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SUMMARY 

Marine organisms including macroalgae, sponges, and microbes are widely 

recognized sources of an impressive array of structurally unusual compounds.  Marine 

natural products have exhibited interesting biomedical activities, provided targets for 

synthetic organic chemists, and afforded opportunities for elucidation of enzymatic 

mechanisms involved in biosyntheses of these molecules.  Secondary metabolite 

pathways probably evolved to mediate interactions between organisms in their natural 

habitats; however, the ecological functions of natural products remain poorly understood 

for the vast majority of cases.  In the present series of investigations, I evaluate the 

hypothesis that macroalgal natural products play a role in defending these organisms 

against potentially pathogenic microbes in the marine environment.  Further, I combine 

these ecology-driven investigations with evaluation of algal natural products as sources 

of novel human drugs. 

This combined approach resulted in discovery of 15 novel natural products from 

two tropical red algae, Callophycus serratus and an unidentified crustose red alga.  These 

new molecules included seven novel carbon-carbon connectivity patterns, not previously 

reported in the synthetic or natural product literature, illustrating the abundance of 

secondary metabolite diversity among marine macroalgae.  Further, many compounds 

exhibited both biomedical and ecological activities, suggesting the synergistic potential 

of combined biomedical/ecological investigations in providing drug leads as well as 

insights into the natural functions of secondary metabolites. 

Bromophycolides and callophycoic acids, natural products from C. serratus, 

inhibited growth of the marine fungal pathogen Lindra thalassiae.  Spatially-resolved 
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desorption ionization mass spectrometry (DESI-MS) revealed that antifungal natural 

products were found at specific sites on algal surfaces.  Inspection of these distinct 

regions suggested the presence of relatively large, heterotrophic microbes not found 

elsewhere on C. serratus, perhaps indicative of chemical defense localization to areas of 

the alga under threat.  The heterogeneous presentation of antimicrobial chemical defenses 

on host surfaces suggests the potential importance of spatial scale in understanding host-

pathogen interactions, and illustrates the capacity of mass spectrometry imaging in 

understanding chemically-mediated biological processes.   

Finally, assessment of antimicrobial chemical defenses among extracts from 72 

collections of tropical red algae revealed that nearly all algae were defended against at 

least one marine pathogen or saprophyte and further suggested the untapped potential of 

ecological investigations in the discovery of novel chemistry.  Future investigations of 

chemically-mediated interactions between hosts and microbes will continue to increase 

understanding of these highly complex biological interactions and may provide valuable 

insights for drug discovery. 
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CHAPTER 1 

INTRODUCTION:  MARINE NATURAL PRODUCTS AS SOURCES OF NOVEL 

CHEMISTRY, ECOLOGY, AND DRUGS 

 

 Seaweeds, corals, and other benthic organisms face constant challenge on coral 

reefs.  Fish may take more than 150,000 bites per square meter on the ocean floor every 

day, removing nearly 100% of daily productivity (Carpenter, 1986).  Sessile marine 

organisms battle for space on limited reef substrates (McClintock and Baker, 2001), and 

microbial foulers and pathogens can devastate susceptible species (Harvell et al., 1999).  

The multitude of adversaries faced by marine organisms creates substantial selection 

pressure for the evolution of mechanisms to improve fitness in the face of these 

challengers.   

Chemical defenses represent one way organisms may resist their enemies, and 

many studies have demonstrated roles for secondary metabolites in defense against 

consumers (Hay, 1996; Hay and Fenical, 1988).  However, far less is known about the 

role of natural products in mediating other biological interactions, including those 

between hosts and microbes.  Microbial-borne diseases have significantly impacted some 

marine organisms.  Coralline lethal orange disease ravaged South Pacific coralline algal 

populations in the 1990s (Littler and Littler, 1995), a wasting epidemic caused near 

extinction of Zosteria marina eelgrass in the North Atlantic during the 1930s (Muehlstein 

et al., 1991), Caribbean populations of the sea urchin Diadema antillarum were 

devastated by an uncharacterized pathogen in the 1980s (Lessios et al., 1984), and white 

band disease has contributed to declines in reef-building corals (Gladfelter, 1982).  

Disease outbreaks affect not only susceptible species, but can also disturb the structure 
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and function of entire marine communities (Hughes, 1994).  Harvell and co-workers 

report that marine diseases are increasing in both prevalence and severity, suggesting the 

urgent need for improved understanding of marine host-pathogen interactions (Harvell et 

al., 1999).  Evaluation of natural mechanisms by which some marine organisms evade 

pathogen attack while others are devastated represents an essential facet of such studies. 

 Analogous to the recognized importance of secondary metabolites as defenses 

against consumers (Hay, 1996; Hay and Fenical, 1988), natural products may offer some 

marine species resistance to deleterious microbes.  However, only a handful of studies 

have evaluated this hypothesis and even fewer have identified specific defensive 

compounds (Engel et al., 2006; Jensen et al., 1998; Jiang et al., In press.; Kjelleberg et 

al., 1997; Kubanek et al., 2003; Puglisi et al., 2006; Puglisi et al., 2004).  Among marine 

plants, only four classes of antimicrobial chemical defenses have previously been 

described: a flavone glycoside isolated from the seagrass Thalassia testudinum inhibits a 

zoosporic fungus (Jensen et al., 1998), sulfated triterpenes from green algae Penicillus 

capitatus and Tydemania expeditionis exhibit growth inhibitory activity against a marine 

pathogenic fungus (Jiang et al., In press.; Puglisi et al., 2004), a macrocyclic polyketide 

from Lobophora variegata defends this brown alga against fungi (Kubanek et al., 2003), 

and furanones from the red alga Delisea pulchra interfere with acylated homoserine 

lactone (AHL) bacterial communication systems, thus inhibiting colonization of this alga 

(Kjelleberg et al., 1997).  Yet, surveys of tropical reef plants suggest antimicrobial 

defenses are common (Engel et al., 2006; Puglisi et al., 2006).  The paucity of knowledge 

regarding existing antimicrobial chemical defenses in marine algae suggests that this may 

represent a particularly fertile area for increased understanding of chemically-mediated 
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host-microbe interactions (Engel et al., 2002).  Further, such ecologically-motivated 

studies may also be valuable in discovery of natural products with potential 

pharmaceutical applications.   

 Natural products play a dominant role as sources of new drugs.  Between 1981 

and 2002, over 60% of all novel drugs were derived from natural products, and over 75% 

of antimicrobial drugs can be traced to a natural origin (Newman et al., 2003).  Nature 

has afforded scientists secondary metabolites with surprising structural diversity and 

unprecedented biological activity, although interest in natural products as sources of 

novel drugs fell in recent decades, giving way to high-throughput combinatorial 

chemistry approaches (Newman et al., 2003).  However, there is now a resurgence of 

interest in natural product drug discovery research, driven by the low productivity of 

alternative strategies as well as the immediate need for novel pharmaceuticals (Newman 

et al., 2003).  In particular, it is widely perceived that the pipeline for novel antibiotics is 

running dangerously low (Walsh, 2003).  Tropical coral reefs, sites of high biodiversity 

and intense competition, predation, and parasitism, represent particularly promising 

sources of novel drugs to fill this pipeline.  Although marine natural product studies are 

young relative to terrestrial investigations, biomedically-motivated marine natural 

product studies have already yielded structurally novel compounds with potencies and 

selectivities justifying clinical trials (Blunt et al., 2007; Blunt et al., 2008; Faulkner, 

2000), and two natural product drugs are now on market (Newman and Cragg, 2007). 

Combined studies of the ecological roles and pharmaceutical potential of marine 

natural products may afford particular benefits.  By understanding natural functions of 

secondary metabolites, the relative promise of various organisms may be more readily 
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predicted.  Understanding the ecological roles of natural products may also offer 

opportunities to manipulate production of these molecules in nature.  For example, 

macroalgae have been shown to respond to small grazers by increasing chemical defenses 

(Cronin and Hay, 1996; Pavia and Toth, 2000; Taylor et al., 2002; Toth and Pavia, 2000), 

and such approaches may prove valuable in drug discovery efforts.  Likewise, natural 

products discovered on the basis of biomedical activity may offer starting points for 

evaluation of ecological function, suggesting promising chemically-rich model systems.  

Such synergistic ecological and biomedical approaches may result in substantial advances 

in both fields, offering promise in filling the drug discovery pipeline and in understanding 

the evolutionary narrative behind natural product biosynthesis. 

The following chapters represent combined explorations of marine natural 

product ecological roles and biomedical potentials.  In the next chapter, 10 novel, 

biomedically-interesting diterpene-shikimate acids and alcohols are reported from the red 

alga Callophycus serratus.  Chapter three then centers on discovery of three new, but 

related macrolides, including two new carbon connectivity motifs, from the same species.  

Natural products from C. serratus are later proposed as antifungal defenses marshaled to 

specific sites of challenge on algal surfaces (chapter 5).  Evaluation of 72 collections of 

macroalgae for growth inhibitory activity against known algal pathogens and saprophytes 

then reveals nearly all collections harbored antimicrobial natural products, suggesting the 

vast untapped potential of ecological leads in natural product discovery (chapter 6).  As 

one example of this approach, two novel sesquiterpene hydroquinones are reported from 

a crustose red alga on the basis of antimicrobial activity against a marine pathogenic 
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bacterium.  Finally, specific molecular structural features are evaluated for their roles in 

antiherbivore chemical defense of a freshwater plant (chapter 7). 
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CHAPTER 2 
 

CALLOPHYCOIC ACIDS AND CALLOPHYCOLS FROM THE FIJIAN RED 

ALGA CALLOPHYCUS SERRATUS 

 

 

Abstract 

Callophycoic acids A-H (1-8) and callophycols A-B (9-10) were isolated from extracts of 

the Fijian red alga Callophycus serratus, and identified by NMR, X-ray, and mass 

spectral analyses.  These natural products represent four novel carbon skeletons, 

providing the first examples of diterpene-benzoic acids and diterpene-phenols in 

macroalgae.  Compounds 1-10 exhibited antibacterial, antimalarial, and anticancer 

activity, although they are less bioactive than diterpene-benzoate macrolides previously 

isolated from this red alga.  The identification of distinct chemotypes from different 

populations of C. serratus justifies evaluation of multiple collections of a single species.     

 

 

Introduction 

Red macroalgae are well-known producers of bioactive secondary metabolites, 

including isoprenoid and phenolic metabolites (Blunt et al., 2005).  However, the 

discovery of metabolites with novel carbon skeletons and mixed biosynthetic origin is 

uncommon.  Recently, 10 novel bioactive diterpene-benzoate macrolides, representing 

two new carbon skeletons, were isolated from a Fijian collection of Callophycus serratus 

(Kubanek et al., 2006; Kubanek et al., 2005), a member of the largely unstudied 

Solieriaceae family of red algae.  To further characterize the secondary metabolism of C. 

serratus, a second Fijian population was analyzed.  This exploration led to the isolation 
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of eight novel bioactive diterpene-benzoic acids (1-8) and two novel halogenated 

diterpene-phenols (9-10), whose structure elucidation and biological activities are 

presented herein.      

      

Results and discussion 

A toxicity assay based upon ingestion rates of the invertebrate rotifer Brachionus 

calyciflorus was used to guide the initial fractionation of Callophycus serratus extract by 

liquid-liquid partitioning.  Liquid chromatography-mass spectrometry (LC-MS) was 

applied to identify fractions with isotopic signatures or molecular masses corresponding 

to putative brominated C27 natural products analogous to diterpene benzoate macrolides 

isolated from a previous C. serratus collection (Kubanek et al., 2006; Kubanek et al., 

2005).  Reversed and normal-phase high-performance liquid chromatography (HPLC) 

separation of these fractions led to isolation of callophycoic acids A-H (1-8) and 

callophycols A-B (9-10). 

High-resolution mass spectral data established the molecular formula of 

callophycoic acid A (1) as C27H35O3Br (m/z 485.1697 [M - H]
-
).  X-ray diffraction 

analysis of 1 revealed two identical tricyclic diterpene-benzoic acids in the asymmetric 

unit, with one having the end of its pendant carbon chain rotated with respect to the other 

(Figure 2.1).  The structure derived from X-ray diffraction data established 6R, 7S, and 

24S absolute stereochemistries for 1, indicated an E configuration at $
10,11

 and $
21,22

 

(Appendix A), and was supported by NMR spectral data.  Analysis of 
13

C chemical shifts 

and HMBC correlations established the aryl moiety of this 3,4-substituted benzoic acid-

based molecule, a structural theme common to 1-7, and a combination of HMBC and 
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COSY correlations established connectivity throughout the tricyclic ring system (Table 

2.1; Appendix A).  Finally, the linear diterpene head was assembled primarily with strong 

two- and three-bond HMBC correlations from singlet methyl protons.  
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Figure 2.1  Perspective drawings of X-ray crystal structures of callophycoic acid A (1). 

These structures differ only in diterpenoid chain rotation. 
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Table 2.1  13C and 1H NMR spectral data for callophycoic acids A-H (1-8) (500 MHz; in CDCl3 for 1-2 and 5-8; in 

(CD3)2CO for 3-4). 

1 2 3 4 5 6 7 8 # 
! 
13

C 
! 

1
H 

(JH,H) 

! 
13

C 
! 

1
H 

(JH,H) 

! 
13

C 
! 

1
H 

(JH,H) 

! 
13

C 
! 

1
H 

(JH,H) 

! 
13

C 
! 

1
H 

(JH,H) 

! 
13

C 
! 

1
H 

(JH,H

) 

! 
13

C 
! 

1
H 

(JH,H) 

! 
13

C 
! 

1
H 

(JH,H) 
1 171.5 - 171.2 - 167.2 - 167.1 - 169.9 - 171.4 - 170.0 - 169.0 - 

2 122.6 - 125.8 - 124.2 - 127.4 - 125.0 - 124.1 - 121.2 - 122.0 - 

3 134.5 7.85br s 132.1 7.88br s 135.6 7.91br s 133.0 8.08br s 132.1 7.91br s 131.4 7.80 br 

s 

132.3 7.83brs 131.5 7.77br s 

4 128.0 - 132.7 - 129.1 - 134.5 - 132.8 - 134.0 - 127.8 - 130.0 - 

5 33.0 2.83d 

(15.3) 

3.08dd 

(15.3, 12.1) 

30.8 2.85dd 

(13.3, 4.2) 

3.19dd 

(13.3, 10.8) 

33.3 3.02d 

(15.7), 

3.14dd 

(15.1, 

12.0) 

30.5 3.20m, 

3.28dd 

(13.3, 4.3) 

31.0 2.86dd 

(13.4, 3.8) 

3.18dd 

(13.0, 

11.1) 

31.0 3.48d 

(5.2) 

23.5 2.70 

(13.2, 

2.0) 2.78 

(15.5, 

10.0) 

24.4 2.80m 

6 41.6 2.89brd 

(11.6) 

43.4 2.42dd 

(10.5, 4.0) 

42.8 2.98m 44.1 2.64dd 

(10.1, 3.7) 

43.3 2.44dd 

(10.8, 3.3)  

121.7 5.70t 

(5.3) 

55.6 2.25m 55.3 2.25m 

7 40.3 - 43.4 - 41.7 - 44.7 - 43.5 - 137.9 - 41.9 - 42.0 - 

8 37.6 1.57m 

1.78m 

37.6 1.54m 

1.79m 

41.4 1.78dd 

(13.4, 

5.2), 

2.16dd 

(13.8, 

4.4) 

41.8 1.76m, 

1.96m 

37.4 1.48m 

1.73m 

34.8 1.92m 

2.06m 

40.2 1.38m 

1.91m 

40.1 1.40m 

1.90m 

9 21.0 1.79m 

1.94m 

20.6 1.95m 

2.05m 

20.8 1.41m, 

1.46m 

20.5 1.43m, 

1.74m 

19.0 1.53m 

1.70m 

26.7 2.04m 31.2 2.19m 

2.27m 

31.2 2.19m 

2.27m 

10 123.3 5.08t (6.4) 123.4 5.20m  57.6 1.29dd 

(3.9, 3.9) 

58.0 1.35m 53.9 1.79m 123.3 5.05m 64.0 4.32dd 

(12.5, 

4.2) 

64.0 4.33dd 

(12.5, 

4.0) 

11 135.7 - 135.7 - 73.0 - 73.4 - 146.8 - 135.9 - 41.5 - 41.9 - 

12 39.6 1.87m 

1.98m 

 

39.7 2.02m 44.4 1.60m, 

1.69m 

44.5 1.70m, 

1.84m 

35.7 2.14m 

2.49m 

39.7 1.94m 39.7 1.40m 

1.55m 

39.7 1.40m 

1.56m 

13 26.6 1.89m 

1.99m 

26.7 2.08m 32.7 2.00dd 

(12.9, 

3.3), 

2.08m 

33.5 2.13m 35.7 2.10m 

2.29m 

26.7 2.04m 21.0 1.83m 

1.92m 

21.1 1.83m 

1.93m 
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14 124.3 5.03tm 

(7.0) 

124.3 5.10m 68.9 4.10dd 

(12.2, 

4.4) 

68.9 4.15dd 

(11.0, 5.4) 

66.5 4.17dd 

(10.1, 4.1) 

124.4 5.07m 123.9 5.08dd 

(7.0, 7.0) 

123.9 5.09dd 

(6.3, 

6.3) 

15 131.3 - 131.4 - 41.6 - 41.9 - 41.9 - 135.0 - 131.8 - 131.8 - 

16 25.7 1.65s 25.7 1.68s 30.8 1.16s 30.8 1.19s 28.7 1.22s 39.7 1.94m 17.6 1.63s 17.6 1.63s 

17 130.2 7.83d (8.4) 130.0 7.87m  129.9 7.73d 

(8.4) 

130.0 7.83d 

(8.0) 

130.0 7.89br d 

(2.0) 

26.6 1.93m 129.6 7.79dd 

(7.7, 1.9) 

131.6 8.03br s 

18 119.5 6.89d (8.4) 119.8 6.98d (9.0) 119.5 6.84d 

(8.4) 

120.2 7.00d 

(8.1) 

119.8 7.02d 

(8.2) 

124.1 5.07m 115.0 6.75d 

(8.4) 

110.4 - 

19 163.4 - 163.8 - 163.2 - 164.2 - 163.8 - 131.3 - 158.0 - 154.5 - 

20 74.7 4.42d 

(13.6) 

4.85brd 

(13.6) 

140.2 6.53br s 74.6 4.44d 

(13.5), 

4.97d 

(13.5) 

140.9 6.61br s 140.3 6.53br s 25.7 1.65s 147.3 - 146.6 - 

21 137.6 - 121.1 - 138.9 - 122.6 - 120.7 - 130.4 7.89dd 

(8.3, 

1.8) 

108.3 4.68brs, 

4.82brs 

108.3 4.61br s 

4.79br s 

22 122.9 5.56brs 33.1 1.90m 

2.04m 

123.6 5.63br s 33.2 2.08m 33.2 1.94m 

2.07m 

121.2 7.01d 

(8.3) 

37.7 2.03m 

2.38m 

37.7 1.99m 

2.36m 

23 35.0 2.63m 

2.75dm 

(17.8) 

34.2 2.07m 

2.17m 

36.1 2.66m, 

2.77m 

35.2 2.07m, 

2.18m 

34.0 2.09m 

2.18m 

163.2 - 25.1 1.48m 

1.72m 

25.1 1.48m 

1.72m 

24 58.8 4.39dd 

(11.0, 5.8) 

62.2 4.30dd 

(12.3, 4.2) 

60.6 4.68dd 

(10.9, 

6.0) 

63.9 4.61dd 

(11.5, 4.0) 

62.4 4.29dd 

(12.1, 4.1) 

72.5 4.56s 49.8 1.54m 49.9 1.54m 

25 15.7 0.92s 17.5 0.95s 16.1 0.91s 17.9 0.92s 17.7 0.95s 16.0 1.53s 15.0 0.87s 15.0 0.87s 

26 15.9 1.49s 16.1 1.69s 23.1 0.99s 23.5 1.32s 108.9 4.84br s 

5.13br s 

16.0 1.56s 19.6 0.94s 19.6 0.94s 

27 17.7 1.56s 17.7 1.60s 17.7 0.87s 18.0 0.98s 18.5 0.92s 17.7 1.57s 25.7 1.67s 25.7 1.68s 

O

H 

- - - - - - - 3.65br s - -  - - - 5.45brs - 6.08br s 

br=broad; s=singlet; d=doublet; dd=doublet of doublets; t=triplet; m=multiplet 
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For callophycoic acid B (2), mass spectral analysis indicated an isotopic splitting 

pattern identical to that of 1 and an m/z [M – H]
-
 of 485.1665, supporting a molecular 

formula of C27H35O3Br, isomeric to 1.  Analysis of 
13

C NMR spectral data indicated 

significant differences at C-20 (! 74.7 for 1; ! 140.2 for 2), C-21 (! 137.6 for 1; ! 121.1 

for 2), and C-22 (! 122.9 for 1; ! 33.1 for 2) (Table 1).  Further, DEPT-135 data for 1 

showed that two protons (! 4.42, ! 4.85) were attached at C-20, while this position in 2 

possessed a single, more deshielded proton (! 6.53).  Conversely, at C-22, 1 had one 

directly attached, deshielded proton (! 5.56), while 2 had two attached protons (! 1.90, ! 

2.04).   This suggested the "21,22
 olefin in 1 was isomerised to a "20,21

 olefin in 2, and the 

close correspondence of 2D correlations between 1 and 2 confirmed this conclusion 

(Appendix A). 

Observed NOEs were similar for 1 and 2, leading us to predict that these 

molecules share the same absolute stereochemistry (Appendix A).  Specifically, a strong 

NOE was noted between H-6 (! 2.42) and H-24 (! 4.30), supporting 6R and 24S 

configurations for 2.  The lack of an observable NOE from either H-6 or H-24 to Me-25 

(! 0.95) further supported these configurations and prompted assignment of a 7S 

configuration.  An E configuration was supported at the "10,11
 olefin of 2 by NOEs 

observed between Me-26 (! 1.69) and H-9b (! 2.05) and between H-10 (! 5.20) and H-12 

(! 2.02) and confirmed by the lack of an NOE between Me-26 and H-10.  An E 

configuration was assigned at the "20,21
 olefin based on similar arguments.   

Callophycoic acid C (3) gave a parent ion at m/z 581.0895, supporting a 

molecular formula of C27H36O4Br2.  Callophycoic acids A and C (1 and 3) exhibited 

nearly identical 
1
H and 

13
C chemical shifts and 2D NMR correlations for C-1 through C-8 
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and C-17 through C-25 (Table 1; Appendix A), indicating these molecules shared a 

common tricyclic structure.  However, substantial differences in chemical shifts and 2D 

NMR correlations were found in the diterpenoid head.  Assessment of sites of 

unsaturation indicated that this group included one more ring system than 1-2.   

For callophycoic acid C (3), COSY correlations were observed between H-8 (! 

1.78, ! 2.16) and H-9 (! 1.41, ! 1.46), establishing connectivity between these 

methylenes.  Likewise, COSY correlations between H-9 and H-10 (! 1.29) established 

connectivity between these carbons, an assignment further supported by an HMBC 

correlation from H-10 to C-9 (! 20.8).  This proton also exhibited HMBC correlations to 

quaternary C-11 (! 73.0) and C-15 (! 41.6), and methyl C-16 (! 30.8), establishing C-

11—C-10—C-15—C-16 connectivity.   

In callophycoic acid C (3), the singlets Me-16 (! 1.16) and Me-27 (! 0.87) shared 

identical HMBC correlations to C-10 (! 57.6), C-14 (! 68.9), and C-15, as well as to each 

other.  These correlations were thus a starting point for establishing connectivity within 

spin systems of the cyclohexanol ring through COSY and additional HMBC correlations.  

Hydroxy and bromine groups were assigned at C-11 and C-14, respectively, on the basis 

of carbon and proton chemical shift arguments.(Silverstein and Webster, 1998)   

NOEs for the tricyclic moiety of 3 matched closely those of 1 (Appendix A), 

leading us to predict 6R, 7S, and 24S absolute configurations, as in 1-2.  Relative 

stereochemistry within the cyclohexanol ring was then established based on observed 

NOEs.  First, H-10 and H-14 were assigned to diaxial positions on the same face of the 

ring, with NOEs observed between these protons.  Further, the diaxial orientation of these 

protons supported a chair conformation for the cyclohexanol ring, with the bulky alkyl 
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substituent on C-10 and bromine on C-14 assigned equatorial positions.  Me-16 was then 

assigned to an equatorial position on the same face as H-10 and H-14, based on NOEs 

between both of these protons and Me-16, an assignment further supported by the lack of 

NOEs between H-10 or H-14 and axial Me-27.  Finally, Me-26 was assigned in an axial 

position on the opposite side of the ring to H-10 and H-14, based on an NOE between 

Me-26 and Me-27, and supported by the absence of an NOE between Me-26 and H-10 or 

H-14.   

With the relative stereochemistry of the cyclohexanol moiety of 3 elucidated, the 

absolute stereochemistry of this ring was determined with a series of NOEs that 

established the orientation of this ring relative to the 6R, 7S, 24S tricycle.  First, the 

conformation of the bond between C-9 and C-10 was determined by NOEs between H-9a 

and both Me-16 and Me-27, which supported H-9a pointing towards these two methyls.  

This assignment was further supported by the lack of an NOE between H-9a and Me-26.  

An NOE between H-9b and Me-26, but not between H-9b and Me-16 or Me-27, 

analogously prompted placement of H-9b pointing towards Me-26, thus establishing the 

dominant conformation of the C-9—C-10 bond.  Next, NOEs were observed between H-

9a and H-24 and between H-9b and H-6, supporting a conformational preference of H-9a, 

Me-16, H-24, and Me-27 on one side of the molecule and H-9b, H-6, and Me-26 on the 

other side.  Based on these correlations, a 10S, 11S, 14S stereochemistry was assigned for 

the cyclohexanol ring.  The enantiomer (10R, 11R, 14R) should instead afford NOEs 

between H-9b and H-24 and between H-9a and H-6, but these correlations were not 

observed, thus confirming the cyclohexanol stereochemistry (Figure 2.2).  With this 



17 

additional ring relative to callophycoic acids A-B (1-2), callophycoic acid C (3) provided 

a second novel carbon skeleton. 

 

 

 

Figure 2.2  Proposed partial 3D structure of callophycoic acid C (3) (left) and incorrect 

configuration (right).  Lines indicate selected observed NOEs that support 10S, 11S, 14S 

absolute stereochemistry.  X’s denote NOEs not observed.    

 

 

Callophycoic acid D (4) appeared structurally similar to 3, with an identical 

molecular formula (C27H36O4Br2 from [M-H]
-
 m/z 581.0889).  The major difference 

between 3 and 4 occurred in the tricyclic moiety.  
1
H and 

13
C chemical shifts, DEPT-135 

data, and HMBC and COSY correlations for this group closely matched those observed 

for callophycoic acid B (2), prompting assignment of a tricycle identical to that of 2.  

Hence, like 1 and 2, callophycoic acids C and D (3-4) are isomers, differing only in the 

position of the olefin ("21,22
 in 1 and 3 and "20,21

 in 2 and 4).  The stereochemistry of 4 

was established as 6R, 7S, 10S, 11S, 14S, 24S and the "20,21
 olefin was assigned a cis 

conformation on the basis of NOE arguments analogous to those for 3.    
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Comparison of NMR spectral data suggested that callophycoic acid E (5), with a 

parent ion of m/z 563.0807 (suitable for a molecular formula of C27H34O3Br2), was most 

similar to 4, with similar 
13

C and 
1
H chemical shifts and 2D correlations throughout the 

tricyclic group.  Further, spectral data were largely similar within the cyclohexane 

moiety, with the primary difference being the presence of an exo-methylene in 5 instead 

of the methyl and hydroxy groups observed in 4.  Assignment of the "11,26
 olefin was 

confirmed by HMBC correlations from H-26 (! 4.84, ! 5.13) to C-10 (! 53.9) and C-12 

(! 35.7).  Chemical shift assignments within the methylenecyclohexane system of 5 were 

further supported by close correspondence with previous reports of this group (Kuniyoshi 

et al., 2001).  The stereochemistry of the tricyclic system was established as 6R, 7S, 24S 

on the basis of NOE arguments analogous to those for 1-4.  NOE correlations for 5 did 

not permit determination of the stereochemistry of the methylenecyclohexane ring 

relative to the tricyclic moiety, but, given the similarity between 3, 4, and 5, 

stereochemistry within this group was proposed as 10S, 14S, and supported by NOEs 

between H-10 (! 1.79) and H-14 (! 4.17) and between H-10 and H-16. 

High resolution mass spectral analysis established a molecular formula of 

C27H36O3 (m/z 407.2574 [M – H]
-
) for callophycoic acid F (6).  Comparison of 

1
H and 

13
C chemical shifts and HMBC and COSY correlations between 1-5 and 6 indicated that 

this molecule contained a benzoic acid functionality fused to an unsaturated seven-

membered ether ring.  However, HMBC and COSY correlations indicated 

regioisomerisation of the olefin relative to 1-5.  For 6, HMBC correlations from H-5 (! 

3.48) to olefinic carbons C-6 (! 121.7) and C-7 (! 137.9) supported a "6,7
 olefin.  This 

assignment was verified and the seven-membered ether ring sealed by HMBC 
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correlations from H-24 (! 4.56) to C-7.  HMBC correlations from H-6 and H-24 to C-8 (! 

