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SUMMARY  

 T cells of the immune system recognize small antigen peptide fragments loaded 

onto Major Histocompatibility Complex (MHC) molecules through their T Cell Receptor 

(TCR). The recognition of antigenic pMHC by the TCR is an extremely sensitive and 

specific process, discriminating as few as a single antigenic pMHC from the self majority 

while remaining tolerant to uninfected cells. This unique sensitivity and specificity have 

been intensely studied, but much is still unknown regarding mechanisms surrounding the 

antigen recognition process.  

In the following studies, a Horizontal Atomic Force Microscope (HAFM) was 

developed to assist in parsing this unique behavior. Utilizing this system, periods of 

upregulated adhesion, called TCR ligand memory, were investigated between 1E6 TCR 

and a panel of pMHC of varying potency. The strength of these periods of upregulated 

adhesion, indicative of an upregulated sensitivity to antigen, inversely correlated with 

antigen potency. Inhibition of proximal signaling molecule Lck decreased the triggering of 

these periods, but did not significantly affect their duration. Interestingly, membrane 

cholesterol oxidation by cholesterol oxidase eliminated TCR ligand memory all together. 

Treatment with cholesterol sulfate, a naturally occurring analog of cholesterol, depleted 

TCR ligand memory in a dose-dependent fashion. This behavior was simulated to extract 

estimates of kinetic parameters and showed that TCRs upregulated their kinetics several 

magnitudes very quickly upon initial antigen recognition. This mechanism is a way to 

increase antigenic sensitivity and increase antigen rebinding to further cell activation. 



 xiv 

Additionally, OT-1 double positive thymocytes were probed by pMHC using a 

Biomembrane Force Probe (BFP) with different ligands under the presence of CD8, a 

coreceptor which also binds MHC independently of TCR. Negatively selecting ligands 

resulted in catch-bonds, and positively selecting ligands resulted in slip bonds. This process 

relied on the kinase activity of Lck. Simulation-based analysis on these data sets indicated 

that this mechanism was not the result of passive processes. Force induced formation of 

long-lived bonds, indicating that mechanical forces are priming formation of a larger 

complex which enhances lifetime. These bonds dominate the average lifetime and result in 

catch-bond behavior. Simulations of the BFP assay suggest that mechanotransduction by 

the TCR resulted in active heterodimerization of CD8 and TCR via interactions between 

intracellular tails of CD3(TCR) and Lck(CD8). This mechanism results in additional 

upregulation of binding kinetics for increasing antigen capture and rebinding to promote 

signaling, thereby also increasing antigen sensitivity and discrimination. 
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CHAPTER 1. INTRODUCTION 

The human body is remarkably complex machine. With the discovery of the first cells 

by Robert Hook in the 17th century [1] and the further formulation of cell theory over a 

century later [2], we know that this complex machine is composed of trillions of cells 

seamlessly working together to perform tasks necessary for us to survive. If we add to it 

the complexity of the cellular machinery and all its levels of regulation, the problem of 

understanding the human body in all its intricacies is simply mind-boggling, possibly 

outside the capacity for human knowledge. From this scope, the entire premise of survival 

and disease becomes overwhelming. 

Ultimately, the goal of understanding the human body is to give context to the 

diseases which disrupt it, leading to better and more informed treatments. Despite the 

pathology of disease being seen largely at a systems level, diseases in the human body, 

spanning from autoimmune disorders to the common cold, originate or interact at the 

cellular level [3]. This cellular activity eventually manifests itself in affecting system level 

functions. Therefore, if we center our search for understanding diseases by examining the 

fundamental effector units – the cells themselves – then we can begin to understand specific 

aspects of these diseases. This approach narrows the range of potential treatments and 

streamlines the identification of clinical intervention points.  

As alluded to earlier, the cell itself is a remarkably complex machine. If the cell is a 

machine, the proteins are the principle components which perform its function. Therefore 

to understand the cell, we must begin by understanding the proteins themselves. Several 

layers of difficulty convolute the investigation of proteins, but it primarily originates from 
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the inability to adequately visualize their processes. Proteins are smaller than the diffraction 

limit (approximately 10 nm). Therefore, the field uses a variety of techniques to circumvent 

this limitation. Entire subfields are dedicated to one of a few of these assays. Some 

visualize protein movement and organization by tagging proteins with fluorescent dyes or 

other markers through specialized microscopy techniques [4]. Others visualize their 

modifications in bulk assays such as Western blot techniques [5] and flow cytometry [6] 

after probing interactions by modifying proteins or providing different stimuli. Entire fields 

are dedicated to simply visualizing a single protein’s structure or binding properties [7]. 

All this data is later disseminated by review papers and text books to draw conclusions 

about the inner workings of the cell.  

Despite the vast amount of available data by molecular biology approaches, 

predictions were, and still frequently are, generalized as unquantified influences, such as 

upregulation of activity, on other molecular interactions. These influences are outlined as 

static connection diagrams which describe the influences of multiple molecular pathways. 

From a homeostatic perspective, this helps to better understand what gives rise to many 

cellular behaviors. However, if a molecule can be activated, inhibited, expressed or 

degraded by a series of other controlled reactions, all under the influences of external 

factors such as molecular expression or micro-environmental cues, homeostatic influences 

cannot suffice to understand the complexity of even a single molecule’s influence on the 

system as a whole.  

Computational systems biology approaches attempt to unify the vast amount of 

information available from molecular biology to converge on the true interaction network. 

This, in turn, will lead to a better understanding of the cell itself and further progress the 
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goal of better and more informed disease treatments. There are considered two arms of the 

computational systems biology [8], data-mining and simulation-based analysis. Moving 

forward, the focus will be on simulation-based analysis.   

Much of the focus of simulation-based analyses is placed on kinetics rates and 

affinities of receptor-ligand binding. The Zhu lab has developed several techniques to assist 

in measuring the kinetics of receptor-ligand interactions spanning across two membranes 

– called two-dimensional, or 2D, kinetics – which are critical in governing communication 

between to cells in contact. Because membranes of cells act to isolate the intracellular 

machinery which governs cell responses, intercellular communication across membranes 

is a cornerstone of cell-cell communication. This communication stems from several 

factors, but a significant influence is the result of receptor-ligand interactions linking two 

opposing membranes, allowing signals to be directly transmitted from cell to cell. How 

quickly receptors bind and dissociate, governed by the on- and off-rates of the interaction 

respectively, are critical parameters in shaping the response.  

However, in many experimental 2D kinetics assays, the receptor-ligand interaction is 

in the cellular context, allowing modifications and signaling to occur; the cell is often 

thought of as being “tickled” with its ligand by the experimenter. It is natural to assume 

that this “tickling” may induce changes to the cell over time as the result of prior binding 

events, yet the result is often summarized as a single kinetic rate or affinity and correlated 

with complex behaviors which are often significantly downstream of binding. In essence, 

although the presented information is more easily digested by the reader, some information 

in the series of binding events is lost by the use of summary parameters, similar to the loss 

of information in molecular biology approaches discussed previously. In this manuscript, 
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simulation-based analyses will be used in tandem with experimental assays to draw more 

information from these complex 2D binding assays. 

 The focus of this manuscript will be on a primary molecular interaction of the 

adaptive immune response – that of the T Cell Receptor (TCR) binding to its ligand, a 

peptide fragment loaded onto Major Histocompatibility Complex (pMHC). From its 

discovery in 1982-83 [9-11], a significant amount of study has been aimed toward 

understanding its function and regulation. However, despite the large body of research into 

its role in adaptive immunity, the biophysical aspects of discrimination of foreign peptides 

are still incompletely understood. The majority of the difficulty arises from the fact that 

antigenic pMHC, those coming from foreign pathogens, are typically low in number 

compared to self pMHC, those which are naturally displayed on the surface of all cells in 

the body [12]. Therefore, the TCR must have enough power to detect low amounts of 

antigen on infected or diseased cells, while also not eliciting a response to healthy cells 

expressing only self pMHC.  

Much of the focus of antigen recognition and discrimination has been placed on the 

kinetics of the interaction, making it an excellent study for the 2D kinetic assay tools in the 

Zhu lab and simulation-based analyses. In this study, a new tool was developed in the Zhu 

lab, Horizontal Atomic Force Microscopy (HAFM), to assist in performing some of the 

assays required to investigate TCR kinetic regulation. This tool was used to investigate 

transiently upregulated TCR-pMHC binding periods which are thought to enhance the 

discriminatory capabilities of the TCR. Lastly, a mechanism controlling the mechanical 

activation of TCR and binding of coreceptor CD8 in thymocytes to enhance antigen 

discrimination was investigated through simulation-based analyses. 
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CHAPTER 2. BACKGROUND 

2.1 T cells in immunity 

In brief, there are two main components to our immune systems - innate and adaptive 

immunity – composed of many different cell types originating from the bone marrow [13]. 

Innate immunity provides the first line of defense to invading pathogens, and relies heavily 

on recognition of generic patterns. T lymphocytes, or T cells, are a major component of the 

body’s adaptive immune system, the second line of defense, which depends on innate 

immune functions to develop a response. After pathogen clearance, adaptive immunity has 

the ability to recognize the same pathogen upon future infection and expedite its clearance.  

2.1.1 Thymic development 

T cells begin as pluripotent hematopoietic stems cells in the bone marrow, and 

transition to the thymus for training. Here, they are referred to as thymocytes, and are not 

yet involved in immune functions. In the thymus, thymocytes undergo development of a 

functional TCR, positive selection by appropriate self pMHC binding, and determination 

of lineage fate [14-16]. In short, the thymus positively selects T cells to respond to self 

pMHC, a response called tonic signalling which is required for T cell survival [17], while 

eliminating cells which respond too strongly in a process called negative selection [18]. 

This results in a pool of cells which do not respond adversely to healthy cells, but which 

has the possibility of recognizing non-self, or antigenic peptides; the reasoning for such a 

mechanism will become more clear in Section 2.2.3. After thymocytes undergo the 

selection process, naïve T cells leave the thymus and enter circulation. 
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2.1.2 T cell activation 

The series of events required for T cell activation after infection is well-defined. 

First, antigen from the infected site is delivery through innate recognition or other passive 

processes through the lymphatic system to a draining lymph node and presented on Antigen 

Presenting Cells (APCs). After antigen delivery to the lymph nodes, naïve T cells have the 

ability to recognize pathogenic pMHC in the lymph nodes through their specific TCR and 

become activated by forming a well-characterized, complex structure between T cell and 

APC known as the immunological synapse [19-22]. Subsequently, the cells undergo clonal 

expansion. This expansion leads to a large pool of effector cells with the same TCR 

recognizing the same pathogenic pMHC. These cells either return to circulation and the 

site of infection to identify and kill other infected cells presenting the same pathogenic 

MHC or release cytokines which help prime other immune cells to boost other proximal or 

humoral immune responses [13, 23]. Once the pathogen has been removed from the body 

by this response, a small number of the remaining effector cells transition into a memory 

state to act upon future infection by the same or similar pathogens [24]. 

It is important to note that these are only the classical responses induced by antigen 

recognition. There are several other subtypes of T cells that behave differently or have 

other roles (discussed further in section 2.1.3.2). Additionally, the picture is very complex, 

involving many other molecular and biochemical players which act to modulate the 

response. However, the basic progression of the activation cycle is similar – antigen uptake, 

presentation in the lymph nodes, TCR recognition, expansion, recirculation, further TCR 

recognition in tissues, and lastly, effector response. 
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2.1.3 T cell subsets 

As the field of immunology develops, many different subsets of T cells are defined, 

all with differential behaviours and responses. We will briefly go over some of them here. 

However, as the literature grows, these subsets are more guidelines than fixed points. Cells 

have remarkable plasticity; switching between subsets has been known to occur and 

concrete classifications of cell behaviours is being constantly revised [25].  

2.1.3.1 Classical T cell subsets: CD4+ vs. CD8+ T cells 

The coreceptors CD8 and CD4 bind to MHC class I and II, respectively, 

independent of the TCR binding site to enhance the activation upon antigen recognition 

[26]. In addition to their role in antigen recognition (discussed in Section 2.3.5), the 

presence of either coreceptor is exclusive and indicates a specific lineage fate [13]. CD8+ 

positive cells are the effective targeted killers of the immune system. Upon pathogenic 

pMHC recognition in the lymph nodes, differentiated cytotoxic effector CD8+ T cells are 

the foot soldiers of the immune system that seek out and kill other infected cells throughout 

the body to prevent the spread of disease. Naturally, there are subsets of these (discussed 

in [27]). If CD8+ cells are the foot soldiers, CD4+ cells are their diverse set of commanders, 

playing multiple roles to orchestrate the defense through the release of different cytokines. 

These include TH1, TH2, TH9, TH17, TH22, Treg, and TFH [28] although there are subsets of 

even these cell subtypes [29-32]. These cells display wide variety of roles range from 

upregulating innate responses and antibody production to shutting down even these same 

roles.  
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Both CD4+ and CD8+ positive cells however require initial antigen recognition 

through their TCR, albeit by different means. CD8+ positive cells recognize only class I 

pMHC, which is expressed on all cell types throughout the body. They must be able to 

eliminate any cell that is infected while not allowing the pathogen to spread by tightly 

controlling their disposal by apoptosis. However, CD4+ cells, which have TCRs only 

recognizing only class II pMHC, only respond to professional APCs. The different MHC 

classes allows a delineation of effector functions, stemming from how the peptides are 

processed. More will be discussed about this in Section 2.2.3.  

2.1.3.2 Non-classical subsets 

Although not necessarily important to this study, it is important to note that there are 

several other subsets of T cells that do not necessarily recognize pMHC; their responses to 

antigen through different receptors may be similar and the mechanisms by which they are 

triggered could be related. Natural Killer T cells recognize glycolipids presented on another 

molecule, CD1d [33, 34]. Mucosal Associated Invariant T cells respond to MR1 bound 

vitamin B metabolites, although their function is more innate and less adaptive [33, 34]. 

Up to this point, all mention of TCR has been of the majority  heterodimer, although 

there is another subset of T cells expressing a different form -  - aptly named  T cells, 

reviewed in [35]. From this point forward, all mention of TCR will be . 

2.2 T cell antigen recognition through the TCR 

The TCR is the central node of T cell activation and the primary molecule of interest 

for this study. Since its discovery nearly in the early 80s [9-11], a significant amount of 

research has uncovered several aspects key to how it recognizes antigen and signals 
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activation of the cell. Some of that will be reviewed in this section. There are several key 

aspects to understanding any receptor-ligand interaction – the structure and signaling 

capacities. In the case of TCR-pMHC interactions, it is also critical to understand the 

origins of the peptides themselves. These concepts will be discussed in this section. 

2.2.1 TCR-pMHC structure 

The TCR is a membrane-bound heterodimer of immunoglobulin (Ig)-like chains 

encoded by several different gene regions – variable, diversity, joining, and constant – 

which are organized during thymic development [36]. Due to somatic rearrangement of 

these regions, there are a theoretically estimated 1015 to 1020 unique combinations of TCRs 

[37], although practical limitations constrain the true diversity to around 107-108 [38]. Each 

T cell will express only one of these unique combinations. Considering that each TCR and 

can cross-react with possibly several different pMHCs, the potential peptide sequences 

which can be recognized by T cells is enormous.  

On the pMHC side, the structure is slightly simpler, but no less diverse due to MHC 

class restriction and the presence of two components – both the peptide and the MHC itself. 

Class I and II MHC have slightly different structures. MHC Class I is composed of three 

globular domains, 1-3, stabilized by Beta-2 Microglobulin (Figure 1A). The short 

peptide sequence, approximately 8-12 amino acids in length, sits in a groove between the 

1 and 2 domains. MHC Class II is composed of two chains consisting of two domains 

each - . The longer peptide sequence (>11 amino acids) sits in the groove between the 

1 and 1 domains (Figure 1B). 
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Figure 1. Cartoon depiction of MHC Class structure 

  [39] 

The majority of the TCR diversity is encoded by the variable region most distal to 

the cell membrane. Due to the massive diversity of the TCR pool, many different structures 

must be resolved to make generalizations about the origins of ligand recognition. Since the 

first TCR-pMHC structure was first resolved by x-ray crystallography in 1996 [40], over 

100 different structures have been solved. Six TCR loops, CDR1-3 for each chain, govern 

the interaction with both the MHC and peptide [41, 42]. TCRs tend to overlap the peptide 

at a well-conserved binding angle (see [43] for binding angles), with the CDR loops making 

contacts on the peptide. However, some CDR loops also contact the MHC itself [41, 43], 

indicating that the TCR recognizes aspects of both the MHC and peptide.  

2.2.2 TCR signalling and regulation 

Due to the cell membrane barrier isolating cellular machinery, information from 

outside the cell must be transferred across the membrane in the form of receptor-ligand 

binding. Typically, information from binding produces signalling in the form of a 

biochemical signal inside the cell. The TCR only carries a short intracellular domain and 

(A) MHC Class I structure. Peptide sits in groove between 1 and 2 domains. (B) MHC 

Class II structure. Peptide resides between 1 and 1 domains. Figure adapted from 
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does not contain any intracellular signalling domains of its own. Therefore, this 

information transfer relies wholly on another molecular interaction, the interaction between 

TCR and CD3 subunits that organize themselves around the TCR. Stoichiometric assays 

have determined there are three CD3 dimers - , , and  – that non-covalently associate 

with the TCR, each containing one or more Immunoreceptor Tyrosine-based Activation 

Motifs (ITAMs) required for biochemical signalling [41, 44]. These ITAMs become 

phosphorylated upon activation of the T cell [45]. The initial phosphorylation of ITAMs 

and accumulation of signal, referred to as TCR triggering or TCR activation, is a central 

event in the activation of T cells. As few as a single antigenic pMHC interaction can result 

in cell activation [46-48]. Therefore, understanding the regulation of this information 

transfer is critical in understanding the immune response. 

The sequence of events in TCR triggering is well described in the literature. Briefly, 

CD3 ITAMs in a resting T cell are thought to be buried in the membrane where they are 

not accessible for phosphorylation due to the strong negative charge of the inner leaflet and 

positively charged sequences on the CD3 tails [49, 50]. Upon pMHC engagement, the 

ITAMs are exposed for phosphorylation by Src family tyrosine kinase Lck [51]. After an 

ITAM has been doubly phosphorylated, Syk family kinase Zeta-chain-Associated 70 kDa 

tyrosine Phosphoprotein (ZAP-70) can bind through its tandem SH2 domains, releasing an 

inhibitory state and enabling it to become phosphorylated (by Lck or trans-phosphorylated 

by other ZAP-70), stabilizing an active conformation. ZAP-70 then begins a chain of events 

by phosphorylating many different molecules, primarily scaffolding or signalling proteins 

such as Linker for the Activation T cells (LAT) and SH2-domain-containing Leukocyte 
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Protein of 76 kDa (SLP-76) [52, 53]. These molecules continue a cascade of activation, 

resulting in full T cell activation. 

TCR activation is a very dynamic process involving multiple levels of regulation; 

this begins at the TCR itself. In a resting T cell, the TCR resides in nanodomains and 

clustered by lipid rafts on resting T cells [54, 55], which concatenate upon antigen 

recognition into large microclusters symptomatic of immunological synapse formation. 

Receptor pre-clustering controls receptor sensitivity [56] and has been shown to be relevant 

with TCR [54, 57]. In addition to the clustering effects of lipid rafts, cholesterol binds the 

TCR, resulting in downregulation of signalling [55, 58-60]. This indicates several levels of 

control at the TCR level. 

Intracellular regulation of signalling occurs at many points. Lck has several 

different phosphorylated forms, each with different kinetics [61], to regulate initial ITAM 

phosphorylation rates. ZAP-70 and the ITAMs also have their own levels of regulation 

discussed previously. In addition, phosphatases and other kinases, such as SHP isoforms 

and Csk, control the phosphorylation patterns of these molecules, typically themselves 

under the control of co-stimulatory and co-inhibitory receptors [62]. In summary, the TCR 

signalling complex is chaotic, but tightly controlled, through a combination of factors [63].  

2.2.3 Antigenic and self pMHC origins 

Antigens are any substance that induces your body to produce a specific antibody 

for it; however, it is more broadly used to define any toxin or foreign substance that induces 

an immune response. Traditionally, MHC class I and II molecules present peptides to be 

recognized by CD8+ and CD4+ T cells, respectively. The origins of the peptide fragment 
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depend on the source of the protein – intracellular peptides for MHCI and exogenous 

peptides for MHCII. However, the presented peptides derive from proteolysis by the 

proteasome [64] and is occurring in healthy or infected cells. Importantly, this process is 

does not discriminate between proteins of different origins; it simply degrades those which 

have been targeted for degradation.  

Therefore, if a virus begins hijacking the cell, pieces of the proteins it expresses 

which are not expressed by a healthy cell will become expressed alongside those of the 

natural protein fragments. The result is pMHC are both antigenic and self. However, due 

to the dominance of self-proteins in the cell, self-peptides dominate the expression [12, 

65]. This is a critical point. TCRs must be able to differentiate small differences in the 

peptide sequence to determine if a cell is infected while maintaining tolerance (not 

triggering) to a cell expressing only self-peptides. The result of faulty recognition can have 

dire consequences on the body in the form of autoimmune diseases. This discrimination is 

a crucial factor under significant investigation. However, to date, the discriminatory 

capabilities of TCR antigen recognition have not been reconciled with the high sensitivity 

of antigen detection [51]. Previous efforts to do so will be summarized in Section 2.3. 

2.3 Models of TCR antigen recognition and self-peptide discrimination 

Mathematical models and simulation-based analysis have been used to elucidate 

many different mechanisms in receptor activation [8]. Beginning soon after the discovery 

of the TCR, its mechanism has been under investigation through computational simulations 

and mathematical modelling. This will be discussed in this section. 

2.3.1 Receptor occupancy model 
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One of the earliest models of TCR signalling, named receptor occupancy or 

affinity-based model, assumes that the response of the T cell is governed by the fraction of 

TCRs bound to pMHC. This model gained popularity in many circles because of the TCR’s 

similarity to many other receptors and basic tenants of pharmacology with its origins the 

early 20th century [66]. Because antigenic MHCs have higher affinity, it is believed that 

they alter the balance, inducing more TCRs to bind and shift the signalling across the 

threshold towards activation. Despite the concept being very popular in explaining the T 

cell response [67-69], it only seems to hold true to thymocytes [70, 71]. The existence of 

significant contradictory evidence suggests affinity may play a role, but it is not the only 

factor [45, 51, 72]. Therefore, in the human body, it is likely that some amount of tonic 

signalling is induced by receptor occupancy due to its tuning at the thymic selection level, 

but the knowledge that a single antigenic MHC binding event induces responses [47, 48] 

brings to question this mechanism playing a significant role in pathogen clearance. 

2.3.2 Kinetic segregation 

The concept of kinetic segregation originated as an alternative model based on the 

observation that receptor-ligand interaction of similar sizes segregated into small 

microdomains upon T cell activation during immunological synapse formation [73]. It is 

known that the membrane-bound phosphatase CD45, which lacks any known ligand, 

regulates the kinase activity of Lck [61, 74]. Due to its large ectodomain (~45nm) and the 

relatively small intermembrane distance of the TCR:MHC complex (~15nm), passive 

minimization of membrane bending energy leads to segregation of CD45 from TCR:MHC 

complexes over time [75, 76]. This isolation promotes kinase restricted zones where high 

kinase activity phosphorylates CD3 intracellular tails, resulting in T cell signalling. As 
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evidence for this mechanism, deletion or shrinking of extracellular CD45 domains has been 

shown to reduce TCR-CD45 isolation and eliminate T cell activation [76]. Due to the low 

number of antigenic pMHC on the surface of cells, it is unlikely to be the primary factor in 

initial TCR triggering. Kinetic segregation likely plays a role in immunological synapse 

formation and propagation of TCR signalling, adding a signalling amplification layer 

leading to full T cell activation, but does not provide the means for the initial triggering 

events.  

2.3.3 Kinetic proofreading and extensions 

TCR recognition of antigenic peptides exhibits qualities of high specificity and 

sensitivity. As TCRs scan the surface of an APC, they will experience lots of noise in the 

form of self-pMHC, but will only respond after encountering antigen; this is termed 

sensitivity, as the TCR must be extremely sensitive to the presence of antigen to respond 

above the noise [21, 47, 77].  Additionally, a single amino acid point mutation in the peptide 

fragment can also completely change the response – that is, the TCR responds specifically 

for a certain pMHC and will not trigger when it does not engage antigen peptide [78]. 

Although kinetic segregation and receptor occupancy models may be instrumental 

in propagating TCR signalling, the initial triggering mechanism, i.e. the first triggering 

event leading to activation, is still under debate. The first attempt at modelling this 

mechanism was the kinetic proofreading mechanism adapted by McKeithan [79] from 

DNA replication models. He suggested that upon binding, modifications began occurring 

to the TCR at a specific rate. Once a significant number of modifications had been made, 

the TCR was considered fully active. If the TCR:pMHC complex dissociates before full 
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activation, the TCR reverts to an unmodified resting state. In this simple model, specificity 

is increased with higher modification number, but at the cost of sensitivity due to the 

stochastic nature of receptor-ligand dissociation. 

