 and 0.57, respectively. This indicates that the

modeled function is flatter and smoother along the first dimension, whereas more sensitive

and varies more along the second dimension.

5.2.2 Bayesian Optimization with Parameter Prioritization

We propose to prioritize a subset of the design parameters for GP regression and acquisi-

tion function optimization during each BO iteration according to these length scales. The

detailed algorithm is shown as Algorithm 4. First, the objective function f(x), acquisi-

tion function u(x), kernel function k (xi,xj), and the number of total evaluation budget

T are defined as in conventional BO. The number of initial random sample points M de-

termines the random exploration before running the GP regression process. Compared to

conventional BO, this modified BO algorithm requires more exploration for the sensitivity
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prioritization. The number of design parameters subset S indicates the number of parame-

ters considered for the GP regression and acquisition function optimization. It is chosen to

be less than the original dimension D enabling BO to operate in a lower dimension.

For each iteration, the statistical model, GP , is trained to minimize the negative log

marginal likelihood of the data set D as shown in Equation 5.6. The trained hyperparame-

ters, namely the length scales of the ARD kernel in Equation 5.5, are used as the sensitivity

estimations. The S most sensitive parameters are extracted. These parameters along with

the output form the new data set D are used to train a low dimensional GP model GP .

This model more concisely represents the function while treating the contribution from

other dimensions as noise. Using GP , the acquisition function is optimized to suggest a

low dimensional candidate for the next sampling point, xt+1 as mentioned in Section II

B. Note that GP is low dimensional thus the candidate grants more improvements com-

pared to the candidate obtained from the high dimension GP models. The candidate is

combined with the previously obtained optimizer in the remaining dimensions to create the

new full-dimensional candidate for the next sampling point, xt+1.

xt+1 = [x̄t+1, x
∗
S+1:D,t]

T (5.17)

Lastly, xt+1 is evaluated and the data is added to update the data set D. These steps are

iterated until the evaluation budget is used up.
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Algorithm 4: BO with Parameter Prioritization
Result: Global optimizer and optima
Initialization:

1. Define f(x), u(x), k (xi,xj), T , M , S.

2. Evaluate initial sample points y1:M = f (x1:M)

3. Collect data D = {X,Y } = {x1:M , y1:M}

for t = 1 → T do
Fit GP with D
Select S parameters with small length scales σ
Create low dimensional data set D =

{
X,Y

}
Fit GP with D
Optimize acquisition func: xt+1 = argmaxx u(x)
Merge xt+1 with previous optimizer to get xt+1

Evaluate at the new sample point f(xt+1)
Update data set D

end
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5.3 Microwave Design Simulation Results

The BO with parameter prioritization is applied to two high-dimensional system design

problems, namely the beamforming antenna in package design for wireless communication

and the WPT for IoT. The comparison between the performances using multiple algorithms

is also provided.

5.3.1 Beamforming Antenna Design

A Butler matrix subarray consisting of four microstrip antennas is shown in Figure 5.4

and Table 5.1 [72] [73]. The number of geometrical configuration design parameters is

increased to 21 as opposed to 7 used in [73]. The Butler matrix subarray is designed

such that every four elements have eight phase shift combination options controlled by the

phase shifter switch as shown in Figure 5.5. These switches are implemented by sending

power to the corresponding ports. Each phase shift combination creates a beam pointing

along a certain direction. This is considered as the first-level beamforming. Then, the

beamformers provide continuous phase shifts and are tunable according to the desired beam

direction. This second-level beamforming fine-tunes the beam direction. Several subarrays

as in Figure 2.1 and Figure 5.6 are connected together to steer the beam along a two-

dimensional direction.

