
FROM GENOMES TO METAGENOMES: BIG DATA ANALYSIS OF 

MICROBES RELATED TO PUBLIC HEALTH 

 
 
 
 
 

A Dissertation 
Presented to 

The Academic Faculty 
 
 

 
by 
 
 
 

Maria Juliana Soto-Girón 
 
 
 
 
 

In Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy in the 
School of Biological Sciences 

 
 

 
 
 
 

Georgia Institute of Technology 
December 2018 

 
 
 
 

COPYRIGHT © Maria Juliana Soto-Girón, 2018 
 



FROM GENOMES TO METAGENOMES: BIG DATA ANALYSIS OF 

MICROBES RELATED TO PUBLIC HEALTH 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved by:   
 
 

  

Dr. Konstantinos T. Konstantinidis, 
Advisor 
School of Civil and Environmental 
Engineering 
Georgia Institute of Technology 

 Dr. Brian Hammer 
School of Biological Sciences 
Georgia Institute of Technology 

 
 

  

Dr. I. King Jordan 
School of Biological Sciences 
Georgia Institute of Technology 

 Dr. Karen Levy 
Rollins School of Public Health 
Emory University 

 
 

  

Dr. Frank Stewart 
School of Biological Sciences 
Georgia Institute of Technology 

  

   
  Date Approved: November 6, 2018 
 



 

 

 

 

 

 

To my parents Maria Teresa Girón and Jose Maria Soto.  

Thanks for your unconditional support. 

I love you 

 

 

 



 

iv 

ACKNOWLEDGEMENTS 

I would like to thank exceptional people from around the world who made this dissertation 

possible. Specially, I want to thank my advisor, Dr. Konstantinidis, for his constant support 

and guidance during this journey as a scientist. I appreciate all his scientific contributions, 

insightful discussions, and guidance throughout this experience. My sincere thanks also go 

to my fellow lab mates, it has been an honor to work with them. Thanks for the stimulating 

discussions, advice, and feedback I have gotten over the years. Special thanks to Coto, 

Roth, Minjae, Eric, Lizbeth, and Juan.     

Special mention goes to my committee members, Dr. Levy, Dr. Stewart, and Dr. Hammer 

for their constructive feedback during the meetings and for their time and support towards 

the completion of this dissertation. Profound gratitude goes to King Jordan, who has been 

a truly mentor since I was an undergraduate student in Colombia. Thanks for his 

unconditional support and constant encouragement throughout these years.  

I will forever be grateful for my second family in Atlanta, my amazing friends, thanks for 

keeping me sane, for the adventures, parties, birthdays, and for being always there, in the 

most difficult times. A special acknowledgement goes to Juan Pablo Aragon, Catalina 

Rivera, Andres Caballero, Victor Rodriguez, Angela Peña, Fabrizio Falasca, Giuliana 

Salazar, Filippos Tagklis, Abner Ayala, Kizee Etienne, Chris Gaby, Natasha De Leon, 

Monica Rojas, Giuseppe Trainiti, Melisa Alvarado, Fernando Patiño, Sebastian Ortega, 

and Carlos Ruiz. Also, to my friends in Colombia, Laura Rodriguez, Leidy Salamanca, 

Isabel Quiceno, Catalina Gutierrez, Cesar Giraldo, Joel Panay, Mario Ceron, and Oscar 

Rodriguez. 

Words cannot express how lucky I am for having the best support to my side since I decided 

to study abroad. My parents Maria Teresa and Jose Maria, my brother Sebastian, my 

grandfather Joaquin Renol, my lovely aunt Lili, uncles Jaime and Robert, cousins, and all 

my family for their unconditional love, support, and care. 

 



 v 

 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS iv	

LIST OF TABLES viii	

LIST OF FIGURES ix	

SUMMARY x	

CHAPTER 1.	 INTRODUCTION 1	
1.1	 Application of high-throughput sequencing technologies in bacteria growing on 
hospital surfaces 2	
1.2	 The gut microbiota from a rural-to-urban gradient: diversity and resilience 
unraveled by metagenomics 4	
1.3	 Bioinformatics algorithms for analysis of large bacterial genome datasets: 
detecting recently gene transfer events 7	
1.4	 REFERENCES 9	

CHAPTER 2.	 CHARACTERIZATION OF BIOFILMS DEVELOPING ON 
HOSPITAL SHOWER HOSES AND IMPLICATIONS FOR NOSOCOMIAL 
INFECTIONS 16	
2.1	 ABSTRACT 16	
2.2	 INTRODUCTION 17	
2.3	 MATERIALS AND METHODS 18	

2.3.1	 Sample collection 18	
2.3.2	 Culturing and Identification of Isolates 19	
2.3.3	 High throughput sequencing 20	
2.3.4	 Read trimming and de novo assembly 20	
2.3.5	 Taxonomic classification of the biofilm microbial communities 20	
2.3.6	 Metagenomic functional gene assignment and abundance analysis 20	
2.3.7	 Recovery of genomes from metagenomes (Binning) 22	

2.4	 RESULTS 22	
2.4.1	 Composition of the microbial community of shower hose biofilms 22	
2.4.2	 Presence of opportunistic pathogens 25	
2.4.3	 Disinfectant resistance mechanisms 29	
2.4.4	 Antibiotic resistance mechanisms 31	
2.4.5	 Comparisons to other similar environments 33	

2.5	 DISCUSSION 34	
2.6	 CONCLUSIONS AND PERSPECTIVES 38	
2.7	 ACKNOWLEDGEMENTS 38	
2.8	 REFERENCES 39	

CHAPTER 3.	 The structure of the human gut microbiome across a rural-to-
urban gradient in Northern Ecuador 47	



 vi 

3.1	 ABSTRACT 47	
3.2	 INTRODUCTION 48	
3.3	 MATERIALS AND METHODS 49	

3.3.1	 Study population 49	
3.3.2	 Sample collection 51	
3.3.3	 16S rRNA gene sequence analysis 51	
3.3.4	 Microbial network analysis 52	
3.3.5	 Metagenomic sequence analysis 53	
3.3.6	 Recovery of genome populations in the metagenomes 53	
3.3.7	 Identification of pathogenic E. coli in ADD metagenomes through 
bioinformatics 54	

3.4	 RESULTS 55	
3.4.1	 Geographic location has an effect on the gut microbiota composition 55	
3.4.2	 OTU networks in non-ADD rural vs. urban microbiomes 57	
3.4.3	 Metagenome-based resolution of differences between urban and rural 
microbiomes 58	
3.4.4	 Diversity of Prevotella and Alistipes MAGs across the rural-to-urban gradient
 61	
3.4.5	 Microbiome changes during diarrheal episodes 62	
3.4.6	 Metagenomic comparison of ADD samples from rural and urban subjects after 
excluding cases of E. coli infections 65	

3.5	 DISCUSSION 70	
3.6	 CONCLUSIONS AND PERSPECTIVES 73	
3.7	 ACKNOWLEDGEMENTS 74	
3.8	 REFERENCES 74	

CHAPTER 4.	 Quantifying recent gene exchange among closely related bacterial 
genomes and implications for the bacterial species concept 83	
4.1	 ABSTRACT 83	
4.2	 INTRODUCTION 84	
4.3	 MATERIALS AND METHODS 86	

4.3.1	 Model overview 86	
4.3.2	 Parameter estimation based on empirical data 88	
4.3.3	 Detection of candidate genes under recent exchange 90	
4.3.4	 Estimation of the effect of recent mutations and recombination on ANI 91	

4.4	 RESULTS 94	
4.4.1	 Application of the model to species with different ecologies 94	
4.4.2	 Quantifying recent genetic exchange within bacterial species 96	
4.4.3	 Candidate genes that undergo recent exchange 98	
4.4.4	 Spatial biases of recently exchanged genes across the genome 100	
4.4.5	 Relative importance of recombination to mutation indicates sexual speciation
 102	
4.4.6	 Comparison to other high-throughput HGT detection methods 105	

4.5	 DISCUSSION 106	
4.6	 CONCLUSIONS AND PERSPECTIVES 110	
4.7	 ACKNOWLEDGEMENTS 110	
4.8	 REFERENCES 111	



 vii 

APPENDIX A.	 SUPPLEMENTARY MATERIAL FOR CHAPTER 2 116	
A.1. SUPPLEMENTARY TABLES AND FIGURES 116	

APPENDIX B.	 SUPPLEMENTARY MATERIAL FOR CHAPTER 3 132	
B.1 SUPPLEMENTARY TABLES AND FIGURES 132	

APPENDIX C.	 SUPPLEMENTARY MATERIAL FOR CHAPTER 4 160	
C.1. SUPPLEMENTARY TABLES AND FIGURES 160	

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 viii 

LIST OF TABLES 

Table 2.1. Description of the proteins present in the metagenomes associated with biofilm 

formation, antibiotic and disinfectant resistance mechanisms and virulence. .................. 27	

Table 2.2. Abundance of antibiotic resistance genes recovered from the shower hose 

metagenomes. .................................................................................................................... 31 

Table 4.1. Effect of recombination and mutation on ANI in a genome pair…………….104 

 

 

 

 

 

 

 

 

 

 

 

 

 



 ix 

LIST OF FIGURES 

Figure 2.1. Taxonomic composition of the shower hose biofilms based on 16S rRNA 

gene fragments recovered from the metagenomes and isolates. ....................................... 23	

Figure 2.2. Phylogenetic relationships and relative abundance of the populations 

recovered in the shower hose metagenomes. .................................................................... 24	

Figure 2.3 Relative abundance of functional genes in the shower hose metagenomes. ... 30	

Figure 3.1 Diversity comparisons between rural and urban microbiomes based on 16S 

rRNA gene sequences. ...................................................................................................... 57	

Figure 3.2 Microbial significant differences in abundance in healthy microbiomes from 

urban vs. rural subjects. .................................................................................................... 60	

Figure 3.3 Microbial significant differences in abundance during ADD when compared to 

a healthy state in metagenomes from urban vs. rural subjects………………………….. 64	

Figure 3.4 Identification of diarrheal cases caused by pathogenic E. coli ……………....68 

Figure 4.1. Variation in the rates of recent exchange among bacterial species. ............... 96	

Figure 4.2. Spatial distribution of exchanged genes across the genome. ....................... 102	

 

 

 

 

 

 

 

 



 x 

SUMMARY 

Advances in high-throughput sequencing techniques have substantially increase our 

understanding on how microbes interact among them and with their host. Commensal 

bacteria are indispensable in host physiology and homeostasis. Conversely, pathogenic 

bacteria can infect their human host, which leads to several important worldwide diseases. 

Bacterial infections represent one of the greatest public health concern mainly in young 

children in the developing world and immunocompromised individuals. Despite advances 

in clinical microbiology, our understanding of the genomic and ecological mechanisms 

underlying the pathogen-host-environment interplay especially in clinical settings, remain 

challenging to elucidate. 

In this work, we applied cutting-edge laboratory and bioinformatics techniques to profile 

microbial communities obtained from diverse sources and that might pose a risk for human 

health. As biofilms are considered likely reservoirs of pathogens in clinical settings, in 

Chapter 2 we characterize the composition of microbial communities growing on hospital 

shower hoses using shotgun metagenomics. We also evaluate the genetic diversity and 

resistance profile of the microbial communities associated with their ability to survive 

under high doses of disinfectants and chlorine residuals. The composition of the human gut 

microbiota is influenced by multiple extrinsic (lifestyle) and intrinsic (host health) factors. 

In Chapter 3, we explore the role of lifestyle on microbial diversity and functional 

potential of the gut microbiota in a rural-to-urban gradient in Northern Ecuador and 

evaluate whether urbanization plays a role in the gut microbial response during diarrheal 

infection. 

Besides diversity and functional potential, quantifying genetic exchange across bacterial 

species is also important in order to understand how adaptable bacterial species are to 

environmental fluctuations and for the identification of critical phenotypic properties such 

as the emergence of antibiotic resistance. To address this question, in Chapter 4, we 

develop a mathematical model to systematically detect and quantify recent gene transfer 

events between closely related genotypes from large genomic datasets.  



 1 

INTRODUCTION 

Microbes inhabit almost every imaginable environment on earth. Their ability to 

colonize diverse environments and adapt to changing and harsh conditions is encoded in 

their genomes. The use of whole-genome sequencing (WGS) technologies, has allowed us 

to unravel the mechanisms and properties of population genomes related to genetic 

variability (gene gain and loss), flexibility (horizontal gene transfer), and lifestyle (clonal 

vs. recombinogenic) (1–4). At the same time, culture-independent techniques have 

extended the genomic approaches and contributed to the identification of microbes that 

have not been cultured yet (approx. 99% of the total diversity for Prokaryotes) (5).  

Thus, microbial WGS has become an important tool for effectively and rapidly 

analyzing hundreds of bacterial genomes from different environments and with special 

relevance for human health (6, 7). The study of bacterial genomes from multiple isolation 

sources has increased our knowledge of their ecological roles in different ecosystems, led 

to the identification of novel species, and the (successful) tracking of disease outbreaks (8, 

9). For instance, the identification of different genes or even single nucleotide 

polymorphisms (SNPs) among genotypes from the same species can be used to distinguish 

pathogens or commensals (10). 

On the other hand, the rise of shotgun metagenomics (sequencing of the total DNA 

from an environmental sample) has allowed the study of microbes beyond traditional lab-

based microbiological techniques and transformed our understanding of the physiology and 

ecology of communities from diverse ecosystems (7, 11). By applying metagenomics, the 

total microbial populations that co-habit the same environment and their entire gene 

collection can be characterized and the phylogenetic relationships among  community 

members can be assessed (12–14).  

The accelerated increase of genomic information and low sequencing cost have 

brought new and inherent computational challenges related to processing, storing, and 

handling large volume of genomic data. Genomics is considered as the “four-headed beast” 

because of its highly computational demands when compared to other Big Data domains 
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(i.e., YouTube, Google, Twitter) (15). Therefore, the development and application of 

bioinformatics/computational methods for the efficient analysis of large genomic data, 

remain challenging. Moreover, extracting meaningful information and elucidating the 

underlying biological mechanisms from sequencing data is an essential task in life sciences, 

especially in public health and clinical microbiology. Thus, decoding genomic information 

from microbial communities will increase our understanding of how bacteria exchange 

information (e.g. antibiotic resistant genes), adapt/respond to modern human lifestyles, and 

impact host health (e.g., infectious diseases). 

In this thesis, we applied cutting-edge laboratory and computational algorithms to 

profile and quantify microbes in diverse ecosystems with a profound impact on public 

health. Specifically, In Chapter 2, we used shotgun metagenomics to catalog biofilm-

associated microbial communities growing on showerheads in a hospital in Ohio and 

evaluate their relevance for nosocomial infections and the emergence of antibiotic-resistant 

bacteria. In Chapter 3, we applied shotgun metagenomics and 16S rRNA gene sequencing 

to study the relationship between lifestyle and the gut microbial composition and its 

response during acute diarrheal disease in a rural-to-urban gradient in Northern Ecuador. 

Finally, in Chapter 4, we introduced an alternative mathematical model to quantify recent 

genetic flow between closely related genotypes from a collection of hundreds of bacterial 

genomes. We applied this model to estimate the fraction of recent gene exchange of several 

opportunistic pathogens and identify the functional profile of the recent imports.  

 

 Application of high-throughput sequencing technologies in bacteria growing 

on hospital surfaces 

The identification of bacterial populations that cause infections represents a crucial 

initial step in clinical microbiology and public health, in order to develop effective control 

strategies and pathogen surveillance. Bacterial infections are one of the greatest public 

health concern mainly in low- and middle-income countries causing morbidity and 

mortality, particularly in children (16, 17). Alarming, the World Health Organization 

(WHO) has recognized multi-drug resistant bacteria as one of the major and potentially 
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most dangerous threats worldwide (WHO, 2018). In particular, bacteria present in 

healthcare centers are a serious health risk of hospital-acquired infections (HAI). These 

infections occur in 10% in developing and 7% in developed countries (19) and account for 

4%–56% of mortality in neonates with a high of 75% in South-East Asia and Sub-Saharan 

Africa (20). In the US, approximately 75,000 patients die because of these infections 

according to the Centers for Disease Control and Prevention (CDC) (21). 

Despite efforts to control pathogen transmission within medical settings by using 

different cleaning and disinfecting protocols, the presence of opportunistic pathogens and 

bacteria remains the biggest problem of HAIs. Medical devices including urinary tract and 

central venous catheters (22), ventilator-associated pneumonia, and surgical site infections 

(19) are known to be a source of pathogenic bacteria. Additionally, potential pathogens can 

be found in beds, floor, windows, soap dispensers, and even in water distribution systems 

(23, 24). 

Given the elevated number of nosocomial infections and spread of antibiotic resistant 

bacteria within health care settings, there is an urgent need to develop more efficient and 

rapid detection protocols to characterize and monitor the major pathogen reservoirs (e.g., 

medical devices, surfaces) and the mechanisms of microbial transfer inside hospitals. 

Recently, high-throughput culture-independent approaches have been added to screening 

protocols in health care settings allowing an unbiased detection of the whole microbial 

community and tracking of pathogens. For instance, the gut microbiome of neonates in 

intensive care units (ICU) is colonized by microbes residing in ICU, specifically room 

surfaces (25). Further, Greninger and collaborators (26) applied metagenomics to monitor 

in real time the progression of parainfluenza 3 virus infections at a children's hospital and 

identify the common source in a medical unit. Recently, the diversity and dynamics of the 

microbiome of healthcare settings and its interaction with abiotic factors, building 

materials, and even medical devices are only beginning to be explored (27–30). New, 

quantitative insights with respect to these issues will allow us to unravel the reservoirs and 

new sources of emerging and unrecognized pathogens to ultimately reduce the incidence 

of nosocomial infections and hospital outbreaks.  
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In Chapter 2, we characterized the taxonomic composition and functional potential 

of biofilm microbial communities growing on showerheads at a major U.S. hospital using 

shotgun metagenomics. We were able to recover the draft genome of a novel 

Mycobacterium species, closely related to opportunistic pathogenic nontuberculous 

mycobacteria. Additionally, we identified genes related to disinfectant tolerance, virulence 

determinants involved in colonization and evasion of the host immune system, and genes 

potentially conferring resistance to several antibiotics.  

Collectively, our results highlight the need to understand the microbiome of drinking 

water biofilms using metagenomic approaches and its potential links to public health. Our 

data suggested that although water supply systems and surfaces in hospitals are constantly 

treated with disinfectants, showerhead biofilms represent a potential reservoir for HAIs and 

antibiotic resistance genes. Therefore, better cleaning practices should be applied in order 

to significantly minimize the risk of biofilm-associated infections in susceptible 

populations. 

 

 The gut microbiota from a rural-to-urban gradient: diversity and resilience 

unraveled by metagenomics 

Commensal microbiota co-evolve with their host and is indispensable in multiple 

metabolic functions, host physiology, and the development of the immune system (31, 32). 

Microbes associated with the digestive-tract are referred to as the gut microbiota. Given its 

tight relationship with the host, previous studies have reported high inter-subject variability 

of the microbiota composition from healthy subjects from different geographical locations 

(33–35). Even individual-specific patterns have been observed such as differences in gene 

content of the same species among individuals (36) as well as a stable and unique microbial 

profile over time (37). Among the factors that modulate the composition of the gut 

microbiota include host genetics, immune alterations, antimicrobials, and diet (38–40). 

Moreover, environmental and social factors such as mode of delivery, breastfeeding, pets 

at home, and tobacco smoke significantly impact gut microbial communities, especially 

their development during early life (41, 42). 
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In recent years, major research efforts have focused on studying how lifestyle factors 

have shaped our gut microbiota during a transition from rural populations located in farms 

and agricultural settings to westernized populations living in cities. To date, urbanization 

has globally increased with more than 53% of the total human population living 

predominantly in cities  (43). Massive movement of populations from rural to urban areas 

is occurring rapidly in developing countries (44). Previous reports have shown that pre-

agriculture rural populations (Yanomami, Venezuela (45), Malawian, Amazon (46), 

Hadza, Tanzaia (47), and Matses, Peru (48)) harbor higher fecal bacterial diversity than 

urban/industrialized populations (i.e., USA, Europe).  

The impact of urbanization (changes in dietary structure and lifestyle) on microbial 

diversity together with genetic and environmental factors has been associated with the 

increased incidence of gastrointestinal alterations including metabolic disorders, 

inflammatory bowel disease, and obesity mainly in western populations (49–51). At the 

same time, metabolic syndrome shows a close link with the increase of type 2 diabetes and 

cardiovascular diseases throughout the world, leading to morbidity and mortality (52). 

Metabolic syndrome encompasses an increased fasting plasma glucose, reduced HDL 

cholesterol, hyperlipidemia and hypertension, and obesity (53). Nonetheless, how the shifts 

in gut microbiome diversity in rural settings are exactly related (i.e., what the underlying 

mechanisms are) to the abovementioned disease or unhealthy states remains essentially 

unknown and is the subject of intense research currently.   

Changes in gut microbial composition have been recognized as a key factor on the 

development of metabolic diseases and chronic inflammation with abnormal production of 

multiple inflammatory mediators, impaired fat accumulation, insulin action, and immunity 

(54). For instance, the ratio Bacteroidetes/Firmicutes has been linked to obesity (55), albeit 

the exact underlying mechanism remains unclear. Type 2 diabetes has been associated with 

a reduction of butyrate-producing and endotoxins-producing Gram-negative bacteria in the 

gut, and an increase of opportunistic pathogens (56–58). 
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Characterizing microbial communities from human populations with different 

lifestyles and traditions is essential for our understanding on how urbanization processes 

have shaped the gut microbiota and influenced the development of host 

disorders/alterations and clinical outcomes. In this context, globalization of the Western 

lifestyle has brought new changes and perturbations in the microbial ecology of the gut 

including its capacity to tolerate stress or perturbation before changing to a different state 

(e.g., resilience) (59, 60). Based on this concept, in Chapter 3 we were interested in 

evaluating whether urbanization influences the gut microbiota response during infectious 

diarrhea by comparing fecal samples from a rural-to-urban gradient during disease and 

health states. 

Despite the increasing number of studies cataloguing gut microbial communities in 

human populations worldwide, most of the phylogenetic diversity analyses are based on 

16S rRNA gene, limiting our knowledge to low-level taxonomic resolution and leaving 

several unanswered questions such as the metabolic resilience and diversity of the 

community. Moreover, most of these studies aimed to compare populations from distinct 

geographical regions and cultural backgrounds and few studies have evaluated differences 

in microbial composition along rural-to-urban gradient in the same geographical area (e.g., 

same country or region) (61, 62). Focusing on the microbial dynamics in a lifestyle gradient 

within the same country undergoing urbanization, our study sidestepped confounding 

factors such different cultural and social preferences and provided new insights in the 

microbial response. 

Specifically, in Chapter 3 we applied shotgun metagenomics to compare the gut 

microbiota of subjects living in Quito (Ecuador’s capital) and rural populations from 

villages in Northern Ecuador and profiled the gut microbiota during acute diarrheal disease 

(ADD). Our data indicated differences in the abundance of community members and 

metabolic functions between the two populations most likely driven by lifestyle. When 

healthy microbiomes were compared to those during ADD, urban subjects showed larger 

shifts in abundance of multiple taxa and metabolic pathways than those from rural 

populations, indicating a less resilient gut community in the former ones. Our data 

indicated that local environmental and geographical factors seem to play a role in the gut 
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ecosystem response during diarrheal infection, which has important implication for treating 

diarrheal infection and for human wellbeing. 

 

 Bioinformatics algorithms for analysis of large bacterial genome datasets: 

detecting recently gene transfer events 

Next generation sequencing technologies have allowed us to study bacterial 

populations at the whole-genome scale, increasing our understanding on how bacteria 

interact with others and the environment as well as their genomic adaptations (i.e., modify, 

acquire, or loss gene content) during selective pressures (4, 63, 64). The systematic 

comparison of hundreds of bacterial genomes from different species has become a highly 

interesting task with applications in epidemiology, biodefense, biotechnology, among 

others.  

Genetic innovations such as mutations and gene transfer events confer advantage to 

the bacterial populations that acquire new physiological and metabolic capabilities to 

colonize new ecological niches and co-evolve with their host (65, 66). Horizontal gene 

transfer (HGT) is frequent among bacterial populations and can alter phenotypic properties 

substantially. This process has played a fundamental role on bacterial evolution, genomic 

diversification, and speciation (67, 68). Previous studies based on genomic data have 

reported that a considerable fraction of genes in prokaryotic genomes have been derived 

from HGT (69, 70) and through HGT, divergent populations (phylogenetically unrelated 

bacteria) can share adaptive traits such as antibiotic resistant genes (71). 

While several speciation scenarios have been postulated for bacteria (sexual vs. 

asexual), the bacterial species concept remains a controversial issue and our understanding 

on how clusters of closely related genotypes emerge and are maintained under high rates 

of gene transfer, is far from complete (72–74). Sexual populations are considered those in 

which the recombination rate “r” (polymorphisms shuffle by recombination during the 

same time interval) is greater than the mutation rate “m” (i.e., new polymorphisms 
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introduced by mutation). Under this scenario, recombination can act as a cohesive force 

that counteracts genetic divergence on the populations (74, 75). 

Despite the important effects of HGT on bacterial species, its effect on population 

structure (e.g., sexual vs. asexual speciation) and diversity remains to be fully understood. 

This is in part because detecting and quantifying HGT is still limited to small datasets, 

mainly due to the computationally expensive phylogeny-based approaches available. Thus, 

the quantification of HGT rates in a large collection of genomes is a noteworthy 

computational problem to address. On the other hand, quantify HGT between genomes of 

the same species has been challenging especially due to the high sequence identity of core 

genes at this level (e.g., low signal-to-noise ratio). Moreover, most of the methods 

employed to date for this purpose are based on assumptions that are frequently violated by 

the data analyzed, limiting the broad applicability of the derived conclusions.  

To help meet these challenges, in Chapter 4 we introduced an alternative 

mathematical model to estimate recent genetic events based on the genome-aggregate 

Average Nucleotide Identity (ANI) concept (76). Our model quantifies recent gene 

exchanges in a genome pair by comparing the fraction of shared genes at the 100% 

nucleotide identity to the average of hundreds of genomes from different bacterial species 

with similar ANI values. The fact that our approach is not based on a specific method, and 

its assumptions, represents a distinguishing strength compared to previous approaches and 

can be computationally scalable to thousands of bacterial genomes. We applied this model 

to compare the fraction of recent imports within and across bacterial species with distinct 

lifestyles (e.g., symbiotic vs. free-living) and ecological niches (e.g., fluctuating or more 

stable environments) and provided insights into the role of HGT on bacterial speciation. 

Comparison of the rates among commensal and free-living bacteria revealed that 

opportunistic pathogens, including Campylobacter jejuni, Campylobacter coli, and 

Neisseria meningitids, showed the highest fraction of genetic exchange. Annotations of the 

recent gene imports from these opportunistic pathogens indicated an enrichment of 

functions that allow efficient interactions with host cells as well as antibiotic resistant 

factors. A second set of genes was comprised by sequences related to the activation or 
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inactivation of virulence genes and also to the variation in the envelope structure. 

Collectively, our methodology and associated model offer an important addition to the 

toolbox for studying recent gene transfer and gene content adaptation on bacterial genomes.  
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CHAPTER 2. CHARACTERIZATION OF BIOFILMS 

DEVELOPING ON HOSPITAL SHOWER HOSES AND 

IMPLICATIONS FOR NOSOCOMIAL INFECTIONS 

Reproduced with permission from Maria J. Soto-Giron, Luis M. Rodriguez-R, Chengwei 
Luo, Michael Elk, Hodon Ryu, Jill Hoelle, Jorge W. Santo Domingo, Konstantinos T. 

Konstantinidis. Appl. Environ. Microbiol. 2015, 81(16), 5420. Copyright © 2015, 
American Society for Microbiology. 