34.8) connected the ring system to the side chain.  This C-7–C-8 linkage completed one 

isoprene unit and left three sites of unsaturation, accounted for by six additional olefin 

signals evident from the 
13

C NMR spectrum.  

For callophycoic acid F (6), the COSY correlation between H-9 (! 2.04) and H-10 

(! 5.05) and HMBC correlations from H-10 to C-8 and C-9 (! 26.7) prompted placement 

of C-9 between C-8 and C-10 (! 123.3).  Strong two- and three-bond HMBC correlations 

from the Me-25 singlet (! 1.53) to C-10 and C-11 (! 135.9) supported linkage of these 

two olefinic carbons, with C-11 bearing the methyl substituent; an additional HMBC 

correlation between Me-25 and C-12 (! 39.7) established the connectivity of C-11 with 

C-12 and completed the second isoprene unit.  The third and fourth isoprene units were 

then assembled on the basis of similar arguments.  Assignments of 
1
H and 

13
C chemical 

shifts in this linear terpenoid head were verified by comparison with literature values for 

analogous moieties (Ito et al., 1999). 

An E-configuration was established for the "10,11
 olefin of callophycoic acid F (6) 

based on NOEs from Me-25 to H-9 and the lack of an NOE between Me-25 and H-10.  

An E-configuration was proposed at the "14,15
 olefin based on similar arguments.  The 

carbon skeleton of 6 is not novel, matching that of common tocopherols (Shin and 

Godber, 1994).  

From high-resolution mass spectral data, the molecular formula of callophycoic 

acid G (7) was established as C27H37O3Br (m/z 487.1823 [M - H]
-
).  As for 1-6, 

1
H, 

13
C, 

COSY, and HMBC data were indicative of a disubstituted benzoic acid moiety linked to 

a diterpene (Table 2.1; Appendix A).  Unlike 1-6, callophycoic acid G (7) presented a 
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phenolic-OH signal (! 5.45), which was assigned as the C-19 substituent as for 

bromophycolides (Kubanek et al., 2006; Kubanek et al., 2005).  The possibility of a 

seven-membered ether ring, as in previous compounds, was thus eliminated.  

Elucidation of the decalin system of callophycoic acid G (7) commenced with 

singlets Me-25 (! 0.87) and Me-26 (! 0.94), for which all expected two- and three-bond 

HMBC correlations were observed, thus establishing connectivity along positions C-6—

C-7—C-24—C-11—C-10 of the decalin group and supporting bonds between C-7—C-8 

and C-11—C-12.  COSY correlations were observed between H-24 (! 1.54) and H-23b 

(! 1.72), and between H-22 (! 2.03, ! 2.38) and H-23 (! 1.48, ! 1.72), thus establishing 

C-22—C-23—C-24 connectivity.  HMBC correlations from exo-methylenes H-21a 

(! 4.68) and H-21b (! 4.82) to C-22 (! 37.7) and C-6 (! 55.6) then supported connection 

of C-22—C-20—C-6, thus sealing this ring.  To seal the second ring of the decalin 

system of 7, C-8—C-9—C-10 connectivity was established on the basis of COSY 

correlations between H-8 (! 1.38, ! 1.91) and H-9 (! 2.19, ! 2.27), and between C-9 

protons and H-10 (! 4.32). Assignments in the decalin system were verified by 

comparison with literature values for analogous moieties (Cavin et al., 2006; West and 

Faulkner, 2006).  The isoprenoid head of 7 was next established with COSY and HMBC 

correlations, analogously to 1-6.   

The relative stereochemistry of callophycoic acid G (7) was determined from 

NOE correlations (Appendix A).  Observation of an NOE between H-6 (! 2.25) and H-24 

and between H-24 and H-10 indicated that these protons were positioned on the same 

face of the decalin ring system.  Observation of an NOE between Me-25 and Me-26, but 
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not between either of these groups and H-6 or H-10, next supported placement of these 

methyls cis on the other face.  The absolute stereochemistry was left unassigned.   

Callophycoic acid H (8) possessed a molecular formula of C27H36O3Br2 (m/z 

565.0968 [M - H]
-
).  Comparison of 

1
H and 

13
C chemical shifts (Table 2.1) and 2D 

correlations (Appendix A) between callophycoic acids G-H (7-8) indicated these 

molecules differed by one bromine atom within the aryl ring, with 8 including a 

trisubstituted benzoic acid in contrast to the disubstituted moiety of 7.  The substitution 

pattern of this aryl ring was determined by HMBC correlations from aryl protons and 

confirmed by comparison of 
13

C chemical shifts with empirical values (Silverstein and 

Webster, 1998).  Together, callophycoic acids G-H (7-8) represent a third novel carbon 

skeleton.   

High-resolution mass spectrometry and 
1
H and 

13
C NMR spectra indicated that 

callophycol A (9) had a molecular formula of C26H35OBr4Cl (m/z 712.9066 [M - H]
-
), one 

fewer carbon than 1-8.  With only one oxygen atom, this molecular formula did not 

support the carboxylic acid functionality observed in 1-8, suggesting the missing carbon 

was in this functional group, a hypothesis supported by the absence of a diagnostic 

carboxylic acid signal in the 
13

C NMR spectrum for 9 and confirmed by the lack of a 

characteristic carbonyl stretching absorption in the IR spectrum, as compared to the 

strong IR absorbance at 1687 cm
-1

 for 1. 

1
H, 

13
C, and HMBC NMR data were applied in elucidating the dibromophenol of 

9 (Table 2.2; Appendix A).  HMBC correlations were observed from the aryl hydroxy 

proton (! 5.60) to C-1 (! 149.3), C-2 (! 110.7), and C-6 (! 131.3), and the downfield shift 

of C-1 corresponded with literature values for phenolic carbons (Silverstein and Webster, 



22 

1998), establishing C-2—C-1—C-6 connectivity.  HMBC correlations from alkyl H-7 (! 

2.73; ! 2.75) to C-1, C-5 (! 132.1), and C-6 next supported connection of these aryl 

carbons.  HMBC correlations from H-3 (! 7.39) to C-1, C-4 (! 112.2), and C-5 and from 

H-5 (! 7.13) to C-1, C-3 (! 131.1), and C-4 then established remaining carbon 

connectivity within the aryl group.  Completion of the aryl framework of 9 left the C-2 

and C-4 substituents to be identified as either two bromines or one bromine and one 

chlorine.  Arguments based upon substituent effects on carbon chemical shifts 

(Silverstein and Webster, 1998) and comparison with data for 2,4-dibromo-6-

methylphenol (Maloney and Hecht, 2005) supported assignment of a dibromonated 

phenol.   

For the remaining portions of 9 except for the diterpene head, NMR data were 

nearly identical with data for 7-8 (Table 2.1; Table 2.2; Appendix A), supporting a 

decalin system identical to those molecules.  At the diterpene head, COSY correlations 

between H-14a (! 1.38) and H-15b (! 2.26) and between H-14b (! 2.06) and both H-15 

multiplets supported C-14—C-15 connection.  Further, both H-14 protons showed 

HMBC correlations to methine C-16 (! 65.5), establishing the C-15–C-16 linkage, which 

was verified by a COSY correlation between H-15a (! 1.68) and H-16 (! 3.90).  The 

carbon skeleton was then completed by HMBC correlations from Me-18 (! 1.79) and 

Me-26 (! 1.70) to one another, to C-16, and to C-17 (! 72.7).  The bromine atom was 

then attached to methine C-16 and the chlorine at quaternary C-17 on the basis of 
13

C 

chemical shift predictions (Silverstein and Webster, 1998) and empirical data (Suzuki et 

al., 1993; Wright et al., 1991), which supported assignment of the chlorine at the more 

deshielded carbon.   
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NOEs within the decalin system were analogous for 7-9, supporting the same 

relative stereochemistries for all of these molecules.  However, an additional stereocenter 

was introduced at C-16 in callophycol A (9). Because no NOEs were observed between 

decalin stereocenters and the stereocenter at C-16, it was left unassigned.  

 

Table 2.2  13C and 1H NMR spectral data for callophycols A-B (9-10) (500 MHz; in 

CDCl3).  

9 10 # 

! 
13

C ! 
1
H 

(JH,H) 

! 
13

C ! 
1
H 

(JH,H) 1 149.3 - 149.3 - 

2 110.7 - 110.8 - 

3 131.1 7.39d                   

(2.2) 

131.1 7.39brs 

4 112.2 - 112.2 - 

5 132.1 7.13d                   

(2.2) 

132.1 7.13brs 

6 131.3 - 131.3 - 

7 24.5 2.73d                   

(2.8)                

2.75brs 

24.4 2.74brs   

2.75brs 

8 55.4 2.14m 55.4 2.14m 

9 39.9 -  39.9 - 

10 40.1 1.35m                

1.87m  

40.1 1.37m       

1.87m 

11 31.2 2.18m                

2.24m 

31.1 2.19m       

2.25m 
12 63.2 4.15dd                 

(12.4, 

4.4) 

63.8 4.21dm  

(10.2) 

13 42.0 - 42.1 - 

14 38.8 1.38m                

2.06m 

38.0 1.57m       

1.86m 

15 28.0 1.68m                

2.26m 

28.2 1.50m    

2.33m 

16 65.5 3.90brd               

(9.8) 

72.7 3.91d       

(10.1)  
17 72.7 - 68.3 - 

18 33.5 1.79s 33.6 1.92s 

19 146.3 - 146.4 - 
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20 108.8 4.60brs           

4.80brs  

108.7 4.60brs, 

4.80brs 

21 37.7 1.95m            

2.35dm 

(12.7) 

37.8 1.96m    

2.35m 
22 25.2 1.48m              

1.67m 

25.0 1.47m    

1.75m 

23 50.7 1.43m 50.1 1.39m 
24 15.1 0.86s 15.2 0.86s 

25 19.8 0.99s 19.7 0.99s 

26 26.6 1.70s 28.3 1.82s 

OH - 5.60brs - 5.59brs 

br=broad; s=singlet; d=doublet; dd=doublet of doublets; m=multiplet 

 

High-resolution mass spectrometry indicated that 9 and 10 shared the 

C26H35OBr4Cl molecular formula (m/z 712.8889 [M - H]
-
).  Comparison of NMR spectral 

data for these two molecules indicated differences at C-16 and C-17 (Table 2.2), with the 

C-16 methine in callophycol B (10) being shifted downfield relative to 9 (! 65.5 in 9 vs. 

! 72.7 in 10), and quaternary C-17 in 10 shifted upfield relative to 9 (! 72.7 in 9 vs. ! 

68.3 in 10).  This supported chlorination at C-16 and bromination at C-17 in 10.  As with 

9, the stereochemistry at C-16 was unassigned for 10.   

In the biosynthesis of callophycoic acids A-H (1-8) and callophycols A-B (9-10), 

carbon-carbon bond formation between the aromatic moiety and geranylgeranyl 

diphospate (GPP) likely occurs by electrophilic aromatic substitution, analogously to the 

pathway hypothesized for ten bromophycolides (diterpene-benzoate macrolides) 

previously isolated from Callophycus serratus.(Kubanek et al., 2006; Kubanek et al., 

2005)  Among the bromophycolides and currently presented metabolites, callophycols A-

B (9-10) are exceptional in the lack of a benzoic acid-based aromatic moiety; the putative 

shikimate-based 2,4-dibromophenol group of 9-10 was likely introduced during the 

electrophilic aromatic substitution step of biosynthesis and indicates either a different 
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biosynthetic pathway for 9-10, or, more likely, that the enzymes catalyzing this step are 

flexible in substrate acceptance.  

Unlike the bromophycolides, in which electrophilic aromatic substitution was 

likely followed with esterification to yield 15- and 16-membered lactones, callophycoic 

acids A-H (1-8) maintained their carboxylic acid functional group.  LC-MS analysis of 

the extract from which callophycoic acids A-H (1-8) and callophycols A-B (9-10) were 

isolated indicated no presence of bromophycolides, originally isolated from Callophycus 

serratus collected at a different Fijian site.  Likewise, LC-MS analysis of the extract 

containing bromophycolides showed no indication of callophycoic acids or callophycols.  

This may suggest that different populations of this red alga possess different genotypes, 

only one of which produces the enzymes necessary for lactonization.  Alternatively, 

environmental differences between the two collection sites may have resulted in 

production of different metabolites due to induction or related mechanisms.  Another 

possibility is that specimens collected at these two sites actually represent different, 

closely-related species of red algae, which were morphologically indistinguishable in our 

hands.         

Following electophilic aromatic substitution, the linear diterpene-benzoic acid (in 

1-8) or diterpene-phenol (in 9-10) likely underwent a series of hydride shifts, addition, 

and elimination reactions, characteristic of isoprenoid biosynthesis (Herbert, 1989).  

These reactions resulted in halogenation at electrophilic sites expected for vanadium 

haloperoxidase-based biosynthetic enzymes previously implicated in terpenoid 

biosynthesis (Butler and Carter-Franklin, 2004).  Callophycoic acid F (6) is a probable 

precursor of callophycoic acids A-E (1-5) (Scheme 2.1), while callophycoic acids G-H 



26 

(7-8) and callophycols A-B (9-10) are hypothesized to be formed by an alternative mode 

of cyclization (Scheme 2.2).  The wide diversity of metabolites produced from diterpene-

benzoic acid (in 1-8) or diterpene-phenol (in 9-10) precursors suggests either the 

involvement of a diverse array of enzymes or catalytic promiscuity in the enzymatic 

machinery that biosynthesizes these metabolites.     

 

 

 

Scheme 2.1.  Proposed biosynthesis of callophycoic acids A-F (1-6). 
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Scheme 2.2  Proposed biosynthesis of callophycoic acids G-H (7-8) and callophycols A-

B (9-10). 

 

 

In addition to the structural novelty of callophycoic acids A-H (1-8) and 

callophycols A-B (9-10), compounds in this group demonstrated modest antibacterial, 

antimalarial, and anticancer activities (Table 2.3).  Antibacterial activity was species-
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specific, with regioisomers 1-2 both inhibiting Enterococcus faecium, yet inactive against 

Staphylococcus aereus.  In contrast, regioisomers 3-4 were more active against S. aureus 

than E. faecium.    

 

Table 2.3  Pharmacological activities of callophycoic acids A-H (1-8) and callophycols 

A-B (9-10). 

  antibacterial MIC (µM) 

 
 anticancer activity   

cmpd 

S. 

aureus 

E. 

faecium Antitubercular  IC50 (µM)
a
  

Antimalarial 

IC50 (µM) 

1 >500 16.0 >100  24.5  41.0 

2 >500 16.0 >100  24.4  51.5 

3 53.6 >100 >100  20.6  58.6 

4 26.7 >100 >100  23.2  76.1 

5 >500 >100 >100  >25  96.2 

6 >600 >100 >100  >25  27.0 

7 31.9 63.9 >10  >25  >100 

8 27.4 27.4 >50  >25  >100 

9 >350 >350 NT  >25  35.7 

10 >350 >350 >10  >25  40.4 
a
Mean of 11 cancer cell lines  (see Experimental section for details); NT indicates not tested. 

 

To our knowledge, the eight callophycoic acids (1-8) presented herein provide the 

first reports of macroalgal diterpene-benzoic acids, as this class of compounds was 

previously reported exclusively in terrestrial cyanobacteria (Jaki et al., 2000; Jaki et al., 

1999; Prinsep et al., 1996).  The two callophycols (9-10) represent an even more unique 

class of compounds, with no previous reports of halogenated diterpene phenols, to our 

knowledge.  Considered together, the 20 bromophycolides, callophycoic acids, and 

callophycols more than quadruple the number of secondary metabolites previously 

isolated from members of the algal family Solieriaceae (Graber et al., 1996; Whitfield et 

al., 1999), and suggest evaluation of additional members of this group may provide 

further structurally novel bioactive compounds.   
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Materials and Methods 

General Experimental Procedures.  NMR spectra were recorded at 500 MHz and 125 

MHz for 
1
H and 

13
C NMR, respectively, and referenced to residual CHCl3 (7.24 and 77.0 

ppm, for 
1
H and 

13
C, respectively) for 1-2 and 5-10 and to residual (CH3)2CO (2.04 and 

29.8 ppm, for 
1
H and 

13
C, respectively) for 3-4.   

 

Biological Material.  Callophycus serratus (Harvey ex Kutzing 1957) (family 

Solieriaceae, order Gigartinales, class Rhodophyceae, phylum Rhodophyta) was collected 

at depths from 9-15 m near Harold’s Passage, Astrolobe Reef, Kadavu Province, Fiji (18° 

46’ 37” S, 178° 27’ 74” E).  Material was identified by comparison with previously 

described morphological traits (Littler and M.M., 2003) and frozen at -20 °C until 

extraction.  A voucher specimen is deposited at the University of the South Pacific.   

 

Pharmacological Assays.  Bioassay-guided fractionation was directed by a sublethal 

rotifer ingestion toxicity assay with the freshwater species Brachionus calyciflorus, as 

previously described (Kubanek et al., 2006; Snell, 2005).  Isolated compounds were 

evaluated against a panel of tumor cell lines including breast, colon, lung, prostate, and 

ovarian cancer cells.  Specific cell lines were: BT-549, DU4475, MDA-MD-468, NCI-

H446, PC-3, SHP-77, LNCaP-FGC, HCT116, MDA-MB-231, A2780/DDP-S, and 

Du145.  In vitro cytotoxicity was tested with the (3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxylmethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt) MTS dye 

conversion assay as described previously (Lee et al., 2001).  Antibacterial assays were 
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performed against Staphylococcus aureus (ATCC #10537) and Enterococcus faecium 

(ATCC #12952) as previously described (Kubanek et al., 2005).  Antifungal assays were 

performed against Candida albicans as previously described (Kubanek et al., 2005).   

 

Antitubercular activity was assessed against Mycobacterium tuberculosis strain 

H37Rv (ATCC 27294) using the alamar blue susceptibility test (MABA) as described 

previously (Collins and Franzblau, 1997).  Compounds 1-6 were tested at a maximum 

concentration of 100 uM, 8 at a maximum concentration of 50 uM, and 7 and 10 at a 

maximum concentration of 10 uM.  The MIC was reported as the lowest concentration of 

a serial dilution series resulting in #90% growth inhibition relative to controls.  

Antimalarial activity was determined with a SYBR Green based parasite proliferation 

assay, adapted from Smilkstein (Smilkstein et al., 2004) and Bennett (Bennett et al., 

2004).  Briefly, Plasmodium falciparum parasites (3D7 strain MR4/ATCC, 

Manassas,VA) were cultured in human O+ erythrocytes as previously described (Trager 

and Jensen, 1976).  Compounds were diluted in complete medium and 40 !l transferred 

to 96-well assay plates. To this 80 !l of complete media with 3D7 infected erythrocytes 

were dispensed in order to obtain a 2.5% hematocrit and 0.5% parasitemia in the assay.  

Uninfected erythrocytes were dispensed into the background wells at the same final 

hematocrit.  Plates were incubated for 72 hours in a low oxygen environment (96% N2, 

3% CO2, 1% O2) in a modular incubation chamber. The plates were sealed and placed in 

a -80
o
C freezer overnight then thawed, and 120 !l of lysis buffer (20 mM Tris-HCl, pH 

7.5, 5mM EDTA, 0.08% Triton X-100, 0.008% saponin with 0.2  !l/ml Sybr Green I) 

was dispensed into each well and incubated at 37
o
C in the dark for 6 hours to achieve 
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maximum signal to noise ratio.  The plates were read with a Molecular Devices 

SpectraMAX Gemini EM at ex: 495 nm, em: 525 nm with 515 nm cut-off.   

Isolation.  Callophycus serratus was exhaustively extracted with water, methanol, and 

methanol/dichloromethane (1:1 and 1:2).  Extracts were combined, filtered, and 

concentrated in vacuo.  This crude extract was partitioned between methanol/water (9:1) 

and petroleum ether.  The aqueous fraction was adjusted to methanol/water (3:2) and 

partitioned against chloroform.  This bioactive chloroform extract was fractionated into 

1-10 by multiple rounds of C18 reversed-phase HPLC using gradients of methanol/water 

and acetonitrile/water with an Agilent Zorbax SB-C18 column, followed by normal-phase 

HPLC using a hexanes/ethyl acetate gradient with an Agilent Zorbax RX-SIL column.  

Callophycoic acid A (1):  clear crystalline solid (9.8 mg; 0.037% plant dry mass); [$]
24

D 

-115º (c 0.13 g/100 mL, MeOH); UV (MeOH) %max (log &) 258 (3.70) nm; for 
1
H and 

13
C 

NMR data see Table 2.1; for COSY, HMBC, and NOE data, see the Appendix A; HR 

ESI-MS m/z 485.1697 [M-H]
-
 (calcd for C27H34O3Br, 485.1691). 

Callophycoic acid B (2):  white amorphous solid (12.0 mg; 0.046% plant dry mass); 

[$]
24

D +165º (c 0.071 g/100 mL, MeOH); UV (MeOH) %max (log &) 260 (3.64) nm; for 
1
H 

and 
13

C NMR data see Table 2.1; for COSY, HMBC, and NOE data, see the Appendix A; 

HR ESI-MS m/z 485.1665 [M-H]
-
 (calcd for C27H34O3Br, 485.1691). 

Callophycoic acid C (3):  white amorphous solid (2.5 mg, 0.009% plant dry mass); 

[$]
24

D  -49º (c 0.031 g/100 mL, MeOH); UV (MeOH) %max (log &) 258 (4.03) nm; 
1
H and 

13
C NMR ((CD3)2CO, 500 MHz) data see Table 2.1; COSY, HMBC,  and NOE data, see 

Appendix A; HR ESI-MS [M – H]
-
 m/z 581.0895 (calcd for C27H35O4Br2, 581.0902). 
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Callophycoic acid D (4):  white amorphous solid (1.6 mg, 0.006% plant dry mass); 

[$]
24

D  +85º (c 0.018 g/100 mL, MeOH); UV (MeOH) %max (log &) 258 (3.81) nm; 
1
H and 

13
C NMR ((CD3)2CO, 500 MHz) data see Table 2.1; COSY, HMBC,  and NOE data, see 

Appendix A; HR ESI-MS [M – H]
-
 m/z 581.0889 (calcd for C27H35O4Br2, 581.0902). 

Callophycoic acid E (5):  white amorphous solid (1.9 mg; 0.007% plant dry mass); 

[$]
24

D +117º (c 0.031 g/100 mL, MeOH); UV (MeOH) %max (log &) 227 (3.70) nm; for 
1
H 

and 
13

C NMR data see Table 2.1; for COSY, HMBC, and NOE data, see the Appendix A; 

HRESIMS m/z 563.0807 [M-H]
-
 (calcd for C27H33O3Br2, 563.0800). 

Callophycoic acid F (6):  white amorphous solid (6.0 mg; 0.023% plant dry mass); 

[$]
24

D 0º (c 0.034 g/100 mL, MeOH); UV (MeOH) %max (log &) 246 (3.08) nm; for 
1
H and 

13
C NMR data see Table 2.1; for COSY, HMBC, and NOE data, see the Appendix A; 

HRESIMS m/z 407.2574 [M-H]
-
 (calcd for C27H35O3, 407.2586). 

Callophycoic acid G (7):  white amorphous solid (1.0 mg; 0.004% plant dry mass); 

[$]
24

D +137º (c 0.018 g/100 mL, MeOH); UV (MeOH) %max (log &) 258 (3.88) nm; for 
1
H 

and 
13

C NMR data see Table 2.1; for COSY, HMBC, and NOE data, see the Appendix A; 

HRESIMS m/z 487.1823 [M-H]
-
 (calcd for C27H36O3Br, 487.1853). 

Callophycoic acid H (8):  white amorphous solid (2.4 mg; 0.009% plant dry mass); 

[$]
24

D +99º (c 0.024 g/100 mL, MeOH); UV (MeOH) %max (log &) 258 (3.72) nm;  for 
1
H 

and 
13

C NMR data see Table 2.1; for COSY, HMBC, and NOE data, see the Appendix A; 

HRESIMS m/z 565.0968 [M-H]
-
 (calcd for C27H35O3Br2, 565.0958). 

Callophycol A (9):  white amorphous solid (2.5 mg; 0.009% plant dry mass); [$]
24

D +75º 

(c 0.029 g/100 mL, MeOH); UV (MeOH) %max (log &) 229 (4.11) nm;  for 
1
H and 

13
C 
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NMR data see Table 2.2; for COSY, HMBC, and NOE data, see the Appendix A; 

HRESIMS m/z 712.9066 [M-H]
-
 (calcd for C26H34OBr4Cl, 712.9032). 

Callophycol B (10):  white amorphous solid (2.2 mg; 0.008% plant dry mass); [$]
24

D 

+110º (c 0.018 g/100 mL, MeOH); UV (MeOH) %max (log &) 229 (4.04) nm; for 
1
H and 

13
C NMR data see Table 2.2; for COSY, HMBC, and NOE data, see the Appendix A; 

HRESIMS m/z 712.8889 [M-H]
-
 (calcd for C26H34OBr4Cl, 712.9032) 
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CHAPTER 3 

ANTIMALARIAL NATURAL PRODUCTS FROM THE FIJIAN RED ALGA 

CALLOPHYCUS SERRATUS 

 

 

Abstract 

Bromophycolides J-L (1-3) were isolated from extracts of the Fijian red alga Callophycus 

serratus and identified with 1D and 2D NMR spectroscopy and mass spectral analyses.  

These diterpene-benzoate macrolides represent two novel carbon skeletons and add to ten 

previously reported bromophycolides (4-13) from this alga.  Among these 13 

bromophycolides, several exhibited activities in the low micromolar range against the 

malaria parasite Plasmodium falciparum. 

  

Introduction 

Over 500 million cases of malaria are reported annually, causing one- to three-

million deaths worldwide (Snow et al., 2005).  Although several antimalarial drugs are 

currently on the market, resistance to these treatments is on the rise, indicating the urgent 

need for novel antibiotics (Hyde, 2007).  As a recognized source of pharmacologically-

active natural products (Blunt et al., 2008; Faulkner, 2000), marine organisms such as 

macroalgae may offer treatments for malaria and other infectious diseases.   

From the red alga Callophycus serratus, we previously reported the discovery of 

10 bromophycolides, unusual C27 diterpene-benzoate macrolides (Kubanek et al., 2006; 

Kubanek et al., 2005).  Exploration of additional C. serratus collections then led to 

discovery of 10 novel callophycoic acids and callophycols, C27 diterpene-benzoic acids 
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and C26 diterpene-phenols (Lane et al., 2007).  Herein, we report identification of three 

additional macrolides, bromophycolides J-L (1-3), representing two novel carbon 

skeletons as well as one regioisomer of a known bromophycolide, and adding further 

evidence that this red alga is an abundant source of chemically diverse and biologically 

active natural products.   

 

Results and Discussion 

 Following the isolation and identification of ten bromophycolides from 

Callophycus serratus in 2005 (Kubanek et al., 2006; Kubanek et al., 2005), LC-MS 

evaluation of extracts from a Fijian collection of this red macroalga suggested the 

presence of over ten as-yet unidentified bromophycolide-like metabolites.  Reversed- and 

normal-phase HPLC yielded three of these unknown metabolites, bromophycolides J-L 

(1-3), in quantities sufficient for structure elucidation. 

 A molecular formula of C28H40O5Br2 was established for bromophycolide J (1), 

based on a mass spectral parent ion at m/z 613.1160, supported by a dibrominated 

isotopic splitting pattern.  Inspection of 
1
H, 

13
C, HSQC, HMBC, and COSY NMR 

spectral data for 1 revealed an aryl group common to all bromophycolides (Table 3.1, 

Appendix B) (Kubanek et al., 2006; Kubanek et al., 2005).  Comparison of spectral data 

for 1 with bromophycolide A (4) supported a bromine-substituted isopropyl group at the 

diterpene head and established diterpene-aryl connectivity identical to that of 4 (Kubanek 

et al., 2005).   
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Novel bromphycolides J-L (1-3) and previously reported bromophycolides A-I and 

debromophycolide A (4-13) from Callophycus serratus. 
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Further comparison of NMR spectral data for 1 and 4 revealed substantive 

differences between these two natural products only in the vicinity of the carbocyclic 

terpene ring (Kubanek et al., 2005).  For 1, HMBC correlations from Me-23 (! 1.38) to 

C-6 (! 45.5), C-19 (! 89.8), and C-20 (! 28.0) established C-6—C-19—C-20 

connectivity.  Methoxy Me-28 (! 3.33) also showed an HMBC correlation to C-19, 

establishing quaternary C-19 as the site of attachment for OMe-28 and Me-23.  

Observation of HMBC correlations from Me-24 (! 0.55) to C-6, C-7 (! 45.8), and C-22 

(! 31.9) established connectivity between these carbons.  COSY correlations between H-

22 (! 1.14) and both H-21 protons (! 0.31, ! 0.42), between H-20 (! 1.55) and both H-21 

protons, and between H-22 and H-20, as well as shielded chemical shifts observed for 

methylene C-21 (! 8.5) prompted assignment of a cyclopropyl moiety comprised of C-20, 

C-21, and C-22, thus establishing a bicyclo(3.1.0) group.  HMBC and COSY correlations 

established connection between this ring system and the benzoate system via C-5, 

analogous to previously identified metabolites (Kubanek et al., 2006; Kubanek et al., 

2005).  With a bicyclo(3.1.0) group, 1 provided a carbon skeleton distinct from known C. 

serratus metabolites and novel among synthetic and natural products. 

