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SUMMARY

Discrete Optimization algorithms underlie intelligent decision-making in a wide variety

of domains. From airline fleet scheduling to kidney exchanges and data center resource

management, decisions are often modeled with binary on/off variables that are subject to

operational and financial constraints. In fact, Nemhauser [100] estimated that at least half

of the winners of the INFORMS Franz Edelman Prize 1 between 2000–2013 used discrete

optimization in one form or the other, translating into billions of dollars in savings or profits.

This thesis introduces “Learning-Driven Algorithm Design", a novel paradigm for

boosting the performance of discrete optimization algorithms by leveraging two types of

data: the set of problem instances arising from the application of interest; and information

generated while solving each instance. We develop Machine Learning (ML) approaches

that have advanced the state-of-the-art in both exact integer programming solvers as well as

heuristics.

First, we show how Mixed Integer Programming (MIP) solvers can benefit from tai-

lored, efficient machine learning models, resulting in data-driven MIP branch-and-bound

algorithms that are the first of their kind. This paradigm is developed for two fundamental

algorithmic tasks in branch-and-bound: branching and heuristic selection. Our methods

augment the solver with the ability to direct the search based on the characteristics of a

particular problem instance and the state of the search, resulting in substantial speedups on

a variety of problem classes, as well as common benchmarks.

Second, in the realm of heuristic algorithms, we design a deep reinforcement learning

approach to the automated design of greedy algorithms for graph optimization problems

with simple constraints. For more complex problems with general constraints, we design a

novel recurrent neural network model that takes a set of integer programming instances and

learns to turn fractional solutions into integer (feasible) solutions. In both settings, we show

1https://www.informs.org/Recognizing-Excellence/INFORMS-Prizes/Franz-Edelman-Award
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that highly effective algorithms can be learned from a set of training instances, generalizing

to unseen instances for various families of coverage, routing, assignment and satisfiability

problems.

Third and last, we illustrate the potential for discrete optimization in machine learning.

In particular, we study an adversarial machine learning problem in the context of binarized

neural networks, a popular class of lightweight models with inherently discrete structure.

We design an efficient combinatorial heuristic for perturbing inputs to a trained binarized

neural network, such that the network predicts the wrong output. Our method generally

outperforms the widely-used gradient-based heuristics on image classification datasets.
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CHAPTER 1

INTRODUCTION

Automated decision-making is one of the pillars of Artificial Intelligence (AI). The discrete

optimization solvers of today are powerful tools that can prescribe near-optimal decisions

to highly complex problems that span domains as diverse as aircraft routing [18], wildlife

conservation [38], sports scheduling [101], dose distribution [87] and kidney exchange [1],

to mention a few. As such, improving the performance of combinatorial solvers can have

a dramatic impact across various domains. These solvers have evolved considerably over

the past two decades, and are now capable of handling problems with many thousands of

variables and constraints, owing in large part to algorithmic advances.

Simultaneously, new decision-making tasks have been identified in emerging domains.

For instance, the advent of autonomous vehicles and the new field of “computational

sustainability" have generated discrete optimization problems of high societal priority that

must be addressed. These problems have peculiar combinatorial structure, one that solvers

may not be well-equipped to handle. Another characteristic of such upsurging applications

is that they produce optimization problems at a large velocity (e.g. hourly planning for a

fleet of autonomous vehicles). Towards achieving the next giant leap in the performance

of discrete optimization solvers, these challenges – new combinatorial structures and high

problem velocity – must be met.

Despite their immense positive impact on discrete optimization solvers, the algorithmic

advancements brought about by the Operations Research (OR) community have also exposed

inherent limitations in how solvers are designed. Most crucially, the various modules of

a solver typically implement hand-designed rules or heuristics that achieve certain tasks.

Such rules are designed by expert solver developers through a process of careful manual

tuning on a set of benchmark problems. This process is clearly limited by the particular
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development setting and problem set used for tuning.

In summary, discrete optimization solvers suffer from two main limitations that make

them ill-suited for new problems arising in emerging domains, such as those mentioned

earlier. On the one hand, algorithmic decisions within the solver are often implemented

as handcrafted rules, the design of which requires trial-and-error on a limited benchmark

problem set; the set may not include instances that are representative of the user’s application.

On the other hand, both exact discrete solvers and heuristic algorithms solve each new

problem instance de novo, even when they have already encountered many similar instances

arising from the same application domain.

This thesis introduces “Data-Driven Algorithm Design", a novel paradigm for boosting

the performance of discrete optimization algorithms by leveraging two types of data: the

set of problem instances arising from the application of interest; and information generated

while solving each instance. We develop Machine Learning (ML) approaches that have

advanced the state-of-the-art in both exact integer programming solvers as well as heuristic

algorithms.

We believe that this dissertation constitutes a major step towards establishing ML as a

central component of the algorithm design process, one that complements human ingenuity

rather than replace it.

Thesis Statement

Augmenting Discrete Optimization algorithms–both exact and heuristic–with Ma-
chine Learning models significantly speeds up the solution of hard combinatorial
problems arising in a wide variety of applications.

The rest of this chapter discusses the wide impact that discrete optimization has had

in various domains, gives a brief survey on machine learning as it applies to optimization,

presents basic algorithmic ideas for solving discrete optimization problems and overviews

the structure of this dissertation and its contributions to the field.
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1.1 Preliminaries

Definition 1 (Mixed Integer Program (MIP)) Given matrix A ∈ Rm×n, vectors b ∈ Rm

and c ∈ Rn, and a subset I ⊆ {1, ..., n}, the mixed integer program MIP = (A, b, c, I) is:

z∗ = min{cTx|Ax 6 b, x ∈ Rn, xj ∈ Z ∀j ∈ I}

The vectors in the set XMIP = {x ∈ Rn|Ax 6 b, xj ∈ Z ∀j ∈ I} are called feasible

solutions of the MIP. A feasible solution x∗ ∈ XMIP is called optimal if its objective value

cTx∗ is equal to z∗.

Definition 2 (LP relaxation of a MIP) The linear programming (LP) relaxation of a MIP

is:

ž = min{cTx|Ax 6 b, x ∈ Rn}

When XMIP 6= ∅, ž is a lower bound for z∗, i.e. ž 6 z∗.

Branch-and-Bound [102] is the main exact approach for solving MIP problems. It keeps

a list of search nodes, each with a corresponding LP problem, obtained by relaxing the

integrality requirements on the variables in I that have not been fixed to an integer value

at an ancestor node. Let L denote the list of active nodes (i.e. nodes that have not been

pruned nor branched on). Let z̄ denote an upper bound on the optimum value z∗; initially,

the bound z̄ is set to∞ or derived using heuristics that find an initial feasible solution. A

lower (or dual) bound is derived by solving the LP relaxation of a MIP.

Two of the main decisions to be made during the algorithm are node selection and

variable selection. In the former, the goal is to select an active node Ni from L. Following

that, the LP relaxation at Ni is solved, and its solution vector (if one exists) is x̌i with value

ži. Ni is pruned if its LP is infeasible, or if ži > z̄. If the LP solution x̌i is integer-feasible,

i.e. x̌i ∈ XMIP , and ži < z̄, then z∗ is updated to ži, and x̌i is the new incumbent; the node

is also pruned, as no better feasible solution can exist in its subtree.
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If the selected node is not pruned, then it must be expanded into two child nodes. This

is done by branching on an integer variable that has a fractional value in x̌i, i.e. a variable

j ∈ I for which x̌ij /∈ Z, where x̌ij denotes the value of variable j in the LP solution x̌i. The

two child nodes N−j and N+
j are the result of branching on j downwards (xj 6 bx̌ijc in all

descendants Nk) and upwards (xj > dx̌ije in all descendants Nk). Variable selection deals

with the problem of selecting that variable j from a set of possible candidates. We assume

that MIP problems we treat are feasible, as real models are almost always so.

1.2 Related Work

Machine learning has been used in a variety of contexts within discrete optimization, as

observed in surveys on the topic such as [118, 21]. A large body of work on “parameter

configuration" has provided early evidence of the potential of tuning solvers to families

of instances; see [115] for an example in combinatorial auctions. In [62, 64, 127, 63], the

problems of solver parameter configuration and runtime prediction are studied; features

of a MIP instance are used in combination with features of parameter configurations to

predict the value of a performance metric (e.g. runtime) and guide a black-box parameter

search algorithm. Parts I and II of this dissertation present a different approach to tailoring

solvers to instances. The literature on parameter configuration focuses on selecting a good

version of an algorithm from a (very large) space of possible algorithms; this can be seen as

a high-level, coarse-grained search. Our work aims at improving solvers and algorithms at

a much more fine-grained level, modifying their behavior at the level of their algorithmic

components rather than high-level parameters.

Examples of work in the same spirit include using deep learning to tune gradient de-

scent [14], reinforcement learning for job-shop scheduling [128], classification for selecting

an algorithm for QBF subproblems [114], or regression to learn good restart rules for local

search algorithms [28], to name a few.

In the MIP literature, a number of tasks within Branch-and-Bound have successfully
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leveraged ML, including: branching [12], node selection [56], decompositions [83] and

formulation selection [27]. We refer to the recent survey by Bengio et al. [21] for a structured

exposition of these and many other papers.

1.3 Contributions & Structure of this dissertation

Problem Type

ML Paradigm

Integer ProgrammingGraph Optimization

Supervised Learning

Reinforcement Learning

Self-Supervised Learning

Branching
!"
!#
…
!$
?

!!
Heuristic A
Heuristic B
Heuristic C

Feasible solution?

argmax

Greedy Heuristic

General Integer  
Programming Heuristic

Branching Heuristic Selection

Exact Solving

Chapter 2 Chapter 3

Chapter 4

Chapter 5

Figure 1.1: A thematic illustration of the chapters of Parts I and II.

In this section, we present the structure of this dissertation along with the contributions

of each chapter. The dissertation is divided into three major parts.

Learning in Branch-and-Bound. Part I of this dissertation consists of Chapters 2 and 3,

and examines the use of machine learning in exact branch-and-bound solvers for integer

programming.

Chapter 2 studies “branching variable selection", a key component of MIP solvers.

Choosing the right variables to branch on often leads to a dramatic reduction in the number

of nodes needed to solve an instance. An ideal branching strategy (1) gives small search

trees, and (2) is computationally efficient. We present the first effective machine learning

approach to branching in MIP. Given an instance, a variable ranking model is learned
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on-the-fly, during the early stages of search, and is applied thereafter to select a good

variable. The learned model essentially approximates “strong branching", a very accurate

but time-consuming ranking metric, with a cheap surrogate, thus simultaneously satisfying

the desiderata above. Most notably, while existing strategies simply score variables based

on static, fixed metrics, the learned branching strategy is adaptive to the structure of the

instance. When used within CPLEX, a commercial MIP solver, the learned branching

strategy dramatically reduces the search tree size compared to the widely-used pseudocost

branching strategy on a heterogeneous benchmark set (MIPLIB2010). When applied to MIP

instances from wildlife conservation planning and road infrastructure design, the learned

branching strategy reduces the mean optimality gap from 12% and 15% to 1%, respectively,

compared to pseudocost branching.

Chapter 3 studies the task of deciding which heuristics should be run during branch-

and-bound. While proving optimality is a key trait of exact solvers, finding high-quality

feasible solutions early in the search is at least as crucial. For that reason, MIP solvers

use “primal heuristics" periodically during the search. However, the questions of when

and what heuristics should be run during the search are handled heuristically via hard-

coded rules: some heuristics are turned off by default, some run at every node and others

every 10 nodes, etc. For instance, in SCIP, a state-of-the-art open-source MIP solver, some

heuristics are turned off, others run frequently (e.g. at every node), while yet another subset

runs occasionally (e.g. every 10 nodes). Such rigid rules are static, instance-oblivious,

context-independent, and are unable to adapt to the state of the search. Additionally,

the algorithmic differences between primal heuristics result in substantial variation in

performance. For instance, diving and neighborhood search heuristics are much more

computationally expensive than their rounding counterparts, but are generally more likely to

find quality feasible solutions. Alternatively, a heuristic should be run when it is most likely

to succeed, based on the problem instance’s characteristics and the state of the search. We

study the problem of deciding at which node a heuristic should be run, such that the overall
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(primal) performance of the solver is optimized. This is the first work that formalizes and

systematically addresses this problem. We devise a theoretical framework for analyzing this

decision-making question, proposed a machine learning approach for modeling heuristic

success likelihood, and designed practical rules that leverage the ML models to dynamically

decide whether to run a heuristic at each node of the search tree. This approach improves the

primal performance of the SCIP solver by up to 6% on a set of heterogeneous benchmark

instances. On instances of the “forest harvesting problem" from sustainability, the primal

performance improves by up to 60%. Interestingly, these substantial improvements did not

require designing new heuristics, but only intelligent, data-driven utilization of existing

ones.

Contribution of Part I

• Supervised learning methods can effectively guide both the dual and primal
sides of branch-and-bound: faster proof of optimality via better branching,
and improved feasible solutions via better heuristic selection, respectively;

• A host of variable and node features are engineered to support the learning,
resulting in simple yet powerful predictive models that accomplish the final
tasks;

• The learning models are incorporated into state-of-the-art solvers, resulting
in competitive results on benchmarks and specific families of instances;

• In some cases, the learned models exhibit interesting behavior that was not
captured in the existing expert-designed rules.

Relevant Publications: Khalil, Le Bodic, Song, Nemhauser, and Dilkina [77], Khalil,
Dilkina, Nemhauser, Ahmed, and Shao [75].

Learning Heuristics for Discrete Optimization. In Part II, we show how a heuristic can be

tailored to a distribution of problem instances with Deep Learning. Heuristics are often the

weapon of choice for practitioners when optimality guarantees are not required. The design

of good heuristics for discrete optimization problems often requires significant specialized

knowledge and trial-and-error. In many applications, the same optimization problem is

solved repeatedly on a regular basis, maintaining the same problem structure but differing in

7



the data (e.g. constraint coefficients). This provides an opportunity for learning heuristic

algorithms that exploit the structure of such recurring problems.

Chapter 4 proposes a unique combination of reinforcement learning and graph embed-

ding that addresses this challenge. Rather than using a simple, static greedy rule to construct

a solution to a graph optimization problem (e.g. a greedy insertion heuristic for the TSP), a

learned scoring function is used instead. Reinforcement learning overcomes the difficulty

of collecting training data (which requires solving an NP-Hard problem), while the graph

embedding approach produces powerful node features that do not rely on feature engineering.

The proposed framework can be applied to a diverse range of combinatorial optimization

problems over graphs, such as the Minimum Vertex Cover, Maximum Cut and Traveling

Salesman problems. The learned heuristics mostly dominate classical algorithms for these

problems on a variety of graph distributions, and produce interesting solving behavior that

is not typical of classical algorithms.

Chapter 5 goes beyond “simple" graph optimization problems. Despite the fact that

Minimum Vertex Cover or the TSP are NP-Hard, they are simple enough in the sense that

their constraints are not difficult to satisfy: a greedy construction heuristic can always find

a feasible solution, as we show in Chapter 4. Unfortunately, many real-world problems

exhibit more complex constraints that defy basic greedy heuristics. For instance, consider

the “data center resource management" problem, in which we’d like to assign tasks to

processors such that the processors’ memory, space or processing budgets are respected

(while possible minimizing some cost function). Irrespective of the scoring function they

use, greedy heuristics may overload a processor with tasks such that an unassigned task

does not fit on any of the processors; to resolve this conflict, the algorithm must use

some form of backtracking, which makes the learning of greedy algorithms, using the

ideas developed in Chapter 4, very challenging. The key contribution of this work lies

in incorporating projection (through linear programming) into a recurrent neural network

model that generates solutions to a discrete optimization problem with arbitrary linear
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constraints. Given a set of training instances from a problem of interest, such as the resource

management problem discussed earlier, we tune the parameters of the recurrent neural

network so that it produces projection directions that result in more integral solutions. This

integrality criterion is captured by an appropriate loss function. Perhaps most importantly,

the three components of our model– the recurrent network generating projection directions,

the projection linear program (with appropriate smoothing) and the integrality loss function–

are differentiable, allowing for training the model parameters through gradient descent.

We refer to this heuristic-learning framework as “Neural Integer Optimization" (NIO). On

assignment, knapsack and satisfiability type problems, the projection heuristics learned by

NIO perform substantially better than the “Feasibility Pump", a widely used, non-learned

heuristic for integer programming. Most notably, compared to a recently proposed neural

network approach for satisfiability [116], NIO solves more (test) instances in fewer iterations

after being trained on only hundreds of instances of a completely different problem; the

approach in [116] requires millions of training instances. We view NIO as a promising

approach to expanding the reach of machine learning to uncharted optimization problems

where classical theoretical and algorithmic results are still underdeveloped.

Contribution of Part II

• Deep learning models can effectively guide discrete optimization heuristics;

• Supervised learning is often impossible when one must solve a problem
instance to obtain a solution to learn from. Instead, reinforcement learning
or self-supervised learning must be used;

• The learned heuristics often outperform hand-designed heuristics on a
variety of combinatorial problems;

• In some cases, the learned heuristics exhibit novel solution-finding
strategies that are not known in classical algorithm design, which could
inform new approaches.

Relevant Publications: Dai, Khalil, Zhang, Dilkina, and Song [34] (equal contribu-
tion with Dai), Khalil, Trivedi, and Dilkina [78].
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Discrete Optimization for Machine Learning. Parts I and II leverage machine learning

in discrete optimization. But can discrete optimization benefit machine learning? Part III

focuses on discrete neural networks, a popular class of ML models which requires rethinking

continuous gradient-based optimization methods.

Recently, it has been shown that neural networks may be overly sensitive to tiny ad-

versarial changes in the input, or “attacks". This weakness is detrimental to the use of

these highly-accurate models in safety-critical domains. Designing attack algorithms that

effectively fool trained models is a key step towards learning robust neural networks. I have

designed a novel algorithm for attacking Binarized Neural Networks (BNNs), a class of

discrete deep neural networks with binary parameters and threshold non-linearities. BNNs

are popular due to their computational efficiency and potential for deployment to low-power

devices. Attacking BNNs, and consequently protecting them, is thus an important problem

in the emerging area of “adversarial machine learning".

The discrete, non-differentiable nature of BNNs, which distinguishes them from their full-

precision counterparts, poses a challenge to standard gradient-based attacks. In Chapter 6,

we study the problem of attacking a BNN through the lens of combinatorial and integer

optimization [76]. An integer programming formulation of the problem is derived. While

exact and flexible, the MIP quickly becomes intractable as the neural network grows larger.

To address this issue, we designed a decomposition-based algorithm that solves a sequence

of small MIP problems, thus scaling much better than the single global MIP. The proposed

algorithm vastly outperforms the standard gradient-based attack on two image classification

datasets, while simultaneously scaling far beyond a commercial solver on the global MIP.
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Contribution of Part III

• Finding adversarial examples for Discrete (binarized) Neural Networks is
challenging to existing gradient optimization methods;

• A novel decomposition-based combinatorial heuristic is developed, inspired
by an exact MIP model;

• The proposed combinatorial methods show substantial improvement over
gradient methods on image classification datasets.

Relevant Publication: Khalil, Gupta, and Dilkina [76].
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Part I

Learning in Branch-and-Bound
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CHAPTER 2

LEARNING TO BRANCH

The design of strategies for branching in Mixed Integer Programming (MIP) is guided

by cycles of parameter tuning and offline experimentation on an extremely heterogeneous

testbed, using the average performance. Once devised, these strategies (and their parameter

settings) are essentially input-agnostic. To address these issues, we propose a machine

learning (ML) framework for variable branching in MIP. Our method observes the decisions

made by Strong Branching (SB), a time-consuming strategy that produces small search

trees, collecting features that characterize the candidate branching variables at each node of

the tree. Based on the collected data, we learn an easy-to-evaluate surrogate function that

mimics the SB strategy, by means of solving a learning-to-rank problem, common in ML.

The learned ranking function is then used for branching. The learning is instance-specific,

and is performed on-the-fly while executing a branch-and-bound search to solve the instance.

Experiments on benchmark instances indicate that our method produces significantly smaller

search trees than existing heuristics, and is competitive with a state-of-the-art commercial

solver.

2.1 Introduction

Variable selection for branching is considered to be a main component of modern MIP

solvers [88, 7]. As part of the branch-and-bound algorithm for solving MIP problems [102],

nodes in a search tree of partial assignments to variables must be expanded into (two)

child nodes by selecting one of the unassigned variables and splitting its domain by adding

additional constraints. Choosing good variables to branch on often leads to a dramatic

reduction in terms of the number of nodes needed to solve an instance. In fact, a recent

extensive computational study by researchers at IBM CPLEX, a leading commercial MIP
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solver, shows that using a naive variable selection strategy degrades performance by a factor

of more than 8, compared to modern strategies [7]. However, in the same study, the authors

note that “the results show that some progress has been achieved in branching variable

selection since CPLEX 8.0 (2002 version), but certainly no break-through" (p. 458).

Traditional branching strategies fall into two main classes: Strong Branching (SB)

approaches exhaustively test variables at each node, and choose the best one with respect

to closing the gap between the best bound and the current best feasible solution value.

Achterberg [2] shows that SB can result in 65% fewer search tree nodes on average, compared

to the state-of-the-art “hybrid branching" strategy. However, this comes at an increase of up

to 44% in computation time, as more time is spent per node. On the other hand, Pseudocost

(PC) branching strategies are engineered to imitate SB using a fraction of the computational

effort, typically achieving a good trade-off between number of nodes and total time to solve

a MIP. The design of such PC-based strategies has mostly been based on human intuition

and extensive engineering, requiring significant manual tuning (initialization, statistical tests,

tie-breaking, etc.). While that approach is important and constructive, we depart from it and

propose to learn branching strategies directly from data.

We develop a novel framework for data-driven, on-the-fly design of variable selection

strategies. By leveraging research in supervised ranking, we aim to produce strategies that

gather the best of all properties: 1) using a small number of search nodes, approaching

the good performance of SB, 2) maintaining a low computation footprint as in PC, and 3)

selecting variables adaptively based on the properties of the given instance. In the context

of a single branch-and-bound search, in a first phase, we observe the decisions made by

SB, and collect: features that characterize variables at each node of the tree, and labels

that discriminate among candidate branching variables. In a second phase, we learn an

easy-to-evaluate surrogate function that mimics SB, by solving a learning-to-rank problem

common in ML [89], with the collected data being used for training. In a third phase, the

learned ranking function is used for branching. This supervised learning framework for
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branching variable selection is illustrated in Figure 2.1.

On-the-fly learning of branching strategies

data
collection

MIP instance

Parameters

model
learning

ML-based
branching

0 θ

Nodes
until termination

Parameters:

θ: maximum number of SB nodes

κ: maximum size of variable candidate set at each node

Khalil, Dilkina, Song (Georgia Tech) Learning to Branch in MIP ISMP, July 2015 13 / 28

Figure 2.1: Proposed framework for learning to rank for variable selection: the axis repre-
sents the number of nodes processed during search, and θ is the number of nodes used for
data collection and model learning.

Compared to recent machine learning methods for node and variable selection in MIP [56,

12], our approach: 1) can be applied to instances on-the-fly, without an upfront offline

training phase on a large set of instances, and 2) consists of solving a ranking problem, as

opposed to regression or classification, which are less appropriate for variable selection. Its

on-the-fly nature has the benefit of being instance-specific and of continuing the branch-and-

bound seamlessly, without losing work when switching between learning and prediction.

The ranking formulation is natural for variable selection, since the reference strategy (SB)

effectively ranks variables at a node by a score, and picks the top-ranked variable, i.e. the

score itself is not important.

We will show an instantiation of this framework using CPLEX, a state-of-the-art com-

mercial MIP solver. We use a set of static and dynamic features computed for each candidate

variable at a node, and SVM-based learning to estimate a two-level ranking of good and bad

variables based on SB scores. Experiments on benchmark instances indicate that our method

produces significantly smaller search trees than PC-based heuristics, and is competitive with

CPLEX’s default strategy in terms of number of nodes.
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2.2 The Branching Problem

A generic variable selection strategy can be described as follows. Given a node Ni whose

LP solution x̌i is not integer-feasible, let Ci ⊆ {j ∈ I|x̌ij /∈ Z} be the set of branching

candidates. For all candidates j ∈ Ci, calculate a score sj ∈ R, and return an index j∗ ∈ Ci

with sj∗ = maxj∈Ci sj . Two standard approaches to computing the variable scores are briefly

described next; we refer to [2] for more details.

2.2.1 Strong Branching (SB)

Typically, the measure for the quality of branching on a variable xj is the improvement in the

dual bound. Consider a node N with LP value ž, LP solution x̌, and candidate variable set C.

The two children N−j and N+
j , resulting from branching on j downwards and upwards, have

(feasible) LP values ž−j and ž+
j , respectively. If N−j (N+

j ) is infeasible, ž−j (ž+
j ) is set to a

very large value. The changes in objective value are then ∆−j = ž−j − ž and ∆+
j = ž+

j − ž.

To map these two values to a single score, let ε be a small constant (e.g. 10−6), then:

SBj = score
(

max{∆−j , ε},max{∆+
j , ε}

)
(2.1)

A product is typically used for scoring, i.e. score(a, b) = a × b. SB attempts to find

the variable with the maximum score (2.1), by simulating the branching process for the

candidate variables in C, and computing the scores as in (2.1).

While SB directly optimizes (2.1), it is computationally expensive: solving two LP

problems for each candidate variable using the simplex algorithm is often time-consuming.

The time spent per node ends up overshadowing the time saved due to a smaller search tree.

Simpler but faster heuristics are hence preferred.
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2.2.2 Pseudocost Branching (PC)

Pseudocosts are historical quantities aggregated for each variable during the search. The

upwards (downwards) PC of a variable xj is the average unit objective gain taken over

upwards (downwards) branchings on xj in previous nodes; we refer to this quantity as Ψ+
j

(Ψ−j ). Pseudocost branching at node N with LP solution x̌ consists in computing values:

PCj = score
(

(x̌j − bx̌jc)Ψ−j , (dx̌je − x̌j)Ψ+
j

)
(2.2)

and choosing the variable with the largest such value. As in SB, the product is used to

combine the downwards and upwards values. One standard way to initialize the pseudocost

values is by applying strong branching once for each integer variable, at the first node

at which it is fractional [88]. We will refer to this PC strategy with SB initialization as

pseudocost branching (PC).

As mentioned earlier, improving the performance of PC-based branching strategies

requires significant offline tuning and experimentation on many instances. Reliability

branching [6] is parametrized by a reliability threshold and a lookahead value. Hybrid

branching [4] augments reliability branching with a tie-breaking mechanism, by combining

the PC score of a variable with other scores; the different scores are scaled and weighted

heuristically. Most recently, hypothesis-reliability branching [59] was proposed as an

alternative to reliability branching, employing variance as a statistical measure of uncertainty

in order to adaptively set the reliability parameter. Overall, PC-based strategies are input-

agnostic, since the rule for selecting the variable to branch on is always the same (branch on

the variable with largest PC score (2.2)), and is dependent on extensive parameter tuning

on instances that may be arbitrarily different in structure from the input. Additionally,

experiments show that PC-based strategies are still far from matching the node-efficiency of

SB, requiring 65 to 75% more nodes than the latter, on average (Table 5.1, page 69 in [2]).
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2.3 Overview of our Framework

We now introduce a framework for learning to branch in MIP. Our intuition is that by

observing and recording the rankings induced by SB, we can learn a function of the vari-

ables’ features that will rank them in a similar way, without the need for the expensive

SB computations. Figure 2.1 illustrates our approach. Given a MIP instance and some

parameters, we proceed in three phases:

1. Data collection: for a limited number of nodes θ, SB is used as a branching strategy.

At each node, the computed SB scores are used to assign labels to the candidate

variables; and corresponding variable features are also extracted. All information is

compiled in a training dataset.