As a consequence of this model, the primary kinetic factor in TCR signaling would 

be the rate of dissociation. The model suggests that a low off rate interaction should be able 

to produce a signal, whereas a high off rate ligand should not. However, this has been found 

incomplete, as 2D kinetic measurements of the off rates of ligands of differential potency 

have shown little variation [80, 81]. The model has been modified to include rebinding to 

include the influence of on rate [82], feedback loops including downstream signaling 

molecules [83-85], effector responses [86], and conformational modifications [87]. Each 

adds to the complexity of the model, but provides a new framework for antigen sensitivity 

and specificity. Likely, the truth lies in some form of kinetic proofreading, but not at the 

simplistic level presented by McKeithan. Because of the strength of this model, an 

extension of the kinetic proofreading model will be utilized in future chapters.  

2.3.4 Role of force in antigen recognition  

Mechanical forces have been known to be act on receptors to induce responses, a 

concept broadly termed as mechanotransduction. The concept of mechanical force in TCR 

triggering was first proposed as a mechanism to resolve the complex sensitivity/specificity 

interplay by Ma and colleagues in 2008 [88]. Experimental and structural evidence has 

shown that mechanical pulling and/or torques on the TCR can induce signalling [89-93]. 

Additionally, agonist TCR:pMHC bonds have been shown to have increased lifetime with 

force, a counterintuitive phenomenon called a catch bond [94], which could increase the 
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bond duration for kinetic proofreading [92]. In fact, signalling could not be provoked in 

the absence of force applied to the bonds and was specific to the pMHC interaction [92, 

93]. It is believed that force on the TCR:pMHC translates through the CD3 ectodomains 

for intracellular ITAM dissociation from the membrane, resulting in phosphorylation and 

TCR activation [95]. The origins of mechanical stimulation in vivo may be the result of 

cytoskeletal rearrangement [96] or membrane fluctuations [97]. Although 

mechanotransduction may be a significant player in TCR triggering and cell activation, the 

field is still in its infancy; not much is understood about the specifics of this process.  

2.3.5 Models for the role for coreceptors in antigen discrimination 

The coreceptors CD4 and CD8 are both able to bind MHC independent of TCR 

binding, albeit very weakly [98, 99]. Each coreceptor can be bound intracellularly to Lck 

[100, 101]. It is believed that the coreceptors act to either stabilize TCR:MHC complexes 

[99, 102, 103], trap MHC close to membranes [104], or provide a mechanism for Lck 

delivery and propagate signalling [105, 106]. There are several caveats to these models. 

Coreceptor binding is not necessarily required for T cell activation [107] and can be 

dominated by strong agonist pMHCs [108]. Additionally, TCRs are activated in cytosolic 

Lck, not the Lck bound to coreceptor [109]. However, it is clear that both coreceptors bind 

to the TCR:pMHC complex and are required for in vivo activation.  

Although there are a significant number of TCR binding/signalling simulation 

analyses, few involve coreceptors. Due to the presence of intracellular Lck which can bind 

CD3 ITAMs, coreceptors have the ability to form a pseudo-dimer of dimers (PDD) where 

there are three reversible bonds (TCR:MHC, CD8:MHC, Lck:CD3) playing a role to 
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stabilize the complex through close proximity. Chakraborty and colleagues suggested 

through modelling that this effect was minimal, but its lacks supporting experimental 

evidence [110]. Other recent models have suggested that the role of coreceptors relies 

solely on its ability to deliver Lck [111, 112]; similar to kinetic proofreading, the 

TCR:pMHC interaction discriminates by lasting long enough to “scan” coreceptors for the 

presence of Lck. Once one is found, the T cell activates. However, this model suffers from 

the same sensitivity/specificity exchange as kinetic proofreading models due to its heavy 

reliance on TCR:pMHC bond lifetime. At this time, the true role of CD8 in TCR antigen 

recognition is incompletely understood. 

2.4 Motivation and significance of research 

As summarized previously, the importance of the TCR in the human body cannot be 

understated. T cells play a substantial role in the adaptive immune system, and their TCR 

is the primary molecule in unleashing the T cell response. The motivation for this study is 

simple. There are many models of TCR triggering the initial cellular response, but none 

can adequately explain the high sensitivity and specificity of antigen recognition at the 

single pMHC level. Comprehensive understanding of this process is critical to initiating 

new waves of safer and better-informed immunotherapies. We believe that some critical 

information encoded in the TCR triggering process was previously not accessible by 

traditional assays. By using novel biophysical readouts of sensitive binding assays as a 

reflection of the underlying biological process, this study uncovers mechanisms 

surrounding the unique specificity and sensitivity in TCR antigen recognition through 

combined experimental and simulation-based analyses.  
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CHAPTER 3. EXPERIMENTAL MATERIALS AND METHODS 

3.1 Cells and proteins 

The TCR-deficient J.RT3-T3.5 Jurkat cell line transfected with 1E6 TCR (1E6-J) 

and the associated biotinylated pMHC were gifts from Dr. David Cole. 1E6-J cells were 

expanded a media of RPMI 1640 with L-glutamine supplemented with 10% fetal bovine 

serium and 1unit/mL penicillin/streptomycin (R10) in 37C, 5% CO2, then stored in R10 

containing 10% dimethyl sulfoxide (DMSO) at -80C or liquid nitrogen for future use. 

Cells were thawed and rested in R10 for a minimum of 24 hours before use. Cultures were 

maintained in 37C, 5% CO2, for up to two weeks. Media was changed every 48-72 hours 

to maintain 0.2-1 million cells/mL. Cells were taken as needed for experiments. 

Biotinylated pMHC was allocated into 20g/mL vials, 10L, in phosphate buffer saline 

(PBS) with 1% BSA and stored at -80C and diluted with the same solution for coating 

purposes.  

3.2 Bead preparation  

Streptavidin-coated beads (SA beads) were prepared similarly to biomembrane force 

probe beads in [80]. 8.1 m borosilicate glass beads were first covalently coupled with 

mercapto-propyltrimethoxy silane which was then covalently linked to tetravalent 

streptavidin-maleimide in PBS by overnight incubation at room temperature. Once 

prepared, SA beads were stored at 4C in HEPES buffer with 1% BSA and taken as needed. 

SA beads were then incubated with biotinylated pMHCs for 1h at room temperature and 

then resuspended in HEPES buffer with 1% BSA. 
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3.3 Site density measurement 

Site densities for TCR and pMHC were measured using flow cytometry and PE 

conjugated antibodies for the specific molecules [80]. pMHC: BB7.2, BD Pharmingen 

Cat#558570; TCR: IP26, Biolegend, Cat#306708. Cells and beads were incubated with 

antibodies at 10μg/ml in 50μl PBS without calcium and magnesium, 1% BSA, 25mM 

HEPES buffer at 4°C for 30min; The fluorescent intensity was measured by the BD LSR 

II flow cytometer and calibrated by the BD QuantiBRITE PE standard beads (BD 

Biosciences). To determine site densities, the total amount of surface protein was divided 

by the surface area of the cell or bead. 

3.4 Microcantilever preparation and calibration 

Microcantilever wafers were purchased from Bruker (OBL-10). Microcantilevers 

were cleaned in piranha solution (3:1 high concentration sulfuric acid to 30% hydrogen 

peroxide) for 30 minutes, rinsed in deionized (DI) water, placed in an ethanol bath for 5 

minutes, and finally rinsed again in DI water. Cantilevers were functionalized in a 

400μg/mL biotinylated BSA (Sigma Aldrich A8549) in PBS overnight in 37C. After 

incubation, cantilevers were washed and placed in filtered PBS and stored for future use at 

4C for up to one week. 

To calibrate the microcantilevers, an SA glass bead was picked up by the 

micropipette of the HAFM and aligned with the tip of the microcantilever. Piezo actuation 

of the micropipette moved the bead with constant velocity while the signal from the 

photodiode was recorded. The slope of the resulting distance (measured by the capacitive 

feedback sensor on the piezo) vs. signal curve was measured to calibrate photodiode 
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sensitivity to distance. Cantilever stiffness was then measured by the thermal fluctuation 

method [113]. 

3.5 Statistical analyses 

Statistics were performed as noted in either MathWorks Matlab (R2015b), Python 

(Spyder 3.2.4) Microsoft Excel, or GraphPad Prism. Statistical analyses for calibration of 

simulation parameters was performed in R statistical packages. The process is currently 

under review [114].  

Linear regression was performed in Matlab (R2015b) using first and second order 

covariates of the contact and waiting times and their effects with previous adhesion score. 

Those whose coefficients were not significantly non-zero were eliminated one at a time in 

order of least significant until all covariant coefficients were significantly non-zero. 

3.6 Dynamic micropipette assay using HAFM 

The procedure is outlined in Section 4.3.2. Briefly, a bead coated in the ligand is 

adhered to the microcantilever along the center axis through superfluous SA-biotin 

interactions. A cell is then aspirated by the micropipette and brought into contact with the 

bead. The indentation force was controlled between 20-30pN assuming a cantilever 

stiffness of 4pN/nm. The cell was then held in contact for a period of time between the 

uniform interval 0.25-5s. The cell was then retracted by piezo control. A bond was 

identified by a fast dissociation step by the photodiode signal. The cell was then permitted 

to rest for another period on the interval 0.25-5s, which was adjusted for retraction and 
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approach times accordingly. The experiments were limited to 300 contacts. Cells which 

tethered extensively or did not reach 150 contacts were removed from analysis.     

3.7 Lck inhibition treatment 

The lyophilized powder for small molecule inhibitor of Lck, CAS 213743-31-8, was 

purchased from Sigma-Aldrich (428205-M), dissolved in DMSO, and stored in aliquots 

for future use at 4C. 500,000 cells/mL were treated in 4 or 20μM of the inhibitor or vehicle 

control in L15 media supplemented with 1% BSA and HEPES buffer for 30 minutes at 

room temperature, then placed in the HAFM chamber. Experiments were performed in the 

continuous presence of the inhibitor or vehicle control for no more than 2h.  

3.8 Cholesterol oxidase treatment 

Cholesterol oxidase lyophilized powder was purchased from Sigma-Aldrich, 

dissolved in PBS, and stored in aliquots for future use at -20C. 500,000 cells/mL were 

treated in 1U/mL of the inhibitor or vehicle control in L15 media supplemented with 1% 

BSA and HEPES buffer for 1h at 37C, then placed in the HAFM chamber. Experiments 

were performed in the continuous presence of cholesterol oxidase for no more than 2h.  

3.9 Cholesterol sulfate treatment 

Sodium cholesteryl sulfate was purchased from Sigma-Aldrich (C9523-25MG), 

dissolved in DMSO, and stored in aliquots for future use at -20C. 500,000 cells/mL were 

treated in the noted concentrations of cholesterol sulfate or control in L15 media 

supplemented with 1% lipid-free BSA and HEPES for 1h at 37C, then placed in the 
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HAFM chamber. Experiments were performed in the continuous presence of cholesterol 

oxidase for no more than 2h. 
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CHAPTER 4. DEVELOPMENT AND VALIDATION OF A 

HORIZONTAL ATOMIC FORCE MICROSCOPE 

4.1 Background 

Atomic Force Microscopy (AFM), a form of scanning probe microscopy, is a 

renowned instrumentation concept used to measure extremely small displacements (<1nm 

resolution) or forces (~1pN resolution). The most rudimentary AFM is composed of a 

microcantilever/laser/photodiode system. The laser is focused on the back of a 

microcantilever and reflected back to a photodiode. When the cantilever is deflected, the 

laser reflection will shift on the photodiode and an intensity change is measured (Figure 2). 

Within a small range of displacement, the intensity change on the photodiode is linearly 

proportional to the displacement. If desired, this displacement can be converted to force by 

calibration of the cantilever stiffness.  

 

Figure 2. Principle components of atomic force microscopy 

 

A laser is focused onto the back of a microcantilever. The reflection is measured on a 

photodiode of two sides (although four is also common for detection of torsion 

components). Movement of the cantilever in either direction will correspondingly move 

the laser reflection. This displacement can be calibrated to the signal. Signals can be 

measured at extremely high rates, limited only by computational resources. 
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AFMs have two general functions although others have been proposed. Primarily, 

commercial AFMs are used as imaging tools to measure a range of surface topographies, 

from biological to mechanical materials. The result is a 3D surface mapping of the material. 

However, they can be adapted to function as molecular force probes, which are important 

to the study of mechanical responses of receptor-ligand interactions. In these assays, a 

piezo-electric motor brings a functionalized AFM tip into and out of contact with the 

sample. With such a device, the dynamics of specific receptor-ligand interactions can be 

examined under mechanical force.  

There are several methods of measuring similar kinetic properties of receptor-

ligands interactions at the single molecule level. In essence, the method which can be used 

relies on the origins of the receptor-ligand pair, summarized in Table 1, although it must 

be noted that this list is not entirely comprehensive. In an ordinary AFM system, both 

molecules need to be purified and usually functionalized to the microcantilever through 

specific interactions; neither the receptor nor ligand can reside in the cellular context. Cell-

purified molecule dynamics (where one molecule is in the cellular context, the other is 

purified) cannot easily be performed on the AFM. If a cell is adherent and can reach high 

confluence on the plate, it is possible to perform on AFM. Lastly, zero-force assays 

(thermal fluctuation) or measuring the interaction of two cells is nearly impossible.  
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Table 1. Comparison of single molecule measurement techniques and their assays 

 

 Adaptations of the AFM concept have made some of these assays more accessible. 

The addition of an objective and camera on the top of an AFM has provided the means of 

mounting cells or purified molecules onto cantilevers while being able to control their 

contact onto plated cells [115-118]. Other adaptations of added another camera/objective 

on the side to perform microscopy of the cells during and after contact [119, 120]. Recently, 

Ounkomol and colleagues have developed a new form of Horizontal Atomic Force 

Microscopy (HAFM) in which they mount the AFM under a microscope and replace the 

sample plane with micropipette aspiration control [121, 122]. Although Ounkomol’s 

measurements primarily focused on mechanical force interactions, this setup had 

significant potential in many different assays outside the typical AFM scope (Table 1, 

Figure 3). We realized this system had the capacity to perform and automate the tedious 

micropipette assay [123]. Due to the nature of an automated system, the HAFM also has 

the potential to mediate long-term kinetic probing assays on cells to elucidate mechanisms 

involved in regulation of kinetics due to signaling. With these assays in mind, we decided 

to develop a HAFM and validate its utility.  
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Figure 3. Diagram of different HAFM molecular origins 

 

4.2 Development of instrumentation 

There are two different components to instrument design – hardware and software. 

Both were designed in tandem to operate the many different assays of the HAFM. 

4.2.1 Hardware design 

As mentioned earlier, a HAFM consists of several key components, but the physical 

system requires additional manipulation, control, and noise isolation components. Of the 

components, many were purchased from reliable suppliers (Table 2) with the exception the 

custom-designed hardware, consisting of the micropipette, photodiode board, and many 

machined components.  

Table 2. HAFM primary components 

Quantity Manufacturer Item Description Item # 

1 TMC Tabletop Vibration Isolator  64-314 

1 Dell Computer/Monitor Optiplex 

1 NI PCI card for A/D conversion PCIe-6321 

1 NI Input/Output BNC connector 

block 

BNC-2110  

The HAFM can be used to perform force/displacement assays in the context of (A) 

purified molecule-purified molecule interactions, (B) purified molecule-cell 

interactions, (C) or cell-cell interactions.  
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1 Newport Micromanipulator 461-XYZ-M 

3 Newport Micro actuators DM-13B 

3 Warner MP holder 64-1261 

1 OZ Optics Laser source attenuator BB-500-11-670-4/125-

S-40-3S3S-3-0.5 

1 OZ Optics Laser source FOSS-21-3S-4/125-670-

S-0.9 

1 OZ Optics Laser lens LPF-04-670-4/125-S-

1.9-50-18AS-40-3S-3-1 

2 ThorLabs Side camera DCC1645C 

1 Computar Side camera lens MLH-10X 

1 Warner micropipette holder 64-0218, Model #MHH-

25 

1 Analog Devices Photodiode AD8251 

3 Newport Micromanipulator MS-500-XYZ 

1 Edmund Optics  Laser Filter #65-657 

2 Unknown 

(Chinese 

XY 30X30mm linear stage LY30-L 

1 Edmund Optics 5mm, Rhomboid Prism, VIS 0 

Coated 

#47-806 

1 PI Linear piezo electric motor with 

capacitive feedback 

P-753.12C 

1 PI Piezo electric controller E-509.C1, E-505.00 

1 Nikon Microscope Diaphot 

1 Olympus LWD Objective ULWD CDPlan 40PL 

0.50 160/0-2 

The photodiode board was built in-house. The photodiode itself was purchased 

from Analog Devices (AD8251) and was selected for its excellent performance in drift, 

power, noise, and response time. The circuitry of the board itself was designed by Dr. Fang 

Kong with assistance from the electrical shop at Georgia Institute of Technology (Figure 

4). The board itself consists of several components to amplify the signal with adjustable 

gains. 
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Figure 4. Photodiode board circuitry 

 

  A major hindrance to the design of a HAFM is space – a significant number of 

components must be confined under a microscope. A Solidworks representation of the 

device was outlined to assist with spatial restrictions and develop machined brackets and 

the chamber (Figure 5A). The chamber development required several iterations. The laser 

path penetrates through a Plexiglas piece, referred to as the cantilever mount, which is 

designed with a slight incline (7.5) to avoid overlapping laser interference from the two 

reflective surfaces (air-Plexiglas transition, back of cantilever). For ease of microcantilever 

placement, a clamp was built-in to hold the microcantilever in place against the cantilever 

mount and slots were used to slide pieces together. Fasteners for coverslips are made of 

non-conductive materials for the isolation of metal clamps to heat-conducting glass (used 

for temperature control) which requires electrical current. A picture of a portion of the 

completed instrumentation can be seen in Figure 5B. 

Designed by Dr. Fang Kong 
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Figure 5. HAFM hardware development requires maximal use of space 

 

4.2.2 Software libraries 

Control of the HAFM was developed in Labview with used of State Diagram 

packages, and analysis was developed in either Matlab or Labview. Programs were written 

for calibration of photodiode sensitivity, spring constant calibration, micropipette assay, 

rupture force assay, force clamp assay, and data analysis. More about the outlines of the 

algorithms will be discussed in the validation section or in Experimental materials and 

methods. 

4.3 Validation of instrumentation 

4.3.1 Hallmarks of AFM 

HAFM should have the same functional hallmarks as the standard AFM. First, 

displacement of the microcantilever tip should be linearly proportional to the signal change 

on the photodiode. Secondly, the power spectrum of thermal noise of a cantilever should 

have a resonance peak, fitting to the description of it as a simple harmonic oscillator [113]. 

(A) Solidworks representation of planned HAFM hardware under microscope. White 

arrows point to specific components. (B) Picture of completed hardware under 

microscope. Penny for scale.  
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To test the linear displacement, a stiff polystyrene glass bead was brought into contact with 

the microcantilever tip using piezo control. Capacitive feedback from the piezo motor 

simultaneously monitors displacement. Plotting the photodiode voltage against the 

displacement from the feedback sensor gives a reliable linear response, which is repeatable 

and consistent at different time intervals (Figure 6A). Examination of the thermal 

fluctuation power spectrum also gave the characteristic resonant peak (Figure 6B).  

 

Figure 6. AFM signal hallmarks 

 

 

4.3.2 Micropipette assay 

The micropipette assay was developed as a method to determine kinetics of two 

membrane-bound proteins [123]. In the traditional form of micropipette, a Red Blood Cell 

(RBC) is coated in the ligand of interest and brought into contact with its receptor for a 

controlled duration by piezo control. The cells are then separated through retraction of the 

pipette. If there is a bond at the end of contact, a small deflection is seen at the RBC 

interface; if there is no bond, a deflection of the RBC is not seen. Repeating this cycle for 

(A) Linear voltage vs. displacement response from contacting a glass bead driven by 

piezo actuation. Red curve is actual signal. Black line represents linear slope for 

sensitivity calibration. (B) Power spectral density curve of free signal, averaged analysis 

of 200 runs from 4096 samples at 80000 Hz, showing standard resonance peak for a soft 

cantilever, used for calculation of spring constant once sensitivity is calibrated. 



 32 

many touches across different contact times results in sequences which can be converted 

into adhesion frequencies, or probabilities of adhesion (Pa), which are reflective of the 

kinetic characteristics of the receptor-ligand interaction. 

There are several limitations to the traditional micropipette assay. First, there exists 

human error in bond identification. In some receptor-ligand interactions, the bonds are very 

strong and deflections are easily discerned. However, this is not the case in many 

interactions which are measured where bonds may be weaker, and there is the possibility 

of misidentification of events. This can exceptionally difficult when there is more than one 

bond state and requires significant training and experience.  

Secondly, the Pa depends considerably on contact area (amount of area in which the 

molecules can interact). Because of pipette drift, corrections are required by the user to 

maintain constant contact area. Additionally, this contact area can vary from user to user 

depending on preferences, so results are sometimes difficult to compare amongst different 

users. This can also be rectified by experience and training. However, it is still a source of 

uncontrollable error in the micropipette assay.  

Lastly, it is nearly impossible to maintain a tightly controlled sequence of events. 

Due to pipette drift and the difficulty of general distractions during the several hours 

required for the assay, events are not always measured in succession – pauses may be made 

and events may be missed. This is perfectly acceptable if the sequence of events is 

Bernoulli which is the case for many receptor-ligand interactions; however, as we will see 

in CHAPTER 5, sometimes the sequence is Markovian. Additionally, if the user requires 
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dynamic inputs to the program, these missed events become critical. Analysis of the 

sequence is therefore disturbed by assay constraints on the user. 

The HAFM has the capacity to rectify these problem areas through use of signal 

recorded bond detection, controlled impact of cell contact, and robustness of the assay 

performed on the HAFM, respectively. To automate this process, beads coated in the ligand 

of interest can be adhered to the microcantilever through specific interactions. Several can 

be loaded for fast transition (see Figure 7 microscope view, up to three beads can be placed 

simultaneously without signal aberration). The target cell is aspirated by the HAFM 

micropipette system. Upon initialization of the program, the cell is driven into contact with 

the ligand-coated bead to a user-inputted signal deflection, i.e. force, through piezo motor 

control. The surfaces are permitted to interact for a randomly selected contact period 

defined between a specific interval, then separated to a distance for another randomly 

selected waiting period between a specifically defined interval. This cycle can be repeated 

for hundreds of contacts or until an error in the system occurs. Simultaneously, the 

photodiode signal is recorded at a defined rate, allowing each contact cycle to be analysed 

at a later point.  
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Figure 7. HAFM micropipette assay outline 

 

 

 

This method of micropipette serves to negate the previously described errors 

associated with traditional micropipette assays. The detection of an event outcome (bond 

or no bond) is straightforward (Figure 7), even for weak interactions due to the sensitivity 

of AFM measurements. Unless severe misalignment occurs, the impact force controls a 

constant contact area over the course of an experiment assuming constant viscoelastic 

properties of the cell. Lastly, the sequence of events is retained due to automated control 

of the system and lack of user intervention (Figure 8). 

Beads coated in the ligand of interest are adhered to the microcantilever through specific 

interactions. A typical microscope view is provided with a cartoon for clarity. The cell 

and its receptor can be brought into contact with the beads for controlled, automated 

contact periods. Two example events are shown. Bond events (arrow with *) can be 

discerned from no-bond (arrow, no *) events through cantilever signal deflection. 

Contact times (CT) and waiting times (WT) can be randomly selected. The events can 

be compiled and analyzed in a similar fashion to traditional micropipette data. 



 35 

 

Figure 8. HAFM micropipette data stability 

 

4.3.3 Force clamp and rupture force assays 

The force clamp and rupture force assays have been shown to be a powerful tool in 

understanding the response of cell surface receptors to mechanical stimulation. In the force 

clamp assay, a single receptor-ligand bond is pulled to a specific force level and permitted 

to exist until it dissociates. Because these lifetimes are highly stochastic, lifetimes over 

many different events are compiled for analysis. Rupture force assays are a simple 

extension of force clamp assays where the force level is set to infinity and the bond is 

simply pulled until rupture; the output is the force at which the bond dissociates. This is no 

longer a widely-used technique due to the necessity for pulling at several different force 

loading rates for significant analysis of the rupture dynamics and the effects of viscous 

drag forces at high loading rates.  

As mentioned previously, there are several instruments which can perform 

mechanical force assays with purified molecules, but the HAFM has the added advantage 

Unfiltered raw data from HAFM. Successive contacts are shown across ~2 minutes. 

Bonds are marked by red asterisks.  
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of being able to perform cell-cell force assays. Although many of these systems claim force 

clamp capabilities, the feedback systems required to clamp at constant force are limited to 

a distance clamp without closed feedback; the HAFM, due to its fast acquisition rates, is 

able to provide closed-loop force clamping capabilities to adjust for any disturbances in 

force level (signal aberrations, cell or molecule relaxation, molecular species changes, 

cytoskeletal rearrangement, etc.).  