 The eight stereocenters within 1 were assigned starting by comparison of 
1
H-

1
H 

scalar couplings and NOE correlations with 4 (Kubanek et al., 2005).  Observation of 

predicted scalar couplings and NOE correlations for 1 prompted assignment of 10R, 11S, 

14S stereochemistry as for 4.  Given these identical configurations, it seemed reasonable 

that C-7 would also be shared, suggesting a 7R stereocenter for 1.  Further, the relatively 

upfield 
1
H chemical shift observed for Me-24 (! 0.55) of 1 supported an axial orientation 

of this group, analogous to 4.  NOE correlations between Me-24 and Me-23 (! 1.38), not 
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seen for Me-24 and OMe-28 (! 3.33), next established an axial orientation for Me-23 and 

prompted assignment of a 19S stereocenter.  Observation of an NOE correlation between 

H-21a (!  0.31) and Me-23, but not between H-20 (!  1.55) or H-22 (! 1.14) and either 

Me-23 or Me-24, supported assignment of cyclopropyl group C-21 in an axial up position 

and established 20R and 22S absolute configurations.  Finally, NOE correlations between 

H-6 (! 2.59) and H-20 as well as between H-6 and OMe-28, but not between H-6 and 

either Me-23 or Me-24, established a 6S stereocenter.  This assignment matched absolute 

configurations reported for all bromophycolides bearing a stereocenter at this site (e.g., 

bromophycolide E (5)). 

 The molecular formula of bromophycolide K (2) was assigned as C27H37O5Br 

from the parent ion observed at m/z 519.1767 ([M - H]
-
).  Comparison of 

1
H, 

13
C, HSQC, 

HMBC, and COSY NMR data with known bromophycolides confirmed a 15-membered 

macrolide framework analogous to 4 (Appendix B) (Kubanek et al., 2006; Kubanek et al., 

2005).  For 2, a hydroxy substituent was assigned at C-15 (! 72.1) on the basis of 
13

C 

NMR chemical shift precedents (Kubanek et al., 2006; Kubanek et al., 2005).  As with 1, 

HMBC and COSY correlations suggested that 2 diverged from other bromophycolides 

within the cyclohexenyl moiety.  Within this group, observation of HMBC correlations 

from Me-23 (! 1.91) to C-6 (! 138.6), C-19 (! 132.7), and C-20 (! 36.7) and from H-5a 

(! 3.29) to C-7 (! 50.6) established the tetrasubstituted olefin.  COSY correlations from 

both H-20 protons (! 2.24, ! 2.37) to both H-21 protons (! 1.95, ! 2.17) and HMBC 

correlations from both H-24 protons to C-7 and C-21 (! 36.0) closed the six-membered 

ring containing exo- and endocyclic double bonds.   
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Scheme 3.1  Proposed biosynthesis of diterpene carbocyclic groups within 

bromophycolides J-K (1-2).  Following carbocation formation, pathways for 1-2 diverge 

from those proposed for previously reported bromophycolides.(Kubanek et al., 2005)  

(B:
-
 indicates base.) 

 

 

Bromophycolide K (2) represents another novel carbon skeleton, differing from 

known bromophycolide structural motifs by a proposed biosynthetic 1,2-methide shift 

(Scheme 3.1), ultimately resulting in the exo-methylene group at C-24.  Both methide and 

hydride shifts are common in terpene biosynthesis (Herbert, 1989); however, 2 represents 
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the first bromophycolide exhibiting a rearranged skeleton.  The rearranged carbon 

skeleton observed in the cyclohexenyl group of 2 and the lack of stereocenters near this 

group prevented stereochemical assignment at C-7. 

 Bromophycolide L (3) exhibited a molecular formula of C27H36O4Br2 ([M – H]
-
 

m/z 581.0906), isomeric to known bromophycolide E (5) (Kubanek et al., 2006).  A 

combination of 1D and 2D NMR spectral data for 3 supported assignment of a carbon 

skeleton and most functionalities identical to that of 5.  For 3, HMBC correlations from 

Me-23 (! 1.41) to fully substituted olefinic carbons C-6 (! 130.8) and C-19 (! 132.6) as 

well as to C-20 (! 32.4) suggested regioisomerization of the exo-methylene group 

observed for 5.  Finally, 7S, 10R, 11S, 14S stereochemistry was proposed for 3, based on 

comparison of NOE correlations with 4 and 5 (Appendix B).  

Together, bromophycolides J-L (1-3) represent two novel carbon skeletons plus 

one regioisomer of previously reported bromophycolide E (5).  Among 23 known natural 

products from C. serratus (Kubanek et al., 2006; Kubanek et al., 2005; Lane et al., 2007), 

bromophycolide J (1) is unique as the only methoxy-substituted metabolite as well as the 

only bromophycolide bearing a bicyclo(3.1.0) group.  All of these structural features, 

including stereochemistry, may be accounted for with biosynthetic mechanisms that 

incorporate the same bromonium intermediate previously suggested for five- and six-

membered ring cyclizations in bromophycolides (Scheme 3.1) (Kubanek et al., 2005).  A 

pathway encompassing a bromonium intermediate and including a proposed methide shift 

is also plausible in biosynthesis of bromophycolide K (2), the only known 

bromophycolide with a rearranged carbon skeleton (Scheme 3.1).  The structural novelty 
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observed among the diterpene carbocyclic rings within these 23 natural products suggests 

a high biosynthetic flexibility within this group.   

 

Table 3.1  13C and 1H NMR spectral data for bromophycolides J-L (1-3) (500 MHz; in 

CDCl3).  

1 2 3 

No

. 

! 
13

C ! 
1
H 

(JH,H) 

! 
13

C ! 
1
H 

(JH,H) 

! 
13

C ! 
1
H 

(JH,H) 

1 165.6 - 167.6 - 165.3 - 

2 121.2 - 122.8 - 122.5 - 

3 130.1 8.11 

brs 

133.3 7.67 d 

(1.7) 

130.6 7.85 

brs 

4 128.3 - 125.4 - 126.4 - 

5 27.1 2.37 d 

(15.5) 

2.69 m  

29.4 3.29 d 

(14.9) 

3.64 d 

(15.0) 

28.5 3.24 d 

(8.8) 

3.57 d 

(17.7) 
6 45.5 2.59 m 138.6 - 130.8 - 

7 45.8 - 50.6 2.62 d 

(8.7) 

43.4 - 

8 42.7 1.21 m 

2.62 m 

30.0 1.45 m 

1.98 m 

37.6  1.58 m  

1.92 m 

9 31.3  1.37 m 

1.75 m 

31.9 1.44 m 

2.20 m 

28.8 1.93 m 

2.07 m 

10 70.5 3.99 d 

(10.9) 

72.0 3.96 m 71.5 3.82 d 

(8.8) 

11 72.5 - 73.3 - 73.4 - 

12 35.4 1.50 m 

1.58 m 

32.6 1.24 m 

1.46 m 

33.3 1.52 m 

1.77 m 

13 26.4 2.11 m 

2.65 m 

23.6 1.83 m 

1.94 m 

28.6 1.79 m 

1.83 m 

14 80.5  4.88 d 

(10.3) 

81.5 4.97 

dd 

(2.7, 

11.6) 

76.3 5.36 d 

(6.8) 

15 66.2 - 72.1 - 142.6 - 

16 129.6 7.81 d 

(8.0) 

129.5 7.74 

dd 

(1.8, 

8.4) 

129.7 7.82 d 

(8.3) 
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17 115.5 6.78 d 

(8.2) 

115.9 6.81 d 

(8.4) 

115.2 6.80 d 

(8.3) 

18 157.8 - 159.1 - 157.5 - 

19 89.8 - 132.7 - 132.6 - 

20 28.0 1.55 m 36.7 2.24 m 

2.37 m 

32.4 2.13 m 

2.26 m 

21 8.5 0.31 m 

0.42 

dd 

(5.8, 

10.0) 

36.0 1.95 m 

2.17 m 

29.9 2.25 m 

2.36 m 

22 31.9 1.14 m 150.3 - 61.3 4.49 

dm 

(9.5) 23 19.8 1.38 s 14.1 1.91 s 20.8 1.41 s 
24 20.0 0.55 s 108.6 4.46 s 

4.66 s 

26.0 1.27 s 

25 29.0 1.17 s 26.1 1.26 s 30.2 1.26 s 

26 31.2 1.80 s 25.6 1.31 s 111.3 4.92 s 

4.99 s 
27 30.5 1.78 s 26.8 1.31 s 19.2 1.80 s 

 28 49.9 3.33 s - - - - 

O

H 

- 6.05 

brs 

- 5.48 

brs 

- 5.49 

brs 

br=broad; s=singlet; d=doublet; dd=doublet of doublets; m=multiplet 

 

 

 Bromophycolides J and L (1, 3) exhibited moderate antibacterial activity against 

methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant 

Enterococcus faecium (VREF, Table 3.2).  More notably, these novel compounds 

exhibited low micromolar activities against the malaria parasite, Plasmodium falciparum, 

prompting evaluation of antimalarial activities for previously reported bromophycolides 

A-I and debromophycolide A (4-13, Table 3.3).  Select bromophycolides possessing both 

15- and 16-membered lactone frameworks exhibited potent antimalarial activity, 

suggesting neither mode of lactonization confers an inherent bioactivity advantage.  

Furthermore, the macrocycle appears to be essential for activity, seeing as callophycoic 
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acids and callophycols which lack the macrocycle have a significant decrease in 

antimalarial activity.  

 

 

Table 3.2  Antibacterial and anticancer activities of novel bromophycolides J-L (1-3). 

  
antibacterial activity 

  
anticancer 

activity 

Cmpd 

MRSA 

IC50 

(µM) 

VREF 

IC50 

(µM) 

Antitubercular 

MIC (µM)  IC50 (µM)
a
 

1 80 66 94  10.3 

2 NT NT NT  30.6 

3 6.7 21 >100  3.1 
a
Mean of 11 cancer cell lines  (see Experimental section for 

details); NT indicates not tested. 
b
Using amphotericin B-resistant 

Candida albicans. 

 

 

 

Table 3.3  Antimalarial activities of novel (1-3) and previously reported (4-13) 

bromophycolides.   

Cmpd 

Antimalarial IC50 

(µM) 

1 2.7 

2 44 

3 0.5 

4 0.9 

5 10.7 

6 0.3 

7 55.7 

8 18.2 

9 4.8 

10 13.7 

11 0.9 

12 2.5 

13 >100 

 

  

Materials and Methods 

General experimental procedures.  Optical rotation data were collected with a Jasco P-

1010 spectropolarimeter, and UV spectra recorded in MeOH using a Spectronic 21D 
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spectrophotometer.  NMR spectra were acquired with a Bruker DRX-500 spectrometer, 

using a 5 mm broadband probe for 
1
H, 

13
C, HSQC, and DEPT-135 NMR experiments 

and a 5 mm inverse probe for HSQC, HMBC, COSY, and ROESY experiments.  All 

NMR spectra were collected in CDCl3 and referenced to residual CHCl3 (! 7.24 and 77.0 

ppm for 
1
H and 

13
C, respectively). High-resolution mass spectral data were acquired 

using electrospray ionization (ESI) with an Applied Biosystems QSTAR-XL hybrid 

quadrupole-time-of-flight tandem mass spectrometer and Analyst QS software.  LC-MS 

analyses were completed with a Waters 2695 pump and Alltech Alltima C18 reversed-

phase column (3 µm, 2.1 ' 150 mm) interfaced to a Waters 2996 diode-array UV detector 

and a Micromass ZQ 2000 ESI mass spectrometer.  Semipreparative HPLC was 

performed using a Waters 1525 or 515 pump with a Waters 2996 diode-array or Waters 

2787 dual-wavelength detector.  Bromophycolides J-L (1-3) were purified using Agilent 

Zorbax SB-C18 and RX-SIL columns (5 µm, 9.4 ' 250 mm).  HPLC and Optima grade 

solvents were used in HPLC and LC-MS experiments, respectively (Fisher Scientific).  

NMR solvents were obtained from Cambridge Isotope Laboratories.   

    

Biological material.  Callophycus serratus (Harvey ex Kutzing 1957) (family 

Solieriaceae, order Gigartinales, class Rhodophyceae, phylum Rhodophyta) was collected 

from Yanuca in the Fiji Islands (18° 23’ 57” S, 177° 57’ 59” E).  Samples were frozen at 

– 20° C until extraction.  Voucher specimens were identified by comparison with 

previously described morophological traits,(Littler and M.M., 2003) preserved in aqueous 

formalin, and deposited at the University of the South Pacific in Suva, Fiji.   
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Isolation.  Callophycus serratus was extracted successively with water, methanol, and 

methanol/dichloromethane (1:1 and 1:2).  Extracts were combined, reduced in vacuo, and 

subjected to solvent partitioning between methanol/water (9:1) and petroleum ether.  The 

methanol/water ratio of the aqueous fraction was then adjusted to 6:4 and this fraction 

partitioned against chloroform.  The chloroform fraction was subjected to multiple rounds 

of reversed-phase C18 HPLC with a gradient of acetonitrile/water and methanol/water 

mobile phases, followed by normal phase silica HPLC with isocratic hexanes/ethyl 

acetate to yield bromophycolides J-L (1-3). 

 

Bromophycolide J (1):  white amorphous solid (1.0 mg; 0.023 % plant dry mass); [$]
23

D 

+35 (c 0.057 g/100 mL, MeOH); UV (MeOH) %max (log &) 265 (3.78) nm; 
1
H NMR 

(CDCl3, 500 MHz) and 
13

C/DEPT NMR (CDCl3, 125 MHz) data, Table 3.1; NOE, 

COSY, HMBC NMR data, Appendix B; HRESIMS [M – H]
-
 m/z 613.1160  (calcd for 

C28H39O5Br2, 613.1164). 

Bromophycolide K (2): white amorphous solid (0.8 mg; 0.018 % plant dry mass); [$]
23

D 

+22 (c 0.046 g/100 mL, MeOH); UV (MeOH) %max (log &) 264 (3.54) nm; 
1
H NMR 

(CDCl3, 500 MHz) and 
13

C/DEPT NMR (CDCl3, 125 MHz) data, Table 3.1; NOE, 

COSY, HMBC NMR data, Appendix B; HRESIMS [M – H]
-
 m/z 519.1767 (calcd for 

C27H36O5Br, 519.1746). 

Bromophycolide L (3): white amorphous solid (1.8 mg; 0.041 % plant dry mass); [$]
23

D 

+68 (c 0.10 g/100 mL, MeOH); UV (MeOH) %max (log &) 262 (3.66) nm; 
1
H NMR 

(CDCl3, 500 MHz) and 
13

C/DEPT NMR (CDCl3, 125 MHz) data, Table 3.1; NOE, 
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COSY, HMBC NMR data, Appendix B; HRESIMS [M – H]
-
 m/z 581.0906 (calcd for 

C27H35O4Br2, 581.0902). 
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CHAPTER 4 

SECONDARY METABOLITE DEFENSES AGAINST PATHOGENS AND 

BIOFOULERS 

 

Introduction 

Competition for space and resources is intense in benthic marine environments 

(McClintock and Baker 2001).  In these habitats, macroalgae constitute a seemingly ideal 

substrate for growth of microorganisms and other epibionts, presenting these organisms 

with a living space rich in organic material.  Some associations between macroalgae and 

microbes are mutualistic, benefiting both host and symbiont.  For example, algal-

associated bacteria may produce metabolites that protect hosts from biofouling (e.g., 

Boyd et al. 1999; Armstrong et al. 2001), and recent reports have indicated that epibiotic 

hydroids may enhance growth of the kelp Macrocystis pyrifera (Hepburn and Hurd 

2005).  Other algal associates are clearly detrimental to hosts, as evidenced by reports of 

algal disease and fouling-associated fitness costs (e.g., D'Antonio 1985; Correa 1997; 

Ruesink 1998).  Red spot disease in the commercially valuable kelp Laminaria japonica 

(Sawabe et al. 1998) is caused by Pseudoalteromonas bacteriolytica bacteria; likewise, 

white rot disease in the kelp Nereocystis luetkeana is caused by an Acinetobacter sp. 

bacterium (Andrews 1977).  Some bacteria act as secondary pathogens, accelerating 

disease progression following attack of a primary pathogen (Correa et al. 1994).  Fungi 

can also act as seaweed pathogens, including Lindra thallasiae, an Ascomycete, which 

causes raisin disease in Sargassum spp. brown algae and Thalassia disease in seagrasses 

(Kohlmeyer 1971; Andrews 1976; Porter 1986).  In addition to bacterial and fungal 

pathogens, some species of endophytic multicellular algae, cyanobacteria, and amoebae 
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have been implicated as causes of disease in macroalgae (Andrews 1977; Correa et al. 

1993; Correa and Flores 1995).     

In addition to pathogens, micro- and macrofoulers negatively impact a variety of 

macroalgal hosts.  Biofouling by the diatom Isthmia nervosa is related to declines in 

growth and reproduction for the red alga Odonthalia floccose (Ruesink 1998).  Biofoulers 

may indirectly reduce algal fitness by increasing drag and susceptibility to tissue 

breakage in turbulent water and by increasing herbivore attraction (Dixon et al. 1981; 

D'Antonio 1985; Wahl and Hay 1995).   

Although pathogens and biofoulers both negatively influence host fitness, there 

are fundamental differences between these two algal colonizers.  Specifically, pathogens 

must exhibit virulence against hosts while such pathogenesis is absent in biofouling.  

Chemical defenses against both biofoulers and pathogens are included in this chapter, 

because each involve relatively long-term intimate associations with host algae, both 

benefit from association with hosts, and both pose negative fitness effects on hosts.   

Despite some reports of algal disease and the seemingly favorable conditions that 

hosts provide for pathogens and biofoulers, reports of widespread algal destruction 

remain surprisingly uncommon.  This suggests that macroalgae have evolved 

mechanisms to resist deleterious microorganisms.  One strategy is to disrupt colonization 

or growth of parasites with physical defenses, including production of a mucilaginous 

covering, outer cell layer shedding, and erosion of the distal ends of blades to remove 

parasites from macralgal surfaces (Mann 1973; Filion-Myklebust and Norton 1981; Moss 

1982; Nylund and Pavia 2005).  Algae may also prevent colonization of their tissues 

through oxidative burst, in which algae respond to microbial challenge through the 
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release of reactive oxygen species, or by other rapidly activated responses.  Another 

resistance mechanism is the use of secondary metabolites as chemical defenses (e.g., 

Boyd et al. 1999; Wikstrom and Pavia 2004; Engel et al. 2006; Puglisi et al. 2006).  As 

pathogens and foulers first select, settle, and attach to hosts, algae may prevent tissue 

damage by harboring secondary metabolites that circumvent this stage.  Following 

parasite attachment, secondary metabolites may inhibit the growth, survival, virulence, or 

reproduction of these organisms.   

Antimicrobial and antifouling chemical defenses have been reviewed previously 

for macroalgae, marine invertebrates, and other marine organisms (Engel et al. 2002; 

Steinberg and de Nys 2002; Paul and Puglisi 2004; Dobretsov et al. 2006).  Thus, we do 

not aim to cover the breadth of this area, but instead to explore a few recent studies 

illustrative of the strategies used by macroalgae to thwart parasites at each stage of the 

infection or biofouling process.  We will focus particular attention on evidence for the 

role of algal-associated microbes in host chemical defense and on the specificity of 

antimicrobial secondary metabolites.  These two themes are inherently intertwined, as 

broad-spectrum versus highly targeted antimicrobial defenses could differentially impact 

the diversity of microbial communities living with macroalgae and, in turn, influence 

chemical defense profiles of algal-associated microbes.   

 

Defenses against settlement and attachment 

 Algal chemical defenses that inhibit the settlement and attachment of pathogens 

or biofoulers represent the first line of defense against microbial challenge.  Unlike 

compounds that function through growth inhibition or lethality, most settlement and 
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attachment defenses impact microbial behavior, and as a result, may put less selective 

pressure on microbes to develop resistance (Rasmussen and Givskov 2006).   

 

 
Fig. 4.1  Characteristic acyl homoserine lactones (AHLs) (1-3) are structurally similar to 

representative halogenated furanones (4-6) reported from Delisea pulchra (de Nys et al. 

1993; Gould et al. 2006). 

 

 

Larval attachment defenses of Ulva reticulata 

Biofoulers including many species of bryozoans, crustaceans, tunicates, and 

polychaetes are abundant off the coast of Hong Kong (Harder and Qian 2000).  Larvae of 

these animals attach to abiotic or biotic substrates and remain throughout development.  

Not all potential hosts are equally affected by biofoulers, suggesting some algae are 

defended.  For example, the green alga Ulva reticulata was observed to be unscathed by 

biofoulers, leading Harder and Qian (2000) to hypothesize that this alga is chemically 

defended, inhibiting attachment or metamorphosis of biofoulers.  In a relatively simple 

lab-based assay, larvae of the polychaete Hydroides elegans or the bryozoan Bugula 

neritina were placed in a Petri dish containing seawater in which U. reticulata had been 
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previously soaked.  Both H. elegans and B. neritina larvae attached to the Petri dish 

substrate and metamorphosed at a significantly lower rate in seawater conditioned with 

U. reticulata than in control seawater (Harder and Qian 2000; Harder et al. 2004).  

Although precautions were taken to minimize damage in transferring U. reticulata from 

the field, the stress of collection could have resulted in the release of compounds that 

might not otherwise be present, potentially confounding results.  Furthermore, the lab 

settlement assay (in still water) could not address whether inhibitory compounds(s) are 

effective in natural flow regimes, and may have exposed larvae to unnaturally high 

concentrations of U. reticulata exudate.   

In an effort to reduce stress to Ulva reticulata during generation of anti-settlement 

cues, exudate was collected in the field by enclosing U. reticulata blades in transparent 

plastic bags for one hour.  Lab assays were conducted with the conditioned water, with 

the results of this experiment further supporting U. reticulata deterrence of larval 

attachment (Harder et al. 2004).  Although this experiment provided additional evidence 

for waterborne algal compounds acting as settlement inhibitors, U. reticulata could still 

have been exposed to unnatural stress while enclosed in the plastic bag; utilizing a gas-

permeable but water-impermeable bag to collect exudates may be more appropriate (e.g., 

Kubanek et al. 2002).    

Since the antifouling compounds(s) of Ulva reticulata appeared to be effective 

within the water column surrounding the source plant, these compounds may inhibit 

larval settlement on nearby macroorganisms as well.  If competitors are indeed protected 

by U. reticulata defenses, then natural selection could favor “cheaters,” mutant 

conspecifics which benefit from a neighbor’s defenses without paying the costs of 
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producing the defense (Foster and Kokko 2006).  At the same time, local species 

diversity could increase if undefended heterospecifics are protected by associating with a 

defended neighbor (e.g., Hay 1986).   

Although Ulva reticulata lacks significant larval biofouling, it harbors a variety of 

epibiotic bacterial species.  Dobretsov and Qian (2002) evaluated the antifouling effects 

of seven bacterial species cultured from U. reticulata surfaces.  The extract of the cell-

free supernatant from one Vibrio sp. significantly inhibited settlement and metamorphosis 

of Hydroides elegans, but not biofilm-forming bacteria, indicating that settlement 

inhibitor(s) from Vibrio sp. target larval foulers, not other bacteria.  However, 

antibacterial effects of Vibrio sp. extracts were addressed solely through disc-diffusion 

assays, which are poor mimics of natural conditions, as they cannot expose bacteria to 

natural concentrations of test compounds (Jenkins et al. 1998).  Furthermore, bacteria 

grown in liquid culture may produce different compounds than epiphytic bacteria.     

 The above discovery suggests that inhibitory compound(s) originally attributed to 

Ulva reticulata might instead be produced by the Vibrio sp. symbiont.  Thus, Harder et 

al. (2004) applied bioassay-guided fractionation to isolate defensive compound(s) from 

(1) U. reticulata-conditioned seawater and (2) Vibrio sp. culture.  Following desalting of 

crude extracts, ultrafiltration resulted in concentration of active metabolites in the >100 

kD molecular weight fraction, suggesting a bioactive protein, polysaccharide, or 

glycoconjugate from both sources.  In both, elimination of bioactivity by (-glucuronidase 

and $-amylase suggested that the bioactive components contained large polysaccharide 

units.  However, the active fractions were differentially susceptible to proteolytic 

enzymes, suggesting that U. reticulata may be defended from biofoulers by multiple 
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chemical defenses: glycoprotein(s) from U. reticulata and polysaccharide(s) or non-

proteinaceous glycoconjugate(s) from Vibrio sp.  Analogously, extracts from 

Pseudoalteromonas spp. bacteria associated with U. lactuca have been reported to inhibit 

a suite of common biofoulers, although the responsible compound(s) have not been 

characterized (Egan et al. 2001).   

 The macromolecular bioactive metabolites from Ulva reticulata-conditioned 

seawater and from Vibrio sp. are unique among antifouling compounds characterized to 

date, since other reported larval-deterrent molecules from macroalgae have included 

phlorotannins and non-polar terpene alcohols (Schmitt et al. 1995; Lau and Qian 1997; 

Brock et al. 2007). The apparent lack of proteinaceous antifouling metabolites in the 

literature may represent a bias in extraction methodology, since most extractions have 

used solvents that would have denatured or failed to extract high molecular weight, 

water-soluble proteins. 

Through methodological advancements, chemically-mediated relationships 

among bacterial symbionts, host macroalgae, and biofoulers may be more fully 

elucidated.  Advanced methodology may be especially important in assessing the benefit 

of defensive metabolite-producing symbionts to host organisms.  One possible direction 

is the application of molecular biology methods to create mutant symbionts for which the 

genetic ability to produce bioactive secondary metabolites is knocked out.  By comparing 

biofouling of algae harboring symbionts capable of producing defensive metabolites to 

mutants without this ability, the role of such microbial metabolites may be analyzed in a 

more ecological context than before.  Furthermore, field-deployed mass spectrometry 

technology has improved greatly in recent years (Short et al. 2006), and such equipment 
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may in the future be used to determine the natural concentrations and dynamics of some 

compounds released by marine algae and associated microbes.   

 

Disruption of microbial communication pathways: an effective inhibitor of 

settlement and attachment 

 The defense of the red alga Delisea pulchra against biofouling is exceptionally 

well-characterized, and has been previously discussed in a number of excellent reviews 

(e.g., Steinberg et al. 1997; Rice et al. 1999; Steinberg and de Nys 2002; Paul and Puglisi 

2004; de Nys et al. 2006).  Thus, only a brief overview and recent developments will be 

provided herein.   

Delisea pulchra produces a variety of structurally-related halogenated furanones 

(Fig. 4.1), which protect this alga from bacterial settlement and attachment (Kjelleberg et 

al. 1997; Maximilien et al. 1998).  The structures of these furanones resemble acylated 

homoserine lactones (AHL) (de Nys et al. 1993), which have gained widespread attention 

as bacterial communication signals that regulate behavior, such as swarming, of many 

gram-negative bacteria and are important in bacteria-host interactions (Daniels et al. 

2004).  Manefield et al. (1999) demonstrated that algal furanones effectively inhibit 

bacterial swarming and subsequent attachment by acting as competitive inhibitors for 

LuxR, a major transcriptional activator for coordinated bacterial behavior that is activated 

by AHLs.   

With this mechanistic understanding of the biological activity of Delisea pulchra 

furanones, it is possible to predict the bacterial taxa against which this alga is defended.  

Because gram-negative bacteria rely heavily upon the AHL signaling system (Konaklieva 
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and Plotkin 2006), it is not surprising that D. pulchra exhibits antibiosis against a variety 

of these microorganisms (Maximilien et al. 1998).  Further, furanones also target the 

autoinducer-2 (AI-2) signaling system, which is present in many genera of gram-positive 

and gram-negative marine bacteria (Ren et al. 2001; McDougald et al. 2003).  This 

discovery is surprising, given the lack of obvious structural similarity between AI-2 and 

furanones.        

 In addition to bacterial inhibition, furanones from D. pulchra directly inhibit 

settlement and attachment of some species of biofouling larvae and zoospores (de Nys et 

al. 1995; Dworjanyn et al. 2006), demonstrating the broad-spectrum antifouling activity 

of these molecules.  However, the molecular mechanisms by which furanones deter 

larvae and zoospores are not known. 

In contrast to the inhibitory activity of Delisea pulchra furanones against some 

zoospores, recent studies have indicated that AHLs act as chemoattractants to zoospores 

of the biofouling green algae Ulva spp., and are important in zoospore habitat selection in 

the laboratory (see Chap. 14; Joint et al. 2002; Tait et al. 2005).  Analogously, bacteria 

associated with the red alga Gracilaria chilensis produce AHLs or AHL analogs that 

induce spore liberation and facilitate recruitment of the algal epiphyte Acrochaetium sp. 

to G. chilensis hosts in the laboratory (Weinberger et al. 2007).  Further investigation of 

the responses of biofouling algal species to AHLs and related molecules, especially in the 

field, will yield further insights into the ecological functions of these molecules.      
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Fig. 4.2  Previously identified macroalgal secondary metabolites that inhibit growth of 

pathogenic and saprophytic fungi.  (a)  Lobophorolide was isolated from Lobophora 

variegata, but is likely of cyanobacterial origin (Kubanek et al. 2003).  (b) Capisterones 

A and B were isolated from Penicillus capitatus and P. pyrinformis (Puglisi et al. 2004). 

 

 

 

Lethal and growth inhibitory antimicrobials 

The chemical defenses of Ulva reticulata and Delisea pulchra discussed above 

illustrate deterrence of potential pathogens and biofoulers during settlement and 

attachment.  Yet, algal hosts may still successfully ward off these organisms even after 

colonization.  Although surveys have suggested antimicrobial and antifouling chemical 

defenses are widespread among macroalgae and their microbial symbionts (e.g., Boyd et 

al. 1999; Nylund et al. 2005; Engel et al. 2006; Puglisi et al. 2006), fewer studies have 

gone on to elucidate the chemical structures of bioactive metabolites (e.g., Jensen et al. 