2. Model learning: the dataset is fed into a learning-to-rank algorithm that outputs a

vector of weights for the features, such that some loss function is minimized over the

training dataset.

3. ML-based branching: SB is no longer used, and the learned weight vector is used to

score variables, branching on the one with maximum score until termination.

We highlight how the proposed method satisfies three desirable properties, before

confirming so experimentally.

1. Node-efficiency: the learned ranking model uses SB scores and node-specific variable

features as training data, and is thus expected to imitate the SB choices more closely

than PC, yielding smaller search trees.

2. Time-efficiency: SB is used in the first phase only, typically for a few hundred nodes.

The time required for learning (second phase) is small, and the third phase is dominated

by feature computations, which are designed to be much cheaper than solving the LPs

as does SB.
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3. Adaptiveness: the learned ranking model is instance-specific, as it assigns different

weights to features depending on the collected data.

Next, we describe each of the phases in more detail.

2.4 Data Collection

In this first phase, we aim to construct a training dataset from which we can learn a model

that mimics SB’s ranking. As such, the branch-and-bound algorithm is run with SB as the

variable selection strategy, for a fixed number of nodes θ. If a node is fathomed (e.g. for

infeasibility) during this phase, it does not count towards θ. At each node Ni, SB is run on a

set of candidate variables Ci, where |Ci| 6 κ, and κ is typically in the range 10–20 in SB

implementations (e.g. CPLEX). The variables in Ci are chosen among the fractional integer

variables in the node’s LP solution in standard ways (e.g. sorting by PC score [6]).

The training data then comprises:

– a set of search tree nodes N = {N1, ..., Nθ};

– a set of candidate variables Ci for a given node Ni ∈ N ;

– labels yi = {yij ∈ Ω|j ∈ Ci} for the candidate variables at each node i, where Ω is

the domain of the labels;

– a feature map Φ : X × N → [0, 1]p, where X = {x1, ..., xn}. Φ(xj, Ni) describes

variable xj at node Ni with p features.

Notice how the same variable xj may appear in both Ci and Ck for i 6= k, yet with

different labels and feature values. This is a result of the choice of feature map Φ, which

maps a variable at the node in question to features, capturing different contexts encountered

during the search.
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The specification and representation of the labels and features is a core issue when

modeling a problem using machine learning. We present intuitive, simple guidelines for

doing so in the context of branching.

Labels

A label is a value assigned to each variable in Ci, such that better variables w.r.t. to the SB

score have larger labels. We consider the SB score to be a sort of “gold standard" for scoring

variables, hence labels based on such a score are a good target for learning.

We propose a simple and intuitive binary labeling scheme, i.e. Ω = {0, 1}. Let SBi

denote the vector of SB scores for variables in Ci of node Ni, and SBi
∗ = maxj∈Ci{SBi

j}.

A label yij is computed by transforming the corresponding SB score SBi
j as follows:

yij =


1, if SBi

j > (1− α) · SBi
∗

0, otherwise
(2.3)

where α ∈ [0, 1] is the fraction of the maximum SB score that a variable should have in

order to get a ‘1’ label. For instance, when α = 0.2, variables whose SB scores are within

20% of the maximum score are assigned a label of ‘1’.

The labels resulting from the transformation in (2.3) emphasize our focus on the best

variables w.r.t. SB, and are compatible with learning-to-rank formulations, as we will see in

later subsections. While other labeling schemes are possible (e.g. grading on a scale of 1 to

5), we prefer the simple binary labels for the purposes of this work. Note that although our

labels are 0/1, our setting is that of bipartite ranking (i.e. ranking with 0/1 labels), and not

binary classification. Having a binary labeling scheme, as opposed to using a full ranking

among all candidate variables, helps to avoid learning to correctly rank variables with low

SB scores relative to each other, a task that is irrelevant to making a good branching choice.

In addition, instead of assigning only the variable with maximum SB score a label of ‘1’
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and all others a label of ‘0’, our labeling scheme has a relaxed definition of “top" branching

variable. This captures the fact that at some search nodes several candidate variables will

have high SB scores, and will likely be good branching candidates.

Features

We compute a feature vector that describes a variable’s state with respect to the node. The

features can be split into two sets: atomic features are computed based on the node LP and

candidate variable, whereas interaction features are the result of a product of two atomic

features. The final feature vector can be seen as an explicit feature mapping, equivalent to

the degree-2 polynomial kernel K(y, z) = (yT z + 1)2, in the space of atomic features.

The 72 atomic features are summarized in Table 3.2. They consist of counts and

statistics (all or some of: mean, standard deviation (stdev.), minimum, maximum) capturing

a variable’s structural role within the node LP, as well as its historical performance. The

atomic features are either static or dynamic. Static features are pre-computed once at the

root node, and do not depend on the specific node LP.

For each feature, we normalize its values to the range [0, 1] across the candidate variables

at each node. This type of normalization is referred to as query-based normalization in the

IR literature [90]. This produces an additional layer of dynamism, as the final value of a

feature for a given variable depends on the set of candidate variables being considered at that

node. For example, this results in static features of a variable taking on different normalized

values across different nodes.

All atomic features can either be accessed through the solver API in O(1), or computed

in O(nnz(A)), i.e. in time linear in the number of non-zero elements of the coefficient

matrix A, which makes data collection efficient.
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Table 2.1: Description of the atomic features.

Feature Description Count Reference

Static Features (18)

Objective function
coeffs.

Value of the coefficient (raw, positive only, negative only) 3

Num. constraints
Number of constraints that the variable participates in (with a non-zero
coefficient)

1

Stats. for constraint
degrees

The degree of a constraint is the number of variables that participate in
it. A variable may participate in multiple constraints, and statistics over
those constraints’ degrees are used. The constraint degree is computed
on the root LP (mean, stdev., min, max)

4

Stats. for constraint
coeffs.

A variable’s positive (negative) coefficients in the constraints it
participates in (count, mean, stdev., min, max)

10

Dynamic Features (54)

Slack and ceil distances min{x̌ij − bx̌ijc, dx̌ije − x̌ij} and dx̌ije − x̌ij 2

Pseudocosts
Upwards and downwards values, and their corresponding ratio, sum and
product, weighted by the fractionality of xj

5 [2]

Infeasibility statistics
Number and fraction of nodes for which applying SB to variable xj led
to one (two) infeasible children (during data collection)

4

Stats. for constraint
degrees

A dynamic variant of the static version above. Here, the constraint
degrees are on the current node’s LP. The ratios of the static mean,
maximum and minimum to their dynamic counterparts are also features

7

Min/max for ratios of
constraint coeffs. to
RHS

Minimum and maximum ratios across positive and negative
right-hand-sides (RHS)

4 [12]

Min/max for one-to-all
coefficient ratios

The statistics are over the ratios of a variable’s coefficient, to the sum
over all other variables’ coefficients, for a given constraint. Four
versions of these ratios are considered: positive (negative) coefficient to
sum of positive (negative) coefficients

8 [12]

Stats. for active
constraint coefficients

An active constraint at a node LP is one which is binding with equality
at the optimum. We consider 4 weighting schemes for an active
constraint: unit weight, inverse of the sum of the coefficients of all
variables in constraint, inverse of the sum of the coefficients of only
candidate variables in constraint, dual cost of the constraint. Given the
absolute value of the coefficients of xj in the active constraints, we
compute the sum, mean, stdev., max. and min. of those values, for each
of the weighting schemes. We also compute the weighted number of
active constraints that xj is in, with the same 4 weightings

24 [106]
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2.5 Learning a Variable Ranking Function

Given the training data, we would like to learn a linear function of the features f : Rp →

R, f(Φ(xj, Ni)) = wTΦ(xj, Ni) that minimizes a loss function over the training data. In

ML terms, this problem is one of empirical risk minimization.

We define ŷi ∈ Rκ to be the vector of values resulting from applying f to every variable

in Ci, i.e. ŷij = f(Φ(xj, Ni)). Formally, the learning problem can be written as that of

finding:

w∗ = arg min
w∈Rp

∑
Ni∈N

`(yi, ŷi) + λ‖w‖2
2 (2.4)

The (structured) loss function ` : Rκ × Rκ → R measures the loss resulting from ranking

the variables at a node Ni according to ŷi, as opposed to the true labels yi, and λ > 0 is a

regularization parameter that helps to avoid overfitting.

Fortunately, this problem has been studied in the context of web search, where a system

is given a set of queries, and must rank a set of documents by order of relevance. We leverage

existing research in information retrieval (IR) to address our problem (2.4). Specifically, our

choice of the loss function `(.) is based on pairwise loss, a common IR measure [67, 89].

A Pairwise Ranking Formulation

For a node Ni, consider the set of pairs: Pi =
{

(xj, xk) | j, k ∈ Ci and yij > yik

}
. Each pair

in any set Pi includes two variables at node Ni: one with label 1, and another with label 0.

In order to rank variables similarly to how SB ranks them, we could learn an f that violates

as few as possible of the following pairwise ordering constraints:

∀i ∈ {1, ..., θ} : ∀(xj, xk) ∈ Pi : ŷij > ŷik (2.5)

Violating a constraint in (2.5) is equivalent to learning a model for which ŷij 6 ŷik for some

node Ni and variables xj, xk: a variable with label yik = 0 is ranked the same or higher than
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one with label yij = 1. Minimizing such violations means that the model is more likely to

rank good variables higher than bad ones, which is our goal in variable selection. Note that

other formulations for the bipartite ranking problem are also possible, e.g. [112], but the

one we adopt is simple, can be optimized efficiently, and works well in practice.

While minimizing the number of violated constraints in (2.5) is NP-hard, Joachims [67]

proposed a Support Vector Machine (SVM) approach that optimizes an upper bound on that

number. SVMrank is an efficient open-source package that implements that algorithm with

the appropriate loss function ` [68]. We use SVMrank with a cost-sensitive loss, weighting

each term in the sum in (2.4) by 1/|Pi| (parameter “-l 2"). This variant is more suitable, as

it reduces the bias towards nodes with more “good" variables.

2.6 Branching with the Learned Function

After θ nodes have been processed, and the vector w has been learned, we switch from SB to

the function f as variable selection strategy. At each new node Ni, we compute the feature

vector Φ(xj, Ni) for each variable j ∈ Ci, and branch on the variable j∗ with maximum

score sj∗ = maxj∈Ci sj , where sj = f(Φ(xj, Ni)). The complexity of this procedure is

O(nnz(A) + p · κ), where the first term is due to the computation of features, and the

second is due to feature normalization and scoring by dot product (using p features and at

most κ candidate variables per node). Compared to SB, which requires many dual simplex

iterations, experiments show that our approach is much more efficient.

2.7 Experiments

2.7.1 Setup

We use the C API of IBM ILOG CPLEX 12.6.1 to implement various strategies using control

callbacks, in single-thread mode. To evaluate the performance of any variable selection

strategy A, the strategy is run on a set of instances with a time cut-off of tmax seconds. An
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instance I is solved by strategy A if and only if the run terminates within the tolerance

gaps (we use default CPLEX values). If an instance I is not solved by the time cut-off, it

is referred to as unsolved. All experiments were run on a cluster of four 64-core machines

with AMD 2.4 GHz processors and 264 GB of memory; each run was limited to 2 GB of

memory, and no run failed for memory reasons.

To isolate the effects of changing the variable selection strategy, we provide the optimal

value as upper cutoff to CPLEX before the start of the search. This measure reduces the

effect of node selection on the search, as the primal bound is given by the upper cutoff, and

the order in which nodes are expanded has little impact on the tree itself. Additionally, cuts

are allowed at the root only, and primal heuristics are disabled. These measures are common

in branching studies [88, 45, 72], since they eliminate the interference between variable

selection and other components of the solver, such as node selection. This also reduces

performance variability, which we discuss in the next subsection.

Instances. We use the “Benchmark" set from MIPLIB2010 as our test set; we refer to [81]

for details. This set was designed to span a variety of problem classes, applications,

dimensions, levels of difficulty, etc., and is routinely used for evaluating branching strategies.

The “Benchmark" set consists of 87 instances that can be solved by at least one commercial

solver within 2 hours on a high-end PC. Note that since we turn off multi-threading and cuts

beyond the root, we cannot expect to solve all instances within 2 hours. Hence, we set the

time cut-off tmax to 5 hours (18,000 seconds). Three infeasible instances are excluded.

For each of the 84 instances we consider, we run every strategy with 10 different random

seeds, for every variable selection strategy. Recent studies have shown that MIP solvers

can be very sensitive to seemingly performance-neutral perturbations to their inputs [91,

7]. Therefore, runs with different seeds are necessary for obtaining meaningful results. In

CPLEX, such perturbations can be induced by changing CPLEX’s internal random seed via

its C API.
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Branching strategies. We experiment with five strategies. CPLEX-D is the strategy that

branches on the variable chosen by the solver with its default variable selection rule (as set

by CPX_PARAM_VARSEL); this is done within a callback, as for all other strategies. Up

until 2013, CPLEX developers report that the default selection rule is “a version of hybrid

branching" [7]. SB refers to Strong Branching, while PC refers to pseudocost branching with

SB initialization of the PC values [88]. SB+PC is a hybrid of SB for the first θ = 500 nodes,

and PC afterwards; a similar strategy appears in [45]. SB+ML is our proposed method with

θ = 500. We use α = 0.2 and SVMrank with a trade-off parameter C = 0.1 between training

error and margin (λ in (2.4) is a function of C). We varied α ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and

C ∈ {0.001, 0.01, 0.1, 1} (0.01 is the default in SVMrank), and found that SB+ML performs

similarly. For SB, SB+PC and SB+ML, κ is set to 10, and all SB calls are limited to 50 dual

simplex iterations, as in [45].

We do not know what additional embellishments CPLEX uses, and report results for

its default strategy as CPLEX-D. Even when CPLEX’s default strategy is roughly known,

callback implementations are much less node (and time) efficient; see Table 4 in [45] for an

example. Hence, the main comparisons of our strategy are to PC and SB+PC. Most related

to SB+ML is SB+PC, since both strategies share the same exact search tree up to θ nodes,

then diverge by branching according to the variables selected by the learned ranking model

and PC, respectively. Note that any extra information that CPLEX uses internally to score

variables can be incorporated into our framework as features or labels, as can reliability

branching scores, etc.

2.7.2 Results

We consider three metrics for evaluating branching strategies: the number of unsolved

instances, the number of nodes to solve the instance and the total time to solve the instance.
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Since our hypothesis is that our strategy SB+ML is better at variable selection, the main

criterion for comparison is the number of nodes. The case for focusing on nodes versus

time in benchmarking branching methods is discussed in depth in [61]. Total time is also

important, and we have accordingly optimized our implementation of SB+ML to some extent.

However, we believe that the time-efficiency of SB+ML may be improved, for example with

access to CPLEX’s internal data structures.

An instance with a different random seed is considered as a separate instance; this was

suggested first by Danna [35]. Results for averages over seeds (per instance) are consistent

with what we present here, but are not included due to space constraints. Of the 840 instances

considered, we exclude: 184 instances solved by all strategies in 1,000 nodes (too easy), 82

instances not solved by any strategy in 5 hours (too hard), 3 instances that are flagged as

infeasible by at least one strategy, and 48 instances for which CPLEX aborted. For Table 2.2,

“All" refers to all instances considered, “Easy" and “Medium" refer to instances solved

by CPLEX-D in less than 50,000 and 500,000 nodes, respectively; otherwise, an instance

is classified as “Hard". When a strategy does not solve an instance, tmax is reported as

the total time, and the number of nodes at termination is reported as the number of nodes.

Note that this may be biased towards strategies that are slower, processing fewer nodes

and solving fewer instances. This issue is inherent to MIP benchmarking [7], and we will

address it in Tables 2.3 and 2.4. Similar experimental procedures are used in recent work on

branching [45, 72].

Table 2.2 shows that SB+ML solves more instances than both PC and SB+PC. Most

notably, SB+ML clearly outperforms PC and SB+PC, requiring respectively around 36%

and 16% fewer nodes on average (“All" set). Currently, SB+ML spends, on average, 18

milliseconds (ms) per node, while SB, PC and SB+PC spend 68, 10 and 15 ms, respectively.

Although SB+ML spends more time per node than SB+PC due to feature computations, it

incurs a comparable total time, as it saves in the number of nodes. Compared to PC, our

method is slower by 10% on average over all instances, but is 28% and 14% faster for
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instances in “Medium" and “Hard", respectively. A more optimized implementation of the

feature computations of SB+ML is likely to make it faster than competitors for the “Easy"

set too. It is clear that SB is not applicable, as it requires twice as much total time as the

three competing methods, and times out on many more instances.

Table 2.2: Summary of experimental results. “Unsolved instances" are counts, “Num.
nodes" and “Total time" (in seconds) are shifted geometric means over instances with shifts
10 and 1, respectively. Lower is better, and the best value in each row among PC, SB+PC

and SB+ML is in bold.

CPLEX-D SB PC SB+PC SB+ML

Unsolved
Instances

All (523) 11 129 66 63 52
Easy (255) 0 12 15 14 13
Medium (120) 2 43 22 22 17
Hard (148) 9 74 29 27 22

Num. Nodes

All (523) 46,633 33,072 92,662 70,455 59,223
Easy (255) 3,255 3,610 7,931 5,224 5,124
Medium (120) 173,417 121,923 395,199 288,916 234,093
Hard (148) 1,570,891 519,878 1,971,333 1,979,660 1,314,263

Total Time

All (523) 499 2,263 960 1,093 1,059
Easy (255) 111 602 243 361 382
Medium (120) 1,123 6,169 2,493 1,892 1,776
Hard (148) 3,421 9,803 4,705 4,718 4,039

Table 2.3 addresses the bias in averaging over the number of nodes on unsolved instances

in Table 2.2. Here, we consider only instances solved by both strategies, for every pair of

strategies, and compute shifted geometric means on that subset of the instances. The node

ratios shown in Table 2.3 are in line with the previous two tables. SB+ML needs 37% and

18% fewer nodes than PC and SB+PC, respectively, and only 3% more nodes than CPLEX-D.

Interestingly, SB+ML requires 32% more nodes than SB, while CPLEX-D requires 39%; PC

and SB+PC are dramatically worse.

Table 2.4 shows win-tie-loss counts for each pair of strategies, comparing the number

of nodes needed to solve an instance head-to-head, and avoiding the averaging used in the

two previous tables. An absolute win for strategy A over B on instance I is recorded iff

28



Table 2.3: Ratios for the shifted geometric means (shift 10) over nodes on instances solved
by both strategies. The first value in a cell in row A and column B is the ratio of the average
number of nodes used byA to that of B. The second value is the number of instances solved
by both A and B.

CPLEX-D SB PC SB+PC SB+ML

CPLEX-D 1.39 (389) 0.64 (449) 0.84 (452) 0.97 (463)
SB 0.72 (389) 0.47 (389) 0.61 (388) 0.76 (389)
PC 1.56 (449) 2.11 (389) 1.34 (445) 1.59 (450)

SB+PC 1.20 (452) 1.63 (388) 0.75 (445) 1.22 (454)
SB+ML 1.03 (463) 1.32 (389) 0.63 (450) 0.82 (454)

Table 2.4: Win-tie-loss matrix for the number of nodes. A quintuple in a cell in row A and
column B has: the number of absolute wins, wins, ties, losses and absolute losses for A
against B, w.r.t. the number of nodes.

CPLEX-D SB PC SB+PC

CPLEX-D

SB 5/264/0/125/123
PC 8/164/0/285/63 68/63/0/326/5

SB+PC 8/227/0/225/60 72/66/7/315/6 15/320/0/125/12
SB+ML 8/267/0/196/49 82/96/7/286/5 21/355/0/95/7 17/300/58/96/6

A solves I whereas B does not; a win occurs when both A and B solve I, and A does so

in strictly fewer nodes than B; absolute loss and loss are defined analogously. A tie occurs

when A and B solve I in the same number of nodes. Table 2.4 is consistent with Table 2.2,

showing that SB+ML outperforms PC and SB+PC head-to-head, solving many more instances

in fewer nodes. SB+ML has 21 absolute wins and 355 wins over PC, while PC has only 7

absolute wins and 95 wins over SB+ML in terms of number of nodes. SB+ML is on par with

CPLEX-D in terms of overall wins, with fewer absolute wins (8 vs. 49), but more wins on

instances solved by both (267 vs. 196).

Significance tests on aggregated seeds
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Table 2.5: Win-loss counts for every pair of strategies, for the Wilcoxon signed rank test
on the number of nodes. A doublet in a cell in row A and column B expresses the number
of wins for A over B, and the number of losses, respectively, w.r.t. to the outcome of the
one-sided Wilcoxon test. A wins over B on instance I iff the null hypothesis H0 (Strategy
A solves I in more nodes than strategy B) can be rejected at a significance level of 0.05;
losses are defined analogously.

CPLEX-D PC SB+PC

CPLEX-D

PC 11/34
SB+PC 19/26 32/6

SB+ML 22/23 35/4 29/7

We evaluate whether a given branching strategy performs significantly better than another

strategy in terms of the number of nodes on an instance, over multiple random seeds. This

is different from the tables that appear in the main text, where runs with different seeds on

the same instance are considered as instances of their own.

The one-sided Wilcoxon signed rank test is used here, as adapted to the MIP setting

in [58, p. 40]. Let nA and nB denote the vectors containing the number of nodes for

strategies A and B over a set of random seeds K on the same instance I. The Wilcoxon

test takes vectors lognA and lognB as input, and outputs a p-value corresponding to the

probability of rejecting the following null hypothesis while it is true: the median of the

distribution of the log (nAk /n
B
k ) values (for all seeds k ∈ K) is negative. The Wilcoxon test

uses the ranks of the entries of the log (nAk /n
B
k ) vector to evaluate the null hypothesis. When

A fails to solve I with seed k, the corresponding nAk is set to a large value, such that A is

penalized for this failure in the statistical test. The penalization is such that those failures

are given the highest ranks, which is the desired outcome.

Table 2.5 shows that our method’s improvement on the number of nodes is statistically

significant compared to PC and SB+PC on many instances (35 and 29 instances, respectively),

while PC and SB+PC beat SB+ML only on 4 and 7 instances, respectively. Compared to

CPLEX-D, SB+ML wins 22 times versus CPLEX-D’s 23, a much smaller difference compared

to PC v/s CPLEX-D (11/34), and SB+ML v/s CPLEX-D (19/26).
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Table 2.6: Win-tie-loss counts for every pair of strategies, for the number of nodes. A triplet
in a cell in row A and column B expresses the number of wins for A over B, the number of
ties, and the number of losses of A to B, respectively, w.r.t. to the shifted geometric mean of
the number of nodes. A wins over B on instance I iff the mean number of nodes of A over
the random seeds on I is strictly less than that of B; losses and ties are defined analogously.

CPLEX-D PC SB+PC

CPLEX-D

PC 21/0/46
SB+PC 28/0/39 46/0/21

SB+ML 34/0/33 53/0/14 46/5/16

Table 2.6 shows that on more instances than not, SB+ML requires fewer nodes on average

than CPLEX-D, PC and SB+PC. The improvement is most striking compared to PC and

SB+PC.

Performance profiles

Performance profiles are commonly used in benchmarking optimization software and

algorithms [40]. The profiles we present next are based on the same instances considered

in the main text, i.e. without aggregation over seeds. We present a profile for the number

of nodes in Figure 2.2. For a given strategy, a point (x, y) in Figure 2.2 is the fraction y

of instances solved by that strategy within a factor of x times more nodes than the best

strategy, for each instance. If a strategy fails to solve an instance, the ratio is set to a large

value (twice the maximum ratio in the data, as per Dolan and Moré’s code). The behavior of

SB+ML in terms of nodes is almost indistinguishable from that of CPLEX-D up to a ratio

(x-axis) of around 1.5. CPLEX-D then leads, while SB+ML dominates both SB+PC and PC.

The profile for total time in Figure 2.3 is consistent with Table 2 in the main text, showing

that SB+ML is less efficient than its competitors PC and SB+PC, a difference that we believe

can be shrunk by optimizing the code.

2.7.3 Analysis of the Learned Models

Some interesting questions can be answered by analyzing the learned models: are the models

“similar" across instances, suggesting that instance-specific learning is not useful? What

31



1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio to best

F
ra

ct
io

n 
of

 in
st

an
ce

s

Performance profile for Nodes

 

 

CPLEX−D
PC
SB+PC
SB+ML

Figure 2.2: Performance profile for the number of nodes. For a given strategy, a point (x, y)
on this graph is the fraction y of instances solved by that strategy within a factor of x times
more nodes than the best strategy, for each instance.

features are the most predictive? To answer these questions, we perform an exploratory

analysis on a subset of the learned ranking models. Specifically, we consider all learned

models under one of the random seeds; there are 53 such models.

Similarity among models. Intuitively, two models are similar if ranking the features by

their weights in each model produces two similar rankings; the actual weight values do not

matter as much. First, we consider the 1378 unique pairs of models, for those 53 models

that were learned. For each such pair (i, j), we compute Spearman’s rank correlation coef-

ficient [119], ρi,j , where −1 6 ρi,j 6 1. High positive values of ρi,j indicate that the two

models are highly correlated, i.e. the rankings of the features by their weights are similar,

and vice versa for low negative values. Values of ρi,j around zero indicate that the rankings
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Figure 2.3: Performance profile for the total time. For a given strategy, a point (x, y) on this
graph is the fraction y of instances solved by that strategy within a factor of x times more
time than the best strategy, for each instance.

are uncorrelated. For our 1378 pairs of models, the mean correlation coefficient is 0.2 with

a standard deviation of 0.14, indicating that only a very weak positive correlation exists

between models, on average. A box plot for the distribution of the coefficients is shown in

Figure 2.4. Interestingly, only 14 out of 1378 pairs of models exhibit a correlation of more

than 0.5. This analysis seems to confirm our intuition: no “one-size-fits-all" rule for variable

selection exists, and input-specific ranking models are discovered by the machine learning

algorithm.

Top features. What are the features that are consistently given large (absolute) weights

across different instances? To answer this question, we consider the same 53 models as

before. For each model, we rank the features by their absolute weight. Then, for each feature,
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Spearman’s Rank Correlation Coefficient

Figure 2.4: Box plot for the distribution of Spearman’s rank correlation coefficients for 1378
pairs of models. “The central mark is the median, the edges of the box are the 25th and 75th
percentiles, the whiskers extend to the most extreme data points not considered outliers, and
outliers are plotted individually" [94].

we count the number of models in which it appeared among the top K ranked features. The

10 features that appear the most in the top 10 over models are presented in Table 3.2, along

with counts for other values of K. Clearly, “PC Product" (PCP) is an important feature that

is ranked in the top 10 in more than half of the models (27/53). However, that same feature,

which is used on its own in PC branching, is ranked as the top feature only 3 times. This

shows that combining various features does indeed bring about ranking models that are more

predictive. Besides the PC Product and its square, the other eight features combine PCP

with other static and dynamic features. Those include features related to the distribution

of the number of variables in the constraints of the variable of interest, its coefficients in

the constraints, and its coefficients in active constraints only (weighted by the inverse of

the sum of the candidate variables’ coefficients). These combinations are discovered to be

important when learning the model, a task that is difficult to accomplish a priori, without

data collection and learning.