To demonstrate these capabilities, we used a Jurkat cell line transfected with 1E6 

human TCR against several different pMHC ligands, similar to the setup seen in Figure 

3B. A demonstration of the force clamp cycle is shown in Figure 9A where the cell is 

brought into contact with the bead, permitted to interact for a period of time to allow for 

bond formation, then retracted to a defined force level which is maintained until bond 

dissociation. For the duration of a long lifetime bond, the piezo must continuously adjust 

to maintain force level (Figure 9A, bottom panel). Three different ligands of different 

potency were tested for their kinetic response to mechanical stimulation through the force 

clamp assay (Figure 9B-D). Several hundred bond lifetimes across various forces were 

measured and binned into lifetime vs. force curves. Weak ligand ALW showed a slip-bond, 

whereas the strong ligands (YQF, RQF-I) had catch bonds. This concept is consistent with 

previous work [92, 95].  
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Figure 9. Demonstration of HAFM force clamp assay 

 

To demonstrate the HAFM modality of cell-cell force experiments, the interaction 

between CD222 and PD-L1 was tested. The CD222:PD-L1 interaction relies heavily on 

glycosylation, so it was thought best to examine its interaction kinetics in a native system. 

Therefore, we mounted a CHO cell transfected with CD222 onto the microcantilever and 

brought it into contact with a micropipette aspirated HEK cell transfected with CD222 

ligand PD-L1; these two cells lines of different species were used to negate some of the 

background adhesion contributed by other molecules. To examine implications of the 

receptor-ligand interaction on overall cell-cell adhesion, we performed experiments with 

(A) Example raw data from the HAFM showing approach, contact, clamp, and 

dissociation phases of a force clamp assay cycle. (B-D) Compiled data for force-lifetime 

curves from 1E6 TCR vs. three different ligands (ALW, YQF, RQF-I)  
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and without the addition of a specific blocking antibody. The cells were brought into 

contact for either a short or long duration, then pulled until no bonds remained.  

Two methods were used to quantify the strength of the intercellular adhesion – 

rupture energy and peak rupture force. The peak rupture force is the maximum force 

reached after separation. The rupture energy is how much energy the piezo required to pull 

the cells apart; this is calculated by integrating the force-extension profile over the entire 

separation period. An automated process was used to quantify both metrics, with similar 

results compared to an unbiased human analysis (Figure 10A). As expected, longer contact 

times permitted more bond formation and therefore stronger intercellular adhesion. 

However, despite the addition of a blocking antibody inhibiting the interaction, no 

difference was seen between the two conditions for either contact time or method of 

quantification (Figure 10B-D).  

 

Figure 10. HAFM cell-cell force separation characteristics 

 

HAFM was used to measure the mechanical separation of a CHO cell transfected with 

CD222 and a HEK cell transfected with ligand PD-L1. (A) Validation between 

algorithmic and user determination of rupture force. (B,C) Rupture energy required to 

break cells given 0.25s (B) and 1s (C) contact. (D,E) Maximum rupture force upon cell 

separation given 0.25s (D) and 1s (E) contact. 
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There are two possible explanations for the lack of significant differences in the 

presence of a blocking antibody. First, the PD-L1:CD222 interaction is not well 

characterized. It is possible that the antibody did not inhibit all interaction sites, although 

the antibody addition partially blocking tetramer staining. Secondly, we attempted to 

minimize background adhesion through use of cell lines of different origins, but some still 

remained. It is likely that the contribution of PD-L1:CD222 was minimal compared to 

background.  

4.4 Discussion and future directions 

In this chapter, the HAFM instrumentation was described and demonstrated in several 

different modalities. There are several components to the device which could be improved. 

First, although the imaging platform of the microscope is used, very little is utilized at this 

time. This is in part due to the lack of a filter to isolate only laser-specific passing 

wavelengths from the microscope light source. Currently, this is due to spatial 

considerations requiring a custom-designed photodiode board housing. Additionally, due 

to the size of the microcantilever wafer, the image plane must be approximately 2mm from 

the bottom of the coverslip. This requires a long working distance objective with low 

resolution. Decreasing unnecessary wafer thickness by milling could reduce the focal 

length, but may impact microcantilever function. Secondly, although there is significant 

manipulation in laser plane, attaching a third dimension of micromanipulation for better 

control over laser focus would be an improvement; currently it is consigned to slots 

designed into the housing. Lastly, although the software acquisition rate is ~1000Hz, it 

could be improved through an optimized parallel data acquisition/processing and 

refinement of algorithms. 
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There are several limitations to the HAFM that cannot be overcome through 

instrument development. First, signal noise is relatively high (Figure 9A) resulting in lower 

signal resolution. This makes forces below 5pN extremely difficult to maintain, and 

thermal fluctuation assays for zero force kinetic measurements very difficult. The 

Biomembrane Force Probe (BFP) or optical trap may be better suited for low force 

measurements. Additionally, as demonstrated in Section 4.3.3, it is difficult to perform 

intercellular adhesion to examine the impact of specific receptor-ligand interaction. 

Background adhesion is very high, and there are limitations to availability of specific 

blocking antibodies or molecular mutations. Therefore, if these assays are to be developed 

further, the correct target interaction should be investigated; this limits selection to 

interactions with a significant impact on intercellular adhesion and adequate reagent 

availability. 

Despite the small improvements that can be made to the instrument, it is highly 

functional and can perform many different assays. The HAFM micropipette assay itself 

has many advantages in automation and accuracy over the traditional micropipette. This 

functionality will be extensively used in the CHAPTER 5 to measure long sequences of 

adhesions. Additionally, future experiments are suggested to fully develop and validate the 

model proposed in CHAPTER 6 which rely on the signal stability of the HAFM. 
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CHAPTER 5. TRANSIENT LIGAND MEMORY IN TCR 

ANTIGEN RECOGNITION 

5.1 Background 

It has long been known that T cells utilize their T Cell Receptor (TCR) to identify 

and promote a response to recognition of antigenic pMHC [9-11]. This process has an 

uncanny combination of both sensitivity and discrimination, as it is sensitive enough to 

induce a response to as little as a single antigenic pMHC interaction while still maintaining 

ample discrimination power from the several magnitudes greater number of self-peptides 

[51].  

The strength of the T cell response has generally correlated very well to the 

intermolecular affinity of TCR to pMHC with 2D measurements being slightly more 

sensitive than their 3D counterparts [80]. Models have been envisioned to account for this 

unique set of abilities, conceptually modeled after kinetic proofreading which heavily relies 

on the interaction off-rate [79]. With the exception of a few conceptual models [124], 

binding of TCR to pMHC has been thought to occur with fixed kinetic rates or minimally 

affected over the course of APC contact. Recent research has shown that kinetic rates may 

been affected by cholesterol binding [58-60] or over longer periods of time near 

immunological synapse formation [87, 125], but little emphasis has been put on 

TCR:pMHC binding during the critical initial triggering phase. A better understanding of 

these early events will help to understand the complex signaling dynamics at later time 

points. 
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Previously, it has been shown that the TCR:pMHC  interaction has significantly 

upregulated periods of adhesion throughout the adhesion frequency assay [126] as 

quantified by the memory index. This positive memory index is a Markovian process 

reflective of periods of increased sensitivity to antigen at the molecular level which may 

play a role in the antigen recognition process. In practice, this value is simply the increase 

in binding probability following a binding event. However, in a cellular context, this 

increase in binding probability can be reflective of many different processes, including 

signaling modifications or cytoskeletal rearrangement. This discovery was largely 

unnoticed by the TCR field due to the packaging of the paper as a phenomenon of general 

receptor-ligand interactions with little focus on the TCR itself. 

Several methods were applied to determine the presence of ligand memory in TCR 

binding and its mechanistic origins. To see if the molecules themselves had conformational 

changes due to binding in the absence of its cellular environment that resulted in this 

behavior, we analyzed several sets of data from purified TCR:pMHC systems. 

Additionally, we verified that a positive memory index exists in many different 

TCR:pMHC systems, both mouse and human. Due to the inherent stochasticity in the 

adhesion frequency assay and subsequent high variation in the memory index, we also 

developed a randomized 2D micropipette adhesion frequency approach utilizing the 

HAFM to measure TCR:pMHC adhesion frequency over an extended period of time (~20-

30minutes). This technique was utilized to examine the role of adhesion memory in TCR 

antigen recognition and the time scales at which it operates. Finally, simulation-based 

analysis of a mechanism explaining memory will be presented. 

5.2 Memory index  
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As a concept, the memory index arose from the observation that many bonds occurred 

in series in some micropipette assay experiments, or what was seen as “clusters” of bonds 

during analysis. In analysis of micropipette experiments for determination of kinetics, each 

event in the sequence is assumed to be independent and identically distributed (i.i.d.), i.e. 

the sequence is Bernoulli. Clusters of bonds are not representative of a Bernoulli sequence. 

If these events are not i.i.d., it was thought that this may be representative of some behavior 

of the cellular environment or the molecules themselves. Two methods were developed to 

quantify this “clustering” and termed the memory index [126]. In either method, the exact 

value of the memory index is defined as the increase in the probability of adhesion if there 

was a bond in the previous contact versus the case where there was no bond in a previous 

contact.  

The first method was termed the direct method. In this method, the events in an entire 

sequence of contacts are divided into 4 different cases: n00, n01, n10, n11 with the subscripts 

representing a two sequential contacts with 0 for no bond, 1 for a bond. For example, n01 

is the total number of events in the sequence where there was no bond followed by a bond; 

n10 is the total number of events where there is a bond followed by no bond, and so forth. 

The probability of adhesion after a bond would therefore be p11 = n11/(n11+n10), and 

similarly, the probability of adhesion after no bond would be p01 = n01/(n01+n00). The 

memory index can therefore be calculated as p11-p01. If the sequence is Bernoulli, the 

memory index should be zero. 

The second method of memory index quantification is termed the cluster method. In 

this method, the size of the clusters was fit to a Markovian model. For instance, seven 

bonds in a row is a cluster of size seven. The total number of clusters of each size were 
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calculated for an entire sequence. The number of clusters of each size were then fit to the 

Markovian model.  

The direct and cluster methods have been shown to have comparable results in 

measuring the memory index. More description of the cluster model calculation and 

comparison between the two can be found in [126]. However, the cluster method has lower 

resolution; many events are binned into a single point and fit to the model. The direct 

method is therefore used throughout the rest of the study for the sake of consistency. 

5.3 Verification of TCR memory in cellular environment 

To determine if this phenomenon results from the TCR in its native cellular 

environment, we analyzed data from several systems to verify its replicability and validate 

its presence. Previously, TCR memory had only been demonstrated in a transgenic mouse 

system (OT-1:OVA TCR:pMHC) [126]. Measurements made by Dr. Jun Huang on a panel 

of peptides of different potency for the OT-1 system confirmed TCR memory for the strong 

OVA peptide as well demonstrated memory in weaker peptides (Figure 11A). Additionally, 

measurements made by Dr. Jin-sung Hong of the 3L2 transgenic TCR mouse system 

(recognizing a hemoglobin (Hb) peptide fragment bound to MHCII) indicated that TCR 

memory occurs in class II MHC system (Figure 11B). Contrastingly, the mouse MHC class 

I and II systems showed different trends of memory index:ligand potency dependence – 

the 3L2 system showed no dependence on ligand potency, whereas the OT-1 system 

peaked at a mid-range potency ligand G4 and dropped to zero for very weak ligand R4. 

This is likely due to the difference in micropipette assay styles of different people (see 



 45 

discussion in Section 4.3.2), but could also be an artifact of binning data of different contact 

and waiting times into a single measurement or high variance in the measurement.  

 

Figure 11. Memory index for several TCR:pMHC systems 

 

 

To limit variance in data collection and test a human system for TCR ligand memory, 

we performed the micropipette assay with more contacts to decrease memory variance on 

a clonally expanded 1E6 TCR system against a panel of APLs. The 1E6 TCR recognizes a 

pre-proinsulin-derived peptide (ALW) loaded onto HLA-A2 pMHC (class I); the cells were 

isolated from a patient with type I diabetes and a panel of peptides of different potency 

were gifted from Dr. David Cole [127]. Originally, the reagents were used to make 

TCR:pMHC affinity measurements. Proper assay development permitted recycling of the 

experimental data for memory analysis. The memory index had no trend with ligand 

potency (Figure 11C). The values were not statistically different when compared with a 

one way ANOVA test.  

5.4 Analysis of purified TCR:pMHC systems 

(A) Memory index for recombinant OVA Altered Peptide Ligands (APLs) vs. naïve OT-

1 T cells. (B) Memory index for recombinant Hb APLs vs. naïve 3L2 T cells, Data are 

compiled for contact times of 0.1-5seconds, 50 contacts, for A&B. Error bars represent 

standard error. (C) Memory index of panel of recombinant pMHC against clonally 

expanded human 1E6 T cells, 100 contacts, 4 seconds. Error bars represent standard 

deviation. 
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The first question to be answered is whether the positive memory index in 

TCR:pMHC binding is intrinsic to the molecules themselves. Because purification of the 

extracellular regions or recombinant production is difficult for the TCR, the analyzable 

systems were limited. Dr. Baoyu Liu provided data he had collected using purified OT-1 

TCR vs. ovalbumin peptide fragment OVA. This system previously exhibited positive 

memory in its cellular context [126]. Memory index across several different contact times 

was binned to determine any significance, as only one data point can be extracted from a 

sequence of touches and the calculation itself has high variance. In future sections, it will 

be shown that the memory index has little dependence on contact time. In the purified 

system OT-1:OVA system, no memory is seen (Figure 12A). In another data set provided 

by Muaz Rushdi, E8 TCR recognizing peptide fragment TPI, the purified system did not 

express positive memory whether or not the streptavidin used for conjugation was divalent 

or tetravalent (Figure 12B). This implies that clustering of TCR does not influence this 

effect in the absence of the cellular environment. Neither result is significantly nonzero.  

 

Figure 12. Purified TCR:pMHC memory index 

 

Data are compiled for contact times of 1-10seconds for (A) Memory index for 

recombinant OVA MHC vs. recombinant OT-1. (B) Memory index for recombinant E8 

TCR vs. TPI MHC, Divalent vs. Divalent (DvsD) and Tetravalent vs Tetravalent (TvsT) 

streptavidin. Error bars represent standard deviation.  
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5.5 Mechanism exploration by dynamic input micropipette assay  

5.5.1 Dynamic input micropipette assay 

As seen in Section 5.3, the micropipette assay will not suffice to accurately measure 

ligand memory or its dynamics for several reasons. First, micropipette methods are subject 

to high variability due to the inherent stochasticity of the assay and the low number of 

events. Second, additional variability in the assay introduced through user errors such as 

1) misidentification of bonds, 2) time lapses in the process, or 3) user bias 4) pipette drift 

may lead to misidentified or neglected events which significantly impacts a time series 

measurement such as the memory index. Lastly, measurements are done with constant 

contact time over the course of a cell pair and constant time in between contacts. Because 

we began this study with the intent of studying the time-dependent memory effects, a new 

method needed to be developed to study it.  

It has been shown that using random, unbiased, inputs to a system can better help 

to understand the inherent dynamics and cell signaling [128]. In this assay, we have two 

controlled variables: the contact time and time in between contacts, or waiting time; pMHC 

density can also be controlled, but due to the sensitivity of the memory index, it is best to 

keep the adhesion frequency around 0.25-0.75 which limits the density variation. 

Combining the aforementioned issues with variable system inputs makes the process 

impossible in a practical sense. To overcome these issues, the HAFM automated this 

process to improve bond identification and record the effects of variable inputs. Otherwise, 

this assay has the same output as the micropipette assay: a series of events, where 1 denotes 

a contact period, or event, ending in a bond and 0 denotes an event with no bond.  
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In the dynamic input micropipette assay, a cell with the receptor of interest (TCR) 

is brought into contact and allowed to interact with its ligand (pMHC) on the bead surface 

through piezo control for a randomized period of time (0.25-5s) to an approximate 

maintained force level. The cell is the separated for a different randomized period of time 

(0.25-5s). Throughout this process, deflection of the cantilever is translated into a signal 

through a focused, reflected laser and measured through the photodiode (Figure 7). If a 

bond exists at the end of the contact period, it can be detected through deflection of the 

cantilever. This process is repeated several hundred times for a cell and bead pair. This 

data is then output and analyzed as a series of binding events.  

5.5.2 Effects of ligand potency on TCR ligand memory 

To study the TCR ligand memory in the context of antigen recognition, we required 

a stable TCR system with flexibility. We received a TCR-deficient J.RT3-T3.5 Jurkat cell 

line with a human HLA-A2 restricted 1E6 TCR (1E6-J). This cell line expressed constant 

TCR expression over several weeks which was necessary to negate the possible impacts of 

variable receptor expression. Additionally, a panel of pMHCs with different potency were 

provided for the 1E6 system [127].   

The dependence of TCR ligand memory on peptide potency was characterized 

using the 1E6-J system on a panel of six peptides of different potency. At high or low 

adhesion frequencies, artifacts may be induced into the calculation of the memory index 

due to lower sensitivity. Therefore, the average adhesion frequency of each ligand was 

maintained between 0.4-0.6 by varying the pMHC bead coating density (Figure 13A). 

However, there was still a significant amount of non-specific adhesion that was not 
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inherent to the TCR:pMHC interaction as showed by ~10% binding in non-coated bead 

(SA) or control peptide (CBL-A2). However, it was shown by Monte Carlo simulation that 

if the non-specific adhesion sequences are Bernoulli, the trends in memory index remain. 

However, the addition non-specific adhesion leads a sensitivity decrease. At 10% non-

specific adhesion, this would lead to an approximately 20% decrease in the calculated 

memory index (Figure 13B). 

 

Figure 13. Confirmation of adhesion in different 1E6 TCR ligands 

 

 

 

As the potency of the ligands increased, the TCR ligand memory decreased 

significantly in a non-linear fashion (Figure 14A). Even with 200-300 contacts for each 

measurement which should significantly limit data spread, the high variance of the assay 

is apparent (Figure 14B). There are several possible explanations for this variation. First, 

cell-to-cell and bead-to-bead variation are a source of error. Receptor and ligand densities 

(A) Adhesion frequencies for different ligands tested vs 1E6-J cells. SA is uncoated 

beads. CBL-A2 is a control peptide. Adhesion frequencies were maintained to a mean 

of approximately 0.4-0.6 by control of pMHC coating density. (B) Monte Carlo 

simulations of micropipette adhesion sequences with inputs of the memory index and 

non-specific adhesion. Baseline adhesion frequency was maintained at 0.3. The output 

memory index was then calculated from this Monte Carlo sequence and averaged across 

10,000 samples. 
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have an inherent level of variance that is extremely difficult to quantify for a single pair. 

Additionally, the randomized contact and waiting times produce additional variance in this 

parameter since not all events are based on the same conditions. However, the trend of 

ligand potency on memory index is apparent.  

 

Figure 14. TCR ligand memory dependence on peptide potency 

 

 

Despite the memory index having an interesting trend with ligand potency, the 

memory measurement reflects relative sensitivity, or sensitivity increase relative to itself. 

Sensitivity changes in binding, as described in Figure 24, are quantified by the increase in 

binding relative to the amount of ligand present. Ligands of stronger potency (YQF, RQW) 

require ~200-400 fold higher coating concentrations to reach the appropriate amount of 

binding than weaker ligands (ALW, YLG). Therefore, true ligand sensitivity as quantified 

by the memory index reverses trend when normalized by the peptide coating density 

(Figure 15). Interestingly, ALW peptide, the naturally occurring derivative of insulin 

related to some forms of type I diabetes, does not fit the trend. Its value increases to 

(A) Peptide potency, quantified as peptide concentration required to reach half maximal 

T cell killing, vs. memory index for 1E6-J cells against a panel of peptides. Error bars 

represent standard error for memory index calculation. (B) Individual data points from 

different peptides for same experiment with control of uncoated beads (n = 7-11) 
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approximately that of 10x stronger peptide RQF-A. However, it should be noted that this 

normalized value is also not necessarily a better quantification of the change in sensitivity, 

as this quantity is reflective of a Markovian probability upregulation depending only on 

the previous bond. If ligand memory last longer than simply two events, which we will 

show is the case in future sections, this metric will be skewed. More investigation will be 

required to quantify absolute sensitivity changes.    

 

Figure 15. Normalized memory index dependence on ligand potency 

 

5.5.3 Generalized linear regression model of TCR memory 

We analyzed the previous data collected in Section 5.5.2 using a generalized linear 

regression approach to examine trends with contact and waiting times. It was believed that 

given enough waiting time, this effect would decay; additionally, given enough contact 

time for binding/signaling, this trend would increase. In this method, the probability of 

adhesion was determined using GLR both after a bond, p1(ct,wt), and after no bond, 

p0(ct,wt), using covariates of contact and waiting times controlled in the experiment. The 

memory index dependency was therefore p1(ct,wt)) - p0(ct,wt)). Unexpectantly, little to no 

Memory index normalized by the coating density of MHC required for adhesion 

frequency of 0.4-0.6. Error bars represent standard deviation. Arrow denotes direction 

of increasing potency. 
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dependence was seen on either contact or waiting time for any ligand (Figure 16); some 

small changes were seen in weaker ligands, but this is most likely due to an artifact of the 

fitting process. Therefore, the memory index metric is indicative of extended periods of 

kinetic upregulation longer than the time intervals in this study. 

 

Figure 16. TCR ligand memory dependence on contact and waiting times  

 

5.5.4 Lck assists in triggering long periods of adhesion 

When considering a mechanism underlying TCR ligand memory, two aspects of 

these upregulated binding periods need to be considered. How long are these periods and 

how are they triggered? As discussed previously in Section 2.2.2, the CD3 subunits 

associated with TCR become phosphorylated by kinase Lck on the ITAMs upon TCR 

A generalized linear regression model was fit to contact times and waiting times in the 

experimental assay for all 6 ligands in Figure 14. Plots are ordered from weakest ligand 

top left to strongest ligand bottom right. 
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activation. Therefore, Lck is a crucial manipulation target for understanding if and how 

TCR triggering impacts ligand memory. To test the hypothesis that CD3 ITAM 

phosphorylation impacts TCR ligand memory, we inhibited Lck through an Lck-specific 

inhibitor which competitively binds the ATP binding site required for activity [61, 129] 

using the same system as previously described (Section 5.5.2) and the high memory ligand 

ALW. The adhesion frequency did not significantly change with the addition of addition 

of Lck inhibitor (p>0.1) although it appeared to decrease slightly (Figure 17A). However, 

Lck inhibition led to a significant decrease in memory showing the unique sensitivity of 

this measurement over standard micropipette analysis (Figure 17B). Baseline adhesion 

frequency, that is the adhesion frequency after there was no bond in a previous contact, did 

not change (Figure 17C), implying that the memory effect is indicative of upregulated 

binding periods, not downregulation of binding. The memory index was still however 

significantly above zero, which we found to be counterintuitive. Because the Lck inhibitor 

can act in a dose-dependent fashion, it was possible Lck was unsaturated and the small 

fraction of active Lck could maintain some of the memory effect. To confirm this 

behaviour, we added a much higher level of inhibitor (20M) to affirm Lck saturation. 

However, this did not change either the adhesion frequency or memory index (Figure 17).  
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Figure 17. Impact of Lck inhibition on adhesion frequency and ligand memory 

 

 

Because the memory index in these experiments was indicative of long, upregulated 

periods of adhesion (Figure 16), a nonzero level of memory upon inhibition indicated that 

Lck plays either or both of two roles in TCR ligand memory: 1) Lck assists in maintaining 

the length of upregulated adhesion periods, thereby leading to more bonds in series and a 

higher memory index, or 2) Lck assists in triggering the occurrence of upregulated binding 

periods, thus increasing the probability that these periods occur and increasing memory 

index. To examine these two roles, we employed a variety of analytical techniques to the 

data. 

To determine if the duration of the upregulated binding periods decreased upon Lck 

inhibition, we first looked at the average cluster size – that is, how many bonds occur in a 

row – and normalized this by the average cluster size expected by the adhesion frequency 

of a Bernoulli sequence. In effect, this normalization would account for the small 

differences in adhesion frequency seen previously. The normalized cluster size decreased 

(A) Adhesion frequency for Lck inhibition vs DMSO carrier for 1E6-J cells vs. ALW 

coated beads using dynamic input micropipette assay. (B) Memory index analysis for 

same data. (C) Adhesion frequency after there was no bond in a previous contact for all 

cases. 
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with the addition of Lck inhibitor (Figure 18A). Additionally, when we looked at the time 

duration of the clusters – the time from the first bond to the last bond in a sequence – there 

was no significant difference between the Lck inhibitor and control as their 95% confidence 

intervals on the mean overlap (Figure 18B-D). However, the non-parametric Dunn’s 

multiple comparison test, used because of non-normality of the data sets, indicated that the 

median values may be different between the inhibitor and control (p<0.05).  