 

 ABSTRACT 

Although the source of drinking water (DW) used in hospitals is commonly 

disinfected, biofilms forming on water pipelines are a refuge to bacteria, including possible 

pathogens, which survive different disinfection strategies. These biofilm communities are 

only beginning to be explored by culture-independent techniques that circumvent the 

limitations of conventional monitoring efforts. Hence, the frequency of opportunistic 

pathogens in DW biofilms and how biofilm members withstand high doses of disinfectants 

and/or chlorine residuals in the water supply remain speculative. The aim of this study was 

to characterize the composition of microbial communities growing on five hospital shower 

hoses using both 16S rRNA gene sequencing of bacterial isolates and whole-genome 

shotgun metagenome sequencing. The resulting data revealed a Mycobacterium-like 

population, closely related to M. rhodesiae and M. tusciae, to be the predominant taxon in 

all five samples, and its nearly complete draft genome was recovered. In contrast, the 

fraction recovered by culture was mostly affiliated to Proteobacteria, such as members of 

the genera Sphingomonas, Blastomonas, and Porphyrobacter. The biofilm community 

harbored genes related to disinfectant tolerance (2.34% of the total annotated proteins), and 

a lower abundance of virulence determinants related to colonization and evasion of the host 

immune system. Additionally, genes potentially conferring resistance to beta-lactam, 

aminoglycoside, amphenicol, and quinolone antibiotics were detected. Collectively, our 

results underscore the need to understand the microbiome of DW biofilms using 
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metagenomic approaches. This information could lead to more robust management 

practices that minimize risks associated with exposure to opportunistic pathogens in 

hospitals. 

 

 INTRODUCTION 

Despite the use of disinfectants in drinking water distribution systems (DWDS), bacteria 

are able to colonize different parts of DWDS such as building plumbing systems and 

fixtures (e.g., sinks, showerheads, and faucets) (1–3). Previous studies have shown that 

several organisms associated with DWDS can tolerate the effects of disinfectant 

compounds because of their ability to form biofilm (4, 5). Unlike planktonic forms, bacteria 

in biofilms are more resistant to sterilization procedures and antimicrobial exposure, 

showing in some cases a minimal inhibitory concentration (MIC) up to 1000-fold higher 

than their planktonic counterpart (6). Hence, biofilm formation in response to disinfectant 

treatment can increase the resistance to common cleaning protocols and promote the 

transfer of antibiotic-resistance genes among the biofilm members, producing multidrug 

resistance bacteria (7, 8).  

Although the frequency of nosocomial infections caused by bacteria located in hospital 

water supplies is traditionally thought to be low (9), this infection route has regained 

attention due to the increase of hospital-acquired infections in recent years and the presence 

of opportunistic pathogens in biofilms located in hospital premise plumbing and medical 

device (10–12). Microorganisms forming a biofilm can detach and be transferred to 

surfaces, medical equipment, and human individuals (13). Biofilms located on hospital 

showerheads can as such be an important reservoir for nosocomial infections (1, 8, 14). 

Previous studies of the microbial community composition of showerhead biofilms have 

identified nontuberculous mycobacteria (NTM), some of which are considered 

opportunistic pathogens that are commonly found in natural environments (i.e., soil and 

water) as well as in the built environment including hospitals (10, 15). Some NTM species 

have been linked to hypersensitivity pneumonitis, cervical lymphadenitis, allergies, and 

respiratory problems mainly in immuno-compromised individuals (16, 17). NTM growing 
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in biofilms have been identified in drinking water systems, on PVC surfaces, and on 

showerheads from hospitals, houses, and workplaces (18–20). Their frequent occurrence 

in such habitats may be explained because of their ability to survive stressors commonly 

found in distribution systems such as oligotrophic conditions, chlorination, and hot 

temperatures (21, 22). However, most previous surveys reporting the occurrence and 

prevalence of mycobacteria in DW have been restricted to 16S ribosomal RNA (rRNA) 

gene fragment analysis, lacking resolution at the species level (23), and to culture-based 

techniques (23, 24), which often provide a biased representation of the sample due to the 

selective lab media, culture conditions, and volume of the sample processed. 

The gene functions that underlie the ecological success of most DW bacteria in DWDS 

remain poorly described, in part due to the lack of genetic information on microbial groups 

commonly inhabiting DWDS. Hence, metagenome sequencing (i.e., random sequencing of 

total community DNA extracts) has been used recently to examine the functional network 

of complex microbial communities (25, 26). In spite of the rise of infections by 

opportunistic premise plumbing pathogens, relatively few studies have assessed the 

diversity of biofilms growing in DWDS at the metagenome level, especially in health care 

units (27–30). Most previous reports are based on 16S rRNA gene amplicon surveys that 

are limited in scope as far as accurately predicting exposure risks. Therefore, in this study, 

we characterized the biofilm microbial communities of shower hoses in a hospital using 

shotgun metagenome sequencing and evaluated the genetic diversity and relative 

abundance of antibiotic and disinfectant resistance present. We also compared the 

metagenomics findings to those obtained by a substantial collection of genome sequences 

of isolates (n=94) recovered from the same samples and those of previous studies from 

other hospitals and the built environment. 

 

 MATERIALS AND METHODS 

2.3.1 Sample collection 



 19 

The samples used in this study were collected during four consecutive days in 2012 

from 40 showerheads located in different rooms within an Ohio hospital. Drinking water 

in this building normally contains a free chlorine residual of 0.8 mg/L, and the average 

water temperature and pH are 20°C and 8.4, respectively. In addition, the concentrations 

of several metals (Cr, Cu, Fe, Ni, Sr, Sn, Pb) were measured using a Inductively Coupled 

Plasma-Mass Spectrometry (ICP-MS) according to U.S EPA method 200.8 (31) and were 

found to be below regulatory thresholds (e.g., Al: 52 to 65 ug/L, P: 155 to 170 ug/L, S: 20 

to 22 mg/L, K: 0.5 to 2.4 mg/L), with limited variation from room to room.  

To minimize collection time, the entire showerheads were removed with the shower 

hoses, water was discarded and the showerheads transferred to sterile plastic bags, which 

were then placed in coolers containing ice packs. Hoses were removed and split open with 

a sterile knife to expose the inner luminal surfaces. Biofilms from the shower hoses were 

collected by scrapping the inner surfaces with sterile spatulas. The biomass was then 

transferred to sterile conical tubes and re-suspended in phosphate buffer. Five of the 

samples were randomly selected for metagenomic studies while all samples were used for 

conventional microbiological culture. Samples were processed within four hours of 

collection time.  

2.3.2 Culturing and Identification of Isolates 

For isolation, an aliquot (1 ml) of the re-suspended biomass was used to grow 

heterotrophic bacteria. Biofilm samples were diluted and processed in duplicate, spotted 

onto R2A agar plates (32), which were then incubated at 25°C for 5-7 days. Colonies were 

re-streaked onto R2A agar plates to obtain single isolated colonies. Using sterilized 

toothpicks, more than 2000 pure colonies were carefully scrapped from the R2A agar plates 

and re-suspended in 30 µl of sterile molecular grade water. Re-suspended cells (2 µl) were 

used to partially amplify the 16S rRNA gene using universal primers 8F and 787F.  

Amplification conditions and sequencing analysis conducted were the same as described 

elsewhere (33). 
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2.3.3 High throughput sequencing 

The five samples used for the metagenomic analyses were filtered onto 

polycarbonate membranes and stored at -20°C until further processed. Total DNA was 

extracted from these filters using a Ultra Clean Soil DNA kit (MoBio Laboratories) as 

previously described (34). A subset of all strains isolated in this study were subjected to 

whole-genome sequencing. This subset represented strains with the most common colony 

morphotypes and included strains from the samples used in metagenome sequencing. 

Total DNA extracted from polycarbonate filters and from selected isolates was 

normalized to 5ng/µl and libraries were constructed using Illumina TruSeq preparation 

protocol and sequenced on an Illumina HiSeq 2000 using a 100 bp paired-end read 

approach, following the instructions of the manufacturer (Illumina, San Diego, CA).  

2.3.4 Read trimming and de novo assembly 

Raw reads from the metagenomes and isolate genomes were trimmed using 

SolexaQA with a Q = 20 Phred score cut-off  (35); sequences shorter than 50 bp after 

trimming and/or with Illumina adaptors at the 3’ end were discarded. The assembly of the 

metagenomes was performed using the hybrid protocol previously described (36), which 

combines Velvet (37), SOAP de novo (38) , and Newbler 2.0 (39) assemblers using k-mer 

values from 31 to 63. Table S1 shows the statistics of the shower hose metagenomes. For 

the isolate genomes, trimmed reads were assembled using SPAdes assembler with “--sc --

careful” and error correction options (40). 

2.3.5 Taxonomic classification of the biofilm microbial communities 

Taxonomic classification of assembled metagenomic contigs was carried out using 

MyTaxa with default parameters (likelihood score ≥ 0.5) (41). In addition, the taxonomic 

affiliation of 16S rRNA gene fragments recovered from metagenomes and isolate genome 

reads was determined using the Ribosomal Database Project (RDP) classifier (42) with the 

RDP 16S rRNA  gene database release 11.3 (43) at 97% nucleotide sequence identity level.  

2.3.6 Metagenomic functional gene assignment and abundance analysis 
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Protein-coding genes in assembled contigs longer than 5 kbp were identified by 

MetaGeneMark using default parameters (44). Functional annotation was based on 

BLASTp (45) searches of the predicted amino acid sequences against the 

UniProt/SwissProt database (46) using a cut-off for a match of at least 30% identity and 

50% of the length of the query protein sequence covered in the alignment. The abundance 

of protein functions in each dataset was calculated as the number of (assembled) protein 

sequences assigned to the function above the cut-off divided by the total number of 

annotated proteins predicted in the respective sample.  

Predicted proteins associated with antibiotic resistance mechanisms were identified 

by BLASTp searches against the antibiotic resistance database (ARDB) (47) composed of 

23,137 antibiotic resistance genes (ARG) with a threshold e-value of 1e-10 and at least 

70% of the query sequence covered by the BLAST alignment [higher stringency compared 

to above in order to reduce the frequency of false positive matches, as previously suggested 

(48)]. 

Genome equivalents in the metagenomic datasets were calculated as follows: HMM  

(Hidden Markov Model) searches of 101 universally conserved single-copy genes (49) 

against the individual, unassembled metagenomic reads were performed using HMMER3 

version 3.1 (http://hmmer.janelia.org/) (50) with default settings. Ten models, which 

represented more than one family or extremely conserved families at the sequence level 

(rpoC, rpoC1, pheT-bacteria, pheT-archaea, proS-bacteria, proS-archaea, glyS, alpha-glyS, 

era and, tRNA synthase class I), were excluded from further analysis. The median 

sequencing depth (number of reads/bp) of the	remaining	91	HMM models was determined 

and was taken as a proxy of 1 genome equivalent (i.e., the corresponding proteins should 

be encoded by every genome in the sample). The number of copies per cell of a target gene 

was estimated as the sequencing depth of that gene (number of reads/bp) divided by the 

normalizing factor, i.e., the median number of reads/bp of the 91 universal genes. 

ORF prediction and functional annotation of protein-coding genes in the isolate or 

population (bin) genomes (see also below) were performed as described above for 

metagenomes. Proteins were assigned to the functional categories using Gene Ontology 
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terms (51). In addition, genome completeness was estimated by the recovery of the 91 

universal single copy genes based on HMM searches. Contamination rate was defined as 

the percentage of the universal genes found in multiple copies in an isolate or population 

genome. 

2.3.7 Recovery of genomes from metagenomes (Binning) 

Assembled contigs for each dataset were clustered using MaxBin (52), an 

expectation-maximization based-algorithm that combines differential coverage and 

tetranucleotide compositional information to bin contigs into population genomes. 

Additionally, population genomes (bins) were visually inspected for uniform coverage 

across the genome sequence and consistent phylogenetic signal of universal genes, and 

confirmed using CONCOCT (53). Taxonomic affiliation of bins was based on MyTaxa 

analysis, and the results were further validated by inspecting the results of BLASTp 

searches of universal genes predicted in the bins against the NCBI refseq database using 

the LCA algorithm of MEGAN (54), essentially as previously performed (55).  

Potential virulence factors in the Mycobacterium bin were identified by BLASTp 

searches of its predicted proteins against the Virulence Factors of Pathogenic Bacteria (25) 

and PATRIC databases (56) using a cutoff e-value of 1e-10 and at least 70% of the query 

aligned sequence. All raw sequence datasets were deposited in the Sequence Read Archive 

database at NCBI under the number SRP065069 and binned genome sequences are 

available at http://enve-omics.ce.gatech.edu/data/showerheads. 

 

 RESULTS 

2.4.1 Composition of the microbial community of shower hose biofilms 

The taxonomic assignment based on 16S rRNA gene-encoding metagenomic reads 

showed that shower hose biofilms contained Actinobacteria closely related to the genus 

Mycobacterium (average relative abundance 42.2 ± 13% of total; 13% represents the 

standard deviation observed among the five samples), Proteobacteria closely related to the 
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genera Erythrobacter (average 9.4 ± 3%), Sphingomonas (average 6.6 ± 2.6%), 

Novosphingobium (average 4.2 ± 1.4%), and Bradyrhizobium (average 5.2 ± 3.2%), and 

other, less abundant bacterial genera affiliated with the phyla Bacteriodetes (4.1 ± 3) and 

Firmicutes (1.2 ± 1) (Fig. 2.1, Table A.1). Similar results were obtained based on best 

match analysis of predicted protein sequences recovered in the assembled metagenomic 

contigs against complete available genome sequences (Table A.1). 

 

Figure 2.1. Taxonomic composition of the shower hose biofilms based on 16S rRNA 

gene fragments recovered from the metagenomes and isolates.                                                    

The relative abundance (y axis) of the 16S rRNA gene-encoding reads recovered from the 

metagenomes (normalized by the total number of classified 16S rRNA gene-encoding 

reads in each metagenome) and the cultured fraction (normalized by the number of isolates; 

last column) for the major genera present in each sample (x-axis) is shown.  

Overall, in all five shower hose metagenomes the dominant population 

corresponded to a previously unclassified Mycobacterium sp., most closely related to 

Mycobacterium rhodesiae and M. tusciae, showing ~85% genome-aggregate average 

M1											M3											M4											M5										M6							Isolates
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nucleotide identity or ANI (60). The second most abundant population genome was 

affiliated with Blastomonas, which shared 77% of its proteins at ~84% Average Amino 

Acid Identity (AAI) to the closely related Blastomonas sp. AAP53 reference genome (Fig. 

2.2, Table A.3).  

 

Figure 2.2. Phylogenetic relationships and relative abundance of the populations 

recovered in the shower hose metagenomes.  

The tree shows all 30S ribosomal protein S9 sequences assembled from the metagenomes 

and selected reference sequences from publicly available genomes (denoted by complete 

species names). The radius of the pie charts indicates the number of reads mapping to the 

specific protein sequence related to the node, and the colors represent the five different 

datasets (see figure key). Roseobacter denitrificans was used as an out-group. The 

phylogenetic tree was constructed using Neighbor-Joining algorithm with 1000 bootstrap 

replicates in MEGA V.5 (91). Scale bar represents substitutions per site. 

 

Analysis of partial 16S rRNA gene sequences of over 1850 R2A isolates revealed 

that the vast majority (>74%) belonged to the Proteobacteria phylum (data not shown). 

Specifically, 23% (22/94) of the isolates whose genomes were fully sequenced as part of 
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this study were affiliated with the genera Blastomonas, followed by Sphingomonas (18%), 

and Porphyrobacter (14%) (Table A.2). Several isolates were assigned to the genera 

Streptococcus (n=4), Dermacoccus (n=2), Acidovorax (n=4), Neisseria (n=3), and 

Mycobacterium (n=2) (Fig. 2.1).  

A comparison of the recovered Blastomonas sp. population genome against the 

Blastomonas isolates showed an ANI of 99.9% (s.d 0.01) sharing approximately 91% of 

its protein sequences. These results suggest that the Blastomonas isolates are 

representatives of the population recovered in the metagenomes, presumably representing 

members of the same population (57). In contrast, the average ANI of the recovered 

Mycobacterium sp. population and the two isolates classified as Mycobacterium sp. 

indicated that indeed belong to the same genus but represent distinct populations and 

presumably species (ANI: 82.41%, s.d 0.02), and are low-abundance members of the 

biofilm community.  

The discrepancy between the taxonomic profiles of the culture-dependent and 

culture-independent results was presumably attributable to the culture medium and growth 

conditions used, which favored the recovery of Blastomonas sp. (58). While many 

mycobacterial species can grow on R2A, it should be noted that some mycobacteria are 

slow growers and can take up to 8 weeks (or longer) to grow on media typically used for 

the propagation of mycobacteria (59). Nonetheless, the genome isolates were useful as 

reference genomes in evaluating genome coverage and confirming species identification 

(Fig. A.2). Our results also showed that a substantial fraction (20% or more) of drinking 

water microbial communities growing on the shower hose surfaces can be cultured with 

the described medium, contrasting with the 1-2% or less for several complex natural 

environments such as soils (60). 

2.4.2 Presence of opportunistic pathogens 

The taxonomic classification of metagenomic sequences, as well as genomes of 

isolates (see above), revealed the presence of potential opportunistic pathogens in shower 

hose biofilms (e.g., members of the Sphingomonas, Rhizobium, Mycobacterium 

mucogenicum, and Neisseria perflava). Notably, the most abundant population recovered 
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in the metagenomes (average relative abundance among samples 66.7% ±	8.21	of	 the	

total) represented a close relative of M. rhodesiae and M. tusciae. These two mycobacterial 

species are considered potential opportunistic pathogens since they have been identified as 

the causing agent of pulmonary and disseminated infections in immuno-compromised 

individuals (10, 61–63). 

Phylogenetic analysis showed that the assembled protein sequences of this 

Mycobacterium-like population genome are linked to a novel species based on relatively 

low ANI values (~85%; Fig. A.2) to known mycobacteria species (57). Remarkably, the 

recruitment of metagenomic reads against the recovered mycobacterial genome revealed 

that this population was the most abundant and distinct from rare (less-abundant) co-

occurring relatives in the samples. (Fig. A.4). Further, reads with more than 99% nucleotide 

identity to the reference represented around 62.5% of the total Mycobacterium-like 

sequences in the metagenomes and overlapping reads sampling the same part of the 

genome produced a star-like phylogeny (Fig. A.4), suggesting that this is an abundant and 

homogenous, clonal (or nearly clonal) population. Predicted proteins from this population 

shared 85.6% AAI (77% of the total number of proteins in the population bin) with M. 

tusciae and 86.2% AAI (76% of the total number of predicted proteins) with M. rhodesiae.  

Functional annotation of the recovered Mycobacterium sp. population genome 

revealed a number of proteins related to virulence and host colonization previously 

identified in other NTM species, including M. rhodesiae, M. smegmatis, and M. bovis 

(Table A.3). In particular, our analysis identified several key proteins for i) biogenesis and 

central metabolism inside host cells such as pantothenate synthetase (panC), aspartate-1-

decarboxylase (panD), and superoxide dismutase (sodC), together with genes for ii) 

insertion into the host cell via complement-mediated phagocytosis, including fibronectin-

binding protein C (fbpC2) and the fibrinogen-binding protein (fbpA), and iii) for protection 

against oxygen-free radicals delivered by host cells, such as catalase-peroxidase (katG) and 

the sigma factor (sigF) (Table 2.1).  
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Table 2.1. Description of the proteins present in the metagenomes associated with 

biofilm formation, antibiotic and disinfectant resistance mechanisms and virulence.              

Standard deviation (4th column) represents the variation observed among the five 

metagenomes. Relative abundance was based on the number of predicted proteins assigned 

to a particular function divided by the total number of annotated metagenomic proteins, 

previously mentioned on the methods. 

Mechanism Protein name	 Gene	 Average 
abundance 

(±	standard	
deviation)	

Biocide Resistance    

Attachment, invasion, 
and peroxide 
resistance 

DNA binding protein  dps 0.27 (0.16)	

Protective role, 
oxidative stress 
defense 

Thioredoxin reductase trxB 0.51 (0.05)	

 Copper/zinc superoxide dismutase  sodC	 0.07 (0.01)	
 Putative alcohol dehydrogenase D adhD 0.09 (0.08)	
 Redox-sensitive transcriptional 

regulator 
soxR 0.04 (0.01)	

 Alkyl hydroperoxide reductase protein ahpF 0.06 (0.02)	
 Glutathione reductase gorA 0.01 (0.008)	
 Manganese superoxide dismutase sodA 0.03 (0.02)	
 RNA polymerase sigma factor rpoS 0.1 (0.07)	
 Hydrogen peroxide-inducible genes 

activator 
oxyR 0.14 (0.04) 	

DNA repair exodeoxyribonuclease III  xthA 0.12 (0.07)	
Resistance to copper 
and silver 

Cation efflux system protein  cusA	 0.09 (0.03)	

Multidrug efflux 
pump systems 

Resistance nodulation division (RND) 
family 

acrB, mdtB 0.02 (0.01)	

 Multidrug resistance protein emrK,  0.02 (0.01)	
 ABC transporter ATPase PGP3 0.01 (0.01)	
Biofilm formation    
 Heat shock protein GroEL1 0.27 (0.06)	
Biosynthesis Glutamate synthase  gltB 0.08 (0.02)	
Growth Putative membrane protein mmpL4	 0.07 (0.05)	
Biofilm detachment Glutathione synthetase ghsB 0.08 (0.02)	
Carbon metabolism Phosphoenolpyruvate carboxykinase pckA	 0.05 (0.04)	
Metabolism Mycocerosic acid synthase mas 0.05 (0.04)	
 extracellular polymeric substance EPS 0.07 (0.04)	
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Table 2.1 continued 
 
Exopolysaccharide 
biosynthesis and 
Biofilm development GDP mannose dehydrogenase algD	 0.09 (0.09)	
Virulence and 
antigenic variation  

   

Possible	role	in	
virulence	and	
antigenic	variation	

Uncharacterized PE-PGRS family 
protein 

PE_PGRS3
3 

0.22 (0.16)	

Required for 
virulence 

cholesterol oxidase  choD 0.06 (0.04)	

 ABC transporter ATP-
binding/permease protein  

Rv1747 0.11 (0.09)	

 Serine/threonine-protein kinase  pknF 0.09 (0.08)	
 Probable cation-transporting ATPase  ctpG 0.04 (0.04)	
 Probable copper-exporting P-type 

ATPase V 
ctpV	 0.03 (0.05)	

Known Virulence 
factors 

   

Protection against 
oxygen free radicals 

Peroxidase/catalase katG 0.23 (0.04)	

Increased resistance 
to reactive oxygen 
intermediates 

Sigma factor sigF 0.11 (0.08)	

Secreted protein and 
virulence determinant 
factor 

Glutamine synthase glnA1 0.07 (0.04)	

Facilitate the 
adhesion of bacteria 
to the mucosal 
surface 

fibronectin binding proteins  
 

fbpC2 and 
fbpA	

0.02 (0.01)	

ESX-1 secretion 
system and DNA 
conjugation 

Extracellular mycosin protease  
 

mycP1	 0.05 (0.03) 	

Transposition Insertion element IS6110  MRA_0012 0.06 (0.04)	
 Transposase for insertion sequence 

element IS1081 
YIA3_RHIS

P 
0.09 (0.06)	

 Uncharacterized protein y4hP NGR_a03 0.18 (0.13)	
 Transposase for insertion sequence 

element IS6120 
PUV_0948

0 
0.11 (0.07)	

 Uncharacterized protein 
y4jA/y4nE/y4sE 

NGR_a031
50 
 

0.07 (0.04)	

 Insertion element ISR1  YIA3_RHIS
P 

0.06 (0.04)	
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 We also identified members of the Sphingomonas genus in the shower hose 

biofilms. Members of this genus that have been previously isolated from hospital water 

sources and associated with urinary tract infections and peritonitis (12, 64). Notably, cases 

of bacteremia have been reported including one in a hospital in Taiwan (65) and other in a 

cardiovascular ICU in a hospital in Turkey (66). Since these reports are based on non-

sequencing methods (e.g., pulse field gel electrophoresis and blood cultures), it was not 

possible to perform a more detailed comparison to the isolates and populations recovered 

in the present study. 16S rRNA gene sequence analysis showed that the closest relative for 

several of our isolates was S. koreensis (99% nucleotide identity), which has been identified 

as the causative agent of meningitis in at least one previous study (67). Taken together, it 

is likely that the Sphingomonas isolates recovered here could represent opportunistic 

pathogens. 

2.4.3 Disinfectant resistance mechanisms 

Several genes associated with resistance to disinfectants applied in municipal water 

treatment were recovered in both metagenome and isolate genomes. For instance, we 

recovered genes encoding proteins with participation in SoxR, OxyR, and SOS systems 

that have previously been experimentally identified as conferring protection against 

oxidative stress (68, 69). These functions were at least 10 times more frequent (i.e., number 

of distinct gene alleles detected) in the metagenomes relative to all completed bacterial 

genomes with similar genome sizes available in NCBI as of January 2016 (number of 

genomes used = 442; genome size in the range of 2 to 4Mb; t-test p-value 0.00065, on 

average), indicating that the shower hose environment selects for the functions. In addition, 

we identified multidrug efflux pump genes, including the ABC, SMR, and RND systems, 

which can confer resistance to disinfectants as well as antibiotics (for the latter, see below) 

in Gram-negative biofilm members affiliated with Sphingomonas, Porphyrobacter, and 

Blastomonas. All corresponding protein sequences showed high amino acid identity (> 

40%) and conservation of functional domains with their experimentally verified homologs 

(Fig. 2.3, Table A.4). 
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Figure 2.3 Relative abundance of functional genes in the shower hose metagenomes. 

 (From top to bottom) The heat map on the left is composed of 7 proteins involved in 

antibiotic resistance, 12 proteins involved in disinfectant resistance mechanisms and EPS 

production, and the 30 most abundant proteins annotated with UniProt DB (rows) for each 

sample (columns).  The small heat map on the right represents a magnification of the main 

heat map, focusing on the antibiotic resistance genes (note the difference in scale). 

Antibiotic class denotes the classification of the antibiotics based on WHO ATC code J01 
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(WHO Collaborating Centre for Drug Statistics Methodology, available through 

http://www.whocc.no/atc_ddd_index/). The cladogram was constructed using complete 

linkage hierarchical clustering with Euclidean distance as implemented on gplot package 

in R (70). A detailed description of all the proteins plotted in the heat map is in the table 

S4. 

 

2.4.4 Antibiotic resistance mechanisms 

A BLAST analysis of the metagenomic proteins against the Antibiotic Resistance 

Genes Database (ARDB) revealed that the sampled organisms likely have proteins that 

underlie resistance to at least four distinct antibiotic classes: beta-lactamase, quinolone, 

aminoglycoside, and amphenicol. Overall, the M3 metagenome presented the highest 

percentage of cells encoding ARG, specifically beta-lactamase (bl2B) (23.1% of total), 

mycobacterial fluoro-quinolone resistance protein A (mfpA) (28.3%) that is involved in 

DNA mimicry mechanisms (67), and aminoglycoside 2'-N-acetyltransferase (aac2Ib) that 

acetylates aminoglycoside antibiotics preventing their binding to the bacterial ribosome 

(71) (Table 2.2). Thus, the dominance of Mycobacterium in sample M3 (53%) was also 

reflected in the antibiotic resistance profile of this sample since 66.6% of the contigs 

encoding ARG were phylogenetically affiliated with this genus. 

 

 

Table 2.2. Abundance of antibiotic resistance genes recovered from the shower hose 

metagenomes.  

The values represent the genome equivalents of each gene calculated using its sequencing 

depth divided by the normalizing factor of the corresponding dataset outlined in the 

Material and Methods section 
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ARG 
symbol	

Function	 Antibiotic 
resistance	

Genome equivalents (%)	
M1	 M3	 M4	 M5	 M6	

BL2b Beta-lactamase	 Penicillin, 
cephalosporin	

10.9	 23.1	 6.2	 0	 2.5	

MfpA Mycobacterium 
fluoro-quinolone 
resistance protein A	

Fluoroquinolone, 
ciprofloxacin and 
sparfloxacin	

4.2	 17.6	 4.3	 16.7	 5.5	

Aac2Ib Aminoglycoside 2'-
N-acetyltransferase	

Netilmicin, 
tobramycin, 
dibekacin, 
gentamicin	

1.3	 38.3	 2.7	 0	 2.8	

Aph3Ic Aminoglycoside O-
phosphotransferase	

Paromomycin, 
neomycin, 
kanamycin, 
lividomycin, 
ribostamycin, 
gentamincin_b	

0	 1.9	 0	 0.2	 0	

Aac2Ic Aminoglycoside N-
acetyltransferase	

Gentamicin, 
netilmicin, 
tobramycin, 
dibekacin	

0	 0	 0	 18.7	 31.6	

CeoB Resistance-
nodulation-cell 
division transporter 
system. Multidrug 
resistance efflux 
pump	

Chloramphenicol	
	

0	 0	 0	 0	 0.5	

BacA Undecaprenyl 
pyrophosphate 
phosphatase	

Bacitracin	 0	 0	 0	 0	 0.4	

 

The second most abundant population genome recovered from the metagenomes, 

which was also well represented among the isolates (unlike the abundant mycobacterial 

population), was assigned to Blastomonas and encoded genes likely conferring resistance 

to aminoglycoside, macrolide, and bacitracin antibiotics. Indeed, a comparison between 

the 16S RNA gene sequences obtained from the shower hose Blastomonas isolates in this 

study and those obtained from Blastomonas strains isolated from a tap water in Portugal 

(GenBank: HF930725.1) (61) revealed high sequence identity (> 97%); therefore, these 

two isolates likely represent the same or highly related species. The Portuguese tap water 
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isolate was highly resistant to antibiotics, based on an ATB PSE EU (bioMérieux) 

susceptibility test, mostly to the aminoglycoside antibiotic class, including gentamicin and 

tobramycin. This finding was consistent with the gene content predicted in the Blastomonas 

isolates of our study. In addition, other genes conferring resistance to penicillin, 

cephalosporin, paromomycin, neomycin, lividomycin, ribostamycin, and chloramphenicol 

were detected in the metagenomes, albeit at much lower abundances (present in <5% of 

the genome equivalents).  