2.8 Conclusions and Future Directions

We have proposed the first successful ML framework for variable selection in MIP, an

approach which may also benefit other components of the MIP solver such as cutting
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Table 2.7: The 10 features that appear the most in the top K = 10 features over models,
sorted by that count (corresponding column is bold in the header). The counts for other
values of K are also shown. There are 1385 features in total. Static features are marked by
(S); unmarked features are dynamic.

Feature 1 3 5 10 20 100

PC Product 3 13 19 27 28 39
PC Product x Min. Constraint Degree 0 2 4 15 20 34
PC Product x Min. Positive Constraint Coefficient (S) 1 1 7 14 21 36
PC Product x Max. Constraint Degree 0 0 2 13 18 37
PC Product x Min. Negative Constraint Coefficient (S) 0 2 6 13 22 39
PC Product x Num. Constraints for Variable (S) 0 3 6 12 14 30
PC Product x Max. Absolute Coefficient in Active Constraints 1 4 6 12 21 37
PC Product x PC Product 4 4 5 11 19 35
PC Product x Mean Positive Constraint Coefficient (S) 0 5 6 11 14 34
PC Product x Mean Negative Constraint Coefficient (S) 1 2 5 11 19 36

planes and node selection. The framework can be extended in several directions, such as

dynamically adjusting the number of training nodes θ or learning models multiple times in

adaptation to the search progress. Beyond the batch supervised ranking approach we used,

online and reinforcement learning formulations may be interesting to explore, given the

structured, sequential nature of the variable selection task.
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CHAPTER 3

LEARNING TO RUN HEURISTICS

“Primal heuristics” are a key contributor to the improved performance of exact branch-

and-bound solvers for combinatorial optimization and integer programming. However,

incorporating heuristics within tree search motivates challenging questions, the most im-

portant of which being: should the heuristic be run at a given node? Typical approaches

to addressing this question involve an offline trial-and-error process, resulting in a set of

hard-coded rules or fixed solver parameters. Alternatively, a heuristic should be run when

it is most likely to succeed, based on the problem instance’s characteristics, the state of

the search, etc. In this work, we study the problem of deciding at which node a heuristic

should be run, such that the overall (primal) performance of the solver is optimized. To

our knowledge, this is the first attempt at formalizing and systematically addressing this

problem. Central to our approach is the use of Machine Learning (ML) for predicting

whether a heuristic will succeed at a given node. We give a theoretical framework for

analyzing this decision-making process in a simplified setting, propose a ML approach

for modeling heuristic success likelihood, and design practical rules that leverage the ML

models to dynamically decide whether to run a heuristic at each node of the search tree.

Experimentally, our approach improves the primal performance of a state-of-the-art Mixed

Integer Programming solver by up to 6% on a set of benchmark instances, and by up to 60%

on a family of hard Independent Set instances.

3.1 Introduction

The Primal Side of Integer Programming. There are two sides to any constrained op-

timization problem. On the one hand, we want to find feasible solutions to the problem

instance at hand. On the other hand, we would like to prove the optimality of the best
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feasible solution found, i.e. to guarantee that no feasible solution with strictly better objec-

tive function value exists. These two sides are particularly prominent in MIP, the study of

optimization problems with integer-valued variables. To use the terminology of MIP, the

primal side refers to the quest for good feasible solutions, whereas the dual side refers to

the search for a proof of optimality.

While proving optimality is a key trait of exact solvers for MIP, finding quality feasible

solutions quickly is certainly at least as crucial. For example, consider a real-world MIP

model that a company solves on a regular (e.g. daily) basis in order to plan its operations.

When state-of-the-art MIP solvers require many hours to solve an instance to optimality, the

user will expect good feasible solutions to be found much earlier in the solving process, so

that they are able to act upon them and address their business needs promptly. An example

of such a challenging real-world scenario is that of the maritime inventory routing problem

(MIRP), described in [104]. For the 28 MIRP instances, the solver Gurobi, with default

settings (including parallel processing) and no warm-starting, is not capable of finding any

feasible solutions for any of the instances in 24 hours [104]. The delay in finding feasible

solutions affects the decision-maker’s ability to plan ahead and compare options before

deployment.

The Impact of Primal Heuristics. In this work, we focus on the primal side of integer

programming. We do note, however, that finding better feasible solutions while solving a

MIP with branch-and-bound speeds up proving optimality by pruning nodes with worse

lower bounds, assuming a minimization problem. The classical way by which the MIP

solver finds feasible solutions is through linear programming (LP) relaxations: in a branch-

and-bound search, after branching on a subset of the integer variables of a MIP instance,

solving the LP relaxation of the restricted sub-problem may result in an integer-feasible

solution.

However, the MIP community has recently realized the potential for combining primal

heuristics with exact branch-and-bound search to improve solution finding. Primal heuristics
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are incomplete, bounded-time procedures that attempt to find a good feasible solution.

Primal heuristics may be used as standalone methods, taking in a MIP instance as input,

and attempting to find good feasible solutions, or as sub-routines inside branch-and-bound,

where they are called periodically during the search. In this work, we focus on the latter,

which we will expand on in the following paragraph.

A number of computational studies, with different MIP solvers, have demonstrated

the large impact that primal heuristics have on branch-and-bound. An interesting finding

reported in [22] is that on 97 easy benchmark instances, the LP relaxation finds an optimal

solution 59 times, whereas on 26 hard instances it finds an optimal solution only 3 times; for

the remaining instances, one of the primal heuristics of the SCIP solver used by Berthold

finds an optimal solution. Berthold’s results show that the investment in developing effective

primal heuristics has brought about significant returns, most notably for harder instances.

Even stronger results confirming the impact of heuristics on the solver CPLEX are discussed

in [7].

Our Problem Setting. Despite the success of primal heuristics within MIP solving, there

remains a number of central issues pertaining to when and what heuristics should be run

during the search. For instance, in SCIP (a state-of-the-art academic MIP solver), 43 primal

heuristics have been implemented. In the default settings of the solver, some heuristics are

turned off, others run very frequently (e.g. at every node), while yet another subset runs

occasionally (e.g. every 10 or 20 nodes). Such rigid rules for running heuristics are static,

instance-oblivious, context-independent, and are unable to adapt to the state of the search.

Additionally, the algorithmic differences between primal heuristics result in substantial

variation in performance. For instance, diving and neighborhood search heuristics are much

more computationally expensive than their rounding counterparts, but are generally more

likely to find quality feasible solutions.

Towards establishing a dynamic, data-driven approach to the use of primal heuristics

in tree search, we address the problem of decision-making for primal heuristics. Assume
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that P (t) is some primal performance measure, whose value at time point t indicates how

successful the solver has been on the primal side up to t; the choice of the performance

measure P (.) will be discussed in detail in Section 3.3. In its simplest form, a formulation

of the problem addressed here is:

Given a primal heuristic H , a branch-and-bound solver with search tree T , a

time cutoff tmax, find the subset of nodes of T at which executing H results in

the best primal performance possible, P (tmax).

To our knowledge, the systematic study of this problem is new. By “systematic", we

mean that there is a well-defined objective function P (tmax) to optimize, and a clear decision

space, namely executing H or not at each node. We refer to a procedure that decides when

to run a primal heuristic as a primal policy. The proposed problem raises a number of

interesting questions that span online decision-making under uncertainty and ML.

3.2 Primal Heuristics

In order to incorporate a primal heuristic within the branch-and-bound framework, the

developer or user of a MIP solver must make certain decisions that reflect their belief in the

heuristic’s potential for finding high-quality feasible solutions efficiently. Most importantly,

one must decide the frequency, in terms of number of nodes, with which the heuristic will

be run. Additionally, internal parameters of the heuristic must be set to suitable values. To

make these decisions, one must understand the current landscape of primal heuristics, which

we now briefly describe.

Functionally, primal heuristics can be categorized into start heuristics, which aim at

finding a first feasible solution, and improvement heuristics, which aim at producing new,

better feasible solutions. Algorithmically, primal heuristics fall into three broad categories:

diving, rounding and propagation, and large neighborhood search. Diving heuristics simulate

a depth-first traversal from a given node, and are motivated by the assumption that feasible
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solutions are more likely to come about in deeper levels of the search tree. Rounding

and propagation heuristics use the LP relaxation solution at a node as input, and try to

turn it into an integral solution with simple transformations. As for neighborhood search

heuristics, they typically solve a sub-MIP problem that models the neighborhood of existing

feasible solutions and/or the LP solution at a node, with the hope of finding a better feasible

solution in that neighborhood. These algorithmic differences result in primal heuristics that

exhibit substantial variation in performance. For instance, diving and neighborhood search

heuristics are substantially more computationally expensive than their rounding counterparts,

but are generally more likely to find quality feasible solutions.

3.3 The Primal Integral

Our goal is to improve the primal performance of tree search, i.e. the quality of and the

speed at which feasible solutions are found. The primal integral is a primal performance

criterion for MIP that was introduced in [5] to formally capture these desired characteristics,

and that we adopt as a main measure of primal performance.

Let x∗ denote an optimal (or best known) solution for a MIP, and x̃ denote a feasible

solution for the same MIP. The primal gap γ ∈ [0, 1] of solution x̃ is defined as:

γ(x̃) :=


0, if |cTx∗| = |cT x̃| = 0

1, if cTx∗ · cT x̃ < 0

|cT x̃−cT x∗|
max {|cT x̃|,|cT x∗|} , otherwise.

(3.1)

Let tmax ∈ R≥0 be a limit on the solution time of the B&B MIP solver. Then, the primal gap

function p : [0, tmax] 7→ [0, 1] is defined as:

p(t) :=


1, if no incumbent is found until point t,

γ(x̃(t)), with x̃(t) the incumbent at point t.
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Figure 3.1: An illustration of the primal integral.

It is easy to see that p(t) is a nonincreasing step function in [0, 1] that changes whenever a

new incumbent is found, and takes on a value of zero the moment an optimal solution is

found – see Figure 3.1. The primal integral P (T ) of a branch-and-bound run until a point

in time T ∈ [0, tmax] is defined as:

P (T ) :=
Inc+1∑
i=1

p(ti−1) · (ti − ti−1),

where Inc is the number of incumbents, ti ∈ [0, T ] for i ∈ 1, . . . , Inc are the points in time

when a new incumbent is found, t0 = 0 and tInc+1 = T . A graphical illustration of the

primal integral is shown in Figure 3.1. Note that the primal-dual integral is another metric

that is defined similarly to the primal integral, with γ(x̃, z
¯
) := cT x̃−z

¯max {|cT x̃|,|z
¯
|} , PD(T ) :=∑Chn

i=1 p(ti−1) · (ti − ti−1), Chn the time points at which either the global lower bound z
¯

or

upper bound cT x̃ changed, and p(ti−1) = γ(x̃(t), z
¯
(t)) (or 1 if either bound is undefined).

However, the primal-dual integral confounds the primal and dual sides, and is thus less

relevant for our purposes.

Achterberg et al. suggest that the primal integral be used to measure the progress on the

primal side during B&B [5]. The smaller P (tmax) is, the better the incumbent finding. As

such, we will consider optimizing the primal integral directly, by means of making good

decisions regarding whether a primal heuristic should be run at each node or not.
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3.4 Theoretical Analysis

3.4.1 Problem Formulation

Should heuristic H be run at a given node N? An answer to this question must study the

trade-off between the potential benefit of finding a better feasible solution if H is run at N ,

and the cost associated with running H (including the risk of failure). Running H at every

node may be undesirable, as H may run for a long period of time, during which the MIP

could be solved to optimality, irrespective of H . Thus, it is crucial to choose the right set of

nodes at which to run H . We now give the first general formulation of the problem we call

“Primal Integral Optimization" (PIO):

(PIO) Given a primal heuristic H , a branch-and-bound MIP solver with search

tree T and a time cut-off tmax, find the subset of nodes of T at which executing

H results in a primal integral P (tmax) of minimum value.

The first step towards formalizing PIO lies in defining a simple, conceptual model of

branch-and-bound, within which we can analyze the complexity of PIO, and the theoretical

performance of approaches to solving it. We will distinguish two main settings:

– the offline setting, where the search tree T is fixed and known in advance, and PIO

amounts to finding the best subset of nodes to run H at in hindsight;

– the online setting, where one must sequentially decide, at each node, whether H should

be run, without any knowledge of the remainder of the tree or search.

In practice, the online setting is more relevant as it is representative of actual MIP

solving. Thus, we will analyze online decision-making algorithms next, and bound their

worst-case performance compared to an optimal solution obtained offline, in hindsight. Note

that such an offline solution is easy to compute via dynamic programming if the B&B tree

is known and fixed in advance. We do not provide the details of the offline algorithm, as it is

not of practical interest.
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Central to the algorithms that we analyze is the notion of an oracle which, when queried

at a given node, tells the online algorithm whether heuristic H will find an incumbent or not.

We will analyze the performance of an online algorithm under two different assumptions on

the oracle’s behavior. In the first setting, the oracle is assumed to be perfect, in that it returns

the correct answer (i.e. whether H will find an incumbent or not) at every node at which it

is queried. In the second setting, the oracle is assumed to be faulty, making a mistake with a

given probability.

To see how this conceptual framework is tied to the proposed ML approach to PIO,

notice that an ML model of heuristic success can be seen as a faulty oracle: the model is

likely to miss a few incumbents, or wrongly predict incumbents at some nodes. Since the

heuristic is run at nodes during B&B, any decision-making algorithm must act online, using

only information about the solving process up to the given point in time. Our theoretical

analysis aims at substantiating the practical ML approach to PIO of Section 3.5.

3.4.2 Competitive Ratio under a Perfect Oracle

The online PIO problem is a challenging one, since decisions regarding running H at a

node must be made without any knowledge of the remainder of the search tree, and the

incumbents that may be found later by LP or H . As a first result, we will analyze the

following simple rule of thumb for deciding whether to run a primal heuristic at a node: if

the oracle says that H can find an incumbent solution at node Ni, then run H; otherwise, do

not run H . We refer to this rule of thumb as Run-When-Successful (RWS).

To analyze online algorithms, we resort to worst-case analysis using the competitive

ratio [9]. Assume we are given a sequence of “requests" σ (in our case, each request is a

node at which we run H or not). Let A(σ) denote the cost incurred by a deterministic online

algorithm A, and let OPT (σ) denote the cost incurred by an optimal offline algorithm

OPT . The algorithm A is called c-competitive if there exists a constant a such that

A(σ) ≤ c ·OPT (σ) + a, for ∀σ; c is the competitive ratio.
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Theorem 1 RWS achieves a competitive ratio of

1 +
tH
tLP

with respect to the optimal offline solution, where tH , tLP are the fixed running times of H

and an LP relaxation solve, respectively.

PROOF. Let PRWS denote the primal integral value obtained on an instance I using the

RWS rule, and POPT the optimal primal integral value for I . Assume the optimal primal

policy for heuristic H goes through n nodes before finding an optimal solution to the MIP I .

Notice that RWS will require at most n nodes as well, since RWS guarantees that at any

node, its incumbent is the best possible up to that node. Let T RWS
H be the set of time points

at which RWS runs H , and T OPTLP the set of time points at which the optimal primal policy

solves an LP. Then, PRWS can be upper bounded as:

PRWS ≤ POPT +
∑

ti∈T RWS
H

p(ti) · tH .

The upper bound is valid because the worst RWS can do is run for tH seconds multiple

times and not improve the incumbent. Dividing both sides of the above inequality by POPT ,

we obtain:

PRWS

POPT
≤ 1 +

∑
ti∈T RWS

H
p(ti) · tH

POPT

≤ 1 +

∑
ti∈T RWS

H
p(ti) · tH∑

ti∈T OPT
LP

p(ti) · tLP
≤ 1 +

tH
tLP

.

The second inequality is valid because

POPT ≥
∑

ti∈T OPT
LP

p(ti) · tLP ,

i.e. the optimal primal integral has value at least that of the LP solves weighted by the primal
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gap p(ti). The final inequality is valid because

∑
ti∈T RWS

H

p(ti) · tH ≤
∑

ti∈T OPT
LP

p(ti) · tLP ,

as H is run at most as frequently as LPs are solved, and the primal gap value at any node at

which RWS runs H is at worst equal to the corresponding gap value for the optimal primal

policy. �

It is interesting to see how the bound in this theorem holds up in practice on real MIP

instances from the Benchmark set of MIPLIB2010 [81]. Table 3.1 shows the empirical

competitive ratio of the RWS algorithm and the theoretical one, computed as in Theorem 1,

for four sample instance-heuristic pairs. The optimal offline primal integral POPT is

computed via dynamic programming in hindsight. The results of Table 3.1 show that the

empirical performance of RWS is much better than the theory suggests. However, we do

believe that the bound is tight up to an arbitrarily small constant.

Table 3.1: Sample results from empirical evaluation of RWS.

Instance Heuristic Empirical P̂
RWS

POPT Theoretical P
RWS

POPT

biella1 fracdiving 1.09 122.79
rail507 veclendiving 1.09 18.36
qiu guideddiving 1.01 5.32
biella1 intshifting 1.00 3.57

3.4.3 Competitive Ratio under a Faulty Oracle

Any practical oracle, such as one designed with ML, will not be perfect. A faulty oracle

is one that makes a mistake at a node with some probability. We distinguish two types of

mistakes: false positives and false negatives. Assume that the oracle incurs a false positive

at a node with probability δ, i.e. the oracle states that H will find an incumbent at a node N

whenH does not, and a false negative with probability β, i.e. the oracle states thatH will not

find an incumbent at N when H does. When δ > 0, β = 0, the bound from Theorem 1 also

45



holds for the competitive ratio w.r.t. the expected primal integral, i.e.
E[PRWS]

POPT
≤ 1 + tH

tLP
.

The randomness is with respect to the nodes at which the false positives occur. Unfortunately,

when β > 0, bounding the competitive ratio becomes much trickier: if H finds an optimal

solution at N which cannot be found at any other node by either H or LP relaxation solves,

and a false negative occurs at N , then PRWS = tmax, the maximum possible value. As such,

we believe that any such bound when β > 0 will be very loose. However, there may be

suitable assumptions under which the bound is not as loose, and we consider this issue to be

interesting for future research.

3.5 Learning a Success Oracle for Heuristics

In the previous section, we showed that despite its simplicity, the RWS rule provides

theoretical guarantees under a simplified setting. However, in order to turn RWS into an

operational policy, we must design a success oracle. Combining the designed oracle with

RWS provides an online procedure for deciding when to run a heuristic during tree search.

Recall that our aim is to dynamically decide whether to run the heuristic at a given node,

based on the instance characteristics, node characteristics and state of the search. As such,

we will design the oracle by learning a binary classifier which predicts whether heuristic

H will find an incumbent solution at node N . The features used to describe node N will

incorporate information about the instance, the node and the state of the search, as desired.

The proposed framework is illustrated in Figure 3.2.

3.5.1 Realistic Data Collection

We now describe our method for collecting data on the heuristic’s success across different

instances. This aspect of oracle design warrants special attention, given the interplay between

incumbent finding and tree search. More specifically, one has to make sure that the node

data collected for heuristic H for training is similar to the node data to be encountered when

using H’s oracle, online, on a new problem instance.
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Figure 3.2: An illustration of the proposed framework for the Primal Integral Optimization
problem. The top part relates to the training process, whereas the bottom part shows the
framework at test time.

LetH be the set of primal heuristics used during tree search, H ∈ H a given heuristic,

and H̄ = H − H . We are given a set of MIP instances, Itrain, which can be used to

collect data on H . A dataset DH
I is obtained for each instance I ∈ Itrain, and the final

training dataset for heuristic H is obtained by concatenating instance datasets together into

DHtrain =
⋃
I∈Itrain D

H
I .

We now consider data collection at the individual instance level. Let I ∈ Itrain be a

MIP instance for which we want to collect data for heuristic H . We will run H at every

node N of the search tree, and collect the binary classification label value, yNH ∈ {0, 1},

and the feature vector xN ∈ Rd. The label yNH takes a value of 1 if H finds an incumbent

at node N , and 0 otherwise. The key observation here is that the value of yNH depends on

z∗N , the objective function value of the incumbent when node N is considered. In turn,

the value of z∗N depends on the progress in the search up to N . If H is run at every node,

then any incumbent that H finds affects the value yN ′H for all nodes N ′ that come after N .

This interplay between the incumbents found by H and the data being collected for H is

problematic, as the labels yNH in the training dataset assume that the oracle is perfect, i.e. H
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is run anytime it can find an incumbent. In practice, however, the oracle is a binary classifier

that is unlikely to be perfect, meaning that it will not always run H , even when H can find

an incumbent.

To deal with this complication, we devise a data collection procedure that is more likely

to result in realistic datasets. First, for any heuristic H for which data is to be collected,

H is run in “stealth" mode: any new incumbent that H finds does not replace the current

incumbent. This measure is equivalent to not running H at all from the branch-and-bound

perspective, while still obtaining useful data for H . Second, all other heuristics H ′ ∈ H̄ are

run using their default solver frequencies, which simulates actual MIP solving, where many

heuristics are interacting together.

3.5.2 Designing Node Features

So far, we have discussed collecting data that is realistic w.r.t. the target label. We now

discuss the choice of features used to describe a given node N . We use a d-dimensional

feature vector, xN ∈ Rd, with d = 49, consisting of the features listed in Table 3.2. Global

features describe the current state of the search using gap-related metrics. The (optimality)

gap is defined as the relative difference between the global upper bound (i.e. the objective

value of the best incumbent so far) and the global lower bound (i.e. the best possible objective

value, due to LP relaxations). Node LP features use the solution of the LP relaxation at

a node N to obtain certain indicative metrics. For instance, the feature “Num. of Active

Constraints / Num. of Constraints" can be indicative of how sensitive the LP is to the fixing

of additional variables, which is important for diving heuristics (an active constraint is one

that is satisfied with equality at the LP solution). Scoring Features for Fractional Variables

are inspired by the scoring functions that various diving heuristics use to select the next

variable to fix. Details on the definitions of these functions are given in section 1.4.2 of [57].

Essentially, for a given scoring function f : fractional variables→ R, we compute the value

of f for each fractional variable in the node’s LP solution, compute statistics over the f
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values, and use those as features.

One trait of our features is that they are naturally scaled, i.e. each feature is appropriately

divided by a scaling factor that depends only on the MIP instance (e.g. number of variables

or constraints) or the node itself (e.g. number of fractional variables). Having appropriately

scaled features is important for the convergence of many learning algorithms. However, that

is not the only reason for emphasizing this aspect of our feature design. In fact, scaling is

important in our setting because training data comes from multiple instances, each with

its own dimensions, structure, etc. As such, the standard approach of scaling/normalizing

data for training is not enough here: the scaling factors may not be directly applicable to

a new instance’s data. We have carefully crafted the features such that they can be scaled

appropriately online, using only local information from the node and the instance.

3.6 Experimental Results

To evaluate the proposed framework, we modify the open-source MIP solver SCIP 3.2.1 [49];

CPLEX 12.6.1 [65] is used as SCIP’s LP solver. Machine learning experiments use scikit-

learn [107]. All experiments were run on a cluster of four 64-core machines with AMD 2.4

GHz processors and 264 GB RAM.

3.6.1 Oracle Learning

Heuristics. As a first phase, we learn a binary classifier that predicts incumbent success. We

consider a set of ten heuristics implemented in SCIP, listed in the first column of Table 3.3.

The ten heuristics were selected out of the 43 implemented in SCIP after excluding heuristics

that are disabled by default (17), require a feasible solution (4), are too cheap (8), are for

non-linear programs (3), or are for special constraints (1).

ML Setup. For a given heuristicH and a datasetDHtrain =
⋃
I∈Itrain D

H
I collected from a set

of training instances Itrain, we use logistic regression (LR) to learn a binary classification

model, wH ∈ Rd. The regularization parameter of LR is kept at a default of 1. Data
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Table 3.2: List of the 49 features used. “Scoring features for fractional variables" are five
statistics (mean, min., max., median, standard deviation) for each of seven metrics over
fractional variables.

Global Features (4)

Optimality gap
Infinite gap?
Root LP value / Global Lower Bound
Root LP value / Global Upper Bound

Depth Features (2)

Node Depth / Max. Depth in Tree
Node Depth / Max. Possible Depth

Node LP Features (8)

Sum of variables’ LP solution fractionalities / Num. of Fractional Variables
Num. of Fractional Variable / Num. of Integer Variables
Num. Variables Roundable Up (Down) / Num. of Integer Variables (x2)
Num. of Active Constraints / Num. of Constraints
Node is root?
Root LP value / Node LP value
Root LP value / Node Estimate

Scoring Features for Fractional Variables (35)

Number of Up Locks (x5) – Number of Down Locks (x5)
Normalized Objective Coefficient (x5)
Objective Gain (x5)
Distance to root LP solution (x5)
Vector Length (x5)
Pseudocost score (x5)
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Table 3.3: Leave-one-out cross-validation accuracy results for logistic regression on 10
primal heuristics in SCIP on MIPLIB2010 Benchmark. “AUC-ROC" is the area under
the “receiver operating characteristic" curve. “Precision" is the fraction of points from the
positive class out of all points classified as positive. “Recall" is the fraction of points from
the positive class that are classified as positive. For both precision and recall, the results are
using a threshold of 0.5 on the predicted probabilities.

Heuristic Num. Instances Num. Data Points Success Rate
Precision Recall AUC-ROC

Mean +/- Std. Median Mean +/- Std. Median Mean +/- Std. Median

coefdiving 44 2,635,296 0.0002 0.0264 +/- 0.0784 0.001 0.6552 +/- 0.3872 0.876 0.8543 +/- 0.1400 0.896
distributiondiving 51 2,721,704 0.0004 0.0255 +/- 0.0604 0.001 0.6715 +/- 0.3667 0.903 0.8075 +/- 0.1884 0.831
fracdiving 37 2,721,288 0.0001 0.0044 +/- 0.0093 0.001 0.6466 +/- 0.3810 0.688 0.7953 +/- 0.2184 0.878
intshifting 9 1,652,684 0.0001 0.1213 +/- 0.2291 0.001 0.4018 +/- 0.4347 0.177 0.8644 +/- 0.0823 0.865
linesearchdiving 34 2,552,685 0.0001 0.0170 +/- 0.0690 0.001 0.6794 +/- 0.3919 0.889 0.8187 +/- 0.1343 0.819
objpscostdiving 10 10,329 0.0127 0.3539 +/- 0.3814 0.131 0.5514 +/- 0.3769 0.486 0.8712 +/- 0.2247 0.996
pscostdiving 57 2,531,343 0.0007 0.0206 +/- 0.0430 0.002 0.6082 +/- 0.3636 0.716 0.7176 +/- 0.2359 0.773
rootsoldiving 6 6,047 0.0026 0.0990 +/- 0.1826 0 0.3333 +/- 0.4714 0 0.9599 +/- 0.0569 0.986
veclendiving 38 2,785,210 0.0002 0.0255 +/- 0.0687 0.003 0.7953 +/- 0.2799 0.936 0.7929 +/- 0.1923 0.829

points with label yNH = 1 are heavily weighted in the LR loss function to account for the

extreme class imbalance we encounter [55], as can be seen in column “Success Rate" of

Table 3.3. The model wH is simply a weight vector for the d = 49 node features described

in Section 3.5.2, such that the dot product 〈wH ,x
N〉 between wH and node N ’s feature

vector xN gives an estimate of the probability that heuristic H finds an incumbent at N . We

have experimented with other ML models that have more capacity (and hyper-parameters)

(SVM, gradient boosted trees), but have not observed any benefit from such models in either

classification performance or learning/prediction time.