There is one major difference which can account for the discrepancy between the 

two metrics of cluster length. The duration of a cluster (Figure 18B-D) cannot be calculated 

for clusters of one (i.e. when there is a sequence of no bond, bond, no bond) since there is 

no length to the cluster; the normalized cluster size can incorporate this data. Therefore, 

we believed that these clusters of one, or non-triggering events, may be critical to 

understanding the process. We quantified their relative frequency between the control and 

Lck inhibitor data sets. Effectively, Lck inhibition leads to a significantly increased fraction 

of non-triggering events (Figure 18E). This may also explain the contradictory statistical 

tests on the cluster duration. If low probability multiple triggering events cannot occur as 

regularly with Lck inhibition, this would lead to a slight shift in the average duration which 

may not be detectable through some statistical tests. Taken together, these data imply that 

the role of Lck in TCR ligand memory is to promote the triggering of upregulated binding 

periods and not to extend their duration. 
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Figure 18. Lck inhibition decreases probability of triggering upregulated adhesion 

periods 

 

 

 

5.5.5 Cholesterol binding to TCR inhibits ligand memory 

Cholesterol and lipid regulation play a significant role in many cellular behaviours 

[130]. In T cells, lipid rafts on the membrane form dense clusters home to many types of 

receptors and signalling molecules. The TCR itself primarily resides in such domains in 

resting cells [45, 54, 57]. Cholesterol is a primary regulator of TCR preclustering. Recent 

discoveries as to the binding of TCR subunit to cholesterol and its regulation of signalling 

suggested it may be another target for manipulation of TCR binding [55, 58-60].  

(A) Cluster sizes normalized by the expected value of a cluster size of a Bernoulli 

sequence of the same adhesion frequency for Lck inhibitor and DMSO carrier. Error 

bars represent standard deviation. Distributions were checked for normality and 

significance values were calculated using two-tailed student t-test. (B-D) Relative 

frequencies of cluster duration for same cases. Confidence intervals on the mean are 

noted for each panel. (E) Ratio of single bond clusters to total number of clusters. Error 

bars represent 95% confidence interval.  
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To examine the impact of cholesterol on TCR ligand memory, we first treated the 

1E6-J cells with cholesterol oxidase. Although oxidation of cholesterol leads to many 

functional changes in cells, it primarily reduces cell membrane cholesterol content and 

disperses clustering. Treatment of cells with cholesterol oxidase completely removed 

memory (Figure 19).  

 

Figure 19. Cholesterol oxidase treatment effects on TCR ligand memory 

 

A recent paper by Wang and colleagues [58] shed light on a naturally occurring 

analog of cholesterol, cholesterol sulfate, which has been shown to displace naturally 

occurring cholesterol and bind stronger to the TCR. Interestingly, cholesterol sulfate 

appeared to decrease binding of tetramer pMHC to TCR. Measurements using divalent and 

monovalent antibodies for different TCR subunits implied that cholesterol sulfate treatment 

induced dispersal of TCRs on the membrane. However, it did not rule out changes in the 

kinetics or affinity. 

To test the effects of cholesterol sulfate on memory index, we treated the 1E6-J 

cells for 1 hour with different concentrations of cholesterol sulfate and performed the 

Memory index for 1E6-J cells vs ALW pMHC with and without cholesterol oxidase 

treatment. Error bars represent standard deviation.   
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dynamic input micropipette assay against ALW in the continuous presence of cholesterol 

sulfate or vehicle DMSO. Addition of cholesterol sulfate decreased TCR ligand memory 

in a dose-dependent fashion. The slope of the fitting was significantly nonzero. 

Additionally, the baseline adhesion frequency decreased slightly with cholesterol sulfate 

treatment, implying that cholesterol sulfate addition is changing the kinetic states of the 

TCR even before priming. Analysis of the cluster duration showed that the duration of the 

clusters decreased with increasing cholesterol sulfate concentration. The trend in the 

histograms is apparent as well – as more cholesterol sulfate is added, the relative frequency 

of shorter clusters increases and the tail begins to disappear.  

 

Figure 20. Addition of cholesterol sulfate reduces TCR memory in a dose-dependent 

fashion. 

 

 

(A) Memory index for 1E6-J cells vs ALW pMHC with cholesterol sulfate treatment or 

DMSO vehicle. Error bars represent standard deviation. (B) Correlation of memory 

index vs cholesterol sulfate dose. Error bars represent standard error. P-value represents 

likelihood of non-zero slope. (C) Base adhesion frequency for cholesterol sulfate 

treatments. Error bars represent standard error. (D-F) Duration of cluster histograms for 

each cholesterol sulfate treatment. Confidence intervals are noted on each panel  
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5.6 Modeling and simulation of TCR ligand memory 

The combination of Lck inhibitor data and cholesterol treatments imply that the 

mechanism behind TCR ligand memory is under tight control by the molecules most 

proximal to its function. Several key points concerning the mechanism must be considered. 

1) TCR ligand memory is reflective of switching between two dynamically reversible 

states of kinetically different TCRs – a low affinity binding state whose binding 

induces a higher affinity binding state. The states must be dynamically reversible or 

the trend would be towards higher and higher binding frequencies as the assay 

progresses, which is not the case – the binding appears to come in “waves”. It is 

possible that there are 3+ states, but the dynamic input micropipette assay does not 

have the refinement capable to discern between 2 or 3+ states. Therefore, we will 

consider the simplest case of a two-state TCR binding model. 

2) Cholesterol binding may be the primary regulator in modulating the two TCR states. 

A memory index of zero implies that there is only one kinetic state. The effect of 

cholesterol sulfate on memory index trends toward zero at high concentrations; due 

to the toxicity of DMSO on cells and low solubility of cholesterol sulfate, higher 

concentrations were not experimentally feasible. Removal of cholesterol from the 

membrane also induced no memory and therefore a single state.  

3) Lck regulates the ligand memory triggering likelihood. It has been shown that 

cholesterol binding to TCR sequesters phosphorylation of CD3 ITAMs. However, 

once phosphorylated, cholesterol is unable to bind to TCR according to recent 

models. As a consequence, addition of Lck inhibitor would shift the TCR population 

balance towards cholesterol binding.  
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4) Signaling for conversion of the two states and regulation of cholesterol binding must 

be controlled by a mechanism which has not been exclusively identified in this 

study.  

Combining literature and the data presented in this study implies a model of TCR 

ligand memory where 1) TCR binds pMHC, 2) the TCR:pMHC complex undergoes a 

modification that induces signaling, and 3) this signaling releases cholesterol from nearby 

TCRs. Therefore, we simulated this mechanism in its simplest case to see whether or not 

it could replicate the memory effect. 

The mechanism for simulation is outlined in Figure 21. It has been suggested recently 

that TCR clusters should be considered as their own signaling units; the data collected from 

the cholesterol sulfate treatment also suggests this may be the case. Therefore, the 

mechanism is outlined as such. At resting state, TCRs in a cluster are considered to be 

inactive and have at on and off rate for pMHC, kr and kf, which are unique to the resting 

state. Once TCR and pMHC bind, signaling is induced and the cluster of TCRs undergoes 

one-step kinetic proofreading described by the parameter kc. If unsuccessful, nothing 

happens and the TCR unbinds from MHC. If successful, the cluster of TCRs switches states 

to an upregulated xTCR state, governed by two new kinetic rates, kf,x and kr,x, which are 

unique to the upregulated state. The cluster of TCRs will then revert back to resting state 

after a period of time with a specific half-life, thalf. This mechanism matches all the points 

outlined previously. 
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Figure 21. Simulation mechanism outline 

Despite the large amount of data collected measuring the presence of bonds at certain 

periods of time, parameters in this model cannot be directly derived from the acquired data. 

To estimate the kinetic parameters governing this mechanism, we simulated micropipette 

sequences using a custom designed algorithm. Each individual TCR cluster across the 

interface between a cell and bead was simulated for a random contact period in the range 

of the experiment. TCR clusters were permitted to diffuse for random MHC encounters. 

The surfaces were then separated. If a bond or bonds were present at the end of contact for 

any of the TCR clusters, they were broken and a bond event is recorded. A randomized 

period of waiting time was then applied to replicate experimental conditions. The stochastic 

simulation algorithm with no approximations was used to solve the equations [131, 132] 

which relies on the inherent chemical kinetics of the molecules (on/off rate) and 

characteristic areas of interaction. Parameters used in the simulations are presented in Table 

3.   
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Table 3. Simulation parameters for mechanism investigation 

 

Because there are six unknown parameters and an individual run takes approximately 

10 minutes for a ~40 cell pairs, standard methods of parameter estimation would take a 

significant amount of time. We therefore employed a statistical technique developed by 

colleague Dr. Chih-Li Sung and colleagues. In this technique, experimental data is fit to a 

statistical model similar to a logistic regression with the addition of a Gaussian noise term. 

Monte Carlo scanning of the simulation parameter space using a logarithmic Latin 

hypercube approach created data sets of simulated data for analysis by the same statistical 

approach. Error between the two analyses, experimental and Monte Carlo simulations, is 

minimized converge on approximate values of the unknown parameters. This results in 

significantly faster convergence. 

Simulations were solved through a Stochastic Simulation Algorithm (SSA) approach 

[131, 132] in MathWorks Matlab (R2015b) using customized algorithms (Figure 22). Each 

cluster of TCRs was modeled as its own signaling and binding unit, so the number of TCRs, 

pMHC, and clusters required random selection. In the initialization module, the number of 

clusters in the interface was determined by dividing the average TCR density on the surface 
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by the average number of TCRs in a cluster. For each cluster, the number of TCRs within 

that cluster was derived from a uniform distribution on the specified interval. The initial 

number of pMHC in each cluster was determined by knowing the average pMHC density. 

From the cluster area, the average number of pMHC in this area can be calculated. The 

number of pMHC in the cluster was then randomly selected from the Poisson distribution 

with the previously calculated average. All other known parameters were initialized.  

Unknown parameters were segmented logarithmically along the specified interval by 

the number of required logarithmic Latin hypercube divisions. These segmented vectors 

were randomized. The maximum and minimum possible parameter values were estimated 

from biophysical approximations and adjusted so as to not limit the parameter space 

resulting in false convergence. The segmented vectors were then randomized, and the 

simulations iterated through these vectors to solve for the binding sequence. Relevant 

parameters are outlined in Table 4. 

Table 4. TCR ligand memory mechanism simulation parameters 
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After initialization, each individual cluster’s binding was simulated over the contact 

period randomly selected from the interval 0.25-5s. Once each cluster was simulated, if 

any of the clusters remained bound after the contact period was completed, the event was 

marked as a bond and those bonds were broken. If no bonds were present in any of the 

clusters after that time, no bond was recorded. A waiting time was randomly selected from 

the uniform interval 1-6s to reflect experimental conditions. This cycle was repeated until 

the simulation reached the input number of contacts. For calibration of parameter values, 

20 cell pairs with 300 contacts were simulated for each set of parameters with a 120-sided 

hypercube. 

 

Figure 22. Micropipette simulation algorithm outline 

The results of the fitting are seen in (Table 5). Because there may be many different 

minima in the fitting space and the statistical fitting method may result in artifacts, it is 

important to consider many different local minima; in this case, we decided to look at the 

20 best fitting parameter sets as determined by their statistical cost function, L2 distance.  

Upon initial inspection, some of the parameters reached the maximum or minimum of their 
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simulation intervals. This is not an ideal case, but it still may be an appropriate fit. This 

required testing. 

Table 5. Twenty best parameter fits by statistical model 

 

Therefore, we performed simulated micropipette assays in the same fashion, but 

provided the fitted parameters as inputs. The results indicated that there were several 

artifacts induced by the statistical fitting method (Figure 23). Several parameter sets had 

zero memory; others had uncharacteristically high adhesion frequencies (Figure 23, blue 

ovals).  
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Figure 23. Experimental data vs. simulated parameter fitting using statistical 

methods 

 

 

Therefore, we eliminated these obvious outliers from the parameter fittings. The 

majority of these outliers were the same parameter sets which contained a parameter that 

hit the maximum or minimum of the simulated interval. Interestingly, when these outliers 

were removed, some significant and consistent trends began appeared (Table 6). The 

upregulated binding periods appear and disappear quickly, as seen by the magnitudes of kc 

and kd, respectively. The on-rate for the upregulated state increased several hundred fold, 

and the off-rate increased 10-20 fold. These interesting parameter trends indicate that the 

TCR, upon recognizing antigen, very quickly upregulates the kinetics of nearby TCR to 

rebind antigen. It releases that antigen soon after for rebinding to another TCR, which again 

quickly dissociates, allowing another TCR to rebinding. This mechanism would permit 

several TCRs to interact with the same antigen in quick succession.  

Statistically-fitted parameter sets were used to simulate the micropipette assay using 20 

cell pairs, 300 contacts. Their memory index and adhesion frequency were calculated 

from the simulated adhesion sequence (black circles). This is compared to the 

experimental data shown by the red circle. Error bars represent standard error for the 

adhesion frequency and 95% CI for the memory index. Blue ovals indicate outliers.    
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Table 6. Best parameter fits by statistical model with outliers removed 

 

5.7 Discussion and future studies 

Utilizing a panel of different peptides for a specific TCR and a series of 

pharmacologic interventions, we show that adhesion memory is the result of a complex 

process regulated through TCR proximal interactions. Unexpectedly, weaker ligands 

exhibit higher adhesion memory than stronger ligands for the 1E6-J system. However, 

analyses of TCR ex vivo systems (Figure 11) did not share the same trend, suggesting that 

this mechanism may be under complex controls and tuned at the thymocyte selection level. 

Blocking of TCR-proximal signaling molecule Lck slightly decreases the duration of these 

periods, but significantly impacts the probability of their formation, suggesting a complex 

role for Lck in this process. Depletion of membrane cholesterol through cholesterol oxidase 

treatment completely eliminated adhesion memory. Addition of cholesterol sulfate, a 

naturally occurring analog of cholesterol which disrupts multimer formation and inhibits 

signaling by binding to the TCR, was shown to deplete adhesion memory in a dose-

dependent fashion.  
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Simulations of this mechanism revealed that the TCR upregulates its binding affinity 

10-20 fold to pMHC ALW. This increase is attributed to the interplay between the kinetic 

on-rate and off-rate – approximately several hundred fold and 10-20 fold, respectively – 

both of which are important regarding the mechanism influence on antigen recognition. 

This reflects a very dynamic process. Once a TCR recognizes antigenic pMHC, it 

communicates to nearby TCRs that an antigen is nearby by the same signaling molecules 

as the triggering process. That pMHC dissociates, and it remains in the vicinity of TCRs 

which are primed to quickly recapture it and release it. By this mechanism, several TCR 

engagements with antigen occur very quickly, fostering more triggered TCRs each binding 

event. It is a signal amplification mechanism derived from its effects on ligand binding 

sensitivity. Although not simulated this way, it is likely this signal may spread between 

TCR clusters, similar to ZAP-70 catch-and-release observations where a signal originates 

from a single TCR cluster and transitions out to perform its function [133]. Therefore, even 

a signal antigenic pMHC could induce T cell activation. Despite experimental evidence for 

TCR kinetic binding upregulation [46-48], this is the first evidence regarding a mechanism 

which could give rise to this behavior.  

However, we must consider that this is not the only possible interaction network; it 

is quite possible that memory may be induced by other mechanisms which may have 

different implications. This should not be considered the only possible interpretation of our 

data. The model we chose was based largely on the pharmacological inhibitions used in 

experiments and previous knowledge from the literature. We are currently working on 

developing statistical metrics to compare the validity of different mechanistic models. 
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Future publications examining the merit of these different possibilities will be critical to 

interpreting the data. 

These upregulated periods of adhesion probability in the micropipette adhesion 

frequency assay are indicative of changes in the inherent kinetics of the interaction. These 

changes are unlikely to occur at the single TCR level because the on-rate increase would 

be outside conceivable ranges. Similarly, a whole cell binding upregulation would require 

an extremely fast switch-like response and would not be resource efficient considering the 

cell only has knowledge of the existence of a single antigen. However, if the TCR is able 

to upregulate its binding kinetics and the kinetics of nearby TCRs in response to previous 

binding, this process would help to recapture the same antigenic pMHC. As a result, TCR 

binding induces more TCR binding, leading to further stimulation of the cell. This 

mechanism is similar to rebinding models [82, 87] where a signal can persist after bond 

dissociation to propagate signaling and increase antigen sensitivity.  

We propose that this positive memory index acts as a measure of ligand sensitivity 

similar to the Hill coefficient in enzyme kinetics, but with an effect in time rather than 

concentration, and represents an inherent self-regulation to ligand binding. Hill kinetics 

moderates reaction velocity in a substrate concentration manner (Figure 24A, top panel), 

thereby increasing the sensitivity to ligand. This results in a heightened sensitivity window 

for positive cooperative ligands over traditional kinetics. Similarly, ligand memory shows 

increased bond formation in time (Figure 24B, top panel). This leads to a heightened 

sensitivity to ligand in time, followed by a desensitization back to steady-state (Figure 24B, 

bottom panel). This results in much more dynamic responses to ligands over what was 

previously considered.  
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Figure 24. Comparison between Hill coefficient and ligand memory in moderating 

binding sensitivity 

 

 

How does this behavior result from the physical properties of the TCR? At this point, 

the obvious scapegoat is conformational change to the TCR prompting a more amenable 

binding interface. A conformational change to TCR or its CD3 subunits has been postulated 

by several groups [90, 134-137], but it has not been shown to directly affect pMHC 

interaction kinetics. There is some evidence for this in the survival distributions of lifetime 

under force which occasionally show multiple dissociation rates, but there is very little 

supporting structural evidence. In another interpretation, the binding of cholesterol to TCR 

provides an allosteric effect limiting the range of motion of the distal pMHC binding site. 

This would directly constrain the effective kinetic on-rate for the interaction. Cholesterol-

induced allosteric effects have been known to impact TCR triggering [59], but its effects 

(A) Hill Kinetics reaction velocity (top panel) or sensitivity (bottom panel) vs substrate 

concentration for cases of no cooperativity, negative cooperativity, and positive 

cooperativity (black, red, and green curves, respectively). (B) Ligand memory average 

bonds (top panel) or binding sensitivity (bottom panel) vs. time for cases of no memory, 

negative memory, and positive memory (black, red, and green curves, respectively) 
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on kinetics are unknown. Determining a direct mechanism at the TCR level is an exciting 

potential direction for future research.   

There are many different implications of this study for further research. This 

enhancement would be intriguing in an in vivo context where many different antigenic 

pMHC are present alongside weaker or self pMHC. For instance, a triggering event may 

occur for upregulated binding, but that pMHC escapes recapture. However, the cluster of 

TCRs encounters other, weaker antigens and continues signal persistence for T cell 

activation. Additionally, the process could occur in the opposite fashion – weaker ligand 

activation of TCR upregulated binding for strong agonist capture. The complex interplay 

between ligands of different potency is not studied here, but future studies could examine 

the impacts of concepts such as antagonism [138] or co-agonism [139], phenotypic 

explanations for the complex interplay between peptides of different potency, on TCR 

ligand memory. Models have suggested that this behavior is the result of signaling 

networks [140, 141], but there is a strong evidence presented in this study that the quality 

of the peptide impacts the binding of the TCRs. 

This new mechanism has implications at many levels of the T cell activation process. 

We have shown that TCR ligand memory can be tuned by extracellular factors, such as 

cholesterol sulfate. Likely, this binding enhancement is regulated through a combination 

of soluble factors, such as hormones and cytokines, impacting membrane cholesterol 

content and proximal signaling molecule activity prior to APC contact. It has been shown 

that T cell lineages have differential TCR clustering [142] and Lck activity [112]. Co-

stimulatory (CD28) or co-inhibitory (PD-1, CTLA-4) pathways intercede with TCR 

signaling pathways, adding a layer of regulation once cells have come in contact.  
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Additionally, although the mechanism presented here is a good candidate for memory 

induction, it is not the only possible network. Model selection is often a difficult task, and 

the finest details may be of unique importance. Small modifications to this mechanism, 

such as adding aspects of force due to pulling of the bond at the end of contact or inducing 

ligand dissociation upon a state conversion, are critical points to the mechanism which 

require further investigation. We are currently in the process of developing unique 

statistical methods to compare the validity of other mechanisms for optimal model section.  

Sensitivity changes are typically assayed at the level of T cell activation on a 

population level, such as increased cytokine secretion or targeted cell killing. However, 

these metrics are far removed from how the TCR itself produces this behavior in very few 

binding events. Models have attempted to rectify the unique TCR binding sensitivity and 

specificity, but are susceptible to undesirable activation [51, 79, 83, 85, 87]. By using a 

new methodology with a unique metric of sensitivity, we showed that TCR regulates its 

own binding capacity, and this regulation is under the control of the molecules most 

proximal to its own triggering. This new mechanism provides a foundation for discoveries 

influencing the initial binding events leading to full T cell activation.  
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CHAPTER 6. ROLE OF MECHANICAL FORCE IN CD8 

CORECEPTOR BINDING AND ITS IMPACT ON T CELL 

TOLERANCE 

6.1 Introduction 

The role of coreceptors in TCR antigen recognition has been debated since their 

influence on T cell signaling was discovered. As discussed in Section 2.3.5, coreceptors 

CD4 and CD8 contain an intracellular motif which can bind to TCR-proximal signaling 

molecule Lck; additionally, coreceptors have a low affinity extracellular interaction with 

MHC molecules. Therefore, it is believed that the role of coreceptors is to provide a means 

for Lck delivery near sights of TCR:pMHC interactions to promote phosphorylation of 

ITAMs and subsequent TCR activation. Logically, this process seems reasonable and has 

become a cornerstone of coreceptor influence on T cell immunology. Empirically, there is 

little evidence to refute it, and this study does not intend to do so.  

However, the process of Lck delivery is not exclusive to other mechanisms in the 

TCR triggering process. In naïve T cells, several mechanisms have been explored as to the 

role of coreceptors in TCR dynamics [102, 107, 110]. Due to the presence both intracellular 

and extracellular binding interactions with the TCR(CD3):pMHC complex, coreceptors 

have been thought to stabilize the TCR:pMHC interaction by “trapping” the molecules in 

close proximity through this two-pronged binding modality [102]. For example, if the 

coreceptor unbinds from the complex (TCR:MHC:coreceptor:Lck:CD3, referred to in the 

future as Pseudo-dimer of dimers or PDD) at its extracellular region, the intracellular 
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region is still bound at the Lck:CD3 interface. Therefore, rapid rebinding to MHC occurs 

because the coreceptor is “locked” in place in a beneficial orientation by its intracellular 

binding. Similarly, if TCR unbinds from MHC, trapping of the MHC by coreceptor 

extracellular domains and the TCR by its interaction through Lck:CD3 maintains their 

close proximity, permitting rapid rebinding. In essence, this can significantly extend the 

lifetime of a TCR interaction with antigen, permitting more time for proofreading of the 

peptide for TCR triggering. This mechanism was simulated in a simple case and found to 

be insignificant [110]. However, the results were highly dependent on assumed kinetics, 

and combined with a lack of experimental evidence, the argument was not strong.   

Thymocyte selection was discussed briefly in Section 2.1.1. While in the thymus, 

thymocytes are presented with “self” ligands to develop two important facets of T cell 

behavior – tonic signaling and tolerance to self-peptides. Thymocytes which do not respond 

to self-ligand die by neglect become apoptotic. Thymocytes with TCRs which respond too 

much to self are also deleted by apoptosis [143]. In effect, this creates a pool of T cells in 

the periphery which have a specific window of strength to self-pMHC, in which they 

respond to weaker peptides, but do not elicit a phenotypical response of naïve T cells. This 

prevents autoimmune disease to self while still maintaining a pool of TCRs which have the 

chance to recognize foreign pMHC.  

The role of coreceptors in the thymocyte selection process has been considered on 

several occasions [15, 107, 111], but there is no consensus on their role and mechanism. It 

is likely that mechanisms at the thymocyte level persist into the naïve T cell population. In 

this study, we will use simulation-based analysis on force-induced bond lifetime data from 
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an OT-1 thymocyte system to parse mechanisms of CD8’s role in binding and thymocyte 

selection.    

6.2 Experimental data 

Dr. Jin-sung Hong and Dr. Chenghao Ge initiated a project to understand the role of 

coreceptors in thymocyte selection. First, they examined the role of coreceptor CD8 in the 

affinity regulation of a panel of peptides of various potency for OT-1 thymocytes, but saw 

relatively no difference along the selection region. However, the addition of force with a 

Biomembrane Force Probe (BFP) created an interesting phenomenon along the selection 

threshold; this behavior was dependent on CD8. In these BFP experiments, an OT-1 

thymocyte was brought into contact with a bead coated in the noted ligand. The bead itself 

as also adhered to a red blood cell which is used as a force transducer. The bead and 

thymocyte are then separated, and if a bond is present at the end of contact, the bond is 

stretched to a predefined force level and held at that force until dissociation. The lifetimes 

of bonds from several bonds are pooled into a lifetime vs. force curve.  