The optimization problem can be defined as:

min
x

∫
Θd

J (θd;x) dθd (5.18)

where x ∈ RD is the geometrical configuration parameter vector. In this example, D = 21

represents the number of geometrical configuration parameters, θd ∈ R2 is the desired beam

direction in spherical coordinates and Θd is the set of possible desired beam directions. In

Equation 5.18, J (θd) is the cost function that captures the performance degradation due

to the radiation towards undesired angles when the desired beam direction is θd. This
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Figure 5.4: Geometrical configuration of subarray
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Table 5.1: Design parameters for beamforming antenna

Parameter (µm) Manual Optimized Range

Patch antenna width (wa) 870.0 718.8 [670, 1070]
Patch antenna length (la) 580.0 540.0 [430, 730]

Patch antenna position (xa) 0.0 51.8 [0, 100]
Antenna copper thickness (ta) 20.0 15.0 [10, 25]

Hole diameter offset (dh) 150.0 135.1 [120, 140]
Patch via diameter (dpv) 75.0 101.6 [70, 120]
Pad diameter offset (dp) 60.0 65.8 [60, 100]

Ground via diameter (dgv) 160.0 148.8 [110, 200]
Substrate width offset (ws) 0.0 0.0 [0, 300]
Substrate length offset (ls) 0.0 74.4 [0, 300]

Gnd copper thickness 1 (tg1) 20.60 25.0 [10, 25]
Gnd copper thickness 2 (tg2) 20.0 10.0 [10, 25]

Side via position 1 (psgv1) 300.0 281.8 [250, 300]
Corner via position 1 (pcgv1) 50.0 45.8 [40, 60]
Middle via position 1 (pmgv1) 300.0 314.2 [280, 320]
Lower via position 1 (plgv1) 0.0 13.6 [0, 30]
Side via position 2 (psgv2) 300.0 500.0 [250, 500]

Corner via position 2 (pcgv2) 50.0 54.7 [40, 60]
Middle via position 2 (pmgv2) 300.0 296.1 [280, 320]
Lower via position 2 (plgv2) 0.0 1.28 [0, 30]

Edge via position (pegv) 50.0 46.6 [40, 60]
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Figure 5.5: Phase shifter options

Figure 5.6: Signal flow
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degradation integrated along all possible desired beam directions needs to be minimized.

J (θd;x) is defined as:

J (θd, ξ,ψ;x) =
maxθc∈Θc |G (θc, ξ,ψ;x) |2

|G (θd, ξ,ψ;x) |2
(5.19)

where ξ ∈ CK is the beamformer vector, K is the number of beamformers (same as the

number of subarrays), ψ indicates the positions of the phase shifter switches, θc ∈ R2 is

the interference direction in spherical coordinates, and Θc is the set of interfering direc-

tions given θd. A 2D illustration of the relation between θd and Θc is shown in Figure 5.7.

G (θ, ξ,ψ;x) is the complex response of the antenna along the direction θ using beam-

formers ξ and phase shifter switches ψ given by:

G (θ; ξ,ψ,x) =
K∑
k=1

gsub,k (θ,ψk,x) e
−2πifτsub,k(θ)ξk (5.20)

τsub,k(θ) = −⟨xsub,k,d(θ)⟩
c

(5.21)

where gsub,k (θ,ψk,x) is the radiation pattern of the kth subarray (computed using EM

simulators such as Ansys HFSS) given the subarray structure in Equation 5.20. In Equa-

tion 5.20, ψk is the phase shifter switch of the kth subarray, τsub,k(θ) is the time delay

between the signal transmitted from the kth subarray and the center of the entire array,

xsub,k is the position of the center of the kth subarray, d(θ) is the unit vector of the angle

direction θ transformed to the Cartesian coordinate, and c represents the speed of light and

⟨·, ·⟩ is the standard inner product in R3.

We repose Equation 5.18 for numerical computations in the form:

min
x

1

N

∑
θd∈Θd

J (θd;x) (5.22)

where N is the number of desired beam angle samples in Θd.
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Figure 5.7: 2D illustration of the relation between θd and Θc

The optimization problem in Equation 5.22 is highly nonlinear and with a large number

of decision variables. To simplify the problem, we apply the same phase shifter switches to

all Butler matrices, and set the switches to maximize the Butler matrix response along the

desired beam direction. In addition, the beamformers are assumed to compensate for the

delays due to the position difference of the subarrays. In other words:

ψ1 (θd) = ψ2 (θd) = ... = ψK (θd) = ψ
∗
sub (θd) (5.23)

ψ∗
sub (θd) = argmax

ψsub

|gsub (θd,ψsub,x) |2 (5.24)

ξk(θd) = e2πifτsub,k(θd) (5.25)