1998; Paul et al. 2006).  In the two example cases below, isolation of antimicrobial 
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compounds was guided by laboratory assays using ecologically-relevant microbes, 

leading to the characterization of structurally unique natural products.     

 

Lobophorolide: a potent antifungal chemical defense 

 In a survey of antimicrobial chemical defenses from 55 species of Caribbean 

seaweeds, extracts from Lobophora variegata, a common brown alga, were found to be 

exceptionally potent in growth inhibition assays using Lindra thallasiae, a marine 

Ascomycete pathogenic to some algal species but not Lobophora spp., and Dendryphiella 

salina, a saprophytic marine Deuteromycete (Kubanek et al. 2003).  Bioassay-guided 

fractionation of whole tissue extracts of L. variegata resulted in the isolation of 

lobophorolide, a novel polycyclic macrolide of presumed polyketide origin (Fig. 4.2a).  

Furthermore, the molecule was present in macroalgal surface extracts at concentrations 

sufficient for fungal growth inhibition, supporting its role as a chemical defense.   

Although lobophorolide bore a novel carbon skeleton, it is largely a structural 

hybrid of previously identified tolytoxins, scytophycins, and swinholides (Kitagawa et al. 

1990; Tsukamoto et al. 1991; Todd et al. 1992; Andrianasolo et al. 2005).  Tolytoxin and 

scytophycins were first isolated from cultures of free-living freshwater and marine 

cyanobacteria (Carmeli et al. 1990; Carmeli et al. 1993), and more recently tolytoxin-23-

acetate was isolated from a cephalaspidean mollusk, although this compound is likely 

synthesized by cyanobacteria and concentrated via the food web (Nakao et al. 1998).  

Swinholides have been found in marine sponges of the genus Theonella and more 

recently in free-living Symploca and Geitlerinema cyanobacteria (Tsukamoto et al. 1991; 

Todd et al. 1992; Andrianasolo et al. 2005).  The true producer of a variety of plant- and 
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animal-associated polyketides has been debated heavily in the literature (Hildebrand et al. 

2004a; Piel 2004).  While it is possible that previous researchers have overlooked these 

pathways in plants and animals, it is more likely that the actual producers of polyketides 

such as lobophorolide are microbes living in or on host tissues.   

 Direct evidence for the true producers of some polyketide metabolites has come 

from culture-independent methods based on the cloning of biosynthetic genes from 

symbiotic microbes.  These efforts have been hindered by the complexity of locating 

genes of interest within the multitude of microbial genomes generally associated with 

marine macroorganisms.  Despite these difficulties, polyketides of the pederin family, 

originally attributed to beetles and sponges, were recently determined to be produced by 

bacterial symbionts (Piel 2002; Piel et al. 2004).  Piel (2002) identified the polyketide-

producing beetle symbiont as a Pseudomonas sp.  Using similar cloning techniques, the 

uncultured )-proteobacterium “Candidatus Endobugula sertula” was identified as the 

producer of bryostatins, potent anticancer and antipredation polyketides isolated from 

bryozoans (Davidson et al. 2001; Hildebrand et al. 2004b; Sudek et al. 2007).   

Lobophorolide represents another likely example of a chemical defense produced 

by a microbial symbiont; however, no direct evidence links this molecule to 

cyanobacteria associated with Lobophora variegata.  Kubanek et al. (2003) reported 

observation of a variety of bacteria, including cyanobacteria, on L. variegata.  The 

variable but low concentration of lobophorolide in L. variegata (1.2 ± 0.3 ' 10
-4

 % of 

plant dry mass) also indirectly supported a microbial source, since plant secondary 

metabolites typically range in concentration from 0.1-10% of dry mass (Paul 1992).  It 

should also be noted, however, that this low abundance could simply represent an 
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optimized strategy to tune defense concentrations to microbe sensitivity, which ranged 1-

2 orders of magnitude below natural concentration.  Conclusive evidence of the actual 

producer of lobophorolide will untimately come only through metagenomic analyses 

analogous to those applied by Piel (2002), or by future identification of this compound 

from microbes cultured from L. variegata. 

 Lobophorolide targets a variety of filamentous fungi, including not only 

ecologically relevant Linda thalassiae and Dendryphiella salina, but also the human 

pathogen Candida albicans.  However, the ecological activity of lobophorolide appears 

limited to these higher fungi, as this compound did not inhibit growth of the 

thraustochytrid Schizochitrium aggregatum or the bacterium Pseudoalteromonas 

bacteriolytica, known to be pathogenic to selected macroalgae, nor did it deter feeding by 

herbivorous fishes (Kubanek et al. 2003).  Hence, unlike furanones isolated from Delisea 

pulchra, which showed multifunctional biological activity against bacteria and 

biofoulers, lobophorolide may have evolved as a more targeted, specific defense, albeit 

one apparently functional against a variety of higher fungi.  

Chemical defenses targeted against specific challengers are likely to have quite 

different implications for algal-associated epibiont communities than defenses that 

effectively deter all parasites.  As it is becoming increasingly clear that a number of 

antimicrobial natural products isolated from macroorganisms are actually microbial 

natural products, perhaps antagonistic interactions among microbes originally selected for 

the evolution of antimicrobial defenses that now protect hosts from microbial parasites.  

Illustrating the complexity of interaction between microbial competitors on algal 

surfaces, Franks et al. (2006) demonstrated that algal-associated Pseudoalteromonas 
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tunicata produces secondary metabolites that inhibit fungal colonization thereby giving 

bacteria a competitive advantage in colonizing algal surfaces.  Recently, 16S ribosomal 

RNA sequencing has been applied to evaluate both cultured and uncultured bacterial 

diversity in nature (Webster et al. 2001; Hentschel et al. 2002), suggesting this 

methodology may be invaluable in relating algal chemical defense profiles to the 

diversity of associated microbes.  

 

Antifungal chemical defenses of Penicillus spp. 

Recent investigations of antimicrobial chemical defenses in green algae of the 

genus Penicillus indicate that, like Lobophora variegata, these abundant macroalgae also 

harbor potent defenses against fungal pathogens.  From P. capitatus, Puglisi et al. (2004) 

isolated two novel triterpene sulfate esters, capisterones A and B, with antifungal activity 

against Lindra thalassiae at natural whole-tissue concentrations (Fig. 4.2b).  Like 

lobophorolide, the growth inhibitory activity of capisterones A and B appears limited to 

higher fungi.  Although literature examples of cycloartane class triterpenoids such as 

capisterones A and B are rare, all marine examples of these molecules have come from 

algal species such as the red alga Tricleocarpa fragilis and the green alga Tydemania 

expeditionis (Govindan et al. 1994; Horgen et al. 2000).  This fact, together with 

biosynthetic studies demonstrating the capacity of algae to produce a variety of 

isoprenoids (although not these specific triterpenes), suggests that capisterones A and B 

are produced by P. capitatus itself and not by a symbiotic microbe.  

More recent investigations by Engel et al. (in prep.) revealed that capisterones are 

concentrated in the cap filaments of Penicillus canitatus and are not present at detectable 



63 

levels in their heavily calcified stalks.  By combining pulse amplitude modulated (PAM) 

fluorometry in the field with culture studies and chemical analyses in the lab, Engel et al. 

(in prep.) demonstrated that photosynthetically active cap filaments harbor low levels of 

culturable fungi and mean in situ capisterone concentrations of 10 µg/mL.  These studies 

showed a clear positive correlation between photosynthetic activity and in situ 

capisterone concentrations, as well as a strong negative correlation between fungal 

abundance on cap filaments and in situ capisterone concentrations.  These results imply 

that healthy, photosynthetically active individuals maintain high capisterone 

concentrations and are thus more effective at controlling associated fungi.  Although 

surface concentrations of capisterones were not evaluated, the low minimum inhibitory 

concentration (MIC) of capisterones against cultured fungi (0.1 to 0.7 µg/mL) suggests 

that natural concentrations are likely sufficient to inhibit fungal infection.  Furthermore, 

capisterones are amphiphilic, possessing a lipophilic terpenoid core and a hydrophilic 

sulfate group.  This may result in aggregation of capisterones at algal surfaces, since the 

lipophilic portion could interact with algal tissue while the hydrophilic moiety is strongly 

attracted to surrounding seawater.   

Engel et al. (in prep.) also evaluated antifungal chemical defenses of other 

Penicillus species from the tropical Atlantic.  Like P. capitatus, cap filaments of P. 

pyriformis contained capisterones and closely related natural products at concentrations 

similar to those found in P. capitatus.  In contrast, P. dumetosus contained only trace 

amounts of these triterpenoids.  All Penicillus spp. examined contained indole-3-

carboxaldehyde at whole tissue concentrations sufficient to inhibit the algal fungal 

pathogen Lindra thalassiae.  Interestingly, this compound has thus far only been reported 
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as a phytoalexin in terrestrial plants (Tan et al. 2004), produced in response to fungal 

infection.  Future studies will be needed to examine if fungal infection also induces the 

production of this metabolite in Penicillus spp.  Induction of macroalgal chemical 

defenses in response to mesograzers such as amphipods and snails has been reported 

(Cronin and Hay 1996; Pavia and Toth 2000; Toth and Pavia 2000); however, the 

induction of antimicrobial defenses has not yet been shown in macroalgae.   In 

investigations of antimicrobial defense induction in terrestrial plants, wounding has been 

shown to induce chemical defenses (e.g., Kristensen et al. 1999; Aneja and Gianfagna 

2001; Rizhsky and Mittler 2001), probably because physical damage is a good proxy for 

the presence of pathogens.  In contrast, Pavia and Toth (2000) demonstrated that physical 

damage alone was insufficient to induce antiherbivore defense production in algae.  

Hence, it will be interesting to determine whether wounding induces antimicrobial 

defenses in marine algae, and such studies are currently underway in our group.  

One question that remains to be answered for lobophorolide, capisterones, and 

indole-3-carboxaldehyde is whether these antimicrobial molecules function by killing 

susceptible fungi or by slowing their growth and/or reproduction.  The isolation of these 

antifungal natural products was guided using assays testing how fungi grow on agar 

media containing natural concentrations of macroalgal extracts.  Reduced growth on 

treated agar relative to controls might indicate that a macroalgal chemical defense is 

lethal to fungi or that it slows fungal growth/reproduction, or a combination of both.  

Although perhaps not inherently important in assessing the ecological effects of 

antimicrobial defenses, determination of the mode of inhibition may have important 

implications for the co-evolution of hosts and parasites.  Compounds that inhibit 
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microbial growth or reproduction could provide selective pressure for the evolution of 

resistance among microbes, since in cases where the defense is not lethal, small 

populations of pathogenic microbes might remain associated with algae for substantial 

periods of time, facilitating the emergence of a resistant phenotype.  A competing 

hypothesis is that lethal compounds could strongly favor the evolution of resistance, since 

even one mutant resistant cell could rapidly dominate a macroalgal host.  By developing 

ecological assays capable of distinguishing between lethal and growth/reproductive 

inhibitory effects, it may be possible to address such questions.   

 

Future perspective and conclusions 

 The studies highlighted above provide a glimpse into the role of secondary 

metabolites in defending macroalgae against pathogens and biofoulers.  These molecules 

operate at different stages of the infection or fouling process, and demonstrate that 

multiple strategies can be successful in controlling these organisms.  As deterrents to 

settlement and attachment, molecules such as the polar, high molecular weight 

compounds from Ulva reticulata and an associated Vibrio sp. likely defend this alga from 

biofouling larvae.  Furanones from Delisea pulchra disrupt bacterial settlement by 

inhibiting communication pathways necessary for bacterial quorum sensing and 

settlement.    In contrast, chemical defenses including lobophorolide and capisterones 

defend macroalgae after settlement, by either killing or inhibiting the growth of fungal 

pathogens.  

As illustrated by the cases of an antilarval defense in Ulva reticulata produced by 

a Vibrio sp. bacterium and by the likely cyanobacterial origin of lobophorolide, microbial 
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symbionts probably play an important role in synthesizing chemical defenses for host 

algal species.  Harboring epiphytic or endophytic microbes that produce bioactive 

secondary metabolites may benefit hosts by eliminating metabolic costs for synthesizing 

and storing defensive compounds, and may reduce autotoxicity effects.  These 

macroalgal-microbial associations may be mutualistic, although studies are needed to 

evaluate this hypothesis.  

The specificity of most chemical defenses (e.g., Engel et al. 2006; Puglisi et al. 

2006) is likely an important contributing factor to the structure of algal-associated 

microbial communities.  Chemical defenses may affect marine communities by 

promoting some microbes on algal surfaces while deterring others, and by facilitating 

growth of macroalgae that would otherwise become overgrown by biofoulers.  The likely 

microbial source of many defensive metabolites adds another interesting aspect in 

addressing the role of natural products in structuring communities.  Although no studies 

to date have provided clear evidence for community consequences of antimicrobial 

defenses in macroalgae, the synergistic application of natural products chemistry, genetic 

engineering approaches, and field ecological experimentation may result in an advanced 

understanding of such relationships.   

A better understanding of the dynamics of antimicrobial chemical defense 

production is also predicted for the future.  In the more advanced field of marine plant-

herbivore interactions, field experiments have demonstrated increased production of 

defensive metabolites in response to attack by specific herbivores (e.g., Cronin and Hay 

1996; Toth and Pavia 2000).  Given the likely costs of antimicrobial defenses, regulation 

of chemical defenses dependent upon risk of attack is expected to be similarly 
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advantageous.  It is possible the most important chemically-mediated battles are not 

between microbes and their hosts but instead among microbial species or populations co-

occurring on or in a host.  Evaluation of such hypotheses is inherently challenging and 

will necessitate significant methodological advancements and a better understanding of 

host-pathogen and host-biofouler interactions.  Through the synergistic application of 

improved laboratory and field-based experiments, understanding of secondary metabolite 

defenses against pathogens and biofoulers will forge ahead.    
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CHAPTER 5 

SURFACE-MEDIATED ANTIFUNGAL CHEMICAL DEFENSES OF A 

TROPICAL SEAWEED 

 

 

Abstract 

Organism surfaces represent signaling sites for attraction of allies and defense against 

enemies.  However, understanding of these signals has been impeded by methodological 

limitations that have precluded direct fine-scale evaluation of compounds on native 

surfaces.  Herein, we asked whether natural products from the red macroalga Callophycus 

serratus act in surface-mediated defense against pathogenic microbes.  Bromophycolides 

and callophycoic acids from algal extracts inhibited growth of Lindra thalassiae, a 

marine fungal pathogen.  Spatially-resolved and imaging desorption electrospray 

ionization mass spectrometry (DESI-MS) revealed algal surfaces were largely devoid of 

bromophycolides, but distinct surface patches and internal tissues contained compounds 

at concentrations sufficient for fungal inhibition.  This represents the first example of 

natural product imaging on biological surfaces, suggesting the importance of secondary 

metabolites in localized ecological interactions, and illustrating the potential of DESI-MS 

in understanding chemically-mediated biological processes. 

 

Introduction 

Secondary metabolite cues drive countless biological interactions including mate 

recognition, competition for space, prey detection, and defense against adversaries 

including consumers and pathogens (Paul et al., 2006c; Paul and Ritson-Williams, 2008).  
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As the interface between an organism and its environment, biotic surfaces may represent 

particularly important sites of chemical signaling (Steinberg et al., 2001).  Foulers, 

pathogens, parasites, and symbionts establish initial physical interaction with hosts via 

surface contact, and presentation of chemical cues exclusively on host surfaces may 

afford critical advantages to the organism producing the cue.  Compared with 

maintenance of metabolites throughout tissues, maintaining compounds primarily on 

outer surfaces where they are most effective could reduce potential autotoxicity and 

lower costs of compound biosynthesis to the signal producer.  Likewise, production of 

signaling molecules within cells followed by targeted release of compounds onto 

challenged surfaces may afford substantial benefits.  For example, induced release of 

chemical defenses at sites of microbial challenge could limit infection while decreasing 

selective pressure for evolution of resistance and reducing the potential for other 

organisms to utilize these compounds as attractive cues (Karban and Baldwin, 1997; 

Koricheva, 2002). 

Despite the apparent advantages of surface-mediated chemical signaling, our 

understanding of such processes has been largely impeded by methodological limitations.  

In the marine realm, numerous genera have been suggested to utilize surface-associated 

defenses against competitors, foulers, and pathogens (Kelly et al., 2003; Nylund et al., 

2005; Nylund et al., 2008; Nylund et al., 2006; Nylund and Pavia, 2003).  However, such 

defenses were often proposed based on inhibitory effects detected in experiments using 

whole organism extracts (Kelly et al., 2003; Nylund and Pavia, 2003), and it is unclear 

whether target species actually encountered these chemicals in nature.  In more 

ecologically realistic studies, roles of surface-associated molecules were proposed based 
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on experiments employing surface extracts or pure compounds tested at their 

approximate surface concentration (Dworjanyn et al., 1999; Kubanek et al., 2003; 

Kubanek et al., 2002; Nylund et al., 2008; Nylund et al., 2006; Schmitt et al., 1995).  

Unfortunately, current extraction-based methodologies are inefficient at extracting 

compounds associated with biological surfaces and limited to certain groups of 

molecules.  Further, these methods do not allow determination of compound distributions 

on organismal surfaces at lower than centimeter or millimeter scales.  Heterogeneous 

distributions at the micron-to-millimeter scale may play important, but unexplored, roles 

in mediating biotic interactions.  Such fine-scale interactions may be particularly 

important in governing relationships, whether beneficial or deleterious, between hosts 

and microorganisms. 

Microbe-borne diseases have caused mass mortality among some marine plant 

and animal species, and epidemics appear to be on the rise (Harvell et al., 1999).  Not all 

organisms are susceptible to infection, and both internal and surface-associated chemical 

defenses may account for the observed resistance of some secondary metabolite-rich 

species to microbial attack (Engel et al., 2002; Lane and Kubanek, 2008).  However, 

antimicrobial chemical defenses have not been widely explored (Engel et al., 2006; Kim 

et al., 2000; Puglisi et al., 2006).  Among marine macroalgae, only a handful of studies 

have evaluated roles of specific secondary metabolites in defense against deleterious 

microbes (Jiang et al., 2008; Nylund et al., 2008; Paul et al., 2006b; Puglisi et al., 2004), 

and even fewer have provided evidence for these molecules in surface-mediated defense 

(Kubanek et al., 2003; Maximilien et al., 1998; Nylund et al., 2008).  Only the 22-

membered lactone lobophorolide from the brown alga Lobophora variegata (Kubanek et 
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al., 2003), a poly-brominated 2-heptanone from the red alga Bonnemaisonia hamifera 

(Nylund et al., 2008), and furanones from the red alga Delisea pulchra (Maximilien et al., 

1998) have been proposed as surface-associated antimicrobial defenses of marine algae. 

Recent developments in mass spectrometry offer potential for advanced 

understanding of these and other chemical signaling processes.  The Dorrestein and 

Gerwick groups recently demonstrated the utility of matrix-assisted laser desorption 

ionization time-of-flight mass spectrometry (MALDI-TOF MS) for pinpointing 

secondary metabolite locations within marine microbe-invertebrate assemblages 

(Esquenazi et al., 2008; Simmons et al., 2008), and this strategy may prove widely 

applicable in assigning biosynthetic origins and distributions of chemical defenses within 

tissues or cell types.  However, such MALDI-TOF experiments require sample 

treatments that preclude direct analysis of intact biological surfaces.  In contrast, 

desorption electrospray ionization mass spectrometry (DESI-MS) is promising for 

evaluation of secondary metabolites on intact surfaces.  With DESI-MS, surfaces are 

maintained at atmospheric pressure in open air and presented with a fine high velocity 

spray of charged droplets.  Biomolecules are desorbed from the surface, potentially 

without rupturing cell membranes, and delivered as desolvated ions into the mass 

spectrometer for analysis (Cooks et al., 2006).  Like traditional mass spectrometry 

techniques, DESI-MS offers rapid analyses, low detection limits, and compatibility with 

molecules ranging from water-soluble to non-polar, and from low (< 100 Da) to high 

molecular weights (> 100,000 Da) (Takats et al., 2004).  The broad applicability of DESI-

MS is evidenced by applications including profiling of targeted sites on tissue surfaces 

for specific phospholipids associated with disease states (Wiseman et al., 2006), analysis 
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of counterfeit drug molecules on intact pharmaceutical tablets (Nyadong et al., 2007), 

detection of explosives (Cotte-Rodriguez et al., 2005), and assessment of alkaloid content 

from terrestrial plant tissue (Talaty et al., 2005).  These studies suggest the potential of 

DESI-MS as a powerful tool in exploring the function of surface-associated natural 

products in ecological interactions. 

On the basis of their cytotoxicity towards biomedical targets, we recently 

discovered ten bromophycolides, unusual C27 diterpene-benzoate macrolides, from a 

population of the Fijian red alga Callophycus serratus.  Ten novel callophycoic acids and 

callophycols, C27 diterpene-benzoic acids and C26 diterpene-alcohols, were isolated from 

a different population of the same alga (Kubanek et al., 2006; Kubanek et al., 2005; Lane 

et al., 2007).  In the present study, we merge traditional natural products chemistry and 

ecological approaches with the capabilities of DESI-MS to provide support for a role of 

bromophycolides and callophycoic acids as antifungal defenses of whole algae as well as 

evidence that bromophycolides are presented heterogeneously on algal surfaces where 

they may interfere with pathogen attack. 

 

Results 

Evaluation of whole algal extracts reveals potent antifungal chemical defenses in 

Callophycus serratus.   

Chromatographic fractions from extracts of ten separate collections of C. serratus 

were evaluated at natural whole tissue concentrations for growth inhibitory activity 

against two known pathogens of marine plants: Lindra thalassiae, a widely distributed 

marine Ascomycete reported to infect diverse hosts ranging from brown algae to 
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seagrasses (Kohlmeyer, 1971; Kohlmeyer and Kohlmeyer, 1979), and 

Pseudoalteromonas bacteriolytica, the bacterium responsible for red spot disease in kelp 

(Sawabe et al., 1998).  Fractions containing either bromophycolides or callophycoic 

acids/callophycols strongly inhibited growth of L. thalassiae relative to no extract 

controls (p < 0.0001 for all fractions), with every fraction inhibiting growth of this fungus 

by > 95%.  Antifungal activities of bromophycolide-containing fractions were not 

significantly stronger than callophycoic acid/callophycol-containing fractions when each 

was tested at whole tissue natural concentrations (n=4 bromophycolide fractions, n=6 

callophycoic acid/callophycol fractions; p = 0.12).  None of these fractions were 

significantly inhibitory towards growth of the pathogenic bacterium P. bacteriolytica (p = 

0.32 for n=4 bromophycolide fractions; p = 0.29 for n=6 callophycoic acid/callophycol 

fractions). 

 

Pure bromophycolides and callophycoic acids are effective antifungal chemical 

defenses of C. serratus.  

When natural products within algal extracts were quantified by LC-MS, bromophycolides 

were found to be associated exclusively with four algal collections, whereas callophycoic 

acids and callophycols were observed only in the other six collections (Appendix C), 

consistent with previous reports examining two populations of Callophycus serratus 

(Kubanek et al., 2006; Kubanek et al., 2005; Lane et al., 2007).  Algal specimens were 

collected at a variety of sites in Fiji (Appendix C) and all matched recent morphological 

descriptions of C. serratus (Littler and Littler, 2003), suggesting this macroalga exists as 

two distinct chemotypes, one containing bromophycolides and the other callophycoic 
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acids and callophycols.  Alternatively, these algae may represent cryptic, closely-related 

co-occurring species.   

 

 

 

Fig. 5.1  Antifungal IC50 values (diamonds) and natural whole tissue concentrations 

(solid bars) of (a) bromophycolides and (b) callophycoic acids/callophycols.  Natural 

whole tissue concentrations were determined by LC-MS analysis of extracts from (a) four 

C. serratus collections of the bromophycolide chemotype and (b) six collections of the 

callophycoic acid/callophycol chemotype (Appendix C); error bars denote one standard 

deviation in metabolite concentration.  NSA denotes compounds that were not 

significantly active at the maximum tested concentration of 300 µM (p > 0.05), as 

determined by one-way ANOVA with Dunnett’s post test comparison of treatments vs. 

controls.  Among compounds within each chemotype, different letters indicate treatments 

differing significantly in antifungal IC50 values (F test, p * 0.05).  Bromophycolide F and 

callophycoic acids E and F were neither detected in these extracts nor evaluated for 

antifungal activity. 
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 All evaluated natural products from the bromophycolide chemotype of C. serratus 

significantly suppressed growth of the marine pathogenic fungus L. thalassiae, with 

average IC50 values for each compound near or below whole tissue natural concentrations 

(Fig. 5.1a).  Among compounds of the callophycoic acid and callophycol chemotype, 

only callophycoic acids C, G, and H were effective below a concentration of 300 µM, 

and only callophycoic acids C and G were significantly growth inhibitory near their 

natural concentration range of 100-200 µM (Fig. 5.1b).  The most potent compound 

evaluated from this chemotype, callophycoic acid C, was 100% inhibitory to L. 

thalassiae at its average natural whole tissue concentration (n=3), and may represent the 

dominant antifungal defense of this chemotype.  The importance of other callophycoic 

acids and callophycols in antifungal defense cannot be ruled out, however, as these 

metabolites might interact additively or synergistically in controlling microbial 

adversaries. 

 Overall, macrocyclic lactone-based bromophycolides were found to be more 

potently antifungal than callophycoic acids or callophycols (Fig. 5.1a,b).  Evaluation of 

structure-activity relationships among metabolites from each chemotype suggested the 

importance of specific functional groups in mediating ecological effects (see Discussion).    

 

DESI-MS reveals heterogeneous distribution of bromophycolides on macroalgal 

surfaces.   

With evidence supporting bromophycolides as potent antifungal chemical 

defenses of whole algal tissues, we next tested the hypothesis that these metabolites are 

concentrated on algal surfaces, a potentially advantageous site for control of microbial 
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infection.  Given the strong antifungal activity and high relative abundance of 

bromophycolides A and B in whole tissues (Fig. 5.1a), these metabolites were selected as 

model compounds for analysis of chemical defenses on C. serratus surfaces.   

 

 

 

Fig. 5.2  Desorption electrospray ionization mass spectra (DESI-MS) of 

bromophycolides.  (a)  Mass spectra of pure bromophycolides A and B deposited on 

synthetic substrates (1 µL, 1 mg/mL solution).  Ion clusters centered around m/z 665 and 

701 correspond to [bromophycolide A/B - H]
-
 and [bromophycolide A/B + Cl]

-
, 

respectively.  (b)  Typical spatially-resolved mass spectra of C. serratus surface, showing 

that bromophycolides occur on algal surfaces only in association with light-colored 

patches (n = 40 sites observed on 6 independent algal samples).  Ion clusters centered at 

583 and 619 represent [bromophycolide E – H]
-
 and [bromophycolide E + Cl]

-
, 

respectively (Appendix C).  (c)  Imaging mass spectrum of C. serratus surface, indicating 

that bromophycolide A-B “hot spots” correspond to pale patches.  (d)  Representative 

mass spectrum from patch-free algal surface prior to and following mechanical damage 

(n = 2 damaged samples).  (e)  LC-MS quantification of combined bromophycolides A 
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and B from extracts of patches removed from algal surfaces and within whole, patch-free 

algal tissues. 

 

 

Negative-mode DESI-MS analysis of pure bromophycolides on synthetic surfaces 

revealed a limit of detection of 0.9 pmol/mm
2
 (signal:noise ratio = 6) for bromophycolide 

A, supporting the capacity of DESI-MS in assessing this class of secondary metabolites at 

low concentrations.  Mass spectra of isomeric bromophycolides A and B were 

indistinguishable, each displaying a minor deprotonated ion centered around m/z 665 as 

well as a dominant chloride adduct centered at m/z 701 (Fig. 5.2a).  Spatially-resolved 

DESI-MS analyses of sites across algal surfaces revealed these diagnostic 

bromophycolide A and B signals were associated exclusively with distinct light-colored 

patches attached to C. serratus surfaces (n=6 independent algal samples; Fig. 5.2b), a 

finding confirmed by imaging DESI-MS analysis (Fig. 5.2c).  Additional patch-

associated DESI-MS signals centered at m/z 583 and 619 were assigned as the [M-H]
-
 ion 

and chloride adduct for bromophycolide E, based upon comparison with signals observed 

for pure standard compounds (Appendix C).  Bromophycolide signals were not observed 

on clean, patch-free algal surface sites (Fig. 5.2b, c).  Light microscopy provided 

evidence for algal cell integrity both before and after analyses (Appendix C), supporting 

DESI-MS as a general, non-destructive method for analysis of secondary metabolites on 

intact biological surfaces. 

The combined concentration of bromophycolides A and B on patch surfaces was 

estimated at 36 ± 23 pmol/mm
2
 by DESI-MS (n = 3 patches).  Evaluation of the 

antifungal activity against L. thalassiae of combined bromophycolides A and B coated on 
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artificial substrates revealed a mean IC50 value of 17 pmol/mm
2
 (log IC50 = 1.2 ± 0.1 SE), 

suggesting patch-associated bromophycolides sufficiently inhibit susceptible fungi.  