An interesting trend appeared upon analysis. Positively selecting ligands formed slip-

bonds with the addition of force, where the average lifetime of a bond decreases 

exponentially with linearly increasing force (Figure 25E-G, blue labels). Negatively 

selecting ligands, those which induced apoptosis due to strong signaling, formed a catch-

bond which has the counterintuitive response of increasing lifetime with increased force 

and was followed by slip-bond behavior (Figure 25A-C, red labels). This enhancement 

relied on the cooperativity of CD8, as antibody blocking of the CD8:MHC interaction or 

mutant MHC eliminating CD8 binding did not produce this behavior.  
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Figure 25. Positively selecting ligands form catch-bonds while negatively selecting 

ligands form slip bonds in the presence of CD8 

 

 

 

 They next tested another transgenic mouse system that utilized the OT-1 TCR with 

a modification to CD8 which gave it a CD4 tail which has a higher affinity for Lck (named 

CD8.4). It was known that this mouse system shifted the threshold for selection slightly, 

making Q4H7, a previously positively selecting ligand, into a negatively selecting ligand. 

This modification also turned the slip bond from the Q4H7 to a catch bond (Figure 26C). 

Additionally, the CD8.4 mutation made negatively selecting ligand Q4R7 into a much 

stronger catch bond (Figure 26D). Interestingly, these catch bonds could be eliminated 

Bond lifetime vs. applied force for OT-1 thymocytes vs. a panel of different ligands. 

Green squares are wild-type pMHC, allowing both CD8 and TCR binding, black 

triangles for CD8 only, and gold circles for TCR:pMHC binding only. pMHC are noted 

on the top of the panel, negatively selecting ligands in red, positively selecting ligands 

in blue. T4 represents a special case in the middle. Error bars represent standard error. 

Data adapted from submitted manuscript with permission from Dr. Jin-sung Hong. 
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through the addition of an inhibitor for the Lck kinase activity (Figure 26A-D) with the 

exception of Q4R7 in the CD8.4 system although this data has low confidence. 

Furthermore, Previous co-immunoprecipitation (co-IP) studies showed that TCR-CD8 or 

CD4 conjugation through Lck requires ITAM phosphorylation for recruitment of ZAP-70 

as an adaptor for Lck intracellular binding to CD3 [144, 145]. In another similar BFP assay 

where the tyrosines of the CD3 ITAMs were mutated to inactive phenylalanines, there 

was a slight reduction in the catch bond; other ITAMs from non-CD3 subunits likely 

subdued a complete catch-bond elimination. Therefore, Lck phosphorylation of the CD3 

tails plays a role in this catch-bond behavior. Overall, this data suggests that the catch-bond 

criteria is consistent even after shifting the selection threshold by intracellular 

modifications; additionally, the kinase activity of Lck is critical for this behavior, likely by 

phosphorylation of CD3 subunits. 

 

Figure 26. Addition of Lck inhibitor removes catch bond promotion by CD8 

 

 

 

Bond lifetime vs. applied force for OT-1 thymocytes vs. Q4H7 (blue) or Q4R7 (red) for 

wild-type CD8 or CD8.4 thymocytes. Black open squares: DMSO control, solid green 

squares: addition of Lck inhibitor, gold circles: TCR-pMHC only binding with the 

addition of Lck inhibitor, solid black triangles: CD8 binding only with the addition of 

Lck inhibitor, open gold circles: TCR-pMHC binding only, no DMSO. Error bars 

represent standard error. Data adapted from submitted manuscript with permission from 

Dr. Jin-sung Hong. 
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Combining these data sets gives a unique subjective criteria of negative selection – 

that is, negatively selecting ligands form a catch bond with TCR in the presence of CD8. 

However, this is not a quantitative metric for selection and the impacts are difficult to 

comprehend. Several questions arise from this data. What does the catch bond mean in this 

context? How does increasing conjugation of Lck to CD8, an intracellular interaction, 

modify the extracellular binding kinetics? And lastly, how does this behavior result in 

thymocyte selection? In the next few chapters, we will undergo simulation-based analysis 

on these data sets to explore these questions and suggest a mechanism behind such complex 

responses. 

6.3 Long-lived bond formation is a diffusion limited process 

6.3.1 Survival distributions indicate multiple bond states 

The measurements presented in lifetime vs. force curves (Figure 25, Figure 26) is 

very difficult to understand in its current binned form; information is lost in the binning 

process which can assist in understanding the cause of the behavior. Therefore, it is critical 

to begin investigation at the data within the bins themselves, each containing many 

lifetimes acquired at the given force level. The data within an individual bin is classically 

presented as a survival distribution – the probability of a bond surviving vs. time. A 

survival distribution for a bond at a given force is an exponential decay function [146], and 

when plotted on a semi-log axes, should result in a line with slope equivalent to the 

resulting off-rate for the molecular interaction (Figure 27A). The average bond lifetime can 

then be found by integrating this curve. 
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There are unique two possibilities for changes in the survival curve which result in 

catch-bond behavior. First, the survival distribution may decrease in slope, therefore 

decreasing the molecular off-rate and increasing bond lifetime (Figure 27B). This is 

indicative of a single-bond state which is induced by force. Essentially, all bonds respond 

to force similarly when pulled, and all bonds increase bond lifetime. Secondly, the survival 

distribution may change to have two or more slopes (Figure 27C). If one of the slopes is 

small and the population large enough, this results in a small subset of the bonds with long 

lifetimes which dominate the average bond lifetime. Interpretation of this data can be very 

difficult, especially in the context of the cellular environment where signaling and 

membrane dynamics are prevalent. The response of the OT-1 thymocytes in Figure 25 is 

the second case. There is a new, long-lived bond state induced by force with a ~50x slower 

off rate than the TCR:pMHC interaction alone (Figure 27D).  

 

Figure 27. Catch bonds arise from two possible survival distributions 

 

(A) Example survival distribution at zero force contain a single bond state. (B) The 

application of force may induce a new bond state. The off-rate becomes smaller for all 

bonds, and the average bond lifetime increases. (C) Application of force may result in 

formation of multiple bond states, with a population of long-lived bonds (small slope) 

dominating the average. Arrow points in direction from expected to observed (B,C). (D) 

Example survival distribution for Q4R7 vs. OT-1 CD8.4 thymocytes, 12pN bin. 
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Assuming that the long-lived bonds are those which form the full 

TCR:MHC:CD8:Lck:CD3 complex, or a Pseudo-dimer of dimers (PDD), there are two 

possible explanations for this behavior. First, there is the possibility of force-induced 

recruitment. In this mechanism, pulling of one bond species, either TCR:pMHC or 

CD8:MHC, exposes a binding site in either species which enables binding. For instance, 

pulling TCR leads to release of CD3 intracellular tails for Lck binding. Secondly, there is 

the possibility of species deviations. Because the BFP experiment is performed on a single 

cell for many contacts in a row, there is the possibility that the bonds species change over 

time due to signaling or membrane perturbations. These two mechanisms will be 

investigated in the following sections. 

6.3.2 Force-induced recruitment models cannot explain data 

The concept of force-induced recruitment is outlined in Figure 28. A TCR or CD8 

is pulled through the BFP assay. If the second molecule does not diffuse into close 

proximity with the bond within the recruitment time, the bond breaks and a short lifetime 

is recorded. However, if the second molecule is recruited, the bond lifetime is extended 

due to PDD formation. As a consequence, this is primarily a passive, diffusion-based 

mechanism similar to those previously proposed. Therefore, we simulated both TCR and 

CD8 pulling to examine whether the second molecule recruitment could explain the data. 
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Figure 28. Force-induced recruitment mechanism 

If the mechanism is genuine, the experimental fraction of long-lived bonds from 

the survival distribution should match the simulated fraction. We used a double-

exponential fit to determine the fraction of PDD bonds from the experimental data in the 

10-15pN range (catch-bond peak) for all pMHC tests except for OVA, since it is a special 

case. Although there is likely a mixture of TCR/CD8 bonds in the short-lived states, these 

are similar in off-rate and therefore can be grouped into one parameter. A triple exponential 

fit resulted in over-fitting of the data. As seen in Figure 29, the off-rate of the PDD bonds 

is not a perfect fit. Some over-fitting of the data occurs at the short-lived lifetimes to 

compensate for the time resolution of the BFP assay. However, this is not essential in 

determining the bond fraction. The double exponential fit adequately predicts the “kink” 

in the curve of the survival distribution where the dominance of the PDD fraction begins. 

This “kink” occurs at the fraction of PDD bonds. 
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Figure 29. Double exponential fit adequately predicts fraction of PDD bonds 

 

6.3.2.1 TCR:pMHC force-induced recruitment of CD8 is unlikely 

The first case considers if TCR pulling induces recruitment of CD8 bound to Lck. 

A Markov chain was used to determine the probability of CD8:Lck recruitment over a 

period of time similar to the approach presented in [111]. Additionally, the probability of 

a TCR:pMHC bond survival was determined over that same time interval using a Bell 

model approximation and the experimentally measured TCR:pMHC lifetimes. Plotting the 

two probabilities against each other and integrating yields the probability of CD8:Lck 

recruitment before bond dissociation (Figure 30A). As the fraction of CD8:Lck conjugation 

increased, the probability of CD8:Lck recruitment before dissociation asymptotically 

approached a value between 0.7-0.9 depending on the TCR:pMHC binding properties 

(Figure 30B). For reference, the fraction of CD8:Lck has been measured to be ~1.1% and 

5.8% in wild-type or CD8.4 OT-1 thymocytes, respectively, [111] but those values have 

been considered low due to assay limitations.  

Double exponential decay nonlinear least square fitting using Matlab fit function plotted 

against survival distribution of wild-type OT-1 thymocytes against Q4R7. Data is binned 

from the 10-15 pN range. 
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To bring the experimental and simulation data together, we must consider that there 

are both CD8:MHC and TCR:pMHC bonds pulled after any contact. Assuming the contact 

time of 0.1 seconds used in BFP assays, the fraction of TCR:pMHC bonds can be derived 

from the 2D kinetics of the two molecular interactions (CD8:MHC, TCR:pMHC) and the 

respective densities of the molecules, which were all measured experimentally. Comparing 

these two conditions, the probability of pulling a TCR:pMHC bond for most ligands is <0.1 

(Figure 30C). Assuming once CD8:Lck is recruited a PDD is formed near-instantaneously, 

the resultant fraction of PDD bonds is the probability of pulling a TCR bond times the 

probability of CD8:Lck recruitment before dissociation. If the model fits the data, there 

should be a 1:1 correlation between the predicted fraction of PDD bonds and the 

experimental fraction as determined by the double exponential decay fitting. Assuming 

maximum favorable conditions of 100% CD8:Lck conjugation and fast diffusion kinetics, 

the experimentally measured fraction of PDD bonds for some ligands remains significantly 

higher than the predicted fraction (Figure 30D). Despite favorable assumptions, the model 

cannot explain the experimental data. It is therefore unlikely that pulling of a TCR:pMHC 

bond can lead to recruitment of CD8:Lck and formation of a long-lived PDD bond.  
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Figure 30. Formation of PDD unlikely after pulling of TCR:pMHC bond 

 

 

 

 

 

6.3.2.2 CD8:MHC force-induced recruitment of TCR is unlikely 

The next mechanism to consider was CD8:MHC force-induced TCR recruitment 

and subsequent PDD bond formation. As example physical mechanism behind this model, 

once the CD8:MHC bond is pulled, the binding site for Lck is put in a favorable position, 

Lck is recruited, and TCR can diffuse to the bond site and bind.  In a similar fashion to 

(A) Markov chain prediction of the probability of CD8:Lck recruitment to a pulled 

TCR:pMHC bond vs. the probability of a TCR:pMHC bond survival. The area under 

the curve is the probability of CD8 recruitment before the bond breaks. (B) Markov 

chain prediction of the probability of CD8:Lck recruitment against the fraction of 

CD8:Lck present on the thymocyte surface (C) Predicted fraction of TCR:pMHC bonds 

for the BFP assay based on TCR:pMHC kinetics (1-fraction of TCR:pMHC bonds is the 

fraction of CD8:MHC bonds). The different OT-1 ligands are indicated. (D) Fraction of 

long-lived bonds determined experimentally against the predicted fraction of PDD 

assuming 100% CD8:Lck conjugation, near-instantaneous PDD bond formation after 

CD8:Lck recruitment, and fast diffusion kinetics. Error bars represented 95% confidence 

interval on the mean. Arrow indicates a region where mechanism is unlikely. 

Experimental data on the opposite side would imply some assumptions may be too 

favorable, but the mechanism still possible.   
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Section 6.3.2.1, the probability of TCR recruitment vs. CD8:MHC bond survival was used 

to calculate the probability of TCR recruitment before bond dissociation for different 

fractions of CD8:Lck conjugation (Figure 31A,B). Using maximum favorable 

assumptions, the experimental fraction of long-lived bonds was plotted against the 

predicted fraction by the Markov chain.  Again, this mechanism did not correlate with the 

data in any fashion (Figure 31C). In fact, the mechanism would result in little to no 

difference between the ligands. 

 

Figure 31. Formation of PDD unlikely after pulling of CD8:MHC bond 

 

 

 

 

(A) Markov chain prediction of the probability of TCR recruitment to a pulled 

CD8(Lck):MHC bond vs. the probability of a CD8:MHC bond survival. The area under 

the curve is the probability of CD8 recruitment before the bond breaks. (B) Markov 

chain prediction of the probability of TCR recruitment against the fraction of CD8:Lck 

present on the thymocyte surface. (C) Fraction of long-lived bonds determined 

experimentally against the predicted fraction of PDD assuming 100% CD8:Lck 

conjugation, near-instantaneous PDD bond formation after CD8:Lck recruitment, and 

fast diffusion kinetics. Error bars represented 95% confidence interval on the mean. 

Arrow indicates a region where mechanism is unlikely. Experimental data on the 

opposite side of this line would imply some assumptions may be too favorable, but the 

mechanism still possible.   
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Taken together, these simulation-based analyses converge on several points. The 

simulations assume that the pulling of one bond leads to recruitment of a second molecule 

by diffusion. The fast assumed diffusion constant significantly under predicts the formation 

PDD bonds despite favorable assumptions. Therefore, the formation of PDD bonds is a 

diffusion-limited process. Additionally, there appears to be little correlation between the 

experimentally measured fraction of PDD bonds and peptide strength. Therefore, a more 

complex behavior must be occurring.   

6.3.3 Force-induced PDD formation promotes catch-bond response    

The different bond types, or species, may deviate from predicted due to a cellular 

response over time. Because the TCR and CD8 are present in the context of the cellular 

environment and the BFP assay “tickles” the cell with ligand many times in a row, there is 

a strong likelihood that signaling and modifications occur to reduce diffusion limitations 

or promote PDD formation in another manner. Effectively, the molecular environment 

changes over time, and the sequence violates the i.i.d. assumption used in Section 6.3.2. 

These environmental changes, provoked by the application of force, result in a survival 

distribution with many different species (TCR:pMHC, CD8:MHC, etc.) that are not seen 

in the absence of force (Figure 34).  
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Figure 32. Transient species deviations under force 

To understand these changes with the application of force, we examined the 

changes in PDD fraction with force using a Markov chain survival distribution algorithm 

which predicts the resulting survival distribution from an input initial species vector (the 

fraction of the bonds beginning in each state). As a result, there is no time dependency in 

this analysis. The Markov chain assumes the bond begins a combination of five different 

species (Figure 33, blue highlighted sections) and can transition between the states based 

on kinetic constants of the interactions, diffusion, and molecular densities. Bonds with 

more than one transmembrane interaction (green-filled ovals), such as TCR:CD8:MHC 

bonds, could not spontaneously unbind and required transition to a single bond state for 

dissociation. As discussed previously in Section 6.1, rebinding occurs very quickly in the 

PDD complex (Figure 33, noted by the purple oval). This on-rate increase was calibrated 

to be approximately ~1500x.  
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Figure 33. Markov chain connection diagram for determination of survival 

distribution 

 

 

 

The fraction of PDD bonds is unknown. Therefore, we simulated the survival 

distribution using the Markov chain approach for each bin in the force-lifetime curves to 

fit the fraction of PDD bonds (for example, see Figure 34A). The remainder of the bonds 

were determined by the 2D kinetics of the interactions and their respective densities. To 

solve the Markov chain, this initial vector of probabilities was solved in time through a 

system of ordinary differential equations which act at the probabilistic level. The kinetics 

of probability changes are governed by the chemical master equation, and therefore relate 

to easily to the inherent “solution” parameters by normalization coefficients such as area 

Markov chain connection diagram. Bubbles represent species at any given time – red 

bubbles indicate species that can break, green bubbles indicate species that are 

unbreakable and require two steps of dissociation. A (+/- molecule) notation represents 

that the interaction is close, but not currently bound. Bonds begin in any of 5 different 

states according to interaction kinetics or fit to survival distribution marked in the blue 

squares. The purple oval highlights the enhanced interactions due to the nature of the 

PDD complex. 
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and concentration. The fraction of PDD bonds correlated very well with catch-bond 

behavior (Figure 34B-I). Because there is significant noise due to the stochasticity of the 

assay (discussed in future sections), combining the data sets into positively or negatively 

selecting ligand groups revealed interesting trends. The PDD fraction of slip bond ligands 

showed a relatively mild response to force (Figure 34J). Interestingly, ligands with catch-

bonds showed a more dynamic response (Figure 34K); CD8.4 responses were more 

pronounced and stronger (Figure 34L).  

 

Figure 34. Fraction of PDD bonds correlates with catch-bond behavior. 

 

 

 

6.4 Model and simulations on proposed mechanism explain experimental data 

(A) Markov chain fitting of 12pN bin of Q4H7 vs. CD8.4 OT-1 thymocytes. (B-I) Markov 

chain prediction of fraction of PDD bonds vs. force for wild-type OT-1 thymocytes 

against negatively-selecting ligands (B-D), positively-selecting ligands (E-G), and CD8.4 

OT-1 thymocytes against negatively selecting ligands (H,I). (J-L) Combined Markov 

chain fitting data for all positively selecting ligands (J), negatively selecting ligands (K), 

and CD8.4 thymocytes vs. negatively selecting ligands (L). Fit with a Gamma distribution 

to show apparent trend (blue line). 
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6.4.1 Proposed mechanism for catch-bond behaviour in thymocyte selection 

Previous analyses suggest that force provokes PDD bond formation; it is not a 

passive response governed through diffusive processes. For several reasons outlined below, 

we believe that TCR and CD8 may form complexes, one or more CD8s conjugating to a 

single TCR, on the surface of T cells over time. For the sake of simulation and conceptual 

simplicity, we will refer to this complex as a heterodimer or dimer. This heterodimer is the 

result of TCR mechanotransduction.  

1) The application of mechanical force on TCR triggers signaling [88, 90-93].  

2) TCR is especially responsive when pulled to a force of approximately 10pN [92]. 

Interestingly, this coincides with the PDD fraction peak (Figure 34J-L).  

3) Lck is a proximal signaling kinase in TCR signaling [61]. Lck inhibitor blocked 

catch-bond formation in negatively-selecting ligands.  

4) Coreceptors are initially separated from TCR islands which converge with TCRs 

upon TCR stimulation [109, 147]. This separation changes as T cells mature to 

increase sensitivity [148]. This effect would decrease the diffusion limitations 

outlined in Section 6.3 over time.  

5) CD8 showed increased FRET signaling with CD3 upon APC stimulation [109], 

suggesting that CD8 and CD3(TCR) come in close contact after T cell stimulation. 

Additionally, CD3 antibody stimulation indicated stimulation-induced association 

of CD8/CD4 coreceptors to TCR by co-IP [144, 145].   

Therefore, we suggest the following model to explain the catch-bond behavior in 

thymocyte negative selection, outlined in Figure 35. The thymocyte begins at an initial 
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state where TCR and CD8 are separated on the cell surface and the CD3 tails for Lck 

binding are buried in the membrane. If there is no force on a TCR bond or a CD8 bond is 

pulled, no signaling occurs (Figure 35A, No Signaling path) and the cell maintains the 

initial state. However, if a TCR is pulled, signaling occurs (summarized in Figure 35B), 

tails of nearby CD3 molecules are released from the membrane and phosphorylated, and 

TCR forms TCR:CD8 dimers through the interaction of Lck with CD3 (Figure 35A, 

Signaling path). It then has the ability to overcome diffusion limitations and form periods 

of upregulated bond lifetimes in the BFP assay through PDD formation.  

 

Figure 35. Proposed mechanism for catch-bond behavior in thymocyte negative 

selection 

 

 

(A) Thymocyte membrane interactions. Thymocytes activate signaling upon TCR pulling 

which promotes release of CD3 tails into cytosol. These tails bind to Lck on the CD8 

tails, leading to pre-formed TCR:CD8(Lck) dimers which have the capacity to for PDD 

bonds. (B) Signaling interactions. Once TCR is pulled by a pMHC interaction, signaling 

occurs proximal to the TCR in the form of Lck (green shading). Additionally, the release 

of the tails promotes generic phosphatase activity (red shading) which builds to suppress 

Lck kinase activity, resulting in thymocyte reversion to initial state. 
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This proposed mechanism corresponds with the outcomes of the data analyses and 

the literature. It combines aspects of TCR mechanotransduction, proximal signaling, and 

transient species deviations. In the next section, we will simulate this behavior and compare 

its results to the BFP data to explain the mechanism behind catch bonds in thymocyte 

negative selection. 

6.4.2 Simulations on proposed mechanism 

First, an algorithm was developed to simulate the results of the BFP assay. BFP is 

a unique assay in that there is a significant element of stochasticity to bond formation – 

different bonds can be pulled, at different times, for different durations – measured 

sequentially to output the static representation of a lifetime vs. force curve. The algorithm 

is outlined in Figure 36. It begins by initializing the two surfaces – thymocyte and bead – 

with their respective molecular densities, kinetics, and other inputs. The simulation models 

the contact between cell and bead by permitting transmembrane interactions for a period 

of time. After the contact period, the simulation determines presence, or lack, of a bond 

and its species. If the bond does not survive pulling or there is no bond, no lifetime is 

recorded and the system transitions to a waiting time module where signalling and 

modifications are permitted, but no transmembrane interactions can be formed (i.e. no 

binding to MHC). If the bond survives pulling, a lifetime is selected from the survival 

distribution for that bond and recorded. The thymocyte may signal during this time to 

modify the TCR for CD8 binding and activate Lck or phosphatase. After the bond time is 

finished, the simulation returns to the waiting time model. This can be repeated many times 

to create a sequence of bond lifetimes for a single cell-bead pair. In essence, this reflects 

the process of approach-contact-pull-clamp-wait cycle of the BFP force-clamp assay. 
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Figure 36. BFP simulation algorithm flow diagram 

 

Several different methods are used to evaluate the modules presented in the 

algorithm. The contact time, waiting time, and bond time modules are solved through a 

system of ordinary differential equations (ODEs) representing the first or second order 

interactions outlined in Figure 37 and solved with the ode45 function in Mathworks Matlab 

(R2015b). The probability of bond formation at the end of contact is determined from the 

total average number of bonds from the ODE system and assuming a Poisson model of the 

number of binding events [123]. The bond type is governed by weighted random selection 

from the relative fractions of bonds at the end of contact. Bond pulling survival probability 

was determined by integrating the expression for the rupture probability distribution at a 

The algorithm begins at the initialization module and proceeds in the direction indicated 

by the arrows. Each module is outlined in a rectangle. This can be repeated many times 

in sequence to replicate the experimental conditions of the micropipette assay. 
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given ramping rate [149] to the clamping force. The bond lifetime was selected from the 

Markov chain (Figure 33) by setting the appropriate initial species vector. The kinetics of 

individual interactions under force were determined through fitting to the Bell model [146].     

 

Figure 37. Outline of system interactions 

Parameters for the model are outlined in Table 7. Most the values are experimental 

conditions or measured by other assays. Others were selected from the appropriate 

literature or estimated.  
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Table 7. Simulation parameters for CD8 thymocyte binding mechanism 

 

The TCR signaling capacity requires a force-induced response. To estimate an 

appropriate function for this response, we looked to the catch-bond-like shape of the 

fraction of PDD bonds with force. The response fit very well to a gamma distribution 

(Figure 34). Additionally, several studies have indicated that T cells have a specific cellular 

response to force through their TCR [92, 93]. An optimal force is required on the TCR 

through the MHC to produce adequate downstream calcium flux; forces falling outside this 

range, whether higher or lower, do not signal. For these reasons, we decided to use the 

gamma function to approximate TCR mechanotransduction. The activation of Lck was 

given a response governed by the force on the TCR:pMHC bond (Figure 38). Other 

parameters were either measured, taken from literature, estimated, governed by assay 

conditions, or fit to data trends (see Experimental materials and methods, Table 7).  
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Figure 38. TCR:pMHC force induced Lck activation function 

To examine the trends of the simulations on catch bond behavior, we focused on 

two ligands on the edges of the selection threshold for the wild-type OT-1 system, Q4H7 

(positively selecting ligand) and Q4R7 (negatively selecting ligand). Simulation trends 

matched the experimental data trends very well (Figure 39). With low amounts of CD8:Lck 

conjugation (wild-type OT-1 thymocytes) Q4H7 simulations showed a slip bond, while 

Q4R7 simulations showed a catch bond behavior. If the only the fraction of CD8:Lck 

conjugation was increased while all other parameters remained the same, Q4H7 shifted its 

behavior to a catch bond, and Q4R7 made a much stronger catch bond (Figure 40). This is 

consistent with the experimental data.  
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Figure 39. Simulated vs. Experimental thymocyte lifetime vs. force 

 

 

 

Figure 40. Simulated BFP data indicates high Q4R7 sensitivity to mechanism 

 

6.5 Discussion and future studies 

Significant technical constraints limit the interpretation of BFP data in the context of 

multiple-bond interactions such as in the CD8-TCR-MHC system. This difficulty begins 

with the fact that many different bonds can be formed, and any bond under force could be 

Experimental (blue circles, error bars represent standard error) vs. Simulation (red circles, 

error bars represent 95% CI) force vs. lifetime curves for high Q4R7 with high (A, CD8.4) 

or low (B, wild-type CD8) CD8:Lck conjugation, and Q4H7 with high (C, CD8.4) or low 

(D, wild-type CD8) CD8:Lck conjugation.  