The subarray antenna design problems are solved as an optimization problem in Equa-

tion 5.22, where the objective function is a black box and involves time-consuming EM

simulations. In our experiment, EI is chosen as the acquisition function. The function

evaluation time is 7 minutes and the total evaluation budget T is set to 55. The number

of initial random sample points M is chosen as T/3 ∼= 20 for exploration. The num-

ber of design parameter subset S is set to 5 indicating that there are at least 5 parameters
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dominating the function surface. The cost (based on Equation 5.22) comparison between

the manual design [72], the design using PSO, the conventional BO, the BO with adap-

tive bound (BOAB) [73], and the proposed modified BO is shown in Figure 5.8 indicating

the advantage obtained using BO with parameter prioritization. The manual design here

refers to the design process without the use of optimization. The figure shows that the

conventional BO and BOAB could not reach the global optima within 55 iterations. PSO

shows unsatisfying improvement as well due to the small number of iterations. Although

the modified BO with parameter prioritization does not find better optima within the be-

ginning 20 random samplings, the obtained sensitivity information helps the algorithm to

reach a better optimum within a small number of iterations. In addition, the modified BO

reaches the performance of the manually hand-tuned design in the 20th iteration, while the

conventional BO reaches the performance in the 34th iteration. This shows a time saved of

44%. The BOAB method reaches the performance of the manually hand-tuned design in

the 22nd iteration, yet does not reach the global optimum. The counts of each parameter

used for the GP regression and acquisition function optimization are shown in Figure 5.9

to demonstrate the parameter sensitivity ranking. Note that the parameters la and tg1 are

chosen a lot which means that the GP model believes these parameters are worth focusing

on during the GP regression process, while the parameters wa and ls are less contributive to

the objective function. Figure 5.10 shows the comparison between the beam patterns from

multiple optimization methods described where the mainbeam points towards θd = [30, 0],

[30, 15], [30, 25], and [30, 60], respectively. The radiation power is normalized with respect

to the mainbeam of the manual design. The result shows that most of the mainbeam powers

are increased significantly with the small amount of sidelobe increasements. Furthermore,

in the θd = [30, 0] case, the mainbeam power is increased and the sidelobe is reduced af-

ter the optimization. The comparison of the parameters between the manually designed

antenna and the optimized design is shown in Table 5.1.
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Figure 5.8: Cost comparison between the manual design, the design using PSO, the con-
ventional BO, the BO with adaptive bound, and the proposed modified BO. Manual here
refers to the design process without the use of optimization.

Figure 5.9: Beamforming antenna parameter sensitivity ranking
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(a) θd = [30, 0]

(b) θd = [30, 15]

(c) θd = [30, 25]

(d) θd = [30, 60]

Figure 5.10: Antenna beam pattern comparison

78



Additional Beamforming Method

Other beamforming methods are also applicable to the subarray design optimization prob-

lem. For example, in the case where each beamformer includes the phase delay and mag-

nitude modulation functions, the optimization problem is instead defined as:

J (θd;x) = min
ξ,ψ

∫
Θc(θd)

|G (θc, ξ,ψ;x) |2dθc s.t. G (θd, ξ,ψ;x) = 1 (5.26)

The constraint G (θd, ξ,ψ;p) = 1 is posed in order to solve for the ratio between the

magnitudes of the beamformers such that the directivity of the antenna is maximized. With

the phase shifter switches determined, the problem is simplified to

J (θd;x) = min
ξ

1

B

∑
θc∈Θc(θd)

|G (θc, ξ;x) |2 s.t. G (θd, ξ;x) = 1 (5.27)

, where

G (θ; ξ,x) =
K∑
k=1

gsub (θ,x) e
−2πifτsub,k(θ)ξk (5.28)

This problem can be formulated as a Quadratic Programming (QP) problem in the complex

domain:

J̄ (θd;x) = min
ξ∈CK

ξHAξ s.t. b̄Hξ = 1 (5.29)

A =
1

B

∑
θc∈Θc(θd)

āāH (5.30)

a = gsub (θc,x) e
−2πifτ sub(θc) (5.31)

b = gsub (θd,x) e
−2πifτ sub(θd) (5.32)
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, where τ sub ∈ RK is a vector of time delays of all subarrays. A ∈ CK×K , and it is

positive definite since it is a scaled summation of quadratic functions. ā is the conjugate of

a. b̄ is the conjugate of b. QP problems are convex thus the optimal beamformers can be

computed with off-the-shelf solvers. The flow chart for the cost function evaluation of this

beamforming method is shown in Figure 5.11.