Supporting the DESI-MS results, LC-MS quantification of individual bromophycolides A 

and B within patches removed from algal surfaces revealed concentrations of 8.8 ± 7.6 

and 4.3 ± 3.8 µM (± 1 SD), respectively.  When tested at these average concentrations, 

bromophycolides A and B were significantly inhibitory to L. thalassiae (n = 3; p < 0.01 

for bromophycolide A; p < 0.05 for bromophycolide B).   

Having found surface-associated bromophycolides A and B among unusual 

patches (Fig. 5.2b, c), we then tested whether these compounds were located internally 

within algal tissue as well.  DESI-MS analysis following physical damage to clean, 

bromophycolide-free algal surfaces revealed the presence of internal bromophycolides 

(n=2, Fig. 5.2d).  Supporting the DESI-MS results, LC-MS revealed bromophycolides A 

and B in extracts of patch-free algal fragments (Fig. 5.2e). 

 

Characterization of bromophycolide-containing agal surface patches.   

Digital imaging revealed that 4.5 ± 4.3% (± 1 SD) of algal surfaces were covered 

with bromophycolide-containing light-colored patches (n=10 algal pieces examined).  

These distinctive patches were observed on both frozen and formalin-preserved algal 

samples.   

Bromophycolide-rich patches were removed from algal surfaces, pulverized, and 

examined with light and epifluorescence microscopy.  Epifluorescence microscopy 

revealed a variety of structures that stained with 4’,6-diamidino-2-phylindole (DAPI; 

n=5).  However, intact fluorescent nuclei were not observed for any structures, despite 

some structures with sizes suggestive of eukaryotic cells (~10 µm diameter and > 100 µm 
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length; Appendix C).  This may be explained by DAPI staining of inorganic materials as 

can occur in complex natural mixtures (P.R. Jensen, personal communication).  It is also 

plausible that exposure to high formalin concentrations (10%) during collection and 

storage of most samples resulted in nuclear lysis. 

Patch-associated algal samples were sectioned and analyzed with light 

microscopy in an effort to further characterize these bromophycolide-rich surface 

regions.  This processing resulted in loss of patches from algal samples, but permitted 

analysis of algal tissue underlying these patches.  A variety of unusual cellular structures 

were observed (Fig. 5.3).  Large-scale algal cell lysis was not observed in these sections.  

However, potential surface algal cell damage was detected in some sections and could 

suggest bromophycolides are released at these sites as a result of localized surface 

damage (Fig. 5.3a).       
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Fig 5.3  Light micrographs of 5 µm sections from C. serratus fragments associated with 

bromophycolide-containing patches.  In all cases, sample processing dislodged patches 

from algal surfaces.  (a)  (left) 100' magnification of C. serratus section for which 

potential algal surface tissue damage was observed (highlighted with black box).  (right)  

400' magnification of region highlighted by black box.  Large-scale cell damage was not 

observed; however, unusual protrusions, possibly indicative of localized damage, were 

noted.  (b-d)  Typical 400' micrographs of C. serratus, illustrating patched regions were 

not associated with large-scale tissue damage.  In all cases, external algal surfaces are 

pointed downward.  Unusual, potential bromophycolide-containing structures were 

observed in some sections (b, d, e). 

      

 

Discussion 

Antifungal effects of pure Callophycus serratus natural products: Structure-activity 

relationship insights  

Collectively, the bromophycolides and callophycoic acids comprise the largest 

group of antifungal chemical defenses reported to date from marine algae, and offer 

unprecedented opportunity for understanding which molecular features confer antifungal 

function in an ecological context.  Overall, the macrocyclic lactone-based 
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bromophycolides were found to be more potently antifungal than callophycoic acids or 

callophycols (Fig. 5.1a,b).  The superior bioactivity of bromophycolides parallels trends 

in biomedical activities previously reported for these groups of compounds (Kubanek et 

al., 2006; Kubanek et al., 2005; Lane et al., 2007).  

The most abundant 15-membered macrocyclic compound, bromophycolide A, 

was among the most antifungal, whereas bromophycolide B, the most abundant 16-

membered macrolide, was not.  Fifteen-membered macrolides bromophycolides A and D 

and 16-membered macrolide bromophycolide G, the most potent macrolides, did not 

exhibit significantly different antifungal IC50 values (p = 0.17-0.50), suggesting that 

neither macrocyclic cyclization mode (15 vs. 16-membered ring) confers an inherently 

superior chemical defense function (Fig. 5.1a, Appendix C). 

Among bromophycolides of each macrolide framework, specific functional 

groups significantly impacted antifungal activity.  Substitution of the isopropyl bromine 

(as in bromophycolide A) with a hydroxyl group (as in bromophycolide C) significantly 

reduced antifungal activity (p = 0.0038) among 15-membered macrolides.  

Dehydrobromination of the isopropyl moiety also led to reduced potency, as illustrated 

by comparison of activity between bromophycolides D and E (p = 0.028).  Among 16-

membered macrocyclic bromophycolides, the role of bromination in antifungal activity 

was less clear.  Bromophycolide G, with a hydroxyl group near the terpene head, was 

significantly more antifungal than bromophycolide B, bearing a bromine group (p < 

0.0001).  Among bromophycolides H and I, however, the presence of a bromine vs. 

hydroxy group at the same position did not significantly affect antifungal activity (p = 

0.96). 
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Among callophycoic acids, the relationship between structure and function was 

more dramatic.  Tested up to 300 µM, callophycoic acid D did not significantly suppress 

L. thalassiae (data not shown), whereas callophycoic acid C, a regioisomer differing only 

in the position of a single olefinic group within the cyclohexene ring, was at least 10' 

more potent than callophycoic acid D (Fig. 5.1b).  The highly substituted cyclohexanol 

group of callophycoic acid C also appeared important to its activity, as illustrated by the 

inactivity of callophycoic acid A. 

 

 

Heterogeneous distribution of bromophycolides on macroalgal surfaces 

Spatially-resolved DESI-MS revealed antifungal bromophycolides both within 

algal tissue and among distinct patches covering only ~5% of algal surfaces (Fig. 5.2b-d), 

and demonstrated the utility of mass spectrometry in exploring surface-mediated 

ecological interactions.  Further, DESI-MS analysis revealed that bromophycolide 

concentrations on these surface patches were sufficient to suppress growth of L. 

thalassiae (see Results).  These data should be considered semi-quantitative, as previous 

DESI-MS studies have shown that signal intensity is influenced by surface morphology 

(Nyadong et al., 2008b); hence, data are truly quantitative only across identical, 

homogenous surfaces – a feature not inherent in most biological materials.  Despite these 

limitations, with an antifungal IC50 value of approximately half the measured 

concentration of bromophycolides on patches, it is probable that these compounds were 

present at sufficient levels for inhibition of fungi such as L. thalassiae that may encounter 

this substrate.  This assertion was further supported by quantitative LC-MS experiments, 
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which showed that antifungal bromophycolides were present within patches at 

concentrations inhibitory to L. thalassiae (see Results).   

The discovery of bromophycolides among heterogeneous patches on algal 

surfaces as well as within algal tissues suggests that C. serratus maintains these defenses 

internally and presents compounds only at select surface sites.  Analogously, combined 

fluorescence microscopy- and chemical extraction-based investigations of Asparagopsis 

armata and Delisea pulchra revealed secondary metabolites to be found within gland 

cells of these red algae and released to algal surfaces, although triggers for compound 

release remain unclear (Dworjanyn et al., 1999; Paul et al., 2006a).  In these previous 

investigations, heterogeneous distribution of compounds on algal surfaces was not 

observed.  However, it is unlikely methods employed in these studies could have detected 

such small-scale variation.   

A number of possibilities may explain the heterogeneous presentation of 

bromophycolides across C. serratus surfaces (Fig. 5.2b-c).  One possibility is that 

bromophycolide-rich sites represent a targeted response to microbial challenge, although 

light and epifluorescence microscopy did not conclusively support the presence of patch-

associated microbes (Appendix C).  However, if bromophycolides are indeed effective 

antimicrobial chemical defenses in nature, one might expect low microbial abundances in 

bromophycolide-rich areas.  It is also plausible that patches are associated with sites of 

localized algal cell damage from which bromophycolides are either purposefully or 

fortuitously presented.  Light microscopy of patch-associated algal tissues indicated algal 

cells were predominantly intact (Fig. 5.3; Appendix C).  However, the possibility of 

localized algal cell damage and associated bromophycolide up-regulation and/or release 
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cannot be fully ruled out.  Macroalgae have been reported to up-regulate chemical 

defenses in response to bites from small grazers (Cronin and Hay, 1996; Pavia and Toth, 

2000; Taylor et al., 2002), although it is unclear whether these defenses were induced 

throughout the alga or exclusively at sites of challenge. 

Since the biosynthetic origin of bromophycolides has not yet been evaluated, it is 

plausible that bromophycolides are not actually algal natural products, instead being 

produced by a microbial symbiont present within algal tissues and/or distinct surface 

regions.  Recent studies have provided convincing evidence that a number of secondary 

metabolites originally ascribed to sponges, bryozoans, and other macroorganisms are 

actually of microbial biosynthetic origin (Piel et al., 2004; Schmidt et al., 2005; Sudek et 

al., 2007).  Further, microbial metabolites such as 2,3-indolinedione from a bacterium 

associated with crustacean embryos have been shown to defend hosts against pathogen 

infection (Gil-Turnes et al., 1989).  In the case of bromophycolides, however, a microbial 

origin appears unlikely, given that microorganisms were not obvious within sections of 

Callophycus serratus (Fig. 5.3) and that epifluorescence microscopy revealed no 

consistently DAPI-stained microbes within bromophycolide-containing surface patches.  

Further, biosynthesis of terpenoid and shikimate natural products from red algae have 

been reported extensively (Moore, 2006), suggesting the capacity of macroalgae such as 

C. serratus to produce bromophycolide-like metabolites. 

Chemically-mediated interactions between C. serratus and associated microbes 

may be further addressed by cultivation- or genomics-based experiments, and efforts are 

now underway to culture this macroalga as well as microorganisms associated with 

bromophycolide-rich algal surface patches.  These approaches may permit further 
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characterization of potential patch-associated microbes and allow the effect of 

bromophycolides on such microbes to be addressed directly.  These experiments may 

also permit testing of algal cells and alga-associated microbes for bromophycolide 

biosynthesis, and allow direct evaluation of such microbes for pathogenic, fouling, or 

symbiotic relationships with marine algae. 

 

Significance 

In the present study, evidence was provided that bromophycolides and 

callophycoic acids act as chemical defenses of the red alga Callophycus serratus against 

the pathogenic marine fungus Lindra thalassiae.  Together, these compounds represent 

the largest group of algal antifungal chemical defenses reported to date, adding to only a 

handful of previously identified antimicrobial chemical defenses from macroalgae (Jiang 

et al., 2008; Kubanek et al., 2003; Nylund et al., 2008; Paul et al., 2006b; Puglisi et al., 

2004).  Spatially-resolved and imaging desorption electrospray ionization mass 

spectrometry (DESI-MS) provided an unprecedented ability to map secondary 

metabolites to distinct surface sites and revealed that bromophycolides are not 

homogenously distributed across C. serratus surfaces but instead associated with distinct 

patches.  This appears to be among the first direct evidence for sub-millimeter 

presentation of chemical signals at specific sites on biological surfaces in concentrations 

sufficient for targeted antifungal defense.  The heterogeneous natural product 

distributions observed in field-collected algal samples potentially represent essential, but 

until now, largely overlooked aspects of chemical signaling.  Given the inherently small 

scale of marine microbe-host interactions, the imaging mass spectrometry technologies 
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demonstrated herein have the potential to revolutionize our understanding of these highly 

elusive biological interactions. 

 

 

Materials and Methods 

Isolation and quantification of C. serratus natural products.  Bromophycolides, 

callophycoic acids, and callophycols were isolated from C. serratus following previously 

described procedures, and identified by comparison of 
1
H NMR spectra and HR ESI-MS 

data with literature values (Kubanek et al., 2006; Kubanek et al., 2005; Lane et al., 2007).  

Pure compounds for DESI-MS, LC-MS, and antimicrobial assays were quantified by 
1
H 

NMR spectroscopy using 2,5-dimethylfuran (DMFu, Sigma Aldrich) as internal standard 

(Gerritz and Sefler, 2000).  For each natural product, aromatic proton signals were 

integrated and compared with intensities of two DMFu protons at 5.80 ppm. 

 For antimicrobial assays with chromatographic fractions and LC-MS 

quantification of metabolites from whole plant extracts, ten fresh C. serratus collections 

were extracted exhaustively with methanol and methanol/dichloromethane (2:1 and 1:1); 

extracts were reduced in vacuo and subjected to fractionation with HP20ss resin 

(Supelco).  Fractions 1 and 2 were eluted with methanol/water (1:1 and 4:1, respectively), 

and fraction 3 with methanol followed by acetone.  Fraction 3 contained all previously 

reported bromophyoclides, callophycoic acids, and callophycols. 

 Quantitative LC-MS was performed for each chromatographic fraction from all C. 

serratus collections applying a gradient mobile phase of acetonitrile/water (1:1 to 19:1), 

with 0.1% acetic acid throughout.  For each natural product, negative-mode ESI-MS 

selected ion recordings were integrated for 2-3 m/z values corresponding to prominent 
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molecular ion cluster signals, and standard curves prepared by analysis of each 

compound at 5-7 concentrations (r
2
 = 0.95-0.99).  Concentrations of individual 

compounds within chromatographic fractions were calculated by interpolation from 

standard curve data. 

 Quantitative LC-MS experiments with patch-only and patch-free algal extracts 

were completed similarly.  Pale patches were removed from algal surfaces by gently 

scraping with a razor blade, then pulverized and evaluated under light microscopy at 

100' and 400' magnification to ensure the absence of algal cells.  Underlying algal cells 

were also evaluated with light microscopy to verify cellular integrity.  Three independent 

groups of 10-15 algal cell-free patches were quantified volumetrically and each 

individual group extracted in methanol.  The absence of surface patches was verified by 

light microscopy for comparable volumetric quantities of three patch-free samples of 

whole C. serratus, which were then extracted in methanol.  LC-MS quantification of 

bromophycolides A and B in these mixtures was completed as described above. 

 

Antimicrobial assays.  Assays with Lindra thalassiae (ATCC 56663) were completed as 

previously described (Kubanek et al., 2003).  HP20ss fractions were solubilized in a 

minimal volume of acetone and incorporated into molten YPM agar (16 g/L granulated 

agar, 2 g/L yeast extract, 2 g/L peptone, 4 g/L D-mannitol, 250 mg/L of both 

streptomycin sulfate and penicillin G in 1 L of natural seawater) at concentrations 

approximating natural whole algal tissue concentrations.  For each fraction, three 400 µL 

subsamples of this mixture were dispensed into sterile 24-well microtiter plates, allowed 

to solidify, and an aliquot of L. thalassiae suspension in sterile seawater added to each 
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well.  Control wells were prepared with YPM agar and acetone but no algal material.  

Plates were incubated at 28 °C for three days and digital photographs collected for each 

well.  The area calculator feature of ImageJ software (NIH) was applied to determine the 

percent of each well covered in fungal hyphae.  Fungal coverage was averaged over each 

set of three subsample assays.  These average values were pooled across corresponding 

fractions from other C. serratus collections of the same chemotype, and fungal coverage 

of treatment and control wells compared using one-way ANOVA with Dunnett’s post test 

(Zar, 1998). 

 Antifungal assays with pure bromophycolides, callophycoic acids, and 

callophycols were completed as with extract fractions.  Individual compounds were 

incorporated into molten YPM agar at 1:1 serially diluted concentrations ranging from 

300 µM to 0.15 µM and n=3 assays completed at each concentration.  Significant growth 

inhibition at the maximum tested concentration was established by comparison of 

individual treatments with solvent-only controls applying one-way ANOVA with 

Dunnett’s post test (Zar, 1998).  For compounds significantly inhibitory (p * 0.05) at the 

maximum tested concentration, inhibition data were fit to a sigmoidal dose-response 

curve; mean log IC50 and standard error values were calculated.  Reported IC50 values 

were determined by computing the antilog of mean log IC50 values; standard errors for 

IC50 values were not determined, as such values are not directly correlated with log IC50 

standard errors (Motulsky and Christopoulos, 2003).  Significant antifungal activity 

differences among active compounds were analyzed with an F test of the log IC50 value 

for each compound (Motulsky and Christopoulos, 2003). 
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Antibacterial assays using Pseudoalteromonas bacteriolytica (ATCC 700679) 

were adapted from previously reported methods (Kubanek et al., 2003).  A 24 h shake 

culture of P. bacteriolytica was diluted 1:160 in Difco Marine Broth 2216 (BD 

Biosciences) and 195 µL of this mixture added to duplicate treatment and control wells of 

a 96-well plate.  An equal amount of sterile marine broth was added to blank wells.  Five 

microliters of 40' concentrated HP20ss fractions in DMSO were then dispensed into all 

treatment and blank wells, giving a final concentration approximating natural whole 

tissue concentrations in the alga; five microliters of DMSO were added to corresponding 

control wells.  Plates were incubated at 30 °C for 24 h and turbidity measured at a 

wavelength of 600 nm.  We corrected for the natural absorbance of extract fractions by 

subtracting extract-only sterile blank turbidities from values obtained for treatments.  For 

individual fractions from each C. serratus collection, turbidity values from n=2 

subsample assays were averaged and these data pooled with corresponding fractions from 

other C. serratus collections of the same chemotype.  Turbidities for individual fractions 

were statically compared with one those obtained for no-extract controls using a one-

tailed, unpaired t-test (Zar, 1998). 

 To establish a role of bromophycolides in antifungal defense of algal surfaces, 2:1 

bromophycolide A and B solutions were serially diluted (1:1) in ethyl ether and 30 µL 

aliquots dispensed as evenly as possible over the surface of 400 µL solidified YPM agar 

blocks (200 mm
2
 area) in 24-well microtiter plates, and allowed to air dry.  Assuming 

even distribution of bromophycolides A and B across agar surfaces and negligible 

absorption of compounds into agar blocks, this corresponded to combined surface 

concentrations ranging from 340 pmol/mm
2
 to 1.3 pmol/mm

2 
(n = 2 assays at each 
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concentration).  Solvent-only control wells were prepared equivalently.  Surfaces of 

treatment and control wells were inoculated with a suspension of L. thalassiae in sterile 

seawater and incubated at 28 °C for 3 days.  L. thalassiae growth was assessed and the 

log IC50 value computed as before. 

 

DESI-MS analyses.  DESI-MS was performed with a custom-built DESI ion source as 

previously described (Nyadong et al., 2008a).  Experiments were performed by 

subjecting targeted surface sites to a DESI spray solution of 100 µM NH4Cl (Sigma 

Aldrich) in 100 % MeOH at a flow rate of 5 µL/min; the DESI spray covered a surface 

area of approximately 0.25 mm
2
.  The nebulizer gas pressure was set at 110 psi and the 

spray solution electrically charged externally to -3 kV.  All experiments were performed 

on an LCQ DECA XP+ ion trap mass spectrometer (Thermo Finnigan, San Jose, CA) 

operated in negative ion mode. The ion transfer capillary was held at 300 
o
C, and data 

were collected in full scan mode (m/z 550-750) using Xcalibur software version 2.0 

(Thermo Finnigan).  In all experiments, the instrument was set to collect spectra in 

automatic gain mode for a maximum ion trap injection time of 200 ms at 2 microscans 

per spectrum
 
for a total acquisition time of 10 s. 

To determine the limit of detection for pure bromophycolide A on a model 

substrate, serially diluted solutions of this compound in MeOH were deposited on 

measured areas of polytetrafluoroethylene (PTFE) surfaces.  The MeOH was allowed to 

air dry prior to analysis, giving a surface concentration range of 0.9 fmol/mm
2
 to 0.9 

pmol/mm
2
.  The detection limit was recorded as the surface concentration at which S/N = 

6. 
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Algal samples (approx. 1.0-1.5 cm length; 0.2-1.0 cm width), preserved with 10% 

formalin in seawater, were affixed to PTFE substrates with double-sided tape for DESI-

MS analysis and samples kept moist with seawater; no additional sample pretreatment 

was completed.  Algal cell integrity was verified before and after DESI-MS experiments 

by evaluation under a light microscope at 100' and 400' magnification.  For each of six 

evaluated patch-containing algal samples, 6-8 independent sites were targeted with the 

DESI spray beam. These sites comprised both patch-covered areas and areas of clean alga 

representing all surface morphological features.   

For DESI-MS experiments comparing bromophycolide levels on the intact 

surface of clean, patch-free alga with those found within damaged tissue, two intact C. 

serratus pieces (approx. 1.0-1.5 cm length; 0.2-1.0 cm max. width) were first evaluated 

for bromophycolides by rastering, or continuously bombarding the algal surface with 

DESI spray while gradually moving the beam along the entire length of the sample.  

These intact algal pieces were then wounded by scraping with a razor blade and evaluated 

again at approximately the same sites as before.  

Concentrations of bromophycolides A+B on intact patch surfaces were estimated 

by comparing integrals from chloride adduct DESI-MS signals for individual sites on 

patches with a standard curve developed by depositing known concentrations of 

bromophycolides A and B (2:1) on intact patch-free algal surfaces of known surface area 

(r
2
 = 0.97, n = 4 standards analyzed in triplicate).  Total standard surface concentrations 

of bromophycolides A and B ranged from 2.4 to 120 pmole/mm
2
.  The 2:1 ratio of 

bromophycolides A and B represented a reasonable approximation based on the average 

2.2:1 ratio observed by LC-MS for these compounds in extracts from patches. 
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 DESI-MS imaging experiments were conducted with the above-described mass 

spectrometer, equipped with a joystick and software-controlled motorized microscope xy 

stage (Prior Scientific, Rockland, MA).  The mass spectrometer was operated in 

automatic gain control (AGC) off mode with trapping time of 40 milliseconds.  DESI-MS 

imaging experiments are similar to standard DESI-MS experiments, except the sample 

stage is scanned according to a pattern in the xy plane.  Chemical images were acquired 

using a looped stage scanning mode, controlled by LabVIEW automation software 

(National Instruments Corporation, Austin, TX).  In this mode, the xy stage was first 

moved by a predetermined distance in the x-dimension (orthogonal to the entrance 

capillary) from left to right and the same distance right to left, followed by a y-dimension 

step movement in the forward direction.  The stage scan speed in both dimensions was set 

to 80 !m/s and the step size in the y-dimension was set to 200 !m. Mass spectra were 

collected in continuous full-scan MS mode, over the m/z range of 200-800. The 

electrospray plume was held at a fixed angular position, pointing towards the sampling 

surface. HPLC grade methanol was used as the imaging DESI electrospray solvent, at a 

flow rate of 3 µL min
-1

. The nebulizer gas pressure was set at 110 psi. Mass spectra of 

each spray impact region were collected and relevant bromophycolide signals were 

processed and transformed into an image using an in-house written MATLAB user 

program (version R2008a, MathWorks, Inc. Natick, MA).  

 

Microscopy of bromophycolide-containing surface patches.  The percentage of C. 

serratus surfaces covered with distinctive patches was estimated by randomly clipping 

segments from ten collections of C. serratus (approx. 1.0-1.5 cm length; 0.2-1.0 cm 
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width), digitally photographing under a dissection microscope (~25'), and analyzing 

images with the area calculator feature of ImageJ software (NIH) to compare the number 

of pixels covered in distinctive patches to pixels containing clean, patch-free alga.  To 

better understand the nature of these distinctive surface regions, four groups of 2-4 

patches were removed from algal surfaces with a razor blade and/or forceps, pulverized, 

and observed under a light microscope at total magnifications ranging from 100' to 

1000'.  Testing for autofluorescence, unstained samples were observed with 

epifluorescence microscopy at FITC and DAPI excitation wavelengths of 490 and 360 

nm, respectively.  Samples were then stained with DAPI (Porter and Feig, 1980), and 

again observed at the DAPI excitation wavelength. 

 Sections of C. serratus with attached bromophycolide-containing patches were 

frozen and sectioned into 5 micron-thick pieces with a microtome.  Resulting sections 

were stained with hematoxylin and eosin and examined by light microscopy at 100' and 

400' magnification.    
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CHAPTER 6 

ECOLOGICAL LEADS FOR NATURAL PRODUCT DISCOVERY:  NOVEL 

SESQUITERPENE HYDROQUINONES FROM A CRUSTOSE RED ALGA 

 

 

Abstract 

Biomedically-motivated marine natural product investigations have yielded structurally-

unique compounds with interesting pharmacological properties, but the natural roles of 

these molecules remain largely unknown.  Some of these secondary metabolites may 

function as antimicrobial chemical defenses.  However, defensive roles have been 

demonstrated for only a few compounds.  In the present study, chromatographic fractions 

from 72 collections of Fijian red macroalgae were evaluated for growth inhibition of 

three microbial pathogens and saprophytes of marine macrophytes.  At least one microbe 

was suppressed by fraction(s) of all evaluated algae, suggesting that antimicrobial 

defenses are common among tropical red macroalgae.  From these leads, fijioic acids A-

B (1-2), novel sesquiterpene hydroquinones, were isolated from an unidentified crustose 

red alga, with antibacterial activity against Pseudoalteromonas bacteriolytica, a pathogen 

of marine algae.  These compounds included one novel carbon skeleton and illustrated 

the utility of ecological studies in natural product discovery. 

 

Introduction 

 Marine organisms including sponges, microbes, and seaweeds are widely 

recognized sources of structurally novel secondary metabolites (Blunt et al., 2007; Blunt 

et al., 2008).  These natural products have provided promising drug leads, offered targets 

for synthetic organic chemists, and afforded opportunities for elucidation of unusual 
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biosynthetic pathways.  Secondary metabolite pathways probably evolved as a result of 

interactions between organisms in their native habitats, but the role of natural products in 

mediating such interactions remains poorly understood in the vast majority of cases.   

Secondary metabolites may play a particularly important role in mediating marine 

host-microbe interactions (Engel et al., 2002; Lane and Kubanek, 2008).  While the 

majority of microbes may be innocuous or beneficial to hosts, reports of pathogen 

outbreaks in a variety of marine macroorganisms suggest considerable negative impact of 

some microbes on coral reef health and thus the potential for selection to resist 

pathogenic microbes.  Among marine plants, coralline lethal orange disease devastated 

susceptible South Pacific coralline algal populations during the 1990s (Littler and Littler, 

1995), red spot disease has impacted commercially valuable kelp populations (Sawabe et 

al., 1998), a slime mold wasting epidemic destroyed nearly all Zosteria marina eelgrass 

in the North Atlantic during the 1930s (Short et al., 1987), and the pathogenic fungus 

Lindra thalassiae has been reported to cause both raisin disease in the brown algae 

Sargassum spp. and as well as disease in seagrasses (Kohlmeyer, 1971; Porter, 1986).  

Disease outbreaks affect not only susceptible populations, but can also disturb the 

structure and function of entire marine communities (Harvell et al., 1999). 

Despite the abundance of microbes in marine environments, disease outbreaks 

appear sporadic and pathogens appear to target specific hosts (Harvell et al., 1999).  One 

possible explanation for this limited disease prevalence is that secondary metabolites 

defend some species against microbial attack (Engel et al., 2002), but only a handful of 

studies have investigated this possibility and even fewer have identified specific 

defensive metabolites.  Two previous surveys of macroalgae suggested that antimicrobial 
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chemical defenses are widespread among marine plants (Engel et al., 2006; Puglisi et al., 

2006).  Previously reported antimicrobial chemical defenses fall into four classes:  

halogenated furanones from the red alga Delisea pulchra were shown to inhibit 

colonization of a variety of genera of marine bacteria,(Kjelleberg et al., 1997) a 

macrocyclic polyketide from the brown alga Lobophora variegata was reported to inhibit 

growth of a pathogenic fungus (Kubanek et al., 2003), a flavone glycoside from the 

seagrass Thalassia testudinum was demonstrated to inhibit a zoosporic fungus (Jensen et 

al., 1998), and sulfated triterpenes from Penicillus capitatus and Tydemania expeditionis 

were reported as growth-inhibitory antifungal agents (Jiang et al., In press.; Puglisi et al., 

2004). 

Herein, we evaluate antimicrobial chemical defenses for 72 collections of Fijian 

red macroalgae, providing evidence that chemical defenses represent a wide range of 

polarities and suggesting these defenses are not broad-spectrum but instead active against 

specific microbes.  Although not commonly investigated as sources of novel natural 

products, members of the order Cryptonemiales exhibited particularly strong 

antimicrobial activities in ecological assays.  Bioassay-guided fractionation with of 

extracts from one unidentified species of this group resulted in the discovery of fijioic 

acids A-B (1-2), representing one novel carbon skeleton and illustrating the potential of 

ecology-motivated studies in the discovery of novel natural products. 
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Results and Discussion 

Survey of antimicrobial chemical defenses among Fijian red macroalgae.   

Among chromatographic fractions from 72 collections of tropical red macroalgae 

(Supporting Information), antimicrobial chemical defenses were prevalent against the 

bacterial pathogen Pseudoalteromonas bacteriolytica, known to cause red spot disease in 

kelp, and the fungal pathogen Lindra thalassiae, known to infect phylogenetically distant 

hosts including Sargassum spp. brown algae and seagrasses.  For 95% of the 72 algal 

collections, at least one chromatographic fraction was significantly active against P. 

bacteriolytica at natural whole tissue concentrations; for 75% of collections, at least one 

fraction was active against L. thalassiae.  Dendryphiella salina, a saprophytic marine 

fungus, was more resistant to algal chemical defenses, with only 30% of collections 

exhibiting at least one fraction with significant activity against this saprophyte.  This 

suggests that tropical red algal antimicrobial chemical defenses may be tuned to protect 

against pathogenic microbes, but not to provide general defense against all microbes.  