 

BFP data was simulated varying the CD8:Lck conjugation fraction (f) for Q4R7 (A) and 

Q4H7 (B). Gradient towards black indicates direction of increasing f. Error bars represent 

95% CI. 
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one of many different species, even switching between states after the bond is clamped. 

Because the assay only measures bond lifetime and force levels, the type of bond, whether 

it be TCR:MHC, CD8:MHC, trimolecular, etc., cannot be determined. Compiling the data 

into lifetime vs. force curves provides some interpretation of the system mechanisms, but 

binning data loses a significant portion of information. Basic intuition reasons that force 

increases bond lifetime, thereby permitting more time for signal processing by the cell. 

However, due to the complexity of multiple bond types, this type of analysis falls short. By 

including some of this lost information in the form of survival distribution analysis, we 

have revealed a new mechanism in the TCR:CD8:MHC system and elucidated the origins 

of the thymocyte catch-bond behavior. 

The situation of antigen presentation in the thymus is much different from the BFP 

assay. For example, the BFP assay limits pMHC density to maintain a low binding 

frequency; this maintains single bond pulling. Only a single bond is pulled at a time whilst 

other TCR:pMHC interactions are not permitted. Only one pMHC species is present in the 

assay. In contrast, thymic antigen presentation allows multiple TCR:pMHC interactions to 

occur simultaneously with many different pMHC species, random or differential 

waveforms in mechanical bond loading, interactions with cytokines and other receptors, 

and all the additional complexities of in vivo cell-cell interactions. Nevertheless, the high 

resolution and control afforded by the BFP assay provides a unique platform for highly-

controlled probing of the cell, resulting in insights into thymic TCR antigen recognition 

otherwise unattainable through conventional approaches.  

The analysis on the BFP data presented in this chapter implicates TCR:pMHC 

forced-induced binding of CD8:Lck to TCR for longer lifetimes and antigen processing 
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(Figure 35). This new mechanism has many implications in thymic selection. Most 

coreceptor mechanism research has relied on non-thymocytes, but the mechanisms 

occurring at the thymocyte level are likely similar. In support of this mechanism, similar 

coreceptor CD4 (also conjugated to Lck) became more proximal to TCR after stimulation 

in primary T cell blasts [147]. Similarly, different ligands recruit CD8 to the immunological 

synapse with different time delays, with weaker ligands taking longer than stronger ligands, 

but approximately to the same level [150]. Casas and colleagues showed CD3 and CD8 

increased FRET signaling after T cell hybridoma stimulation by APCs [109]. Interestingly, 

they showed that this proximity change relied on CD8:Lck conjugation, as mutants 

removing the binding site eliminated the increase. However, the coreceptor-scanning 

concept, that a TCR:pMHC bond must last long enough to “scan” coreceptors for one 

bound to Lck for efficient signaling transmission, has gathered wide support [111, 112]. 

Figure 30 indicates this mechanism is unlikely to explain the BFP data. The mechanism 

presented in this study was not previously fathomable due to the nature of the assays, but 

it is still consistent with their experimental data. The analysis presented here does not 

exclude coreceptor scanning from contributing, albeit to a lesser degree.  

There are several implications of the proposed mechanism, outlined below. 

1) CD8:Lck conjugation regulates antigen sensitivity by TCR:CD8 conjugation 

capacity. In the BFP assay, conjugation controls the capacity of TCR and CD8:Lck 

to form dimers independent of direct pMHC contact. In vivo, the situation would 

be similar. Weak bonds would not elicit much response, but once a strong bond is 

pulled, CD8 and TCR would begin dimerization. A higher CD8:Lck fraction would 

allow more TCR-CD8 dimerization, increased pMHC sampling and higher 
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likelihood of rebinding that same antigen. It has previously been shown that this 

fraction varies between T cell subtypes [101, 148]. This indicates a control point 

for antigen sensitivity amplification.  

2) Control over the non-kinase binding of Lck to TCR(CD3) is critical. 

Phosphorylation of ITAMs by Lck modifies their charge and negates membrane 

sequestration of the tails which contain a basic residue sequence for Lck unique 

domain motif binding [49, 151]. Because this is a recently discovered interaction, 

control mechanisms are currently unknown, but Lck conformational states changes 

by phosphorylation or modifications due to CD8 binding are likely candidates. 

There is also significant evidence that CD3 ITAM-bound ZAP-70 mediates the 

interaction with Lck(CD8) [144, 145, 152]. The nature of the simulations does not 

preclude this interaction – Lck activation of TCRs could lead to ZAP-70 

recruitment, which would require one additional linear TCR modification to the 

model and therefore not change the outcome. Dissemination of these two 

possibilities could be a focal point for future research.  

3) Intracellular signaling dynamics controls CD3 tail stabilization and TCR-CD8 

dimerization. Lck is a likely candidate for stabilization due to its kinase activity. 

However, the generic phosphatase presented in the model is unknown. Likely 

candidates include Shp-1 or Shp-2 [52, 83, 84]. The interaction networks for these 

phosphatases are tightly controlled systems regulated by many different receptors 

and other signaling molecules [153].  

4) The proposed mechanism results in periods of TCR-CD8 dimerization, followed 

by dissociation and desensitization due to low bond number and lack of continuous 
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stimulation during the BFP assay. There is some evidence for this from the BFP 

data, but the data is not conclusive and more statistical analyses are required. In 

vivo, it would likely manifest as a stochastic and fast increase in dimerization 

which, depending on the amount of antigen present, may not contain a 

desensitization period if there is sufficient stimulation. 

5) This mechanism produces a second layer of regulation to the initial TCR triggering 

process. In effect, the TCR triggering occurs first, followed by TCR:CD8 

dimerization. This process induces an upregulated binding state for antigen 

recapture, similar to rebinding models discussed in Section 2.3.3. Therefore, a 

single TCR-pMHC interaction can trigger the response, but more TCR interactions 

are likely necessary for prolonged signaling and full T cell activation. 

There are several limitations to the simulation-based analysis presented in this 

chapter. First, it is difficult to control aspects of membrane organization in simulations due 

to computational resource constraints. This analysis does not preclude the possibility of 

membrane spatial control – i.e. if TCR force dynamics result in changes to the spacing 

between TCR and CD8, decreasing the effective binding rates. However, there must be 

some control over either there spacing or kinetics which is induced by force on a 

TCR:pMHC bond. In the simulations, this mechotransduction was produced through Lck 

activity, and is the most likely candidate at this time. Lck activity upregulates after TCR 

simulation, possibly through kinetic segregation methods (Section 2.3.2), but the exact 

mechanism is not known at this time. Additional studies are required to elucidate more 

about this mechanotransduction mechanism. Secondly, there are many parameters drawn 

from relevant literature, but the model was fit exclusively to two parameters – the interplay 
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between TCR-induced Lck activation and the generic phosphatase rates. Small changes to 

these parameters results in significant changes to the magnitude of the response. Therefore, 

it is important to note that the simulation results are indicative of larger trends resulting 

from the mechanism rather than a definitive quantitative description.  

In this chapter, we have presented the first evidence that mechanical forces on TCRs 

by pMHC can trigger a second level of antigen sensitivity regulation by inducing TCR and 

CD8 to dimerize through Lck:CD3 conjugation in thymocytes. Future studies will focus 

on validating this mechanism either by evidence of periods long-bond formation using the 

HAFM in its force-clamp capacity or direct evidence of CD8-TCR proximity changes after 

TCR mechanotransduction using FRET techniques and/or super-resolution microscopy 

cross-correlation analyses.  
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CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS 

Fixed kinetic rates are considered in nearly every analysis of TCR triggering and 

activation [71, 79-83, 85, 111]. In this study, we have shown several pieces of evidence 

that indicate that the kinetics governing the TCR antigen recognition process are much 

more complicated than originally conceived. In the absence of sustained force, TCRs 

upregulate their kinetics for fast intervals upon initial antigen recognition. Pharmacological 

intervention revealed that the most proximal TCR signaling molecules, Lck and 

cholesterol, play a significant role in regulating these periods. Additionally, mechanical 

force exerted on the TCR through pMHC recruits CD8 to proximal TCRs, inducing further 

sensitivity changes over time. This mechanism increases antigen capture as well as extends 

lifetime for proofreading. 

Although not studied directly in this work, these two mechanisms intersect on many 

levels. Both mechanisms involve Lck signaling and specific membrane organization. Both 

mechanisms develop in response to initial antigen recognition. Both mechanisms increase 

sensitivity for antigen recapture, both while maintaining ample discrimination capabilities. 

There are many basic questions that come from these mechanisms: At what level are these 

mechanisms controlled – DNA, microenvironment, other receptors? Is ligand memory 

impacted by mechanical forces similar to CD8? Which mechanism is more dominant 

during which stages of antigen recognition? These questions expose important challenges 

in informing therapeutic treatments. For instance, if we understand how these mechanisms 

controlling sensitivity are modulated in the human body, we can develop therapeutics 

targeting control points for either enhanced or suppressed T cell activation – an effect that 
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can be critical for pathogen clearance or limiting autoimmune damage, respectively. 

Additionally, a better understanding of these mechanisms would lead to more informed 

treatments. If TCR ligand memory is critical at the tonic signaling level, suppression would 

lead to cell death; however, if TCR force-induced CD8 recruitment follows, then 

suppression of this mechanism, while not affecting TCR ligand memory, would allow for 

cell survival but decreased TCR sensitivity. The sequencing of these mechanisms and their 

respective interactions is therefore critical for translational research and should be a focus 

of future studies. 

This work directly couples with antigen recognition in T cells; however, it also 

revealed the possibility of new mechanisms underlying other ligand-receptor binding 

interactions. Although not shown in these studies, several other receptor-ligand systems 

showed a positive memory index, and others exhibited changes to binding quality over 

time due to mechanotransduction. The unique assays used to parse these mechanisms are 

tedious and  require extensive training, unlike many standardized techniques available 

today, such as flow cytometry and blotting techniques. Therefore, it is unlikely that all 

receptor-ligand interactions can be probed at this level; even the studies presented here 

provide an incomplete picture. However, these mechanisms should be considered in the 

interpretation of systems requiring high sensitivity and discrimination; they likely rely on 

multiple layers of regulation originating from the first few binding events, and not wholly 

on signaling pathways.  
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APPENDIX A. MATLAB CODE FOR SIMULATION OF TCR 

MEMORY MECHANISM 

A.1 Code for cholesterol binding model 

% Simulate the micropipette binding assay  
% Create files outputting the adhesion frequency for each cluster over 

time 
% Written by William Rittase 

  
clearvars; close all 

  
%% Inputs 
n_times = 20; % number of cell pairs to simulate 
n_touches = 300; % number of touches per cell pair 
s = 120; % number of Latin hypercube divisions 
export_folder = 'insert folder string’; 

  
%% Input necessary folders 
functionPath = 'insert folder string’; 

  
addpath(functionPath) 

  
%% Micropipette conditions 
tc = [0.25,5]; % contact time min and max 
tw = [1,6]; % waiting time min and max 
Ac = 1; % simulation contact area 

  
mT = 108; % density TCR 
mM = 2700; % density MHC 

  
n_clusters_to_sim = round(mT*Ac/13.5); % number of clusters in each 

cell pair 

  
%% Cluster probability distribution 
minClustSize = 7; 
maxClustSize = 20; % maximum cluster size from Davis paper 
clust_area_ratio = 0.07;  
r_t_ratio = pi*clust_area_ratio^2/maxClustSize; % maximum cluster area 

from Davis paper, 70nm radius (assume 20 TCRs) 

  
%% Binding Parameters 

  
D = 0.001; % diffusion constant in um^2/s 

  
% Scanning parameters (to be fit from statistical model) 

  
kt_f_norand = logspace(-8,-5,s); % on rate for TCR:MHC binding 
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kt_r_norand = logspace(-1,1,s); % off rate for TCR:MHC binding 

  
ktx_r_norand = logspace(-2,2,s); % off rate for xTCR:MHC binding 

  
ktx_f_norand = logspace(0,3,s); % on rate for xTCR:MHC binding 

  
kd_norand = logspace(-2,2,s); % transformation constant -> reversion 

from xTCR to TCR cluster 

  
kc_norand = logspace(-2,2,s); % conversion rate for cluster TCR -> xTCR 

  
%% Inport v and R vectors 
v = xlsread('v_6.xlsx'); 
R_start = xlsread('R_6.xlsx'); 

  
%% Species vector (m) 
% 1: TCR, unbound low affinity TCR 
% 2: TCRx, unbound higher affinity TCR 
% 3: TCR:MHC, bound TCR:MHC, no phos 
% 4: TCRx:MHC, bound TCR:MHC, phos 
% 5: MHC, unbound MHC 
% 6: Placeholder, always 1: used for diffusion of MHC, conversion of 
% cluster (reactions 5 and 6) 

  
% Get from get_molec_species_modelx 

  
bonds = logical([0,0,1,1,0,0]); % which species are bonds 

  
%% Kinetic vector (k) 
% 1: TCR:MHC binding 
% 2: TCR:MHC unbinding 
% 3: TCRx:MHC binding 
% 4: TCRx:MHC unbinding 
% 5: Conversion coefficient (coverting cluster TCR->xTCR) 
% 6: Degrading coefficient (coverting cluster xTCR->TCR) 
% 7: MHC diffusion out 
% 8: MHC diffusion in 

  
% Get from get_kinetics_parameters_modelx 

  
%% Randomize parameters 
kt_r_scan = kt_r_norand(randperm(length(kt_r_norand))); 
kt_f_scan = kt_f_norand(randperm(length(kt_f_norand))); 
kc_scan = kc_norand(randperm(length(kc_norand))); 
ktx_f_scan = ktx_f_norand(randperm(length(ktx_f_norand))); 
ktx_r_scan = ktx_r_norand(randperm(length(ktx_r_norand))); 
kd_scan = kd_norand(randperm(length(kd_norand))); 

  
for i = 1:s % for each scanning condition 
    kt_r = kt_r_scan(i); 
    kc = kc_scan(i); 
    kd = kd_scan(i); 
    kt_f = kt_f_scan(i); 
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    ktx_f = ktx_f_scan(i)*kt_f; 
    ktx_r = kt_r*ktx_r_scan(i); 

     
    for n1 = 1:n_times 

     
        af = zeros(n_clusters_to_sim,n_touches); 
        ct = (tc(2)-tc(1))*rand(1,n_touches)+tc(1); 
        wt = (tw(2)-tw(1))*rand(1,n_touches)+tw(1); 

         
        tic 

     
        for n2 = 1:n_clusters_to_sim % for each cluster 

             
            [m,A_clust] = get_molec_species_model6(mM, minClustSize, 

maxClustSize, r_t_ratio); 
            [k_on,k_off] = get_kinetic_parameters_model6(mM, kt_f, 

kt_r, ktx_f, ktx_r, kc, kd, D, A_clust); 

             
            R = R_start; 

             
            m_start = m; 

  

            for n3 = 1:n_touches 
                % contact time 
                m_on = one_touch_model6(m,k_on,ct(n3),R,v); 
                % if there was a bond 
                if sum(m_on(bonds)) > 0  
                    af(n2,n3) = 1; 
                    % break bonds 
                    m = m_on; 
                    m(1) = m(1)+m(3); 
                    m(2) = m(2)+m(4); 
                    m(3) = 0; 
                    m(4) = 0; 
                    m(5) = m(3)+m(4)+m(5); 
                else 
                    m = m_on; 
                end 
                % waiting time 
                m = one_touch_model6(m,k_off,wt(n3),R,v); 
            end 
        end 

         
        % export data to folder 
        folder_now = [export_folder,'/Condition ',num2str(i),'/','Cell 

Pair ',num2str(n1),'/']; 

  
        if ~isdir(folder_now) 
            mkdir(folder_now) 
        end 

         
        csvwrite([folder_now,'af'],af) 
        csvwrite([folder_now,'ct'],ct) 
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        csvwrite([folder_now,'wt'],wt) 

         
        disp(['s = ',num2str(i)]) 
        disp([num2str(n1),' of ',num2str(n_times),' Runs Completed.']) 
        disp(['Time Elapsed = ',num2str(toc)]) 

         
    end 

  
end 

  
all_scanned_parameters = [kt_r_scan; kt_f_scan; ktx_r_scan; ktx_f_scan; 

kc_scan; kd_scan]; 

  
csvwrite([export_folder,'/all variables'],all_scanned_parameters) 

A.2 Code for get kinetic parameters function 

function [k_on,k_off] = get_kinetic_parameters_model6(mM, kt_f, kt_r, 

ktx_f, ktx_r, kc, kd, D, A_clust) 
% use this function to output the kinetic parameters vector for solving 

the 
% SSA 

  
% Output kinetics format (k_on or k_off where on = cells in contact, 

off = 
% cells not in contact) 
% 1: TCR:MHC binding 
% 2: TCR:MHC unbinding 
% 3: TCRx:MHC binding 
% 4: TCRx:MHC unbinding 
% 5: Conversion coefficient (coverting cluster TCR->xTCR) 
% 6: Degrading coefficient (coverting cluster xTCR->TCR) 
% 7: MHC diffusion out 
% 8: MHC diffusion in 

  
%% k_on 

     
    k_on = zeros(1,8); 

     
    k_on(1) = kt_f/A_clust; 
    k_on(2) = kt_r; 
    k_on(3) = ktx_f/A_clust; 
    k_on(4) = ktx_r; 
    k_on(5) = kc; 
    k_on(6) = kd; 

     
    Mavg = mM*A_clust; % average MHC in cluster 

  
    k_on(7) = D/A_clust; % diffusion rate out 

     

    k_on(8) = k_on(7)*Mavg; % diffusion rate in 

     
%% k_off 
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    k_off = zeros(1,8); 

     
    k_off(1) = 0; 
    k_off(2) = 0; 
    k_off(3) = 0; 
    k_off(4) = 0; 
    k_off(5) = 0; 
    k_off(6) = kd; 

     
    Mavg = mM*A_clust; % average MHC in cluster 

  
    k_off(7) = D/A_clust; % diffusion rate out 

     
    k_off(8) = k_on(7)*Mavg; % diffusion rate in 

  
end 

A.3 Code for one touch function 

function m_out = one_touch_model6(m,k,t_max,R,v) 
% simulate one touches using input vectors and kinetics for time t 
% m = species vector 
% k = kinetics vector 
% t_max = contact/waiting time 
% R = proportions required for ssa evalulation 
% v = species change vector 

  
t = 0; 
stop = 0; 

  
n = 0; 

  
while stop == 0 

     
    n = n+1; 

     
    [m_new,dt,rxn] = ssa_model6(m,v,k,R); 

     
    if t+dt > t_max % if time is exceeded, stop and output 
        m_out = m; 
        stop = 1; 
    elseif (t+dt < t_max) && (rxn ~= 5) && (rxn ~= 6) 
        m = m_new; 
        t = t+dt; 
    elseif rxn == 5 % if conversion of cluster from TCR to xTCR 
        m(2) = m(1); 
        m(1) = 0; 
        m(4) = m(3); 
        m(3) = 0; 
        R(6,end) = 1; % need to change R so that degrading is in 
    elseif rxn == 6 % if conversion of cluster from xTCR to TCR 
        m(1) = m(2); 
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        m(2) = 0; 
        m(3) = m(4); 
        m(4) = 0; 
        R(6,end) = 0; % need to change R so that degrading is out 
    end 

  
end 

  
end 

A.4 Code for SSA function 

function [Xnew,dt,iEvent] = ssa_model6(X,v,k,R) 
% Perform the stochastic simulation algorithm from Gillepsie and output 

new 
% species vector and rate constant vector 
% X is species vector 
% k is kinetics vector 
% v is change of species vector  
% R is species vector for propensities determination 

  
P = zeros(size(k)); 

  
for i = 1:length(k) 
    Ri = R(i,:); 
    ri = Ri > 0; 

     
    if sum(ri)>0 

     
        P(i) = k(i) * prod(X(ri).*Ri(ri)); 

         
    end 
end 

     
Psum = cumsum(P); 
dt = - log(rand)/Psum(end); % time step for next reaction 
r = rand*Psum(end); 
iEvent = length(Psum(Psum<r))+1; % choose reaction that fires 

  
Xnew = X + v(iEvent,:); 

  
end 

A.5 Code for model evaluation script 

% Use the outputs from cholester binding model to determine the 

adhesion 
% frequency 
% Make sure to change data_folder to export_folder from cholesterol 

binding 
% model 
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clearvars 

  
%% Inputs 
n_cond = 120; 
n_times = 20; 
n_clusters_to_sim = 8; 

  
%% Necessary folders 

  
data_folder = 'insert folder string'; 

  
%% Begin af evaluation for each condition 
for i = 1:n_cond 
    af_all = []; 
    wt_all = []; 
    ct_all = []; 

     

    current_folder = [data_folder,'Condition ',num2str(i),'/']; 

     
    for j = 1:n_times 
        current_folder_cp = [current_folder,'Cell Pair 

',num2str(j),'/']; 

         
        % read simulation data files from current folder cp (cell pair 
        % designation) 

         
        af_now = csvread([current_folder_cp,'af']); % adhesion 

frequency for each cluster 
        wt_cp = csvread([current_folder_cp,'wt']); % wating times for 

cell pair 
        ct_cp = csvread([current_folder_cp,'ct']); % contact times for 

cell pair 

         
        % Determine actual adhesion frequency for cell pair based on 

all 
        % the clusters - if one cluster is bound, then a binding event 
        % occurred 

         
        afs_now = sum(af_now,1);  
        af_cp = afs_now>0; % cell pair adhesion frequency 

         
        % Put together data sets 
        af_all = [af_all;af_cp]; 
        wt_all = [wt_all;wt_cp]; 
        ct_all = [ct_all;ct_cp]; 

         
    end 

     
    csvwrite([current_folder,'af_all'],af_all) 
    csvwrite([current_folder,'ct_all'],ct_all) 
    csvwrite([current_folder,'wt_all'],wt_all) 

     
end 
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A.6 Code for memory index evaluation and plotting script 

% Evaluate the adhesion frequency from model_evaluation_af to extract 
% memory index 
% Make sure to change the data_folder to contain output from model 
% evalulation 

  
clearvars 

  

%% Inputs 
n_cond = 120; 
n_times = 20; % equivalent to n cell pairs 
af_plot = 0; % if plotting distribution for adhesion frequency 
dp_plot = 0; % if plotting distribution 
af_vs_dp_plot = 1; 

  
%% Necessary folders 

  
data_folder = 'insert folder string'; 

  
%% Storage 

  
dp = zeros(n_cond,n_times); 
af = zeros(n_cond,n_times); 

  
%% Go condition by condition 
for i = 1:n_cond 
    % Import data 
    current_folder = [data_folder,'Condition ',num2str(i),'/']; 
    af_folder = csvread([current_folder,'af_all']); 

     
    % Go cell pair by cell pair 
    for j = 1:n_times 
        af_now = af_folder(j,:); 
        % for each touch after the first,  
        n11 = 0; 
        n10 = 0; 
        n01 = 0; 
        n00 = 0; 
        for k = 2:length(af_now) 

             
            if af_now(k) == 1 
                if af_now(k-1) == 0 
                    n01 = n01+1; 
                else 
                    n11 = n11+1; 
                end 
            elseif af_now(k) == 0 
                if af_now(k-1) == 0 
                    n00 = n00+1; 
                else 
                    n10 = n10+1; 
                end 
            end 
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        end 

         
        p11 = n11/(n10+n11); 
        p01 = n01/(n01+n00); 

         
        dp(i,j) = p11-p01; 

         
        af(i,j) = mean(af_now); 

         
    end 

     
end 

  
dp = dp'; 
af = af'; 

  

csvwrite([data_folder,'dp_all'],dp) 
csvwrite([data_folder,'af_all'],af) 

  
dp_mean = mean(dp,1); 
af_mean = mean(af,1); 