Figure 5.11: Beamforming method for cost function evaluation
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5.3.2 Wireless Power Transfer Design

A WPT system targets power transmission and conversion without wires or physical links.

The power is transmitted through the magnetic fields with inductive couplings by coils.

The challenges arise when the coils are operated at high frequency due to the low efficiency

and increased power loss. We address this problem in two parts i) maximizing the RF-to-

DC conversion efficiency, and ii) maximizing the RF-to-DC conversion efficiency while

minimizing the coil area. The purpose here is to address both a single-objective and multi-

objective optimization problem. The architecture of the inductive coupling-based WPT

system is shown in Figure 5.12 [67] [73]. The system operates at 1GHz and is an integrated

board solution consisting of embedded rectangular RF coils. These coils are connected to

the transmit (TX) and receive (RX) matching networks which consist of the LC networks.

A full bridge diode rectifier is connected and a buck converter (BC) with an embedded

inductor is used for DC regulation. The design parameters for the system are shown in

Table 5.2.

In this experiment, the number of parameters is 30 (D = 30). EI is used as the acquisi-

tion function. Similar to before, the total evaluation budget T is set to 55, and the number

of initial random sample points M is set to 20. The number of design parameter subset S

is set to 15. The time of each function evaluation experiment is 3.5 minutes. The power

transfer efficiency comparison between the WPT design using PSO, the conventional BO,

and the proposed modified BO is shown in Figure 5.13. The figure shows that the effi-

ciency is improved using BO with parameter prioritization since the conventional BO is

stuck in a local optimum. As in the previous example, the design using PSO shows unsat-

isfying improvement due to the small number of iterations. The counts of each parameter

used for the GP regression and acquisition function optimization are shown in Figure 5.14

demonstrating the parameter sensitivity ranking. The optimized parameters that maximize

the power transfer efficiency of the WPT system are shown in Table 5.2. Note that the

modified BO requires only 21 iterations to reach the maximum efficiency obtained using
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Figure 5.12: (a)∼(c) Geometry of the embedded RF coils defining the design parameters,
and (d) Schematic of the WPT-based power delivery architecture [67]
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Table 5.2: Design parameters for WPT system

Parameter Optimized Range

Feeding gap for TX coil (gf,TX) 2.99 mm [2, 3]
Feeding gap for RX coil (gf,RX) 2.12 mm [2, 3]
Width/height of TX coil (gxy,TX) 2.25 mm [2, 3]
Width/height of RX coil (gxy,RX) 2.42 mm [2, 3]
Gnd cut-out ratio TX (slotxy,TX) 1.14 [1, 1.2]
Gnd cut-out ratio RX (slotxy,RX) 1.01 [1, 1.2]

Match capacitor TX (C1) 4.87 pF [4, 5]
Resonance capacitor TX (C2) 4.78 pF [4, 5]
Resonance capacitor RX (C3) 2.91 pF [2, 3]

Match capacitor RX (C4) 0.75 pF [0.1, 1]
Match inductor TX (L1) 0.13 nH [0.1, 2]
Match inductor RX (L2) 7.22 nH [7, 8]

Line width TX coil (lw,TX) 1.57 mm [1, 2]
Line width RX coil (lw,RX) 0.81 mm [0.5, 1]

Width TL1 (WTL1) 0.63 mm [0.35, 1.15]
Width TL2 (WTL2) 0.58 mm [0.35, 1.15]
Width TL3 (WTL3) 0.82 mm [0.35, 1.15]
Width TL4 (WTL4) 0.53 mm [0.35, 1.15]
Width TL5 (WTL5) 0.90 mm [0.35, 1.15]
Width TL6 (WTL6) 0.78 mm [0.35, 1.15]
Width TL7 (WTL7) 0.83 mm [0.35, 1.15]
Width TL8 (WTL8) 1.02 mm [0.35, 1.15]
Length TL1 (LTL1) 0.97 mm [0.5, 5]
Length TL2 (LTL2) 3.64 mm [0.5, 5]
Length TL3 (LTL3) 0.71 mm [0.5, 5]
Length TL4 (LTL4) 3.17 mm [0.5, 5]
Length TL5 (LTL5) 0.83 mm [0.5, 5]
Length TL6 (LTL6) 1.75 mm [0.5, 5]
Length TL7 (LTL7) 0.99 mm [0.5, 5]
Length TL8 (LTL8) 1.60 mm [0.5, 5]
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Figure 5.13: Efficiency comparison between the design from PSO, the conventional BO,
and the proposed modified BO.

the conventional BO. This shows a time saving of 62%.