2.4.5 Comparisons to other similar environments 

We compared 16S rRNA gene fragments recovered from the shower hose 

metagenomes against 16S rRNA gene sequences available from DWDS pipes located in 

Florida (72) and a surface in the intensive care unit (ICU) of a hospital ward in Spain (73). 

This analysis revealed distinct taxonomic profiles between these and our shower hose 

metagenomes (Fig. A.1). Most notably, the shower hose datasets presented higher 

abundances of sequences related to Mycobacteriaceae (an average of 38% in shower hose 

versus 0.03% in the ICU surface and 6% in pipes), followed by Sphingomonadaceae (18% 

in shower hose versus 5% in the ICU surface and 0.03% in pipes), and Erythrobacteraceae 

(13% in shower hose versus 0.09% in the ICU surface and 0% in pipes). Distinctively, 

members of the Methylococcaceae order dominated the DWDS pipe sample (83% of the 

total) but were essentially absent in the other two datasets. In addition, Staphylococcaceae 

and Enterobacteriaceae dominated the ICU ward surface of the hospital (22% and 20% of 

the total, respectively) but were in low abundance in the other datasets.  

A comparison of the shower hose metagenomes with available metagenomes from 

diverse natural water ecosystems in similar temperate geographic regions indicated that the 

former were enriched in virulence factors (3.64% of total metagenomic reads) and 

antibiotic resistance functions (0.032%) compared to metagenomes from the Pearl River 

(China) (0.072% and 0.011% of total reads annotated as virulence factors and antibiotic 

resistance genes, respectively), and wintertime (0.071% and 0.010%, respectively) and 

summertime (0.340% and 0.072%, respectively) samples from Lake Lanier (Georgia, 
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USA). Compared to a drinking water treatment plant located in the Pearl River Delta in 

China (0.008%), the showerheads were enriched in these two functions (0.17%) (Fig. A.3). 

 

 DISCUSSION 

This study analyzed biofilms of shower hoses in a hospital and found that most 

metagenomic sequences were associated with members of the genera Mycobacterium, 

Erythrobacter, Sphingomonas, and Novosphingobium. These findings were consistent with 

those from previous studies showing that mycobacterial populations are frequently 

abundant in DWDS because of their high resistance to chlorine, monochloramine, and 

other disinfectant compounds in water systems (1, 20, 74). The high abundance of 

mycobacterial populations in the shower hose biofilms contrasted with their low abundance 

or absence in microbial communities on the surface of the ICU in a hospital in Spain, which 

consisted predominantly of Staphylococcaceae and Enterobacteriaceae (Fig. A.1). The 

abundance of these two bacterial groups in the Spanish hospital could be the result of these 

organisms being continuously shed by incoming patients and hospital staff and therefore 

may not be waterborne in nature. 

Other possible explanation for the dominance of mycobacteria-like sequences is 

related to the particular physicochemical features of the shower hose, such as pipes material 

either galvanized (zinc coated) or made of copper, and the disinfectants and low organic 

carbon content of the water, that selectively favor the growth of some mycobacterial 

populations (75, 76). Because of the identification of several pathogenicity factors and 

antibiotic resistance genes (Fig. 2.3), as well as its high relatedness to characterized NTMs 

(i.e., in terms of both gene content and amino acid similarity), the recovered 

Mycobacterium sp. population might represent an opportunistic pathogen. Therefore, our 

findings revealed that microbial biofilms in hospital shower hoses are characterized by 

distinct composition, including previously non-described species, which require more 

attention due to their potential implications for health (see also below). Nonetheless, it 

should be noted that this Mycobacterium sp. genome encoded, in general, fewer virulence 

factors compared to its close relatives M. tusciae (66.6% of total VFs of M. tusciae were 
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present in the Mycobacterium sp. population) and M. rhodesiae (80.9% of total VFs 

shared), indicating that this population might represent a member of NTM with 

comparatively less public health implications.  

In addition, some of the isolates were affiliated with disease-causing bacteria. The 

isolates CCH10-H12 and CCH6-A12 were most closely affiliated with Neisseria perflava 

(98% and 100% 16S rRNA gene identity, respectively). This bacterium is a common oral 

commensal of the human upper respiratory tract, but occasionally, can cause endocarditis, 

peritonitis, and complicated bacteremia, mainly in individuals with immune suppression 

(77). Further, two Mycobacterium isolates were below the detection limit of our 

metagenomic effort (rare members of the biofilm) and most closely assigned to M. 

mucogenicum (100% 16S rRNA gene identity). Compared to other mycobacterial species, 

this is a fast-growing organism and is commonly involved in catheter-related infections 

and nosocomial outbreaks caused by contaminated hospital equipment and water sources 

(78, 79). The divergence between the Mycobacterium species recovered by culture-

dependent and -independent methods was probably due to the fact that incubation time and 

culture media were not suitable for isolating the most abundant Mycobacterium, which was 

recovered with the herein used metagenomic approach (close relative to M. rhodesiae and 

M. tusciae). Therefore, even though the frequency that the aforementioned organisms cause 

infections is probably lower compared to some other most commonly encountered 

opportunistic pathogens based such as members of the Burkholderia and Ralstonia genera, 

it is quite likely that they represent a health risk, especially for immuno-compromised 

patients. Collectively, these findings suggest that more attention needs to be given to 

biofilms growing on shower hoses and other surfaces in clinical settings due to their 

potential to represent a health risk. Current and future studies held by the Hospital 

Microbiome and the Indoor Environment Projects (30, 80), analyzing hundreds of samples 

and from various hospital settings, would add to the picture of the microbial communities 

presented here, and the assessment of the associated risk for public health. 

In addition to mycobacteria, members of other abundant genera present in the shower 

hose biofilms, namely Porphyrobacter, Blastomonas, and Sphingomonas, have also been 

frequently found in water-related environments such as swimming pools, bulk water, and 
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faucets, presumably because of their ability to survive disinfection regimes (3, 81). In 

particular, these bacterial groups are considered to play an important role in the formation 

and dynamics of biofilms because of their high production potential for EPS and ability to 

colonize surfaces (82). Members of these genera also have the ability to co-aggregate with 

other community members, contributing to an effective colonization and expansion of 

biofilms (81). In view of the frequent occurrence of Sphingomonadaceae in hospital tap 

water and their high survival in the air of the indoor environment, this group has been 

identified as frequent contaminant of medical devices (64, 66, 73). Although these 

organisms were less abundant in shower hose biofilms than mycobacteria (Fig. A.2), their 

occurrence in these environments may be linked to resistance to cleaning and disinfection 

due to known adaptive mechanisms and biofilm-forming ability. 

Biocide agents have a strong influence on the bacterial community structure and may 

increase the frequency of antibiotic resistance bacteria (83). Exposure to chlorine can 

stimulate the expression of efflux pumps and drug resistance operons as well as induce 

mutations in some genes leading to increased antibiotic resistance (84). Some of the 

antibiotic resistance signatures observed in the shower hose metagenomes have been 

reported to be triggered by biocide exposure; these include the chloramphenicol-, 

kanamycin-, and penicillin-resistance genes (84, 85). Further, previous studies have 

observed that several Mycobacterium species can modify the cell membrane fatty acid 

composition in response to stress conditions, producing an altered permeability to biocide 

and antibiotic compounds (86, 87). Several of the known proteins that underlie the latter 

phenotype such as those involved in lipid metabolism and mycolic acid biosynthesis, e.g., 

long-chain-fatty-acid ligase (Facl), membrane protein (MmpL3), mycolic acid 

methyltransferase (MmaA), and GroEL, were encode in the shower hose metagenomes. 

Accordingly, the acquisition of the antibiotic resistance profile identified in the biofilm 

community may, to a certain extent, be directly influenced by chlorine exposure. However, 

directly testing this hypothesis and quantifying the effect of chlorine exposure would 

require additional experiments. 

The bacterial populations recovered from the metagenomes were validated through 

analysis of presence/absence (completeness) and phylogenetic identity (contamination) of 
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single copy genes. These binned populations represented consistent biological units with a 

limited -if any- contaminating sequences from other populations based on the phylogenetic 

analysis of single copy genes (e.g., Fig. A.2). Also, the genome sequence of the isolates 

recovered from the same samples was used to validate several of the bins at almost 

complete, high-draft genomes (Table A.3). For example, the binned Blastomonas 

population genome showed high nucleotide identity values (ANI 99.9%, s.d 0.01) and 

remarkable synteny with the Blastomonas isolate genomes (Fig. A.5). In contrast to 

Blastomonas, the recovery of an abundant uncultivated Mycobacterium population, 

without known sequenced representatives and 100% completeness was achieved using 

binning approaches. The fact that a number of functional gene sequences were recovered 

using culture-dependent and culture independent approaches (i.e., both genome isolates 

and metagenomes) as well as the high relative abundance in-situ (e.g, Mycobacteria sp. 

and Blastomonas populations) suggest that many of the bacteria in these biofilms were 

alive, further highlighting their ability to withstand the harsh conditions within DW 

systems. Finally, although the variation in abundance of the dominant populations among 

the samples was, in general, limited, certain populations such as the Mycobacteria sp. 

showed substantial differences in abundance (e.g., Fig. 2.1). These differences were not 

attribute to the physicochemical parameters of the water of the shower hoses measured, 

which typically do not vary much among samples, or some characteristics (e.g., floor) of 

the hospital rooms sampled and thus, are likely due to random sampling events. 

Altogether, the results reported here revealed novel metagenomic information 

relevant to microbial exposure in the built environment. As some of the identified 

mycobacterial populations are related to previously identified pathogens they may 

represent an uncharacterized pool of potential nosocomial pathogens, growing in biofilms 

attached to the showerhead surfaces. While further evidence is needed to determine if the 

abundant Mycobacterium sp. and some of other less abundant biofilm populations 

represent a high risk to patients and healthcare workers, the data suggest that they should 

be carefully examined due to their chlorine-resistant phenotype and presence of several 

important antibiotic resistance genes in their genomes. Because of the persistence of 

several community members across samples, the potential for release from the biofilm and 

adhesion to medical devices, and the presence of antibiotic resistance genes in the biofilm 
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community, our findings call for more attention to the biofilms growing on showerheads, 

as they might constitute a public health risk. In conclusion, our findings further highlight 

the increasing importance of metagenomic surveys to better understand the functional 

genetic network (or microbiome) in clinical settings and in DW distribution systems (20).  

 CONCLUSIONS AND PERSPECTIVES 

In this study, we described the microbial communities found in shower hoses at a 

major U.S. hospital using cutting-edge metagenomic techniques. We identified potential 

pathogenic bacteria living inside the water supply pipes as well as genes for resistance to 

antibiotic and water disinfectants. The resulting insights are of practical importance for 

pathogen surveillance, epidemiologic investigations, and characterization of resistant 

determinants in health care settings.  

Our data provide a foundation for new research into the microbiome network in 

indoor environments, especially in hospitals, where selective pressure of cleaning 

disinfectants and daily use of antibiotics can increase the prevalence of resistance. Besides, 

the chlorine compounds used in public drinking water may not provide sufficient protection 

for water supplies in these facilities. Further studies on profiling microbial communities 

from more hospitals are needed in order to evaluate whether similar biofilm communities 

would be found in other medical settings, how mechanical and chemical monitoring should 

be done, and how often shower heads and hoses should be replaced on a regular basis.  

We recommend adding sequencing data and bioinformatics analyses to routine 

surveillance protocols in hospitals, where the presence of opportunist pathogens poses a 

threat to immunocompromised patients. High resolution protocols like shotgun 

metagenomics will help to increase precision on bacterial identification, monitor bacteria 

difficult to grow by traditional culture-based methods, and quantify and monitor genetic 

markers associated with resistance and virulence that represent a public health concern. 
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CHAPTER 3.  THE STRUCTURE OF THE HUMAN GUT 

MICROBIOME ACROSS A RURAL-TO-URBAN GRADIENT IN 

NORTHERN ECUADOR 

 ABSTRACT 

The gut microbiota plays a key role in modulating gut homeostasis and prevention 

of invasion by pathogens. Previous studies have reported lower fecal bacterial diversity in 

urban compared to rural settings. However, most of these studies compare geographically 

distant populations (e.g., different countries, even continents). Focusing on how gut 

microbial communities differ along a rural-to-urban gradient in the same country 

undergoing urbanization may provide new insights and avoid confounding factors such as 

different cultural context or diet. Furthermore, how the bacterial diversity pattern along the 

gradient plays a role, if any, during diarrheal diseases remain poorly understood. In an 

attempt to provide new insights into these issues, we sampled the gut microbiome of 

subjects living in Quito (capital city) and nearby villages in Northern Ecuador and profiled 

the gut microbiota during acute diarrheal disease (ADD). Metagenomic analyses from 

young children revealed distinct taxa in rural vs. urban populations, including higher 

abundance of Prevotella on average (49.4% vs. 11.4%, respectively, P < 0.05), and lower 

abundance of Bacteroides (16.1% vs. 36.2%, P < 0.05) and Alistipes (2.1% vs. 8.5%, P < 

0.05). Metagenomic samples during ADD showed greater shifts in functional pathways, 

taxon abundance, and the predicted number of taxon-taxon interactions in urban samples 

than the rural ones. Collectively, our data indicate differentially abundant microbial taxa 

and metabolic pathways between individuals from rural and urban populations that may 

play a role in the response to ADD. 
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 INTRODUCTION 

To date, urbanization has globally increased with more than 53% of the total human 

population living predominantly in large cities (1). Massive movement of populations from 

rural to urban areas is occurring rapidly in developing countries. Moreover, the increase of 

westernized urban practices including eating behavior (diet rich in fat, simple sugars, and 

animal proteins), reduction in physical activity, increased use of antibiotics, and hygiene 

practices has led to an elevated prevalence of metabolic diseases including obesity, type 2 

diabetes, and immunological complications (2). These factors have profoundly impacted 

the ecology, diversity, and functionality of the gut microbiome (3–7).  

In order to understand the relationship between lifestyle and gut microbiota, several 

investigations have compared the taxonomic profile of gut microbes between traditional 

agriculturalist societies (e.g., Malawi, Yanomami, Burkina Faso, and hunter-gatherers 

from Tanzania) and western populations (e.g., United States) (4–6, 8–14). The emerging 

picture form these previous studies is that rural populations around the world harbor higher 

fecal bacterial diversity than urban-industrialized populations. Further, it has been shown 

that microbiota diversity is quickly lost, in just a few generations, in industrialized 

populations, where some low abundant community members can become extinct (15–17). 

For instance, members of the genus Treponema have been found in the gut of rural 

traditional populations but not in urban-industrialized gut microbiota (5). On the other 

hand, urbanization had influenced the acquisition of specific bacterial taxa associated with 

a diet high in protein and animal fat (12). 

Many of the aforementioned studies showing the importance of geographical 

factors in determining gut microbiome composition are based on 16S rRNA gene amplicon 

sequencing. However, this approach provides insufficient genetic resolution to capture 

intraspecific variation and whole-genome functional potential. Additionally, most studies 

have been focused on comparing populations with from distinct geographical regions, 

without taking into account confounding factors such as different cultural practices or diet 

preferences. A small number of recent studies have found lifestyle factors to be important 

in the microbial composition and functional metabolic properties along an urbanization 
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gradient in the same geographical area, e.g., same country or region (8, 16, 18). 

Nonetheless, whether or not changes in the gut microbiome diversity due to urbanization 

are associated with lower resilience to enteric infections and/or higher frequency of disease 

remains essentially unknown.  

Changes in microbial composition and reduction in bacterial diversity have also 

been associated with decreased resilience (7), facilitating the colonization of the gut by 

pathogenic bacteria and the loss of keystone species, altering the homeostasis of the gut 

microbiota, and producing a dysbiotic system (19, 20). Ecological theory (21, 22) predicts 

that high gut microbial diversity may confer increased resilience to perturbation and 

colonization by enteric pathogens, especially in less-urbanized populations with more 

diverse gut microbiomes. However, this hypothesis remains to be fully tested in the gut 

environment. 

In this study, we explored the functional implications of differences in gut microbial 

community composition and attempted to test the hypothesis that microbial diversity may 

confer increased resilience to perturbation especially in less-urbanized populations. We 

examined metagenomic profiles of fecal samples from individuals living in rural and urban 

areas of Ecuador and characterized the value of this diversity for resilience, defined as the 

level of taxonomic or functional shifts during perturbation compared to the control (non-

ADD) state, to acute diarrheal disease (ADD). Our analysis reveals distinctive taxonomic 

and metabolic features between individuals living in Quito (Ecuador’s capital city) and in 

villages located in a rural area of Esmeraldas Province. Comparison between non-ADD 

and ADD states in each group suggests a distinctive response to ADD between urban and 

rural subjects showing greater functional and taxonomic shifts in subjects from urban areas 

(less resilience).  

 

 MATERIALS AND METHODS 

3.3.1 Study population 
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Initially, 800 fecal samples were collected between April– September 2015 from 

approximately 200 individuals (100 ADD and 100 non-ADD) living in Quito (Ecuador's 

capital), Esmeraldas, the town of Borbón, and nearby rural communities (Villages) along 

the Onzole, Cayapas, and Santiago Rivers (Fig. B.1.A). From this, a subset of 411 samples 

were subjected to 16S rRNA gene amplicon sequencing (Quito: 87, Esmeraldas: 74, 

Borbón: 128, and villages: 122) including cases of acute diarrheal disease that resulted 

PCR positive for the presence of marker genes specific for DAEC (Diffusely Adherent E. 

coli), EPEC (Enteropathogenic E. coli), ETEC (Enterotoxigenic E. coli), EIEC 

(Enteroinvasive E. coli), EAEC (Enteroaggregative E. coli). These diarrhea samples were 

age-matched with control individuals where no pathogenic E. coli was detected by PCR. 

Samples from Quito and villages were used to compare urban and rural areas since these 

two groups represent the start and end points of the urbanization gradient. From this, a 

subset, 31 out of 87 samples from Quito and 32 out of 122 samples from the villages from 

individuals between one and six years old were subjected to shotgun metagenomics. 

The ages of the participants from both locations ranged between 0 months to 78 

years. In this study, participants were categorized by age according to the following 

criteria: new born: 0 to 6 months, babies: 7-12 months, young children: 13 months to 3 

years, children 4 to 7 years, pre-adolescents: 8 to 17 years, adults: 18 to 74 years, and 

senior: > 74 years. Subjects from the villages generally presented low educational 

attainment levels and limited economic resources (23). More details about the region of 

study can be found in (23–25). Quito represents the urban area with a population size of 

~2.67 millions and approximately 43% of the population lives under national poverty. The 

city presents an elevation of 2,580 m above sea level. The annual mean temperature is 

13.4°C (26). On the other hand, villages represent the rural area with an estimated 

population between 10-500 inhabitants and an elevation of 15m above sea level. The 

average temperature monthly is 30°C ± 2°C (27). 

The inclusion criteria comprised individuals visiting the clinic with acute diarrhea 

(more than 3 loose stools in a 24-hour period; ADD samples), and controls (non-ADD 

samples) were individuals visiting the same clinic for any other reason, who did not have 

symptoms of diarrhea or vomiting in the prior week. Both cases and controls were excluded 
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if they had taken antibiotics in the prior week, or if they had not lived in the study location 

for at least six months prior. Written informed consent and assent (for children) were 

obtained from each participant. This study was supported by NIAID Grant number 

K01AI103544 and approved by the Institutional Review abroad (IRB) of Emory University 

and the Universidad San Francisco de Quito (USFQ). Participants were administered a 

survey to collect information about lifestyle and demographic factors including water 

consumption (source of drinking water, treatment), sanitation practices, contact with 

animals, recent travel, and other factors.  

3.3.2 Sample collection 

Fecal samples from participants were collected in two cryo-conservation tubes and 

stored in a liquid Nitrogen dewar until being transferred to a -80ºC freezer at the USFQ 

laboratory. DNA was extracted using the Wizard Genomic DNA Purification kit (Promega, 

Madison, WI). Amplicon sequencing of the V4 region of the 16S rRNA gene was 

performed using primers 515F and 806R tailed with Illumina adapters P5 and P7 (28). The 

tagged amplicons were submitted onto the MiSeq instrument and sequenced on a 2 x 250 

bp run. For shotgun metagenomic sequencing, libraries were prepared using the Illumina 

Nextera XT DNA library prep kit and an equimolar mixture of the libraries was sequenced 

on an Illumina HiSeq instrument on a 2 x 150 bp paired end run. 

3.3.3 16S rRNA gene sequence analysis 

Quality control and processing of raw paired-end reads were performed using 

DADA2 (29) incorporated in Qiime2 version 2017.9 (30). DADA2 denoise-paired plugin 

was used to trim low quality regions of the sequences (less than Q30), remove chimeras, 

dereplicate sequences, and finally produce an amplicon sequence variant (ASV) table 

(hereinafter referred to as Operational Taxonomic Unit (OTU) because of its analogy with 

the OTU table) correcting for amplicon errors and identifying single-nucleotide 

differences. To taxonomically classify the ASVs, QIIME2 q2-feature-classifier plugin and 

the Naive Bayes classifier was used together with the Greengenes13.8 99% OTUs database 

(31). QIIME2 q2-diversity module was used to calculate alpha and beta diversity indexes 
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based on a sampling depth of 8000 reads/sample for all samples. This number of reads was 

used because coverage curves of randomly selected samples suggested that more than 99% 

of the community diversity was covered/sampled at this level.  

For alpha diversity, the number of observed OTUs and Faith’s Phylogenetic 

Diversity index were calculated. Shannon diversity index with the Chao Shen correction 

(32) was calculated using the entropy package v1.2.1 (33) available in R v3.3.1. For beta 

diversity, Jaccard and Bray-Curtis distances were calculated and the distance matrices were 

the input for Principal Coordinate Analyses (PCoA). PCoA plots were visualized with 

EMPeror (34). Permutational Multivariate Analysis of Variance (PERMANOVA) was 

performed at the OTU level on the abundance table of control samples to evaluate the effect 

of geographical factors on the microbial composition. PERMANOVA was performed with 

the vegan package (Adonis function) (35) in R v3.3.1 using the Bray-Curtis dissimilarities 

among samples and 1,000 permutations. Significant associations between microbial and 

geographical variables were identified by applying a multivariate lineal model, MaAsLin 

(Multivariate microbial Association by Linear models) (36) to the OTU table of control 

samples (non-ADD) from each location. The r-coefficient and Q-value were calculated at 

different taxonomic levels, and associations were considered as significant at Q-values 

below 0.1, after correcting for multiple testing.  

3.3.4 Microbial network analysis  

Network analysis was conducted on the OTU table of samples from rural and urban 

subjects using SPIEC-EASI (SParse InversE Covariance Estimation for Ecological 

Association Inference). SPIEC-EASI combines two algorithms for neighborhood selection 

and sparse inverse covariance selection in order to estimate an interaction graph from the 

data (37). Networks were visualized with Cytoscape v3.6.1, an interactive platform (38). 

Network topology analysis including clustering coefficient, average node 

connectivity, number of edges, number of nodes, average path length, network diameter, 

network density, among others were calculated using NetworkAnalyzer (39). The degree 

distribution was calculated using igraph v1.2.1 (40) package available in R v3.3.1. This 
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function is defined as the fraction of nodes with degree k, where ki: node degree and nk: 

number of nodes with degree k: 

 

3.3.5 Metagenomic sequence analysis 

Raw reads from the metagenomes were analyzed in MIGA (Microbial Genome 

Atlas) (https://microbial-genomes.org) (41) for trimming, removing of Illumina adaptors, 

assembling, and predicting genes on assembled reads. Nonpareil v3.0 (42) with default 

parameters was used to estimate the average coverage and diversity (similar to Shannon 

index) for each sequenced library. Mash distances (43) were calculated using a kmer=25 

and visualized in an NMDS (Non-metric multidimensional scaling) plot using the ecodist 

(44) and vegan (35) packages in R v3.3.1. Taxonomic classification of the short-read 

metagenomes was determined using MetaPhlan2 with default parameters (45) and the 

functional profile using HUMAnN2 with default parameters (46).  

Statistical analyses of taxonomic and functional profiles between samples for each 

group and during non-ADD and ADD states were performed with STAMP v2.1.3 software 

(47). Welch’s t-test was used to compare relative abundances between the two locations 

and the Tukey-Kramer post-hoc for pairwise comparisons and identifying which category 

differs. Correction for multiple comparisons was adjusted using the Benjamini-Hochberg 

FDR method (q-value).  

3.3.6 Recovery of genome populations in the metagenomes 

Assembled contigs larger than 1Kb from each sample were binned into metagenome-

assembled genomes (MAGs) using MaxBin2 with default parameters (48). Completeness 

and contamination of MAGs were estimated using CheckM v1.0.5 with the lineage_wf 

parameter (49). MAGs with >85% completeness and <8% contamination were selected for 

subsequent analyses. Phylogenetic reconstruction of 114 high quality MAGs was based on 

universal single copy proteins identified using the HMM.essential.rb script (50). Proteins 
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were aligned using MUSCLE v3.8.31 (51) and concatenated using the Aln.cat.rb script 

(50). Maximum likelihood phylogeny of the concatenated alignment was built using 

RAxML v8.0.19 (PROTGAMMAAUTO, -f a, -N 100) (52). MAGs were annotated using 

Prokka v1.10 with default parameters (53) and predicted genes were mapped to the 

UniProt/SwissProt database (54) using BLASTp v2.2.29+ (55) (minimum amino acid 

identity, ³ 40% and query aligned length, ³70% for a match). UniProt ids were cross-

reference with Gene Ontology (GO) terms (56, 57) for assigning biological processes. 

3.3.7 Identification of pathogenic E. coli in ADD metagenomes through 

bioinformatics  

E. coli was identified as the probably etiological agent of diarrhea based on the integration 

of four criteria:  

1. The in-situ metagenomic abundance of the pathogenic E. coli isolate should be 

higher in ADD vs. non-ADD samples, after one accounts for reads representing 

commensal E. coli populations; the latter reads identified by a competitive search 

against the isolate genome and that of the commensal E. coli strain HS 

(NC_009800.1). To estimate abundance, metagenomics reads were mapped to the 

E. coli isolate genome of the metagenome assembled genome (MAG) or to a 

reference commensal E. coli genome (strain HS). Recruitment of the mapped reads 

to the E. coli genome was performed using the scripts and the workflow previously 

described in (50). The average sequencing depth of E. coli was calculated using the 

read recruitment output and the enveomic.R v1.3 package with default parameters 

in R v3.3.1. The abundance of E. coli was estimated as the average sequencing 

depth multiplied by the genome size and divided by the metagenome size. 

 

2. The pathotype-specific toxins and virulence factors should be detectable in the 

metagenomes at similar (or higher) abundances than pathogenic E. coli and/or 

present in the E. coli MAG recovered from the metagenome. To identify virulence 

genes, BLASTn searches of metagenomics reads against the nucleotide sequence 

of virulence genes considered as marker for pathogenic E. coli were used to 
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calculate the average gene sequence depth using the BlastTab.seqdepth_ZIP.pl 

script. Genes with sequencing depth values ³1X and query aligned length ³70% 

were consider as a presence.  