Overall, at least one fraction from all 72 seaweeds exhibited significant activity against 

one or more microbes.  This prevalence of antimicrobial activity suggests that red algae 

have been selected to deter deleterious microbes via chemical defenses. 

 All four chromatographic fractions were represented among antimicrobial 

fractions, suggesting that a variety of secondary metabolite classes of differing polarities 

afford antimicrobial defense (Fig. 6.1a).  Among fractions significantly inhibiting P. 

bacteriolytica, the most polar fractions tended to be more inhibitory than the less polar 

fractions (Fig. 6.1b).  For fungal pathogen L. thalassiae, however, this trend was 

reversed, with the most polar fraction less inhibitory than more lipophilic fractions (Fig. 
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6.1b).  No correlations were observed between antimicrobial potencies for L. thalassiae 

vs. D. salina, L. thalassiae vs. P. bacteriolytica, or D. salina vs. P. bacteriolytica (r
2
 < 

0.21).  This suggests that algal chemical defenses are not multifunctional against a wide 

variety of microbial genera, but instead relatively targeted.  This specificity may serve an 

important natural function in warding off deleterious microbes, while leaving commensal 

or mutualistic microbes unharmed. 

 The high prevalence of antimicrobial activities observed among chromatographic 

fractions from several orders of red macroalgae (Appendix D) suggests the potential of 

ecology-driven studies in the discovery of novel chemistry.  A search of the MarineLit 

database revealed secondary metabolites have been previously reported for only 40% of 

these evaluated genera (n=20 identified to genus level, excluding as-yet unidentified 

genera, Supporting Information), suggesting a wealth of ecologically active natural 

products remain to be identified.  

 

 

 

 



111 

 

Fig. 6.1  Antimicrobial activities of individual chromatographic fractions from 72 

collections of Fijian red macroalgae, against algal pathogenic bacterium 

Pseudoalteromonas bacteriolytica, algal pathogenic fungus Lindra thalassiae, and algal 

saprophyte Dendryphiella salina.  (a) Frequency of significant antimicrobial activity at 

natural whole tissue concentrations (n=72).  (b) Comparison of inhibitory potency among 

active fractions at natural whole tissue concentrations.  Different letters indicate 

treatments differing significantly in antimicrobial activity (one-way ANOVA with Tukey 

post test; bars denote standard error); n represents the number of significantly active 

fractions compared. 

 

 

Novel antimicrobial sequiterpene hydroquinones from crustose red alga.  

Among chromatographic fractions from 72 collections of Fijian red algae, fraction 

2 from an unidentified crustose red alga (Collection ID# G-0109) exhibited particularly 

potent inhibition of all evaluated microbes and was selected as a candidate for ecology-

guided natural product isolation and identification.  Guided by growth inhibitory activity 

against the pathogenic bacterium Pseudoalteromonas bacteriolytica, fijioic acids A-B (1-

2) were isolated by reversed-phase HPLC (see Materials and Methods). 
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Fijioic acid A (1) displayed an [M – H]
-
 molecular ion with m/z 449.1309 and a 

characteristic monobrominated isotopic pattern, supporting a molecular formula of 

C23H31O4Br.  The structure of 1 was established through analyses of 1D and 2D NMR 

spectral data (Table 6.1, Supporting Information).  Assignments within the aromatic 

group of 1 were established by HMBC correlations from H-5 (! 6.35) to C-3 (! 122.6), 

C-4 (! 150.1) and C-20 (! 146.1), and from H-19 (! 6.31) to aromatic C-4, C-6 (! 126.6), 

and C-20.  These assignments were confirmed and para dihydroxy substitution 

established by comparison of experimental 
13

C chemical shifts with empirical and 

literature values (Silverstein and Webster, 1998; Talpir et al., 1994).  HMBC correlations 

from H-19 to C-2 (! 44.5), along with correlations from H-2 (! 3.09) to C-1 (! 175.3), C-

3, C-4, and C-19 (! 116.6) then established an acetic acid substituent attached at C-3.  

The connection to the sesquiterpene group was then assigned at C-6 on the basis of 

HMBC correlations from H-5 to C-7 (! 30.3) and from both C-7 protons (! 2.13, ! 2.77) 

to C-5, C-6, and C-20. 
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Structures of novel fijioic acids A and B (1-2). 

 

 

The bromine-substituted drimane sesquiterpene of 1 was elucidated primarily 

through analysis of HMBC and COSY data.  HMBC correlations from singlet Me-18 (! 

1.49) to C-8 (! 53.7), C-16 (! 119.2), and C-17 (! 136.7) prompted assignment of this 

methyl group attached to C-17 and established C-8—C-17—C-16 connectivity.  HMBC 

correlations from singlet Me-21 (! 0.86) to C-8, C-9 (! 36.4), and C-10 (! 36.3) next 

established connectivity between these carbons.  COSY correlations between H-10a (! 

0.99) and H-11a (! 1.93), between H-10b (! 1.88) and H-11b (! 2.13), and between both 

H-11 protons and H-12 (! 4.20) prompted linkage of C-10—C-11—C-12, with these 

assignments confirmed by an HMBC correlation from H-11b (! 2.13) to C-10.  A 

bromine substituent was assigned at C-12 on the basis of downfield 
13

C and 
1
H chemical 

shifts (! 70.9 and ! 4.20, respectively).  HMBC correlations from both Me-22 (! 0.97) 

and Me-23 (! 1.00) to C-12 and quaternary C-13 (! 39.1) supported C-12—C-13 
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connectivity, while HMBC correlations from Me-21, Me-22, and Me-23 to C-14 

established connectivity between C-9 and C-14, thus sealing this ring.  COSY 

correlations between H-14 (! 1.64) and both protons at C-15 (! 1.92, ! 2.06) as well as an 

HMBC correlation between H-16 and C-15 (! 25.1) then sealed the second ring, 

completing the drimane-type skeleton.  

Relative stereochemical assignment for fijioic acid A (1) commenced with 

assignment of H-12 (! 4.20) in an axial position based on a large J coupling constant (J = 

12.5 Hz) observed for this proton (as well as a smaller 3.0 Hz coupling), which supported 

an axial-axial relationship and 180° dihedral angle between H-12 and a proton at C-11 

(Silverstein and Webster, 1998).   Observation of a very intense COSY correlation 

between H-12 and H-11b prompted assignment of H-11b in an axial position on the 

opposite face of the ring from H-12.  NOE correlations between H-12, H-14, and H-10b 

supported assignment of all of these atoms in axial positions on the same face of the 

drimane system.  NOE correlations were not observed between any of these axial protons 

and Me-21 or H-11b.  However, a strong correlation was noted between Me-21 and a 

proton at ! 2.13, supporting assignment of Me-21 and H-11b in axial positions on the 

opposite face of the molecule.  These assignments were further established by an NOE 

correlation observed between H-11b and Me-22, for which an axial position was 

supported by the upfield carbon chemical shift (! 17.5) of this methyl relative to 

equatorial Me-23 (! 29.9) (Yong et al., 2008).  Thus, with axial H-11b, Me-21, and Me-

22 assigned on one face of the drimane system and axial H-10b, H-12, and H-14 

established on the opposite face, a trans-fused drimane ring configuration was proposed 

for 1.  The relative stereochemistry at C-8 was then assigned on the basis of NOE and J 
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coupling constant arguments.  A 6.2 Hz vicinal coupling observed for H-7b supported a 

dihedral angle of approximately 30° or 130° between H-7b and H-8.  Further, the 5.2 Hz 

coupling observed for pseudotriplet H-8 suggested gauche relationships between this 

proton and both H-7a and H-7b.  Observation of NOE correlations between H-7b and 

axial H-10b and between H-8 and axial Me-21 then established relative stereochemistry 

at C-8. 

High-resolution mass spectral data established the molecular formula of fijioic 

acid B (2) as C23H30O4 (m/z 369.2080 [M – H]
-
).  Comparison of 

13
C and 

1
H NMR 

spectral data as well as HMBC and COSY correlations between 1 and 2 indicated these 

molecules shared an acetic acid-substituted hydroquinone functionality and both 

possessed a sesquiterpene group attached at aromatic C-6 (Table 6.1, Appendix D).  

Comparison of molecular formulae for 1 and 2 indicated the loss of a bromine group and 

gain of an alkene moiety within the sesquitepene portion of 2.  An exo-methylene 

substituent was assigned at C-13 on the basis of HMBC correlations from singlets H-23a 

(! 4.50) and H-23b (! 4.81) to C-12 (! 38.5), C-13 (! 154.5), and C-14 (! 32.6).  HMBC 

correlations from doublet Me-22 (! 1.09) to C-11 (! 30.8), C-12, and C-13 then 

established attachment of Me-22 to methine C-12.  HMBC and COSY correlations 

supported assignment of the remainder of this decalin-type system identical to that of 1, 

and the sesquiterpene skeleton of 2 was verified by comparison with literature values 

(Talpir et al., 1994). 

 

 

 



116 

Table 6.1  
13

C and 
1
H NMR spectral data for 1-2 (125 MHz for 

13
C and 500 MHz for 

1
H; 

in DMSO). 
1 2 

no. 

! 
13

C ! 
1
H 

(JH,H) 

! 
13

C ! 
1
H 

(JH,H) 

1 175.3 - 175.3 - 

2 44.5 3.09s 44.5 3.10s 

3 122.6 - 122.5 - 

4 150.1 - 150.1 - 

5 117.8 6.35s 117.5 6.40s 

6 126.6 - 126.7 - 

7 30.3 2.13m, 

2.77dd 

(6.2, 

14.6) 

29.4 2.21dd 

(2.4, 

12.2) 

2.90dd 

(7.2, 

15.0) 
8 53.7 1.78t 

(5.2) 

50.9 1.97m 

9 36.4 - 38.4 - 

10 36.3 0.99m, 

1.88m 

29.5 0.68m, 

2.06td 

(2.0, 

10.9) 

11 30.8 1.93m, 

2.13m 

28.4 1.28brd 

(12.7), 

1.63m 

12 70.9 4.20dd 

(3.0, 

12.5) 

38.5 2.53m 

13 39.1 - 154.5 - 

14 41.8 1.64m 32.6 2.42brt 

(7.9) 

15 25.1 1.92m, 

2.06m 

25.8 1.90m 

16 119.2 5.23s 119.2 5.29s 

17 136.7 - 136.7 - 

18 23.6 1.49s 23.4 1.60s 

19 116.6 6.31s 116.6 6.33s 

20 146.1 - 146.1 - 

21 21.8 0.86s 19.0 0.65s 

22 17.5 0.97s 19.6 1.09d 

23 29.9 1.00s 106.8 4.50s, 

4.81s 

OH - 8.38brs - 8.51brs 

OH - 13.39 brs - 13.37 brs 
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 For fijioic acid B (2), NOEs were observed between H-14 and Me-22, but not 

between H-12 and H-14, supporting assignment of H-14 and H-22 at axial positions on 

the same face of the drimane-type skeleton.  NOEs between H-10b (! 2.06) and both Me-

22 and H-14 completed this series of 1,3-diaxial interactions.  Me-21 was then assigned 

to an axial position on the opposite face based on NOEs observed between Me-21 and H-

11b (! 1.63), but not between Me-21 and H-14 or Me-22.  This trans orientation of Me-

21 and H-14 corresponded with the trans-fused bicyclic system proposed for 1.  Finally, 

assignment of the C-8 stereocenter was established analogously to 1. 

 The most structurally similar known relatives of fijioic acids A and B (1-2) are 

peyssonols A-B, isolated from a Red Sea collection of Peyssonelia sp. on the basis of 

biomedical activity (Talpir et al., 1994).  Peyssonol A differs from fijioic acid A (1) by 

substitution with a formyl group instead of an acetic acid group at C-3 on the 

hydroquinone ring and by a trans-fused drimane skeleton in 1 versus a cis-fused 

orientation in peyssonol A.  Hence, fijioic acid A (1) represents a novel carbon skeleton 

with one additional carbon relative to peyssonol A.  Fijioic acid B (2) shares a carbon 

skeleton with peyssonol B, and differs from this known metabolite in the presence of an 

acetic acid-substituted hydroquinone versus methyl acetate group at the corresponding 

position in peyssonol B as well as in regioisomerization of one site of unsaturation in the 

drimane group.  To our knowledge, 1 and 2 represent the first examples of terpene-

hydroquinone natural products bearing an acetic acid-substituted hydroquinone.   
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Ecological and pharmacological activities of sesquiterpene hydroquinones A-B (1-2). 

 At isolated concentrations, both fijioic acids A-B (1-2) were effective chemical 

defenses against the bacterial pathogen P. bacteriolytica and the fungal pathogen L. 

thalassiae (Fig. 6.2).  Despite significant inhibition of D. salina observed for crude 

extracts, neither of these compounds inhibited growth of this marine saprophyte, 

suggesting this red alga harbors other defenses against this fungus.  While fijioic acids A-

B (1-2) were inhibitory to a marine pathogenic bacterium and fungus, they exhibited only 

weak inhibition of biomedically relevant fungi and bacteria (Table 6.2).  The discovery of 

fijioic acids A-B (1-2), together with the high prevalence of antimicrobial activities 

observed among tropical algal extracts, suggests the potential of ecology-driven studies in 

the discovery of novel chemistry.  
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Fig. 6.2  Comparison of log[IC50] growth inhibition values (solid bars) and log[natural 

concentration] values (dotted line) for (a) 1 and (b) 2 against ecologically relevant 

pathogens P. bacterioltyica and L. thalassiae (n = 3 subsample assays at 8-9 

concentrations).  Bars denote standard error; white text indicates average IC50 values. 

 

 

 

 

Table 6.2.  Pharmacological activities of 1-2. 

  

Antibacterial IC50 (mM) 

   

Antifungal MIC (mM) 

cmpd MRSA
a
 VREF

b
 Antitubercular 

Anticancer 

IC50 (mM)
c
 

Antimalarial 

IC50 (mM) WTCA
d
 ARCA

e
 

1 >550 >550 >100 55 >100 >550 >550 

2 533 230 >100 63 56 >550 >550 
a
Methicillin-resistant Staphylococcus aureus; 

b
Vancomycin-resistant Enterococcus faecalis; 

c
Mean of 11 

cancer cell lines  (see Materials and Methods section for details); 
d
Wild-type Candida albicans; 

e
Amphotericin B-resistant C. albicans.  
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Materials and Methods 

General.  Semipreparative HPLC was performed with a Waters 1525 or 515 pump and a 

Waters 2996 diode-array UV detector or a Waters 2487 dual-wavelength absorbance 

detector.  
1
H, 

13
C, DEPT-135, HSQC, HMBC, COSY, NOESY, ROESY, and DPFGSE-

NOE NMR experiments were conducted in DMSO with a Bruker DRX-500 instrument 

using a 5 mm broadband or inverse detection probe, and referenced to residual DMSO (! 

2.49 and ! 39.9 ppm for 
1
H and 

13
C, respectively).  High resolution mass spectra were 

acquired using electrospray ionization with an Applied Biosystems QSTAR-XL hybrid 

quadrupole-time-of-flight tandem mass spectrometer and Analyst QS software.  UV 

spectra were recorded in methanol with a Spectronic 21D spectromphotometer, and 

optical rotations were measured with a Jasco P-1010 spectropolarimeter.  All statistical 

analyses were completed with either SYSTAT version 9 or GraphPad version 4.  HPLC 

grade solvents were used in semipreparative HPLC (Fisher Scientific Co.), and NMR 

solvents were obtained from Cambridge Isotope Laboratories.   

 

Algal collection and extraction.  Algae were collected at depths of 2 – 20 m from 

several sites in Fiji.  Fijioic acids A-B (1-2) were isolated from crustose algae collection 

ID# G-0109.  Voucher specimens were identified by comparison with previously 

described morphological traits,(Littler and M.M., 2003) and deposited at the University 

of the South Pacific in Suva, Fiji, and Georgia Institute of Technology.  Fresh algal 

material was extracted successively in MeOH (2') and MeOH/DCM (2:1, 1:1).  Extracts 

were reduced in vacuo and subjected to reversed-phase fractionation with HP20ss resin 
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(Supelco).  Fractions 1 and 2 were eluted with MeOH/H2O (1:1 and 4:1, respectively), 

fraction 3 with MeOH, and fraction 4 with acetone. 

   

Ecological antimicrobial assays.  Chromatographic fractions were evaluated for activity 

against three ecologically relevant marine microbes (see below).  Assays were designed 

to approximate natural concentrations of metabolites experienced by microbes invading 

whole algal tissues.  All fractions were tested at maximum concentrations volumetrically 

equivalent to those in the whole alga; fractions corresponding to a 1 mL volume of alga 

were incorporated into 1 mL of media and inoculated with an evaluated microbe. 

 

Antifungal assays.  Antifungal assays were conducted with Lindra thalassiae (ATCC 

56663), a fungal pathogen of a variety of marine macrophytes, and Dendryphiella salina, 

a fungal saprophyte of marine plants, as previously described.(Kubanek et al., 2003)  

Chromatographic fractions, at concentrations approximating natural algal tissue 

concentrations, were each solubilized in a minimal volume of methanol or acetone and 

incorporated into molten YPM agar (16 g/L granulated agar, 2 g/L yeast extract, 2 g/L 

peptone, 4 g/L D-mannitol, 250 mg/L of both streptomycin sulfate and penicillin G in 1 L 

of natural seawater).  For each fraction, three 400 µL subsamples of this mixture were 

dispensed into sterile 24-well microtiter plates, allowed to solidify, and an aliquot of L. 

thalassiae or D. salina suspension in sterile seawater added to each well.  Control wells 

were prepared with YPM agar and solvent but no algal material.  Plates were incubated at 

28 °C for three days and digital photographs collected for each well.  The percent of each 

well covered in fungal hyphae was determined using the area calculator feature of ImageJ 
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software (NIH), and treatments and controls compared using one-way ANOVA with 

Dunnett’s post test.  Antifungal assays with pure 1-2 were completed at 1:1 serially 

diluted concentrations ranging from 900 µM to 3.5 µM, and percent growth inhibition at 

each concentration was calculated relative to solvent-only controls.  Growth inhibition 

data were fit to a sigmoidal dose-response curve, and mean log IC50 and standard error 

values computed.  Reported IC50 values were calculated as the antilog of mean log IC50 

values; standard errors for IC50 values were not determined, as such values are not 

directly correlated with log IC50 standard errors and are inherently unrealistic.(Motulsky 

and Christopoulos, 2003)  Antifungal activities of 1-2 were statistically compared with an 

F test of the log IC50 value for each compound. 

  

Antibacterial assays.  Assays using Pseudoalteromonas bacteriolytica, a known marine 

plant pathogen, were adapted from previous methods.(Kubanek et al., 2003)  A 24 h 

shake culture of this bacterium was diluted 1:160 in Difco Marine Broth 2216 (BD 

Biosciences) and 195 µL of this mixture added to duplicate treatment and control wells of 

a 96-well plate.  An equal amount of sterile broth was added to blank wells.  Five 

microliters of 40' concentrated chromatographic fractions in DMSO were dispensed into 

treatment and blank wells, yielding a final concentration approximating that found in 

whole algal tissues; 5 µL of DMSO were added to corresponding control wells.  Plates 

were incubated for 20 h at 30 °C, and turbidity measured at 600 nm.  We corrected for the 

natural absorbance of chromatographic fractions by subtracting algal-containing sterile 

blank turbidities from values obtained for treatments.  Corrected treatment turbidity 

values were compared with controls using one-way ANOVA with Dunnett’s post-test.  
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For HPLC fractions and pure compounds from crustose alga ID# G-0109, assays were 

completed at 1:1 serially diluted concentrations; log IC50 values computed and 

statistically compared analogously to antifungal assays. 

 

Pharmacological assays.  Pure sesquiterpene hydroquinones A and B (1-2) were 

evaluated for activity against tumor cell lines BT-549, DU4475, MDA-MD-468, NCI-

H446, PC-3, SHP-77, LNCaP-FGC, HCT116, MDA-MB-231, A2780/DDP-S, and 

Du145, representing breast, colon, lung, prostate and ovarian cancer cells.  In vitro 

cytotoxicity was evaluated with the (3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxylmethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt) MTS dye 

conversion assay as previously described.(Lee et al., 2001)  Antimalarial activity was 

determined with a previously reported SYBR Green based parasite proliferation 

assay.(Bennett et al., 2004; Smilkstein et al., 2004)  Antibacterial assays were performed 

against methicillin-resistant Staphylococcus aureus (ATCC 3747731) and vancomycin-

resistant Enterococcus faecium (ATCC 3323776), and antifungal assays against both wild 

type and amphotericin B-resistant Candida albicans, using previously reported 

methods.(Kubanek et al., 2005)  Antitubercular activity was assessed against 

Mycobacterium tuberculosis strain H37Rv (ATCC 27294) using the previously described 

alamar blue susceptibility test (MABA).(Collins and Franzblau, 1997) 

 

Isolation of sesquiterpene hydroquinones A-B.  Frozen crustose red alga ID# G-0109 

(21.6 mL eq.) was extracted exhaustively in methanol (2') and 

methanol/dichloromethane (2:1 and 1:1) and fractionated with HP20ss resin (Supelco), 
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following the same procedure applied in the algal survey.  Fraction 2, with the strongest 

activity against ecologically-relevant pathogen P. bacteriolytica, was subjected to 

multiple rounds of semipreparative reversed-phase HPLC with an Agilent Zorbax SB-

C18 column (5 µm, 9.4 ' 250 mm) using methanol:water and acetonitrile:water gradient 

mobile phases.  Antibacterial properties of HPLC fractions were measured with the P. 

bacteriolytica assay described above, and final purification of active compounds 1-2 

achieved using a Phenomenex Develosil C30 column (dimensions) with a methanol:water 

gradient mobile phase. 

 

Fijioic acid A (1):  brown gum; [$]
24

D 35.0 (c 0.343 g/100 mL, MeOH); 
1
H NMR 

(DMSO, 500 MHz) and 
13

C/DEPT NMR (DMSO, 125 MHz) data, Table 6.1; NOE, 

COSY, HMBC NMR data, Supporting Information; HRESIMS [M – H]
-
 m/z 449.1309 

(calcd for C23H30O4Br, 449.1333). 

Fijioic acid B (2).  brown gum; [$]
24

D 200.0 (c 0.0800 g/100 mL, MeOH); 
1
H NMR 

(DMSO, 500 MHz) and 
13

C/DEPT NMR (DMSO, 125 MHz) data, Table 6.1; NOE, 

COSY, HMBC NMR data, Supporting Information; HRESIMS [M – H]
-
 m/z 369.2080 

(calcd for C23H29O4, 369.2071). 
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CHAPTER 7 

STRUCTURE-ACTIVITY RELATIONSHIP OF CHEMICAL DEFENSES FROM 

THE FRESHWATER PLANT MICRANTHEMUM UMBROSUM 

 

Abstract 

Vascular plants produce a variety of molecules of phenylpropanoid biosynthetic 

origin, including lignoids.  Recent investigations indicated that in freshwater plants, some 

of these natural products function as chemical defenses against generalist consumers such 

as crayfish.  Certain structural features are shared among several of these anti-herbivore 

compounds, including phenolic, methoxy, methylenedioxy, and lactone functional 

groups.  To test the relative importance of various functional groups in contributing to the 

feeding deterrence of phenylpropanoid-based natural products, we compared the feeding 

behavior of crayfish offered artificial diets containing analogs of elemicin (1) and (-

apopicropodophyllin (2), chemical defenses of the freshwater macrophyte Micranthemum 

umbrosum.  Both allyl and methoxy moieties of 1 contributed to feeding deterrence.  

Disruption of the lactone moiety of 2 reduced its deterrence.  Finally, feeding assays 

testing effects of 1 and 2 at multiple concentrations established that these two natural 

products interact additively in deterring crayfish feeding.   

  

Introduction 

Phenylpropanoid-derived natural products, biosynthesized via the shikimate 

pathway, are widespread among vascular plants (Lewis and Davin, 1999) and have been 

shown to exhibit antimitotic, antiviral, insect antifeedant, and root growth inhibition 

properties (Loike and Horwitz, 1976; Elakovich and Stevens, 1985; Gnabre et al., 1995; 
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Harmatha and Nawrot, 2002).  Most biological studies related to phenylpropanoid-based 

natural products have focused on their potential application in medicine and agriculture.  

A smaller number of ecological studies have indicated that some of these metabolites 

function as chemical defenses against co-occurring herbivores.  Among freshwater 

macrophytes, 11 shikimate-derived natural products (10 lignoids and one monomeric 

phenylpropanoid) and one potential shikimate metabolite (a p-hydroxybenzyl ester) have 

been shown to deter herbivory by generalist crayfish (Bolser et al., 1998; Wilson et al., 

1999; Kubanek et al., 2000, 2001; Parker et al., 2006), whose feeding behavior can 

dramatically affect macrophyte distribution and abundance (Lodge, 1991) (Fig. 7.1a).  In 

these studies, isolation of deterrent natural products was guided by feeding assays such 

that structurally-related but non-deterrent compounds were not identified.  A comparison 

of structural features for deterrent and non-deterrent metabolites of the same biosynthetic 

class has therefore not been possible, preventing rigorous analysis of the structural basis 

for chemical defense.   

It is expected that there exists a definable relationship between the structure of 

phenylpropanoid-based plant natural products and feeding deterrence, when considering a 

population or species of herbivores.  From assessment of a group of deterrent lignoids 

possessing a common carbon skeleton, Kubanek et al. (2000) suggested that increased 

aryl hydroxylation may be associated with increased deterrence.  By strategic 

manipulation of the molecular structures of natural products, quantification of biological 

activities, and statistical analyses to test for differences, insights may be gained into the 

precise nature of this structure-activity relationship.  Such studies have commonly been 

used to explore the pharmacological (e.g., Lee et al., 1999; Zhang et al., 2004) and 
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agricultural  (e.g., Kim and Mullin, 2003; Morimoto et al., 2003) activities of natural 

products.  However, few studies have investigated such relationships in an ecological 

context (but see Assmann et al., 2000; Lindel et al., 2000; Silva and Trigo, 2002), and no 

previous studies have evaluated this for phenylpropanoid-derived molecules.  Such 

studies could lead to testable hypotheses regarding mechanisms of chemoreception and 

other physiological responses.  Structure-activity relationship studies may also provide 

insights into the evolution of chemical defenses: if herbivore pressure is intense and 

chemical defenses carry significant costs, one might predict that plants evolved pathways 

to produce the most deterrent compounds, suggesting that natural products should have 

greater deterrent potency than unnatural, but structurally-related compounds, and that 

concentrations of chemical defenses within plants are likely to be adequate, but not 

excessive, for deterring herbivores.   

In the current study, we selected elemicin (1) and (-apopicropodophyllin (2) (Fig. 

7.1a), phenylpropanoid-based chemical defenses of the freshwater plant Micranthemum 

umbrosum (Parker et al., 2006), as model structures for the evaluation of structure-

activity relationships among freshwater plant chemical defenses.  We obtained eight 

analogs of 1 and 2 by semi-synthesis or from commercial sources, and from feeding 

assay data using the crayfish Procambarus acutus we generated dose-response curves to 

quantify deterrent potency and to predict structural requirements for deterrence.  

Additionally, we compared the deterrent potencies of 1 and 2, and evaluated the 

interaction (additive, antagonistic, or synergistic) between 1 and 2 in the chemical 

defense of the freshwater plant M. umbrosum. 
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Fig 7.1  (a) Freshwater plant shikimate-derived metabolites previously demonstrated to 

deter crayfish feeding.
  1

Parker et al., 2006 ; 
2
Kubanek et al., 2000, 2001 ; 

3
Bolser et al., 

1998; Wilson et al., 1999.  (b)  Analogs of (-apopicropodophyllin (2) for which crayfish 

feeding deterrence was assessed in the current study. 

 

 

 



132 

Results and discussion 

Feeding deterrence of natural products elemicin (1) vs. (-apopicropodophyllin (2) 

Comparison of logEC50 values for the feeding deterrence of the phenylpropanoid 

elemicin (1) and the lignoid (-apopicropodophyllin (2) against the crayfish Procambarus 

acutus indicated that 2 is approximately 750 times more deterrent than 1 (p < 0.0001; Fig. 

7.2).  Consistent with this finding, in an investigation of the insect feeding deterrence 

activity of compounds belonging to these two structural groups, Harmatha and Nawrot 

(2002) reported that lignoids were generally more bioactive than phenylpropanoid 

monomers.   

 

 

 

Fig. 7.2  Effect of compound concentration on crayfish feeding behavior for 

Micranthemum umbrosum natural products elemicin (1) and (-apopicropodophyllin (2), 

and effect of combined doses of 1 and 2; n = 13-24 crayfish for each data point.  Grey 

arrows denote natural concentrations of 1 and 2 in M. umbrosum from Parker et al. 