  

scanned_parameters = csvread([data_folder,'all variables']); 

  
if dp_plot == 1 
    subplot(3,2,1) 
    scatter(scanned_parameters(1,:),dp_mean) 
    title('kT_r') 
    a = gca; 
    a.XScale = 'log'; 

  
    hold all 

  
    subplot(3,2,2) 
    scatter(scanned_parameters(2,:),dp_mean) 
    title('kT_f') 
    a = gca; 
    a.XScale = 'log'; 

  
    subplot(3,2,3) 
    scatter(scanned_parameters(3,:),dp_mean) 
    title('kTx_r') 
    a = gca; 
    a.XScale = 'log'; 

  
    subplot(3,2,4) 
    scatter(scanned_parameters(4,:),dp_mean) 
    title('kTx_f') 
    a = gca; 
    a.XScale = 'log'; 

  
    subplot(3,2,5) 
    scatter(scanned_parameters(5,:),dp_mean) 
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    title('k_c') 
    a = gca; 
    a.XScale = 'log'; 

  
    subplot(3,2,6) 
    scatter(scanned_parameters(6,:),dp_mean) 
    title('k_d') 
    a = gca; 
    a.XScale = 'log'; 
end 

  

if af_plot == 1 
    subplot(3,2,1) 
    scatter(scanned_parameters(1,:),af_mean) 
    title('kT_r') 
    a = gca; 
    a.XScale = 'log'; 

  

    hold all 

  
    subplot(3,2,2) 
    scatter(scanned_parameters(2,:),af_mean) 
    title('kT_f') 
    a = gca; 
    a.XScale = 'log'; 

  
    subplot(3,2,3) 
    scatter(scanned_parameters(3,:),af_mean) 
    title('kTx_r') 
    a = gca; 
    a.XScale = 'log'; 

  
    subplot(3,2,4) 
    scatter(scanned_parameters(4,:),af_mean) 
    title('kTx_f') 
    a = gca; 
    a.XScale = 'log'; 

  
    subplot(3,2,5) 
    scatter(scanned_parameters(5,:),af_mean) 
    title('k_c') 
    a = gca; 
    a.XScale = 'log'; 

  
    subplot(3,2,6) 
    scatter(scanned_parameters(6,:),af_mean) 
    title('k_d') 
    a = gca; 
    a.XScale = 'log'; 
end 

  

if af_vs_dp_plot == 1 
    scatter(af_mean,dp_mean) 
    xlabel('Adhesion Frequency') 
    ylabel('Memory Index') 
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end 
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APPENDIX B.  MATLAB CODE FOR MARKOV CHAIN 

SURVIVAL DISTRIBUTION FITTING 

B.1 Code for fitting algorithm  

% Run best fit for species holding kenh constant 
% Assume it starts in variable state 
% Fit distribution, not average lifetime 

  
% Written by William Rittase 
% January 23, 2018 

  
% Important outputs: 
% fracTMC_best: best fitting fraction of PDD bonds, fracTMC_best is a 

cell 
% vector with fracTMC_best{i} containing the best fit solutions for 
% file{i}. See scan_model_check_hold_kenh function for contents of 
% fracTMC_best{i} 
% pBest: best survival distributions probabilities, pBest is a cell 

vector 
% with pBest{i} containing the best fit solutions for file{i}. See 
% scan_model_check_hold_kenh 
% tBest: best survival distributions times, pBest is a cell vector 
% with pBest{i} containing the best fit solutions for file{i}. See 
% scan_model_check_hold_kenh 

  
clearvars; close all 

  
%% Add data and function paths 
dataPath = 'input folder for data'; 
functionPath = 'input folder for functions'; 
scriptsPath = 'input folder for scripts'; 

  
addpath(dataPath) 
addpath(functionPath) 
addpath(scriptsPath) 

  
%% Inputs (starting probabilities vector) 

  
numCond = 8; 
fracTMC_best = cell(numCond,1); 
tBest = cell(numCond,1); 
pBest = cell(numCond,1); 
F = cell(numCond,1); 
names = cell(numCond,1); 

  
n = 0; 

  
%% wQ4 
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file = 'wQ4'; 
n = n+1; 
[F{n},~,~,~,~,~,~] = readData_v3(file); 

  
% Kinetic rates (force-free) 
kf_tm = 0.0000899378/6;  
kr_tm = 4.22;          
f_T = 30.2; 
% Initial condition 
fracTMC_ic = repmat(0.2,length(F{n}),1); 

  

[fracTMC_best{n},pBest{n},tBest{n}] = 

scan_model_check_hold_kenh(kr_tm,kf_tm,f_T,file,fracTMC_ic); 
names{n} = file; 

  
%% wQ4R7 
file = 'wQ4R7'; 
n = n+1; 
[F{n},~,~,~,~,~,~] = readData_v3(file); 

  
% Kinetic rates (force-free) 
kf_tm = 0.000135225/6;  
kr_tm = 3.45; 
f_T = 72.3; 
% Initial condition 
fracTMC_ic = repmat(0.2,length(F{n}),1); 

  
[fracTMC_best{n},pBest{n},tBest{n}] = 

scan_model_check_hold_kenh(kr_tm,kf_tm,f_T,file,fracTMC_ic); 
names{n} = file; 

  
%% wT4 
file = 'wT4'; 
n = n+1; 
[F{n},~,~,~,~,~,~] = readData_v3(file); 

  
% Kinetic rates (force-free) 
kf_tm = 0.0000592144/6;  
kr_tm = 2.75;         
f_T = 13; 
% Initial condition 
fracTMC_ic = repmat(0.2,length(F{n}),1); 

  
[fracTMC_best{n},pBest{n},tBest{n}] = 

scan_model_check_hold_kenh(kr_tm,kf_tm,f_T,file,fracTMC_ic); 
names{n} = file; 

  
%% Run wQ4H7 
file = 'wQ4H7'; 
n = n+1; 
[F{n},~,~,~,~,~,~] = readData_v3(file); 

  
% Kinetic rates (force-free) 
kf_tm = 0.0000706784/6; % fit from other data 
kr_tm = 4.15; % fit from other data 
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f_T = 30.8; 
% Initial condition  
fracTMC_ic = repmat(0.2,length(F{n}),1);   

  
[fracTMC_best{n},pBest{n},tBest{n}] = 

scan_model_check_hold_kenh(kr_tm,kf_tm,f_T,file,fracTMC_ic); 
names{n} = file; 

  
%% wQ7 
file = 'wQ7'; 
n = n+1; 
[F{n},~,~,~,~,~,~] = readData_v3(file); 

  
% Kinetic rates (force-free) 
kf_tm = 0.0000457382/6;  
kr_tm = 6.72;          
f_T = 46.3; 
% Initial condition 
fracTMC_ic = repmat(0.2,length(F{n}),1); 

  
[fracTMC_best{n},pBest{n},tBest{n}] = 

scan_model_check_hold_kenh(kr_tm,kf_tm,f_T,file,fracTMC_ic); 
names{n} = file; 

  

%% wG4 
file = 'wG4'; 
n = n+1; 
[F{n},~,~,~,~,~,~] = readData_v3(file); 

  
% Kinetic rates (force-free) 
kf_tm = 0.0000542196/6;           
kr_tm = 3.63; 
f_T = 11.9; 
% Initial condition 
fracTMC_ic = repmat(0.2,length(F{n}),1); 

  
[fracTMC_best{n},pBest{n},tBest{n}] = 

scan_model_check_hold_kenh(kr_tm,kf_tm,f_T,file,fracTMC_ic); 
names{n} = file; 

  
%% wQ4R7 
file = 'wQ4R7_8p4'; 
n = n+1; 
[F{n},~,~,~,~,~,~] = readData_v3(file); 

  
% Kinetic rates (force-free) 
kf_tm = 0.000135225/6;  
kr_tm = 3.45; 
f_T = 72.3; 
% Initial condition 
fracTMC_ic = repmat(0.2,length(F{n}),1); 

  
[fracTMC_best{n},pBest{n},tBest{n}] = 

scan_model_check_hold_kenh(kr_tm,kf_tm,f_T,file,fracTMC_ic); 
names{n} = file; 
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%% Run wQ4H7 
file = 'wQ4H7_8p4'; 
n = n+1; 
[F{n},~,~,~,~,~,~] = readData_v3(file); 

  
% Kinetic rates (force-free) 
kf_tm = 0.0000706784/6; % fit from other data 
kr_tm = 4.15; % fit from other data 
f_T = 30.8; 
% Initial condition 
fracTMC_ic = repmat(0.2,length(F{n}),1); 

  
[fracTMC_best{n},pBest{n},tBest{n}] = 

scan_model_check_hold_kenh(kr_tm,kf_tm,f_T,file,fracTMC_ic); 
names{n} = file; 

  

close all 

  
save('bestFit_model_check_hold_kenh_var_weight') 

B.2 Code for gathering data function 

function [F,LT,var_LT,stderr_LT,Fstore,LTstore,pLT] = 

readData_v3(dataFile) 
% Read data from file dataFile and output it into a cell array 
% dataFile: string with name of file 
% F: F(i) is the mean force for bin i 
% lt: lt(i) is the average lifetime for bin i 
% var_lt: lt_var(i) is the variance of lifetime for bin i 
% Fstore = cell array where Fstore{i} = forces for bin i 
% LTstore = cell array where LTstore{i}(j) = lifetimes for force from 
%   Fstore{i}(j) 
% pLT = cell array where pLT{i}(j) = survival probability for LT{i}(j), 
% ln(LT>t) 

  

  
addpath('input folder for matlab data') 

  
dataAll = load(dataFile); 

  
dataAll = dataAll.data; 

  

[~,y] = size(dataAll); 

  
numForces = y/4; 

  
F = zeros(numForces,1); 
LT = zeros(numForces,1); 
var_LT = zeros(numForces,1); 
stderr_LT = zeros(numForces,1); 
Fstore = cell(numForces,1); 
LTstore = cell(numForces,1); 
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pLT = cell(numForces,1); 

  
for i = 1:numForces 
    istart = (i-1)*4 + 2; 
    dataNow = dataAll(:,istart); 

     
    n = length(dataNow(dataNow>0)); 
    data = [dataAll(1:n,istart-1),dataAll(1:n,istart)]; 

     
    F(i) = mean(data(:,1)); 
    LT(i) = mean(data(:,2)); 
    stderr_LT(i) = std(data(:,2))/sqrt(n); 
    var_LT(i) = mean(data(:,2).^2) - mean(data(:,2))^2; 
    Fstore{i} = data(:,1); 
    LTstore{i} = data(:,2); 

     
    pLT{i} = zeros(1,n); 
    for j = 1:n 
        pLT{i}(j) = (n-j)/n; 
    end 
end 

B.3 Code for scanning parameter space 

function [fracTMC_best,pBest,tBest] = 

scan_model_check_hold_kenh(kr_tm,kf_tm,f_T,file,fracTMC_ic) 

  
%% This function runs the parameter scan for PDD bond fraction  
% Scans peptide data file string to find best fit for PDD bond fraction 
% coefficient 
% January 22, 2018 
% uses readData_v3, fitres_dist_model_check_hold_kenh, errorfx_v9, 

deqC_fs_Dinv3, mainsimulation_fs_Din_v5, deqC_fs_Din_v3 
% Inputs: 
% kr_tm = off rate for tcr-mhc interaction 
% kf_tm = on rate for tcr-mhc interaction 
% f_T = nominal force for TCR:MHC interaction in Bell model 
% file = file name (in folder dataPath) 
% fracTMC_ic = best fit initial conditions for fitting fraction of PDD 
% bonds 
% Outputs: 
% fracTMC_best: best fitting fraction of PDD bonds for each force 
% pBest: best fitting simulation probabilities for survival 

distribution, 
% cell vector where pBest{i} corresponds to force F(i) 
% tBest: best fitting simulation times for surival distribution, cell 
% vector where tBest{i} corresponds to force F(i) 

  
%% Load data 
[F,~,~,~,~,LTstore,pLT] = readData_v3(file); 
n = length(F); % number of forces 
errorType = 4; % way to calculate error (errorfx_v9) 

  
folder_path = 'input folder for figures export'; 
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%% Q4R7 
% Kinetic rates (force-free) 
kr_mc = 7.84; % CD8:MHC off rate 
kf_mc = 0.00004/6; % CD8 MHC on rate 
kr_tl = 0.1; % Lck:TCR off rate 
kf_tl = 1e-3; % Lck:CD8 on rate 

  
f_C = 21.9; % nominal force for Bell model 

  
t = 0:0.0001:10; % recording times for simulation 
t = t'; 

  
D = 0.08; % from Chakraborty/Palmer model 

  
% Densities 
mT = 8; % TCR density 
mC = 311; % MHC density 

  
f = 0.05; % fraction of CD8:Lck conjugation 

  
% Contact rate coefficients 
mC_0 = mC*(1-f); % unconjugated CD8 fraction 
mC_L = mC*f; % Lck conjugated CD8 fraction 

  
D_T = mT*D*pi; % TCR contact rate 
D_C0 = mC_0*D*pi; % CD8 null contact rate 
D_CL = mC_L*D*pi; % CD8:Lck contact rate 

  
kenh = 1500; % enhancement coefficient for rebinding 

  
fracTMC_best = fracTMC_ic; 

  
% Storage 
pBest = cell(n,1); 
tBest = cell(n,1); 

  
% Initial plot to be updated later 
semilogy(t,zeros(size(t)),LTstore{1},pLT{1},'o'); 
h = gcf; 
drawnow 
axesObj = get(h, 'Children');  %axes handles 
dataObj = get(axesObj, 'Children'); 

  

for j = 1:n % for each force condition    
    %% Run fitting around initial condtion until fitting condition is 

met, coarse scan 
    res_fracTMC = 0.1; 
    stop = 0; 
    run = 0; 
    errorLast = inf; 

     
    set(dataObj(1),'XData',LTstore{j}','YData',pLT{j}) 
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    drawnow 

     
    while stop == 0 
        [fracTMC_best(j),run,stop,errorLast,pBest{j},tBest{j}] = 

fitres_dist_model_check_hold_kenh(res_fracTMC,kenh,fracTMC_best(j),stop

,run,F(j),LTstore{j},pLT{j},errorType,errorLast,t,f,kr_tm,kf_tm,kr_mc,k

f_mc,kr_tl,kf_tl,f_T,f_C,D,D_T,D_C0,D_CL,dataObj); 
        axesObj.XLim = [0,max(LTstore{j})]; 
        axesObj.YLim = [pLT{j}(end-1),1]; 
        drawnow 
        disp(strcat('Run number',{' '},num2str(run),'|| Best Fit Now 

=',{' '},num2str(fracTMC_best(j)))) 
    end 

     
    %% Run fitting around initial condtion until fitting condition is 

met, fine scan 
    res_fracTMC = 0.01; 
    stop = 0; 
    run = 0; 
    errorLast = inf; 

  
    while stop == 0 
        [fracTMC_best(j),run,stop,errorLast,pBest{j},tBest{j}] = 

fitres_dist_model_check_hold_kenh(res_fracTMC,kenh,fracTMC_best(j),stop

,run,F(j),LTstore{j},pLT{j},errorType,errorLast,t,f,kr_tm,kf_tm,kr_mc,k

f_mc,kr_tl,kf_tl,f_T,f_C,D,D_T,D_C0,D_CL,dataObj); 
        axesObj.XLim = [0,max(LTstore{j})]; 
        axesObj.YLim = [pLT{j}(end-1),1]; 
        drawnow 
        disp(strcat('Run number',{' '},num2str(run),'|| Best Fit Now 

=',{' '},num2str(fracTMC_best(j)))) 
    end 

     
    file_path = strcat([file,'_',num2str(round(F(j)))]); 
    fig_path = [folder_path,file_path]; 
    savefig(fig_path) 

     
end 

  
disp(strcat('bestFit',{' '},file,{' '},'complete')) 

  
end 

B.4 Code for running the different cases and finding lowest residual function 

function [fracTMC_out,run,stop,errorLast,pAllBest,t_now] = 

fitres_dist_model_check_hold_kenh(res_fracTMC,kenh,fracTMC,stop,run,F,L

Tstore,pLT,errorType,errorLast,t,f,kr_tm,kf_tm,kr_mc,kf_mc,kr_tl,kf_tl,

f_T,f_C,D_out,D_T,D_C0,D_CL,dataObj) 

 

% Inputs come from scan_model_check_hold_kenh 
% res_fracTMC: resolution of fitting 
% kenh: enhancement coefficient 
% stop: marker to stop fitting 
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% run: run number, how many times this has run 
% F: force bins level 
% LTstore: lifetimes in force bin 
% pLT: probabilities in force bin 
% errorType: used for errorfx_v9 
% errorLast: error from last run 
% t: times to simulated survival distribution 
% f: fraction of CD8:Lck conjugation 
% kf/kr_tm: on and off rates for TCR:MHC binding 
% kf/kr_cm: on and off rates for CD8:MHC binding 
% f_C/T: nominal force for Bell model for CD8/TCR:MHC 
% D_out: diffusion out of the contact zone 
% D_T/C0/Cl: diffusion into contact zone for TCR,CD8null,CD8:Lck 
% dataObj: handle for figure 

 
% Outputs 
% fracTMC_out: best fitting PDD fraction 
% run: how many runs it took 
% stop: marker for checking completion 
% errorLast: error from last run 
% pAllBest: probabilities for survival distribution best fit 
% t_now: times for best fit survival distribution 

 
% January 22, 2018 
% Uses errorfx_v9, mainSimulation_fs_Din_v5, deqC_fs_Din_v3 

  
    run = run+1; 

  
    fracTMC_fit = round([fracTMC-

res_fracTMC,fracTMC,fracTMC+res_fracTMC],2); 

  
    gt0_fracTMC = fracTMC_fit>=0 & fracTMC_fit<=1; % res cannot pull 

out negative values 

  
    pAll = cell(3,1); 

     
    errorBest = inf; 

     
    mT = 8; 
    mC = 311; 

  
    for i = 1:3 

         
        if gt0_fracTMC(i) > 0 

  
            kenh_now = kenh; 
            fracTMC_now = fracTMC_fit(i); 

  
            mstart = zeros(12,1); 
            mstart(1) = fracTMC_now; 
            pT = kf_tm/kr_tm*mT; 
            pC = kf_mc/kr_mc*mC*(1-f); 
            pCL = kf_mc/kr_mc*mC*f; 
            sumAll = pT+pC+pCL; 
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            mstart(6) = (1-fracTMC_now)*pT/sumAll; 
            mstart(7) = (1-fracTMC_now)*pC/sumAll; 
            mstart(8) = (1-fracTMC_now)*pCL/sumAll; 

  
            mstore = 

mainSimulation_fs_Din_v5(mstart,t,F,kr_tm,kf_tm,kr_mc,kf_mc,kr_tl,kf_tl

,kenh_now,f_T,f_C,D_out,D_T,D_C0,D_CL); 

  
            mstore_now = sum(mstore,2); 
            LTstore = round(LTstore,4); 
            mstore_now2 = mstore_now(t>=min(LTstore)); 
            t_now = t(t>=min(LTstore)); 
            pAll{i} = mstore_now2/mstore_now2(1); 

  
            errorNow = errorfx_v9(pAll{i},pLT(1:end-

1),t_now,LTstore(1:end-1),errorType);    % 

errorfx_v2(pAllSim,pAllExp,tAllSim,tAllExp,errorType) 

  
            if i == 1 
                errorBest = errorNow; 
                fracTMC_out = fracTMC_fit(i); 
                iBest = i; 
            elseif errorNow < errorBest 
                errorBest = errorNow; 
                fracTMC_out = fracTMC_fit(i); 
                iBest = i; 
            end 

             
        end 

  
    end 

  
    if errorBest >= errorLast 
        fracTMC_out = fracTMC_fit(2); 
        pAllBest = pAll{2}; 
        stop = 1; 
    else 
        errorLast = errorBest; 
        pAllBest = pAll{iBest}; 
        set(dataObj(2),'XData',t_now,'YData',pAllBest) 
        drawnow 
    end 

  
end 

B.5 Code for simulating a single Markov chain function 

function mstore = 

mainSimulation_fs_Din_v5(mstart,t,F,kr_tm,kf_tm,kr_mc,kf_mc,kr_tl,kf_tl

,k_increase,f_T,f_C,D_out,D_T,D_C0,D_CL) 

 
%% Simulation to analyze pseudo-dimer of dimers pulling experiment 
% Note: diffusion of molecules back in allowed 
% Same as v4 but faster due to no globalization of k 
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%% Inputs  
% mstart: initial species probabilities vector 
% t: time vector for lifetime (should be relatively fine resolution) 
% F: vector for forces to evalulate lifetime 
% kr_tm: unbinding tcr-mhc (zero force) 
% kf_tm: rebinding tcr-mhc 
% kr_mc: unbinding mhc-cd8 (zero force) 
% kf_mc: rebinding mhc-cd8 
% kr_tl: unbinding tcr-lck (zero force) 
% kf_tl: rebinding tcr-lck  
% k_increase: enhanced rebinding due to pdd 
% f_T: Bell model nominal force for TCR 
% f_C: Bell model nominal force for CD8 
% D_out: Diffusion constant input (in um^2/s) 
% D_C0: Contact rate for CD8 without LCK 
% D_CL: Contact rate for CD8 with LCK 
% D_T: Contact rate for TCR 
%% Outputs 
% mstore: m-by-1 cell vector with each cell containing n-by-p vector 

where 
%   mstore{m}(n,p) is the probability of species p existing at time 

t(n) 

  
%% Inputs 
% f = 10; % nominal force for Bell model, added as model input 

  
% Which bond 
kf_enhance = k_increase;  

  
L = 0.01; % length of confinement/"close" zone 

  
%% Normalization 
A = L^2; % area of confinement zone 
kf_tm_norm = kf_tm/A; 
kf_mc_norm = kf_mc/A; 
kf_tl_norm = kf_tl/A; 
D_norm = D_out/A; 

  
%% Storage 
mstore = cell(size(F)); % store markov results 

  
for i = 1:length(F) 
    kr_tm_now = kr_tm*exp(F(i)/f_T); 
    kr_mc_now = kr_mc*exp(F(i)/f_C); 

     

    kr_tm_fs = kr_tm*exp(F(i)/2/f_T); 
    kr_mc_fs = kr_mc*exp(F(i)/2/f_C); 

     
    k = [kf_tm_norm;... 
        kr_tm_now;... 
        kf_mc_norm;... 
        kr_mc_now;... 
        kf_tl_norm;... 
        kr_tl;... 
        kf_enhance;... 
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        D_norm;... 
        D_norm;... 
        D_norm; 
        kr_tm_fs;... 
        kr_mc_fs;... 
        D_CL;... 
        D_C0;... 
        D_T]; 

     
    m = mstart; 

     

    % species by ratio of affinities 

     
    % run to steady state 
    options = odeset('RelTol',1e-5,'AbsTol',1e-

7);%,'OutputFcn',@odewbar); 

     

    % run sim 
    [~,mo] = ode45(@(t,m)deqC_fs_Din_v3(t,m,k),t,m,options); 

     
    mstore = mo; 

     
end 

B.6 Code for finding error residuals function 

function [errorOut] = 

errorfx_v9(pAllSim,pAllExp,tAllSim,tAllExp,errorType) 
% Find error between simulation and experimental data 

 
% Inputs 
% pAllSim: simulated probability of lifetime for survival distribution 
% pAllExp: experimental probability of lifetime for survival 

distribution 
% tAllSim: simulated times for probability (pAllSim(i) corresponds to 
% tAllSim(i)) 
% tAllExp: experimental times for probability (pAllExp(i) corresponds 

to 
% tAllExp(i)) 
% errorType = 1 for weight LS, 2 for chi-square, 3 for alternate LS, 4 

for 

 