In addition to maximizing the efficiency of the WPT system design, one important

metric is reducing the coil area. Another example is conducted where the area of the coil is

minimized by including it in the objective function. This objective function of a multiple-

objective optimization problem can be defined as:

f(x) =
N∑
i=1

wifi(x) (5.33)

where f1(x) and f2(x) represent the efficiency and the coil area respectively. Here we

set w1 = 2 and w2 = 1 indicating more importance given to efficiency. The range of the

width/height of RX coil, namely gxyRX , is changed to [1, 5] for the optimization problem.

f1(x) and f2(x) are normalized according to the function ranges. The objective function

convergence between the WPT design using the conventional BO, PSO, and the proposed

modified BO is shown in Figure 5.15. As shown in the figure, the modified BO with param-

eter prioritization uses the beginning 20 random sampling to obtain sensitivity information,
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Figure 5.14: WPT parameter sensitivity ranking to efficiency

then a better optimum is found within a small number of iterations. Compared to PSO and

the conventional BO approach, modified BO provides better results. The proposed mod-

ified BO requires only 29 iterations to reach the maximum efficiency obtained using the

conventional BO. The time saved is thus 15%. As shown in Figure 5.16, the parameter sen-

sitivity ranking of gxyRX goes from 28th to 4th, indicating the sensitivity increased while

considering the area reduction.

The optimization results are given in Table 5.3. Optimization using the modified BO

results in 73.3% RF–DC conversion efficiency and RX coil area of 215.8 mm2. It outper-

forms PSO in terms of both the RX coil area and the RF–DC efficiency. The conventional

BO provides a similar RX coil area, yet worse RF–DC efficiency. The optimization re-

sults from [74] are shown in Table 5.4 and compared. ADD-MES indicates the maximum

entropy search with additive GP. DPT-BO indicates the Bayesian optimization with deep

partitioning tree, where the hierarchical partitioning tree is used for fast exploration, and

the GP is used for exploitation. In all 3 cases, compared with our results, the RX coil areas

are smaller, while the RF-DC efficiencies are lower. These different results might be due

to the different initial random points, number of simulation iterations, design parameters,
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Figure 5.15: Objective function comparison between the design from the PSO, the conven-
tional BO and proposed modified BO.

Figure 5.16: WPT parameter sensitivity ranking to efficiency and area reduction
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Table 5.3: Optimization results for WPT system

PSO BO Modified BO

RX Coil Area (mm2) 230.9 215.5 215.8

RF-DC Efficiency (%) 72.7 72.2 73.3

Number of Simulations 22 34 34

CPU Time (hr) 1 1.4 1.4

Table 5.4: Optimization results for WPT system from [74]

PSO ADD-MES DPT-BO

RX Coil Area (mm2) 7.48 19.26 11.04

RF-DC Efficiency (%) 45.83 58.86 59.57

Number of Simulations 192 163 145

CPU Time (minutes) 691.2 603.1 536.5

or design parameter ranges.

In this Chapter, we discuss optimizations of microwave design problems. Since the per-

formance evaluations of RF structure designs involve CPU-intensive and time-consuming

electromagnetic simulations, BO can be used to converge to the global optimum by training

a surrogate model and choosing the next sampling point in a heuristic manner. The gen-

eral problem with BO is the low dimensionality of the problem that needs to be addressed

which is contrary to microwave design. We propose to prioritize a subset of the design

parameters for GP regression and acquisition function optimization in each iteration based

on the estimated sensitivity of the parameters. The low dimensional model more concisely
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represents the function, thus the solution process provides more improvements compared to

the solution obtained directly from the high dimension GP models. The resulting candidate

solutions are combined with the previously obtained optimizer solutions in the remaining

dimensions to create a new full-dimensional solution used as the next sampling point. We

apply this method to the beamforming antenna in package design for wireless communi-