 

3. The degree of intra-population diversity (or clonality) of the pathogenic E. coli 

population should be lower (more clonal) compared to the E. coli population in 

non-ADD (control) samples. Clonality was measured as follows: the function 

enve.reploct2.ANIr in the enveomic.R v1.3 package was used to calculate ANI 

based on metagenomics reads (ANIr) that mapped E. coli reference genome with 

higher nucleotide identity that 95%. ANIr values between 99% and 100% were 

considered high clonality zone. 

 

4. Epidemiology of clonal complex the isolate was assigned to, i.e., whether other 

isolates in the same complex were associated more strongly with ADD vs. non-

ADD samples (Table B.8). 

 

 RESULTS 

3.4.1 Geographic location has an effect on the gut microbiota composition  

Analyses of microbial richness and diversity based on 16S rRNA gene amplicons 

(Shannon index, Phylogenetic diversity, and Observed OTUs) indicated that rural and 

urban populations harbor a similar microbial composition, with minor, mostly insignificant 

differences between the two groups (Fig. 3.1A). Nonetheless, when Bray-Curtis 

dissimilarity distances were plotted using Principal Coordinate Analysis (PCoA), bacterial 

communities from non-ADD subjects living in urban areas segregate from the rural ones 

(PERMANOVA, P < 0.05) (Fig. 3.1B). Since several samples were intermixed between 

the two groups, the travel pattern of the corresponding human subjects, including the 

number of times reported to have traveled to the nearest town (Borbón), to a city 

(Esmeraldas), and other communities in the past year, was evaluated to test whether or not 

traveling could explain the intermixing. No significant association between travel pattern 
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and the overlap of the samples was found (PERMANOVA, P>0.05). Comparison with 

non-ADD subjects living in the USA (58) indicated that the bacterial communities from 

subjects living in Ecuador (Quito and villages) were strongly distinct (PERMANOVA, P= 

0.01) (Fig. 3.1C) and present higher microbial richness (average Chao1 271.6 ±61.3 vs. 

102± 36.9). A linear discriminant analysis (LEfSe) (59) indicated differential taxa 

underling this separation such as higher proportions of Bacteroides, Clostridium, 

Coprococcus, and Faecalibacterium in U.S subjects while Prevotella, Teponema, 

Desulfobrivio, and Fusobacterium in Ecuadorian subjects (Fig. B.2).  
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Figure 3.1 Diversity comparisons between rural and urban microbiomes based on 16S 

rRNA gene amplicon sequences.  

A. Alpha diversity boxplots at the OTU level (Shannon index, phylogenetic diversity, and 

Observed number of OTUs) for each location. B. Beta-diversity PCoA plot based on Bray–

Curtis distances of OTU similarities among samples (PERMANOVA, P= 0.001). Dots are 

colored by urban/rural status. C. Beta-diversity PCoA plots based on unweigthed Unifrac 

distances (PERMANOVA, P= 0.001) comparing Ecuadorian populations against the USA 

(blue dots). Levels of significance: *P < 0.05, **P < 0.01, ***P < 0.001. 

 

PERMANOVA confirmed that location (rural vs. urban) showed a significant 

effect on the composition of the gut microbiota (Adonis R2 = 0.02, P = 0.001), along with 

age and race (Adonis R2 = 0.06, P = 0.001, R2 = 0.02, P = 0.027, respectively) (Table B.2). 

The remaining factors analyzed (delivery mode, education, house sanitation, water 

treatment, water treatment type, gender, P > 0.05) did not present significant correlations 

with the microbial community structure (Table B.2).  

In order to identify specific microbial taxa that were mainly responsible for the 

differences observed between rural vs. urban populations, we applied a multivariate 

association with linear model (36) in samples from non-ADD subjects controlling for age 

and race (Table B.3). These results suggested that Prevotella copri (average abundance 

37.5% ± 23.6 vs. 19.5%  ±20) and members from the Comamonas genus (average 

abundance 0.02% ± 0.04 vs. 0) and the Elusimicrobiaceae family (average abundance 1.1% 

± 3 vs. 0.0.5% ±0.06) (lowest taxonomic classification provided by DADA2) were 

positively associated with rural settings, while members from the Rikenellaceae family 

(average abundance 2% ± 2.3 vs. 0.3% ± 0.5) were inversely associated with this location. 

3.4.2 OTU networks in non-ADD rural vs. urban microbiomes 

We additionally explored the inter-microbial relationships in the gut microbiota 

from non-ADD subjects living in rural and urban settings using OTU networks (37). We 
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found that the rural network presented a higher number of nodes (OTUs, 395 vs. 324, 

respectively) and edges (connections among taxa, 801 vs. 652, respectively) than the one 

from urban subjects (Table B.4). The number of positive associations among taxa was 

higher than that of negative ones in both networks (85.4% vs. 14.6% in rural and 83% vs. 

17% in urban of the total edges).  

Taxonomic affiliations of the 10 most connected OTUs differed between the two 

networks (Table B.5). In the rural network, Bacteroides uniformis showed the highest 

number of connections (n=12), followed by members of the family S24-7 of the order of 

Bacteroidales (n=10), and Oscillospira (n=10). On the other hand, OTUs affiliated with 

Oscillospira presented the highest number of edges (n=14), followed by Bifidobacterium 

(n=10), and members of the Erysipelotrichaceae family (n=10) in the urban network. The 

OTU classified as Oscillospira was the only highly-connected OTU found in both groups. 

This taxon is a butyrate producer and able to metabolize glucuronate, an animal-derived 

sugar, offering beneficial effects on human health (60). 

3.4.3 Metagenome-based resolution of differences between urban and rural 

microbiomes 

Taxonomic differences: To get a higher resolution of the microbiome structure 

associated with rural and urban lifestyles, whole-genome shotgun metagenomics was 

applied to a subset of samples (31 samples from Quito and 32 from villages) from subjects 

between one and six years old, in order to constrain the effect of age, living in Quito and 

the villages. Most of the metagenomics samples from Quito clustered together while those 

from the villages were more spread in the ordination plot based on Mash similarity 

distances (PERMANOVA, P<0.05) (Fig. B.3), somewhat consistent with the 16S rRNA 

gene-based results reported above.  

Inspection of taxonomic profiles of non-ADD subjects indicated the presence of 

taxa with differential abundance between rural and urban microbiomes (Fig. 3.2A-2B), 

despite a high inter-person microbiome variation. Overall, Prevotella was the most 

prevalent taxon detected in rural samples, with variations in abundance among subjects 
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ranging from 7.43% up to 90.2% and encompassing more than 50% of the total community 

in more than half (9/17) of the samples. Prevotella’s relative abundance was also 

significantly higher in the rural vs. urban microbiomes (49.4% ± 28.6 vs. 11.4% ± 22.1, 

respectively; Tukey-Kramer post-hoc test, P < 0.05), consistent with 16S rRNA gene-based 

surveys mentioned above. At the species level, the fraction of the Prevotella signal among 

the rural metagenomes was dominated by P. copri (e.g., up to 100% of the total fraction in 

8/17 samples) and P. stercorea (e.g., 93% in one sample). The other two taxa (Comamonas 

and Elusmicrobiaceae) that were associated with rural subjects based on 16S rRNA gene 

data did not show signatures of differential abundance in the metagenomes. This pattern 

was likely attributable to the fact that these taxa were mostly abundant in adult samples 

while the metagenomes were derived from young children (from 1 to 6 y.o).    

In contrast, Bacteroides was more abundant in urban samples (Tukey-Kramer post-

hoc test, P < 0.05). Among the 19 identified Bacteroides species, B. dorei was the most 

abundant (e.g., covering more than 93% of the total Bacteroides population in two 

samples), followed by B. caccae (e.g., more than 60% in two samples), and B. vulgatus 

(49% in one sample). Alistipes was also more abundant in urban metagenomes. Among the 

eight identified Alistipes species, A. shahii was the most abundant (e.g., 95% of the total 

Alistipes population in one sample), followed by A. finegoldii (e.g., 100% in one sample), 

and A. putredinis (e.g., more than 70% in three samples). 

Functional gene differences: Functional annotation of metagenomic reads from all 

samples was performed using HUMAnN2 and the KEGG database (Fig. 3.2C). The 

predicted microbial functions highlighted differences in 35 KEGG pathways associated 

with non-ADD samples between the two groups. In particular, biosynthesis pathways 

including eight nucleotide, seven amino acid (L-lysine biosynthesis and S-adenosyl-L-

methionine), five co-factors (flavin, folate, coeznyme A, and biotin), four secondary 

metabolites pathways (methylerythritol phosphate and chorismate), and eight glycolysis 

and carbohydrate metabolism pathways showed significant differences in abundances. 

Among these, pathways related to ribonucleotide (average relative abundance in the 

metagenome 0.0012 ± 0.0004 vs. 0.0008 ±0.0002), lysine (average 0.0008 ± 0.0003 vs. 

0.0006 ± 0.0002), methionine (average 0.0008 ± 0.0003 vs. 0.0005 ± 0.0002), and aromatic 
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amino acid biosynthesis showed significantly higher abundance in the microbiota of rural 

than the urban samples. Some of these pathways may play key roles in maintaining an 

intestinal homeostasis. For instance, chorismate is a precursor for many bacterial metabolic 

pathways (61) and amino acid metabolism by bacteria is thought to be an important 

modulator of diverse physiological processes (62). Correlation analysis between bacterial 

taxonomic and functional richness indicated that in rural samples the number of predicted 

genes is significantly correlated with the number of OTUs present in the metagenomes 

(Pearson’s r = 0.71, P < 0.01) (Fig. B.4). 

 

 

Figure 3.1 Differences in taxon and gene function abundances in non-ADD 

metagenomes from urban vs. rural subjects.  

A. Principal component analysis of relative abundances of microbial members at the family 

level between the two groups of samples. B. Bar plots showing the proportion of sequences 

assigned to each differentially abundant taxon with the median (black central line) and the 

mean (star symbol). Small panels at the bottom indicate the mean proportion differences 

P.	copri
P.	stercorea

Mean	proportion	 (%)
0.0																									41.1 10			20			30			40		50

Difference	in	mean	
proportions	 (%)

A.

B. C.

100

80

60

40

20

Pr
op
or
tio

n	
of
	se

qu
en
ce
s	
(%
)

Prevotella Bacteroides Alistipes

100

80

60

40

20

35

25

15

5

Mean	
proportion	 (%)

Difference	in	mean	
proportions	 (%)

S-adenosyl-L-methionine	cycle	I
Queuosine bio.

Adenosine	ribonucleotides	de	novo	bio.
Guanosine	ribonucleotides	de	novo	bio.

L-lysine	biosynthesis	 III
Methylerythritol phosphate	pathway	I

L-lysine	bio.	VI
UMP	bio.

Adenine	and	adenosine	salvage
Folate	transformations	II

N10-formyl-tetrahydrofolate	bio.
Chorismate bio

Glycolysis	IV
preQ0	bio.

Glycolysis	III
Superpathway of	aromatic	amino	acid	bio.

L-rhamnose degradation	I
Chorismate bio.	I

Superpathway of	L-aspartate	and	L-asparagine	bio.
coenzyme	A	bio.	ll

Flavin	bio.	l
Superpathway of	L-threonine	bio.

Superpathway of	purine	nucleotides	de	novo	bio.
Pyrimidine	deoxyribonucleotides de	novo	bio.

Homolactic fermentation
Pyrimidine	deoxyribonucleotides salvage

Glycogen	bio.
TCA	cycle	I
TCA	cycle	V

Superpathway of	hexitol degradation
TCA	cycle	ll
biotin	bio.	II

Mannitol	cycle
1,4-dihydroxy-6-naphthoate	bio.

L-glutamine	bio.

0.0

3.3 1.5

0.0

-1.0

Urban
Rural



 61 

and confidence intervals at 95% of P. copri and P. prevotella in rural and urban 

microbiomes (Tukey-Kramer post-hoc test, P< 0.05). Plots and statistical tests were 

performed using STAMP software v 2.1.3. C. Heatmap showing the relative abundance of 

35 KEEG pathways that were significantly differentially abundant between the two groups 

(corrected-p value < 0.05 after multiple comparisons).  

 

3.4.4  Diversity of Prevotella and Alistipes MAGs across the rural-to-urban gradient 

To precisely characterize individual bacterial populations distinctive of each group, 

MAG analysis was performed. In total, 117 MAGs were recovered from non-ADD subjects 

from rural and urban settings (52 and 65, respectively). Taxonomic assignment using 

CheckM indicated that the majority of MAGs were assigned to the order of Bacteroidales 

(41%), followed by Clostridiales (25%), and Enterobacteriales (6%) (Fig. B.5). Among 

the recovered populations, a higher number of Prevotella MAGs were obtained from rural 

metagenomes than the urban ones (5 MAGs vs. 1 MAG, respectively), whereas Alistipes 

MAGs were only recovered from urban metagenomes, confirming the differentially 

abundant 16S rRNA gene-based taxa reported in non-ADD metagenomes between the two 

groups (Table B.6). Taxonomic assignment of Prevotella and Alistipes MAGs was 

confirmed by estimating the Average Nucleotide Identity (ANI) between the MAG and 

reference genomes from NCBI (NCBI_Prok) using MiGA. This analysis showed that most 

of the Prevotella MAGs (67%) represented uncharacterized species, defined at the 95% 

ANI level, with closely related species previously described (63) (Table B.7), providing 

higher resolution that the 16S rRNA gene-based results reported above.  

We further examined the metabolic potential of Prevotella and Alistipes MAGs 

from the urban-to-rural gradient, revealing 50 biological processes (Fig. B.6.A) and 71 

enzymatic reactions to be differentially abundant between these two population genomes 

(Fig. B.6.B) (Welch’s t-test, P < 0.05 with Benjamini-Hochberg FDR correction). 

Functional annotation of protein-coding genes indicated that Prevotella MAGs harbored a 

higher number of genes related to amino acid (arginine, methionine), cofactors (pyridoxal 

phosphate), and nucleotide biosynthesis (adenine, NAD, AMP, purine salvage), and 
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metabolic processes (arginine and guanine catabolism) than Alistipes MAGs. Several of 

these pathways have been associated with beneficial effects in the host such as synthesis 

of essential amino acids, energy production, protein synthesis, and intestinal barrier 

function (62, 64), in addition to acting as precursors for several microbial metabolic 

pathways (65, 66). Moreover, some of the enzymes encoded in the Prevotella MAGs 

participate in polysaccharide metabolism (e.g., glycoside hydrolases, glycosyl transferases) 

as well as amino acid metabolism and thus, are likely associated with diet. Prevotella has 

been previously associated with a diet high in fiber, carbohydrate, vegetables, and egg food 

items (67–69). 

On the other hand, Alistipes MAGs showed a higher number of predicted pathways 

and enzymes associated with carbohydrate (ribose, pentose-phosphate), phospholipid 

(cardiolipin), and secondary metabolism, cell response to starvation, and cellular protein 

modification process. Alistipes has previously been associated with a meat-based diet (70). 

Finally, when comparing functionally rural vs. urban whole-communities, several of the 

broad functional categories found to be differentially present between Alistipes and 

Prevotella (e.g., amino acid and nucleotide biosynthesis and carbohydrate metabolism) 

were also observed at the whole-community level, albeit the exact genes or pathways were 

not always the same.  

3.4.5 Microbiome changes during diarrheal episodes 

We profiled the gut microbiota during diarrheal episodes in subjects from the two 

groups in order to evaluate the existence of any significant differences in the microbiome 

during ADD and the role of the taxonomic and functional differences identified above from 

the non-ADD (control) state comparisons. Comparison of ADD samples between rural and 

urban populations based on 16S rRNA gene data indicated that samples from urban 

subjects presented lower number of observed OTUs than those from rural subjects (average 

number= 99 vs. 128, respectively; Welch’s t-test, P < 0.05) despite the comparable number 

of OTUs at the non-ADD state (see above). A significant decrease in diversity during 

diarrheal episodes in urban subjects when compared to non-ADD samples was also 
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observed (Shannon index with the Chao Shen correction average 20 ± 13 vs. 27.1 ± 16; 

Welch’s t-test, P < 0.05) (Fig. B.7).  

OTU networks were compared between non-ADD and ADD states from rural and 

urban subjects and indicated a change in the network topology and connectivity patterns 

during the disease state (Fig. B.8, Table B.4). Specifically, the urban network showed a 

greater reduction, by 30% or more, relative to the non-ADD network in both the number 

of nodes (OTUs) and connections during diarrheal episodes. Further, many of the OTUs 

with the highest number of connections appeared to be lost during ADD (Fig. B.8). On the 

other hand, the rural network presented 6% fewer nodes and 21% fewer connections during 

ADD than the one from the non-ADD state. This network also presented a reduction of the 

most connected OTUs but the effect seems to be less pronounced than the one in the urban 

network. 

At the metagenomic level, significant shifts in abundance during diarrheal episodes 

were observed in members of the Desulfovibrionaceae family in rural samples, while 

members of the Bacteroidaceae, Porphyromonadaceae, and Ruminococcaceae families 

changed more in abundance in the urban metagenomes (Tukey-Kramer post-hoc test, P < 

0.05). A decreased abundance in these taxa has been previously associated with infectious 

diarrheal episodes (71, 72). In addition, five obligate anaerobes were significantly depleted 

in diarrheal metagenomes from urban samples (unclassified Subdoligranulum, 

Desulfovibrio piger, Roseburia hominis, Parabacteroides distasonis, Ruminococcus 

obeum; Tukey-Kramer post-hoc test, P < 0.05), which has also been observed previously 

(72–74). 
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Figure 3.3 Comparison of taxon and gene function abundances between ADD and 

non-ADD samples in urban and rural metagenomes.  

A. Bar plots of the relative abundance at the family level between the two groups of 

samples. Differences in mean proportion with the associated confidence intervals at 95% 

of individual species between cases and controls identified in rural populations are also 

shown (Tukey-Kramer post-hoc test, P < 0.05). Plots were produced using STAMP v 2.1.3 

(47). B. Metabolic diversity (Shannon index) of KEGG pathways identified in the 

metagenomes. Colors represent the clinical status: ADD vs. non-ADD.  

When comparing predicted functional pathways encoded by metagenomics reads 

between non-ADD and ADD samples, the metabolic diversity was significantly lower in 

urban vs. rural metagenomes during diarrhea (Welch’s t-test, P < 0.05) (Fig.  3.3B) and a 

higher number of predicted metabolic pathways changed in abundance in urban samples 

(28 vs. 3 pathways, respectively; Fig. B.9.A), consistent with the taxonomic results 
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reported above. The bulk of the former pathways were involved in the biosynthesis of 

various co-factors (coenzyme A, pyridoxal phosphate, folate, N10-formyl-

tetrahydrofolate) and amino acids (ornithine, arginine and polyamine) as well as 

carbohydrate metabolism (mannan degradation, gluconeogenesis, glycolysis). A decreased 

relative abundance of some of these pathways (e.g., amino acid biosynthesis, glycolysis 

and pentose phosphate pathway) has been previously reported in patients with Clostridium 

difficile infection (75). On the other hand, the metabolic pathways with a depleted 

abundance during diarrhea in rural populations were involved in sulfur oxidation, urea 

cycle, and L-isoleucine biosynthesis (Fig. B.9.B). These pathways have been associated 

with an elevated demand for energy production during mucosal inflammation and diarrhea 

affecting the urea cycle and amino acid levels in the colonic mucosal tissue (76, 77). 

Metabolic pathways that showed increased abundance during diarrhea in urban 

samples were affiliated with pathogens including E. coli, Shigella, and Haemophilus (Fig. 

B.9.C). These pathways have been previously reported as key participants for maintaining 

pathogen viability and virulence. For instance, acyl-carrier protein biosynthesis is involved 

in primary and secondary metabolic pathways such as the formation of lipopolysaccharides 

(LPS), activation of exogenous fatty acids, and haemolysin synthesis (78–80). Heme 

biosynthesis is a vital mechanism of pathogens during infection (81). Lipid A (endotoxin), 

is the active component of lipopolysaccharide (LPS), which is an important pathogen-

associated antigen that stimulates host immune responses (78, 82). These findings indicated 

that at least some of diarrheal cases were caused by the abovementioned pathogens, which 

warranted further investigation in order to isolate the effect of specific enteric pathogens 

from the taxonomic and gene function differences between rural and urban ADD samples 

revealed by our analysis. 

 

3.4.6 Metagenomic comparison of ADD samples from rural and urban subjects after 

excluding cases of E. coli infections 
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In order to access the presence of pathogenic E. coli and its possible association 

with ADD, the abundance, clonality, and virulence profile of pathogenic E. coli in the 

metagenomes were estimated (see Materials and Methods). Results of these analyses 

indicated that five ADD samples (MG29, MG30, MG31, MG32, and MG33) from urban 

and two (MG57 and MG58) from rural subjects present evidence that most likely 

pathogenic E. coli was the causative agent of the infection (Fig. 3.4). Specifically, this set 

of samples exhibited the following metagenomics signatures: 1) higher abundance of 

pathogenic E. coli compared to the reference commensal, on average (10.3%±14 vs. 

0.6%±0.8); 2) recovery of the diagnostic E. coli virulence factors for the isolate that was 

recovered from the same sample; 3) reduced intra-population diversity with ANIr values ≥ 

99% for the pathogenic E. coli population and usually lower values for the reference 

commensal genome, and finally, 4) the recovered pathotype isolate(s) from the samples 

were generally grouped in phylogenetic clusters with isolates originated from cases of 

diarrhea than control (non-ADD) samples. To remove the signal of E. coli infection, these 

metagenomes were excluded and the analyses described above were repeated.  
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Figure 3.4. Identification of diarrheal cases (presumably) caused by pathogenic E. 

coli.  

A. Comparison of the relative abundance of commensal (E. coli strain HS; in brown) and 

pathogenic E. coli (reference isolate genome or MAG obtained from the same sample; in 

blue) estimated based on the coverage of the reference genome by metagenomic reads. B. 

Presence of virulence genes in the metagenomes. The first column shows the marker gene 

specific for each E. coli pathotype represented by the recovered isolate (EAEC: aggR, 

EIEC: ipaH, DAEC: afa, EPEC atipica: eaeA, EPEC tipica: bfp) followed by genes 

encoding toxins (hylB, set1A, and eltA). C. E. coli intra-population diversity measured by 

ANIr calculated for both commensal (brown) and recovered pathogenic E. coli isolate 

(blue). To avoid potential biases by low in-situ abundance, only pathogenic E. coli with 

average sequence depth values ≥1X, were evaluated for ANIr analysis. D. Epidemiological 

data based on E. coli strains isolated from individuals living in urban and rural areas in 
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Ecuador. The percentage represents the frequency of cases and controls in the clonal 

complex that the E. coli strain isolated from the sample was assigned to (epidemiology).  

 

Similar results were found in the taxonomic profile during ADD after excluding 

samples with pathogenic E. coli from both groups. Specifically, rural metagenomes showed 

a decreased abundance in microbial members affiliated to Desulfovibrionaceae (0.023% ± 

0.07 vs. 0.1% ± 0.04) while urban metagenomes showed a reduction in Ruminococcaceae 

(0.49% ± 0.6 vs. 1.9% ± 2), Porphyromonadaceae (1.2% ± 1.5 vs. 4.8± 5.7), and 

Coriobacteriaceae (0 vs. 0.006% ± 0.01) abundances. In terms of functional profile, the 

metabolic diversity tended to be lower during diarrhea especially in urban samples, but the 

differences were not significant, similarly to the analysis with all samples included. In 

addition, the decreased abundance in urban samples of metabolic pathways involved in 

carbohydrate metabolism and in the biosynthesis of co-factors during ADD observed 

previously was also apparent. However, functional pathways with an increased abundance 

during ADD that were affiliated with E. coli were not significantly increased this time 

when compared to a non-ADD state. In the case of rural metagenomes, the same functional 

pathways (oxidation, urea cycle, and L-isoleucine biosynthesis) showed a decreased in 

abundance during ADD as before. Overall, the ADD metagenomic signal (shifts in 

abundance of microbial taxa and metabolic functions) was maintained after removing 

samples with pathogenic E. coli. 

To evaluate whether metabolic changes during diarrhea were driven by the presence 

of a few taxa or represented instead a community-wide response to diarrheal episodes, the 

number of taxa that contribute to each pathway was calculated from the pathway abundance 

output file generated by HUMAnN2. This analysis indicated that the microbial response to 

ADD in the selected samples was influenced by taxon-specific shifts in both rural and 

urban samples but presenting different microbial members that are involved in the 

functional disturbance (Fig. B.10). For instance, Ruminococcus bromii, Coprococcus sp 

ART55.1, and Treponema succinafaciens were associated with the differential abundance 

observed in the three metabolic pathways in rural samples. On the other hand, 



 70 

Faecalibacterium prausnitzii, Alistipes shahii, and Lactococcus lactis were among the taxa 

that participated in the reduction of metabolic pathways during ADD in urban samples. 

 DISCUSSION 

In this study, we found distinctive taxonomic and metabolic features in non-ADD 

subjects across a rural-to-urban gradient in Northern Ecuador, most likely associated with 

local lifestyle factors (dietary habits, social status, economic development, antibiotic 

accessibility). We also attempted to provide insights into the value of these differences for 

the distinctive response or rural vs. urban microbiomes to ADD (Fig. B.9-B.10). A 

significant correlation between richness of functional and taxonomic profiles found in rural 

but not urban samples underlay, at least partly, these findings (Fig. B.4). 

In particular, the intestinal microbiota from rural subjects showed a higher 

abundance of Prevotella, while Bacteroides and Alistipes presented a greater fraction of 

the total microbial community in the urban ones (Fig. 3.2B). Most Prevotella and 

Bacteroides MAGs recovered from the metagenomes and 16S rRNA gene sequences 

represented novel diversity since they could not be assigned to known bacterial species, 

suggesting that they may represent previously uncharacterized species (Fig. B.11). In the 

case of Alistipes, 16S rRNA gene amplicon sequences only identified one species (A. 

indistinctus) while taxonomic classification based MAGs or shotgun metagenomes 

identified 8 probably new species, allowing a higher resolution of the gut community for 

the metagenomes. 

Interestingly, we also observed a differential response to diarrhea between rural and 

urban subjects. Specifically, the number of KEEG metabolic pathways and taxon 

abundance with significant shifts was higher in urban samples in comparison with the rural 

ones (Fig. B.9-B.10). However, the response to ADD seems to be variable among samples 

(large standard deviation) and the shifts to be taxon-specific as opposed to community-

wide (Fig. 3.3 and B.9), which presumably reflected that specific samples were driving the 

differences in ADD. Therefore, a large cohort of samples is needed to further corroborate 

these preliminary findings and more firmly established that the diversity differences at non-
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ADD state between rural and urban microbiomes play a significant role during ADD. 

The differential response to diarrhea may be also associated with distinct extrinsic 

(causative agent of diarrhea, geographical factors) and intrinsic (microbial diversity 

patterns, functional capacities, community structure, host genetics) factors between the two 

groups. The causative agents of diarrhea include a broad spectrum of microbial, e.g., 

bacteria, viruses, and protozoa parasites, and non-infectious agents, e.g., food 

maldigestion, environmental exposures, endocrine diseases, among others (83). Consistent 

with these interpretations, pathogenic E. coli was identified as the probable etiological 

agent in five ADD samples from urban populations and two samples from rural ones (Fig. 

3.4). Metagenomic comparison after removing the E. coli signal in ADD samples showed 

that the reduction in abundance in metabolic pathways involve in carbohydrate, vitamins, 

and amino acids metabolism were maintained; however, those affiliated with E. coli were 

not.  

Analysis of OTU networks of the gut microbiota indicated that rural populations presented 

a higher number of OTUs and more connections among OTUs when compared to the urban 

one (Table B.4). A dense(r) network may be presumably associated with more connections 

among distinct bacterial species, modulating stability and community assembly in the gut 

during the response to perturbations. In this case, we observed that the urban network 

during ADD showed changes in more connections and nodes (e.g., loss of connections) 

than the rural one indicating possibly a more altered and unstable community with lower 

resilience to infection/diarrhea (Table B.4), which was also consistent with the taxonomic 

and gene function patterns revealed.    

The observed differences in abundances of taxa between the two groups (locations) 

at the non-ADD (control) state might be attributable, at least in part, to multiple variables 

including local environmental conditions (temperature, elevation), socio-economic status, 

human contact with other communities and/or cities, and diet, in addition to unmeasured 

variables such as cultural factors and (human) genetic differences. Although dietary 

preferences were not recorded in this study, previous studies and literature have reported a 

diet based on fish, shrimps, plantain, rice, and coconut in the communities of San Lorenzo 
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(villages) (87). Villages are located closed to the coast and have access to three different 

rivers thus, freshwater and saltwater fish is one of the main components of the local diet. 