% Outputs 

% errorOut: error from fitting based on error type 

 
% variance based fitting 
tAllSim = round(tAllSim,4); 
tAllExp = round(tAllExp,4); 
%% Weighted^2 Least squares error 
if errorType == 1 
    errorOut = 0; 
    for i = 1:length(pAllExp) 
        findi = length(tAllSim(tAllSim<=tAllExp(i))); % index of 

lifetimes in simulated data less than experimental lifetime (i) 
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        errorOut = errorOut + tAllSim(findi)^2*(pAllSim(findi)-

pAllExp(i))^2; 
    end 
end 
%% Pearson's chi-square 
if errorType == 2 
    errorOut = 0; 
    for i = 1:length(pAllExp) 
        findi = length(tAllSim(tAllSim<=tAllExp(i))); % index of 

lifetimes in simulated data less than experimental lifetime (i) 

         
        errorOut = errorOut + (pAllSim(findi)-

pAllExp(i))^2/pAllSim(findi); 
    end 
end 
%% Weighted Least squared error 
if errorType == 3 
    errorOut = 0; 
    for i = 1:length(pAllExp) 
        findi = length(tAllSim(tAllSim<=tAllExp(i))); % index of 

lifetimes in simulated data less than experimental lifetime (i) 

         
        errorOut = errorOut + tAllSim(findi)*(pAllSim(findi)-

pAllExp(i))^2; 
    end 
end 
%% Variance-based weighting 
if errorType == 4 
    weights = zeros(size(pAllExp)); 
    errorOut = 0; 
    variance_measurement = 0.1; 
    % find weights 
    for i = 1:length(pAllExp) 
        weights(i) = 1/(variance_measurement*pAllExp(i))^2; 
    end 

     
    norm_weights = weights./mean(weights); 

     
    for i = 1:length(pAllExp) 
        findi = length(tAllSim(tAllSim<=tAllExp(i))); % index of 

lifetimes in simulated data less than experimental lifetime (i) 

         
        errorOut = errorOut + norm_weights(i)*(pAllSim(findi)-

pAllExp(i))^2; 
    end 
end 

B.7 ODE equations for Markov transition  

function dm = deqC_fs_Din_v3(t,m,k) 
%% Differential equations for Markov chain evaluating Pseudo-dimer of 

dimers (pdd) model 
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% Enhancement of binding occurs to both TCR and CD8 and LCK under 

force, TCR and CD8 equally 
% share load when bound to MHC 
%% Kinetic parameter vector 
    % Single-molecule interactions 
    % 1: TCR:MHC binding 
    % 2: TCR:MHC unbinding 
    % 3: CD8:MHC binding 
    % 4: CD8:MHC unbinding 
    % 5: TCR:LCK binding 
    % 6: TCR:LCK unbinding 
    % 7: Rebinding enhancement if close 
    % 8: CD8:LCK diffuse out 
    % 9: CD8 diffuse out (no Lck) 
    % 10: TCR diffuse out 
    % 11: TCR:MHC unbinding (with force share) 
    % 12: CD8:MHC unbinding (with force share) 
    % 13: CD8:LCK diffuse in 
    % 14: CD8 diffuse in 
    % 15: TCR diffuse in 
%% Species vector 
    % 1: TCR-MHC-CD8-LCK 
    % 2: TCR-MHC-LCK (CD8 close) 
    % 3: MHC-CD8-LCK (TCR close, bound LCK) 
    % 4: TCR-MHC-CD8 (LCK close) 
    % 5: TCR-MHC-CD8 (no LCK)  
    % 6: TCR-MHC (CD8 diffused away) 
    % 7: MHC-CD8 (no LCK) (TCR diffused away) 
    % 8: MHC-CD8-LCK (TCR diffused away) 
    % 9: TCR-MHC (CD8 close, no Lck) 
    % 10: TCR-MHC (CD8 close, with Lck) 
    % 11: CD8-MHC-LCK (TCR close, unbound to anything) 
    % 12: CD8-MHC (TCR close, unbound, no LCK) 

     

  
%% equations 
% Notes: m = [m1,m2...], kinetics = [k1,k2...]  

     
    dm = zeros(size(m)); 

     
    dm(1) = -k(11)*m(1) - k(12)*m(1) - k(6)*m(1) + k(1)*k(7)*m(3) + 

k(3)*k(7)*m(2) + k(5)*k(7)*m(4); % TCR unbinds, CD8 unbinds, LCK 

unbinds, TCR rebinds, CD8 rebinds, LCK rebinds, 
    dm(2) = -k(3)*k(7)*m(2) - k(6)*m(2) - k(2)*m(2) + k(12)*m(1) + 

k(5)*m(10); % CD8 rebinds, LCK unbinds, TCR unbinds, CD8 rebinds (CD8 

unbinds m1, LCK rebinds when close) 
    dm(3) = -k(1)*k(7)*m(3) - k(4)*m(3) - k(6)*m(3) + k(11)*m(1) + 

k(5)*m(11);  
    dm(4) = -k(5)*k(7)*m(4) - k(11)*m(4) - k(12)*m(4) + k(6)*m(1) + 

k(3)*m(10) + k(1)*m(11); %TCR-MHC-CD8 (LCK close) 
    dm(5) = -k(11)*m(5) - k(12)*m(5) + k(1)*m(12) + k(3)*m(9); 
    dm(6) = -k(2)*m(6) + k(9)*m(9) + k(8)*m(10) - k(13)*m(6) - 

k(14)*m(6); 
    dm(7) = -k(4)*m(7) + k(10)*m(12) - k(15)*m(7); 
    dm(8) = -k(4)*m(8) + k(10)*m(11) - k(15)*m(8); 
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    dm(9) = -k(9)*m(9) - k(2)*m(9) - k(3)*m(9) + k(12)*m(5) + 

k(14)*m(6); 
    dm(10) = -k(2)*m(10) - k(3)*m(10) - k(5)*m(10) - k(8)*m(10) + 

k(12)*m(4) + k(6)*m(2) + k(13)*m(6); 
    dm(11) = -k(1)*m(11) - k(4)*m(11) - k(5)*m(11) - k(10)*m(11) + 

k(11)*m(4) + k(6)*m(3) + k(15)*m(8);  
    dm(12) = -k(1)*m(12) - k(4)*m(12) - k(10)*m(12) + k(11)*m(5) + 

k(15)*m(7); 
 

end 
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APPENDIX C. MATLAB CODE FOR SIMULATION OF CD8 

CATCH-BOND MECHANISM 

C.1 Code to run BFP assay for one ligand, several CD8:Lck fractions 

% Scan fraction of CD8:Lck conjugation, several runs of bfp assay and 

output lifetime results 
% Written by William Rittase 

 

% Requires inputs of number of runs, ligand, and the force/fraction of 
% CD8:Lck conjugation 

  
clearvars 

  
%% Q4R7 runs 

  
num_runs = 40; % number of cell pairs to simulation 
ligand = 'wQ4R7'; % which ligand to simulate 
force = [2,4,8,12,16,20,24,30]; % different force clamping levels (pN) 
num_forces = length(force); 
f = [0.01,0.02,0.04,0.08,0.1,0.15,0.2,0.4]; % fraction Lck conjugation 

to CD8 

  
for k = 1:length(f) 

  

    lifetimes = cell(num_runs,num_forces); % cell matrix to store 

lifetimes 
    start_times = cell(num_runs,num_forces); % cell matrix to store 

time at which lifetime was measured 

  
    for j = 1:num_forces 

  

        for i = 1:num_runs 

  
            [~,~,lifetime_store,lifetime_start_time] = 

tcr_lck_shp_switch_force_dependence_function_v4(force(j),ligand,f(k)); 

% simulate assay for one cell pair, one force 

  

            lifetimes{i,j} = lifetime_store; 
            start_times{i,j} = lifetime_start_time; 

  
            disp([num2str(j),',',num2str(i)]) 

  
        end 

  
    end 

  
    folder_path = 'input folder string'; 
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    file_path = ['workspace_wq4r7_',num2str(f(k)),'.mat']; 

  
    full_path = [folder_path,file_path]; 

  
    save(full_path) % save workspace for future analysis 

  
end 

C.2 Code to determine bond lifetimes for one cell and pair function 

function [m_store,t_store,lifetime_store,lifetime_start_time] = 

tcr_lck_shp_switch_force_dependence_function_v4(force,ligand,f) 

  
% Simulation of TCR pulling-stimulation induced CD8 conjugation through 
% activation of Lck and single phos of TCR. Shut down by GP (ppTCR 
% activated) 
tic 
functionPath = 'input folder string'; 
addpath(functionPath) 

  
% Inputs 
num_touches = 200; % number of contacts in BFP assay 
contact_time = 0.1; % contact time (how long the cell and bead are in 

contact) 
waiting_time = 0.25; % waiting time (how long the cell and bead are 

separated after bond ends or there is no bond) 
dt = 0.001; % recording interval 
initial_af = 0.2; % adhesion frequency at the beginning of the assay 
pulling_rate = 200; % bond pulling rate up to clamping force in pN/s 

  
%% Densities 
mT = 8; % TCR density 
mC = 300; % CD8 density 
mC_L = f*mC; % CD8:Lck fraction 
mC_null = (1-f)*mC; % CD8 without Lck fraction 
mL = 20; % estimate from Germain PLoS Comp Bio 2005 (1um^2 area, 25nm 

depth) 
mGP = 80/3*mL; % as SHP from Germain 2005 

  
%% Peptide independent kinetics 
% Kinetic rates (force-free) 
kr_mc = 7.84; % CD8:MHC off rate 
kf_mc = 0.00004/6; % CD8:MHC on rate 
f_C = 21.9; % nominal force of CD8:MHC interaction under Bell model 
kr_tl = 0.1; % LCK:TCR estimated based on measurements by Chenqi Xu, 

high affinity, low off rate 
kf_tl = 1e-3; % LCK:TCR on rate 

  
k_pL_pulled = get_kpL_v4(force); % activation rate of Lck by pulled TCR 
k_phos_lck_by_ptcr = 0; % activation of Lck by partially activated TCR 
k_phos_tcr_by_lck = 0.03; % activation of TCR by active Lck 
k_phos_gp_by_pptcr = 0.01; % activation of generic phosphotase by fully 

active TCR 
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k_gp_tcr = 0.01; % deactivation rate of TCR by GP 
k_gp_lck = k_gp_tcr; % deactivation rate of Lck by GP 
k_dephos = 0.1; % passive dephosphorylation 

  
k_enh_avidity = 100; % enhanced binding of MHC by TCR:CD8 dimers 
k_enhance_trapping = 10; % trapping enhancement of binding (doesn't 

really matter) 
k_enhance_rebinding = 1500/0.01^2; % Approximate fit to survival curve 

-  
% 0.01^2 is approximate grid area 
% 1500 could mean restrition in area to 0.5% or 1.8 degrees of 
% restriction, or grid area change to 0.005nm^2 (length of 0.0707nm) 

  
%% Peptide dependent kinetics  
% Import values 
[kr_tm,kf_tm,f_T,mM] = get_kinetics(ligand,initial_af,contact_time,1); 

  

%% Kinetic vectors 
k_all = [k_pL_pulled;... 
    k_phos_lck_by_ptcr;... 
    k_phos_gp_by_pptcr;... 
    k_phos_tcr_by_lck;... 
    k_gp_lck;... 
    k_gp_tcr;... 
    k_dephos;... 
    kf_tl;... 
    kr_tl;... 
    kf_tm;... 
    kr_tm;... 
    kf_mc;... 
    kr_mc;... 
    k_enh_avidity;... 
    k_enhance_trapping;... 
    k_enhance_rebinding]; 

     
k_no_pull = [0;k_all(2:end)]; 
k_pull = k_all; 

  
global k 

  
%% Initial Species vector 
m_start = zeros(24,1); 
m_start(1) = mT; 
m_start(4) = mC_L; 
m_start(6) = mL; 
m_start(8) = mGP; 
m_start(10) = mM; 
m_start(11) = mC_null; 

  
%% Simulation 

  
options = odeset('RelTol',1e-5,'AbsTol',1e-7);%,'OutputFcn',@odewbar); 

  
t_contact = dt:dt:contact_time; 
t_wait = dt:dt:waiting_time; 
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m = m_start; 

  
bond_types = zeros(num_touches,1); 

  
t_store = []; 
m_store = []; 
accum_lifetime = []; 

  
bond = []; 
lifetime_store = zeros(num_touches,1); 
lifetime_start_time = zeros(num_touches,1); 
n = 0; 

  
for i = 1:num_touches 

  
    % Run contact time 
    k = k_no_pull; 
    [t_c,m_c] = ode45(@deq_switch,t_contact,m,options); 

  
    % remove all bonds (CD8:MHC,TCR:MHC) 
    m = m_c(end,:); 
    m(1) = m(1) + m(12) + m(17) + m(20); 
    m(2) = m(2) + m(13) + m(18) + m(21); 
    m(3) = m(3) + m(14) + m(19); 
    m(4) = m(4) + m(16) + m(20) + m(21); 
    m(5) = m(5) + m(22) + m(23) + m(24); 
    % m6-9 stay the same 
    m(10) = 0; 
    m(11) = m(11) + m(15) + m(17) + m(18) + m(19); 
    % m10-end become zero 
    for j = 12:24 
        m(j) = 0; 
    end 

     
    % Pulling time 
    r = rand; 

     
    prob_adhesion = 1-exp(-sum(m_c(end,12:24))); 

     
    if r < prob_adhesion % if bond 

         
        % Determine type of bond being pulled 
        bonds = m_c(end,12:24); 
        bonds_p = cumsum(bonds/sum(bonds)); 
        r = rand; 
        which_bond = sum(bonds_p<r)+1+11; 
        % determine if pulled bond survives and for how long it lasts 
        if which_bond >= 12 && which_bond <= 14 % if TCR-MHC bond 

  
            % determine if bond survives pulling 
            p_rup = 

prob_of_rupture_b4_clamp_v3(force,kr_tm,f_T,pulling_rate); 
            r = rand; 
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            if p_rup > r 
                % pull bond lifetime from distribution 
                pulled_T = 1; 
                bond = 'TCR:MHC'; 
                lifetime = get_lifetime(bond,ligand,force); 
                t_bond = 0:dt:lifetime; 
                bond_types(i) = 1; 

  
                n = n+1; 
                lifetime_store(n) = lifetime; 
                if ~isempty(t_store) % if first contact 
                    lifetime_start_time(n) = t_store(end)+contact_time; 
                end 
            else 
                pulled_T = 0; 
                t_bond = 0; 
            end 

             
        elseif which_bond == 15 || which_bond == 16 % if CD8-MHC bond 

             
            % determine if bond survives pulling 
            p_rup = 

prob_of_rupture_b4_clamp_v3(force,kr_mc,f_C,pulling_rate); 
            r = rand; 

             
            if p_rup > r 
                % pull bond lifetime from distribution 
                pulled_T = 0; 
                bond = 'MHC:CD8'; 
                lifetime = get_lifetime(bond,ligand,force); 
                t_bond = 0:dt:lifetime; 
                bond_types(i) = 2; 

  
                n = n+1; 
                lifetime_store(n) = lifetime; 
                if ~isempty(t_store) % if first contact 
                    lifetime_start_time(n) = t_store(end)+contact_time; 
                end 
            else 
                pulled_T = 0; 
                t_bond = 0; 
            end 

              
        elseif which_bond >= 17 && which_bond <=21 % if trimolecular, 

not pdd 
            % pull bond lifetime from distribution 
            pulled_T = 1; 
            bond = 'TCR:MHC:CD8'; 
            lifetime = get_lifetime(bond,ligand,force); 
            t_bond = 0:dt:lifetime; 
            bond_types(i) = 3; 

             
            n = n+1; 
            lifetime_store(n) = lifetime; 
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            if ~isempty(t_store) % if first contact 
                lifetime_start_time(n) = t_store(end)+contact_time; 
            end 

  
        else % pdd bond 
            % pull bond lifetime from distribution 
            pulled_T = 1; 
            bond = 'TCR:MHC:CD8L'; 
            lifetime = get_lifetime(bond,ligand,force); 
            t_bond = 0:dt:lifetime; 
            bond_types(i) = 4; 

             
            n = n+1; 
            lifetime_store(n) = lifetime; 
            if ~isempty(t_store) % if first contact 
                lifetime_start_time(n) = t_store(end)+contact_time; 
            end 

              

        end 

         
        % Simulate the system for the duration of the bond 
        % Immediately follow by simulating the waiting time in between 
        % contacts 
        if pulled_T == 1 
            k = k_pull; 
            if length(t_bond) >= 2 
                [t_b,m_b] = ode45(@deq_switch,t_bond,m,options); 

  
                k = k_no_pull; 
                [t_w,m_w] = 

ode45(@deq_switch,t_wait,m_b(end,:),options); 
            else 
                t_b = []; 
                m_b = []; 

                 
                k = k_no_pull; 
                [t_w,m_w] = ode45(@deq_switch,t_wait,m,options); 
            end 
        elseif pulled_T == 0 
            if length(t_bond) >= 2 
                k = k_no_pull; 
                [t_b,m_b] = ode45(@deq_switch,t_bond,m,options); 

  
                k = k_no_pull; 
                [t_w,m_w] = 

ode45(@deq_switch,t_wait,m_b(end,:),options); 
            else 
                t_b = []; 
                m_b = []; 

                 
                k = k_no_pull; 
                [t_w,m_w] = ode45(@deq_switch,t_wait,m,options); 
            end 
        else 
            disp('We have a problem in the pulling species') 
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        end 
    else 
        m_b = []; 
        t_b = []; 
        k = k_no_pull; 

         
        [t_w,m_w] = ode45(@deq_switch,t_wait,m,options); 

          
    end 

     
    % add contact time 
    [t_store,m_store,accum_lifetime] = 

add_stuff(0,t_store,m_store,accum_lifetime,t_c,m_c); 
    % add pulling time 
    [t_store,m_store,accum_lifetime] = 

add_stuff(1,t_store,m_store,accum_lifetime,t_b,m_b); 
    % add waiting time 
    [t_store,m_store,accum_lifetime] = 

add_stuff(0,t_store,m_store,accum_lifetime,t_w,m_w); 

     
    % Bring MHC back in and start over 
    m = m_w(end,:); 
    m(10) = mM; 

     

end 

  
toc 

  
% Shorten matrices 
lifetime_store = lifetime_store(1:n); 
lifetime_start_time = lifetime_start_time(1:n); 

  
toc 

 

C.3 Code for get kinetics function 

function [kr_tm,kf_tm,f_T,mM] = 

get_kinetics(ligand,initial_pa,contact_time,get_mM) 
% Get kinetics for defined ligand 
% assume contact area = 1um^2 
% Inputs: 
% ligand = ligand string name 
% initial_pa = initial adhesion frequency for calculation of MHC 

density 
% contact_time = how long the cells are in contact during BFP assay 
% get_mM = 1 or 0, 1 if you want to calculate the MHC density 

  
% kf_tm = on rate for interaction 
% kr_tm = off rate for interaction 
% f_T = nominal force from Bell model fitting 
% all parameters were calibrated from exerimental data 
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if strcmp(ligand,'wQ4') 

  
    kf_tm = 0.0000899378/6;  
    kr_tm = 4.22;          
    f_T = 30.2; 

     
elseif strcmp(ligand,'wQ4R7') 

  
    kf_tm = 0.000135225/6;  
    kr_tm = 3.45; 
    f_T = 21.72; % this is baoyu's data, jin's data = 72.3; 

  
elseif strcmp(ligand,'wT4') 

  
    kf_tm = 0.0000592144/6;  
    kr_tm = 2.75;         
    f_T = 13; 

  
elseif strcmp(ligand,'wQ4H7') 

  
    kf_tm = 0.0000706784/6; % fit from other data 
    kr_tm = 4.15; % fit from other data 
    f_T = 30.8; 

  
elseif strcmp(ligand,'wQ7') 

  
    kf_tm = 0.0000457382/6;  
    kr_tm = 6.72;          
    f_T = 46.3; 

  
elseif strcmp(ligand,'wG4') 

  
    kf_tm = 0.0000542196/6;           
    kr_tm = 3.63; 
    f_T = 11.9; 

     
else 

     
    disp('Error in get_kinetics.m: No ligands match kinetics') 

  
end 

  
if get_mM == 1 
    mT = 8; 
    mC = 300; 
    kr_mc = 7.84; % CD8:MHC 
    kf_mc = 0.00004/6; % CD8:MHC 
    avg_num_bonds_T_over_MHC = (mT*kf_tm/kr_tm)*(1-exp(-

kr_tm*contact_time)); 
    avg_num_bonds_C_over_MHC = (mC*kf_mc/kr_mc)*(1-exp(-

kr_mc*contact_time)); 
    avg_num_bonds_over_MHC = avg_num_bonds_T_over_MHC + 

avg_num_bonds_C_over_MHC; 
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    mM = -log(1-initial_pa)/avg_num_bonds_over_MHC; 
else 
    mM = 0; 
end 

  
end 

C.4 Code to determine the probability of rupture before clamp function 

function p = prob_of_rupture_b4_clamp_v3(f,k_0,f_b,rf) 
% calculates the approximate probability of bond rupture before 

clamping 
% based on the clamping force (f), zero force off rate (k_0), scale 
% force(f_b), and ramping rate (rf) 

  
df = 0.01; 

  
if f > df 

  
    force = 0:df:f; 

  
    % probability that  
    pdf = k_0/rf*exp(force/f_b).*exp(-k_0*f_b/rf*(exp(force/f_b)-1)); % 

based on Eq 23 from Effects of cellular viscoelasticity in lifetime 

extraction of single receptor-ligand bonds 

     
    p = 1-trapz(force,pdf); 

     
else  

     
    p = 0; 

     
end 

  
end 

C.5 Code to select a lifetime function 

function [lifetime] = get_lifetime(bond,ligand,force) 

  
folder_path = 'input folder string’; 
file_path = strcat([folder_path,'/',ligand,'/',num2str(force)]); 
data = csvread(file_path); 

  
t = data(:,5); 

  
if strcmp(bond,'TCR:MHC') 
    m = data(:,1); 

     
elseif strcmp(bond,'MHC:CD8') 
    m = data(:,2); 
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elseif strcmp(bond,'TCR:MHC:CD8') 
    m = data(:,3); 

     
elseif strcmp(bond,'TCR:MHC:CD8L') 
    m = data(:,4); 

     
end 

  
% Interpolate 
p = rand; % probability 
index_gt = sum(m>p)+1; 
index_lt = index_gt-1; 

  
if index_gt > length(m) 
    lifetime = t(end); 
else 
    lifetime = (p-m(index_lt))/(m(index_gt)-m(index_lt)) * 

(t(index_gt)-t(index_lt)) + t(index_lt); 
end 

  
end 

C.6 Code to compile data function 

function [t_store_out,m_store_out,accum_bond_lifetime_out] = 

add_stuff(is_bond,t_store_in,m_store_in,accum_bond_lifetime_in,t,m) 
% Append matrices and adjust things 

  
if is_bond == 0 % if there is no bond 
    if isempty(accum_bond_lifetime_in) % if first run 
        accum_to_add = zeros(size(t)); 
        t_to_add = t; 
    else 
        accum_to_add = repmat(accum_bond_lifetime_in(end),size(t)); 
        t_to_add = t + t_store_in(end); 
    end    

     
    accum_bond_lifetime_out = [accum_bond_lifetime_in;accum_to_add]; 
    t_store_out = [t_store_in;t_to_add]; 
    m_store_out = [m_store_in;m]; 
else 

     
    t_to_add = t + t_store_in(end); 
    accum_to_add = accum_bond_lifetime_in(end) + t; 

     
    accum_bond_lifetime_out = [accum_bond_lifetime_in;accum_to_add]; 
    t_store_out = [t_store_in;t_to_add]; 
    m_store_out = [m_store_in;m]; 
end 

      
end 
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C.7 Code to plot lifetimes and extract data from workspace script 

% Plot lifetime curves or distributions for a specific ligand across 
% several CD8:Lck fractions 
% Input the workspace file 
% Requires changing folder_path/workspace_name to reflect several runs 
% inputs for directory to correct matlab workspace file 

  
clearvars 
close all 

  
f = [0.01,0.02,0.04,0.08,0.1,0.15,0.2,0.4]; 
n = length(f); 

  
folder_path = 'input folder string'; 
workspace_name = ['workspace_wq4h7_',num2str(f(1)),'.mat']; 

  
full_path = [folder_path,workspace_name]; 

  
load(full_path) 

  
lifetimes_in_force_bin = cell(num_forces,n); % lifetimes in each bin 
mean_lifetime = zeros(num_forces,n); % average lifetime in bin 
stderr_lifetime = zeros(num_forces,n); % standard error of lifetime in 

bin 
n_lifetime = zeros(num_forces,n); % number of lifetimes in each bin 
stdev_lifetime = zeros(num_forces,n); % standard deviation of lifetimes 

in each bin 

  
for index = 1:n 

  
    folder_path = '/Users/williamrittase/Dropbox (GaTech)/Simulations 

in development/Switch/Lck-Shp change bond lifetime/workspaces/v5 

scan/h7/'; 
    workspace_name = ['workspace_wq4h7_',num2str(f(index)),'.mat']; 

  

    full_path = [folder_path,workspace_name]; 

  
    load(full_path) 

  
    % important variables: lifetimes, start_times, force, 
    % num_forces, num_runs 

  
    for i = 1:num_forces 

  
        lifetimes_all = []; 

  
        for j = 1:num_runs 

  
            lifetimes_now = lifetimes{j,i}(lifetimes{j,i}<10 & 

lifetimes{j,i}>0.002); 
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            lifetimes_all = [lifetimes_all;lifetimes_now]; 

  
        end 

  
        mean_lifetime(i,index) = mean(lifetimes_all); 
        stderr_lifetime(i,index) = 

std(lifetimes_all)/sqrt(length(lifetimes_all)); 
        lifetimes_in_force_bin{i,index} = lifetimes_all; 
        n_lifetime(i,index) = length(lifetimes_all); 
        stdev_lifetime(i,index) = std(lifetimes_all); 

  
    end 

  
    % Plot lifetimes 
    scatter(force,mean_lifetime(:,index)) 
    hold on 
    

errorbar(force,mean_lifetime(:,index),stderr_lifetime(:,index),'LineSty

le','none') 
    xlabel('Force (pN)') 
    ylabel('Average Lifetime (sec)') 

  
    a = gcf; 
    a.Color = [1,1,1]; 
    a.Children.Children(1).LineWidth = 2; % set error bar size 
    a.Children.Children(2).LineWidth = 2; % set dot size 
    a.Children.Children(2).SizeData = 80; 
    a.Children.Children(2).CData = [0.8500 0.3250 0.0980]; 

     
end 
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