ML Results. We use leave-one-out cross-validation (LOOCV) on a per-instance basis: for

each test instance Itest, a model is learned for a heuristic H using dataset DHtrain, where

DHtrain does not include any data from Itest; the model is then tested on Itest’s dataset, DH
Itest

.

Table 3.3 shows LOOCV results using 83 instances of the “Benchmark" set from

MIPLIB2010 [81], for which data was collected by running SCIP for 2 hours at most, per

instance. First, observe that the datasets at hand are extremely imbalanced. For instance,

the success rate (i.e. the fraction of nodes in the collected dataset for which the heuristic

succeeds in finding an incumbent) of the coefdiving heuristic is 0.000192: only 1 in 5, 000

runs result in an incumbent. As such, the “Precision" of an ML success oracle must be

better than random prediction (which succeeds with rate equal to the success rate). For each
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of the ten heuristics, Table 3.3 shows the average precision, recall and AUC-ROC, over

instance datasets with at least one positive label data point (otherwise, these metrics are

undefined). Fortunately, the average precision of the learned models is orders of magnitude

better than the success rate: for coefdiving, the ML model is more than 100 times more

precise in classifying incumbents than at random. Additionally, the recall of the models is

satisfactory, with most incumbents being detected for most heuristics.

Despite the heterogeneous nature of the instances, our framework is able to learn oracle

success models that are significantly better than random guessing, despite extreme class

imbalance. Next, we study the impact of using the learned oracles, in conjunction with the

RWS rule, on the solver’s primal performance.

3.6.2 MIP Solving

Setup. While the ML results for the success oracles are positive, they are only of practical

use if they can improve the performance of a state-of-the-art MIP solver w.r.t. primal

metrics such as the primal integral. We use the learned oracles in conjunction with the

Run-When-Successful rule to guide the decisions as to whether each of the ten heuristics of

Table 3.3 should be run at each node. Specifically, for a given instance, the ten heuristics’

models are loaded, and used to compute the probability of success of a heuristic given a

node’s feature vector. For other heuristics without ML oracles, we use their default settings

in SCIP.

We compare our approach, referred to as ML, with the solver’s default policy, DEF. For

each of the 83 MIPLIB2010 “Benchmark" set instances, we run every policy with 5 different

random permutations of the rows and columns of the instance; each instance-permutation

pair is considered as a separate instance. This measure is a standard one for computational

MIP studies, as it helps to control for the inherent “performance variability" in solvers –

see [91, 7] for details.

MIP Results. Table 3.4 (left) summarizes the results. Table 3.4 (left) shows that our
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Table 3.4: Summary of results on the MIPLIB2010 Benchmark set with 5 random permuta-
tions per instance (Top), and the GISP test set (Bottom); tmax = 7, 200. For MIPLIB2010,
instances requiring less than 10 minutes for either DEF or ML are excluded as too easy.
Values shown are aggregates over instances: geometric means are used for all but Num.
Instances Solved (count), Num. incumbents, Success rate and Num. incs. per heur. sec.
(arithmetic means). For GISP, the Primal integral uses the best upper bound rather than the
optimal solution.

MIPLIB – Num. Instances = 280 DEF ML ML/DEF

Primal integral 95.65 89.65 0.94
Time to first incumbent 34.23 26.60 0.78
Time to best incumbent 746.95 738.71 0.99

Total calls (ML heurs.) 755.19 514.77 0.68
Total time (ML heurs.) 124.38 101.88 0.82
Num. incumbents (ML heurs.) 1.85 2.45 1.33
Success Rate (ML heurs.) 0.00036 0.00064 1.79
Num. incs. per heur. sec. (ML heurs.) 0.00565 0.00860 1.52

Num. Instances Solved 170 172 1.01
Total time (BnB) 3,966.47 4,119.67 1.04
Total nodes (BnB) 27,458.77 27,904.43 1.02
Primal-dual integral 34,390.33 35,329.91 1.03

GISP – Num. Instances = 120 DEF ML ML/DEF

Primal integral 2,621.79 1,038.58 0.40
Time to first incumbent 0.19 0.19 1.00
Time to best incumbent 5,601.44 2,166.98 0.39

Total calls (ML heurs.) 49.37 63.59 1.29
Total time (ML heurs.) 194.42 610.64 3.14
Num. incumbents (ML heurs.) 1.48 2.69 1.82
Success Rate (ML heurs.) 0.02566 0.03710 1.45
Num. incs. per heur. sec. (ML heurs.) 0.00501 0.00319 0.64

Num. Instances Solved (% Gap) 0 (201.95) 0 (181.35) N/A (0.90)
Total time (BnB) 7,200.00 7,200.00 1.00
Total nodes (BnB) 619.19 476.94 0.77
Primal-dual integral 520,674.41 454,162.12 0.87
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framework, ML, results in a reduction of 6% in the primal integral. Similarly, the time

to the first and best incumbents are both improved by 22% and 1%, respectively. This is

despite having an extremely heterogeneous set of training and testing instances. Our method

makes better use of the heuristics it controls, as shown by the second set of rows in Table 3.4

(left): fewer calls are made to the ten heuristics, yet more incumbents are found by them on

average, compared to DEF. Most notably, the success rate of ML-controlled heuristics is

1.79 times larger than that of DEF, and the number of incumbents found per second is 1.52

times larger. These figures, over a large set of benchmark instances, support our hypothesis:

dynamic decision-making for heuristics using the proposed framework improves the primal

performance of an optimized state-of-the-art solver.

3.6.3 Generalized Independent Set Problem

The experiments presented so far are on a heterogeneous set of MIP instances. However,

in many real-world settings, one solves the same homogeneous family of problems, where

instances differ only slightly in the number of constraints or variables, while maintaining

the same overall combinatorial structure. To assess the effectiveness of our framework

on a homogeneous instance set, we perform the same oracle learning and MIP solving

experiments on instances of the Generalized Independent Set Problem (GISP) [60, 31].

Recently, it has been shown that the GISP requires specialized techniques to obtain

good feasible solutions [31], which motivated our choice of this problem. Given a graph

G(V,E), a subset of removable edges E ′ ⊆ E, revenues for each vertex and costs for each

removable edge, GISP asks to select a subset of the vertices and a subset of removable edges

that maximize the profit, i.e. the difference between selected vertex revenues and removable

edge costs. No edge should exist between any two selected vertices u and v, i.e. (u, v) /∈ E,

or (u, v) ∈ E ′ and (u, v) is removed.

We use the twelve graphs from the 1993 DIMACS Challenge [70], also used in [31]. Six
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instances 1 are held out for data collection and training, and six others 2 for MIP testing.

The graphs are dense, with training graphs having 125 – 300 nodes and 6963 – 20864

edges, testing graphs having 250 – 400 nodes and 21928 – 71819 edges. For each of the

twelve graphs, we generate 20 GISP instances by randomizing the set of removable edges,

as in [31]: each edge is in the set E ′ with probability α. We use α = 0.75, each node

has revenue 100 and each removable edge has cost 1, a configuration shown to be difficult

w.r.t. finding feasible solutions (SET2-A in [31]). Note that, even for the same graph, its 20

instances have a different number of variables for removable edges and different constraints.

We collect data for eight diving heuristics (the heuristics listed in Table 3.3 except

feaspump and intshifting, which SCIP did not run), and learn corresponding oracles. Then,

we test the oracles on the 120 test instances that were not seen during learning. The primal

integral requires an optimal or best integer solution, for which we use the best solution

found by multi-threaded CPLEX 12.6.1 after 10 hours of solving. The results are shown in

Table 3.4 (right).

A dramatic improvement in the primal integral can be observed, with ML costing only

0.4 of DEF. This improvement can be largely attributed to the reduction in the time to best

incumbent, also down to 0.39 of DEF: ML needs around 1 hour less than DEF to find its

best incumbent, over a time cutoff of 2 hours. As for the quality of the best incumbent, ML

finds a better one than DEF in 93 of 120 of the instances (77%). For all 120 instances, ML

has a better primal integral than DEF.

The larger reduction in the primal integral of GISP instances, as compared to the

MIPLIB2010 Benchmark set, is consistent with the intuition that learning on homogeneous

instances is easier than on heterogeneous ones. Note that the GISP training instances had

fewer variables and constraints due to the smaller graphs, yet the classifiers were very

effective on the larger test instances, indicating that generalization on homogeneous instance

sets is possible.

1C125.9,keller4,brock200_2,p_hat300-1,gen200_p0.9_55,hamming8-4
2p_hat300-2, C250.9, p_hat300-3, brock400_2, MANN_a27, gen400_p0.9_75
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3.7 Conclusions and Future Work

We have shown that intelligent decision-making for heuristics can boost the performance

of a state-of-the-art optimization solver, even on instances for which the solver is already

fine-tuned by experts. To our knowledge, this work represents the first systematic attempt

at optimizing the use of heuristics in tree search. This work lays the ground for fruitful

future extensions, such as more refined rules that take into account the running time of the

heuristics and the amount of time remaining for the solver, approaches for more effective

scheduling of heuristics within a node, and online learning of good rules.

56



Part II

Learning Heuristics for Discrete

Optimization
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CHAPTER 4

GREEDY GRAPH OPTIMIZATION

The design of good heuristics or approximation algorithms for NP-hard combinatorial

optimization problems often requires significant specialized knowledge and trial-and-error.

Can we automate this challenging, tedious process, and learn the algorithms instead? In

many real-world applications, it is typically the case that the same optimization problem

is solved again and again on a regular basis, maintaining the same problem structure but

differing in the data. This provides an opportunity for learning heuristic algorithms that

exploit the structure of such recurring problems. In this chapter, we propose a unique

combination of reinforcement learning and graph embedding to address this challenge. The

learned greedy policy behaves like a meta-algorithm that incrementally constructs a solution,

and the action is determined by the output of a graph embedding network capturing the

current state of the solution. We show that our framework can be applied to a diverse range

of optimization problems over graphs, and learns effective algorithms for the Minimum

Vertex Cover, Maximum Cut and Traveling Salesman problems.

4.1 Introduction

Combinatorial optimization problems over graphs arising from numerous application do-

mains, such as social networks, transportation, telecommunications and scheduling, are

NP-hard, and have thus attracted considerable interest from the theory and algorithm de-

sign communities over the years. In fact, of Karp’s 21 problems in the seminal paper on

reducibility [71], 10 are decision versions of graph optimization problems, while most

of the other 11 problems, such as set covering, can be naturally formulated on graphs.

Traditional approaches to tackling an NP-hard graph optimization problem have three main

flavors: exact algorithms, approximation algorithms and heuristics. Exact algorithms are

58



State Embedding the graph + partial solution Greedy node selection

1st iteration

2nd iteration

Θ

Θ

ΘΘ

Θ

Θ

Θ

ΘΘ

Θ

ReLuReLu

ReLuReLu

Embed 
graph

Greedy: add 
best node

Embed 
graph

Greedy: add 
best node

Figure 4.1: Illustration of the proposed framework as applied to an instance of Minimum Vertex
Cover. The middle part illustrates two iterations of the graph embedding, which results in node
scores (green bars).

based on enumeration or branch-and-bound with an integer programming formulation, but

may be prohibitive for large instances. On the other hand, polynomial-time approximation

algorithms are desirable, but may suffer from weak optimality guarantees or empirical

performance, or may not even exist for inapproximable problems. Heuristics are often

fast, effective algorithms that lack theoretical guarantees, and may also require substantial

problem-specific research and trial-and-error on the part of algorithm designers.

All three paradigms seldom exploit a common trait of real-world optimization problems:

instances of the same type of problem are solved again and again on a regular basis,

maintaining the same combinatorial structure, but differing mainly in their data. That is,

in many applications, values of the coefficients in the objective function or constraints

can be thought of as being sampled from the same underlying distribution. For instance,

an advertiser on a social network targets a limited set of users with ads, in the hope that

they spread them to their neighbors; such covering instances need to be solved repeatedly,

since the influence pattern between neighbors may be different each time. Alternatively, a

package delivery company routes trucks on a daily basis in a given city; thousands of similar

optimizations need to be solved, since the underlying demand locations can differ.

Despite the inherent similarity between problem instances arising in the same domain,

classical algorithms do not systematically exploit this fact. However, in industrial settings,
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a company may be willing to invest in upfront, offline computation and learning if such a

process can speed up its real-time decision-making and improve its quality. This motivates

the main problem we address:

Problem Statement: Given a graph optimization problem G and a distribution D of

problem instances, can we learn better heuristics that generalize to unseen instances from

D?

Recently, there has been some seminal work on using deep architectures to learn heuristics

for combinatorial problems, including the Traveling Salesman Problem [125, 19, 53].

However, the architectures used in these works are generic, not yet effectively reflecting

the combinatorial structure of graph problems. As we show later, these architectures often

require a huge number of instances in order to learn to generalize to new ones. Furthermore,

existing works typically use the policy gradient for training [19], a method that is not

particularly sample-efficient. While the methods in [125, 19] can be used on graphs with

different sizes – a desirable trait – they require manual, ad-hoc input/output engineering to

do so (e.g. padding with zeros).

In this paper, we address the challenge of learning algorithms for graph problems using

a unique combination of reinforcement learning and graph embedding. The learned policy

behaves like a meta-algorithm that incrementally constructs a solution, with the action

being determined by a graph embedding network over the current state of the solution.

More specifically, our proposed solution framework is different from previous work in the

following aspects:

1. Algorithm design pattern. We will adopt a greedy meta-algorithm design, whereby a

feasible solution is constructed by successive addition of nodes based on the graph structure,

and is maintained so as to satisfy the problem’s graph constraints. Greedy algorithms are a

popular pattern for designing approximation and heuristic algorithms for graph problems.

As such, the same high-level design can be seamlessly used for different graph optimization

problems.
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2. Algorithm representation. We will use a graph embedding network, structure2vec

(S2V) [33], to represent the policy in the greedy algorithm. This novel deep learning architec-

ture over the instance graph “featurizes” the nodes in the graph, capturing the properties of a

node in the context of its graph neighborhood. This allows the policy to discriminate among

nodes based on their usefulness, and generalizes to problem instances of different sizes. This

contrasts with recent approaches [125, 19] that adopt a graph-agnostic sequence-to-sequence

mapping that does not fully exploit graph structure.

3. Algorithm training. We will use fitted Q-learning to learn a greedy policy that

is parametrized by the graph embedding network. The framework is set up in such a

way that the policy will aim to optimize the objective function of the original problem

instance directly. The main advantage of this approach is that it can deal with delayed

rewards, which here represent the remaining increase in objective function value obtained by

the greedy algorithm, in a data-efficient way; in each step of the greedy algorithm, the graph

embeddings are updated according to the partial solution to reflect new knowledge of the

benefit of each node to the final objective value. In contrast, the policy gradient approach

of [19] updates the model parameters only once w.r.t. the whole solution (e.g. the tour in

TSP).

The application of a greedy heuristic learned with our framework is illustrated in

Figure 4.1. To demonstrate the effectiveness of the proposed framework, we apply it to

three extensively studied graph optimization problems. Experimental results show that

our framework, a single meta-learning algorithm, efficiently learns effective heuristics for

each of the problems. Furthermore, we show that our learned heuristics preserve their

effectiveness even when used on graphs much larger than the ones they were trained on.

Since many combinatorial optimization problems, such as the set covering problem, can

be explicitly or implicitly formulated on graphs, we believe that our work opens up a new

avenue for graph algorithm design and discovery with deep learning.
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4.2 Common Formulation for Greedy Algorithms on Graphs

We will illustrate our framework using three optimization problems over weighted graphs.

Let G(V,E,w) denote a weighted graph, where V is the set of nodes, E the set of edges

and w : E → R+ the edge weight function, i.e. w(u, v) is the weight of edge (u, v) ∈ E.

These problems are:

• Minimum Vertex Cover (MVC): Given a graph G, find a subset of nodes S ⊆ V such

that every edge is covered, i.e. (u, v) ∈ E ⇔ u ∈ S or v ∈ S, and |S| is minimized.

• Maximum Cut (MAXCUT): Given a graph G, find a subset of nodes S ⊆ V such that

the weight of the cut-set
∑

(u,v)∈C w(u, v) is maximized, where cut-set C ⊆ E is the set

of edges with one end in S and the other end in V \ S.

• Traveling Salesman Problem (TSP): Given a set of points in 2-dimensional space, find

a tour of minimum total weight, where the corresponding graph G has the points as nodes

and is fully connected with edge weights corresponding to distances between points; a

tour is a cycle that visits each node of the graph exactly once.

We will focus on a popular pattern for designing approximation and heuristic algo-

rithms, namely a greedy algorithm. A greedy algorithm will construct a solution by sequen-

tially adding nodes to a partial solution S, based on maximizing some evaluation function

Q that measures the quality of a node in the context of the current partial solution. We will

show that, despite the diversity of the combinatorial problems above, greedy algorithms for

them can be expressed using a common formulation. Specifically:

1. A problem instance G of a given optimization problem is sampled from a distribution

D, i.e. the V , E and w of the instance graph G are generated according to a model or

real-world data.

2. A partial solution is represented as an ordered list S = (v1, v2, . . . , v|S|), vi ∈ V , and

S = V \ S the set of candidate nodes for addition, conditional on S. Furthermore, we

use a vector of binary decision variables x, with each dimension xv corresponding to a

62



node v ∈ V , xv = 1 if v ∈ S and 0 otherwise. One can also view xv as a tag or extra

feature on v.

3. A maintenance (or helper) procedure h(S) will be needed, which maps an ordered list S

to a combinatorial structure satisfying the specific constraints of a problem.

4. The quality of a partial solution S is given by an objective function c(h(S), G) based on

the combinatorial structure h of S.

5. A generic greedy algorithm selects a node v to add next such that v maximizes an

evaluation function, Q(h(S), v) ∈ R, which depends on the combinatorial structure h(S)

of the current partial solution. Then, the partial solution S will be extended as

S := (S, v∗), where v∗ := argmaxv∈S Q(h(S), v), (4.1)

and (S, v∗) denotes appending v∗ to the end of a list S. This step is repeated until a

termination criterion t(h(S)) is satisfied.

In our formulation, we assume that the distribution D, the helper function h, the termination

criterion t and the cost function c are all given. Given the above abstract model, various

optimization problems can be expressed by using different helper functions, cost functions

and termination criteria:

• MVC: The helper function does not need to do any work, and c(h(S), G) = − |S|. The

termination criterion checks whether all edges have been covered.

• MAXCUT: The helper function divides V into two sets, S and its complement S = V \S,

and maintains a cut-set C = {(u, v) | (u, v) ∈ E, u ∈ S, v ∈ S}. Then, the cost is

c(h(S), G) =
∑

(u,v)∈C w(u, v), and the termination criterion does nothing.

• TSP: The helper function will maintain a tour according to the order of the nodes in

S. The simplest way is to append nodes to the end of partial tour in the same order as

S. Then the cost c(h(S), G) = −
∑|S|−1

i=1 w(S(i), S(i + 1))− w(S(|S|), S(1)), and the

termination criterion is activated when S = V . Empirically, inserting a node u in the

partial tour at the position which increases the tour length the least is a better choice. We

adopt this insertion procedure as a helper function for TSP.
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An estimate of the quality of the solution resulting from adding a node to partial solution S

will be determined by the evaluation function Q, which will be learned using a collection of

problem instances. This is in contrast with traditional greedy algorithm design, where the

evaluation function Q is typically hand-crafted, and requires substantial problem-specific

research and trial-and-error. In the following, we will design a powerful deep learning

parameterization for the evaluation function, Q̂(h(S), v; Θ), with parameters Θ.

4.3 Representation: Graph Embedding

Since we are optimizing over a graph G, we expect that the evaluation function Q̂ should

take into account the current partial solution S as it maps to the graph. That is, xv = 1 for

all nodes v ∈ S, and the nodes are connected according to the graph structure. Intuitively,

Q̂ should summarize the state of such a “tagged" graph G, and figure out the value of a

new node if it is to be added in the context of such a graph. Here, both the state of the

graph and the context of a node v can be very complex, hard to describe in closed form,

and may depend on complicated statistics such as global/local degree distribution, triangle

counts, distance to tagged nodes, etc. In order to represent such complex phenomena over

combinatorial structures, we will leverage a deep learning architecture over graphs, in

particular the structure2vec of [33], to parameterize Q̂(h(S), v; Θ).

4.3.1 Structure2Vec

We first provide an introduction to structure2vec. This graph embedding network

will compute a p-dimensional feature embedding µv for each node v ∈ V , given the

current partial solution S. More specifically, structure2vec defines the network ar-

chitecture recursively according to an input graph structure G, and the computation graph

of structure2vec is inspired by graphical model inference algorithms, where node-

specific tags or features xv are aggregated recursively according toG’s graph topology. After

a few steps of recursion, the network will produce a new embedding for each node, taking
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into account both graph characteristics and long-range interactions between these node

features. One variant of the structure2vec architecture will initialize the embedding

µ
(0)
v at each node as 0, and for all v ∈ V update the embeddings synchronously at each

iteration as

µ(t+1)
v ← F

(
xv, {µ(t)

u }u∈N (v), {w(v, u)}u∈N (v) ; Θ
)
, (4.2)

where N (v) is the set of neighbors of node v in graph G, and F is a generic nonlinear

mapping such as a neural network or kernel function.

Based on the update formula, one can see that the embedding update process is carried

out based on the graph topology. A new round of embedding sweeping across the nodes

will start only after the embedding update for all nodes from the previous round has finished.

It is easy to see that the update also defines a process where the node features xv are

propagated to other nodes via the nonlinear propagation function F . Furthermore, the more

update iterations one carries out, the farther away the node features will propagate and get

aggregated nonlinearly at distant nodes. In the end, if one terminates after T iterations, each

node embedding µ(T )
v will contain information about its T -hop neighborhood as determined

by graph topology, the involved node features and the propagation function F . An illustration

of two iterations of graph embedding can be found in Figure 4.1.

4.3.2 Parameterizing Q̂(h(S), v; Θ)

We now discuss the parameterization of Q̂(h(S), v; Θ) using the embeddings from structure2vec.

In particular, we design F to update a p-dimensional embedding µv as:

µ(t+1)
v ← relu

(
θ1xv + θ2

∑
u∈N (v)

µ(t)
u + θ3

∑
u∈N (v)

relu(θ4w(v, u))
)
, (4.3)

where θ1 ∈ Rp, θ2, θ3 ∈ Rp×p and θ4 ∈ Rp are the model parameters, and relu is the

rectified linear unit (relu(z) = max(0, z)) applied elementwise to its input. The summation

over neighbors is one way of aggregating neighborhood information that is invariant to

permutations over neighbors. For simplicity of exposition, xv here is a binary scalar as
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described earlier; it is straightforward to extend xv to a vector representation by incorporating

any additional useful node information. To make the nonlinear transformations more

powerful, we can add some more layers of relu before we pool over the neighboring

embeddings µu.

Once the embedding for each node is computed after T iterations, we will use these

embeddings to define the Q̂(h(S), v; Θ) function. More specifically, we will use the embed-

ding µ(T )
v for node v and the pooled embedding over the entire graph,

∑
u∈V µ

(T )
u , as the

surrogates for v and h(S), respectively, i.e.

Q̂(h(S), v; Θ) = θ>5 relu([θ6

∑
u∈V

µ(T )
u , θ7 µ

(T )
v ]) (4.4)

where θ5 ∈ R2p, θ6, θ7 ∈ Rp×p and [·, ·] is the concatenation operator. Since the embedding

µ
(T )
u is computed based on the parameters from the graph embedding network, Q̂(h(S), v)

will depend on a collection of 7 parameters Θ = {θi}7
i=1. The number of iterations T for

the graph embedding computation is usually small, such as T = 4.

The parameters Θ will be learned. Previously, [33] required a ground truth label for

every input graph G in order to train the structure2vec architecture. There, the output

of the embedding is linked with a softmax-layer, so that the parameters can by trained

end-to-end by minimizing the cross-entropy loss. This approach is not applicable to our case

due to the lack of training labels. Instead, we train these parameters together end-to-end

using reinforcement learning.

4.4 Training: Q-learning

We show how reinforcement learning is a natural framework for learning the evaluation

function Q̂. The definition of the evaluation function Q̂ naturally lends itself to a reinforce-

ment learning (RL) formulation [120], and we will use Q̂ as a model for the state-value

function in RL. We note that we would like to learn a function Q̂ across a set of m graphs

from distribution D, D = {Gi}mi=1, with potentially different sizes. The advantage of the

66



graph embedding parameterization in our previous section is that we can deal with different

graph instances and sizes seamlessly.

4.4.1 Reinforcement learning formulation

We define the states, actions and rewards in the reinforcement learning framework as follows:

1. States: a state S is a sequence of actions (nodes) on a graph G. Since we have already

represented nodes in the tagged graph with their embeddings, the state is a vector in

p-dimensional space,
∑

v∈V µv. It is easy to see that this embedding representation of

the state can be used across different graphs. The terminal state Ŝ will depend on the

problem at hand;

2. Transition: transition is deterministic here, and corresponds to tagging the node v ∈ G

that was selected as the last action with feature xv = 1;

3. Actions: an action v is a node of G that is not part of the current state S. Similarly, we

will represent actions as their corresponding p-dimensional node embedding µv, and such

a definition is applicable across graphs of various sizes;

4. Rewards: the reward function r(S, v) at state S is defined as the change in the cost

function after taking action v and transitioning to a new state S ′ := (S, v). That is,

r(S, v) = c(h(S ′), G)− c(h(S), G), (4.5)

and c(h(∅), G) = 0. As such, the cumulative reward R of a terminal state Ŝ coincides

exactly with the objective function value of the Ŝ, i.e. R(Ŝ) =
∑|Ŝ|

i=1 r(Si, vi) is equal to

c(h(Ŝ), G);

5. Policy: based on Q̂, a deterministic greedy policy π(v|S) := argmaxv′∈S Q̂(h(S), v′)

will be used. Selecting action v corresponds to adding a node of G to the current partial

solution, which results in collecting a reward r(S, v).

Table 4.1 shows the instantiations of the reinforcement learning framework for the three

optimization problems considered herein. We let Q∗ denote the optimal Q-function for each

RL problem. Our graph embedding parameterization Q̂(h(S), v; Θ) from Section 4.3 will
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Table 4.1: Definition of reinforcement learning components for each of the three problems
considered.