Subjects from the villages also use medicinal plants (88). On the other hand, a typical daily 

dish in Quito is composed by a high percentage of carbohydrates, proteins, and fats, and 

less than 15% of vegetables. Pork is one of the main ingredients in Ecuadorian Andean 

dishes (89). Dietary preferences most likely accounted, at least partly, for the differences 

observed between rural and urban non-ADD microbiomes (e.g., Rikenellaceae OTU 

associated with a higher fat diet in the urban population (11, 90). Moreover, it has 

previously been reported that housing density, road access, social connectedness, food-

sharing, among others factors influence microbiome, including pathogen, prevalence and 

transmission in a community (25, 84). 

The microbial community structure in the sampled subjects from the villages 

resembled those previously found in rural populations including Yanomami (Venezuela), 

Malawian (Amazon), Hadza (Tanzaia), and Matses (Peru) populations (4, 5, 8–10, 12, 67, 

91). Moreover, Stagaman and collaborators (18) reported a similar taxonomic profile 

(abundance of Prevotella  negatively correlated with house modernity while abundance of 

Bacteroides positively correlated) along a gradient of economic development in five 

villages close to the Cordillera de Cucutú in Southeastern Ecuador, indicating that there 

might be some universal patterns accompanying the phenomenon of urbanization in 

Ecuador and elsewhere. Nonetheless, despite the presence of western-type taxa in subjects 

from Quito, comparisons to the gut microbiota from US subjects revealed a clear 

segregation between these two locations (Fig. 3.1C), suggesting that still the gut microbiota 

of subjects living in Ecuador’s Capital have not totally acquired a westernized microbial 

profile. 

Collectively, our data revealed compositional differences across a rural-to-urban 

gradient in Northern Ecuador. Rural populations appeared to present smaller changes 

during ADD in comparison with urban ones driven by a (more) stable microbiome in terms 

of microbial composition, microbe-microbe interactions and stability, and functional 

diversity. However, further studies with larger and with ADD samples with known 

etiological agents are needed to further corroborate these results and conclusions on the 
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extent to which urbanization/lifestyle contribute on modulating the microbial response 

during ADD. 

 CONCLUSIONS AND PERSPECTIVES 

Shotgun metagenomics had led to a remarkable growth of collective knowledge and 

information of the human microbiome. The reduction of sequencing cost had allowed to 

perform culture-independent analyses in research groups around the word and opened a 

new door to study microbial communities from human populations across the globe. This 

collection has allowed us to compare the diversity and composition of microbial 

communities from human populations with different lifestyles and geographical areas. 

Given the complex host-microbiome-environment interplay, current research efforts 

have been focused on studying how ecological processes driven by local geographical 

factors influence the composition of the microbial communities. Understanding the 

interactions among microbial members at the community level requires the application of 

high-throughput technologies, both computational and laboratory, in order to characterize 

populations in situ and estimate/quantify their response to altered systems.   

In this Chapter, we studied the role of geographical factors on the gut microbiome 

composition from a rural-to-urban gradient and compared the microbial response during 

diarrheal disease across the gradient. To the best of our knowledge, both, lifestyle and 

infectious diarrhea, have independently contributed to important insights in the gut 

microbial ecology, but to date have not been overlapped. However, the lack of metadata 

regarding dietary habits in the sampled populations limits our conclusions in any 

connection between diet and the metabolic and taxonomic potential of the assessed gut 

communities across the gradient. We also observed high inter-individual variation of the 

gut microbial communities among subjects from the same location. Therefore, extending 

this analysis to a larger sample size and with extensive metadata might help us to define 

the microbial signatures of each host population and their response to the urbanization 

phenomenon.  
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The investigation of human populations from multiple age groups, different locations 

(countries), and for longer periods, will be crucial to gain a more comprehensive view of 

the ecological and evolutionary processes in situ that are associated with community 

composition and patterns of diversity. The impact of a westernized behavior on the gut 

microbiota seems to have produced a global/worldwide convergent effect towards a 

reduction in diversity in the gut with traditional bacteria tending to extinct, an altered gut 

state (dysbiosis), and an increase of metabolic diseases.  

Moreover, the elucidation of key microbial traits that compensate the 

impact/disturbance of the gut homeostasis and their associated mechanisms will allow us 

to identify treatment candidates or disease biomarkers to develop genomic approaches and 

establish ideal strategies for preventing microbiome-associated modern diseases.  
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CHAPTER 4. QUANTIFYING RECENT GENE EXCHANGE 

AMONG CLOSELY RELATED BACTERIAL GENOMES AND 

IMPLICATIONS FOR THE BACTERIAL SPECIES CONCEPT 

 ABSTRACT 

High-throughput sequencing has revealed that bacterial genomes are highly dynamic, 

driven mostly by horizontal gene transfer (HGT). Quantifying HGT and its role in bacterial 

genome evolution and speciation has been challenging, especially between genomes of the 

same species, due to the high sequence identity of core genes at this level (e.g., low signal-

to-noise ratio). Here, we devised a new approach to estimate the fraction of recent HGT 

among closely related genomes based on the frequency of identical genes (observed F100) 

shared between two genomes relative to the number of such genes expected by chance 

according to their genome-aggregate average nucleotide identity (ANI) (expected F100). 

Results from comparisons of hundreds of available genomes showed that our approach can 

reliably estimate the genomic fraction under recent exchange between closely related 

genomes (ANI 95.00% up to 99.97%). In particular, higher F100 than the average expected 

frequency denoted recombinogenic species as exemplified by ecologically versatile 

organisms, including opportunistic pathogens, while lower F100 values denoted clonal 

species as exemplified by obligate endosymbionts. Highly recombinogenic species showed 

non-random spatial and functional distribution of the recently exchanged genes across the 

genome indicating selection-driven HGT. Nonetheless, comparison of the effect of 

recombination and mutation on ANI for bacterial genomes close to the average expected 

(i.e., observed F100 = expected F100) showed that recent exchanges were sufficient to 

counter the effect of random mutations, and thus, could lead to sexual speciation for the 

genome pairs analyzed.  
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 INTRODUCTION 

One important mechanism that accounts, at least in part, for the immense genetic 

diversity of bacteria is horizontal gene transfer (HGT). HGT can mediate the replacement 

of highly similar genetic segments at the nucleotide level through the process of 

homologous recombination (for integration of the horizontally transferred DNA into the 

genome of the recipient cell) or the transfer of non-shared DNA segments through 

illegitimate or non-homologous recombination (1, 2). It has even been argued that HGT 

might be so frequent and show no spatial biases across the genome (i.e., be random) that 

at least some bacterial lineages may be evolving sexually, similarly to several eukaryotes 

(3–5). However, the number of species and genomes analyzed to date remain limited, 

primarily due to the lack of high-throughput methods for robust HGT detection, while the 

effect of positive selection in driving the HGT events in these previous studies was not 

typically assessed (6). Further, most -if not all- methods employed to date for this purpose 

are based on assumptions that are frequently violated by the data analyzed such as that 

genes evolve under the molecular clock and lack of selection, limiting the broad 

applicability of the derived conclusions. 

Several methods have been developed to identify genomic segments acquired 

through HGT. These methods include BLAST best-match analysis (7, 8), atypical G+C% 

or codon usage of exchanged genes compared to the average composition of the genome 

(9), networks of gene sharing (10, 11), and incongruent gene phylogeny in comparison 

with the species phylogeny (12, 13). While these methods are typically high-throughput, 

they have their own limitations. Phylogenetic approaches, while among the most robust for 

HGT detection, do not scale up well with an increasing number of sequences for analysis. 

As a result, alternative approaches including Bayesian methods have been proposed for the 

analysis of large genome datasets by offering robust estimations of the uncertainty in 

complex systems and high accuracy in comparison with traditional statistical tests (14). 

Bayesian statistics have been applied, among others, to detect evolutionary relationships 

among genomes within a phylogenetic framework (15, 16), gene transfer among bacteria 

(17, 18), and DNA rearrangements across the genome (19, 20). However, most of the 

available tools to detect recombination, including Bayesian methods, use the core genes 
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(i.e., genes shared by a group of genomes) as the input data (e.g., in order to build a robust 

phylogeny or training dataset), which does not take into consideration HGT events 

involving the accessory (variable) genes, and have assumptions that may (or may not) be 

violated by the data such as that genes evolve under the molecular clock. For instance, if 

accessory genes are not subjected to frequent intra-specific HGT but instead grow as a 

fraction of the total genome over evolutionary time, then sexual speciation will be more 

unlikely to occur.   

With recent advances in high-throughput sequencing technologies, the systematic 

comparison of hundreds of bacterial genomes from different species in terms of their 

frequency of gene exchange becomes a highly interesting task. Quantifying genetic 

exchange across species, especially recent exchange events, is important not only for the 

bacterial species concept (e.g., sexual vs. asexual speciation) but also for understanding 

how adaptable different bacterial species are to the environment. For instance, quantifying 

recombination rates among vs. within sub-populations of a species might offer new insight 

into how these sub-populations may be responding differently to environmental 

fluctuations, leading to speciation (21–23). Moreover, recent gene transfers in pathogens 

could underlie rapid (new) host colonization, vaccine ineffectiveness, and resistance to 

antibiotics (24–26). 

In this study, we introduced an alternative mathematical model to identify recent 

genetic exchange events present in both the accessory and the core genome in a pair of 

closely related bacterial genomes based on the genome-aggregate Average Nucleotide 

Identity (ANI) concept (27). ANI represents the average identity of all genes shared 

between any two genomes and has been shown to be a reliable measure of genetic 

relatedness that correlates tightly with DNA–DNA hybridization (DDH) experiments, i.e., 

the golden standard of prokaryotic taxonomy. In particular, two genomes showing higher 

than 95% ANI, which is equivalent to 70% DDH, could be assigned to the same species, 

assuming they also share the same key phenotype (27, 28); and this threshold is >97% of 

the times consistent with presently named species (29). Our model is based on the concept 

that at a given value of ANI, the frequency of identical nucleotide genes, F100, follows a 

beta distribution (expected F100) and that newly exchanged genes among genomes available 
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in our collection or their immediate ancestors will show an increased frequency of identical 

genes (observed F100), which will represent outliers of the distribution. We used this 

concept to quantify differences in the fraction of recent HGT within and across species 

with different lifestyles (e.g., symbiotic vs. free-living) and ecological niches (e.g., 

fluctuating or more stable environments) and provide new insights into the species issue. 

 

 MATERIALS AND METHODS 

4.3.1 Model overview 

Let us consider a pair of genomes, descendants of the same ancestor and thus, 

members of the same species, which accumulate differences (e.g., point mutations, 

horizontal gene transfer events) over time at a variable (not constant) rate. Initially, the 

genomes will have the maximum level of sequence relatedness (100% ANI), and so, all of 

their genes will also show 100% nucleotide identity. Through time, the genomes will 

accumulate nucleotide mutations and thus, will show reduced relatedness and a decreased 

fraction of genes with 100% identity (Fig. C.1A). Nucleotide mutations are fixed at 

different rates due to differential selection pressures. Nonetheless, a decreasing fraction of 

genes will still show 100% identity (F100) as divergence of genomes increases (within the 

same species). F100 is therefore a function of genome relatedness, measured in our model 

by ANI distance, defined as: 

𝐷 = 100% − ANI 

If a gene undergoes homologous recombination between the two genomes in the 

pair or their immediate ancestors (i.e., not enough evolutionary time elapsed for the genes 

to have acquired additional mutations), the differences it may have accumulated will be 

reduced due to the introgression event (30) and the gene in the recipient genome will be 

identical to that of the donor genome. After the event, the gene is subjected to mutations. 

Multiple recombination events and/or non-homologous gene transfer events between two 

genomes or their immediate ancestors will result in an increased (observed) F100 relative to 

the expected fraction (E F,-- ). The difference between the expected and the observed 
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fraction is proportional to the rate of gene exchange between the genomes considered. The 

set of genomes with higher F,-- than the E[F100] would be considered as recombinogenic 

while those with F100 less than the E[F100] value would be classified as clonal or low 

recombinogenic populations.  

For each given value of D, F100 follows a probability density function given by the 

gene exchange rate. The expected value would be the sum of the values of F100 (at that 

value of D) multiplied by their corresponding probabilities such as: 

E F,-- = F,--𝑃(F,--) 

The probability distribution of F100 is however unknown (given that F100 is related 

with the gene exchange rate, which is unknown for most of bacterial species). Additionally, 

given the relationship between D and F100 (explained above and in Fig. C.1A), it is assumed 

that for every value of D, the distribution of F100 should follow a similar shape and can be 

described by the same type of parameters. 

In a log10 space, D and F100 should follow a linear model. Thus, F100 is a linear 

combination of a series of vectors 𝛿2 and unknown parameters 𝜃2: 

E F,-- = θ-𝛿- + 𝜃,𝛿, …𝜃2𝛿2 

 𝛿2 is a transformation of log(D). The predictor matrix (Δ) was obtained by a 

combination of transformations that best fit the model (without over-fitting) (Table C.1). 

Therefore, by estimating the regression parameters between these two variables we can 

calculate the expected value of F100 using the equation expressed in matrix notation: 

E F,-- = E[𝜃]:Δ 

Parameters were estimated using a Bayesian inference model. The model assumes 

that although for each value of D the distribution of F100 is unknown, in bacterial genomes 

from the same species (95%-100% ANI (28)) the sum of these distributions converges to 

a normal distribution following the central limit theorem. Because F100 varies between 0 
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and 1, we assumed that the conjugate non-informative prior of F100 (F100_0) to be given by 

a beta distribution: 

     F100_0	~𝛽( ,
?@
	 , ,
?@
	) 

F100_0 ∝
1
𝜎D

 

Where 𝜎D is the variance of the whole dataset. The posterior distribution of the 

parameter 𝜃 is given by the product of the maximum likelihood estimation (MLE) of the 

regression parameters (based on 𝜃 and F100) and the conditional probability of the values 

of F100 given their variance. The MLE corresponds to the joint probability distribution of 

F100 and the conditional probability of the parameter 𝜃 given the variance: 

𝑝 𝜃 1
𝜎D , 𝐹,-- = 𝑝 1

𝜎D 𝜃, 𝐹,-- 𝑝 𝜎D 𝐹,--  

4.3.2 Parameter estimation based on empirical data 

The training dataset to estimate the parameters of the above mentioned model 

consisted of 11,244 genomes belonging to 691 bacterial species, which were obtained from 

the Integrated Microbial Genomes (IMG) database (31). In order to capture most of the 

diversity, we sampled genomes with distinct lifestyles including symbiotic (i.e., host-

associated) and free-living, ecologically versatile (i.e., marine and soil microbes with 

varied genome size) species. Due to overrepresentation of some lineages in the IMG 

database and in order to not bias the results by these few lineages (e.g., Escherichia coli, 

Staphylococcus aureus, and Mycobacterium tuberculosis), the genomes were first assigned 

to 95%-ANI groups, i.e., ANI among members of the group being >95% vs. <95% between 

groups, and three genomes were selected at most, at random, to represent each group. ANI 

values were calculated using the application of the enveomics script collection (32), 

essentially as previously described (28). 

Reciprocal best matches (RBMs) between two genomes were identified by Blastn 

searches of their protein-coding genes using a cutoff of at least 70% nucleotide identity 
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and 70% coverage of the query length. The observed F100 was calculated as the number of 

RBMs with 100% nucleotide identity over the total number of RBMs in a genome pair. 

Pairwise genome comparisons from the same species (ANI values ranging from 95% to 

100% (28)) were grouped every 0.2% ANI value brackets.  

ANI values from all genome pairs were converted to distance (𝐷) and expressed in 

a log10 scale (𝛿 = log,-	(𝐷)). This dataset was subjected to a series of transformations (see 

also Results), and different combinations were used to build different predictor matrices 

(Δ). These matrices were ranked based on their Akaike Information Criterion (AIC) and 

the best Δ was then selected to perform all posterior prediction analyses (Table C.1). The 

best Δ was composed by the raw value of 𝛿, a squared transformation (𝛿D), and a cubic 

transformation (𝛿J) plus a bias term, such as: 

Δ = 1, 𝛿, 𝛿D, 𝛿J  

In order to select the best predictor matrix, parameter estimation was carried out 

according to the Bayesian model (above). The posterior probability was calculated using 

Monte Carlo Markov Chain (MCMC) simulation. We ran a total of 1,000,000 simulations 

with a Burn-in of 300,000 and thinning of 1,000. With these simulations, we estimated the 

empirical values of E[𝜃] and established 95% credible intervals.  

The values of Δ essentially represented the average gene transfer rate among all 691 

bacterial species analyzed, and it was used to identify recombinogenic (larger values) and 

more clonal or less recombinogenic (lower values) genomes compared to the bacterial 

average E F,-- . The mean parameter estimates and the 95% credible interval were as 

follows:  

Parameter Mean Lower CI Upper CI 

𝜃- 1.7958 1.6267 1.9640 

𝜃, 2.8698 2.6453 3.0955 

𝜃D 1.4218 1.3273 1.5157 
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𝜃J 0.1907 0.19072 0.19073 

 

The regression equation that describes F100 as a function of Δ is:  

E F,-- = 	1.7958 + 	2.8698𝛿 + 	1.42180𝛿D + 	0.1907𝛿J 

Based on the parameter values, we used this equation to estimate the expected	F,-- 

for any pair of genomes within a given (short) range of D. We selected pairs of genomes 

with ANI values ranging from 95% to 99.97%. These were mapped to the space of δ, 

ranging from –Inf to -1.3 [δ = log10(100%-ANI); Fig. 1B].  Pairs with δ higher than -1.3 

(below 95% ANI) present low values of F100 and the signature of recent genetic exchange 

events is diluted within the effect of whole genomic diversification for our approach, which 

targets the within-species level. Conversely, when the value of δ is less than -3.65 (above 

99.97% ANI), F100 tends to 1 and genetic exchange events cannot be reliably estimated 

based on sequence identity alone. Therefore, the estimated parameters have predictive 

power in the 95% to 99.97% ANI range (note: using the model outside this range can 

introduce errors that would not represent the behavior of the recombination process).  

4.3.3 Detection of candidate genes under recent exchange 

The above model provided gross estimates of the total number of genes recently 

exchanged between any two genomes. In order to identify the specific genes that underwent 

recent exchange within a genome pair (showing 100% nucleotide identity) and distinguish 

them from genes showing 100% nucleotide identity due to high sequence conservation 

(strong negative selection constraints), the following procedure was followed: 

1. ANI values from pairwise comparisons of genomes assigned to the same species (95% 

ANI cluster) were used to produce an ANI matrix, which was subsequently subjected 

to the Partition Around Medoids (PAM) clustering algorithm in order to identify sub-

clusters of genomes. The Silhouette algorithm was used to select the number of sub-

clusters (32).  
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2. Genome pairs with ANI values similar to the genome pair query (ANI ± 0.2) were 

selected from as many sub-clusters as were available within the same species as the 

query pair (typically 100s of pairs analyzed for each case). 

3. Genomes belonging to the same sub-cluster than the query pair were excluded from 

further analysis in order to not bias the result if the HGT event occurred at the 

immediate ancestor of the sub-cluster (and thus, all members of the sub-cluster possess 

the transferred gene).   

4. Genes with 100% nucleotide identity present in the variable and core genome were 

identified. Core genes were defined as clusters of orthologous groups (COGs) present 

in 90% or more of the genomes of the species analyzed. COGs were defined by Markov 

Clustering (MCL) on the sets of RBMs for all pairs of genomes using the script 

ogs.mcl.rb (33). 

5. For each gene present in the core genome, the frequency of its nucleotide identity 

greater or equal to 99.8% was calculated among its orthologs in each COG.  

6. Genes with such high identities in 80% of more of the pairs analyzed were considered 

highly conserved genes in terms of sequence identity and were excluded from the list 

of potential transferred candidates. Genes encoding for proteins with less than 50 amino 

acids were also excluded to avoid truncated proteins or artifacts related to the short 

protein sequence. The remaining core genes as well as the non-core genes from step #4 

were considered candidates of HGT. 

7. Candidate transferred genes were annotated based on BLASTp searches against 

proteins sequence from complete genomes from the Reference Sequence (RefSeq) 

database at NCBI. 

 

4.3.4 Estimation of the effect of recent mutations and recombination on ANI 

In this study, recent gene exchanges were targeted, which represent genes that have not 

acquired any mutations since the recombination event (i.e., they still show 100% nucleotide 

identity). Thus, the recombination events that were identified were as old as, at maximum, 

about the time required to obtain 1 mutation/gene. 
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Sexual maintenance of a species requires that intra-species recombination affects the entire 

genome, not just a few foci, otherwise the non-affected loci will continue to diverge in 

sequence. Further, the uniformly distributed gene exchanges must occur at high-enough 

frequency to counteract the effect of point mutation, even if some non-uniform gene 

exchanges could occur at higher frequency, on top of the uniform ones, and are 

concentrated to one or a few locations of the genome. Thus, the distance between 

recombined genes (100% nucleotide identity in our case) should be inversely proportional 

to the frequency of uniformly exchanged genes, i.e., the more frequent the gene exchanges 

are the less the distance between exchanged genes will be, and can be modeled to provide 

insights into the frequency of recombination. Specifically, the distance between the most 

spatially distant recombined genes in the genome (percentile 99th) will represent the lower 

bound of (recent) recombination frequency. Further, if dense clusters (i.e., short distance 

among recombined genes) dominate the distribution of distances among recombined genes, 

because -for instance- several genes are exchanged together as part of whole operons in 

single HGT events, there should be an over-inflation at or near zero in the distribution of 

distance values. Therefore, the distribution of distances among recombined genes outlined 

above was also modeled by removing distances of zero initially (i.e., merging contiguous 

recently exchanged genes), and then instances of ≤ 1, etc. More generally, we masked 

distances ≤ k, where k is a parameter. The fitdristrplus package (34) in R was used to 

identify the parameters of a lognormal distribution with best fit to the distribution of the 

distance values, and the smallest k with a qualitative change in the shape of the distribution 

(k=3), was selected. 

The expected number of exchanged genes (E) across the genome (i.e., excluding clusters) 

was calculated as the total number of genes in the genome (N) divided by the mean of the 

lognormal distribution above: 

E[Rec. genes] = 𝑁/ exp(𝜇 +	𝛿D/2	) 

Next, the effect of recombination on the ANI of a genome pair relative to point mutation 

was estimated based on the change in the ANI value when the number of genes calculates 

from the equation above (E	[Rec. genes])	were allowed to recombine between the two 
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genomes (i.e., become 100% identical at the nucleotide level), in-silico (by introducing 

nucleotide changes in orthologous genes), for evolutionary time that was, at maximum, 

equal to the time required to acquire 1 mutation per gene (in order for the recombined genes 

to remain 100% identical and not have enough time to accumulate any mutations; see also 

above). Accordingly, the effect of recombination within this time was calculated by 

subtracting the initial ANI and the new ANI, and multiplying that value by E	[Rec. genes]:  

Rec. effect = (𝐴𝑁𝐼𝑛𝑒𝑤 − 𝐴𝑁𝐼) ∗ 𝐸[𝑅𝑒𝑐. 𝑔𝑒𝑛𝑒𝑠] 

Analogously, in order to estimate the maximum effect of recently introduced mutations on 

ANI of a genome pair within the same evolutionary time interval (i.e., time to acquire up 

to 1 mutation/gene), the following expression was used:  

Mut. effect = 1 ∗ 𝑁/𝐺𝑒𝑛𝑜𝑚𝑒	𝑠𝑖𝑧𝑒 

The effect of recombination and mutation on ANI was subsequently calculated as the 

subtraction of the two estimated values, which means that positive values result in a greater 

effect of recombination, hence sexual maintenance with tendency to increase ANI over 

time. In contrast, negative values reflect a greater effect of mutation, hence a tendency to 

decrease ANI over time. 

The effect of recombination and mutation on ANI was subsequently estimated under four 

different, increasingly more conservative scenarios for the effect of recombination:  

1. Including all the possible genes under recent exchange. 

2. Collapsing clusters of gene exchange to be represented by a single gene/event. 

3. Correcting by functional bias that may reflect strong selection bias for exchanging 

specific functions: functional annotation of exchanged genes was performed and 

the resulting distribution was compared to that of all the genes in the genome. 

Categories that were enriched in exchanged genes were corrected by manual 

inspection of the gene annotation in the category and removed from consecutive 

analysis. 
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4. Using the lower bound of (recent) recombination represented as the distance 

between the most spatially distant recombined genes in the genome (percentile 

99th). 

A subset of genome pairs that showed F,-- values equal or close to E F,--  was 

selected for the analysis described above in order to represent genomes that were not 

outliers (Fig. C.1) and thus, were presumably under no extreme selection pressure for gene 

exchange. From the distribution plot on Fig. C.1, the value of the lower credible interval 

was used as a proxy of the fraction that corresponded to highly conserved 100% identity 

genes and that number was subtracted from F,-- to provide the new F,-- that, most likely, 

represented only recently exchanged 100% identity genes. Genes at 100% nucleotide 

identity that most likely represent highly conserved genes were identified and excluded 

using the approach mentioned above. The remaining (most likely recently exchanged) 

genes were mapped to the genome sequence, and the distance between exchanged genes 

and their spatial distribution across the genome were assessed as described above.  

 

 RESULTS 

4.4.1 Application of the model to species with different ecologies 

Bacterial genomes from the IMG database assigned to species with different 

lifestyles including obligate intracellular symbionts, host-associated, and free-living 

species were selected for further analysis (Table C.2). For each genome pair within a 

species, the expected	F,-- was calculated based on all genome pairs from all species in the 

database showing the same ANI bracket, i.e., ANI +/- 0.1 The observed and expected  F,-- 

values were combined in a single measurement (sigma) that represents the number of 

standard deviations that the observed F100 differs from the expected F100 for genome pairs 

with same ANI value (Figs. 4.1A and C.2A).  

Notably, we observed two distinct clusters based on the sigma values (or amount 

of genetic exchange; observed F100). One cluster included bacterial species associated with 

restricted habitats (Fig. 4.1A, lower right part of the plot). In this cluster, the observed that 
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the fraction of identical genes is lower than the expected average (negative sigma value), 

meaning that fewer recent exchanges were predicted to have occurred compared to the 

bacterial average. The cluster included Buchnera aphidicola, an intracellular symbiont that 

showed the lowest exchanged fraction followed by Yersinia pestis, Mycobacterium 

tuberculosis, and Rickettsia rickettsia, which represent obligate pathogens of humans.  

Conversely, the other cluster corresponded to ecologically versatile species, 

exhibiting higher rates of recent genetic exchange (Fig. 4.1A upper part, above the dashed 

line; positive sigma values). In this cluster, the observed fraction of identical genes was 

greater than expected, indicating that multiple genetic exchange events have recently 

occurred between the genomes compared. These events have also been introduced very 

recently, i.e., in a time frame shorter than that required for point mutations to occur in the 

same time (otherwise the genes would not have been 100% identical to be included in the 

F100 metric). This cluster included commensal and environmental bacteria, including -but 

not limited to- opportunist pathogens such as Campylobacter coli (35), Enterococcus 

faecalis (36), and Neisseria meningitidis (37).  

Our model also provided quantitative estimates of the differences in genetic 

exchanges among bacterial species. In the cluster of recombinogenic bacteria, the fraction 

of genetic exchange was, in general, higher in opportunistic pathogens such as 

Campylobacter jejuni (average sigma: 2.9) and Campylobacter coli (average sigma: 1.8) 

than environmental organisms associated with terrestrial or marine environments such as 

Alteromonas (average sigma: 0.8) and Synechococcus (average sigma: 0.3)), respectively 

(Fig. C.2B). Interestingly, the average of genes detected to be recently exchanged (139) 

was similar among opportunistic pathogens (e.g., C. coli, N, meningitidis, and E. faecalis) 

with the exception of Vibrio cholerae (lower, at 56 genes) and C. jejuni (higher, at 254 

genes). The elevated number of exchanged genes in C. jejuni might be related to its diverse 

ecology and ability to colonize multiple host species. For instance, C. jejuni is considered 

commensal in chicken, but pathogenic when colonizing the intestinal tract of mammals 

(38), and it can also be found in water sources through contamination with feces, (39). This 

ecological versatility could represent varied environmental selections pressures, including 
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antibiotic treatment, and thus, a higher demand for adaptation through genetic exchange 

than other, less ecologically versatile species. 

 

 

Figure 4.1. Variation in the fraction of recent gene exchange among bacterial species.  