cation and the WPT for IoT. The results based on the proposed modified BO show that

the optimization is possible with a smaller number of function evaluations. In the beam-

forming array design example, the proposed modified BO reaches the performance of the

manually hand-tuned design in the 20th iteration, while the conventional BO reaches the

performance in the 34th iteration. This shows a time saved of 44%. In the WPT system

design problem, the proposed modified BO requires only 21 iterations to reach the maxi-

mum efficiency obtained using the conventional BO. The time saved is thus 62%. In the

multiple-objective case where coil area is also minimized, the time saved is 15% as com-

pared to the conventional BO approach. In both cases, PSO shows unsatisfying results due

to the small number of iterations.
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CHAPTER 6

SUMMARY AND FUTURE WORK

In Chapter 1, an introduction to the EM field characteristic is provided. The RCS is defined

as the complex numbered reflection profile of a radar target and is an angular dependent

frequency response. The HPC EM emulators are shown to simulate real-time complex EM

wave interactions between numerous radar targets. The phased array antenna and wireless

power transfer system are two microwave design applications of EM analysis that are also

highly related to EM wave propagation.

In Chapter 2, we review the literature regarding RCS data compression. This includes

the point scatterer modeling, dominant scattering feature analysis, and statistical model-

ing. We also study the literature on design methods for microwave systems, specifically the

antenna designs targeting minimal sidelobe effects. These design methods used optimiza-

tion techniques with iterative algorithms and successfully minimized the interference from

other radiating sources, which degrades the antenna performance. We also discuss the gen-

eral bottlenecks regarding to high dimensional optimization problems, which is commonly

encountered in microwave designs.

In Chapter 3, the problem of point scatterer modeling is defined. The reflection profile

of a radar target can be represented as a point scatterer model, which consists of a number

of isotropic or anisotropic scatterers. Constructing an isotropic point scatterer model means

finding the positions and the angular independent reflection gains for all scatterers, while

constructing an anisotropic point scatterer model means finding the positions and the an-

gular dependent reflection gains for all scatterers, which best represent a given radar target.

Two channel modeling methods are defined where each has its advantages in simulating

EM wave propagation. Then, we proposed four point scatterer modeling methods, shape
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approximation, anisotropic ellipsoid scatterer modeling, isotropic sphere point scatterer

modeling, and spherical harmonic based anisotropic point scatterer modeling. Simulations

are provided to show the advantages of each modeling method.

In Chapter 4, we focus on the spherical harmonic based anisotropic point scatterer

modeling, which outperforms isotropic sphere and anisotropic ellipsoid scatterer modeling

in three aspects: (1) Spherical harmonic functions are orthogonal, therefore the spherical

function that represents the RCS can be approximated better, (2) the spherical harmonic

based bistatic RCS model is separable, and (3) the model captures the complex-numbered

RCS data while the ellipsoid model captures only the RCS power. Spherical harmonic

functions frequently used in the area of mathematics and physical science are introduced.

We find the model by solving the position and the spherical harmonic coefficients of each

scatterer. First, the monostatic RCS modeling is constructed. The problem is defined as a

least squares linear problem using two assumptions: (1) The angular dependent reflection

gain of each anisotropic scatterer is a linear combination of spherical harmonics, and (2) a

finite number of possible scatterer positions are known. In the example, we assume that all

scatterers are located in a 10m×10m×10m grid in the local coordinate system. In addition

to solving the linear least squares problem, a group sparsity constraint is used to limit the

number of scatterers by choosing a limited number of optimal scatterer positions among the

finite possible scatterer positions. To construct the bistatic point scatterer model, we assume

that the scatterer positions are the same as the positions solved from the monostatic RCS

data. This leaves us with the problem of solving the separable spherical functions of the

incident and scatter angles for each scatterer. By assuming that these functions are linear

combinations of spherical harmonics, the problem becomes solving a number of spherical

harmonic coefficients. This can be formulated as a bilinear least squares problem and this

problem is solved with the normalized iterative algorithm. Simulation results are provided

and show the fitting result between the RCS data and the RCS of the point scatterer model.
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Next, we illustrate an efficient method that finds the monostatic point scatterer model of

continuous scatterer positions. This is achieved by a greedy scatterer position search using

the particle swarm optimization. Due to the large number of function evaluations, the

problem was not feasible until we introduce an efficient function evaluation method taking

advantage of the matrix structure and reduce the computation time of the algorithm. The

computation time is reduced significantly since (1) no extra matrix inversion is required,

and (2) the high dimensional multiplication is exempted. Simulations are included to show

good fitting between the RCS data and the RCS of the point scatterer model.