Problem State Action Helper function Reward Termination

MVC subset of nodes selected so far add node to subset None -1 all edges are covered
MAXCUT subset of nodes selected so far add node to subset None change in cut weight cut weight cannot be improved
TSP partial tour grow tour by one node Insertion operation change in tour cost tour includes all nodes

then be a function approximation model for it, which will be learned via n-step Q-learning.

4.4.2 Learning algorithm

In order to perform end-to-end learning of the parameters in Q̂(h(S), v; Θ), we use a combi-

nation of n-step Q-learning [120] and fitted Q-iteration [111], as illustrated in Algorithm 1.

We use the term episode to refer to a complete sequence of node additions starting from

an empty solution, and until termination; a step within an episode is a single action (node

addition).

Standard (1-step) Q-learning updates the function approximator’s parameters at each

step of an episode by performing a gradient step to minimize the squared loss:

(y − Q̂(h(St), vt; Θ))2, (4.6)

where y = γmaxv′ Q̂(h(St+1), v′; Θ) + r(St, vt) for a non-terminal state St. The n-step

Q-learning helps deal with the issue of delayed rewards, where the final reward of interest

to the agent is only received far in the future during an episode. In our setting, the final

objective value of a solution is only revealed after many node additions. As such, the 1-step

update may be too myopic. A natural extension of 1-step Q-learning is to wait n steps

before updating the approximator’s parameters, so as to collect a more accurate estimate

of the future rewards. Formally, the update is over the same squared loss (4.6), but with a

different target, y =
∑n−1

i=0 r(St+i, vt+i) + γmaxv′ Q̂(h(St+n), v′; Θ). The fitted Q-iteration

approach has been shown to result in faster learning convergence when using a neural

network as a function approximator [111, 96], a property that also applies in our setting,

as we use the embedding defined in Section 4.3.2. Instead of updating the Q-function

sample-by-sample as in Equation (4.6), the fitted Q-iteration approach uses experience

68



replay to update the function approximator with a batch of samples from a dataset E, rather

than the single sample being currently experienced. The dataset E is populated during

previous episodes, such that at step t+ n, the tuple (St, at, Rt,t+n, St+n) is added to E, with

Rt,t+n =
∑n−1

i=0 r(St+i, at+i). Instead of performing a gradient step in the loss of the current

sample as in (4.6), stochastic gradient descent updates are performed on a random sample

of tuples drawn from E.

It is known that off-policy reinforcement learning algorithms such as Q-learning can be

more sample efficient than their policy gradient counterparts [54]. This is largely due to the

fact that policy gradient methods require on-policy samples for the new policy obtained after

each parameter update of the function approximator.

Algorithm 1 Q-learning for the Greedy Algorithm
1: Initialize experience replay memoryM to capacity N

2: for episode e = 1 to L do

3: Draw graph G from distribution D

4: Initialize the state to empty S1 = ()

5: for step t = 1 to T do

6: vt =


random node v ∈ St, w.p. ε

argmaxv∈St
Q̂(h(St), v; Θ), otherwise

7: Add vt to partial solution: St+1 := (St, vt)

8: if t ≥ n then

9: Add tuple (St−n, vt−n, Rt−n,t, St) toM

10: Sample random batch from B
iid.∼ M

11: Update Θ by SGD over (4.6) for B

12: end if

13: end for

14: end for

15: return Θ
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4.5 Experimental Evaluation

Instance generation. To evaluate the proposed method against other approximation/heuristic

algorithms and deep learning approaches, we generate graph instances for each of the three

problems. For the MVC and MAXCUT problems, we generate Erdős-Renyi (ER) [42] and

Barabasi-Albert (BA) [10] graphs which have been used to model many real-world networks.

For a given range on the number of nodes, e.g. 50-100, we first sample the number of nodes

uniformly at random from that range, then generate a graph according to either ER or BA.

For the two-dimensional TSP problem, we use an instance generator from the DIMACS

TSP Challenge [69] to generate uniformly random or clustered points in the 2-D grid. We

refer the reader to the Appendix A.3.1 for complete details on instance generation. We have

also tackled the Set Covering Problem, for which the description and results are deferred to

Appendix A.1.

Structure2Vec Deep Q-learning. For our method, S2V-DQN, we use the graph

representations and hyperparameters described in Appendix A.3.4. The hyperparameters are

selected via preliminary results on small graphs, and then fixed for large ones. Note that for

TSP, where the graph is fully-connected, we build the K-nearest neighbor graph (K = 10)

to scale up to large graphs. For MVC, where we train the model on graphs with up to 500

nodes, we use the model trained on small graphs as initialization for training on larger ones.

We refer to this trick as “pre-training", which is illustrated in Figure A.2.

Pointer Networks with Actor-Critic. We compare our method to a method, based on

Recurrent Neural Networks (RNNs), which does not make full use of graph structure [19].

We implement and train their algorithm (PN-AC) for all three problems. The original model

only works on the Euclidian TSP problem, where each node is represented by its (x, y)

coordinates, and is not designed for problems with graph structure. To handle other graph

problems, we describe each node by its adjacency vector instead of coordinates. To handle

different graph sizes, we use a singular value decomposition (SVD) to obtain a rank-8
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approximation for the adjacency matrix, and use the low-rank embeddings as inputs to the

pointer network.

Baseline Algorithms. Besides the PN-AC, we also include powerful approximation or

heuristic algorithms from the literature. These algorithms are specifically designed for each

type of problem:

• MVC: MVCApprox iteratively selects an uncovered edge and adds both of its end-

points [103]. We designed a stronger variant, called MVCApprox-Greedy, that greedily

picks the uncovered edge with maximum sum of degrees of its endpoints. Both algorithms

are 2-approximations.

• MAXCUT: We include MaxcutApprox, which maintains the cut set (S, V \S) and moves

a node from one side to the other side of the cut if that operation results in cut weight

improvement [80]. To make MaxcutApprox stronger, we greedily move the node that

results in the largest improvement in cut weight. A randomized, non-greedy algorithm,

referred to as SDP, is also implemented based on [50]; 100 solutions are generated for

each graph, and the best one is taken.

• TSP: We include the following approximation algorithms: Minimum Spanning Tree

(MST), Cheapest insertion (Cheapest), Closest insertion (Closest), Christofides and 2-opt.

We also add the Nearest Neighbor heuristic (Nearest); see [16] for algorithmic details.

Details on Validation and Testing. For S2V-DQN and PN-AC, we use a CUDA K80-

enabled cluster for training and testing. Training convergence for S2V-DQN is discussed

in Appendix A.3.6. S2V-DQN and PN-AC use 100 held-out graphs for validation, and we

report the test results on another 1000 graphs. We use CPLEX[65] to get optimal solutions

for MVC and MAXCUT, and Concorde [15] for TSP (details in Appendix A.3.1). All

approximation ratios reported in the paper are with respect to the best (possibly optimal)

solution found by the solvers within 1 hour. For MVC, we vary the training and test graph

sizes in the ranges {15–20, 40–50, 50–100, 100–200, 400–500}. For MAXCUT and TSP,

which involve edge weights, we train up to 200–300 nodes due to the limited computation
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Figure 4.2: Approximation ratio on 1000 test graphs. Note that on MVC, our performance is pretty
close to optimal. In this figure, training and testing graphs are generated according to the same
distribution.

resource. For all problems, we test on graphs of size up to 1000–1200.

During testing, instead of using Active Search as in [19], we simply use the greedy

policy. This gives us much faster inference, while still being powerful enough. We modify

existing open-source code to implement both S2V-DQN 1 and PN-AC 2. Our code is publicly

available 3.

4.5.1 Comparison of solution quality

To evaluate the solution quality on test instances, we use the approximation ratio of each

method relative to the optimal solution, averaged over the set of test instances. The

approximation ratio of a solution S to a problem instance G is defined as R(S,G) =

max(OPT (G)
c(h(S))

, c(h(S))
OPT (G)

), where c(h(S)) is the objective value of solution S, and OPT (G) is

the best-known solution value of instance G.

Figure 4.2 shows the average approximation ratio across the three problems; other graph

types are in Figure A.1 in the appendix. In all of these figures, a lower approximation ratio

is better. Overall, our proposed method, S2V-DQN, performs significantly better than other

methods. In MVC, the performance of S2V-DQN is particularly good, as the approximation

ratio is roughly 1 and the bar is barely visible.

The PN-AC algorithm performs well on TSP, as expected. Since the TSP graph is

essentially fully-connected, graph structure is not as important. On problems such as

1https://github.com/Hanjun-Dai/graphnn
2https://github.com/devsisters/pointer-network-tensorflow
3https://github.com/Hanjun-Dai/graph_comb_opt
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MVC and MAXCUT, where graph information is more crucial, our algorithm performs

significantly better than PN-AC. For TSP, The 2-opt algorithm performs as well as S2V-

DQN, and slightly better in some cases, an intuitive result given the sophistication of this

algorithm, which exchanges pairs of edges that can give a smaller tour.

4.5.2 Generalization to larger instances

The graph embedding framework enables us to train and test on graphs of different sizes,

since the same set of model parameters are used. How does the performance of the learned

algorithm using small graphs generalize to test graphs of larger sizes? To investigate this,

we train S2V-DQN on graphs with 50–100 nodes, and test its generalization ability on

graphs with up to 1200 nodes. Table 4.2 summarizes the results, and full results are in

Appendix A.3.3.

Table 4.2: S2V-DQN’s generalization ability. Values are average approximation ratios over
1000 test instances. These test results are produced by S2V-DQN algorithms trained on
graphs with 50-100 nodes.

Test Size 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200
MVC (BA) 1.0033 1.0041 1.0045 1.0040 1.0045 1.0048 1.0062

MAXCUT (BA) 1.0150 1.0181 1.0202 1.0188 1.0123 1.0177 1.0038
TSP (clustered) 1.0730 1.0895 1.0869 1.0918 1.0944 1.0975 1.1065

We can see that S2V-DQN achieves a very good approximation ratio. Note that the

“optimal" value used in the computation of approximation ratios may not be truly optimal

(due to the solver time cutoff at 1 hour), and so CPLEX’s solutions do typically get worse as

problem size grows. This is why sometimes we can even get better approximation ratio on

larger graphs.

4.5.3 Scalability & The Time-Quality Trade-off

To construct a solution on a test graph, our algorithm has polynomial complexity of O(k|E|)

where k is number of greedy steps (at most the number of nodes |V |) and |E| is number of
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edges. For instance, on graphs with 1200 nodes, we can find the solution of MVC within

11 seconds using a single GPU, while getting an approximation ratio of 1.0062. For dense

graphs, we can also sample the edges for the graph embedding computation to save time, a

measure we will investigate in the future.

Figure 4.3 illustrates the approximation ratios of various approaches as a function of

running time. All algorithms report a single solution at termination, whereas CPLEX reports

multiple improving solutions, for which we recorded the corresponding running time and

approximation ratio. Figure A.3 (Appendix A.3.7) includes other graph sizes and types,

where the results are consistent with Figure 4.3.

10 4 10 3 10 2 10 1 100 101 102 103

Time (s)

1.0

1.2

1.4

1.6

1.8

2.0

Ap
pr

ox
 R

at
io

MVC Barabasi-Albert

S2V-DQN
MVCApprox-Greedy
MVCApprox
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th

100 101 102 103

Time (s)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Ap
pr

ox
 R

at
io

Maxcut Barabasi-Albert

S2V-DQN
MaxcutApprox
SDP
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th
CPLEX-5th

(a) MVC BA 200-300 (b) MAXCUT BA 200-300

Figure 4.3: Time-approximation trade-off for MVC and MAXCUT. In this figure, each dot
represents a solution found for a single problem instance, for 100 instances. For CPLEX,
we also record the time and quality of each solution it finds, e.g. CPLEX-1st means the first
feasible solution found by CPLEX.

Figure 4.3 shows that, for MVC, we are slightly slower than the approximation al-

gorithms but enjoy a much better approximation ratio. Also note that although CPLEX

found the first feasible solution quickly, it also has much worse ratio; the second improved

solution found by CPLEX takes similar or longer time than our S2V-DQN, but is still of

worse quality. For MAXCUT, the observations are still consistent. One should be aware

that sometimes our algorithm can obtain better results than 1-hour CPLEX, which gives

ratios below 1.0. Furthermore, sometimes S2V-DQN is even faster than the MaxcutApprox,

although this comparison is not exactly fair, since we use GPUs; however, we can still see
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that our algorithm is efficient.

4.5.4 Experiments on real-world datasets

In addition to the experiments for synthetic data, we identified sets of publicly available

benchmark or real-world instances for each problem, and performed experiments on them.

A summary of results is in Table 4.3, and details are given in Appendix A.2. S2V-DQN

significantly outperforms all competing methods for MVC, MAXCUT and TSP.

Table 4.3: Realistic data experiments, results summary. Values are average approximation
ratios.

Problem Dataset S2V-DQN Best Competitor 2nd Best Competitor

MVC MemeTracker 1.0021 1.2220 (MVCApprox-Greedy) 1.4080 (MVCApprox)
MAXCUT Physics 1.0223 1.2825 (MaxcutApprox) 1.8996 (SDP)
TSP TSPLIB 1.0475 1.0947 (2-opt) 1.1771 (Cheapest)

4.5.5 Discovery of interesting new algorithms

We further examined the algorithms learned by S2V-DQN, and tried to interpret what

greedy heuristics have been learned. We found that S2V-DQN is able to discover new and

interesting algorithms which intuitively make sense but have not been analyzed before. For

instance, S2V-DQN discovers an algorithm for MVC where nodes are selected to balance

between their degrees and the connectivity of the remaining graph (Appendix Figures A.4

and A.7). For MAXCUT, S2V-DQN discovers an algorithm where nodes are picked to avoid

cancelling out existing edges in the cut set (Appendix Figure A.5). These results suggest

that S2V-DQN may also be a good assistive tool for discovering new algorithms, especially

in cases when the graph optimization problems are new and less well-studied.

4.6 Conclusions

We presented an end-to-end machine learning framework for automatically designing greedy

heuristics for hard combinatorial optimization problems on graphs. Central to our approach
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is the combination of a deep graph embedding with reinforcement learning. Through exten-

sive experimental evaluation, we demonstrate the effectiveness of the proposed framework

in learning greedy heuristics as compared to manually-designed greedy algorithms. The

excellent performance of the learned heuristics is consistent across multiple different prob-

lems, graph types, and graph sizes, suggesting that the framework is a promising new tool

for designing algorithms for graph problems.
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CHAPTER 5

NEURAL INTEGER OPTIMIZATION

The design of algorithms for hard discrete optimization problems often follows one of two

paradigms: general algorithms, heuristic or exact, that operate on a wide range of problems,

e.g. branch-and-bound or local search; or specialized heuristics that exploit the structure of a

given problem. Both paradigms rely on the ingenuity of the algorithm designer, coupled with

trial-and-error on a set of instances of interest. Recently, there has been a surge in research on

learning heuristics for combinatorial optimization problems over a distribution of instances,

a departure from the classical paradigms mentioned earlier. Despite promising results on

problems such as the TSP, existing learning methods are only capable of handling simple

constraints, e.g. subtour constraints for insertion heuristics in TSP. Our work is an attempt

at learning heuristics for discrete optimization problems subject to generic constraints, i.e.

constraints that may be hard to satisfy, e.g. general linear inequalities. The key contribution

of this work lies in incorporating projection into a recurrent neural network model that

generates solutions to a discrete optimization problem with intricate constraints. We apply

our framework to 0-1 linear optimization problems, and show promising results on instances

from Two-Stage Stochastic Programming, the Generalized Assignment Problem and the

Satisfiability problem.

5.1 Introduction

NP-hard combinatorial optimization problems are at the heart of many complex decision-

making tasks. In particular, mixed-integer linear programs (MIP), involving a mixture of

discrete and continuous variables as well as linear constraints and linear objective, is a very

broad class of discrete optimization optimization problems. Formally, a MIP instance is
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described as follows:

minimize
x

cTx

subject to Ax ≤ b,

l ≤ x ≤ u,

xj ∈ {0, 1} ∀j ∈ B.

(5.1)

Mixed Integer Programming (MIP) has been used in diverse domains such as aircraft

routing, wildlife conservation, sports scheduling, dose distribution and kidney exchange,data

center optimization, and data mining tasks, among many more. Hence, improving our ability

to solve MIP problems effectively can be a significant contribution across various domains.

The Branch-and-Bound algorithm is typically used to find optimal MIP solutions and

certify their optimality. However, in many practical situation, one might be willing to settle

for good, but not necessarily optimal solutions to their NP-Hard problem. While many

specialized heuristics have been developed for specific families of problems (e.g. knapsack,

set covering, independent set, etc.), there has also been significant interest in designing

general-purpose heuristics for binary programming. A general-purpose heuristic operates

solely on a MIP instance (5.1) without any prior knowledge of the combinatorial structure

of the problem. Such heuristics are valuable for two reasons:

– They can be used “out-of-the-box" on a new unexplored optimization problem, for which

no specialized heuristics have been developed yet;

– They can be directly incorporated into exact MIP solvers, providing feasible solutions

during branch-and-bound search that can help prune suboptimal regions in the search

space.

The “Feasibility Pump" (FP) [43] is arguably the most widely used general-purpose

heuristic for MIP; see [23] for a recent survey on the topic. However, heuristics such as

the FP are designed with the aim of obtaining feasible solutions on any arbitrary MIP
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instance, without regard to its structure. This may be seen as a weakness when compared

to specialized heuristics, which when available are able to take considerable advantage of

structure.

In this work, we take serious steps towards bridging the gap between general-purpose

heuristics and specialized heuristics for integer programming. To do so, we propose a data-

driven learning-based approach to automatically designing an effective general-purpose

MIP heuristic, over a distribution of instances. We show that our approach is able to learn

a model that drives a heuristic for finding feasible solutions for any MIP (without any

restriction on the type of linear constraints it involves), and that the learned heuristics are

able to generalize to larger instances of the same problem domain as well as across domains.

5.2 Related Work

There has been a rising interest and success in improving optimization algorithms by inte-

grating machine learning within solvers. Some such examples include using deep learning

to tune gradient descent [14], reinforcement learning used for job-shop scheduling [128],

and classification used for selecting an algorithm for QBF subproblems [114]. Closely

related to our work is [14], where a recurrent neural network model is used for continuous

optimization. In comparison, the main novelty in our work lies in successfully tackling

discrete optimization problems with linear constraints, both missing aspects in [14].

Perhaps most related to our work is the recently proposed NeuroSAT learning framework

for satisfiability [116]. NeuroSAT uses graph neural networks to embed the decision vari-

ables and constraints, and attempts to predict a feasible solution based on the embeddings.

In contrast, we do not use any graph embeddings and adopt a simple feature representa-

tion of variables. This makes our models much more sample-efficient, resulting in better

performance on SAT instances used in [116]; Section 5.5.3 details this empirical comparison.

In the MIP literature, recently a number of tasks within Branch-and-Bound have success-

fully leveraged ML, including: branching [77, 12], node selection [56], decompositions [83],
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formulation selection [27], parameter configuration [127]. These works are orthogonal to

our paper, in that they tackle exact solving whereas we are interested in learning effective

heuristics to integer programs.

5.3 Neural Integer Optimization

Given that binary variables are predominant in real-world MIPs, we restrict our attention to

MIP problems with pure binary variables; continuous variables can be trivially accommo-

dated in the methods we developed. A MIP with non-binary integer variables can be easily

transformed into an equivalent binary MIP.

We refer to the values in A as “constraint coefficients". The Linear Programming (LP)

relaxation of the MIP removes the 0-1 integrality constraint and allows the variables in B to

take on continuous values in [0, 1]. The LP-feasible region is then defined as:

P := {x ∈ Rn | Ax ≤ b, l ≤ x ≤ u}.

5.3.1 Problem Statement

We are given a dataset I := {(Ai, bi, ci,Bi)di=1} consisting of d MIP instances, as defined by

their constraint matrices Ai, right hand-side vectors bi, objective coefficients ci and sets of

binary variables Bi. The MIP instances in I are assumed to belong to the same distribution

of problems, broadly defined, though they may have a different number of variables and

constraints. Section 5.4 illustrates such instance distributions in the context of some practical

optimization problems.

We define an algorithm A, parametrized by a vector Θ ∈ Rp, as a mapping from a

MIP instance I to {0, 1}, where 1 corresponds to the event “algorithm A finds a solution to

instance I", and 0 corresponds to not finding a solution.

Given a dataset I of MIP instances as defined above, the learning task then becomes

that of finding a parameter setting for algorithm A such that we maximize the number of
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instances for which A finds a feasible solution:

Θ∗ := arg max
Θ∈Rp

1

d

∑
I∈I

A(I; Θ) (5.2)

Clearly, solving this optimization problem is only useful if the resulting learned algorithm

can perform well out-of-sample, i.e. on unseen MIP instances from the same distribution

of problems; most of our Experiments section is dedicated to empirically answering that

question.

Towards solving problem (5.2), we pose and tackle the following three questions:

1. What kind of algorithm is A? For example, is it a greedy or local search algorithm that

repeatedly flips binary variables until a feasible solution is found? Section 5.3.2 addresses

this issue.

2. What are we learning exactly? How does the choice of parameters Θ impact algorithm

A’s behavior? Section 5.3.3 will present a key idea that resolves this question: whatever is

learned should explicitly take the constraints Ax ≤ b into account.

3. How can we solve the optimization problem (5.2)? More specifically, is this a super-

vised or reinforcement learning problem? We show in Section 5.3.4 that it can simply be

cast as a function optimization problem.

5.3.2 Algorithmic Framework

In the spirit of the Feasibility Pump [43], A is an iterative projection algorithm. For an

instance I = (A, b, c,B) with LP-feasible region P , A initially receives x0, an optimal

solution to the LP relaxation of I . A then transforms x0 into x1 ∈ P , another LP-feasible

point. The key idea is that as it moves from xt to xt+1, the algorithm tries to increase the

number of integer variables in xt+1, as compared to xt. Whenever xt′ becomes integer-

feasible in addition to being LP-feasible, then a feasible solution has been found and the

algorithm terminates.
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Why is this algorithmic framework a reasonable choice? There are certain MIP problems

that admit much simpler strategies such as greedy construction. For instance, a greedy

selection policy has been learned for some graph optimization problems. We argue that

such problems have highly structured constraints that make it easy or trivial to find feasible

solutions. Consider the Minimum Vertex Cover (VC) problem, for example, where one

seeks a minimal subset of nodes in a graph such that every edge is covered by at least one

node in the chosen subset. A greedy algorithm for VC, learned or otherwise, can simply

start from an empty set and grow it until all edges are covered.

If the structure of the constraints is intricate, heavier machinery must be invoked to

maintain feasibility in the constraints until an integer solution is found. The “transformation"

mentioned earlier is simply a projection in the form of the following LP:

xt+1 = arg min
x∈P

pTx. (5.3)

Clearly, the key to a successful algorithm is the choice of the projection coefficients

vector p. This is where the learnable parameters Θ come into play.

5.3.3 Learning to Project

We adopt a simple Recurrent Neural Network (RNN) model, analogous to that of [14], that

processes each variable separately (“coordinate-wise"), and maintains a per-variable hidden

state. The actual neural network module we use is a Gated Recurrent Unit (GRU). The GRU

takes as input two simple features of each variable: the value of the variable j from the

previous iteration, xtj , and its rounding to the nearest integer, thereafter referred to as [xtj].

The GRU is followed by a learnable linear layer that transforms the final hidden state of a

variable into a projection coefficient ptj . The projection coefficients of all variables are then

fed into the LP projection (5.3).
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5.3.4 Learning Procedure

In contrast with recent approaches for learning in combinatorial optimization, the proposed

framework does not require neither supervision (in the form of optimal solutions to training

instances as in [125]), nor reinforcement learning as in [34, 19]. Instead, we view Prob-

lem 5.2 on a dataset of training instances I as a function optimization problem in which the

target values are provided “for free". Specifically, at a given iteration of algorithm A, we

consider that a variable xj with value xt > 0.5 should be pushed towards the nearest integer,

i.e. 1. The Binary Cross-Entropy (BCE) can be used as loss function in our setting on a

given instance I as follows:

BCE(I; Θ) = −
T∑
t=1

∑
j∈B

[xtj] · log xtj + (1− [xtj]) · log (1− xtj), (5.4)

where T is the total number of iterations of the algorithm. The final BCE loss function

that we minimize as a surrogate to our true objective is just the sum of (4) over all instances.

Table 5.1: Statistics on the datasets used. We only train/validate on the smallest sets of
instances and test on instances of the same and larger sizes.

Problem Parameters # Variables # Constraints Training Validation Testing

(3, 20) 60 23 7 7 7

GAP (5, 50) 150 55 7

(processors, tasks) (5, 100) 500 105 7

(10, 10) 110 100 7 7 7

STOC (10, 20) 220 200 7

(k, p) (20, 10) 210 200 7

5.4 Optimization Problems

This section introduces the optimization problems that we will use for experimental eval-

uation in Section 6.5. Table 5.1 provides details on the problem sets generated and their

sizes. We chose these problems for the following reasons: (1) they are widely used to model

real-world decision making tasks, and (2) have intricate constraint structure that makes

finding feasible solutions non-trivial.
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Generalized Assignment Problem

In the Generalized Assignment Problem (GAP), we are given a set of n tasks and m

processors. A task j incurs a cost of wij ∈ R≥0 and produces a profit of pij ∈ R≥0 if

assigned to processor i. Processor i has a cost capacity of ci ∈ R>0. The optimization

problem is then to assign each task to exactly one processor such that the processor capacities

are not exceeded and the total profit is maximized. GAP finds applications in diverse

domains such as computer systems, e.g. in data storage and distributed caching [36, 46],

telecommunications and routing [29], as well as operations research, e.g. production

planning [39].

The mathematical formulation of GAP is as follows:

maximize
x

m∑
i=1

n∑
j=1

pijxij

subject to
n∑
j=1

wijxij ≤ ci, i = 1, . . . ,m,

m∑
i=1

xij = 1, j = 1, . . . , n,

xij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n.

GAP has n ·m variables and n+m constraints. We generate instances of GAP according

to the distribution “(c)" proposed in [93]: For a given n and m, wij and pij are drawn

uniformly at random from [5, 25] and [1, 40], respectively. The capacities are set as: ci =

0.8
∑n

j=1wij/m. Table 5.1provides additional details on the GAP instances we generated

for training, validation and testing.

Two-Stage Stochastic Programming

Consider the following inventory management problem [37]: a retailer has to order a certain

amount of each product in order to satisfy demand. The retailer must decide on the amounts

to order before the demand becomes known to them. Once the demand is revealed, they can

order additional product if the demand has not been met by the first-stage orders. Assuming
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the demand is random, the problem we just described is a two-stage stochastic programming

problem [8]. A typical approach to solving such problems consists in selecting a set of highly

probable “scenarios" (demand profiles) and solving a deterministic optimization problem

over those scenarios instead. We refer to the deterministic scenario-based equivalent of

the two-stage stochastic inventory management problem described above as “STOC". The

STOC formulation is routinely used to solve a variety of stochastic optimization problems.

For the distributions of instances we consider in this paper, there is no general (heuristic)

recipe for finding feasible solutions. This makes for an interesting learning problem: can

our approach discover an effective heuristic through exposure to a set of training instances?