Sigma (y-axis) represents the number of standard deviations that the observed F100 differs 

from the expected F100 for genome pairs with same ANI value (x-axis). Data points 

represent genome pairs colored by their species assigned to, using 95% ANI as the 

threshold for species. Panel A shows all genome pairs of selected species with different 

lifestyles from the IMG database and panel B shows selected genome pairs form panel A 

(for details, see table C.2).  

 

4.4.2 Quantifying recent genetic exchange within bacterial species 

To further test the predictions of our model, we analyzed genomic data from 

previous studies (Table C.2, Fig. 4.1B). The Helicobacter pylori genome dataset previously 

published (40) was analyzed to assess recent genetic exchange among strains isolated from 

the same and different human individuals. In agreement with previous results, our model 

indicated that most of the strains living in individuals from the same family presented 
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positive sigma values and a high number of exchanged genes (up to 400 genes of the total 

genes in the genome). In contrast, H. pylori strains isolated from different families 

exhibited negative sigma values indicating null or low recent exchange (Table C.3). In 

addition, the estimated fraction of the genome under recent exchange varied among co-

occurring H. pylori strains from the same individual. For instance, 316 exchanged genes 

were estimated in the genome pair SA161A-SA161C (approximately, 19% of the total 

genes in the genome), 198 genes for SA227A-SA227C (11% of the total), 77 for SA163C-

SA163A (5% of the total). Cases without recent gene exchange signatures were also 

detected, e.g., SA160A-SA160C and SA300A-SA300C. Results consistent with previously 

published reports (41) were also obtained for C. jejuni genomes belonging to specialist and 

generalist lineages as well as originating from different hosts (Fig. C.4), further 

corroborating that ecological differentiation, driven by distinct host niche preferences, 

might restrict gene flow among closely related genotypes. 

Four Shewanella baltica genomes from different depths of the Baltic Sea were 

previously studied. At least two of them were shown to have undergone extensive recent 

exchange, based on manual inspection of whole genome alignments, that could lead to 

sexual speciation (5). Consistent with the results of the original study, our model revealed 

positive sigma values equal to 1.11 and an estimated number of exchanged genes of 242 

among strains OS195 and OS185, the two most recombinogenic genotypes previously 

identified (Fig. C.3A), and negative sigma values (-0.018) among the remaining genome 

pairs, which also represented the most different depths sampled (e.g., strains OS195-

OS155). Manual inspection of the 100% nucleotide identity genes in the genome pair 

OS195-OS185 identified as exchanges by Caro-Quintero and colleagues showed that our 

model identified mostly (160/163) the same genes under recent exchange, with enrichment 

in proteins belonging to metabolism and mobile functional categories. Conversely, for the 

genome pair OS195-OS155, which did not show elevated gene transfer, the 100% 

nucleotide identity genes were enriched in functions associated with essential cellular 

processes and cell viability (Fig. C.3B). The latter genes are more likely to show 100% 

identity due to their high sequence conservation (e.g., greater selective constraints) rather 

than recent gene exchange (see also next section).  
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We also ran our model on a set of C. jejuni genomes previously reported (41) in 

order to compare the signatures of gene flow in isolates belonging to specialist and 

generalist lineages as well as originating from different hosts (Fig. C.4). Overall, higher 

rates of recent exchange were detected in the generalist clonal complex ST-45 presenting 

sigma values greater than 1 and an elevated estimated number of exchanges genes (n=366) 

in comparison with the other generalist lineage, ST-21. Genome pairs from the same clonal 

complex, either generalist (e.g., ST-21) or specialist (e.g., ST-61, a cattle specialist), 

showed higher rates compared to pairs belonging to distinct clonal complexes. This is 

presumably attributable, at least in part, to the fact that strains that colonize the same host 

or source have more opportunities for cell-cell contact, and are under the same 

environmental conditions and selection pressures compared to strains living in different 

hosts, in addition to their typically higher relatedness at the sequence level and mechanisms 

related to gene transfer and recombination, which could facilitate genetic exchange. On the 

other hand, pairwise comparisons of genomes from different clonal complexes including 

ST-353 (host source: chicken) vs. ST-42 (host source: cattle) and ST-353 vs. ST-61 (host 

source: cattle) showed lower exchange values than the bacterial average. Similarly, 

comparisons between genomes from generalist vs. specialist linages, e.g., ST-45 vs. ST-

353 and ST-45 vs. ST-42, presented sigma values below one. These results confirm 

previous hypothesis that ecological differentiation, driven by distinct host niche 

preferences, might restrict gene flow among closely related genotypes. 

4.4.3 Candidate genes that undergo recent exchange 

Among the 100% identity genes shared between a pair of genomes, the ones that 

were likely under recent exchange, as opposed to showing high identity due to high 

sequence conservation (evolutionary constraints), were identified based on their sequence 

identity patterns among genomes of the same species as the pair but from different sub-

species clades than the clades represented by the genomes of the pair. Briefly, highly 

conserved genes were identified as those showing 99.8-100% nucleotide identity in 80% 

or more randomly drawn genomes from different sub-clades of the species and were 

removed from the list of recently exchanged genes. Functional annotation indicated that 
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essential genes including ribosomal structural genes, RNA operons, and DNA/RNA 

polymerases were overrepresented among the removed genes, as expected.  

To confirm recent exchange signatures in the identified candidate genes, we 

randomly selected a subset of genome pairs and performed a phylogenetic assessment by 

comparing the gene tree topology with that obtained using the ANI distance matrix of the 

two query genomes of the pair and their close relatives (genomes from the same species). 

Examples of topological incongruence between the two trees due to gene exchange events 

are shown in Figures C.5 and C.6. Manual inspection of tree topologies indicated that most 

of the transferred genes, e.g., 97.2% of genes tested in a C. jejuni genome pair and 76% in 

a N. meningitidis pair, clustered in the same sub-clade and presented shorter branch lengths 

in comparison with the ANI tree, which was consistent with recent exchange of the genes. 

The remaining genes corresponded to cases where the phylogeny was not conclusively 

resolved because of the high nucleotide sequence identity among genes or might represent 

false positive calls by our approach. 

In addition, candidate exchanged genes among genome pairs from N. meningintidis 

and C. jejuni were functionally annotated. Our model identified exchanged genes in both 

the core and variable genes and their frequency in these two gene sets was variable. For 

instance, the C. jejuni pair 30318-LMG_9879 presented 84% of its exchanged genes in the 

core while pair 63-117 showed 68% of its exchanges in the variable genes. We found also 

differences between the predicted functions of exchanged genes located in the core and 

variable genome (Fisher’s exact test, P < 0.05). Particularly, the majority of exchanged 

genes present in the variable genome were associated with unknown and metabolic 

processes, up to 50% and 80% respectively, as expected since the variable gene set is 

typically enriched in accessory genes compared to the core (42, 43). 

For each pair of genomes, the functional composition of putatively exchanged 

genes was compared with that of the genes in the genome excluding highly conserved 

genes (100% nucleotide identity) from the comparison (Fig. C.7). Overall, we found 

differences in the frequency of the functional categories between these two groups 

(Hypergeometric test, P < 0.05). Most of the exchanged genes were involved in metabolic 
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processes, but also a high percentage was of unknown function (ranging between 40% and 

60% of the total). A small fraction was assigned to the cell motility category including 

flagellar proteins (max 5% in C. jejuni pairs), and to mobile elements including phage-

related sequences, integrative elements, and transposases (max 3% in N. meningintidis 

pairs).  

Specifically, exchanged genes in C. jejuni were enriched in functions associated 

with interaction with host cells and the environment such as efflux proteins, ABC transport 

systems, flagellar, secreted, and membrane proteins. Antibiotic resistant factors, including 

β-lactamase OXA-61, and the efflux pumps SMR and CmeABC (detected in the query 

pairs 63-117 and 30318-LMG.9879, respectively), were also enriched in the recently 

exchanged gene pool. In the case of N. meningitidis, we found genes encoding 

transcriptional regulators as well as membrane and secretion proteins that allow efficient 

interaction with host cells. However, most of the exchanged genes were annotated as 

hypothetical proteins (Fig. C.7). This is not surprising since a high percentage of N. 

meningitidis variable genes linked to gene transfer events have been poorly characterized 

(44, 45). A second set of genes was comprised by sequences related to DNA 

rearrangements, insertion sequences, and putative phage genes including IS1106, IS360, 

and DDE transposases as well as phage tail proteins. These genes may influence the 

activation or inactivation of virulence genes and also contribute to variation in the envelope 

structure (44, 46). Among others, ABC transporters, hemagglutinin, and MafB proteins 

also presented signals of recent exchange but were not enriched in comparison to their 

frequency in the genome. These findings suggested that genetic exchange was not random 

across the genome but driven by selection for specific functions, which we evaluated in 

more detail.  

4.4.4 Spatial biases of recently exchanged genes across the genome 

To evaluate whether the spatial distribution of exchanged genes across the genome 

of highly recombinogenic bacteria was random, multiple non-parametric tests were applied 

including Moran’s (47), Cramer-von Mises (48), Watson (49), and Kolmogorov-Smirnov 

(50) tests. This battery of tests was used to account for different deviations from the 
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uniformity of the locations of the exchanged genes. Overall, in most of the cases the 

distribution of exchanged genes in the tested genomes deviated from random (Table C.4) 

and clusters of exchanged genes were observed even when highly conserved genes with 

100% nucleotide identity, which represent blind spots of our approach, were removed (Figs 

4.2 and C.8). 

For instance, 33% of recent exchanges were located in two consecutive regions in 

the C. jejuni pair 110-117 and more than half (58%) were concentrated in three consecutive 

regions in the C. jejuni pair 63-117, which were among the most recombinogenic pairs 

found by our analysis with large numbers of genes exchanged. This spatial clustering was 

consistent with the functional bias, mentioned above, that revealed exchanged genes to be 

significantly enriched in metabolic, mobile, and unknown functions (Hypergeometric test, 

P < 0.05) (Fig. C.7).  

Similarly, N. menintigitis genome pairs showed exchanged genes in specific, non-

random genomic regions, including pathogenicity islands (Fig. C.8). However, the genome 

pair 2531839670-2537562110, which presented a relatively small number of recent 

imports (n=47) did not present gene clustering across the genome (Table C.4). Further 

inspection revealed an enrichment of transposases and phage proteins flanking the 

exchanged genes, indicating that, most likely, the recent HGT events in this pair are being 

driven by mobile elements with no strong preference for integrating at specific sites of the 

genome (Fig. C.8). Moreover, 80% of its exchanged genes were annotated as hypothetical 

proteins, revealing a strong functional preference in the genes carried by the mobile 

elements (Fig. C.7).  
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Figure 4.2. Spatial distribution of exchanged genes across the genome. 

Circular plots of query genome pairs with genes identified as recently exchanged denoted 

by blue arrowheads. Conserved regions (genes with 100% nucleotide identity without 

signatures of gene exchange) were removed from the genome sequence before assessing 

the spatial distribution of recent exchanges. The location of genes of interest are 

highlighted with green arrows, and pathogenicity islands are represented by orange 

triangles, identified using PAIDB v2 (51) and IslandViewer (52). Plots were drawn using 

CGview (53) 

4.4.5 Relative importance of recombination to mutation indicates sexual speciation  

Since the recently exchanged genes were mostly found in clusters, likely indicating 

selection-driven recombination for their corresponding functions, we were interested in 

evaluating next whether the identified recent exchanged genes in a genome pair were 

sufficient to counteract the effect of random mutations (sexual speciation), when the effect 
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of selection is removed. For this, the effect of recombination and mutation on ANI was 

evaluated in a subset of genome pairs from different bacterial species that presented F,-- 

values equal or close to E F,-- , in order to avoid extreme cases of selection for the 

transferred genes.  

The analysis showed that, after correcting for functional enrichment and/or spatial 

bias of the exchanged genes driven presumably by selection for the corresponding gene 

functions, the effect of recombination is larger than the mutation one on ANI for most of 

the analyzed genome pairs (Table 4.1). For instance, 101 recently exchanged genes were 

estimated in the pair N. meningitids 2523533512-2534681689 and when clusters of these 

genes where collapsed in one event (Fig C.9), the remaining set of exchanged genes (n=81) 

were distributed randomly across the genome and appeared to be sufficient to compensate 

the effect of mutation. Moreover, unknown functions were enriched in exchanged genes 

when compared to the total genes in the genome. After excluding unknown function genes, 

which were typically located transposases and integrases, the remaining set of recent 

exchanges (n=75) showed a greater effect on ANI in comparison with the mutation. Similar 

results were observed for the genome pairs C. jejuni 111-64, N. meningitids 2523533512-

2534681689, N. meningitids 2523533512- 2537562111, and S. pneumoniae 2519899810-

2528311139. In the case of the genome pairs C. jejuni 172-210 and C. coli 2516143039-

2516143061, the effect of mutation on ANI was larger than recombination when the 

clusters of exchanged genes were removed but not greatly different from zero (e.g., no 

large difference between the effects of recombination and mutation) (-0.0001 and -0.0003, 

respectively). For an even more conservative estimation of the effect of recombination, we 

examined the distance in the genome between the two most distant exchanged genes across 

the genome (percentile 99th) as a proxy for recombination frequency (see Materials and 

Methods for details). The effect of recombination based on this lower bound was lower 

than the mutation one in all genome pairs examined but not greatly different from zero, 

i.e., in the 0.0008-0.0005 ANI range.  
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Table 4.1 Effect of recombination and mutation on ANI. The column named “Actual 

ANI” (2nd column) corresponds to the initial ANI value of the genome pair (1st column), 

"Genes sexual" is the number of estimated recently exchanged genes after correcting for 

clusters of exchanged genes (i.e., clustered genes are represented by only one gene), “New 

ANI” refers to the new ANI value after increasing the nucleotide identity of one RBM to 

100%, “1 Rec. ANI” to the subtraction of the two values of ANI, i.e., New ANI vs. Actual 

ANI, “Rec. effect” to the estimated effect of recombination on ANI, i.e., number of Genes 

sexual multiplied by 1 Rec. ANI, “Mut. effect” to the effect of one mutation event on ANI 

in the same evolutionary time period, and “rec-mut” to the subtraction of the recombination 

and mutation effects. 

Genome 
pair 

Actual 
ANI 

No of 
genes 

Genes  
sexual 

New 
ANI 

1 rec. 
ANI 

Rec 
effect 

Mut 
effect rec-mut 

C. jejuni 
111-64                 
case1 0.97849 1695 190 0.97851 2E-05 0.0038 0.00103 0.0028 
case2 0.97849 1695 63.39 0.97851 2E-05 0.0013 0.00103 0.0002 
case3 0.97849 1695 63.39 0.97851 2E-05 0.0013 0.00103 0.0002 
case 4 0.97849 1695 13.22 0.97851 2E-05 0.0003 0.00103 -0.0008 

C. jejuni 
172-210                 

case1 0.98370 1703 190 0.98372 1.2E-05 0.0023 0.001042 0.0012 
case2 0.98370 1703 80.72 0.98372 1.2E-05 0.0010 0.001042 -0.0001 
case 4 0.98370 1703 19.5 0.98372 1.2E-05 0.0002 0.00104192 -0.0008 

C. coli  
2516143039-
2516143061                 

case1 0.96726 1790 87 0.96727 1.5E-05 0.0013 0.001064 0.0002 
case2 0.96726 1790 48.06 0.96727 1.5E-05 0.0007 0.001064 -0.0003 
case 4 0.96726 1790 11.89 0.96727 1.5E-05 0.0002 0.001064 -0.0009 

N. 
meningitidis 
252353351-
2537562111                 

case1 0.97355 1990 94 0.97357 2.2E-05 0.0021 0.001003 0.0011 
case2 0.97355 1990 80 0.97357 2.2E-05 0.0012 0.001003 0.0002 
case3 0.97355 1990 55 0.97357 2.2E-05 0.0018 0.001003 0.0008 
case 4 0.97355 1990 16.7 0.97357 2.2E-05 0.0004 0.001003 -0.0006 
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Table 4.1. continued  

N. 
meningitidis 
252353351-
2534681689                 

case1 0.97364 1989 101 0.97366 1.4E-05 0.0014 0.001002 0.0004 
case2 0.97364 1989 81 0.97366 1.4E-05 0.0011 0.001002 0.0001 
case3 0.97364 1989 75 0.97366 1.4E-05 0.0011 0.001002 0.0001 
case 4 0.97364 1989 22.1 0.97366 1.4E-05 0.0003 0.001002 -0.0007 

S. 
pneumoniae 
251989981-
2528311139                 

case1 0.98942 2207 365 0.98942 0.000009 0.0032 0.00105 0.0022 
case2 0.98942 2207 174.5 0.98942 0.000009 0.0015 0.00105 0.0005 
case 4 0.98942 2207 61.6 0.98942 9E-06 0.0005 0.00105 -0.0005 

 

4.4.6 Comparison to other high-throughput HGT detection methods 

Exchanged genes identified by our approach were also tested using a newly 

described recombination detection tool, fastGear (54). This tool identifies ancestral 

recombination events present in all strains of a lineage and recent events in a subset of 

strains within the same lineage based on multiple-sequence alignments. We analyzed a set 

of 64 C. jejuni genomes previously published (41). Clusters of orthologous genes (COGs) 

were defined for this analysis using the script ogs.mcl.rb (33), lineages were identified 

using the BASP software (55), and  fastGear was executed with default parameters.    

Comparative analysis of the C. jejuni genome pair 110-117 (Fig. C.10) showed that 

65% of the exchanged genes identified by our tool also presented recombination signals by 

fastGear. The remaining set of genes (35%) included strain-specific (non-core) genes in 

20% of the genomes and/or genes with few informative sites, which can affect the detection 

ability of fastGear. In addition, fastGear identified recombination events in 60% of the total 

COGs, which showed no signatures of recent exchange by our tool. These genes were not 

detected by our method because they were not 100% nucleotide identical (fastGear 
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identifies both recent and older events that might have occurred in previous generations in 

the lineages of the genomes compared). 

Similar results were obtained with other bacterial genome pairs, e.g., the C. jejuni 

genome pair 40-117 in which 50% of the exchanged genes identified by our approach were 

also identified by fastGear.  Tree topology analysis of the recently exchanged candidates 

by our approach showed that 82% of them (225/275) presented a different branching 

pattern in comparison with the genome tree, indicating gene transfer. The remaining 18% 

corresponded to genomic regions with few informative sites for robust assessment, and so, 

some of these might represent false positive calls by our approach. In addition, among the 

highly conserved COGs detected by our approach (groups of orthologs with frequency 

values >80%), 92% (180/196) presented no signal of recombination by fastGear. In the 

remaining 16 COGs, 12 genes presented only one ancestral exchange event and the rest 

between two and five events by fastGear.  

In summary, the two approaches largely agreed on exchanged genes with 100% 

identity, with our approach uniquely identifying non-core exchanged genes, and their 

differences in the remaining genes being attributable to the definition and assumptions for 

calling a gene transfer event used by each method. Thus, the application of both methods 

appears to be complementary in the identification of recombination signals in a group of 

genomes. 

 

 DISCUSSION 

Quantifying recent gene flow between and within bacterial species can provide new 

insights into how populations are responding to the environment and how flexible their 

genomes are to acquire gene functions from their closely related genotypes. In this study, 

we quantified and compared the rates of recent gene exchange within bacterial species with 

similar or different lifestyles, and efficiently identified the transferred genes and functions. 

For instance, comparisons among free-living bacteria, which are able to colonize multiple 

hosts and changing environments, indicated that the fraction of recently exchanged genes 
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compared to the average expected varied from ~14%, on average, of the total genes in the 

genome in C. jejuni to ~7.7% in C. coli, ~6% in N. meningitidis, ~3% in Alteromonas 

(2.95%), and ~1% in Synechococcus (Fig. C.2B). The elevated fraction of gene exchange 

estimated by our approach in populations of the opportunistic pathogens mentioned above 

is presumably associated with the high genetic diversity observed within these species as 

well as their ability to colonize multiple environments and selection pressures.  

Close examination of the exchanged genes showed that, overall, recent HGT events 

appeared to target specific functions associated with adaptation and survival to the local 

environmental pressures. Genes with unknown function, mostly found in the variable gene 

set, were enriched in the exchanged genes relative to the total genome (up to 2-fold in N. 

meningitidis genome pairs), indicating that additional functions with likely important roles 

in the adaptation process remain to be elucidated. In addition to the functional bias 

revealed, the newly transferred genes also appeared to be located in clusters across the 

genome (e.g., genomic islands), even in the genome pairs with elevated fraction of 

exchanged genes (Fig. 4.2), indicating a strong spatial clustering for genetic exchange and 

(positive) selection for the corresponding functions.  

While several theories have been advanced in order to explain how bacterial populations 

evolve (sexual vs. asexual), our understanding of how clusters of closely related genotypes 

emerge and are maintained under high rates of gene transfer is far from complete. In this 

study, we attempted to obtain data that test the predicted signatures of these theories on the 

genome. Overall, our results indicated that in most of the genome pairs studied, exchanged 

genes were randomly distributed around the genome when (most) genes under selection 

were removed from the analysis, and these genes appeared to be enough for sexual 

evolution of genomes within the 95-100% ANI genome clusters (Table 4.1). Even when 

the most conservative estimation was used based on the spatial distance of the recently 

exchanged genes in the genome, the effect of recombination was very close to, albeit a bit 

smaller in general, than that of mutation. If one also considers that this analysis was applied 

to genomes pairs with observed F100 close to the expect one (i.e., not extremely 

recombining pairs), and our approach likely underestimates recombination due to the effect 

of recently exchanged genes on ANI and thus, observed F100 (see also below), these 
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findings indicated that strong clonality or asexual speciation is likely not occurring, at least 

for the genomes examined here.  

While our methodology purposely targeted recent exchange events, it is important to 

point out that it still encompassed timescales in the order of several thousand years. For 

instance, E. coli has an estimated mutation rate of 4.5x10-9 per nucleotide per generation 

(56) and between 100 to 300 generations per year (57). For a 1000bp gene, the average 

gene length of bacterial genomes, this mutation rate and number of generations per year 

translate to about 1,000 years to observe a single fixed synonymous nucleotide mutation in 

the gene. In the case of nonsynonymous mutations, it would take about 20,000 years to 

observe a single, fixed nonsynonymous substitution by chance alone, based on an average 

estimate of 1:20 ratio of synonymous to nonsynonymous substitutions in the E. coli 

genomes (30) [assuming no strong selection for the mutation, as is the case for neutral or 

nearly neutral mutations]. When we restricted our analysis of recently exchanged genes to 

those with nonsynonymous substitutions only, by not considering synonymous nucleotide 

changes, we also observed the strong functional and spatial biases described above. Thus, 

it appears that the genomes analyzed here have been exchanging (and getting fixed in the 

genome) genes non-randomly for at least a few thousand years.  

Our model offers a robust estimation of recent gene exchange among pairs of 

genomes because its parameters are based on empirical data derived from a wide range of 

bacterial species with different lifestyles to represent the average gene exchange rate within 

species as a reference point. This is advantageous compared to alternative approaches 

because, in most methods, recombination is detected based on a neutral model assuming 

no recombination or on a coalescent model with no selection and no population structure 

(58). Our approach most likely underestimates the rate of gene flow (relative to the 

reference database average) in highly recombinogenic bacteria since an elevated frequency 

of F100 increases the ANI value between two genomes, i.e., recent gene exchange and ANI 

are not totally independent from each other. However, our model is not based on a 

recombination constant but rather relies on an expected F100 value given an ANI range. 

Further, our simulations showed that when we artificially increased the number of 100% 

identity genes in a genome pair by randomly introducing nucleotide changes in genes that 
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were not originally 100% identical (which increased ANI of the pair), the genome pairs 

that were detected as outliers based on our original analysis (Fig. 4.1), were still outliers 

up to when the ANI reached ~99.97% (Fig. C.11). Therefore, even if closely related 

genomes might have higher chances of gene exchange, the effect of 100% identical genes 

on the ANI value and our ability to detect and quantify outliers is problematic only for very 

identical genomes (>99.97% ANI) or extremely high frequency of genetic exchange (>80-

90% of the total genes affected), and did not affect our conclusions substantially.  

 Our model can be easily implemented and is generally applicable to any set of 

genomes of the same species. The input data, which consist of the fraction of shared genes 

with 100% nucleotide identity and the genome relatedness (ANI), can be estimated using 

the scripts ani.rb and rbm.rb available as part of the enveomics collection (33) or directly 

uploading FastA sequences of a genome pair to the online ANI calculator at http://enve-

omics.ce.gatech.edu/. The core and accessory genome can be estimated using the script 

ogs.mcl.rb. Table C.5 indicates the running time that the model and scripts take to estimate 

the fraction of recent exchange as well as the COGs in a set of genomes. The fraction of 

recent exchange in a group of genomes can be efficiently calculated in seconds and the 

identification of candidate genes requires more time, and varies with the number of 

genomes since the prediction of COGs is required. The procedure and set of scripts used 

in this step are described in the Materials and Methods section. This last step is needed 

only when it is desirable to extract the list of recently transferred genes in a genome pair. 

Our methodology and associated model offer an important addition to the toolbox 

for studying recombination and gene content adaptation, especially during relative short 

timescales. Interestingly, the estimates of recent genetic exchange by this model allowed 

us to evaluate the mode of bacterial evolution under HGT such as that sexual maintenance 

may be possible and recent recombination may act as a cohesive force that counteracts 

mutational divergence, at least for the genomes analyzed here.  
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 CONCLUSIONS AND PERSPECTIVES 

The increasing availability of NGS data in public repositories has opened the 

possibility to study bacterial population at the genome level revealing important properties 

of their evolution mode. Advances of comparative genomics have allowed us to advance 

our knowledge of bacterial population dynamics and the effects of gene exchange in 

shaping microbial community structure. However, due to the volume and complexity of 

genomic datasets raise computational challenges, currently available tools applied to large-

scale data are limited. Thus, new and efficient computational/bioinformatic approaches are 

urgent required.  

In this chapter, we applied Bayesian inference to estimate and quantify recent events 

of genetic exchange in genome pairs from a collection of hundreds bacterial genomes. 

Bayes models have been applied to analyze NGS data including genome-wide association 

studies, protein-protein interactions, and bacterial evolution. Bayesian approaches allow us 

to integrate diverse data types, unravel high dimensional problems, and analyze large-scale 

data sets. However, it can be computationally intensive when they are applied to infer 

phylogenetic relationships using NGS data. 

Currently, multiple bioinformatics tools and algorithms have been developed to 

minimize computational cost and scale analysis over parallel computer. Among the routine 

tasks to tackle omics data include data reduction, feature selection, and data selection. 

However, as NGS technologies continue to improve, much future work in improving the 

efficacy and accuracy of computational tools will be required in order to extract biological 

insights from omics data, answer biological questions, and understand the complexity of 

biological systems. 
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APPENDIX A.  SUPPLEMENTARY MATERIAL CHAPTER 2 

 SUPPLEMENTARY TABLES AND FIGURES 

Table A. 1. General statistics of five biofilm metagenomes from the shower hoses 

*Contigs longer than 5000 bases were counted. 

** Relative abundance of taxa at genus level based on annotated proteins recovered in each 
sample and classified by MyTaxa. 

 

 

 

 

 

Sample	
	 M1	 M3	 M4	 M5	 M6	

Assembly		 	 	 	 	 	
No.	of	reads	
(millions)	

18.01	 14.96	 29.48	 37.03	 23.43	

No.	of	contigs*	 15,323	 2,878	 9,394	 18,311	 21,910	
N50	of	contigs	(b)	 3,242	 19,478	 6,469	 7,483	 6,226	
Average	size	(Mb)	 34.86	 15.95	 25.23	 58.99	 51.11	
No.	of	predicted	

genes	
45,366	 17,676	 31,656	 70,196	 64,737	

Taxonomy	
classification**	(%)	

	 	 	 	 	

Mycobacterium	 45.3	 58.5	 52.5	 26.3	 30	
Erythrobacter	 13.8	 6.71	 9.94	 9.6	 5.81	
Sphingomonas	 3.87	 6.34	 10.7	 6.41	 6.24	

Novosphingobium	 3.83	 5.99	 5.4	 3.65	 2.06	
Bradyrhizobium	 2.66	 0.22	 0.18	 15.45	 8.24	
Citromicrobium	 2.09	 2.02	 1.73	 1.47	 1.02	
Sphingobium	 1.41	 6	 8.98	 2.28	 2.21	
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Table A. 2. Statistics of the 94 isolate genomes recovered from the shower hose 

biofilms.  

