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SUMMARY

Traditionally, robotic systems are built to move as fast as possible. In contrast

to this, we investigate slowness and its effects on heterogeneous robotic teams inspired by

biological systems. An assignment problem for static targets and a team pursuit problem

for heterogeneous evaders are addressed. The value of slowness in solving these problems

optimally is examined. We further assemble the optimal teams for given problems by finding

a compromise between performance and energy consumption or monetary cost. The results

are validated in simulation and implemented on a robotic testbed.
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Chapter I

INTRODUCTION

Robotic teams are groups of robots that are designed to solve tasks cooperatively. The

advent of high performance miniaturized hardware and the maturity of control algorithms

have given rise to this recent field of research.

For decades, technical systems have been developed to complete tasks faster and faster.

Examples for this can be found in the production of new industrial manipulators [8], the

evolution of the automobile [40] or the development of quadrupedal sprinting robots [57].

The advantages of this development are clear: faster execution means being able to execute

more tasks in the same time (e.g. assembly tasks), easier satisfaction of time constraints (in

search and rescue scenarios) and better interaction with other fast systems (like the control

of fast chemical reactions).

In light of these facts, it is remarkable that examples of the complete opposite can be

found in nature. The existence of species like the sloth suggests that sometimes it is beneficial

to be slow instead of fast, considering that natural selection should have eradicated them

otherwise. For the same reason, it appears as if there should be some value or at least no

harm in the coexistence of fast and slow animals in an ecosystem. Under some circumstances,

slowness can open an ecological niche that is inaccessible to faster lifestyles, leading to better

utilization of the available resources.

In this thesis, we will combine these two arguments to make an approach towards hetero-

geneous robotics with an emphasis on slow participants in networked systems. We investigate

two problems: the optimal assignment of robotic agents to target positions with respect to

task completion time and energy consumption and a robotic pursuit problem of a heteroge-

neous team of moving target robots. First, some of the concepts and previous work on the

topics are introduced.
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1.1 Biologically Inspired Heterogeneity

In nature, heterogeneity – usually referred to as biodiversity – can be found almost ev-

erywhere [29, 21, 13]. The fact that heterogeneity is the outcome of millions of years of

evolution by natural selection leads us to believe that there has to be an inherent utility in

the variation of properties among coexisting species. Further, we can observe heterogeneity

even within societies of one species. A prominent example of a species that shows hetero-

geneity are leaf-cutter ants, which have developed a system of caste and division of labor

[58]. Another obvious example are human societies, which have a high grade of separation

of tasks leading to individual specialization. In fact, it has been shown that heterogeneity

correlates with the fitness of societies [47].

Homogeneity on the other hand is often only introduced by humans [25]. An example for

this is the homogenization of species in commercial agriculture, where the focus on a small

number of high-performance crops leads to a global reduction in biodiversity [30]. This has

been linked to the worsening of pest problems, requiring constant human intervention to

protect crops [1].

Even though homogeneity simplifies complex systems and makes them easier to control

for humans, heterogeneity seems to have functional advantages. We seek to find out how

to make use of these properties by incorporating heterogeneity into robotic teams. While

heterogeneity is a very broad term that describes a vast number of variations in parameters,

we will focus our attention on temporal heterogeneity. This means that members of the

society work on different timescales, some of them being slow while others are faster.

1.2 Introducing Slowness

To establish temporal heterogeneity in a team, there has to be some value of slowness. In

particular, instead of trying to reach goals as quickly as possible, we aim to find out in what

ways slowness can be beneficial for the completion of a task. In nature, slow behavior can

be observed in the tree sloth (depicted in Fig. 1) and the slow loris, as described in [2, 43].

But what is the evolutionary benefit of this slothfulness?

The most apparent advantage of slow movement is the reduction of energy expenditure.
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Figure 1: A three-toed sloth.

Moving slowly allows sloths to conserve energy and feed on a diet that provides very low

nutritional value [42].

There is another natural benefit of moving slowly. Because many predators focus on

movement as an indicator for possible prey, slow animals may draw less attention [20]. In

fact, except for a few distinct species, most animals’ camouflage is disrupted by movement

[55]. This also applies to the predators themselves. In this case, camouflage is called

“aggressive mimicry” [7]. The purpose of this is to keep prey unaware of the presence of the

predator or to lure the prey into a trap. For technical applications this means that it can

be beneficial to move slow when detection of the agents is not desirable.

Apart from evolutionary benefits in biological systems, there are good reasons to incor-

porate slowness in technical applications as well. If high velocities or accelerations need not

be achievable, technical systems can be optimized for energy efficiency or low noise levels.

An example for this are cars. Sports cars are optimized towards a high power output within

the constraints of regulations on pollutant emissions. These types of cars generally have a

worse fuel economy than compact cars that are optimized for efficiency, even when driven

3



under the same conditions.

Slow robots benefit from this fact in multiple ways. If the robot does not need to be

able to accelerate fast, this reduces stress on mechanical parts of their powertrain. As a

result, the wear of those parts is significantly reduced or the parts may be replaced with

less strong lightweight parts. This reduces maintenance frequency and manufacturing costs

of the robots. Especially for large swarms of robots, this is an important consideration.

Building only as many fast and more expensive robots as necessary and having the rest of

the team consist of cheap, slow robots is an intuitively reasonable strategy.

1.3 Multi-Robot Teams

Control and coordination of multi-robot teams have received significant attention in the

last decade (see [9, 37, 48] and references therein). However, most research has dealt with

homogeneous groups of robots, achieving an overall goal usually by working in the same

way. Sometimes, homogeneity applies only to the hardware of the robots and the software is

heterogeneous. In Dudek’s taxonomy [16], robots that share the same hardware are classified

as homogeneous, whereas robots that also have the same software are called identical. We

will use the term heterogeneous for all sorts of teams with differences between the members.