(2006).  In determining the effect of combined doses, 1 and 2 were added to artificial 

diets in 1:1 molar ratios of the EC50 values for each compound.  The theoretical additive 

curve was calculated from best fit dose response curves developed individually for 1 and 

2.   
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According to optimal defense theory (Rhoades and Cates, 1976), if natural 

products evolved to fulfill a specific ecological function such as chemical defense, one 

would expect natural concentrations of these defenses to approximately match the 

sensitivity of potential consumers, in order to minimize costs associated with chemical 

defense.  The experimental EC50 for elemicin (1), 8.3 mM (Fig. 7.2), was found to be 

similar to its natural concentration of 3.2 mM (Parker et al., 2006).  In contrast, the 

natural concentration of (-apopicropodophyllin (2), 0.96 mM (Parker et al., 2006), was 

nearly 100 times greater than its experimental EC50 value, 0.011 mM (Fig. 7.2).  These 

data suggest that 2 is more important than 1 in deterring crayfish from feeding on 

Micranthemum umbrosum, and may indicate that both metabolites serve multiple 

ecological functions, as natural concentrations of the combined compounds is greater 

than that required for feeding deterrence, or that metabolite concentrations are not 

optimally tuned to herbivore sensitivity.   

 

Interaction between elemicin (1) and (-apopicropodophyllin (2) in the chemical 

defense of Micranthemum umbrosum 

Previous studies have indicated that some phenylpropanoids and lignoids interact 

synergistically in the deterrence of agricultural pests (Yamashita and Matsui, 1961).  

Alternatively, antagonistic or additive effects could occur.  When 1 and 2 were 

investigated for combined effects in deterring crayfish feeding, the experimental logEC50 

value for the combined compounds was not significantly different from the value 
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obtained from a theoretical additive curve (F test, p = 0.73; Fig. 7.2), leading us to reject 

the hypothesis that these two natural products behave synergistically or antagonistically 

in deterring crayfish feeding.   

 

Structure-activity relationship of elemicin (1) analogs 

At 12" the natural molar concentration of elemicin (1), allylbenzene (3) was not 

significantly deterrent to crayfish (Fisher’s exact test, p > 0.99; Fig. 5.3), indicating that 

substituents on the allylbenzene scaffold are necessary for feeding deterrence.  In 

contrast, dimethoxy-substituted methyl eugenol (4) was the most deterrent of compounds 

tested within this group, with an EC50 value 87% less than that of 1 (F test, p < 0.001; 

Fig. 7.3).  The greater potency of 4 relative to trimethoxy-substituted 1 indicates that the 

third methoxy substituent on the phenyl ring of 1 undermines deterrence, which may 

indicate that steric hindrance of the bulkier 1 alters the interaction with a Procambarus 

acutus chemoreceptor.  Although crustacean receptors for detecting plant chemical 

defenses have not yet been identified, it seems likely that taste or odorant chemoreceptors 

are involved, given the quick response time (seconds) and lack of apparent injury to 

crayfish rejecting chemically-defended foods which might be expected if a deterrent 

caused a non-receptor-mediated effect such as burning (Lane and Kubanek, pers. 

observ.).  The enhanced activity (relative to 1) of dimethoxy-substituted 4, a metabolite 

previously isolated from other vascular plants (e.g. Mata et al., 2004), also indicates that 

Micranthemum umbrosum has not evolved to produce the metabolite most deterrent to 

this particular herbivore.   
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In addition to the number of aryl methoxy groups affecting deterrence, the 

identity of substituents also appeared to play an important role.  The presence of a 

hydroxy group para to the allyl substituent as in eugenol (5) and methoxyeugenol (6), 

instead of a methoxy group as in elemicin (1) and methyl eugenol (4), was associated 

with substantially reduced deterrent potency for trisubstituted benzenes 4 vs. 5 (F test, p 

< 0.001; Fig. 7.3), and marginally reduced deterrent potency for tetrasubstituted benzenes 

1 vs. 6 (p = 0.17; Fig. 7.3).  Both hydroxy and methoxy substituents may function as 

hydrogen bond acceptors in interactions with crayfish chemoreceptors, whereas a 

hydroxy substituent can also act as a hydrogen bond donor, which could potentially affect 

deterrent potency by altering the orientation in which a ligand interacts with a 

chemoreceptor.  Alternatively, the bulkier, more hydrophobic methoxy substituent in the 

para position of 4 may enhance deterrence (relative to 5) via a better steric fit and/or 

stronger van der Waals attractive forces within the chemoreceptor binding site.  The 

current finding, that aryl hydroxy groups are associated with weaker crayfish deterrence 

than are aryl methoxy groups among monomeric phenylpropanoids, is contrary to the 

suggestion of Kubanek et al. (2000) regarding the crayfish deterrence among a group of 

lignans.   

Eugenol (5) was previously demonstrated to cause paralysis in crayfish placed in 

an aqueous solution of this compound (Ozeki, 1975).  Given the structural similarity of 

elemicin (1) and 5, it is possible that 1 may also be toxic at certain concentrations; 

however, we did not observe incapacitation or mortality of Procambarus acutus during or 

after feeding assays.  This may indicate that toxicity is diminished when consumed as 

part of a diet rather than absorbed from surrounding water.  If 1 or 5 is indeed toxic at 
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high doses or following repeated consumption of plants containing these metabolites, this 

may have favored evolution of chemoreception in consumers such as P. acutus, in order 

to identify and avoid consuming toxic foods.   

 

 

 

Fig. 7.3  Comparison of crayfish feeding deterrence of elemicin (1) and analogs.  

Different letters indicate treatments differing significantly in feeding deterrence from 

each other (F-test, p # 0.05); bars represent standard error.  Replacement of methoxy 

groups with hydroxy groups resulted in decreased potency, as seen in 4 vs. 5 and 1 vs. 6.  

Increased substitution with hydroxy and methoxy groups was also associated with 

decreased activity.  Dose response curves were used to calculate EC50 values for 1 (Fig. 

7.2) and 4-6 (data not shown).  For 3 and 7, EC50 values could not be calculated because 

these compounds were not deterrent at any concentration tested (see text).  For 8, an EC50 

value could not be calculated because low synthetic yield prohibited testing at sufficient 

concentrations (see text).   

 

 

 

Supporting the hypothesis that the allyl group at C-5 of elemicin (1) is important 

in feeding deterrence, 1,2,3-trimethoxybenzene (7) was palatable at 38 mM, 12" the 

natural molar concentration of 1 (Fisher’s exact test p = 0.23).  3-(3’,4’,5’-

Trimethoxyphenyl-1,2-propanediol (8), synthesized from 1, was significantly deterrent at 
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the three concentrations at which it was tested, spanning 2.9-8.4 mM (Fisher’s exact test, 

p = 0.0006-0.05).  Due to limited yield of synthetic product, a full dose-response curve 

could not be established for 8.  However, comparison of the deterrence of 1 and 8 at 3.8 

mM indicated that potency did not appear to differ significantly between these two 

compounds (Fisher’s exact test, p > 0.99).  Thus, conversion of the allyl substituent to a 

diol did not appear to reduce bioactivity, despite the enhanced bulkiness, polarity, and 

hydrogen bonding capacity of this group relative to the allyl substituent of 1.  Although 

the lack of deterrence of trimethoxybenzene (7) indicated that a non-hydrogen substituent 

was essential at C-5 for deterrence, it appears that the Procambarus acutus 

chemoreceptor for 1 is not highly specific for the C-5 substituent.   

 

Structure-activity relationship of (-apopicropodophyllin (2) analogs 

A number of structural features may be expected to influence the bioactivity of (-

apopicropodophyllin (2), including the unsaturated lactone, trimethoxyphenyl group, 

methylenedioxy moiety, and stereochemistry at C-1.  We focused on the role of the 

lactone moiety in crayfish feeding behavior, as this group was most amenable to synthetic 

modification and has been demonstrated to affect bioactivity in pharmacological studies 

of analogous lignoids including podophyllotoxin (9) (Loike and Horwitz, 1976; Brewer et 

al., 1979).   

Podophyllotoxin (9) was marginally less deterrent than (-apopicropodophyllin (2) 

(F test, p = 0.07; Table 7.1), which may have resulted from different lactone 

conformations, from the lack of the C-2-C-3 unsaturation in 9, or from the presence of a 

hydroxy at C-4 in 9.  Whereas 2 was significantly deterrent at 1% of its natural molar 
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concentration (Fisher’s exact test, p = 0.001) and nearly 100% deterrent at its natural 

concentration (p < 0.0001; Fig. 7.2), disruption of the lactone by reduction to the diol (-

apopicropodophyllol (10) resulted in a complete lack of deterrence for 10 at either of 

these concentrations (p > 0.99 for both concentrations); 10 was significantly less potent 

than 2 (Fisher’s exact test, p < 0.001 for comparison of deterrence of 2 and 10 at both 

concentrations).  Feeding assays at higher concentrations were not feasible for 10, due to 

insufficient synthetic product yields.  This conversion of the lactone ring in 2 to a diol 

moiety in 10, while retaining the C2-C3 unsaturation, may have resulted in loss of 

activity by a diminished capacity of the more polar diol to bind with hydrophobic regions 

of the chemoreceptor, or by increased conformational flexibility which could disrupt 

orientation of hydrogen bonding or dipole-dipole interacting groups between a receptor 

and ligand.   

 

 

Table 7.1  Comparison of crayfish feeding deterrence for (-apopicropodophyllin (2) and 

analogs.  Dose response curves were used to calculate EC50 values for 2 (Fig. 7.2) and 9 

(data not shown).   

Analog Log [EC50 (mM)] ± 

Standard Error 

 

EC50 (mM) 

(-Apopicropodophyllin (2) -1.95 ± 0.08
a
 0.011 

Podophyllotoxin (9) -1.70 ± 0.07
a
 0.020 

(-apopicropodophyllin (10)  (Non-deterrent at all 

concentrations tested) 

 

a
LogEC50 values for 2 and 9 differ marginally (F-test, p = 0.07) 
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The role of the methylenedioxy moiety of (-apopicropodophyllin (2) in crayfish 

feeding deterrence remains unclear, as attempts at selective synthetic modification of this 

group were unsuccessful (data not shown).  Kubanek et al. (2000) reported a series of 

seven antifeedant lignoids that did not possess methylenedioxy groups, indicating that 

these groups are not essential for crayfish feeding deterrence among lignoids (although 

different, albeit congeneric, species of crayfish were used in Kubanek et al. (2000) vs. the 

current study).  In contrast, methylenedioxy moieties have been suggested to be important 

in the effectiveness of insect feeding deterrents (Harmatha and Nawrot, 2002).   

 

Conclusions 

Previous investigations aimed at elucidating the molecular structural requirements 

for ecological function have made assessments on the basis of one or a few feeding assay 

data points (e.g., Assmann et al., 2000; Kubanek et al., 2000; Lindel et al., 2000), making 

it difficult to quantitatively compare the sensitivity of consumers to chemical cues in their 

food.  To our knowledge, this study marks the first aquatic chemical ecology 

investigation in which structure-activity relationships were evaluated through the use of 

dose response curves and represents the first investigation of the structure-activity 

relationship of plant feeding deterrents against a freshwater herbivore.   

Comparison of dose response curves for two Micranthemum umbrosum natural 

products, elemicin (1) and (-apopicropodophyllin (2), and eight analogs (3-10) of these 

natural products indicated that the allyl and methoxy moieties of 1 influenced crayfish 

feeding behavior, as did the lactone moiety of 2.  The 12-member collection of natural 

products previously reported to deter crayfish feeding includes some molecules with none 
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of these functionalities (Wilson et al., 1999; Kubanek et al. 2000), suggesting that several 

different chemoreceptive mechanisms are likely involved in crayfish feeding deterrence 

and/or that crayfish species or populations differ in their responses.  Studies of 

interactions between these molecules and individual herbivore chemoreceptors and 

manipulation of chemoreception physiology will be necessary to develop further 

understanding regarding receptor-ligand interactions involving chemical defense.   

 

Materials and Methods 

General experimental procedures.  Fisher Scientific ACS grade solvents were used for 

extractions, flash column chromatography, and chemical transformations; Fisher 

Scientific HPLC grade solvents were used for HPLC.  Compounds 3-7, 9, and chemicals 

for synthetic modifications were purchased from Sigma Aldrich (St. Louis, MO, USA).  

HPLC analyses were conducted with Zorbax RX-SIL (Agilent Technologies) semi-

preparative normal phase columns using a Waters HPLC system (Waters 515 pump; 

Waters 2487 dual wavelength absorbance detector) with UV absorbance monitored at 

220 and 254 nm.  
1
H, 

13
C, and two-dimensional inverse-detected NMR spectral data 

(COSY, HMQC, HMBC) were acquired with a Bruker DRX-500 MHz spectrometer.  All 

NMR experiments were conducted using CDCl3 and referenced to residual CHCl3 (7.24 

and 77.0 ppm, for 
1
H and 

13
C, respectively).  High and low resolution electron impact 

(EI) mass spectra were collected with a VG Instruments 70SE spectrometer.   

 

Isolation of plant chemical defenses (1-2).  Whole Micranthemum umbrosum plants 

were collected in June, 2003, from ponds at the Owens and Williams Fish Hatchery 
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(Hawkinsville, GA, USA) and were frozen until extraction.  A voucher specimen is 

stored at the Georgia Institute of Technology.  Plant material was shredded in MeOH and 

extracted successively with MeOH (2"), Me2CO (2"), and CH2Cl2 (2").  Extracts were 

combined, filtered, and concentrated in vacuo.  This crude extract was partitioned 

between petroleum ether and MeOH/H2O (9:1); the MeOH/H2O (9:1) portion was further 

partitioned between MeOH/H2O (3:2) and CHCl3.  TLC Rf values of authentic samples of 

1 and 2 were compared with values for compounds in liquid-liquid partition fractions, in 

order to identify fractions containing these natural products.   

(-Apopicropodophyllin (2) was found exclusively in the CHCl3 fraction, and so 

this fraction was further separated by flash column chromatography on silica with 

gradient elution of hexanes/EtOAc (9:1) to EtOAc.  Finally, 2 was purified by normal 

phase silica HPLC with CH2Cl2/Me2CO (49:1) as the mobile phase.  Elemicin (1) was 

found in both the CHCl3 and hexanes fractions following liquid-liquid partitioning.  Both 

fractions were separated by flash column chromatography as described above for 2, 

except that the hexane-soluble portion was subjected to a gradient mobile phase of 

hexanes to EtOAc.  Finally, 1 was purified by normal phase silica HPLC using a 

hexanes/EtOAc (49:1) mobile phase.  The structures of 1 and 2 were determined by 

spectroscopic analysis and verified by comparison with lit. values (Gensler et al., 1970; 

Achenbach and Frey, 1992).  Elemicin (1):   
1
H NMR (500 MHz, CDCl3): ! 6.41 (2H, s, 

H-4 and H-6), 5.95 (1H, m, H-8), 5.12 (1H, m, H-9), 5.08 (1H, m, H-9), 3.85 (6H, s, 

OMe-1 and -3), 3.82 (3H, s, OMe-2), 3.32 (2H, d, J = 6.5 Hz, H-7).  
13

C NMR (125 

MHz, CDCl3): ! 153.1 (C-1 and C-3), 137.2 (C-8), 136.2 (C-5), 135.8 (C-2), 116.0 (C-9), 

105.3 (C-4 and C-6), 60.8 (OCH3-2), 56.1 (OCH3-1,3), 40.5 (C-7).  EI (m/z): [M
+
] 
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calculated for C12H16O3, 208.10994; found 208.10856.  (-Apopicropodophyllin (2):  
1
H-

NMR (500 MHz, CDCl3): ! 6.70 (1H, s, H-5), 6.62 (1H, s, H-8), 6.39 (2H, s, H-2’ and H-

6’), 5.93 (1H, d, J = 4.5 Hz, OCH2O), 5.90 (1H, d, J = 4.5 Hz, OCH2O), 4.87 (1H, m, H-

10,), 4.82 (1H, m, H-1), 4.80 (1H, m, H-10), 3.82 (1H, dd, J = 2.5, 27.9 Hz, H-4), 3.79 

(3H, s, OMe-4’), 3.78 (6H, s, OMe-3’,5’), 3.64 (1H, dd, J = 3.5, 27.9 Hz, H-4).  
13

C 

NMR (125 MHz, CDCl3): ! 172.2 (C-9), 157.3 (C-3), 153.2 (C-3’ and C-5’), 147.2 (C-

4’), 147.0 (C-6), 138.6 (C-7), 136.9 (C-1’), 129.6 (C-5a), 128.1 (C-2), 123.7 (C-8a), 

109.5 (C-8), 107.7 (C-5), 105.5 (C-2’,6’), 101.3 (OCH2O), 71.0 (C-10), 60.7 (OCH3-4’), 

56.1 (OCH3-3’,5’), 42.7 (C-1), 29.2 (C-4).  EI (m/z): [M
+
] calculated for C22H20O7, 

396.12090; found 396.12071. 

  

Oxidation of elemicin (1) to 3-(3’,4’,5’-trimethoxyphenyl)-1,2-propanediol (8).  A 

solution of KMnO4 (0.050 mmol) in deionized H2O (780 µl) was added to an ice-bath 

cooled solution of 1 (0.070 mmol) in EtOH/H2O (2:1) and stirred for 3 minutes.  The 

reaction mixture was filtered and then partitioned into Et2O and aq. layers; TLC indicated 

presence of the diol product in the aq. layer.  The aq. layer was extracted with n-BuOH (2 

" 15 ml).  The n-BuOH extract was concentrated in vacuo and 8 was purified by normal 

phase silica HPLC with a mobile phase of hexanes/EtOAc (3:7).  The structure of 8 

(0.011 mmol; 20% yield) was determined by spectral analysis and verified by comparison 

with previous data (Dong et al., 1989; Gonzalez et al., 1991).  
1
H-NMR (500 MHz, 

CDCl3): ! 6.43 (2H, s, H-2’ and H-6’), 3.94 (1H, m, H-2), 3.84 (6H, s, OMe-3’and -5’), 

3.81 (3H, s, OMe- 4’), 3.70 (1H, dd, J = 11.5, 2.5 Hz, H-1), 3.49 (1H, dd, J = 11.5, 6.5 

Hz, H-1), 2.74 (1H, dd, J = 13.5, 4.3 Hz, H-3); 2.67 (1H, dd, J = 13.5, 8.7 Hz, H-3). 
13

C-
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NMR (125 MHz, CDCl3): ! 153.6 (C-3’ and C-5’), 137.0 (C-1’), 133.6 (C-4’), 106.4 (C-

2’ and C-6’), 73.2 (C-2), 66.4 (C-1), 61.1 (OMe-4’), 56.4 (OMe-3’ and -5’), 40.4 (C-3).  

EI (m/z): [M
+
] calculated for C12H18O5, 242.11542; found 242.11564. 

 

Reduction of (-apopicropodophyllin (2) to (-apopicropodophyllol (10). A soln. of 2 

(0.010 mmol) in CH2Cl2 (100 µl) was added to dry Et2O (5 ml) suspension of LiAlH4 

(0.025 mmol) and stirred 15 h at room temp. (Anjanamurthy and Rai, 1987).  Aq. HCl 

(2M, 15 ml) were then added, and the mixture was stirred for 30 min.  The Et2O layer 

was washed with deionized H2O (2  " 15 ml) and dried over dry Na2SO4.  Et2O was 

removed in vacuo, and 10 was purified as a white powder by normal phase silica HPLC 

with CH2Cl2/EtOAc (7:3) as mobile phase.  Compound 10 (0.0047 mmol, 47% yield) was 

identified by spectral analysis and comparison with published data (Anjanamurthy and 

Rai, 1987).  
1
H-NMR (500 MHz, CDCl3): ! 6.63 (1H, s, H-5), 6.51 (1H, s, H-8), 6.38 

(2H, s, H-2’ and H-6’), 5.88 (1H, d, J = 1.5 Hz, OCH2O), 5.84 (1H, d, J = 1.5 Hz, 

OCH2O), 4.53 (1H, m, H-1), 4.33 (2H, m, H-10), 4.26 (1H, dd, J = 12.0, 2.5 Hz, H-9), 

4.10 (1H, dd, J = 12.0, 7.8 Hz, H-9), 3.78 (6H, s, OMe-3’and -5’), 3.76 (3H, s, OMe-4’), 

3.72 (1H, dd, J = 21.5, 4.2 Hz, H-4), 3.53 (1H, dd, J = 21.5, 3.6 Hz, H-4); 
13

C-NMR (125 

MHz, CDCl3): ! 153.2 (C-3’and C-5’), 146.1-146.0 (C-4’ and C-6), 140.5 (C-7), 136.4 

(C-1’), 135.3 (C-2), 134.1 (C-3), 130.2 (C-5a), 125.4 (C-8a), 107.8 (C-8), 107.1 (C-5), 

104.7 (C-2’ and C-6’), 100.5 (OCH2O), 62.4 (C-10), 61.0 (C-9), 60.6 (OMe-4’), 55.8 

(OMe-3’ and -5’), 50.0 (C-1), 33.6 (C-4).   EI (m/z): [M
+
] calculated for C22H24O7, 

400.15220; found 400.15173. 
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Bioasssays and statistical methods.  Feeding assays were conducted using the 

omnivorous crayfish, Procambarus acutus, collected from the wetlands in the 

Chattahoochee National Recreation Area (Atlanta, GA, USA) in 2003 and 2004, and 

identified by comparison of morphological traits (Hobbs, 1981).  Crayfish were housed 

individually in 12.5 " 12.5 cm chambers of a recirculating water table at 23 ˚C and 

maintained on a diet of commercial trout food pellets. 

Assays were completed following procedures described in Parker et al. (2006).  

Artificial food for each feeding assay was prepared by suspending 100 mg of a 1:1 

mixture of freeze-dried, ground broccoli and lettuce in Me2CO, to which was added the 

test compound (natural product or synthetic analog) dissolved in Me2CO.  The mixture 

was shaken and the Me2CO removed by rotary evaporation.  This test food powder was 

then mixed with 30 mg of sodium alginate in 1 mL of deionized H2O, and dispensed 

through a syringe into a 0.10 M aq. soln. of CaCl2.  Test food was allowed to solidify in 

this solution for 1 min, then rinsed with deionized H2O, and cut into test food pellets ca. 3 

mm in length.  Test compound concentrations were recorded as millimoles of compound 

per ml of food mixture.  Control food pellets were prepared in the same way, including 

the use of Me2CO as solvent, but without the addition of test compounds.  Feeding assays 

were conducted by first feeding a crayfish a control food pellet to confirm that the 

crayfish was not already satiated, and if that control pellet was consumed, then offering 

the crayfish a test food pellet.  If the crayfish consumed the test food pellet, it was 

considered accepted.  Test food pellets were considered rejected if a crayfish took the 

pellet into its mouth cavity twice and rejected it each time, in which case, a second 

control pellet was offered to verify the crayfish did not reject the test food pellet due to 
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satiation.  Feeding deterrence was recorded as the frequency of 14-23 crayfish rejecting a 

test food pellet, but accepting both control pellets; crayfish that refused control pellets 

were not included in the analysis.  A Fisher’s exact test was applied to test for 

significance of feeding deterrence data for each compound at individual concentrations.  

A Fisher’s exact test was also used to compare deterrence of two different compounds at 

equal molar concentrations (Zar, 1998).   

 Dose-response curves were constructed using data from 5-11 feeding assays for 

each test compound, by plotting the frequency of crayfish rejecting a test food pellet 

against the log of the concentration of the test compound in food pellets.  These data were 

fit to a sigmoidal dose response curve with a Hill slope of 1; this Hill slope provided the 

largest R
2
 goodness of fit value for all data sets.  Differences among dose response curves 

for different test compounds were analyzed by an F-test of the logEC50 values for each 

compound using GraphPad Prism version 4 (Motulsky, 1995).  For compounds which 

were not significantly deterrent at any tested concentration, the logEC50 could not be 

calculated.  The highest concentration tested was 38 mM (12" the natural concentration 

of 1) for analogs of 1, and 1.3 mM (1.4" the natural concentration of 2) for analogs of 2.  

One compound, 3-(3’,4’,5’-trimethoxyphenyl)-1,2-propanediol (8) was synthesized in 

limited yield and so was tested only up to the EC50 of 1 (8.3 mM).  

The interaction of natural products 1 and 2 in affecting crayfish feeding behavior 

was assessed using feeding assays incorporating these compounds at nine different 

concentrations representing 1:1 ratios of experimentally determined EC50 values for the 

two compounds (Luszczki and Czuczwar, 2003).  The resulting feeding response curve 

was compared to a theoretical additive curve, developed on the basis of best fit dose 
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response curves developed individually for 1 and 2 (Tallarida et al., 1997).  An F-test was 

applied to test for significant difference between logEC50 values associated with the 

theoretical additive curve vs. the observed plot (using GraphPad Prism version 4).  
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APPENDIX A 

SUPPORTING INFORMATION:  CALLOPHYCOIC ACIDS AND 

CALLOPHYCOLS FROM THE FIJIAN RED ALGA CALLOPHYCUS SERRATUS 

 

 

 

 

General Experimental Procedures.  NMR spectra were recorded at 500 MHz and 125 

MHz for 
1
H and 

13
C NMR, respectively, and referenced to residual CHCl3 (7.24 and 77.0 

ppm, for 
1
H and 

13
C, respectively) for 1-2 and 5-10 and to residual (CH3)2CO (2.04 and 

29.8 ppm, for 
1
H and 

13
C, respectively) for 3-4.  
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Table A.1: COSY correlations for callophycoic acids A-H (1-8) and callophycols A-B 

(9-10).  For diastereotopic protons with dissimilar chemical shifts, the proton whose 

chemical shift is listed first in Tables 1-2 of the main article is termed “a” and the other is 

“b”.  “NA” (not applicable) indicates that no proton signal exists for that position. 
COSY correlations observed between protons listed on far left and those below: 

1
H at 

positio

n #: 

1 2 3 4 5 6 7 8 9 10 

3 5a, 5b 5b 17 17 - 5 - 5, 17 5 - 

5a 3, 5b, 

6 

5b, 6 5b, 6 5b, 6 5b, 6 3 3, 5b, 

6 

3, 6 3, 7a, 

7b 

7a, 7b 

5b 3, 5a, 

6 

3, 5a, 

6 

5a, 6 5a, 6 5a, 6 NA 3, 5a, 

6 

NA NA NA 

6 5a, 5b, 

20b, 

22 

5a, 5b, 

20 

5a, 5b, 

22 

5a, 5b 5a, 5b, 

20 

5, 8, 

24 

5a, 5b, 

21a, 

21b 

3, 21a, 

21b 

NA NA 

7a NA NA NA NA NA NA NA NA 5, 8 5, 8 

7b NA NA NA NA NA NA NA NA 5, 8 5, 8 

8a 10, 25 10 8b, 9a, 

9b 

8b, 9a, 

9b 

8b, 9a, 

9b 

6, 24 8b, 9a, 

9b 

8b, 9a, 

9b 

7a, 7b, 

10a, 

10b, 

20a, 

20b 

7a, 7b, 

10a, 

10b, 

20a, 

20b 

8b 10, 25 - 8a, 9a, 

9b 

8a, 9a, 

9b 

8a, 9a, 

9b 

- 8a, 9a, 

9b 

8a, 9a, 

9b 

NA NA 

9a 10 10 8a, 8b, 

9b, 10 

8a, 8b, 

9b, 10 

8a, 8b, 

9b, 10 

10 8a, 8b, 

9b, 10 

8a, 8b, 

9b, 10 

NA NA 

9b 10 10 8a, 8b, 

9a, 10 

8a, 8b, 

9a, 10 

8a, 8b, 

9a 

NA 8a, 8b, 

9a, 10 

8a, 8b, 

9a, 10 

NA NA 

10a 8a, 8b, 

9a, 9b, 

12a, 

12b, 

26 

8a, 9a, 

9b, 

12a, 

12b, 

26 

9a, 9b 9a, 9b 9a, 

26a 

9 9a, 9b 9a, 9b 8, 10b 8, 10b, 

24  

10b NA NA NA NA NA NA NA NA 8, 10a, 

11b 

8, 10a, 

23, 24 

11a NA NA NA NA NA NA NA NA 11b, 

12 

11b, 

12 

11b NA NA NA NA NA NA NA NA 10b, 

11a, 

12 

11a, 

12 

12a 10, 

14a, 

26 

10, 14 12b, 

13a, 

13b 

12b, 

13 

12b, 

13a, 

13b 

14 12b, 

13a 

12b, 

13a, 

13b 

11a, 

11b 

11a, 

11b 

12b 10, 

14a 

10, 14 12a, 

13a, 

13b 

12a, 

13 

12a,  

13b 

NA 12a, 

13a 

12a, 

13a, 

13b 

NA NA 

13a 14 14 12a, 

12b, 

13b, 

14 

12a, 

12b, 

14 

12a, 

13b, 

14 

14 12a, 

12b, 

13b, 

14 

12a, 

12b, 

13b, 

14 

NA NA 

13b 14 14 12a, 

12b, 

13a, 

14 

NA 12a, 

12b, 

13a, 

14 

NA 13a, 

14 

12a, 

12b, 

13a, 

14 

NA NA 

14a 12a, 12a, 13a, 13 13a, 12, 13, 13a, 13a, 14b, 14b, 
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12b, 