The following mathematical formulation represents STOC:

maximize
x,y

p∑
j=1

pjxj +
k∑
i=1

p∑
j=1

rily
i
j

subject to Aix+Diyi ≤ ci, i = 1, . . . , k,

x ∈ {0, 1}p,

yi ∈ {0, 1}p, i = 1, . . . , k.

(5.5)

In this formulation, there are k scenarios, x represents the p first-stage decision variables,

whereas yi are the p second-stage decision variables corresponding to the i-th scenario.

Notice that the first-stage variables appear in all constraints (5.5) with coefficient matrices

Ai, whereas the second-stage variables have non-zero coefficients Di only in scenario i’s

constraints. STOC instances have p(k + 1) variables and pk constraints.

As in [37], we generate STOC instances by setting values for k and p first. The entries in

matrices Ai, Di and objective function coefficients p and r are drawn uniformly at random

from {−10,−9, . . . , 9, 10}. The right-hand side values ci are set such that they guarantee

the existence of a feasible 0-1 solution to the constraints. Table 5.1provides additional

details on the STOC instances we generated.
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Figure 5.1: Percentage of test instances with feasible solution found (y-axis) as a function
of the number of iterations (x-axis).

5.5 Experiments

In this section, we present our experimental setup and results. The training of our NIO

models is performed on one of four NVIDIA GTX 1080 GPUs hosted on a server with

128GB of memory and 8 dual-core Intel Core i7-7820X CPUs. Our method is implemented

within the PyTorch deep learning framework. For all algorithms we studied, either ECOS or

Gurobi were used to solve the linear programming projection on a CPU; Gurobi was only

evoked when ECOS struggled with numerical issues. All generated instances were solved to

global optimality with Gurobi 8.0.1. We will make our data and code publicly available.

5.5.1 Baselines

We compare our approach to two variants of the “Feasibility Pump". The first variant, FP1,

is identical to the original algorithm proposed in Figure 1 of [43]. Starting with the fractional

solution to the LP relaxation of the problem, FP1 rounds the solution to the nearest integer

point then projects it back into the feasible region, obtaining a new (fractional) solution.
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Figure 5.2: The percentage of test instances (y-axis) with optimality gap at most x% (x-axis).

Whenever the projected point becomes integer, a 0-1 feasible solution to the problem has

been found, and the algorithm terminates. If no integer feasible solutions is found in a given

maximum round-project iterations, the algorithm fails. Crucially, the projection step consists

in solving the following LP:

minimize
x

∑
j∈B:x̃j=0

xj +
∑

j∈B:x̃j=1

(1− xj)

subject to Ax ≤ b, x ∈ [0, 1]n.

(5.6)

Notice that the objective coefficients are either −1 or 1. Whenever cycling occurs, a

standard perturbation step described in [43] is used to overcome any stalling.

The second variant of the Feasibility Pump, FP2, proceeds in the same way as FP1,

but assigns different objective function coefficients in the projection LP. More specifically,
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Figure 5.3: The value of the binary cross-entropy loss (y-axis) as a function of the number
of iterations (x-axis).

letting γ > 1, the projection is the following:

minimize
x

∑
j∈B:x̃j=0

xj(1 + γI(x̄j > 0)) +

∑
j∈B:x̃j=1

(1 + xj(−1− γI(x̄j < 1)))

subject to Ax ≤ b, x ∈ [0, 1]n.

(5.7)

In words, the projection in FP2 assigns larger coefficients (in magnitude) to variables

that are not integral in the previous iteration’s projected solution, x̄. In our experiments,

we set γ = 9: fractional variables then have a coefficient of ±10 rather than ±1. We have

devised this new projection as a stronger variant of FP1.

5.5.2 Training

We train our NIO models for 50 epochs on 500 training instances processed in mini-

batches of size 50 using the Adam optimization algorithm. Each run of NIO consists of 50

iterations at most, terminating as soon as a feasible solution is found. We use “Truncated
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Backpropagation Through Time" (TBPTT), unrolling NIO for 5 iterations, a standard

practice when training recurrent models [14]. A held-out validation set of 50 instances is

used to evaluate the model after each training epoch. For GAP, the training and validation

datasets consist of 500 and 50 instances, respectively, each with (3 processors, 20 tasks) and

coefficients generated as described in Section 5.4. For STOC, the similarly-sized training

and validation datasets have k = 10 scenarios and p = 10; see Section 5.4 for more details.

Adam’s learning rate is decayed by a factor of 2 if there is no improvement in the training loss

for 5 epochs. We terminate the training early if there is no improvement in the percentage

of solutions found for validation instances for 20 consecutive epochs. Table 5.2 lists the

hyperparameters considered, the best model’s configuration and its validation performance.

We found that most hyperparameter configurations resulted in validation performance that is

competitive with the best configuration’s.

Table 5.2: Hyperparameters of our model and training. Columns “GAP" and “STOC"
indicate the best hyperparameter configuration w.r.t. the percentage of instances of the
validation set for which a solution was found; the latter value is shown in the bottom row of
the table.

Hyperparameter Values GAP STOC

Loss Function Binary Cross-Entropy (BCE), Product Loss BCE BCE
Initial Learning Rate 0.1, 0.01 0.01 0.1

GRU Depth 1, 2 1 2
GRU Hidden Layer Size 8, 16, 32, 64, 128 64 32

Solutions Found (%) on Validation Set 94 84

5.5.3 Results

For each of GAP and STOC, the corresponding best model described in Table 5.2 is used

for testing on unseen instances. All testing sets consist of 500 instances of a given problem;

Table 5.1 includes additional information on the number of variables and constraints in

instances of each set.

Test Performance
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Solutions Found. First, we evaluate NIO’s ability to find feasible solutions as compared

to FP1 and FP2. In Figure 5.1, we vary the number of iterations of each algorithm along

the x-axis and measure the percentage of test instances for which the algorithm has found a

feasible solution (and thus terminated) by that iteration.

The leftmost column of Figure 5.1 shows these results for GAP/STOC test sets from the

same distribution as the training sets, namely GAP (processors = 3, items = 20) and STOC

(k = 10, p = 10). NIO manages to find feasible solutions to the majority of test instances in

10 and 20 iterations for GAP and STOC, respectively. In comparison, both FP1 and FP2

find solutions for at most 45% of instances, even when run for the full 50 iterations.

Solution Quality. Second, we assess the quality of the solutions found by the algorithms.

The standard quality metric is the percentage optimality gap, defined as:

gap (zOPT , z) = 100 · |z − z
OPT |

|zOPT |+ e−10
,

with zOPT the optimal value for a given problem instance and z the value of a given

solution; a gap of zero implies an optimal solution. For our test instances, the optimal value

is computed with the exact solver Gurobi.

We note that none of the three algorithms make use of the objective function coefficients

beyond the initial fractional point. Existing tweaks to the projection objective function [3]

or constraints [43] can be straightforwardly applied to both NIO and FP1/FP2 to explicitly

improve the quality of the solutions.

In Figure 5.2, a point (x, y) is interpreted as follows: the algorithm has found a feasible

solution with optimality gap no larger than x% for y% of the test instances; an optimal

algorithm would appear in the top-left corner of the plot, finding an optimal solution for all

instances. For GAP (processors = 3, items = 20) (top row, first column in Figure 5.2), NIO

finds good solutions more frequently than FP1 and FP2: NIO’s solutions have optimality

gaps of at most 20% for around 50% of instances. As for STOC, NIO’s solutions have

optimality gaps of at most 20% for around 40% of the instances. In comparison, not only
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do FP1 and FP2 find solutions for fewer instances than NIO (Figure 5.1), but also fewer

high-quality solutions: for example, for STOC (k=10, p=10) (bottom row, first column

in Figure 5.2), FP2 finds optimal solutions (0% optimality gap) for less than 20% of test

instances , whereas NIOfinds optimal solutions for more than 25% of the test instances.

Consistency of the Loss Function. Does the Binary Cross-Entropy (BCE) loss function

used in training NIO models correlate well with our true objective, namely the number

of instances with solutions found? In Figure 5.3, we explore this question by plotting the

loss function as a function of the number of iterations. While the number of instances with

solutions found is monotonically increasing (see Figure 5.1, the loss may not be. However,

Figure 5.3 shows an overall decreasing loss that is consistent with the observations in

Figure 5.1. This finding brings some assurance to using a surrogate, differentiable loss such

as BCE as an alternative to the discrete, non-differentiable count of instances with feasible

solutions found.

Generalization to Larger Problems

We demonstrate the ability of our method to generate NIO models that generalize to

larger size instances than what the model was trained on. This is important as training

time depends on the speed with which we solve repeatedly the LP relaxation of the train

instances. Hence, being able to train on smaller (faster to solve) instances and then use the

model for larger problems can be very advantageous. The leftmost columns of Figure 5.1

and Figure 5.2 compare FP1/FP2 performance to the performance of NIO on test instances

that are from the same distribution as the one on which the NIO model was trained (namely

GAP (processors = 3, items = 20) and STOC (k=10, p=10)). The middle and rightmost

column of these two figures show the performance of these NIO models on instances of the

same problem but of larger size.

We observe that, for GAP (top rows of both figures), the NIO model trained on small

instances performs really well on larger instances (in fact better than on the original smaller

size), while larger instances significantly degrade the FP1/FP2 performance. For STOC,
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when increasing the number of scenarios k (bottom row, leftmost column), the NIO model

generalizes well keeping similar performance as on the original distribution of smaller

instances. For STOC, when increasing the number of first-stage decisions p (bottom row,

middle column), the NIO model does not generalize as well. And although these larger

instances become harder to solve also for FP1/FP2, for this setting FP2 almost matches NIO

in performance, suggesting that re-training NIO on instances of STOC with the larger p

might be warranted.

Generalization Across Problems

Finally, we demonstrate the effectiveness of our method to generalize across problems

never encountered before in the learning process. Specifically, we generate 500 SAT problem

instances of varying complexities, using the code provided by the authors of NeuroSAT [116],
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a graph neural network based method tailored for solving SAT instances. This allows us to

perform a fair comparison with NeuroSAT model as generated problem instances belong to

the same distribution as used in their test. We evaluate the performance of NIO for solving

these SAT instances. However, a key consideration in this evaluation is that we never train

our model on any SAT instances, instead use our best learned model over the GAP instances

described in Section 5.1.

Figure 5.4 provides the performance comparison with original NeuroSAT model in

solving these instances (based on the values reported in Figure 5 of [116]) and we highlight

three superior qualities of our framework:

1. NIO consistently and significantly outperforms NeuroSAT in terms of finding correct

solutions for the test problem instances demonstrating its ability to generalize across

problems.

2. It is important to note that NIO only trains over hundreds of GAP instances while Neu-

roSAT requires training over millions of SAT instances to achieve state-of-the-art per-

formance. This demonstrates the ability of NIO to retain better sample efficiency and

generalize to new problems without the need of compromising training efficiency.

3. In Figure 5.4, the circles measure the percentage of instances solved by NueroSat after

1000 iterations. It is remarkable to observe that NIO consistently performs better while

running for an order of magnitude of less number of iterations, thereby showcasing its

ability to adapt well to new problems.

5.6 Conclusion

We introduced NIO, a neural integer optimization framework that learns heuristics for

discrete optimization problems subject to generic constraints. We build an elegant deep

recurrent architecture to facilitate this task and make a compelling case of drawing inspiration

from techniques in deep learning and machine learning to build state of the art solvers
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for discrete optimization problems. Concretely, we propose the idea of incorporating a

projection operator into recurrent neural network to build the capacity to generate solutions

to discrete optimization problems under complex and generic constraints regime. Our

framework is able to train in a simple end-to-end manner unlike existing approaches that

either depend on strong supervision or employ complex reinforcement learning techniques

limited to specific problem settings. We apply our framework to learn heuristics for two

intricate problems in discrete optimization, namely, Generalized Assignment Problem and

Stochastic Programming and demonstrate the ability of NIO to significantly outperform

widely adopted variants of feasibility pump methods to solve these problems. NIO has been

shown to exhibit highly desirable training sample complexity and it generalizes well to large

number of problem instances even after training on a small set.

Our work takes a significant stride in establishing that neural network based approaches to

learn heuristics has the capacity to generalize across problem domains and have demonstrated

its ability to outperform sophisticated methods tailored for specific problem settings. While

surprising, this is an extremely encouraging outcome of our work and we believe that it

provides a significant next step in advancing the community’s evolving understanding on

connecting deep learning with discrete optimization, thereby opening several potential future

research directions.
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Part III

Discrete Optimization for Machine

Learning
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CHAPTER 6

COMBINATORIAL ATTACKS ON BINARIZED NEURAL NETWORKS

Binarized Neural Networks (BNNs) have recently attracted significant interest due to

their computational efficiency. Concurrently, it has been shown that neural networks

may be overly sensitive to “attacks" – tiny adversarial changes in the input – which may

be detrimental to their use in safety-critical domains. Designing attack algorithms that

effectively fool trained models is a key step towards learning robust neural networks. The

discrete, non-differentiable nature of BNNs, which distinguishes them from their full-

precision counterparts, poses a challenge to gradient-based attacks. In this work, we study

the problem of attacking a BNN through the lens of combinatorial and integer optimization.

We propose a MIP formulation of the problem. While exact and flexible, the MIP quickly

becomes intractable as the network and perturbation space grow. To address this issue,

we propose IProp, a decomposition-based algorithm that solves a sequence of much

smaller MIP problems. Experimentally, we evaluate both proposed methods against the

standard gradient-based attack (PGD) on MNIST and Fashion-MNIST, and show that

IProp performs favorably compared to PGD, while scaling beyond the limits of the MIP.

6.1 Introduction

The success of neural networks in vision, text and speech tasks has led to their widespread

deployment in commercial systems and devices. However, these models can often be

fooled by minimal perturbations to their inputs, posing serious security and safety threats

[52]. A great deal of current research addresses the “robustification" of neural networks

using adversarially generated examples [84, 92], a variant of standard gradient-based

training that uses adversarial training examples to defend against possible attacks. Recent

work has also formulated the problem of “adversarial learning” as a robust optimization
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problem [92, 82, 117], where one seeks the best model parameters with respect to the loss

function as measured on the worst-case adversarial perturbation of each point in the training

dataset. Attack algorithms may thus be used to augment the training dataset with adversarial

examples during training, resulting in more robust models [84]. These new advances further

motivate the need to develop effective methods for generating adversarial examples for

neural networks.

In this work, we focus on designing effective attacks against Binarized Neural Networks

(BNNs) [32]. BNNs are neural networks with weights in {−1,+1} and the sign function

non-linearity, and are especially pertinent in low-power or hardware-constrained settings,

where they have the potential to be used at an unprecedented scale if deployed to smartphones

and other edge devices. This makes attacking, and consequently robustifying BNNs, a task

of major importance. However, the discrete, non-differentiable structure of a BNN renders

less effective the typical attack algorithms that rely on gradient information. As strong

attacks are crucial to effective adversarial training, we are motivated to address this problem

in the hope of generating better attacks.

The goal of adversarial attacks is to modify an input slightly, so that the neural network

predicts a different class than what it would have predicted for the original input. More

formally, the task of generating an optimal adversarial example is the following:

Given:

– A (clean) data point x ∈ Rn;

– A trained BNN model with parameters w, that outputs a value fc(x;w) for a class c ∈ C;

– prediction, the class predicted for data point x, arg maxc∈C fc(x;w);

– target, the class we would like to predict for a slightly perturbed version of x;

– ε, the maximum amount of perturbation allowed in any of the n dimensions of the input x.

Find:
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A point x′ ∈ Rn, such that ‖x− x′‖∞ ≤ ε and the following objective function is maxi-

mized:

ftarget(x
′;w) − fprediction(x

′;w).

This objective function guides targeted attacks [84], and is commonly used in the

adversarial learning literature. If an adversary wants to fool a trained model into predicting

that an input belongs to a given class, they will simply set the value of target accordingly

to that given class. We note that our formulation and algorithm also work for untargeted

attacks via a simple modification of the objective function.

Towards designing optimal attacks against BNNs, we propose to model the task of

generating an adversarial perturbation as a Mixed Integer Linear Program (MIP). Integer

programming is a flexible, powerful tool for modeling optimization problems, and state-of-

the-art MIP solvers have achieved excellent results in recent years due to algorithmic and

hardware improvements [7]. Using a MIP model is conceptually and practically useful for

numerous reasons. First, the MIP is a natural model of the BNN: given that a BNN uses

the sign function as activation, the function the network represents is piecewise constant,

and thus directly representable using linear inequalities and binary variables. Second, the

flexibility of MIP allows for various constraints on the type of attacks (e.g. locality as in

an early version of [122]), as well as various or even multiple objectives (e.g. minimizing

perturbation while maximizing misclassification). Third, globally optimal perturbations can

be computed using a MIP solver on small networks, allowing for a precise evaluation of

existing attack heuristics in terms of the quality of the perturbations they produce.

The generality and optimality provided by MIP solvers does, however, come at a compu-

tational cost. While we were able to solve the MIP to optimality for small networks and

perturbation budgets, the solver did not scale much beyond that. Nevertheless, experimental

results on small networks revealed a gap between the performance of the gradient-based

attack and the best achievable. This finding, coupled with the non-differentiable nature of
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the BNN, suggests an alternative: a combinatorial algorithm that is: (a) more scalable than a

MIP solve, and (b) more suitable for a non-differentiable objective function.

To this end, we propose IProp (Integer Propagation), an attack algorithm that exploits

the discrete structure of a BNN, as does the MIP, but is substantially more efficient. IProp

tunes the perturbation vector by iterations of “target propagation”: starting at a desirable

activation vector in the last hidden layer D (i.e. a target), IProp searches for an activation

vector in layer (D− 1) that can induce the target in layer D. The process is iterated until the

input layer is reached, where a similar problem is solved in continuous perturbation space in

order to achieve the first hidden layer’s target. Central to our approach is the use of MIP

formulations to perform layer-to-layer target propagation. IProp is fundamentally novel in

two ways:

– To our knowledge, IProp is the first target propagation algorithm used in adversarial

machine learning, in contrast to the typical use cases of training or credit assignment in

neural networks [85, 20];

– The use of exact integer optimization methods within target propagation is also a first, and

a promising direction suggested recently in [47].

We evaluate the MIP model, IProp and the Projected Gradient Descent method (with

restarts) (PGD) [92] – a representative gradient-based attack – on BNN models pre-trained

on the MNIST [86] and Fashion-MNIST [126] datasets. We show that IProp compares

favorably against PGD on a range of networks and across a set of evaluation metrics,

especially with small perturbation budgets. As such, we believe that our work is a testament

to the promise of integer optimization methods in adversarial learning and discrete neural

networks.

This paper is organized as follows: we describe related work in Section 6.2, the MIP

formulation in Section 6.3, the heuristic IProp in Section 6.4 and experimental results

in Section 6.5. We conclude with a discussion on possible avenues for future work in
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Section 6.6.

6.2 Related Work

Neural networks with the threshold (sign) activation function date back to early work

on the Perceptron. However, the work of [32] revived the interest in Binarized Neural

Networks as a computationally cheap alternative to full-precision neural networks. This

resurgence is due to an effective training algorithm for BNNs. Since then, BNNs have been

used in computer vision [109] and high-performance neural networks [124, 11], among

other domains. Notably, BNNs are amenable to extremely fast (embedded) hardware

implementations (e.g. as in [95]), which may not be possible even for small full-precision

networks.

Adversarial attacks against modern neural networks were first investigated in [26, 121].

Since then, the area of “adversarial machine learning” has developed considerably. In [121],

a L-BFGS method is used to find a perturbation of an input that leads to a misclassification.

As an efficient alternative to L-BFGS, the Fast Gradient Sign Method (FGSM) was proposed

in [52]: FGSM uses the gradient of the loss function with respect to the input to maximize

the loss, a cheap operation thanks to backpropagation. Soon thereafter, Projected Gradient

Descent (PGD), an iterative variant of FGSM, was shown to produce much more effective

attacks [84, 92]; PGD with random restarts is the method that we will compare against in

this work. Additionally, the Appendix includes a comparison of the proposed method with

SPSA [123]. Other attacks have been developed for different constraints on the allowed

amount of perturbation (L0, L1, L2 norms, etc.) [30, 105, 98].

Of relevance to our MIP approach are the MIP attacks against rectified linear unit

(ReLU) networks of [122] and [44]. In contrast to binarized networks, ReLU networks are

differentiable almost everywhere and thus straightforwardly amenable to attacks via PGD.

[48] perform an empirical evaluation of existing attack methods against BNNs and find

that BNNs are more robust to gradient-based attacks than their full-precision counterparts.
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This finding suggests the search for more powerful attacks that exploit the discrete nature

of a BNN, a key motivation for our work here. Most recently, [99] studied the problem of

verifying BNNs with satisfiability (SAT) solvers and MIP. In contrast to our optimization

problem of maximizing the difference in outputs for a pair of classes, verification is a

satisfiability problem that asks to prove that a network will not misclassify a given point, i.e.

there is no objective function. As such, SAT solvers fare better than MIP solvers in BNN

verification. Our IProp algorithm is complementary to the exact verification methods

of [99], as it can be used to quickly find a counterexample perturbation, if one exists, which

would help resolve the verification question negatively.

6.3 Integer Programming Formulation

We briefly introduce our Mixed Integer Linear Programming formulation for the BNN attack

problem. As mentioned earlier, the MIP may not be scalable, but it offers insights into

designing better algorithms for our problem, as is the case with our IProp algorithm. We

operate on a trained, fully-connected, feed-forward BNN with weights wl,j′,j ∈ {−1, 1}

between each neuron j′ in the (l − 1)-st layer and each neuron j in the l-th layer. The BNN

performs, at each of its D hidden layers (r neurons per layer), a linear transformation of the

input followed by the (element-wise) application of the sign function, where sign(x) is 1

if x ≥ 0 and −1 otherwise. The output layer consists of a weighted sum of the final hidden

layer’s activations. In what follows, we use the notation [D] to denote the set of integers

from 1 to D, and [C,D] to denote the set of integers from C to D inclusive.

We use the following variables to formulate the BNN attack:

– pj: the perturbation in feature j, such that the perturbed point is x+ p; this is a continuous

variable, and the only decision variable in our formulation.

– al,j: the pre-activation sum for the j-th neuron in the l-th layer; for the output (D + 1-st)

layer, aD+1,target and aD+1,prediction are equal to the output values ftarget(x′;w) and
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fprediction(x′;w) of the model for the two classes of interest.

– hl,j: this is the activation value for the j-th neuron in the l-th layer, i.e. hl,j = 1 if al,j ≥ 0

and hl,j = 0 otherwise. This is the only set of binary variables in our formulation.

In the following MIP formulation, the constraints essentially implement a forward pass

in the BNN, from the perturbed input to the output layer. In particular, (6.2) and (6.3)

compute the pre-activation sums, (6.4) and (6.5) are big-M constraints that assign the correct

activation value h given the pre-activation a, and (6.6) is the perturbation budget constraint.

Note that for (6.4) and (6.5), we require the lower and upper bounds Ll,j and Ul,j on al,j;

those bounds are easily calculated given x and ε. We implicitly assume that the input is in

[0, 1]n, and constrain the perturbed point to be within this range; this is typical for images

for example, where pixels in [0, 255] are scaled to [0, 1].

max aD+1,target − aD+1,prediction

subject to a1,j =
n∑

j′=1

w1,j′,j · (xj′ + pj′) ∀j ∈ [r]

al,j =
r∑

j′=1

wl,j′,j · hl−1,j′ ∀l ∈ [2, D + 1],∀j ∈ [r]

al,j ≤ Ul,j ·
(hl,j + 1)

2
∀l ∈ [D],∀j ∈ [r]

al,j ≥ Ll,j ·
(1− hl,j)

2
∀l ∈ [D],∀j ∈ [r]

pj ∈ [−ε, ε] ∀j ∈ [n]

hl,j ∈ {−1, 1} ∀l ∈ [D],∀j ∈ [r]

al,j ∈ [Ll,j, Ul,j] ∀l ∈ [D + 1],∀j ∈ [r]

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

In implementing this formulation, we accommodate “batch normalization” [66], which

has been shown to be crucial to the effective training of BNNs [32]. We simply use the

parameters learned for batch normalization, as well as the mean and variance over the

training data, to compute this linear transformation.
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6.4 IProp: Integer Target Propagation

As we will see in Section 6.5, solving the MIP attack model becomes difficult very quickly.

On the other hand, gradient-based attacks such as PGD are efficient (one forward and

backward pass per iteration), but not suitable for BNNs: a trained BNN represents a

piecewise constant function with an undefined or zero derivative zero at any point in the

input space. This same issue arises when training a BNN. There, [32] propose to replace

the sign function activation by a differentiable surrogate function g, where g(x) = x if

x ∈ [−1, 1] and sign(x) otherwise. This surrogate function has derivative 1 with respect

to x between −1 and 1, and 0 almost everywhere else. As such, during backpropagation,

PGD uses the approximate BNN with g as activation, computing its gradient w.r.t. the input

vector, and taking an ascent step to maximize the objective (6.1).

However, as we show in Figure 6.1, the gradient used by PGD may not be indicative

of the correct ascent direction. Figure 6.1 illustrates the outputs of a BNN (left) and an

approximate BNN (right) with 3 hidden layers and 30 neurons per layer, as a single input

value is varied in a small range. Clearly, the approximate BNN can behave arbitrarily

differently, and gradient information with respect to the input dimension being varied is not

very useful for our task.

Motivated by this observation, as well as the limitations of MIP solving, we propose

IProp, a BNN attack algorithm that operates directly on the original BNN, rather than an

approximation of it. To gain intuition as to how IProp works, it is useful to reason about

the form of an optimal solution to our problem. In particular, the objective function (6.1)

can be expanded as follows:

aD+1,target − aD+1,prediction =
r∑
j=1

(wD+1,j,target − wD+1,j,prediction) · hD,j.

Here, the summation is over the r neurons in layer D, and hD,j ∈ {−1, 1} is the activation

of neuron j in the last hidden layer D. Clearly, whenever the weights out of a neuron j

into the two output neurons of interest are equal, i.e. wD+1,j,target = wD+1,j,prediction, the
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activation value of that neuron does not contribute to the objective function. Otherwise, if

wD+1,j,target 6= wD+1,j,prediction, then an ideal setting of the activation hD,j would be +1

or −1, since this increases the objective function. Applying the same logic to all neurons in

hidden layer D, we obtain an ideal target activation vector T ∈ {−1, 1}r which maximizes

the objective. However, T may not be achievable by any perturbation to input x, especially

if the perturbation budget ε is sufficiently small. As such, IProp aims at achieving as many

of the ideal target activation values as possible, given ε.

IProp is summarized in pseudocode below. However, we invite the reader to return to

the pseudocode following Section 6.4.3, as a lot of the notation is only introduced there.

Figure 6.1: Final layer activations for inputs to a small BNN with two output classes (o1 and
o2) as a single input dimension (x1) is varied. The relative activations of the two classes
differ significantly between the true BNN (left) and an approximation of the BNN (right)
used to enable gradient computations for PGD.