Isolate ID OTU designation Ident 
(%) 

GG 
content 

(%) 

Assembly 
size (Mb) 

No of 
contigs 

No of 
protein-
coding 
genes 

CCH3-A3 Blastomonas 100 64.24 4.34 162 4,238 

CCH9-F3 Blastomonas 100 64.26 4.18 154 4,078 

CCH6-A6 Blastomonas 100 64.16 4.39 169 4,301 

CCH8-E1 Blastomonas 100 64.33 4.27 145 4,167 

CCH10-E1 Blastomonas 100 64.18 4.35 230 4,292 

CCH9-A1 Blastomonas 100 64.19 4.2 95 4,083 

CCH13-E1 Blastomonas 97.4 64.2 4.36 159 4,265 

CCH2-E1 Blastomonas 100 64.24 4.4 164 4,344 

CCH4-A2 Acidovorax 
delafieldii 100 64.29 4.28 192 4,155 

CCH5-A5 Sphingomonas 98.2 66.88 3.55 81 3,410 

CCH3-E3 Blastomonas 100 64.27 4.35 153 4,256 

CCH8-A3 Blastomonas 100 64.11 4.57 217 4,567 

CCH18-B1 Sphingomonas 99.7 64.23 4.32 173 4,198 

CCH7-E1 Blastomonas 100 64.18 4.19 111 4,067 

CCH15-G10 Blastomonas 
 

64.22 4.35 192 4,300 
100 

CCH6-E2 Blastomonas 100 64.07 4.49 1088 5,127 

CCH13-A3 Blastomonas  
64.23 4.33 148 4,197 

100 
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Table A.2. continued  
 

CCH21-G11 
Sphingomonas 

 

66.73 3.65 59 3,483 
99.8 

CCH5-E3 Blastomonas 100 64.31 4.3 189 4,254 

CCH4-D12 Blastomonas  
64.29 4.28 173 4,148 

100 

CCH12-A3 Novosphingobium 
 

63.27 5.48 328 5,404 
100 

CCH3-A5 Rhizobiales 99.7 66.5 5.1 208 5,042 

CCH5-F6 Bradyrhizobium 99.7 64.12 8.15 206 7,766 

CCH12-B7 Dermacoccus 99.8 67.66 4.75 279 4,559 

CCH16-B10 Sphingomonas 99.8 66.85 3.56 74 3,386 

CCH9-G4 Pseudoxanthomo-
nas mexicana 99.8 66.55 3.98 105 3,718 

CCH10-E5 Rhizobiales 99.6 67.66 5.32 252 5,333 

CCH3-G3 Acidovorax 
delafieldii 100 64.78 5.79 634 5,698 

CCH6-A11 Sphingomonas 100 68.67 3.87 261 3,839 

CCH6-A12 Neisseria perflava 100 41.73 2.18 105 2,121 

CCH10-B3 Sphingomonas 99.8 65.15 3.83 98 3,779 

CCH9-A3 Rhizobiales 99.7 67.34 5.69 281 5,658 

CCH4-E10 Chryseobacterium 100 36.66 4.41 195 4,120 

CCH4-A6 Bradyrhizobiaceae 99.8 60.89 5.28 159 5,103 

CCH10-C7 Bradyrhizobiaceae 99.8 60.72 5.6 201 5,427 

 
CCH5-A3 Blastomonas 100 64.26 4.43 132 4,334 
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Table A.2. continued       

         CCH19-E1 
 

Porphyrobacter 
donghaensis 

100 64.32 3.96 237 3,914 

CCH12-A10 Comamonadaceae 100 63.34 4.87 470 4,791 

CCH7-A10 Porphyrobacter 
donghaensis 100 51.11 2.52 564 2,521 

CCH1-A6 Blastomonas 100 64.37 4.8 168 4,740 

CCH10-H12 Neisseria perflava 100 51.12 2.52 561 2,495 

CCH4-C5 Comamonadaceae 100 63.19 4.61 456 4,509 

CCH4-E1 Caulobacter 99.8 66.39 4.12 216 4,128 

CCH5-D3 Streptococcus 99.8 39.94 2.23 102 2,099 

CCH5-D2 Methylobacterium 99.8 71.09 6.09 420 6,144 

CCH1-B1 Bradyrhizobiacea 99.7 67.36 5.81 302 5,764 

CCH8-H5 Streptococcus 100 39.8 2.2 105 2,105 

CCH9-E1 Caulobacter 99.8 67.66 4.73 260 4,521 

CCH3-A4 Porphyrobacter 
donghaensis 100 66.58 4.16 236 4,162 

CCH20-B6 Sphingomonas 99.8 66.62 4.08 100 3,963 

CCH5-E12 Caulobacter 99.5 66.74 4.95 189 4,741 

CCH8-G7 Streptococcus 99.3 40.43 2.24 81 2,215 
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Table A.2. continued       

CCH9-H8 Sphingomonas 99.2 66.06 4.57 220 4,529 

CCH7-A1 Porphyrobacter 100 64.23 4.41 182 4,351 

CCH5-B3 Xylophilus 
ampelinus 100 68.27 6.21 320 6,056 

CCH9-H3 Phenylobacterium 99.2 69.48 5.62 149 5,528 

CCH1-A1 
Porphyrobacter 

99.8 66.77 4.21 215 4,178 
donghaensis 

CCH6-E1 
Porphyrobacter 

100 66.45 4.28 275 5,127 
donghaensis 

CCH5-A9 Bosea 99.2 67.39 5.65 278 5,628 

CCH9-E2 Sphingomonas 99.2 66.09 4.31 203 4,260 

CCH8-C6 Streptococcus 100 43.37 2.21 107 2,205 

CCH9-F2 Sphingomonas 100 68.51 4.08 261 4,082 

CCH6-A4 Rhizobiales 99.5 66.82 6.25 380 6,339 

CCH8-A2 
Porphyrobacter 

100 66.47 4.33 274 4,449 
donghaensis 

CCH8-D1 Rhizobiales 99.7 66.78 6.16 295 6,160 

CCH17-B8 Porphyrobacter 
donghaensis 100 66.58 4.17 223 4,136 

CCH2-D9 Dermacoccus 99.7 69.19 3.01 58 2,733 
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Table A.2. continued       

CCH12-G6 Porphyrobacter 
donghaensis 100 66.92 6.13 454 6,291 

CCH11-D2 Rhizobiales 99.7 66.91 6.12 340 6,181 

CCH5-D1 Microbacterium 100 68.25 4.01 110 3,918 

CCH2-A4 Rhizobiales 99.7 66.86 6.17 350 6,246 

CCH11-B1 Sphingobium 99.5 64 4.77 212 4,713 

CCH6-A1 Porphyrobacter 
donghaensis 100 66.64 4.39 246 4,384 

CCH10-A2 Mycobacterium 
mucogenicum 100 66.8 6.72 531 6,883 

CCH11-A4 Blastomonas 100 64.18 4.23 152 4,122 

CCH3-E2 Micrococcus luteus 100 73.18 2.51 237 2,369 

CCH19-C6 Sphingomonas 99.8 66.7 3.93 109 3,819 

CCH12-B4 Phenylobacterium 99.7 69.56 5.55 199 5,487 

CCH12-C2 Erythrobacteraceae 99.5 63.86 4.18 124 4,053 

CCH15-F11 Sphingomonas 99.8 66.77 4.35 109 4,236 

CCH5-D11 Sphingomonas 99.1 65.55 4.44 116 4,235 

CCH18-H6 Sphingomonas 99.8 66.66 4.22 107 4,108 

CCH5-H10 Rhodospirillaceae 99.7 66.24 6.05 240 5,941 

CCH2-A2 Blastomonas 100 64.26 4.41 180 4,357 
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Table A.2. continued       

CCH12-A2 Mycobacterium 
mucogenicum 100 66.84 6.65 370 6,653 

CCH7-E3 Porphyrobacter 
donghaensis 100 66.85 4.1 212 4,064 

CCH7-A2 Blastomonas 100 67.36 6.02 279 5,959 

CCH15-A1 Sphingomonas 99.2 67.87 5.11 3796 7,882 

CCH13-B11 Sphingomonas 99.7 66.76 3.89 64 3,766 

CCH5-A1 Porphyrobacter 
donghaensis 99.7 66.4 4.33 241 4,309 

CCH6-D9 Corynebacterium 
durum 99.3 49.23 4.69 3475 6,946 

CCH7-B2 Sphingomonas 99.8 66.77 9.82 5483 10,000 

CCH15-E2 Porphyrobacter 100 57.23 6.21 251 6,054 

CCH12-A4 Blastomonas 100 63.77 9.12 592 5,487 
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Table A. 3. General statistics of the binned populations recovered from the shower 

hose biofilm metagenomes. 

 

 Binned population genomes 
 Blastomonas sp. Mycobacterium sp. 
Average sequencing depth 41.40 115.9 
Size of the genome (Mb) 7.36 6.4 
Completeness (%) 94.9 100 
Contamination (%) 39.3 2.0 
GC content (%) 7.36 6.4 
Average nucleotide identity (%) 84.2 85.9 
Virulence-associated genes*  0 15 
Antibiotic resistance profile Aminoglycoside, 

polymyxin, 
kanamycin, 

macrolide, bacitracin  

Fluoroquinolone, 
penicillin, 

cephalosporin, 
gentamicin, Netilmicin 

* BLASTp searches against the Virulence Factors of Pathogenic Bacteria and PATRIC 

databases.  
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Table A. 4. Functional categories and relative abundance of protein sequences 

recovered from the biofilm metagenomes.  

Relative abundance was calculated as the number of metagenomic proteins annotated to a 

specific function in the UniProt database divided by the total number of annotated proteins 

in the respective sample. 

UniProt id Name Sample 
  M1 M3 M4 M5 M6 

Q50615 
PE-PGRS family protein 
PE_PGRS33 0.23 0.01 0.48 0.21 0.18 

P50360 Protein y4hP 0.16 0.42 0.1 0.12 0.13 

Q79FV4 
pyridoxal phosphate-dependent 
protein  0.12 0.17 0.15 0.09 0.09 

P0A690 
PE-PGRS family protein 
PE_PGRS46  0.12 0.01 0.22 0.15 0.07 

Q10637 
PE-PGRS family protein 
PE_PGRS24 0.12 0.27 0.24 0.12 0.11 

P35883 
Transposase for insertion element 
IS6120 0.12 0.21 0.15 0.01 0.09 

O86034 
D-beta-hydroxybutyrate 
dehydrogenase 0.07 0.14 0.05 0.09 0.11 

P55501 
Uncharacterized protein 
y4jA/y4nE/y4sE 0.06 0.14 0.03 0.07 0.06 

P08080 Transposase for insertion element  0.04 0.14 0.01 0.12 0.14 
A5TY80 Insertion element IS6110 protein 0.06 0.14 0.06 0.02 0.04 
Q2G6U3 Protein translocase subunit SecA 0.03 0.14 0.05 0.09 0.07 
P17985 Insertion element ISR1 protein A3 0.04 0.07 0.01 0.13 0.06 
P38054 Cation efflux system protein CusA 0.06 0.13 0.12 0.09 0.08 

A1KQG0 
Phthioceranic/hydroxyphthioceran
ic acid synthase 0.2 0.01 0.12 0.1 0.07 

P72003 
Serine/threonine-protein kinase 
PknF 0.16 0.01 0.2 0.01 0.09 

O65934 
ABC transporter ATP-
binding/permease protein Rv1747  0.16 0.01 0.14 0.01 0.21 

P9WPS6.1 
Probable cation-transporting 
ATPase G 0.14 0.01 0.01 0.01 0.01 

P96218 Glutamate synthase [NADPH]  0.14 0.1 0.06 0.01 0.06 
P60230 
 

Transposase for insertion element 
IS1081 0.13 0.13 0.13 0.11 0.11 

Q02251 Mycocerosic acid synthase 0.13 0.01 0.05 0.01 0.05 
 
 
 

 
     



 125 

Table A.4. continued 
 

P9WPS2.1 
Probable copper-exporting P-type 
ATPase V 0.13 0.01 0.01 0.01 0.01 

O53735 
Putative membrane protein 
mmpL4 0.13 0.07 0.12 0.01 0.01 

O53303 Putative alcohol dehydrogenase D 0.12 0.2 0.13 0.01 0.01 
Q57307 Cholesterol oxidase  0.12 0.07 0.09 0.01 0.01 

Q2G480 
Phosphoenolpyruvate 
carboxykinase 

0.04
3 0.1 0.12 0.01 0.01 

P55390 Probable cold shock protein y4cH 0.01 0.01 0.01 0.08 0.11 

Q5NRH4 
Glutamine-fructose-6-phosphate 
aminotransferase 0.01 

0.00
1 0.09 0.08 0.07 

 
 
Disinfectant mechanisms      

Q9KU26 Extracellular polymeric substance  
0.08

6 0.03 0.03 0.14 0.084 

P37578 60 kDa chaperonin GroEL1 
0.30

2 0.17 0.33 0.32 0.253 

L8F435 
GDP-mannose 6-dehydrogenase 
AlgD 

0.01
4 0.42 0.01 0.01 0.01 

R4R145 
Alginate biosynthesis protein 
AlgA 

0.00
0 0.01 0.02 0.01 0.011 

P04425 Glutathione synthetase gshB 
0.04

3 0.07 0.1 0.1 0.095 

Q73VT8 
Putative glutathione reductase 
gorA 

0.01
4 0.03 0.02 0.01 0.011 

A0R692 
DNA protection during starvation 
protein 

0.33
1 

0.00
1 0.38 0.42 0.242 

P52214 Thioredoxin reductase trxB 
0.47

5 0.56 0.58 0.5 0.442 

Q51506 
Redox-sensitive transcriptional 
activator SoxR 

0.04
3 0.07 0.03 0.04 0.032 

P9WGE7 Superoxide dismutase sodA 
0.02

9 0.01 0.01 0.07 0.053 

Q1I657 
RNA polymerase sigma factor 
RpoS 

0.00
0 0.07 0.17 0.12 0.179 

P9WGE9 Superoxide dismutase SodC 
0.05

8 0.07 0.09 0.06 0.084 

P96273 
Exodeoxyribonuclease III protein 
XthA 

0.00
0 0.14 0.12 0.18 0.168 

A0PSD2 
Hydrogen peroxide-inducible 
genes activator, OxyR 

0.17
3 0.1 0.15 0.21 0.116 

A0QYP1 Catalase-peroxidase katG 
0.27

4 0.21 0.19 0.28 0.2 
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Table A.4. continued 

Q9I6Z2 
Alkyl hydroperoxide reductase 
ahpF 

0.08
6 0.07 0.09 0.05 0.042 

P31224 
Multidrug efflux pump subunit 
AcrB 

0.07
0 

0.01
4 

0.03
4 

0.00
2 0.011 

P52599 
Probable multidrug resistance 
protein emrK 

0.07
0 

0.02
9 

0.03
4 

0.00
1 0.011 

Q98D15 
Probable multidrug resistance 
protein NorM 

0.07
0 

0.01
4 

0.01
7 

0.00
1 0.021 

P52002 Multidrug resistance protein MexB 
0.03

5 
0.01

4 
0.01

7 
0.00

1 0.021 

P78966 
Mating factor M secretion protein 
mam1 

0.03
5 

0.00
0 0.00 

0.00
3 0.00 

Q6D2B1 Multidrug resistance protein MdtB 
0.01

1 0.01 0.00 
0.00

3 0.01 

Q73V87 Multidrug resistance protein mmr 
0.03

5 0.00 
0.01

7 
0.00

1 0.01 

P34713 Multidrug resistance protein PGP3 
0.03

5 
0.01

4 
0.00

0 0.00 0.00 

Q1GR76 

UPP (Bacitracin resistance 
protein) (Undecaprenyl 
pyrophosphate phosphatase) UPPP 

0.07
0 

0.02
9 

0.05
1 

0.00
3 0.032 
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Figure A. 1 Comparison of the taxonomic profile of the shower hose metagenome with 

other microbial communities at the family level.   

(A) The bacterial community structures were assessed using 16S rRNA gene-encoding 

metagenomic reads. The dataset called “Hospital” was collected from an ICU ward surface 

of the University Hospital A Coruña, Spain, (SRA ID: SRX099356). The dataset called 

“Pipes” was collected from drinking water pipes in Florida, USA (SRA ID: SRX472092). 

(B) Multidimensional scaling (MDS) plot based on the relative abundance of taxa on each 

dataset using the Bray–Curtis distance. 
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Figure A. 2. Phylogenetic relationships among population bins and isolate genomes 

based on 30S ribosomal protein S20 sequences.  

The isolates from the shower hoses are colored in blue; the recovered bins in red, and the 

reference genomes in green. The phylogeny was generated using the Neighbor-joining 

algorithm with 1000 bootstrap replicates using MEGA V.5. The number at nodes indicates 

the bootstrap support.  Scale bar represents substitutions per site. 
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Figure A. 3. Metagenomic comparison of the genes involved in antibiotic resistance 

(ARG) and virulence (VF) mechanisms between the shower hose and other water-

associated microbial communities.  

The “river” dataset corresponds to samples from river water (SRA ID: SRR1022353), the 

“drinking.water” dataset from a drinking water treatment plant in China (SRA ID: 

SRR835363), the “lake.08.2009” dataset collected during summertime (SRA ID: 

SRR096386), and the “lake.11.2009” dataset collected during falltime (SRA ID: 

SRR096389) from Lake Lanier in Georgia, USA. Pearson's Chi-squared test values 

between the shower hose metagenome and each water metagenome were significant (p-

value < 0.05). 
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Figure A. 4. Intra-population diversity of the abundant Mycobacterium population 

recovered from the shower hose metagenomes.  

(A) Fragment recruitment plot of the recovered Mycobacterium population versus the M1 

metagenome. Metagenomic reads were searched against the recovered genome sequence 

using a cut-off of at least 70% nucleotide identity and complete alignment to the genome 

reference. The y-axis corresponds to the identity of each read and the x-axis to the position 

of the read mapped on the genome. The histogram on the right represents the sum of the 

total base pairs of the reads recruited per unit of nucleotide identity. (B) Neighbor-joining 

phylogenetic tree of metagenomic reads that mapped on the single-copy 30S ribosomal 

protein S9 encoded on the recovered genome. Inset represents a zoomed in view of the tree 

where the reads representing the abundant Mycobacterium sp. population clustered 

together (in purple color). Note the star-like phylogeny formed by the latter reads. Scale 

bar represents substitutions per site. 
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Figure A. 5. Genome alignment of the (binned) Blastomonas population genome 

against the Blastomonas isolate genome.  

The Artemis Comparison Tool (ACT) was used to visualize the alignment of the two 

genomes. Contigs of the Blastomonas bin (top) were ordered based on homology searches 

and (assumed) synteny with a Blastomonas isolate genome available in GenBank 

(Accession number:  GCA_000331245.1). Red bars indicate regions of similarity with the 

same orientation; empty/white bars indicate regions of gene content differences. Note, 

however, that most of the gene-content differences probably represent sequencing gaps 

(e.g., neither genome was complete) as opposed to real gene-content differences. 
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APPENDIX B.  SUPPLEMENTARY MATERIAL CHAPTER 3 

 SUPPLEMENTARY TABLES AND FIGURES 

Table B. 1. Metadata for all samples analyzed in this study 

Sample 
ID Location Age  Age category 

Clinical 
status Sex Race 

Q101 Quito 4 Children control female mestizo 
Q104 Quito 4 Children control female mestizo 
Q105 Quito 1 YoungChildren control male mestizo 
Q106 Quito 7 Children control male mestizo 
Q107 Quito 0 New.born control female mestizo 
Q108 Quito 10 PreAdolescent case female mestizo 
Q116 Quito 2 YoungChildren control male mestizo 
Q117 Quito 10 PreAdolescent control male mestizo 
Q127 Quito 1 YoungChildren control male mestizo 
Q128 Quito 19 Adult case female mestizo 
Q130 Quito 45 Adult control female mestizo 
Q131 Quito 5 Children control male mestizo 
Q132 Quito 3 YoungChildren control male mestizo 
Q133 Quito 31 Adult control female mestizo 
Q139 Quito 4 Children case female mestizo 
Q142 Quito 33 Adult case female mestizo 
Q143 Quito 6 Children control male mestizo 
Q144 Quito 6 Children control female mestizo 
Q145 Quito 30 Adult control female mestizo 
Q146 Quito 46 Adult control male mestizo 
Q147 Quito 31 Adult case female mestizo 
Q148 Quito 9 PreAdolescent control female mestizo 
Q157 Quito 2 YoungChildren control female mestizo 
Q158 Quito 1 YoungChildren control male mestizo 
Q159 Quito 17 PreAdolescent control female mestizo 
Q160 Quito 0 New.born control male mestizo 
Q168 Quito 5 Children control female mestizo 
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Table B. 1. continued 

Q169 Quito 21 Adult control female mestizo 
Q170 Quito 12 PreAdolescent control female mestizo 
Q174 Quito 0 Babies control male mestizo 
Q178 Quito 11 PreAdolescent control male mestizo 
Q186 Quito 8 PreAdolescent control male mestizo 
Q188 Quito 0 Babies control female mestizo 
Q189 Quito 0 Babies control male mestizo 
Q192 Quito 25 Adult control female mestizo 
Q196 Quito 4 Children case male mestizo 
Q199 Quito 0 Babies control female mestizo 
Q203 Quito 0 New.born control male mestizo 
Q207 Quito 13 PreAdolescent case male blanco 
Q212 Quito 12 PreAdolescent control male mestizo 
Q215 Quito 0 New.born control male mestizo 
Q223 Quito 40 Adult case female mestizo 
Q227 Quito 9 PreAdolescent case female mestizo 
Q233 Quito 2 YoungChildren case male mestizo 
Q239 Quito 1 YoungChildren case male mestizo 
Q240 Quito 44 Adult case male mestizo 
Q243 Quito 43 Adult case female mestizo 
Q245 Quito 3 YoungChildren control male mestizo 
Q249 Quito 4 Children control male mestizo 
Q253 Quito 2 YoungChildren control male mestizo 
Q259 Quito 26 Adult control female Amerindian 
Q270 Quito 20 Adult case female mestizo 
Q275 Quito 49 Adult control female mestizo 
Q282 Quito 2 YoungChildren control female mestizo 
Q284 Quito 1 YoungChildren control female mestizo 
Q288 Quito 8 PreAdolescent control male mestizo 
Q289 Quito 30 Adult control female mestizo 
Q291 Quito 0 Babies case male mestizo 
Q294 Quito 1 YoungChildren case female mestizo 
Q295 Quito 78 Adult case female mestizo 
Q300 Quito 4 Children case male mestizo 
Q304 Quito 3 YoungChildren case female mestizo 
Q308 Quito 1 YoungChildren case female manaba 
Q310 Quito 1 YoungChildren case female mestizo 
Q312 Quito 0 Babies control male mestizo 
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Table B. 1. continued 

Q40 Quito 38 Adult case male mestizo 
Q49 Quito 1 YoungChildren case male mestizo 
Q51 Quito 4 Children case male manaba 
Q53 Quito 5 Children case female Amerindian 
Q56 Quito 1 YoungChildren case female mestizo 
Q57 Quito 1 YoungChildren case male mestizo 
Q61 Quito 1 YoungChildren case male mestizo 
Q65 Quito 2 YoungChildren case female mestizo 
Q69 Quito 49 Adult control male mestizo 
Q70 Quito 32 Adult control female NA 
Q71 Quito 1 YoungChildren case male mestizo 
Q74 Quito 64 Adult case female mestizo 
Q83 Quito 40 Adult control female mestizo 
Q86 Quito 1 YoungChildren control male mestizo 
Q87 Quito 1 YoungChildren control male mestizo 
Q89 Quito 31 Adult case male mestizo 
Q90 Quito 27 Adult case female mestizo 
Q91 Quito 26 Adult case male mestizo 
Q92 Quito 18 Adult case male mestizo 
Q97 Quito 41 Adult control female mestizo 
Q98 Quito 61 Adult control female mestizo 
Q99 Quito 47 Adult control female mestizo 
R0001 Villages 1 YoungChildren case female Amerindian 
R0003 Villages 3 YoungChildren case male Amerindian 
R0006 Villages 2 YoungChildren case male Amerindian 
R0007 Villages 1 YoungChildren case male mestizo 

R0008 Villages 1 YoungChildren control male 
African 

American 
R0009 Villages 2 YoungChildren case male mestizo 
R0010 Villages 4 Children case male Amerindian 
R0011 Villages 57 Adult case female Amerindian 
R0012 Villages 1 YoungChildren control female Amerindian 
R0013 Villages 54 Adult case female Amerindian 
R0014 Villages 1 YoungChildren case female Amerindian 
R0015 Villages 3 YoungChildren control male Amerindian 
R0017 Villages 37 Adult case male Amerindian 
R0021 Villages 5 Children case male Amerindian 
R0022 Villages 1 YoungChildren control female Amerindian 
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Table B. 1. continued 

R0024 Villages 39 Adult control female 
African 

American 

R0025 Villages 4 Children control male 
African 

American 
R0026 Villages 2 YoungChildren control female mestizo 
R0029 Villages 5 Children control female mestizo 
R0030 Villages 8 PreAdolescent control female mestizo 
R0031 Villages 33 Adult case female Amerindian 
R0032 Villages 5 Children case male Amerindian 

R0039 Villages 32 Adult case female 
African 

American 
R0040 Villages 4 Children control male mestizo 
R0041 Villages 6 Children control male mestizo 

R0042 Villages 30 Adult case male 
African 

American 

R0043 Villages 3 YoungChildren control male 
African 

American 

R0044 Villages 10 PreAdolescent case male 
African 

American 
R0045 Villages 5 Children case female mestizo 
R0046 Villages 5 Children control male mestizo 
R0050 Villages 3 YoungChildren case male Amerindian 
R0051 Villages 5 Children case male Amerindian 
R0052 Villages 2 YoungChildren control male Amerindian 
R0053 Villages 15 PreAdolescent control female mestizo 

R0054 Villages 15 PreAdolescent control male 
African 

American 

R0055 Villages 15 PreAdolescent control female 
African 

American 
R0056 Villages 16 PreAdolescent control male Amerindian 
R0057 Villages 4 Children case female Amerindian 
R0058 Villages 13 PreAdolescent control male Amerindian 

R0059 Villages 6 Children case male 
African 

American 

R0060 Villages 38 Adult case female 
African 

American 

R0061 Villages 37 Adult control female 
African 

American 

R0062 Villages 4 Children case male 
African 

American 
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Table B. 1. continued 

R0063 Villages 8 PreAdolescent case male 
African 

American 
R0064 Villages 16 PreAdolescent control male mestizo 

R0065 Villages 51 Adult case female 
African 

American 

R0066 Villages 8 PreAdolescent case female 
African 

American 

R0067 Villages 10 PreAdolescent control male 
African 

American 

R0068 Villages 12 PreAdolescent control female 
African 

American 
R0071 Villages 5 Children case male mestizo 

R0074 Villages 9 PreAdolescent control female 
African 

American 

R0076 Villages 0 Babies case male 
African 

American 

R0077 Villages 1 YoungChildren case male 
African 

American 
R0078 Villages 2 YoungChildren case female mestizo 

R0079 Villages 2 YoungChildren case male 
African 

American 

R0080 Villages 1 YoungChildren control female 
African 

American 

R0081 Villages 1 YoungChildren control male 
African 

American 

R0083 Villages 2 YoungChildren control male 
African 

American 

R0084 Villages 1 YoungChildren control male 
African 

American 

R0085 Villages 2 YoungChildren control female 
African 

American 

R0088 Villages 1 YoungChildren case male 
African 

American 

R0090 Villages 1 YoungChildren control female 
African 

American 

R0091 Villages 4 Children control male 
African 

American 

R0093 Villages 2 YoungChildren case female 
African 

American 

R0097 Villages 2 YoungChildren control female 
African 

American 
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Table B. 1. continued 

R0098 Villages 8 PreAdolescent control male 
African 

American 

R0101 Villages 1 YoungChildren case female 
African 

American 

R0102 Villages 0 Babies case female 
African 

American 

R0104 Villages 9 PreAdolescent control male 
African 

American 

R0105 Villages 3 YoungChildren control female 
African 

American 

R0109 Villages 1 YoungChildren control female 
African 

American 

R0110 Villages 0 Babies control male 
African 

American 
R0111 Villages 2 YoungChildren case female Amerindian 
R0113 Villages 0 New.born case male manaba 
R0114 Villages 2 YoungChildren case male mestizo 

R0116 Villages 17 PreAdolescent control male 
African 

American 
R0118 Villages 57 Adult case female mestizo 

R0119 Villages 7 Children control male 
African 

American 

R0120 Villages 45 Adult case female 
African 

American 

R0122 Villages 11 PreAdolescent case male 
African 

American 

R0123 Villages 0 New.born control male 
African 

American 

R0124 Villages 2 YoungChildren control male 
African 

American 

R0125 Villages 7 Children case male 
African 

American 

R0126 Villages 1 YoungChildren case female 
African 

American 

R0127 Villages 7 Children case male 
African 

American 

R0128 Villages 6 Children control male 
African 

American 

R0129 Villages 2 YoungChildren control male 
African 

American 

R0130 Villages 5 Children control male 
African 

American 

R0131 Villages 4 Children control male 
African 

American 
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Table B. 1. continued 

R0132 Villages 7 Children control female 
African 

American 

R0134 Villages 1 YoungChildren control male 
African 

American 
R0135 Villages 2 YoungChildren case female mestizo 

R0136 Villages 59 Adult case male 
African 

American 

R0137 Villages 2 YoungChildren control male 
African 

American 

R0138 Villages 14 PreAdolescent case female 
African 

American 
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Table B. 2. Permutational multivariate analysis of variance (PERMANOVA) at the 

OTU level. 