13a, 

13b, 

16, 27 

12b, 

13a, 

13b, 

16, 27 

13b 13b 26 13b, 

27 

13b, 

27 

15b 15b 

14b NA NA NA NA NA NA NA NA 14a, 

15a, 

15b, 

23 

14a, 

15a, 

23 

15a NA NA NA NA NA NA NA NA 14b, 

15b, 

16  

14b, 

15b, 

16 

15b NA NA NA NA NA NA NA NA 14a, 

14b, 

15a 

14a, 

15a, 

16, 18, 

26 

16 14, 27 14 - - 27 18 - 14a 15a, 

26 

15a, 

15b 

17 18 18 3, 18 3, 18 18 18 18 3 NA NA 

18 17 17 17 17 17 16, 17, 

20 

17 NA - 15b 

20a 20b, 

22 

6, 22 20b - 6, 22a 18 NA NA 8, 20b 8, 20b, 

21a 

20b 6, 20a, 

22 

NA 20a NA NA NA NA NA 8, 20a 8, 20a, 

21a 

21a      NA NA NA NA NA 22 6, 21b, 

22a  

6, 21b, 

22 

21b, 

22a, 

22b 

20a, 

20b, 

22a, 

22b 

21b      NA NA NA NA NA NA 6, 21a, 

22a 

6, 21a, 

22 

21a, 

22a 

22a 

22a 6, 20a, 

20b, 

23a, 

23b 

20, 24 6, 23a, 

23b 

23a, 

23b 

20, 

22a, 

23 

21 21a, 

21b, 

22b, 

23a, 

23b 

21a, 

21b, 

22b, 

23a, 

23b 

21a, 

21b, 

22b 

21a, 

21b 

22b NA 24 NA - 22a, 

24 

NA 22a, 

23a, 

23b 

21a, 

21b, 

22a, 

23a, 

23b 

21a, 

22a, 

23 

21a, 

23 

23a 22, 

23b, 

24 

24 22, 

23b, 

24 

22, 

23b, 

24 

22a, 

24 

NA 22a, 

22b, 

23b 

22a, 

22b, 

23b 

14b, 

22b 

10b, 

14b, 

22b, 

25 

23b 22, 

23a, 

24 

24 22, 

23a, 

24 

22, 

23a, 

24 

NA NA 22a, 

22b, 

23a, 

24 

22a, 

22b, 

23a, 

24 

NA NA 

24 23a, 

23b 

22a, 

22b, 

23a, 

23b 

23a, 

23b 

23a, 

23b 

22b, 

23 

6, 8 23b 23b - 10a 

25 8a, 8b - - - - 10 - - - 23 

26a 10, 

12a 

10 - - 10, 

26b 

14 - - 16 15b 
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26b NA NA NA NA 26a NA NA NA NA NA 

27 14, 16 14 - - 16 18 14 14 NA NA 
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Table A.2: HMBC correlations for callophycoic acids A-H (1-8) and callophycols A-B 

(9-10).  For diastereotopic protons with dissimilar chemical shifts, the proton whose 

chemical shift is listed first in Tables 1-2 of the main article is termed “a” and the other is 

“b”.  “NA” (not applicable) indicates that no proton signal exists for that position. 
HMBC correlations observed between protons listed on far left and carbons at positions 

listed below: 

1
H at 

positio

n #: 1 2 3 4 5 6 7 8 9 10 

3 1, 2, 

17, 

18, 19 

1, 5, 

17, 19 

1, 5, 

17, 19  

1, 5, 

17, 19 

1, 5, 

17, 19 

1, 5, 

21, 23 

1, 5, 

17, 19 

1, 5, 

17, 19 

1, 4, 5 1, 4, 5 

5a 3, 4, 

6, 7, 

19, 21 

4, 6, 

7, 19, 

21 

3, 4, 

6, 19, 

21  

3, 4, 

6, 19, 

21 

6, 19, 

21 

3, 4, 

6, 7, 

23 

4, 19, 

20 

4, 6, 

19, 20 

1, 3, 

4, 6, 7 

1, 3, 

4, 7 

5b 3, 4, 

6, 7, 

19, 21  

4, 6, 

7, 19, 

21 

4, 6, 

21 

3, 4, 

6, 19, 

21 

4, 6, 

19, 21 

NA 3, 4, 

19, 20 

NA NA NA 

6 4, 5, 

7, 21, 

22, 25 

5, 7, 

20, 

21, 25 

4, 5, 

7, 21  

5, 7 7, 21 4, 5, 

8, 24 

- 20 NA NA 

7a NA NA NA NA NA NA NA NA 1, 5, 

6, 8, 

9, 19 

1, 5, 

6, 8, 

9, 19 

7b NA NA NA NA NA NA NA NA 1, 5, 

6, 8, 

9, 19 

1, 5, 

6, 8, 

9, 19 

8a 7, 9, 

24, 25 

6, 7, 

9, 10, 

11, 24 

7, 9, 

24 

7, 9, 

10 

- 7 10 - 6, 7, 

9, 10, 

19, 

20, 24 

7, 9, 

19, 

20, 24 

8b 7, 9, 

10, 25 

6, 7 7, 24 9, 10, 

24 

7, 24 10 - - NA NA 

9a 7, 8, 

10, 

11, 26 

10 8, 10, 

11 

8, 10 - - - - NA NA 

9b 8, 11 10, 11 8, 10, 

11 

8 - - - - NA NA 

10a 8, 9, 

12, 26 

9, 12, 

26 

9, 11, 

15, 16 

9, 11, 

15, 26 

8, 11, 

15, 26 

8, 9, 

12, 25 

- - 8, 9, 

11, 

12, 24 

- 

10b NA NA NA NA NA NA NA NA 9, 11, 

12, 

23, 24 

- 

11a NA NA NA NA NA NA NA NA 9, 10, 

12, 13 

- 

11b NA NA NA NA NA NA NA NA 9, 10, 

12, 13 

- 

12a 10, 

11, 

13, 

14, 26 

10, 

11, 

13, 26 

11, 

13, 26 

11 - 11, 

13, 14 

- - 11, 

13, 25 

10, 

11, 

13, 25 

12b NA NA 11, 

13, 26 

10 13, 14 NA - - NA NA 

13a 11, 14 11, 

12, 

14, 15 

14 11, 12 - 14 - - NA NA 
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13b 11, 

12, 

14, 15 

NA 14 NA 11, 15 NA - - NA NA 

14a 12, 

16, 27 

13, 

16, 27 

13, 

16, 27 

16, 27 12, 13 12, 

13, 26 

- - 16, 25 15 

14b NA NA NA NA NA NA NA NA 13, 

15, 16 

- 

15a NA NA NA NA NA NA NA NA - - 

15b NA NA NA NA NA NA NA NA 13 - 

16 12, 

14, 

15, 27  

14, 

15, 27 

10, 

14, 

15, 27 

10, 

14, 

15, 27 

10, 

14, 

15, 27 

17, 18 14, 

15, 27 

14, 

15, 27 

14, 

17, 

18, 26 

14, 

15, 17 

17 1, 3, 

19 

1, 3, 

19 

1, 3, 

19 

3, 19 1, 3, 

19 

16, 18 1, 3, 

19 

1, 3, 

19 

NA NA 

18 1, 2, 

4, 19 

2, 4, 

19 

2, 4, 

19 

2, 4, 

19 

2, 4, 

19 

16, 

17, 27 

2, 4, 

19 

NA 16, 

17, 26 

16, 

17, 26 

20a 6, 19, 

21, 22 

6, 19, 

21, 22 

6, 19, 

21, 22 

6, 19, 

21, 22 

6, 19, 

21, 22 

18, 

19, 27 

NA NA 8, 21 8, 21 

20b 6, 19, 

21, 22 

NA 19, 

21, 22 

NA NA NA NA NA 8, 21 8, 21 

21a NA NA NA NA NA 1, 3, 

23 

6, 22 6, 22 19, 

20, 22 

19, 20 

21b NA NA NA NA NA NA 6, 22 6, 22 - - 

22a 6, 20, 

23, 24 

20, 21 - 6, 20, 

21, 23 

- 2, 4, 

23 

- - 9, 21, 

23 

21, 23 

22b NA 6, 24 NA NA 24 NA - - - - 

23a 21, 

22, 

24, 25 

7, 24 7, 21, 

22, 24 

7, 21, 

22, 24 

22 NA - - 8, 9, 

10, 

12, 

13, 

22, 24 

9, 13, 

22, 25 

23b 7, 21, 

22, 24 

7, 21, 

24 

7, 21, 

22, 24 

21 NA NA - - NA NA 

24 7, 8, 

23, 25 

6, 7, 

23, 25 

7, 23, 

25 

23 25 6, 7, 

8, 23 

11, 23 11, 23 8, 9, 

10, 23 

8, 9, 

10, 23 

25 5, 6, 

7, 8, 

9, 24 

6, 7, 

8, 24 

6, 7, 

8, 24 

6, 7, 

8, 24 

6, 7, 

8, 24 

10, 

11, 12 

6, 7, 

8, 24 

6, 7, 

8, 24 

12, 

13, 

14, 23 

12, 

13, 

14, 

15, 23 

26a 10, 

11, 12 

10, 

11, 12 

10, 

11, 12  

10, 

11, 12 

10, 12 14, 

15, 16 

10, 

11, 

12, 24 

10, 

11, 

12, 24 

16, 

17, 18 

16, 

17, 18 

26b NA NA NA NA 10, 12 NA NA NA NA NA 

27 14, 

15, 16 

14, 

15, 16 

10, 

14, 

15, 16 

10, 

14, 

15, 16 

10, 

14, 

15, 16 

18, 

19, 20 

14, 

15, 16 

14, 

15, 16 

NA NA 

OH NA NA - - NA NA - - 1, 2, 6 1, 2, 6 
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Table A.3: Observed NOEs from NOESY and ROESY NMR experiments, for 

callophycoic acids A-H (1-8) and callophycols A-B (9-10).  For diastereotopic protons 

with dissimilar chemical shifts, the proton whose chemical shift is listed first in Tables 1-

2 of the main article is termed “a” and the other is “b”.  Only NOEs important to 

determinations of stereochemistry are listed. 
NOE observed between protons listed on far left and protons at positions listed below: 

1
H at 

position 

#: 
1 2 3 4 5 6 7 8 9 10 

5a 25 25 25 25 25  25 25   

5b 25 25 25 25 25  25    

6 24 24 9b, 24 9b, 24 24 8a, 8b 24 24   

7a         24 24 

7b         24 24 

8a   10, 16, 

25 

10, 16, 

25 

25 6   23 23 

8b 24 24 10, 25 10, 25 25 6     

9a   16, 24, 

27 

16, 24, 

27 

16 25     

9b 26 26 6, 26 6, 26       

10 12a 12a  8a, 8b, 

12a, 

14, 16 

8a, 8b, 

12a, 

14, 16 

14, 16 12 24 24   

12a 10 10 10, 14 10, 14  10   14a, 

14b, 

23 

14a, 

14b, 

23 

12b   26 26       

14a   10, 

12a, 

16 

10, 

12a, 

16 

10, 16  16   12 12 

14b         12 12 

16   8a, 9a, 

10, 14 

8a, 9a, 

10, 14 

9a, 10, 

14 

14     

18           

20a 22 22b 22 22 22b      

20b 22          

22a 20a, 

20b 

 20 20       

22b  20   20      

23         8, 12 8, 12 

24 6, 8b 6, 8b 6, 9a 6, 9a 6  6, 10 6, 10 7a, 7b, 

25 

7a, 7b, 

25 

25 5a, 5b 5a, 5b 5a, 5b, 

8a, 8b, 

12b 

5a, 5b, 

8a, 8b 

5a, 5b, 

8a, 8b 

9 5a, 5b, 

26 

5, 26 24 24 

26 9b 9b 9b, 

12b, 

27 

9b, 

12b, 

27 

  25 25   

27   9a, 26 9a, 26       
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Figure A.1  

1
H NMR spectrum of callophycoic acid A (1) (500 MHz; CDCl3) 
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Figure A.2 
13

C NMR spectrum of callophycoic acid A (1) (125 MHz; CDCl3)  
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Figure A.3  
1
H NMR spectrum of callophycoic acid B (2) (500 MHz; CDCl3) 
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Figure A.4 
13

C NMR spectrum of callophycoic acid B (2) (125 MHz; CDCl3)  
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Figure A.5  
1
H NMR spectrum of callophycoic acid C (3) (500 MHz; (CD3)2C 

O) 
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Figure A.6 
13

C NMR spectrum of callophycoic acid C (3) (125 MHz; (CD3)2C 

O) 
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Figure A.7  
1
H NMR spectrum of callophycoic acid D (4) (500 MHz; (CD3)2CO) 

 

 

 

 

 

 



163 

 
Figure A.8 

13
C NMR spectrum of callophycoic acid D (4) (125 MHz; (CD3)2C 

O) 
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Figure A.9  

1
H NMR spectrum of callophycoic acid E (5) (500 MHz; CDCl3) 

 

 

 
 

Figure A.10 
13

C NMR spectrum of callophycoic acid E (5) (125 MHz; CDCl3) 
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Figure A.11  
1
H NMR spectrum of callophycoic acid F (6) (500 MHz; CDCl3) 
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Figure A.12 

13
C NMR spectrum of callophycoic acid F (6) (125 MHz; CDCl3) 

 

 

 

 

 



167 

 
Figure A.13  

1
H NMR spectrum of callophycoic acid G (7) (500 MHz; CDCl3) 

 

 

 
Figure A.14 

13
C NMR spectrum of callophycoic acid G (7) (125 MHz; CDCl3) 
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Figure A.15  

1
H NMR spectrum of callophycoic acid H (8) (500 MHz; CDCl3) 

 

 

 
Figure A.16 

13
C NMR spectrum of callophycoic acid H (8) (125 MHz; CDCl3) 
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Figure A.17  

1
H NMR spectrum of callophycol A (9) (500 MHz; CDCl3) 

 

 
Figure A.18 

13
C NMR spectrum of callophycol A (9) (125 MHz; CDCl3) 
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Figure A.19  

1
H NMR spectrum of callophycol B (10) (500 MHz; CDCl3) 
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Figure A.20 

13
C NMR spectrum of callophycol B (10) (125 MHz; CDCl3) 
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APPENDIX B 

SUPPORTING INFORMATION FOR CHAPTER 3: ANTIMALARIAL 

NATURAL PRODUCTS FROM THE FIJIAN RED ALGA CALLOPHYCUS 

SERRATUS 

 

 

Table B.1: COSY correlations for bromophycolides J-L (1-3).  For diastereotopic protons 

with dissimilar chemical shifts, the proton whose chemical shift is listed first in Tables 1-

2 of the main article is termed “a” and the other is “b”.  “NA” (not applicable) indicates 

that no proton signal exists for that position. 
COSY correlations observed between protons listed on far left 

and those below: 

1
H at 

position 

#: 1 2 3 

3 - - - 

5a 5b, 6 5b 5b 

5b 5a 5a 5a 

6 5a NA NA 

7 NA 8a, 8b NA 

8a 8b, 9b 7, 8b 8b, 9b 

8b 8a, 9a, 9b, 24 7, 8a, 9a, 9b 8a 

9a 8b, 9b, 10 9b, 8b, 10 9b, 10 

9b 8a, 8b, 9a, 10 9a, 8b 8a, 9a, 10 

10 9a, 9b 9a 9a, 9b 

12a 12b, 13a, 13b 12b, 13a, 13b 12b, 13b 

12b 12a, 13a, 13b 12a, 13a, 13b 12a, 13b 

13a 12a, 12b, 13b, 14 12a, 12b, 13b, 14 13b 

13b 12a, 12b, 13a, 14 12a, 12b, 13a, 14 12a, 12b, 13a, 14 

14 13a, 13b 13a, 13b 13b, 26a, 26b 

16 17 17 17 

17 16 16 16 

20a 21a, 21b, 22 20b, 21a, 21b 20b, 21a 

20b NA 20a, 21a, 21b 20a, 21b, 23 

21a      20, 21b, 22 20a, 20b, 21b  20a, 21b, 22 

21b      20, 21a, 22 20a, 20b, 21a, 24b 20b, 21a, 22 

22 20, 21a, 21b NA 21a, 21b 

23 - - 20b 

24a 8b 24b - 

24b NA 24a, 21b NA 

25 - - - 

26a - - 14, 26b, 27 

26b NA - 14, 26a, 27 

27 - - 26a, 26b 

28 - NA NA 
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Table B.2: HMBC correlations for bromophycolides J-L (1-3).  For diastereotopic 

protons with dissimilar chemical shifts, the proton whose chemical shift is listed first in 

Tables 1-2 of the main article is termed “a” and the other is “b”.  “NA” (not applicable) 

indicates that no proton signal exists for that position. 
HMBC correlations observed between protons listed on far left 

and carbons at positions listed below: 

1
H at 

position 

#: 1 2 3 

3 1, 5, 16, 18 1, 5, 16, 18 1, 5, 16, 18 

5a 4, 7 7 3, 6, 7, 18, 19 

5b 3, 4, 6, 7, 18, 19 4 3, 6, 7, 18, 19 

6 - NA NA 

7 NA - NA 

8a - - 7, 22 

8b - - 6 

9a - - - 

9b - - - 

10a 11, 12 - - 

12a - - - 

12b - - 10, 11, 13 

13a - - 11 

13b - - - 

14 1, 12 1 15 

16 1, 3, 18 - 1, 3, 18 

17 2, 4 2 2, 4, 18 

20a - - - 

20b NA - 22 

21a - - 7, 19, 22 

21b - - 7 

22a - NA 20 

23 6, 19, 20 6, 19, 20 6, 19, 20 

24a 6, 7, 8, 22 7, 21 6, 7, 8, 22 

24b NA 7, 21 NA 

25 10, 11, 12 10, 11, 12 10, 11, 12 

26a 14, 15, 27 14, 15, 27 14, 27 

26b NA NA 14, 15, 27 

27 14, 15, 26 14, 15, 26 14, 15, 26 

28 19 NA NA 

Aryl-OH - 17, 18 4, 17, 18 
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Table B.3: Observed NOEs from NOESY and ROESY NMR experiments for 

bromophycolides J-L (1-3).  For diastereotopic protons with dissimilar chemical shifts, 

the proton whose chemical shift is listed first in Tables 1-2 of the main article is termed 

“a” and the other is “b”.  Only NOEs important to determinations of stereochemistry are 

listed. 
NOE observed between protons listed on far left and protons at 

positions listed below: 

1
H at 

position 

#: 1 2 3 

3 6 5a  

5a  3 24 

5b 24  24 

6 3, 8a, 20, 28   

7    

8a 6, 24   

8b 10, 24   

9a 10 10, 24a  

9b   22 

10 8b, 9a, 25 9a, 25 25 

12a 14 14 14 

12b 14  14 

13a 14 14 14 

13b  14 14 

14 12a, 12b, 13a 12a, 13a, 13b 12a, 12b, 13a, 13b 

20a 6, 21b, 22, 28   

20b    

21a 23   

21b 20, 22  22 

22 20, 21b  9b, 21b 

23 21a, 24, 28   

24a 8a, 8b, 5b, 23 9a 5a, 5b 

24b    

25 10 10 10 

26    

27    

28 6, 23, 20   
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Figure B.1.  

1
H NMR spectrum of bromophycolide J (1) (500 MHz; CDCl3) 
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Figure B.2  

1
H NMR spectrum of bromophycolide K (2) (500 MHz; CDCl3) 
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Figure B.3  

1
H NMR spectrum of bromophycolide L (3) (500 MHz; CDCl3) 
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APPENDIX C 

SUPPORTING INFORMATION FOR CHAPTER 5: SURFACE-MEDIATED 

ANTIFUNGAL CHEMICAL DEFENSES OF A TROPICAL SEAWEED 

 

Additional experimental methods. 

General.  Semipreparative HPLC was performed using a Waters 1525 or 515 pump with 

a Waters 2996 diode-array UV detector or a Waters 2487 dual-wavelength absorbance 

detector.  Compound purification was achieved with Agilent Zorbax SB-C18 and RX-SIL 

columns (5 µm, 9.4 ' 250 mm). 
1
H NMR spectra were collected in CDCl3 on a Bruker 

DRX-500 instrument with a 5 mm broadband probe and referenced to residual CHCl3 

(7.24 ppm).  LC-MS analyses were conducted with a Waters 2695 HPLC interfaced to a 

2996 diode-array UV detector and Micromass ZQ 2000 electrospray ionization mass 

spectrometer using MassLynx 4.0 software and an Alltech Alltima C18 reversed-phase 

column (3 µm, 2.1 x 150 mm).  HPLC grade solvents were used in semipreparative 

HPLC and DESI-MS, and optima grade solvents applied in LC-MS experiments (Fisher 

Scientific Co.).  NMR solvents were obtained from Cambridge Isotope Laboratories.  

High resolution mass spectra were acquired using electrospray ionization with an Applied 

Biosystems QSTAR-XL hybrid quadrupole-time-of-flight tandem mass spectrometer and 

Analyst QS software.  Epifluorescence and light microscopy experiments were conducted 

with an Olympus IX50 inverted microscope, and images collected with MagnaFire 

software (Optronics).  Additional light micrographs were obtained with an Olympus 

dissecting scope (i.e. Fig. 3S).  All statistical analyses were completed with either 

SYSTAT version 9 or GraphPad version 4.  
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The marine alga C. serratus.  The red macroalga Callophycus serratus (Harvey ex 

Kutzing 1957) (family Solieriaceae, order Gigartinales, class Rhodophyceae, phylum 

Rhodophyta) was collected at depths from 1-30 m at several sites in Fiji.  Ten collections 

were made in 2006 at Yanuca, Waitabu in Taveuni, Lavena in Taveuni, and Dravuni in 

Kadavu; GPS coordinates for each collection are provided in Table 1S.  Immediately 

following collection, portions for quantitative whole tissue LC-MS experiments were 

extracted as described in main text.  Remaining material was frozen at -20 °C until 

further processing.  Samples for DESI-MS experiments and microscopic analyses were 

collected in 2008 at Yanuca (18° 22’ 35” S, 177° 59’ 72” E) and immediately preserved 

with 1% or 10% formalin in natural seawater until analysis.  Samples for DESI-MS 

analyses were from separate plants collected on the reef at distances from 3 to 1000 m.  

Algal samples were identified based on comparison with previously described 

morphological traits (Littler and Littler, 2003), and vouchers deposited at the Georgia 

Institute of Technology and the University of the South Pacific in Suva, Fiji.   
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Table C.1  Callophycus serratus collection sites in Fiji and whole tissue natural concentrations of known secondary metabolites.  

Concentrations were determined by quantitative LC-MS of extracts from fresh plant material, and illustrate that bromophycolides and 

callophycoic acids/callophycols do not co-occur in individual specimens.  ND denotes compounds that were not detected by selected ion 

recording ESI-MS.  *deA denotes debromophycolide A. 
whole tissue concentration (µM) 

bromophycolide   callophycoic acid callophycol  
 

ID 

Collection 
site 

coordinates A B C D E F G H I 
de 
A*   A B C D E F G H A B 

G004 

18
o
23'57"S 

177
o
57'58"E 151 102 46.0 22.3 22.8 ND 40.8 31.2 50.0 ND   ND ND ND ND ND ND ND ND ND ND 

G021 

18
o
22'47"S 

177
o
59'37"E 165 107 24.0 10.0 35.0 ND 42.0 25.0 34.0 22.0   ND ND ND ND ND ND ND ND ND ND 

G039 

18
o
22'43"S 

177
o
59'41"E ND ND ND ND ND ND ND ND ND ND   1.9 10.2 257 181 ND ND 187 48.1 61.9 23.8 

G049 

18
o
22'88"S 

177
o
58'94"E 117 81.2 20.9 120 27.9 ND 30.4 29.6 19.5 8.3   ND ND ND ND ND ND ND ND ND ND 

G052 

18
o
22'35"S 

177
o
59'72"E ND ND ND ND ND ND ND ND ND ND   ND 2.1 252 131 ND ND 241 78.4 92.5 33.3 

G091 

16
o
48'97"S 

179
o
50'84"E ND ND ND ND ND ND ND ND ND ND   ND ND 149 188 ND ND 27.1 20.2 75.5 25.8 

G100 

16
o
52'31"S 

179
o
52'68"E 103 146 37.9 17.7 26.1 ND 18.4 17.8 12.5 47.1   ND ND ND ND ND ND ND ND ND ND 

G113 

18
o
42'49"S 

178
o
32'35"E ND ND ND ND ND ND ND ND ND ND   ND ND 174 160 ND ND 8.3 ND 85.1 33.0 

G118 

18
o
41'62"S 

178
o
30'72"E ND ND ND ND ND ND ND ND ND ND   ND ND 261 178 ND ND 113 93 72.4 25.9 

G171 

18
o
23'57"S 

177
o
57'58"E ND ND ND ND ND ND ND ND ND ND   ND ND 129 240 ND ND ND ND 178 53.1 
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Fig. C.1 Experimental log IC50 values for growth inhibition of the fungus L. thalassiae, 

as determined by analysis of dose-response curves.  Bars represent one standard error.  

IC50 values are indicated in white text within each data bar.  NSA denotes compounds 

that were not significantly active at the maximum evaluated concentration of 300 µM (p 

> 0.05, n = 3, one-way ANOVA with Dunnett’s post test). 
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Fig. C.2  DESI mass spectrum of pure bromophycolide E (0.9 pmol/mm
2
).  The ion 

cluster centered at m/z 583 represents the molecular ion and m/z 619 represents the 

chloride adduct of bromophycolide E.    

 

 

 

 

  

Fig. C.3  Light micrographs (~25! magnification) of bromophycolide-containing patches 

observed on intact C. serratus surfaces (preserved with 10% aqueous formalin). 
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 Pre DESI-MS analysis    Post DESI-MS analysis 

 

Fig. C.4  Light micrographs (100! magnification) of representative C. serratus fragment 

before (left) and after (right) DESI-MS analysis, indicating no obvious cell lysis caused 

by exposure to DESI source. 

 

 

                

Fig. C.5  Representative light micrographs (100! magnification) of undamaged C. 

serratus tissue found beneath characteristic bromophycolide-containing surface patches. 
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Fig. C.6  Light and epifluorescence micrographs of bromophycolide-containing patches 

from C. serratus surfaces.  (a,b,d,e) 100! magnification light (left) and epifluorescence 

(right) micrographs of DAPI-stained patches removed from algal surfaces.  (c) 400! 

magnification light (left) and epifluorescence (right) micrographs of DAPI-stained 

patches corresponding to 100! image from (b).  Distinct stained nuclei, which would 

offer evidence for the presence of microbes, were not observed. 
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APPENDIX D 

SUPPORTING INFORMATION: ECOLOGICAL LEADS FOR NATURAL 

PRODUCT DISCOVERY:  NOVEL SESQUITERPENE HYDROQUINONES 

FROM A CRUSTOSE RED ALGA 

  

 

 

 

 

Table D.1: COSY correlations for fijioic acids A-B (1-2).  For diastereotopic protons 

with dissimilar chemical shifts, the proton whose chemical shift is listed first in Table 1 

of the main article is termed “a” and the other is “b”.  “NA” (not applicable) indicates 

that no proton signal exists for that position. 
COSY correlations observed between 

protons listed on far left and those below: 

1
H at 

position 

#: 1 2 

2 19 - 

5 - - 

7a 5, 7b, 8 7b 

7b 7a, 8 7a, 8 

8 7a, 7b 7b 

10a 10b, 11a, 11b 10b, 11b 

10b 10a 10a, 11a, 11b 

11a 10a, 11b, 12 10b, 11b 

11b 10a, 11a, 12 10a, 10b, 11a, 12 

12 11a, 11b 11b, 22 

14 15a, 15b 15, 23a, 23b 

15a 14, 16 14, 16 

15b 14, 16 NA 

16 15a, 15b, 18 15, 18 

18 16 16 

19 2 - 

21 - - 

22 

23a 

- 

- 

12 

23b 

23b - 23a 
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Table D.2: HMBC correlations for fijioic acids A-B (1-2).  For diastereotopic protons 

with dissimilar chemical shifts, the proton whose chemical shift is listed first in Table 1 

of the main article is termed “a” and the other is “b”.  “NA” (not applicable) indicates 

that no proton signal exists for that position. 
HMBC correlations observed between 

protons listed on far left and carbons at 

positions listed below: 

1
H at 

position 

#: 

1 2 

2 1, 3, 4, 19 1, 3, 4, 19 

5 3, 4, 7, 20 3, 4, 7, 20 

7a 5, 6, 8, 9, 17, 20 5, 6, 8, 9, 17, 20 

7b 5, 6, 8, 9, 17, 20 5, 6, 8, 9, 17, 20 

8 6, 7, 9, 10, 16, 17, 18 6, 7, 9, 16, 21 

10a 21 - 

10b - 19, 21 

11a - 12 

11b 10 - 

12 22 10, 11, 13, 14, 22 

14 8, 9, 10 8, 9, 12, 13, 15, 21, 23 

15a - 14, 16, 17 

15b - NA 

16 15 8, 14, 18 

18 8, 16, 17 8, 16, 17 

19 2, 4, 6, 20 2, 4, 6, 20 

21 8, 9, 10, 14 8, 9, 10, 14 

22 

23a 

12, 13, 14, 23 

12, 13, 14, 22 

11, 12, 13 

12, 13, 14 

23b NA 12, 14 
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Table D.3: Observed NOEs from NOESY, ROESY, and 1D NOE NMR experiments, for 

fijioic acids A-B (1-2).  For diastereotopic protons with dissimilar chemical shifts, the 

proton whose chemical shift is listed first in Table 1 of the main article is termed “a” and 

the other is “b”.  Only NOEs important to determinations of stereochemistry are listed. 
NOE observed between protons listed on 

far left and protons at positions listed 

below: 

1
H at 

position 

#: 

1 2 

2 - - 

5 - 7a 

7a - 5 

7b 10b 10a 

8 21 21 

10a - 7b 

10b 7b - 

11a 22 - 

11b 21, 22 21 

12 14, 23 23b 

14 12 22 

15a - 21, 23a 

15b - NA 

16 - - 

18 - - 

19 - - 

21 8, 22 8, 11b, 15 

22 

23a 

21, 11a, 11b 

12 

14, 23b 

15 

23b NA 12, 22 
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