104



Algorithm 2 IProp (x, ε,BNN weight matrices {Wl}Dl=1,prediction,target, step
size S)

1: Incumbent perturbation: p∗ ← 0 (no perturbation)

2: Compute T ∈ {−1, 1}r, the ideal target activation vector in layer D

3: Run x through BNN; Set h∗l to resulting activations in layer l for all layers, and

I∗ = {k ∈ [r]|h∗D(k) = T (k)}

4: t = 1

5: while time limit not reached and not at local optimum do

6: Sample a set of S neurons Gt
D ⊆ {k ∈ [r]|h∗D(k) 6= T (k)} for layer D

7: T tD := I∗ ∪Gt
D

8: for layer l = (D − 1) to 1 do

9: T tl = argmaxhl∈{−1,1}r
∑

j∈T t
l+1

I{hl+1,j = T tl+1(j)} s.t. hl+1 = sign(Wl+1hl)

10: end for

11: pt = argmaxp∈[−ε,ε]n
∑r

j=1 I{h1,j = T t1(j)} s.t. h1 = sign(W1(x+ p)), 0 ≤ x+ p ≤

1

12: if a forward pass with solution x+ pt improves objective (6.1): then

13: Update incumbent: p∗ ← pt; Update h∗l , I
∗

14: end if

15: t = t+ 1

16: end while

17: return p∗

6.4.1 Layer-to-Layer Target Satisfaction

Given the ideal target T , one can ask the following question: how should we set the activation

vector TD−1, which consists of the activation values hD−1,j in layer (D − 1), such that as

much of T is achieved after applying the linear transformation and the sign activation? This

is a constraint satisfaction problem with linear inequalities. More generally, if we would
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like a given neuron’s activation hl,j to be equal to 1, then the corresponding al,j , defined

in (6.3), must be greater than or equal to 0, and vice versa for hl,j to be −1. We cast this

binary linear optimization problem as follows:

Tl := argmax
hl∈{−1,1}r

r∑
j=1

I{hl+1,j = Tl+1(j)} s.t. hl+1 = sign(Wl+1hl). (6.9)

The variables to optimize over in (6.9) are hl ∈ {−1, 1}r, whereas Tl+1 ∈ {−1, 1}r is

fixed, as it is provided by the layer (l + 1); we describe this in detail in Section 6.4.2. For

instance, when l = D − 1 and Tl+1 = T , the optimization problem in (6.9) models the

satisfaction problem described in the last paragraph.

6.4.2 Target Propagation

Consider solving a sequence of optimization problems based on (6.9), starting with l = D−1

and ending with l = 1, where each solution Tl to the problem at layer l provides the target

for the subsequent problem at layer (l − 1). Then, after obtaining T1 as a solution to the last

optimization problem in the aforementioned sequence, one can search for a perturbation of

x that produces T1, by solving the following mixed binary program:

p = argmax
p′∈[−ε,ε]n

r∑
j=1

I{h1,j = T1(j)} s.t. h1 = sign(W1(x+ p′)), 0 ≤ x+ p′ ≤ 1. (6.10)

After computing the perturbation p, the point (x+ p) is run through the network, and the

corresponding objective value (6.1) is computed. The procedure we just described is, at a

high-level, a single iteration of our proposed IProp algorithm. We will describe the full

iterative algorithm in Section 6.4.3.

In theory, both optimization problems (6.9) and (6.10) are NP-Hard, by reduction from

the MAX-SAT problem, and thus as hard as our MIP problem of Section 6.3. However, in

practice, problems (6.9) and (6.10) are much easier to solve than the MIP of Section 6.3,

since they are smaller (involving a single hidden layer). We find that for networks with 2-5

hidden layers and 100-500 neurons, these layer-to-layer problems are solved optimally in

a few seconds by a MIP solver. It is for this reason that we view IProp as a decompo-
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sition algorithm, in that it decomposes the full-network MIP of Section 6.3 into smaller

subproblems (6.9) and (6.10).

However, the current description of IProp raises two critical questions:

1. When solving problem (6.9) at the last hidden layer, l = D, aiming to set hD,j = TD(j)

for all neurons may be overly ambitious: if ε is very small, then the target propagation is

bound to fail when problem (6.10) is solved.

2. In solving the sequence of problems (6.9), a layer l’s problem may have multiple optimal

solutions that achieve the same number of targets in layer (l + 1). What solutions should

we then prefer?

Both of the questions we raised effectively relate to the perturbation budget ε: as IProp

decomposes the attack into layer-to-layer problems (6.9) and (6.10), it is easy to lose track

of the global constraint ε, which makes many targets Tl impossible to achieve. The solutions

that we describe next make IProp ε-aware, and thus practically effective.

6.4.3 Taking small steps

To address the first question, we take inspiration from gradient optimization methods, which

take small steps as determined by a step size (or learning rate), so as to not overshoot good

solutions. When solving problem (6.9) at the last hidden layer, we restrict the summation

in the objective function to a subset of all neurons; this has the effect of only rewarding

target satisfaction up to a limit, so as to not produce overly optimistic solutions that will

not withstand the bound ε. Specifically, let p∗ denote the current incumbent perturbation,

initialized to the zero-perturbation vector. Let h∗l denote the binary activation vector of layer

l when the incumbent solution (x+p∗) is run through the BNN. At each iteration t of IProp,

we solve the sequence of problems (6.9) and then (6.10). To do so, we must specify a set

of targets for the first problem (6.9) that is solved at D. This set of targets T tD is the union

of two sets: the set I∗ = {k ∈ [r]|h∗D(k) = T (k)} of already-ideal neurons; and a small
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set Gt ⊆ {k ∈ [r]|h∗D(k) 6= T (k)} of neurons who are not at their ideal activations under

the incumbent. If S denotes the step size, then |Gt| = S for all t. In our implementation,

Gt is sampled uniformly and without replacement from all possible S-subsets of non-ideal

neurons.

Importantly, after the target T tD is specified, target propagation is performed and a poten-

tial perturbation pt is obtained and then run through the BNN. If the objective function (6.1)

improves, the incumbent p∗ is updated to pt, and so is the set I∗. In the next iteration, a new

target T t+1
D is attempted, and IProp terminates when it hits a local optimum or runs out of

time.

IProp is summarized in pseudocode above, with all intermediate optimization problems

included, and using common notation.

6.4.4 Maximal Targeting at Minimum Cost

Having presented the full IProp algorithm, we now address the second question posed at

the end of Section 6.4.2: how do we prioritize equally good solutions to problems (6.9)?

Intuitively, if two solutions T ′l and T ′′l have the same objective value, i.e. satisfy the same

number of neurons in layer (l + 1), then we would rather use the one which is “closest" to

h∗l , the binary activation vector of layer l under incumbent solution (x+ p∗). Such a solution

of minimum cost, in the sense of minimum deviation from the forward pass activations of

the incumbent, is likely to be easier to achieve when layer (l − 1)’s problem (6.9) is solved.

As a cost metric, we use the L0 distance between h∗l and the variables hl. Note that this cost

metric is used as a tie-breaker, and is incorporated into the objective of (6.9) directly with

a small multiplier, guaranteeing that the original objective of (6.9) is the first priority. We

omit this term from the IProp pseudocode above for lack of space.
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6.5 Experiments

To train the binarized neural networks for which we generate attacks, we use BNN code 1

by [32], and run training experiments on a machine equipped with a GeForce GTX 1080 Ti

GPU. We train networks with the following depth x width values: 2x100, 2x200, 2x300,

2x400, 2x500, 3x100, 4x100, 5x100. While these networks are not large by current deep

learning standards, they are larger than most networks used in recent papers [44, 99] that

leverage integer programming or SAT solving for adversarial attacks or verification. All

BNNs are trained to minimize the cross-entropy loss with “batch normalization” [66] for 100

epochs on the full 60,000 MNIST and Fashion-MNIST training images, achieving between

90–95% test accuracy on MNIST, and 80–90% on Fashion-MNIST.

For attack generation, we use the Gurobi Python API to implement and solve our MIP

problems, and an implementation of iterated PGD in PyTorch. All methods are run with a

time cutoff of 3 minutes on 1,000 test points from the MNIST dataset and 100 test points

from the Fashion-MNIST dataset. The MIP problems (6.9), (6.10) solved within IProp are

given a 10 second cutoff. All attacks are run on a cluster of 5 compute nodes, each with 64

cores and 256GB of memory. In the experiments that follow, we specify the class with the

second-highest activation (according to the trained model) on the original input as the target

class.

6.5.1 Generating Adversarial Examples

Figure 6.2 shows the fraction of MNIST and Fashion-MNIST test points that were flipped

by a given attack, for a given network (depth, width) and perturbation budget ε; a flip occurs

when the objective (6.1) is strictly positive. A higher value is better here. We compare attacks

generated using MIP, our method, and PGD on samples from MNIST. For small perturbation

budgets ε and networks, the MIP approach finds optimal attacks within the time cutoff, but

as ε and network size grow, solving the MIP becomes increasingly computationally intensive
1https://github.com/itayhubara/BinaryNet.pytorch/
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and only the best-found solution at timeout is returned. Specifically, for the 2x100 network

with ε = 0.01, the average runtime of the solver is 27 seconds (all test instances solved to

optimality), whereas the same quantity is 777 seconds for the 2x200 network for the same

value of ε. Similar behavior can be observed as ε grows, with most runs timing out at the

MIP time limit of 1800 seconds. We believe that this is largely due to the weakness of the

linear programming relaxation, as observed by [44], and perhaps the mismatch between

the kind of heuristics Gurobi implements versus what would be useful for neural network

problems such as ours.

Our method, IProp (in red bars), achieves a success rate close to the optimal MIP

performance on small networks and ε, and scales better than the MIP approach. IProp out-

performs PGD for nearly all network architectures for the three smaller ε values. The better

performance of IProp compared to PGD is of particular interest for small perturbations,

as these are more challenging to detect as attacks. Note that the inputs are in [0, 1], and so

ε = 0.005 corresponds to a 0.5% change in pixel intensity. For larger values of ε, fooling

the BNN is relatively easy, as manifested by the high bars. PGD can outperform IProp in

this easy regime since IProp is more computationally expensive. Figure 6.4, shows box

plots of the (normalized) objective value (6.1) across the different settings. Consistently

with Figure 6.2, IProp achieves higher values on average than PGD, indicating that the

IProp attacks are more effective at modifying the output-layer activations of the networks.

One might wonder about the behavior of the IProp and PGD attack methods over time,

as PGD is widely regarded as a fast, reasonably-effective attack method. Figure 6.5 shows

the relative solution quality over time for each method, averaged over MNIST samples.

It is evident that iterated PGD ceases to improve greatly after the first 30 seconds or so.

However, more effective attacks are clearly possible, and the IProp algorithm constructs

progressively stronger attacks that typically surpass the best found PGD attacks after a few

more seconds.
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Figure 6.2: Proportion of samples for which the final prediction was flipped to the target
class (y-axis) by MIP vs. PGD vs. IProp attacks with varying network architectures
(x-axis) and varying ε (left-right), on the MNIST dataset.

6.5.2 Analysis of IProp

Additionally, we investigate the effect of step size S in Line 7 of IProp (Figure 6.6).

Intuitively, using a small step size S may ensure that the target activations used in each

successive iteration are not too difficult to achieve from the current activation in layer D,

but this may also lead to multiple iterations and slow improvement over time. Another

consideration is that for small perturbation budgets ε, large changes in the layer D target

activation may propagate back to the first hidden layer, only to fail at the input layer.

Meanwhile, wider network architectures may permit the use of larger step sizes. To that

end, we devise an adaptive step size strategy (“Adaptive", red in all figures): initialized at

5% of the width of the network, the step size S is halved every 5 iterations, if no better

incumbent is found. While the hyperparameters of this strategy (initial value, decay rate

and number of iterations before decaying) may be optimized, the set of values we used

performed reasonably well, as can be seen in Figure 6.6. Indeed, for many of the settings

shown, “Adaptive" performs best or close to the best fixed “Constant" step size. Note that

previous figures showing IProp in red correspond to this very adaptive step size strategy.
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Figure 6.3: Proportion of samples for which the final prediction was flipped to the target
class (y-axis) by PGD vs. IProp attacks with varying network architectures (x-axis) and
varying ε (left-right), on the Fashion-MNIST dataset.

Figure 6.4: Summary statistics for the normalized objective value of attacks obtained by
IProp versus PGD (y-axis) with varying ε in networks with different architectures, on
MNIST.

One minor modification that highlights the flexibility of the IProp attack method is

our ability to warmstart the algorithm with an initial perturbation. For example, we used

perturbations obtained by running PGD with a time cutoff of 5 seconds as an alternative to

using no perturbation in Line 1 of IProp. Figure 6.7 shows that warm starting IProp in

this manner has the potential to significantly improve the success rate of the resulting attacks,

highlighting the value of finding good initial solutions our method, which is essentially a

combinatorial local search approach.

6.6 Conclusion & Discussion

We developed combinatorial search methods for generating adversarial examples that fool

trained Binarized Neural Networks, based on a Mixed Integer Linear Programming (MIP)

model and a target propagation-driven iterative algorithm IProp. To our knowledge, this is
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Figure 6.5: Average normalized solution objective value (y-axis) versus runtime (x-axis) for
IProp versus PGD on MNIST samples.

Figure 6.6: Proportion of MNIST samples on which the final prediction was flipped to the
target class by IProp with adaptive or constant step sizes. The adaptive step size performs
relatively well across networks of varying size and different values of ε.

Figure 6.7: Proportion of MNIST samples on which the final prediction was flipped to the
target class by IProp starting with zero perturbation or with an initial perturbation found
by running PGD for a short amount of time.

the first such integer optimization-based attack for BNNs, a type of neural networks that is

inherently discrete. Our MIP model results show that standard (PGD) attack methods often

are suboptimal in generating good adversarial examples when the perturbation budget is

limited. The ultimate goal is to “attack to protect", i.e. to generate perturbations that can be
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used during adversarial training, resulting in BNNs that are robust to a class of perturbation.

Unfortunately, our MIP model cannot be solved quickly enough to be incorporated into

adversarial training. On the other hand, through extensive experiments we have shown that

our iterative algorithm IProp is able to scale-up this solving process while maintaining

good performance compared to the PGD attack. With these contributions, we believe we

have laid the foundations for improved attacks and potentially robust training of BNNs. This

work is a good example of successful cross fertilization of ideas and methods from discrete

optimization and machine learning, a growing synergistic area of research, both in terms

of using discrete optimization for ML as was done here [47, 24, 25, 13], as well as using

ML in discrete optimization tasks [56, 113, 77, 83, 34]. We believe that target propagation

ideas such as in IProp can be potentially extended for the problem of training BNNs, a

challenging task to this day. The same can be said about hard-threshold networks, as hinted

to by [47].

We have identified the following interesting avenues for future work towards attack

generation for learning optimally robust BNNs:

– Combinatorial heuristics or approximation algorithms: we believe that the discrete nature

of the BNN may allow for the design of principled approximate attacks. Perhaps intelligent

search around the LP relaxation solution with forward/backward passes in the network

would provide a good heuristic.

– Hybrid methods: fast heuristics such as PGD can be incorporated into the MIP solver as

primal heuristics, thus potentially improving the lower bound during search.

– Hyper-parameter optimization: given the complexity of the MIP solver, it is natural to

tune its parameters for a set of instances generated from multiple training data points of

interest, as is done in [63] with great success. Such a process has the potential to produce

parameter settings that result in faster solving times, which may allow for using the MIP

solver in the training process.
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Part IV

Conclusion
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In this dissertation, we studied discrete optimization algorithms through the lens of

machine learning. Our primary goal was to improve the performance of discrete optimization

algorithms by exploiting the data generated during search and the different instances arising

from the same application domain. In the process, we have tackled multiple building blocks

of the discrete optimization solving machinery, and developed various machine learning

approaches depending on the task and data available. The results of the research contributed

towards this goal in the following ways.

First, we showed how exact solvers can benefit from learning at multiple levels. When

proving optimality is of primary interest, improving the branching strategy is key. Our

key insight here is that the variables of an integer program can be described with a rich

set of features, which in turn informs the automated design of novel branching strategies.

In an extensive set of experiments, we showed that our supervised ranking approach is

capable of learning a branching strategy that outperforms hand-designed, static rules, while

being computationally efficient. On the other hand, proving optimality may be of secondary

concern as compared to obtaining high-quality feasible solutions early in the search. To

alleviate this issue, we propose to learn more intelligent policies for deciding whether a

given heuristic should be run at each node of the search tree. Despite the challenging data

collection process, where heuristic typically rarely find improved feasible solutions, our

simple linear model is capable of better predictions of heuristic success. This translates

into more effective branch-and-bound solving: better feasible solutions are found (1) more

frequently and (2) earlier in the search, resulting in better pruning by bound and thus faster

proofs of optimality. Remarkably, we improve over the solving performance of a state-of-

the-art solver, SCIP, whose heuristic selection rules have been fine-tuned by experts over

many years. This is true on both a heterogeneous benchmark set of instances as well as a

homogeneous family of challenging independent set problems.

Second, we observe that for many real problems, a practitioner may be interested

in obtaining high-quality feasible solutions quickly, without necessitating any proofs of

116



optimality. As such, in a departure from the exact solving setting, we considered the

following problem: given a set of problem instances for training, can we learn an effective

heuristic that generalizes to unseen instances from the same distribution? For highly

structured graph optimization problems, we model construction heuristics as sequential

decision policies under the framework of reinforcement learning. This novel formulation

lends itself to a natural learning approach, in which an initially random greedy construction

policy is tuned via trial-and-error on a set of training instances. However, such an approach

is only possible when the action space– here the vertices in a graph –is appropriately

represented with predictive features. The key innovation here lies in learning features

through a highly effective graph embedding model which can capture complex non-linear

interactions between vertices of the graph. The resulting method applies across a wide

variety of combinatorial optimization problems on graphs and produces near-optimal greedy

heuristics on various synthetic and realistic graph distributions for vertex cover, maximum

cut, set cover and the traveling salesman problem. More recently, we identified limitations

with the greedy template as it applies to more general discrete problems with complex

constraints, such as hard budget constraints (i.e. knapsacks). To address this gap, we

proposed the first neural network architecture for learning (non-greedy) heuristics for

general integer programs. Our key insight is that a simple “repeated projections" algorithm

can be parametrized such that it is possible to tailor it to a given set of training instances. Our

neural network architecture combines (1) a recurrent module that can learn useful variable

representations over the course of the iterative algorithm with (2) a linear programming

module that performs the projection. The training instances are used to tune the parameters

of the recurrent module such that it predicts projection directions that result in integer

solutions quickly. When applied to generalized assignment and knapsack-like problems, the

learned heuristics vastly outperform a widely-used non-learned repeated projection heuristic.

In a transfer experiment, we show that a heuristic learned from the assignment problem still

performs remarkably well on instances from the satisfiability problem, also outperforming a
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recently proposed SAT-specific machine learning approach, while requiring many orders of

magnitude less in training instances.

Third, we explored the reverse direction of the fruitful cross-fertilization between ma-

chine learning and discrete optimization. We developed combinatorial search methods

for generating adversarial examples that fool trained Binarized Neural Networks. To our

knowledge, this is the first such integer optimization-based attack for BNNs, a type of

neural networks that is inherently discrete. Our MIP model results show that standard

gradient-based attack methods often are suboptimal in generating good adversarial examples

when the perturbation budget is limited. The ultimate goal is to “attack to protect", i.e. to

generate perturbations that can be used during adversarial training, resulting in BNNs that

are robust to a class of perturbation. Through extensive experiments, we have shown that

our combinatorial algorithm is able to scale-up the attack process while maintaining good

performance compared to the gradient attack. With these contributions, we believe we have

laid the foundations for improved attacks and potentially robust training of BNNs and other

discrete neural network models.

We believe that this dissertation has contributed substantially to the body of knowledge

in the area at the intersection of machine learning and discrete optimization. The main

driver for this work has been the belief that improved decision-making via computational

optimization can bring value to society. The power of appropriately designed machine

learning models has been fundamentally transformative in achieving this goal. However, we

have taken special care in deeply integrating learning within existing discrete optimization

approaches. Such approaches, mostly developed in the Operations Research community, are

generally the results of beautiful theoretical and empirical insights, which we have managed

to build on and improve over by adopting the perspective of learning-driven algorithm

design.
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APPENDIX A

ADDITIONAL EXPERIMENTS FOR CHAPTER 4

A.1 Set Covering Problem

We also applied our framework to the classical Set Covering Problem (SCP). SCP is

interesting because it is not a graph problem, but can be formulated as one. Our framework

is capable of addressing such problems seamlessly, as we will show in the coming sections

of the appendix which detail the performance of S2V-DQN as compared to other methods.

Set Covering Problem (SCP): Given a bipartite graph G with node set V := U ∪ C,

find a subset of nodes S ⊆ C such that every node in U is covered, i.e. u ∈ U ⇔ ∃s ∈ S s.t.

(u, s) ∈ E, and |S| is minimized. Note that an edge (u, s), u ∈ U , s ∈ C, exists whenever

subset s includes element u.

Meta-algorithm: Same as MVC; the termination criterion checks whether all nodes in

U have been covered.

RL formulation: In SCP, the state is a function of the subset of nodes of C selected so

far; an action is to add node of C to the partial solution; the reward is -1; the termination

criterion is met when all nodes of U are covered; no helper function is needed.

Baselines for SCP: We include Greedy, which iteratively selects the node of C that is

not in the current partial solution and that has the most uncovered neighbors in U [80]. We

also used LP, another O(log |U|)-approximation that solves a linear programming relaxation

of SCP, and rounds the resulting fractional solution in decreasing order of variable values

(SortLP-1 in [108]).
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A.2 Experimental Results on Realistic Data

In this section, we show results on realistic nstances for all four problems. In particular, for

MVC and SCP, we used the MemeTracker graph to formulate network diffusion optimization

problems. For MAXCUT and TSP, we used benchmark instances that arise in physics and

transportation, respectively.

A.2.1 Minimum Vertex Cover

As mentioned in the introduction, the MVC problem is related to the efficient spreading of

information in networks, where one wants to cover as few nodes as possible such that all

nodes have at least one neighbor in the cover. The MemeTracker graph 1 is a network of

who-copies-whom, where nodes represent news sites or blogs, and a (directed) edge from u

to v means that v frequently copies phrases (or memes) from u. The network is learned from

real traces in [51], having 960 nodes and 5000 edges. The dataset also provides the average

transmission time ∆u,v between a pair of nodes, i.e. how much later v copies u’s phrases

after their publication online, on average. As done in [74], we use these average transmission

times to compute a diffusion probability P (u, v) on the edge, such that P (u, v) = α · 1

∆u,v

,

where α is a parameter of the diffusion model. In both MVC and SCP, we use α = 0.1,

but results are consistent for other values we have considered. For pairs of nodes that have

edges in both directions, i.e. (u, v) and (v, u), we take the average probability to obtain an

undirected version of the graph, as MVC is defined for undirected graphs.

Following the widely-adopted Independent Cascade model (see [41] for example), we

sample a diffusion cascade from the full graph by independently keeping an edge with

probability P (u, v). We then consider the largest connected component in the graph as a

single training instance, and train S2V-DQN on a set of such sampled diffusion graphs. The

aim is to test the learned model on the (undirected version of the) full MemeTracker graph.

Experimentally, an optimal cover has 473 nodes, whereas S2V-DQN finds a cover
1http://snap.stanford.edu/netinf/#data
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with 474 nodes, only one more than the optimum, at an approximation ratio of 1.002. In

comparison, MVCApprox and MVCApprox-Greedy find much larger covers with 666 and

578 nodes, at approximation ratios of 1.408 and 1.222, respectively.

A.2.2 Maximum Cut

A library of Maximum Cut instances is publicly available 2, and includes synthetic and

realistic instances that are widely used in the optimization community (see references at

library website). We perform experiments on a subset of the instances available, namely

ten problems from Ising spin glass models in physics, given that they are realistic and

manageable in size (the first 10 instances in Set2 of the library). All ten instances have 125

nodes and 375 edges, with edge weights in {−1, 0, 1}.

To train our S2V-DQN model, we constructed a training dataset by perturbing the

instances, adding random Gaussian noise with mean 0 and standard deviation 0.01 to the

edge weights. After training, the learned model is used to construct a cut-set greedily on

each of the ten instances, as before.

Table A.1 shows that S2V-DQN finds near-optimal solutions (optimal in 3/10 instances)

that are much better than those found by competing methods.

A.2.3 Traveling Salesman Problem

We use the standard TSPLIB library [110] which is publicly available 3. We target 38

TSPLIB instances with sizes ranging from 51 to 318 cities (or nodes). We do not tackle

larger instances as we are limited by the memory of a single graphics card. Nevertheless,

most of the instances addressed here are larger than the largest instance used in [19].

We apply S2V-DQN in “Active Search" mode, similarly to [19]: no upfront training

phase is required, and the reinforcement learning algorithm 1 is applied on-the-fly on each

instance. The best tour encountered over the episodes of the RL algorithm is stored.

2http://www.optsicom.es/maxcut/#instances
3http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html
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Table A.1: MAXCUT results on the ten instances described in A.2.2; values reported are
cut weights of the solution returned by each method, where larger values are better (best in
bold). Bottom row is the average approximation ratio (lower is better).

Instance OPT S2V-DQN MaxcutApprox SDP

G54100 110 108 80 54
G54200 112 108 90 58
G54300 106 104 86 60
G54400 114 108 96 56
G54500 112 112 94 56
G54600 110 110 88 66
G54700 112 108 88 60
G54800 108 108 76 54
G54900 110 108 88 68
G5410000 112 108 80 54

Approx. ratio 1 1.02 1.28 1.90

Table A.2 shows the results of our method and six other TSP algorithms. On all but three

instances, S2V-DQN finds the best tour among all methods, and is second-best to 2-opt in

those three cases. The average approximation ratio of S2V-DQN is also the smallest at 1.05.

A.2.4 Set Covering Problem

The SCP is also related to the diffusion optimization problem on graphs; for instance, the

proof of hardness in the classical [73] paper uses SCP for the reduction. As in MVC, we

leverage the MemeTracker graph, albeit differently.

We use the same cascade model as in MVC to assign the edge probabilities, and sample

graphs from it in the same way. LetRG(u) be the set of nodes reachable from u in a sampled

graph G. For every node u in G, there are two corresponding nodes in the SCP instance,

uC ∈ C and uU ∈ U . An edge exists between uC ∈ C and vU ∈ U if and only if v ∈ RG(u).

In other words, each node in the sampled graph G has a set consisting of the other nodes

that it can reach in G. As such, the SCP reduces to finding the smallest set of nodes whose

union can reach all other nodes. We generate training and testing graphs according to this

same process, with α = 0.1.

Experimentally, we test S2V-DQN and the other baseline algorithms on a set of 1000 test
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Table A.2: TSPLIB results: Instances are sorted by increasing size, with the number at the
end of an instance’s name indicating its size. Values reported are the cost of the tour found
by each method (lower is better, best in bold). Bottom row is the average approximation
ratio (lower is better).