 R2 values indicate the amount of variation attributed to each categorical factor. 

PERMANOVA was conducted on the Bray-Curtis distance matrix using the ADONIS 

function in the vegan R package with 999 permutations of residuals. Levels of significance: 

*P < 0.05, **P< 0.01, ***P < 0.001.  

Variable Df Sus	ofSqs MeanSqs F	model R2 Pr(>F)
Location 1 1.82 1.82 4.98 0.02 0.001
Age 5 4.12 0.82 2.25 0.06 0.001
Race 4 1.82 0.45 1.24 0.02 0.027

Delivery	mode 3 1.31 0.43 1.2 0.012 0.071
Education 3 0.85 0.28 0.77 0.01 0.977

House	sanitation 2 0.74 0.37 1.01 0.013 0.424
Water	treatment	

type 2 0.94 0.47 1.29 0.008 0.059
Water	treatment 1 626 0.62 1.71 0.004 0.012

Gender 1 0.29 0.29 0.81 0.82 0.789
Residuals 158 57.7 0.36 1
Total 180 70.32

***
***
*

*
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Table B. 3 Significant associations between location and microbial abundances at all 

taxonomic levels controlling for the effects of race and Age using MaAsLin 

(Multivariate microbial Association by Linear models) with a Q-value < 0.1, as a cut-

off for significant associations.  

 

 

 

 

 

 

Variable Feature Value Coefficient P-value Q-value

Location
k__Bacteria|Bacteroidetes|Bacteroidia|Bacteroidales|Prevotellaceae|P
revotella|copri Rural 0.185 0.0032 0.055

Location
k__Bacteria|Proteobacteria|Betaproteobacteria|Burkholderiales|Coma
monadaceae|Comamonas Rural 0.006 0.0013 0.027

Location
k__Bacteria|Elusimicrobia|Elusimicrobia|Elusimicrobiales|Elusimicro
biaceae Rural 0.01 2.4E-05 0.001

Location k__Bacteria|Bacteroidetes|Bacteroidia|Bacteroidales|Rikenellaceae Rural -0.069 5.2E-06 0.0007

Age
k__Bacteria|Firmicutes|Clostridia|Clostridiales|Ruminococcaceae|Osc
illospira Babies -0.103 0.0011 0.079

Age
k__Archaea|Euryarchaeota|Methanobacteria|Methanobacteriales|Met
hanobacteriaceae|Methanobrevibacter| Babies -0.025 0.0011 0.079

Age k__Bacteria|Firmicutes|Clostridia|Clostridiales|Christensenellaceae Babies -0.019 0.0010 0.075

Age
k__Bacteria|Firmicutes|Clostridia|Clostridiales|Clostridiaceae|Clostrid
ium Babies -0.025 0.0007 0.058

Age k__Bacteria|Bacteroidetes|Bacteroidia|Bacteroidales|_Barnesiellaceae Babies -0.068 0.0006 0.055

Age
k__Bacteria|Firmicutes|Clostridia|Clostridiales|Lachnospiraceae|_Ru
minococcus Babies -0.047 0.0001 0.018

Age
k__Bacteria|Firmicutes|Clostridia|Clostridiales|Ruminococcaceae|Ru
minococcus Babies -0.081 0.0001 0.018

Age k__Bacteria|Firmicutes|Clostridia|Clostridiales|Ruminococcaceae Babies -0.155 2.2E-05 0.004
Age k__Bacteria|Bacteroidetes|Bacteroidia|Bacteroidales|Rikenellaceae Babies -0.143 1.0E-05 0.003

Age
k__Bacteria|Actinobacteria|Actinobacteria|Bifidobacteriales|Bifidoba
cteriaceae|Bifidobacterium_Other Babies 0.133 1.1E-05 0.003

Age
k__Bacteria|Firmicutes|Clostridia|Clostridiales|Ruminococcaceae_Ot
her_Other Babies -0.12 1.15E-06 0.007

Age
k__Bacteria|Bacteroidetes|Bacteroidia|Bacteroidales|Bacteroidaceae|
Bacteroides|eggerthii Children -0.051 0.0001953 0.022

Age
k__Bacteria|Firmicutes|Clostridia|Clostridiales|Ruminococcaceae|Fae
calibacterium|prausnitzii New born -0.156 1.30E-05 0.003

Age
k__Bacteria|Firmicutes|Clostridia|Clostridiales|Clostridiaceae|Clostrid
ium|perfringens New born 0.046 6.97E-07 0.0007

Age
k__Bacteria|Firmicutes|Bacilli|Lactobacillales|Enterococcaceae|Enter
ococcus New born 0.05 1.65E-07 0.0003
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Table B. 4. Network topological parameters calculated by NetworkAnalyzer 

(Cytoscape v3.6.1) and SPIEC-EASI (SParse InversE Covariance Estimation for 

Ecological ASsociation Inference) of the rural and urban OTU co-occurrence 

networks during a healthy and a disease state.   

 

 

 

 

 

 

 

 

 

Parameter Urban Rural
Control Case Control Case

Clustering coefficient 0.064 0.099 0.082 0.086

Connected components 1 1 1 6
Network diameter 10 10 12 13

Network radius 6 6 7 1

Network centralization 0.031 0.031 0.02 0.015

Shortest path 104652 51756 155630 130692

Avg. number of neighbors 4.025 4.009 4.05 3.38

Network density 0.012 0.018 0.01 0.009

Network heterogeneity 0.497 0.45 0.514 0.517

Number of nodes 324 228 395 372

Number of edges 652 457 801 630

Number of positive edges 541 367 684 585

Number of negative edges 111 90 117 45
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Table B. 5. Topological features of the OTUs with the highest number of edges (Top 

10) identified in healthy rural and urban OTU co-occurrence network analysis   

 

 

 

 

 

 

 

 

 

RURAL

OTU Number of egdes
Average Shortest 

path length
Clustering 
Coefficient

Betweenness 
centrality

f_Bacteroidaceae|Bacteroides uniformis 12 3.961 0.136 0.038
f_S24-7| 10 3.703 0.066 0.062
f_Ruminococcaceae| Oscillospira 10 3.791 0.088 0.063
f_Methanobacteriaceae| Methanobrevibacter 10 3.667 0.088 0.059
o_Clostridiales 9 4.22 0.277 0.046
f_Paraprevotellaceae|CF231 9 3.878 0.083 0.036
f_Ruminococcaceae| Anaerofilum 9 3.931 0.083 0.027
f_Ruminococcaceae| Faecalibacterium prausnitzii 9 4.116 0.055 0.025
f_Ruminococcaceae 9 3.964 0.083 0.034
f_Prevotellaceae| Prevotella stercorea 9 4.162 0.055 0.033

URBAN

OTU Number of egdes
Average Shortest 

path length
Clustering 
Coefficient

Betweenness 
centrality

f_Ruminococcaceae| Oscillospira 14 3.65 0.087 0.072
f_Bifidobacteriaceae| Bifidobacterium 10 3.823 0.011 0.036
f_Erysipelotrichaceae 10 4.068 0.017 0.019
f_Ruminococcaceae| Oscillospira 10 3.681 0.044 0.057
f_Ruminococcaceae| Faecalibacterium prausnitzii 10 3.486 0.066 0.071
f_Veilonellaceae| Anaerovibrio 10 3.743 0.013 0.032
f_Paraprevotellaceae|CF231 10 3.901 0.015 0.032
f_Enterobacteriaceae| Escherichia coli 9 4.191 0.194 0.013
f_Veilonellaceae| Dialister 9 3.938 0.055 0.031
f_Lachnospiraceae| Blautia 9 3.891 0.055 0.045
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Table B. 6. General statistics of recovered genome populations (MAGs) from urban 

and rural metagenomes 
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Table B.6. continued 
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Table B. 7. Genomic characteristics of recovered population genomes (MAGs) 

classified as Prevotella and Alistipes from rural and urban metagenomes. 

 

Urban     
MAGS Completeness A. finegoldii (ANI) 

MG37_009 94.40% 81.10% 
MG39_006 96.30% 91.65% 

MG43_011 97.20% 81.97% 
MG45_003 93.50% 85.29% 
MG45_015 93.50% 99.23% 
MG48_004 92.50% 98.70% 
MG49_004 96.30% 85.75% 
MG52_006 98.10% 87.84% 
   
Rural   
MAGS Completeness P. stercorea (ANI) 
MG62_003 98.10% 96.81% 
MG63_001 97.20% 80.56% 
MG66_002 95.30% 85.47% 
MG66_003 97.20% 97.08% 
MG71_009 86.90% 81.37% 
MG73_003 92.50% 81.07% 
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Table B. 8. Epidemiology of the clonal complex of the E. coli isolates (in bold) from 

ADD samples. ST profile was evaluated using the Warwick MLST database 

(http://enterobase.warwick.ac.uk/species/ecoli) and the Clermont phylogroup membership 

was determined based on the correspondence between Warwick sequence type number and 

triplex PCR genotype as described in Clermont et al. (2012)  

Strain ID clinical ST 
Clermont  

phylogroup 
B45_2 case 4 A 
B46_1 control 4 A 
C46_4 control 4 A 
Q294 case 4 A 
R17_2 case 4 A 
R66_4 case 4 A 
R66_5 case 4 A 
B88_3 case 6 A 
B118_2 control 10 A 
B119_1 case 10 A 
B145_4 control 10 A 
B188_1 control 10 A 
B201_3 case 10 A 
B201_5 case 10 A 
B66_1 case 10 A 
B66_4 case 10 A 
C21_2 control 10 A 
C21_4 control 10 A 
E135_2 case 10 A 
E135_5 case 10 A 

E57 case 10 A 
Q145 control 10 A 
Q147 case 10 A 
Q212 control 10 A 
Q240 case 10 A 
Q289 control 10 A 
Q300 case 10 A 
R36_1 case 10 A 
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Table B.8 continued 

R42_2 case 10 A 
R67_3 control 10 A 
Q308 case 93 A 

B100_5 control 131 B2 
B12_1 case 131 B2 

E13 case 131 B2 
E170 case 131 B2 
E26 case 131 B2 

Q295 case 131 B2 
Q51 case 131 B2 
Q56 case 131 B2 

R86_1 case 131 B2 
SE15 NA 131 B2 
LF82 NA 135 B2 
E173 case 394 D 
E205 case 394 D 
Q196 case 394 D 
Q243 case 394 D 

B259_1 control 517 B1 
E33_4 control 517 B1 
Q233 case 517 B1 
Q249 control 517 B1 
Q275 control 517 B1 
Q142 case 636 B2 
Q223 case 636 B2 
Q310 case 636 B2 
Q49 case 4407 B1 
SE11 NA 4407 B1 
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Figure B. 1. A. Map of the study site in Ecuador. Red points indicate the location of 

the sampling sites, including Quito (Ecuador’s Capital) and where all the 

communities reside. B. Representative photographs of the rural and urban sites 

studied in Northern Ecuador. 
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Figure B. 2. Top discriminative bacteria (LDA score > 3.5) in the gut microbiota 

between Ecuadorian and US populations identified by linear discriminant analysis 

(LDA) effect size (LEfSe) (Segata et al., 2011). 
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Figure B. 3. Nonmetric Multidimensional Scaling (MDS) analysis based on Mash 

distances with k= 21.  

Each dot corresponds to a metagenomic sample and is colored according to its location 

(see Figure key). Mash similarities distances were calculated using Mash with default 

parameters between whole metagenomic datasets (Ondov et al., 2016). 
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Figure B. 4. Comparison of the taxonomic and functional richness of metagenomes 

from rural and urban subjects.  

The community richness was calculated as the number of observed OTUs based on 16S 

rRNA gene data and the functional richness corresponds to the total number of predicted 

proteins and KEGG Orthology gene families (KOs) in the metagenomes. Pearson’s r values 

are indicated with their respective P value. 
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Figure B. 5. Overall bacterial diversity recovered across samples from rural and 

urban populations.  

Phylogenetic reconstruction of MAGs based on the concatenated alignment of 8 universal 

single copy proteins. Maximum likelihood tree was built with RAxML v8.0.19 

(Stamatakis, 2014). Colors indicate the order assigned to each MAG and its location (rural 

or urban).  
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Figure B. 6.  Differential functional profile of recovered Prevotella and Alistipes 

MAGs from healthy metagenomes.  

Columns represent each MAG recovered that was classified either as Prevotella or 

Alistipes and rows represent the abundance of A. GO biological functions and B.  Enzymes 

identified using the KEEG Enzyme Database that were significantly different between the 

two groups of MAGs (Welch’s t-test, P < 0.05 with Benjamini-Hochberg FDR correction). 
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Figure B. 7. Changes in microbiota diversity during diarrheal episodes in rural and 

urban subjects.  

16S rRNA gene-based OTU diversity boxplots (Shannon index, phylogenetic diversity, 

and Observed number of OTUs). *P < 0.05, **P < 0.01, ***P < 0.001.  
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Figure B. 8. Degree distribution comparison between healthy and disease states from 

rural and urban OTU co-occurrence networks.  

Degree distribution consists in the frequency of the number of connections of a node 

(degree) over the whole network. This parameter was calculated using igraph v1.2.1 

(Csardi and Nepusz, 2006) package available in R v3.3.1.  
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Figure B. 9. KEEG pathways differentially abundant during diarrheal episodes in 

metagenomes from rural and urban subjects.  

Relative abundance of genes or pathways in ADD vs. non-ADD samples in urban 

metagenomes (panel A) and rural metagenomes (B panel). C. Taxonomic annotation of 

KEEG pathways that showed an increased abundance during ADD in urban samples. 
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Figure B. 10. Taxonomic profile of KEEG pathways with significant shifts in 

abundance during ADD in selected metagenomes.  

Each KEEG pathway includes the taxonomic profile of the microbial members that 

contributed to the relative abundance of the pathway in the community during ADD. 

Taxonomic annotations of KEEG pathways were extracted from the HUMAnN2 output 

file based on pre-defined clade-specific marker genes identified using MetaPhlAn2 (5).  
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Figure B. 11. Distribution of 16S rRNA gene-based OTUs classified as Bacteroides 

and Prevotella among healthy samples from Quito and villages indicating that known 

and unknown species were identified in these two groups. 
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APPENDIX C.  SUPPLEMENTARY MATERIAL CHAPTER 4 

SUPPLEMENTARY TABLES AND FIGURES 

Table C. 1. Akaike information criterion (AIC) values and number of parameters (K) 

for each equation model used to assess the relationship between genetic relatedness 

(D) and expected number of 100% identical gene (F100). AIC was used to select the 

equation with the best fit of the data (lower AIC value). 
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Table C. 2. List of bacterial taxa from the IMG database and previous studies used to 

estimate the degree of recent gene exchange.  

Taxon No. of 
genomes Bacterial lifestyle   

IMG database       
Fewer recent exchanges than the average   

Buchnera aphidicola 18 obligate intracellular 
bacterium   

Salmonella_enterica 578 facultative anaerobe  

Rickettsia rickettsii 8 obligate intracellular 
bacterium   

Rickettsia prowazekii 11 obligate intracellular 
bacterium   

Yersinia pestis 101 obligate pathogen  

Mycobacterium tuberculosis 844 facultative intracellular 
pathogen  

Lactobacillus casei 28 facultative anaerobe  
Higher recent exchanges than the average   

Campylobacter jejuni 106 facultative opportunitic 
pathogen  

Campylobacter coli 52 facultative opportunitic 
pathogen  

Neisseria meningitidis 189 facultative opportunitic 
pathogen  

Helicobacter pylori 324 facultative host-associated  

Vibrio cholerae 180 free-living, opportunistic 
pathogen  

Alteromonas macleodii 13 free-living, marine  
Synechococcus sp 46 free-living, marine  

Enterococcus faecalis 366 facultative opportunitic 
pathogen  

Enterococcus faecium 263 facultative opportunitic 
pathogen  
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Table C.2. Continued 

Previous studies     Reference 

Buchnera aphidicola 4 obligate intracellular 
bacterium  (13) 

Salmonella_enterica 8 facultative anaerobe (14) 

Klebsiella_pneumoniae 11 free-living, opportunistic 
pathogen (15) 

Shewanella baltica 3 free-living, marine (16) 

Staphylococcus aureus  7 free-living, opportunistic 
pathogen (17) 

Neisseria meningitidis 13 facultative opportunitic 
pathogen (18) 

Helicobacter pylori 62 facultative opportunitic 
pathogen (19) 

Campylobacter jejuni 65 facultative opportunitic 
pathogen (6) 

Escherichia coli 25 facultative opportunitic 
pathogen (20) 
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Table C. 3. Results of genome comparisons of H. pylori strains isolated from the same 

and different individuals.  

The table includes genome pairs with and without signatures of recent exchange as well as 

the estimated number of exchanged genes for those genome pairs with positive values of 

sigma. Genomes were reported in (19).  

 

 

 

 

 

 

 

Same%family ANI Sigma
No.%of%

exchanged%
genes

Within8host ANI Sigma
No.%of%

exchanged%
genes

SA161A%SA216A 98.92 6.77 492 SA163C%SA163A 99.83 0.72 77
SA227C%SA301C 98.72 5.49 397 SA210C%SA210A 99.87 0.31 36
SA162C%SA227C 98.46 4.47 311 SA161A%SA161C 99.83 2.84 316
SA162A%SA301A 98.31 4.37 303 SA162A%SA162C 99.66 5.46 506
SA210C%SA300C 99.88 1.75 201 SA146A%SA146C 99.82 2.36 258
SA210A%SA163A 99.74 2.27 238 SA227A%SA227C 99.80 1.86 198
SA210A%SA163C 99.83 0.94 101 SA45A%SA45C 99.88 1.05 115
SA158A%SA210C 99.87 1.32 150 SA144A%SA144C 99.85 0.58 65

Different%family ANI Sigma Within8host ANI Sigma
SA220A%SA301A 96.22 %0.34 SA160A%SA160C 99.96 %0.53
SA220A%SA30C 96.01 %0.57 SA300A%SA300C 99.96 %1.87
SA233A%SA251C 97.35 %0.91 SA156A%SA156C 99.94 %0.01
SA233A%SA47A 97.32 %0.85
SA40A%SA47C 97.3 %0.15
SA35C%SA45A 97.52 %0.10

Genome%pairs%under%recent%gene%exchange

Genome%pairs%without%recent%gene%exchange
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Table C. 4. P-values of multiple non-parametric goodness-of-fit tests used to test the 

spatial randomness in the genome of recent exchanges across the genome. KS refers 

to Kolmogorov-Smirnov.  

 

 

 

 

 

 

 

 

 

 

 

 

!Bacterial!Sp Moran’s!test
Cramér4von!
Mises!test Watson!test KS

C.#jejuni
110#117 0 0.06 3.79E#04 0.003
63#117 0 0.025 0 0.27
C.#coli

2516143061#
2563366571 0.004 0.23

0.07 0.27

2516143087#
2516143095 1.75E#09 0.115 0.002 0.032

N.#meningitidis
2537562117 0.039 0.18 0.071 0.15
2531839670 0.46 0.37 0.18 0.43
2547132294 0.005 0.49 0.24 0.32
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Table C. 5.  Running time of the Bayesian model and scripts to calculate the fraction 

of recently exchanged genes in bacterial genome pairs.  

The running time was measured in datasets of different bacterial species with variable 

number of genomes in one CPU. OGs: Orthologous Groups of genes. 

 

 

Dataset No.)of)
genomes

Estimation)of)
OGs

ANI)(one)pair) Math)model)(group)
of)genomes)

C.#jejuni 64 0m25.74s 0.026s 129.80m
C.#coli 50 0m20.33s 0.048s 81.93m

N.#meningitidis 189 1m8.0s 1.544s 1743.4m
B.#aphidicola 18 0m9.24s 0.014s 4.6m
H.#pylori 325 0m32.34s 20.74s 3858.3m

Estimation)of)the)fraction)under)
recent)exchange
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Figure C. 1. Schematic representation of the relation between genomic distance D and 

F100.  
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A. Hypothetical scenario of genomic divergence associated with gene transfer over 

evolutionary time. Genomic distance is measured as ANI and observed F100. Each step 

corresponds to a different period of time where a bacterial population (green circle) 

accumulates genetic nucleotide variations exemplified as blue and orange fragments inside 

the circle. Time 0 represents a clonal ancestral population; during time 1 and 2 minor 

genetic variation events (point mutations) accumulate, linked to a slight increase of genetic 

distance and a concomitant decrease of F100. In time 3, genetic transfer events in a genome 

pair are illustrated, where F100 increases sharply and the nucleotide difference is slightly 

reduced since exchanged genes will have 100% nucleotide identity. Lastly, over time (time 

4) additional mutations accumulate, the nucleotide composition of transferred genes 

become more similar to the one of the recipient genome, and F100 is reduced.  B. F100 as a 

function of the distance D. Points represent pair of genomes with different genetic 

relatedness and their corresponding F100. Expected value of F100 is represented as a solid 

black line and 95% credible intervals as dashed red lines. 
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Figure C. 2. Signatures of recent exchange among genome pairs.  

A. Distribution of observed (x-axis) vs. expected F100 (y-axis) of genome pairs from 

multiple bacterial species. Every point represents a genome pair that belongs to a bacterial 

species (color key). Grey points denote pairwise comparisons among remaining bacterial 

species that were not highlighted in color. The straight blue line indicates equal values for 
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the observed and expected F100. B. Boxplots showing the distribution of the recently 

exchanged genes as a fraction of the total genomes (y axis) fractions for selected 

recombinogenic bacterial species. Red points indicate the average fraction for each species 

and the number in parentheses denotes the actual number of genes exchanged for each 

bacterial species.  
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Figure C. 3. Comparison between S. baltica genome pairs with high (OS195 vs. 

OS185) and low (OS195 vs. OS155) frequency of recent genetic exchange. A. Each plot 

illustrates the relative frequency of Reciprocal Best Matches between the pair of genomes 

(RBMs) against their nucleotide identity for each genome pair (red) vs. the reference 

distribution from bacterial genomes pairs with a similar ANI value (~96.6%) (purple). Note 

the difference in scale on the y-axes. B. Functional annotation of genes with 100% 

nucleotide identity of each genome pair. Orthologous genes were annotated using UniProt 

database and grouped in four main categories: housekeeping, mobile, hypothetical and, 

metabolism. Pie charts represent the relative frequency of genes of each category.  
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Figure C. 4. Comparison of recent exchanges between specialist and generalist C. 

jejuni strains from different host sources.  

Every point represents a pair of genomes from the same or different clonal complex (see 

color chart). The table of the top left specifies whether the clonal complex is generalist 

(strains able to colonize multiple host species) or specialist (strains mostly restricted to a 

single host species and a specific source) according to (6, 7). The dotted line indicates equal 

values of the observed and expected F100. Genome sequences of the C. jejuni strains were 

previously published in (6).  

Generalist* Specialist*
ST#45&(366)& ST#42&(host:&ca3le)&(330)&
ST#21&(239)& ST#61&(host:&ca3le)&(142)&

  ST#353&(host:&chicken)&(308)&
  ST#257&(host:&chicken)&(103)&
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Figure C. 5. Examples of incongruence in tree topology in exchanged genes identified 

in the C. jejuni genome pair 63-117.  

Tanglegrams comparing trees based on ANI distances (left) and maximum likelihood 

phylogenies (right) of three genes detected as recently exchanged from the variable 

genome. Crossing lines indicate recombination events. Small circles are colored by the 

cluster that each strain was previously assigned using PAM based on an ANI matrix (8). 
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Figure C. 6. Examples of incongruence in tree topology in exchanged genes identified 

in the C. jejuni genome pair 62-191.  

Tanglegrams comparing trees based on ANI distances (left) and maximum likelihood 

phylogenies (right) of three genes detected as recently exchanged from the variable 

genome. Crossing lines indicate recombination events. The corresponding cluster 

previously assigned to each strain, using PAM based on an ANI matrix, is indicated by the 

color of the small circle. 
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Figure C. 7. Functional comparison between all predicted genes in the genome (purple 

bars) and genes that have undergone recent exchange (green bars).  

Each panel shows the percentage of the total genes in the genome (y-axis) assigned to each 

functional category (x-axis) for a pair of genomes pair (title), after excluding genes with 

high sequence conservation (100% nucleotide identity). Functional categories are based on 

EggNOG annotations (9) as follow: M (Metabolism), B (Cell cycle and Biogenesis), R 

(Recombination and Repair), C (Cell motility), U (Unknown function), S (Secretion and 

Transport), D (Defense mechanisms), P (Mobilome), and T (Signal transduction) 
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Figure C. 8. Circular plots indicating the position of the recently exchanged genes 

(blue arrowhead) of selected genome pairs.  

Three examples per bacterial species are shown for the most recombinogenic species, i.e., 

C. coli, C. jejuni, and N. meningitidis. Conserved regions (genes with 100% nucleotide 

identity without signatures of gene exchange) were removed prior to drawing the plots. 

The number of recent exchanges for each genome pair is indicated in parentheses. The 

genes around exchanged genes in a window of ± 5 genes (upstream and downstream 

regions) are denoted with blue arrowheads within the outermost circle and those genes 

annotated as hypothetical proteins (Hypo), transposases (Tnp), and phages proteins (phage) 

are highlighted with black arrows. Pathogenicity islands are represented by brown triangles 

and were identified using PAIDB v2 (10) and IslandViewer (11). Plots were drawn using 

CGview (12).  
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Figure C. 9. Effect of mutation and recombination on ANI in the genome pair N. 

menigitidis 2523533512-2534681689 at four different stringency scenarios. Four 

different scenarios for the effect of recombination and mutation on ANI were evaluated: 

All exchanged genes found to be recently exchanged in the genome (A); functional (B) and 

spatial (C) biases of the exchanged genes removed; and the distance between the most 

spatially distant exchanged genes in the genome (percentile 99th) was used to estimate the 

effect of recombination (D). Recently exchanged genes are denoted with blue arrowheads 

within the outermost circle in panels A and B. *Hypergeometric test, P < 0.05. See 

Materials and Methods for details. 
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Figure C. 10. Examples of tree topology discrepancies in exchanged genes identified 

in the C. jejuni genome pair 110-117 by our method.  

All recent exchanges in this genome pair were subjected to a manual inspection of their 

tree topology and four representative cases of detected recent gene exchanges are shown. 

Tanglegrams represent the genomic tree based on ANI distances (left) and the gene tree 

constructed with the maximum likelihood algorithm (right). Crossing lines indicate 

recombination events. Red small circles highlight the location of the query genomes.  
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Figure C. 11 Assessing the ability to detect outliers as an effect of the frequency of 

100% nucleotide sequence identity genes.  

The fraction of 100% nucleotide sequence identity genes (F100) of 64 genome pairs with 

ANI values around 96%, 97%, and 99% identified as outliers by our model was gradually 

increased by randomly introducing nucleotide changes in genes that were not originally 

100% identical in order for these genes to become 100% identical (y-axis). Dots represent 

the observed F100 of the genome pair (y-axis) against the estimated (new) ANI value of the 

two genome (x-axis), and are colored by their genome pair. The average expected value of 

F100 is represented as grey dots and 95% credible intervals as solid black lines. Note that 

the genome pairs identified originally as outliers in the lower left part of the graph continue 

being detected as outliers in the right part of the graph, even when the fraction of 100% 

nucleotide identity genes increases up to about 99.8% ANI. 
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