To reduce the error and improve the model fidelity of the point scatterer model in future

works, one can (1) use more RCS data in the model generation process, (2) increase the

number of spherical harmonic basis functions so that the reflection profile of each scatterer

becomes more complex, or (3) increase the number of scatterers. Approach (1) and (2)

increase the computation time of the point scatterer model generation procedure since the

algorithm involves more matrix computations. Approach (3) not only increases the compu-

tation time of the model generation procedure, but also slows down the HPC EM emulator

since the FIR filter will possess more taps. Therefore, it is important to use as less scatterers

as possible. Another interesting research topic is efficient RCS generation. The presented

works assume that the complex numbered RCS data is given. Yet, the time required to gen-

erate a large number of RCS data is not neglectable. This difficulty increases when the size

of the radar object or the signal frequency increases. Thus, it is important to generate RCS

data more efficiently while considering the point scatterer model generations. In addition,

there exists a limitation to the number of data. That is, as the number of RCS data increases

to a certain level, the storage size of Q̄ in Equation 4.13 becomes too large and limits the

computations. Future works include a point scatterer modeling algorithm targeting larger

scale RCS data.

In Chapter 5, we discuss optimization problems specifically in the microwave design
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area. Bayesian Optimization (BO) is a well-known machine learning based method that

enables fast convergence towards a global optimum of low dimensional functions with-

out closed-form expressions. The BO method reduces the computation time by training

a surrogate model and choosing the next sampling point in a heuristic manner. Since the

microwave design problems involve a large number of parameters, we propose an innova-

tive method that prioritizes only a subset of the design parameters for the Gaussian process

(GP) regression and acquisition function optimization in each iteration, where the subset

selections are based on the estimated sensitivity of each parameter to the objective function.

Such a lower dimensional model more concisely represents the function while treating the

contribution from other dimensions as noise. Thus the solution process provides more im-

provements compared to the solution obtained directly from the high-dimension GP mod-

els. The resulting candidate solutions are combined with the previously obtained optimizer

solutions in the remaining dimensions to create a new full-dimensional solution which is

then used as the next sampling point. We apply this process to two emerging system de-

signs: (1) A beamforming antenna in package design for wireless communication and (2)

the wireless power transfer (WPT) for Internet of Things (IoT). The results based on the

modified BO described show that the optimization is possible with a smaller number of

function evaluations. Future works include studies of EM structure simulation algorithms,

acquisition function optimizations, and Gaussian process regression with prior knowledge

of parameter sensitivity.
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[50] K. Kandasamy, J. Schneider, and B. Póczos, “High dimensional bayesian optimisa-
tion and bandits via additive models,” in International conference on machine learn-
ing, PMLR, 2015, pp. 295–304.

[51] H. M. Torun, “Machine learning based design and optimization for high-performance
semiconductor packaging and systems,” Ph.D. dissertation, Georgia Institute of Tech-
nology, 2020.

[52] E. F. Knott, Radar cross section measurements. Springer Science & Business Media,
2012.

[53] C. M. STudio, “C st studio suite 2013,” Computer Simulation Technology AG, 2013.

[54] X.-J. Shan, J.-Y. Yin, D.-L. Yu, C.-F. Li, J.-J. Zhao, and G.-F. Zhang, “Analysis
of artificial corner reflector’s radar cross section: A physical optics perspective,”
Arabian journal of geosciences, vol. 6, no. 8, pp. 2755–2765, 2013.

[55] K. D. Trott, “Stationary phase derivation for rcs of an ellipsoid,” IEEE Antennas and
Wireless Propagation Letters, vol. 6, pp. 240–243, 2007.

[56] R. Okada, B787-8 dreamliner, Online, https : / / grabcad . com / library / b787 - 8 -
dreamliner-1 Accessed October 27, 2020.

[57] C. M. S. Manual, “Cst,” Darmstadt, Germany, 2002.
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