Instance OPT S2V-DQN 2-opt Cheapest Christofides Closest Nearest MST

eil51 426 439 446 494 527 488 511 614
berlin52 7,542 7,542 7,788 9,013 8,822 9,004 8,980 10,402
st70 675 696 753 776 836 814 801 858
eil76 538 564 591 607 646 615 705 743
pr76 108,159 108,446 115,460 125,935 137,258 128,381 153,462 133,471
rat99 1,211 1,280 1,390 1,473 1,399 1,465 1,558 1,665
kroA100 21,282 21,897 22,876 24,309 26,578 25,787 26,854 30,516
kroB100 22,141 22,692 23,496 25,582 25,714 26,875 29,158 28,807
kroC100 20,749 21,074 23,445 25,264 24,582 25,640 26,327 27,636
kroD100 21,294 22,102 23,967 25,204 27,863 25,213 26,947 28,599
kroE100 22,068 22,913 22,800 25,900 27,452 27,313 27,585 30,979
rd100 7,910 8,159 8,757 8,980 10,002 9,485 9,938 10,467
eil101 629 659 702 693 728 720 817 847
lin105 14,379 15,023 15,536 16,930 16,568 18,592 20,356 21,167
pr107 44,303 45,113 47,058 52,816 49,192 52,765 48,521 55,956
pr124 59,030 61,623 64,765 65,316 64,591 68,178 69,297 82,761
bier127 118,282 121,576 128,103 141,354 135,134 145,516 129,333 153,658
ch130 6,110 6,270 6,470 7,279 7,367 7,434 7,578 8,280
pr136 96,772 99,474 110,531 109,586 116,069 105,778 120,769 142,438
pr144 58,537 59,436 60,321 73,032 74,684 73,613 61,652 77,704
ch150 6,528 6,985 7,232 7,995 7,641 7,914 8,191 9,203
kroA150 26,524 27,888 29,666 29,963 32,631 31,341 33,612 38,763
kroB150 26,130 27,209 29,517 31,589 33,260 31,616 32,825 35,289
pr152 73,682 75,283 77,206 88,531 82,118 86,915 85,699 90,292
u159 42,080 45,433 47,664 49,986 48,908 52,009 53,641 54,399
rat195 2,323 2,581 2,605 2,806 2,906 2,935 2,753 3,163
d198 15,780 16,453 16,596 17,632 19,002 17,975 18,805 19,339
kroA200 29,368 30,965 32,760 35,340 37,487 36,025 35,794 40,234
kroB200 29,437 31,692 33,107 35,412 34,490 36,532 36,976 40,615
ts225 126,643 136,302 138,101 160,014 145,283 151,887 152,493 188,008
tsp225 3,916 4,154 4,278 4,470 4,733 4,780 4,749 5,344
pr226 80,369 81,873 89,262 91,023 98,101 100,118 94,389 114,373
gil262 2,378 2,537 2,597 2,800 2,963 2,908 3,211 3,336
pr264 49,135 52,364 54,547 57,602 55,955 65,819 58,635 66,400
a280 2,579 2,867 2,914 3,128 3,125 2,953 3,302 3,492
pr299 48,191 51,895 54,914 58,127 58,660 59,740 61,243 65,617
lin318 42,029 45,375 45,263 49,440 51,484 52,353 54,019 60,939
linhp318 41,345 45,444 45,263 49,440 51,484 52,353 54,019 60,939

Approx. ratio 1 1.05 1.09 1.18 1.20 1.21 1.24 1.37
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graphs. S2V-DQN achieves an average approximation ratio of 1.001, only slightly behind

LP, which achieves 1.0009, and well ahead of Greedy at 1.03.

A.3 Experiment Details

A.3.1 Problem instance generation

Minimum Vertex Cover. For the Minimum Vertex Cover (MVC) problem, we generate

random Erdős-Renyi (edge probability 0.15) and Barabasi-Albert (average degree 4) graphs

of various sizes, and use the integer programming solver CPLEX 12.6.1 with a time cutoff

of 1 hour to compute optimal solutions for the generated instances. When CPLEX fails to

find an optimal solution, we report the best one found within the time cutoff as “optimal".

All graphs were generated using the NetworkX 4 package in Python. Maximum Cut. For

the Maximum Cut (MAXCUT) problem, we use the same graph generation process as in

MVC, and augment each edge with a weight drawn uniformly at random from [0, 1]. We

use a quadratic formulation of MAXCUT with CPLEX 12.6.1. and a time cutoff of 1 hour

to compute optimal solutions, and report the best solution found as “optimal". Traveling

Salesman Problem.

For the (symmetric) 2-dimensional TSP, we use the instance generator of the 8th DI-

MACS Implementation Challenge 5 [69] to generate two types of Euclidean instances:

“random" instances consist of n points scattered uniformly at random in the [106, 106]

square, while “clustered" instances consist of n points that are clustered into n/100 clusters;

generator details are described in page 373 of [69].

To compute optimal TSP solutions for both TSP, we use the state-of-the-art solver,

Concorde 6 [15], with a time cutoff of 1 hour.

Set Covering Problem. For the SCP, given a number of node n, roughly 0.2n nodes

are in node-set C, and the rest in node-set U . An edge between nodes in C and U exists

4https://networkx.github.io/
5http://dimacs.rutgers.edu/Challenges/TSP/
6http://www.math.uwaterloo.ca/tsp/concorde/
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with probability either 0.05 or 0.1, which can be seen as “density" values, and commonly

appear for instances used in optimization papers on SCP [17]. We guarantee that each node

in U has at least 2 edges, and each node in C has at least one edge, a standard measure for

SCP instances [17]. We also use CPLEX 12.6.1. with a time cutoff of 1 hour to compute a

near-optimal or optimal solution to a SCP instance.

A.3.2 Full results on solution quality

Table A.1 is a complete version of Table 4.2 that appears in the main text.

A.3.3 Full results on generalization

The full generalization results can be found in Table A.3, A.4, A.5, A.6, A.7, A.8 , A.9

and A.10.

Table A.3: S2V-DQN’s generalization on MVC problem in ER graphs.

Train
Test

15-20 40-50 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200

15-20 1.0032 1.0883 1.0941 1.0710 1.0484 1.0365 1.0276 1.0246 1.0111
40-50 1.0037 1.0076 1.1013 1.0991 1.0800 1.0651 1.0573 1.0299

50-100 1.0079 1.0304 1.0570 1.0532 1.0463 1.0427 1.0238
100-200 1.0102 1.0095 1.0136 1.0142 1.0125 1.0103
400-500 1.0021 1.0027 1.0057

Table A.4: S2V-DQN’s generalization on MVC problem in BA graphs.

Train
Test

15-20 40-50 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200

15-20 1.0016 1.0027 1.0039 1.0066 1.0093 1.0106 1.0125 1.0150 1.0491
40-50 1.0027 1.0051 1.0092 1.0130 1.0144 1.0161 1.0170 1.0228

50-100 1.0033 1.0041 1.0045 1.0040 1.0045 1.0048 1.0062
100-200 1.0016 1.0020 1.0019 1.0021 1.0026 1.0060
400-500 1.0025 1.0026 1.0030

A.3.4 Experiment Configuration of S2V-DQN

The node/edge representations and hyperparameters used in our experiments is shown in

Table A.11. For our method, we simply tune the hyperparameters on small graphs (i.e., the
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Table A.5: S2V-DQN’s generalization on MAXCUT problem in ER graphs.

Train
Test

15-20 40-50 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200

15-20 1.0034 1.0167 1.0407 1.0667 1.1067 1.1489 1.1885 1.2150 1.1488
40-50 1.0127 1.0154 1.0089 1.0198 1.0383 1.0388 1.0384 1.0534

50-100 1.0112 1.0024 1.0109 1.0467 1.0926 1.1426 1.1297
100-200 1.0005 1.0021 1.0211 1.0373 1.0612 1.2021
200-300 1.0106 1.0272 1.0487 1.0700 1.1759

Table A.6: S2V-DQN’s generalization on MAXCUT problem in BA graphs.

Train
Test

15-20 40-50 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200

15-20 1.0055 1.0119 1.0176 1.0276 1.0357 1.0386 1.0335 1.0411 1.0331
40-50 1.0107 1.0119 1.0139 1.0144 1.0119 1.0039 1.0085 0.9905

50-100 1.0150 1.0181 1.0202 1.0188 1.0123 1.0177 1.0038
100-200 1.0166 1.0183 1.0166 1.0104 1.0166 1.0156
200-300 1.0420 1.0394 1.0290 1.0319 1.0244

Table A.7: S2V-DQN’s generalization on TSP in random graphs.

Train
Test

15-20 40-50 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200

15-20 1.0147 1.0511 1.0702 1.0913 1.1022 1.1102 1.1124 1.1156 1.1212
40-50 1.0533 1.0701 1.0890 1.0978 1.1051 1.1583 1.1587 1.1609

50-100 1.0701 1.0871 1.0983 1.1034 1.1071 1.1101 1.1171
100-200 1.0879 1.0980 1.1024 1.1056 1.1080 1.1142
200-300 1.1049 1.1090 1.1084 1.1114 1.1179

Table A.8: S2V-DQN’s generalization on TSP in clustered graphs.

Train
Test

15-20 40-50 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200

15-20 1.0214 1.0591 1.0761 1.0958 1.0938 1.0966 1.1009 1.1012 1.1085
40-50 1.0564 1.0740 1.0939 1.0904 1.0951 1.0974 1.1014 1.1091

50-100 1.0730 1.0895 1.0869 1.0918 1.0944 1.0975 1.1065
100-200 1.1009 1.0979 1.1013 1.1059 1.1048 1.1091
200-300 1.1012 1.1049 1.1080 1.1067 1.1112

Table A.9: S2V-DQN’s generalization on SCP with edge probability 0.05.

Train
Test

15-20 40-50 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200

15-20 1.0055 1.0170 1.0436 1.1757 1.3910 1.6255 1.8768 2.1339 3.0574

40-50 1.0039 1.0083 1.0241 1.0452 1.0647 1.0792 1.0858 1.0775

50-100 1.0056 1.0199 1.0382 1.0614 1.0845 1.0821 1.0620

100-200 1.0147 1.0270 1.0417 1.0588 1.0774 1.0509

200-300 1.0273 1.0415 1.0828 1.1357 1.2349
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Figure A.1: Approximation ratio on 1000 test graphs. Note that on MVC, our performance
is pretty close to optimal. In this figure, training and testing graphs are generated according
to the same distribution.

graphs with less than 50 nodes), and fix them for larger graphs.

128



Table A.10: S2V-DQN’s generalization on SCP with edge probability 0.1.

Train
Test

15-20 40-50 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200

15-20 1.0015 1.0200 1.0369 1.0795 1.1147 1.1290 1.1325 1.1255 1.0805

40-50 1.0048 1.0137 1.0453 1.0849 1.1055 1.1052 1.0958 1.0618

50-100 1.0090 1.0294 1.0771 1.1180 1.1456 1.2161 1.0946

100-200 1.0231 1.0394 1.0564 1.0702 1.0747 2.5055

200-300 1.0378 1.0517 1.0592 1.0556 1.3192

Table A.11: S2V-DQN’s configuration used in Experiment.

Problem Node tag Edge feature Embedding size p T Batch size n-step
Minimum Vertex Cover 0/1 tag N/A 64 5 128 5

Maximum Cut 0/1 tag edge length; end node tag 64 3 64 1
Traveling Salesman Problem coordinates; 0/1 tag; start/end node edge length; end node tag 64 4 64 1

Set Covering Problem 0/1 tag N/A 64 5 64 2

A.3.5 Stabilizing the training of S2V-DQN

For the learning rate, we use exponential decay after a certain number of steps, where the

decay factor is fixed to 0.95. We also anneal the exploration probability ε from 1.0 to 0.05

in a linear way.

We also normalize the intermediate reward by the maximum number of nodes. For

Q-learning, it is also important to disentangle the actual Q with obsolete Q̃, as mentioned

in [97].

Also for TSP with insertion helper function, we find it works better with negative version

of designed reward function. This sounds counter intuitive at the beginning. However, since

typically the RL agent will bias towards most recent rewards, flipping the sign of reward

function suggests a focus over future rewards. This is especially useful with the insertion

construction. But it shows that designing a good reward function is still challenging for

learning combinatorial algorithm, which we will investigate in our future work.

A.3.6 Convergence of S2V-DQN

In Figure A.2, we plot our algorithm’s convergence with respect to the held-out validation

performance. We first obtain the convergence curve for each type of problem under every
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graph distribution. To visualize the convergence at the same scale, we plot the approximate

ratio.

Figure A.2 shows that our algorithm converges nicely on the MVC, MAXCUT and

SCP problems. For the MVC, we use the model trained on small graphs to initialize the

model for training on larger ones. Since our model also generalizes well to problems with

different sizes, the curve looks almost flat. For TSP, where the graph is essentially fully

connected, it is harder to learn a good model based on graph structure. Nevertheless, as

shown in previous section, the graph embedding can still learn good feature representations

with multiple embedding iterations.

A.3.7 Complete time v/s approximation ratio plots

Figure A.3 is a superset of Figure 4.3, including both graph types and three graph size ranges

for MVC, MAXCUT and SCP. In this figure A.3, each dot represents a solution found for a

single problem instance. For CPLEX, we also record the time and quality of each solution it

finds. For example, CPLEX-1st means the first feasible solution found by CPLEX.

A.3.8 Additional analysis of the trade-off between time and approx. ratio

Tables A.12 and A.13 offer another perspective on the trade-off between the running time of

a heuristic and the quality of the solution it finds. We ran CPLEX for MVC and MAXCUT

for 10 minutes on the 200-300 node graphs, and recorded the time and value of all the

solutions found by CPLEX within the limit; results shown next carry over to smaller graphs.

Then, for a given method M that terminates in T seconds on a graph G and returns a solution

with approximation ratio R, we asked the following 2 questions:

1. If CPLEX is given the same amount of time T for G, how well can CPLEX do?

2. How long does CPLEX need to find a solution of same or better quality than the one the

heuristic has found?
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For the first question, the column “Approx. Ratio of Best Solution" in Tables A.12 and A.13

shows the following:

– MVC (Table A.12): The larger values for S2V-DQN imply that solutions we find quickly

are of higher quality, as compared to the MVCApprox/Greedy baselines.

– MAXCUT (Table A.13): On most of the graphs, CPLEX cannot find any solution at all if

given the same time as S2V-DQN or MaxcutApprox. SDP (solved with state-of-the-art

CVX solver) is so slow that CPLEX finds solutions that are 10% better than those of

SDP if given the same time as SDP (on ER graphs), which confirms that SDP is not

time-efficient. One possible interpretation of the poor performance of SDP is that its

theoretical guaranteed of 0.87 is in expectation over the solutions it can generate, and so

the variance in the approximation ratios of these solutions may be very large.

For the second question, the column “Additional Time Needed" in Tables A.12 and A.13

shows the following:

– MVC (Table A.12): The larger values for S2V-DQN imply that solutions we find are

harder to improve upon, as compared to the MVCApprox/Greedy baselines.

– MAXCUT (Table A.13): On ER (BA) graphs, CPLEX (10 minute-cutoff) cannot find

a solution that is better than those of S2V-DQN or MaxcutApprox on many instances

(e.g. the value (59) for S2V-DQN on ER graphs means that on 41 = 100 − 59 graphs,

CPLEX could not find a solution that is as good as S2V-DQN’s). When we consider only

those graphs for which CPLEX could find a better solution, S2V-DQN’s solutions take

significantly more time for CPLEX to beat, as compared to MaxcutApprox and SDP. The

negative values for SDP indicate that CPLEX finds a solution better than SDP’s in a shorter

time.
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Table A.12: Minimum Vertex Cover (100 graphs with 200-300 nodes): Trade-off between
running time and approximation ratio. An “Approx. Ratio of Best Solution" value of 1.x%
means that the solution found by CPLEX if given the same time as a certain heuristic (in the
corresponding row) is x% worse, on average. “Additional Time Needed" in seconds is the
additional amount of time needed by CPLEX to find a solution of value at least as good as
the one found by a given heuristic; negative values imply that CPLEX finds such solutions
faster than the heuristic does. Larger values are better for both metrics. The values in
parantheses are the number of instances (out of 100) for which CPLEX finds some solution
in the given time (for “Approx. Ratio of Best Solution"), or finds some solution that is at
least as good as the heuristic’s (for “Additional Time Needed").

Approx. Ratio of Best Solution Additional Time Needed
ER BA ER BA

S2V-DQN 1.09 (100) 1.81 (100) 2.14 (100) 137.42 (100)

MVCApprox-Greedy 1.07 (100) 1.44 (100) 1.92 (100) 0.83 (100)

MVCApprox 1.03 (100) 1.24 (98) 2.49 (100) 0.92 (100)

Table A.13: Maximum Cut (100 graphs with 200-300 nodes): please refer to the caption of
Table A.12.

Approx. Ratio of Best Solution Additional Time Needed
ER BA ER BA

S2V-DQN N/A (0) 1081.45 (1) 8.99 (59) 402.05 (34)

MaxcutApprox 1.00 (48) 340.11 (3) -0.23 (50) 218.19 (57)

SDP 0.90 (100) 0.84 (100) -6.06 (100) -5.54 (100)
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A.3.9 Visualization of solutions

In Figure A.4, A.5 and A.6, we visualize solutions found by our algorithm for MVC,

MAXCUT and TSP problems, respectively. For the ease of presentation, we only visualize

small-size graphs. For MVC and MAXCUT, the graph is of the ER type and has 18 nodes.

For TSP, we show solutions for a “random" instance (18 points) and a “clustered" one (15

points).

For MVC and MAXCUT, we show two step by step examples where S2V-DQN finds

the optimal solution. For MVC, it seems we are picking the node which covers the most

edges in the current state. However, in a more detailed visualization in Appendix A.3.10,

we show that our algorithm learns a smarter greedy or dynamic programming like strategy.

While picking the nodes, it also learns how to keep the connectivity of graph by scarifying

the intermediate edge coverage a little bit.

In the example of MAXCUT, it is even more interesting to see that the algorithm did

not pick the node which gives the largest intermediate reward at the beginning. Also in the

intermediate steps, the agent seldom chooses a node which would cancel out the edges that

are already in the cut set. This also shows the effectiveness of graph state representation,

which provides useful information to support the agent’s node selection decisions. For TSP,

we visualize an optimal tour and one found by S2V-DQN for two instances. While the

tours found by S2V-DQN differ slightly from the optimal solutions visualized, they are of

comparable cost and look qualitatively acceptable. The cost of the tours found by S2V-DQN

is within 0.07% and 0.5% of optimum, respectively.

A.3.10 Detailed visualization of learned MVC strategy

In Figure A.7, we show a detailed comparison with our learned strategy and two other

simple heuristics. We find that the S2V-DQN can learn a much smarter strategy, where the

agent is trying to maintain the connectivity of graph during node picking and edge removal.
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A.3.11 Experiment Configuration of PN-AC

We implemented PN-AC to the best of our capabilities. Note that it is quite possible that

there are minor differences between our implementation and [19] that might have resulted

in performance not as good as reported in that paper.

For experiments of PN-AC across all tasks, we follow the configurations provided

in [19]: a) For the input data, we use mini-batches of 128 sequences with 0-paddings to the

maximal input length (which is the maximal number of nodes) in the training data. b) For

node representation, we use coordinates for TSP, so the input dimension is 2. For MVC,

MAXCUT and SCP, we represent nodes based on the adjacency matrix of the graph. To get a

fixed dimension representation for each node, we use SVD to get a low-rank approximation

of the adjacency matrix. We set the rank as 8, so that each node in the input sequence

is represented by a 8-dimensional vector. c) For the network structure, we use standard

single-layer LSTM cells with 128 hidden units for both encoder and decoder parts of the

pointer networks. d) For the optimization method, we train the PN-AC model with the Adam

optimizer [79] and use an initial learning rate of 10−3 that decay every 5000 steps by a factor

of 0.96. e) For the glimpse trick, we exactly use one-time glimpse in our implementation, as

described in the original PN-AC paper. f ) We initialize all the model parameters uniformly

random within [−0.08, 0.08] and clip the L2 norm of the gradients to 1.0. g) For the baseline

function in the actor-critic algorithm, we tried the critic network in our implementation, but

it hurts the performance according to our experiments. So we use the exponential moving

average performance of the sampled solution from the pointer network as the baseline.

Consistency with the results from [19] Though our TSP experiment setting is not

exactly the same as [19], we still include some of the results directly here, for the sake

of completeness. We applied the insertion heuristic to PN-AC as well, and all the results

reported in our paper are with the insertion heuristic. We compare the approximation ratio

reported by [19] verses which reported by our implementation. For TSP20: 1.02 vs 1.03

(reported in our paper); TSP50: 1.05 vs 1.07 (reported in our paper); TSP100: 1.07 vs 1.09
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(reported in our paper). Note that we have variable graph size in each setting (where the

original PN-AC is only reported on fixed graph size), which makes the task more difficult.

Therefore, we think the performance gap here is pretty reasonable.
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Figure A.2: S2V-DQN convergence measured by the held-out validation performance.

136



10 4 10 3 10 2 10 1 100 101 102 103

Time (s)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Ap
pr

ox
 R

at
io

MVC Erdos-Renyi

S2V-DQN
MVCApprox-Greedy
MVCApprox
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th

10 4 10 3 10 2 10 1 100 101 102 103

Time (s)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Ap
pr

ox
 R

at
io

MVC Erdos-Renyi

S2V-DQN
MVCApprox-Greedy
MVCApprox
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th

10 4 10 3 10 2 10 1 100 101 102 103

Time (s)

1.000

1.025

1.050

1.075

1.100

1.125

1.150

1.175

1.200

Ap
pr

ox
 R

at
io

MVC Erdos-Renyi

S2V-DQN
MVCApprox-Greedy
MVCApprox
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th

(a) MVC ER 50-100 (b) MVC ER 100-200 (c) MVC ER 200-300

10 4 10 3 10 2 10 1 100 101 102 103

Time (s)

1.0

1.2

1.4

1.6

1.8

Ap
pr

ox
 R

at
io

MVC Barabasi-Albert

S2V-DQN
MVCApprox-Greedy
MVCApprox
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th

10 4 10 3 10 2 10 1 100 101 102 103

Time (s)

1.0

1.2

1.4

1.6

1.8

Ap
pr

ox
 R

at
io

MVC Barabasi-Albert

S2V-DQN
MVCApprox-Greedy
MVCApprox
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th

10 4 10 3 10 2 10 1 100 101 102 103

Time (s)

1.0

1.2

1.4

1.6

1.8

2.0

Ap
pr

ox
 R

at
io

MVC Barabasi-Albert

S2V-DQN
MVCApprox-Greedy
MVCApprox
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th

(d) MVC BA 50-100 (e) MVC BA 100-200 (f) MVC BA 200-300

10 1 100 101 102 103

Time (s)

1.00

1.05

1.10

1.15

1.20

Ap
pr

ox
 R

at
io

Maxcut Erdos-Renyi

S2V-DQN
MaxcutApprox
SDP
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th
CPLEX-5th

10 1 100 101 102

Time (s)

1.00

1.05

1.10

1.15

1.20

Ap
pr

ox
 R

at
io

Maxcut Erdos-Renyi

S2V-DQN
MaxcutApprox
SDP
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th
CPLEX-5th

100 101 102

Time (s)

0.975

1.000

1.025

1.050

1.075

1.100

1.125

Ap
pr

ox
 R

at
io

Maxcut Erdos-Renyi

S2V-DQN
MaxcutApprox
SDP
CPLEX-1st
CPLEX-2nd
CPLEX-3rd

(g) MAXCUT ER 50-100 (h) MAXCUT ER 100-200 (i) MAXCUT ER 200-300

10 2 10 1 100 101 102 103

Time (s)

1.00

1.05

1.10

1.15

1.20

1.25

Ap
pr

ox
 R

at
io

Maxcut Barabasi-Albert

S2V-DQN
MaxcutApprox
SDP
CPLEX-1st
CPLEX-2nd
CPLEX-3rd

10 1 100 101 102 103

Time (s)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Ap
pr

ox
 R

at
io

Maxcut Barabasi-Albert

S2V-DQN
MaxcutApprox
SDP
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th
CPLEX-5th

100 101 102 103

Time (s)

1.00

1.05

1.10

1.15

1.20

1.25

1.30
Ap

pr
ox

 R
at

io
Maxcut Barabasi-Albert

S2V-DQN
MaxcutApprox
SDP
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th
CPLEX-5th

(j) MAXCUT BA 50-100 (k) MAXCUT BA 100-200 (l) MAXCUT BA 200-300

10 4 10 3 10 2 10 1 100 101 102 103

Time (s)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Ap
pr

ox
 R

at
io

SCP 0.05

S2V-DQN
Greedy
LP
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th

10 4 10 3 10 2 10 1 100 101 102 103

Time (s)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Ap
pr

ox
 R

at
io

SCP 0.05

S2V-DQN
Greedy
LP
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th

10 4 10 3 10 2 10 1 100 101 102 103

Time (s)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Ap
pr

ox
 R

at
io

SCP 0.05

S2V-DQN
Greedy
LP
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th

(m) SCP 0.05 50-100 (n) SCP 0.05 100-200 (o) SCP 0.05 200-300

10 4 10 3 10 2 10 1 100 101 102 103

Time (s)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Ap
pr

ox
 R

at
io

SCP 0.1

S2V-DQN
Greedy
LP
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th

10 4 10 3 10 2 10 1 100 101 102 103

Time (s)

1.0

1.5

2.0

2.5

3.0

Ap
pr

ox
 R

at
io

SCP 0.1

S2V-DQN
Greedy
LP
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th

10 4 10 3 10 2 10 1 100 101 102 103

Time (s)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ap
pr

ox
 R

at
io

SCP 0.1

S2V-DQN
Greedy
LP
CPLEX-1st
CPLEX-2nd
CPLEX-3rd
CPLEX-4th

(p) SCP 0.1 50-100 (q) SCP 0.1 100-200 (r) SCP 0.1 200-300

Figure A.3: Time-approximation trade-off for MVC, MAXCUT and SCP.
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Figure A.4: Minimum Vertex Cover: an optimal solution to an ER graph instance found by
S2V-DQN. Selected node in each step is colored in orange, and nodes in the partial solution
up to that iteration are colored in black. Newly covered edges are in thick green, previously
covered edges are in red, and uncovered edges in black. We show that the agent is not only
picking the node with large degree, but also trying to maintain the connectivity after removal
of the covered edges. For more detailed analysis, please see Appendix A.3.10.

Figure A.5: Maximum Cut: an optimal solution to ER graph instance found by S2V-DQN.
Nodes are partitioned into two sets: white or black nodes. At each iteration, the node
selected to join the set of black nodes is highlighted in orange, and the new cut edges it
produces are in green. Cut edges from previous iteration are in red (Best viewed in color). It
seems the agent will try to involve the nodes that won’t cancel out the edges in current cut
set.

Figure A.6: Traveling Salesman Problem. Left: optimal tour to a “random" instance with 18
points (all edges are red), compared to a tour found by our method next to it. For our tour,
edges that are not in the optimal tour are shown in green. Our tour is 0.07% longer than an
optimal tour. Right: a “clustered" instance with 15 points; same color coding as left figure.
Our tour is 0.5% longer than an optimal tour. (Best viewed in color).
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Figure A.7: Step-by-step comparison between our S2V-DQN and two greedy heuristics. We
can see our algorithm will also favor the large degree nodes, but it will also do something
smartly: instead of breaking the graph into several disjoint components, our algorithm will
try the best to keep the graph connected.
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