Despite receiving less attention than homogeneous teams, heterogeneity is an emerging topic

in the field of distributed control.

Different types of heterogeneous teams have been investigated in the literature. In [46],

heterogeneity in terms of skill sets is introduced through coevolution of the robot controllers

to accomplish complicated tasks, while the used robots were homogeneous in terms of hard-

ware. According to the taxonomy by Dudek [16], these robots are classified as homogeneous

(same hardware), but not identical (same software).

Teams of robots with differing types of locomotion have been studied, especially the

coordination of aerial and ground robots (e.g. [11, 17, 23, 52]). Other examples for hetero-

geneous locomotion include marsupial robots that can carry and deploy smaller robots with

different capabilities. Trajectory and action planning for these kinds of teams are described

in [14, 59]. Another example of this is presented in [49]. There, small and slow robotic
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“scouts” are deployed in an area by a bigger, faster marsupial robot to perform surveillance

tasks. A recent survey on the topic has been conducted in [26].

Sensory capabilities are one more source of heterogeneity. This has been applied to

localization, mapping and exploration tasks. In [3], robots with high quality sensing units

and robots with low quality sensing or no sensors at all are combined in a localization task.

By sharing information about the measurements with a central computing unit, estimates for

all robots’ positions are computed. An example of modular robots with different equipped

sensors is investigated in [22]. A sensor network consisting of a large number of low cost,

low capability robots and a small number of guiding robots with highly capable sensors was

built in [27]. Generally, smaller and cheaper robots with low sensing capabilities can be

combined with a small number of more capable robots to accomplish tasks that require a

distributed array of sensors and high sensing quality.

Other related research deals with the task assignment problem in heterogeneous compu-

tation systems [56]. It has been shown that heterogeneous multi-processor computer systems

outperform homogeneous settings by up to 80% in extreme cases [4]. Again, the reduction

of energy consumption is an issue that is dealt with, for instance in [50].

Despite these efforts, the topic of temporal heterogeneity is still lacking a systematic

treatment. In this work, we are trying to narrow this gap. In fact, not only the solution of

those problems with a given heterogeneous team will be the focus of this work, but also the

optimal design of these teams.

We will now give a brief overview over the two fields in which we will apply heterogeneity.

Both are instances of the assignment problem. For multi-robot systems and especially

heterogeneous teams, one of the most important questions is “who does what?”. It is essential

to assign each robot’s capabilities to a suitable task to maximize the utilization of their

potential. In fact, this problem is one of the biggest differences between homogeneous and

heterogeneous robotics. Where the task assignment plays a less vital role if every agent has

the same capabilities, its importance increases with growing diversity. This issue is even

more apparent in the following pursuit problem, where the wrong assignment can lead to

failure.
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1.4 Assignment Problems

Assignment problems are combinatorial optimization problems. The goal in an assignment

problem is to find an assignment of workers to tasks that minimizes a linear cost function.

Every worker has a specific cost associated with each task. The total cost of an assignment

is the sum of the costs of all workers for their assigned tasks. Further, exactly one worker has

to be assigned to every target and no worker can be assigned to multiple targets. Because

the total cost of an assignment is the sum of each individual assignment’s cost, we also refer

to this problem as the linear assignment problem, as opposed to more complex non-linear

assignment problems. The linear assignment problem is an instance of a linear program. It

can also be described as the problem of finding a minimum weight independent edge set on

a weighted bipartite graph.

An example given in [41] is the assignment of workers to jobs. Being varyingly efficient

at different tasks, each worker has a performance rating assigned with each job. The as-

signment problem is now to find the assignment of workers to jobs that maximizes the total

performance, i.e. the optimal utilization of resources under the constraint that every worker

is assigned to exactly one job.

Being a linear program, the assignment problem can be solved with the simplex algo-

rithm. However, there exist specialized algorithms for this problem that are much more

efficient. Notable examples are the so-called Hungarian algorithm [41] and the decentralized

auction algorithm [5].

The assignment problem is explained in more detail in Chapter 2. We will solve them for

the case of robots traveling to target positions. The cost of an assignment will be determined

by how quickly the task is accomplished and how energy-efficient the solution is. This is an

instance of the general assignment of the heterogeneous agents to jobs and exemplifies the

interpretation of velocities as skills that are applied to tasks.

In Chapter 3, the assignment problem is extended to moving targets. Special properties

of the cost function that will be used in the pursuit allow us to efficiently solve the assignment

in a decentralized manner. At the same time, the agents are also involved in a so-called

pursuit game.
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1.5 Pursuit Games

Game theory is used to model and analyze the behavior of interacting rational decision

makers. The behaviors might be cooperation or conflict, depending on the game and the

payoff functions for the players. The field of game theory dates back to 1928 when John von

Neumann laid some of its foundations. It is now applied in numerous scientific directions

including economics, political science and more recently control theory.

The games that we will look at are continuous time differential games, more precisely

games of pursuit. These games include two rational entities: an evader and a pursuer.

Different variants of pursuit games have been considered. An example is the “Lion and

Man” problem. It consists of an agent (the lion) that tries to catch an evader (a man)

within a circular arena. This problem has been extensively studied by Flynn [18, 19] and

Lewin [35] among others. The questions that have been studied for various variants of this

game include the existence of a value, conditions on the trajectories of man and lion and

analytical solutions for the limit of the distance between the man and the lion when the lion

is slower than the man.

The details of game theory are beyond the scope of this thesis. However, it is a useful

tool for determining the worst-case scenario for an agent that pursues a target, namely an

intelligent target that evades the agent in the best possible way. We will therefore use some

game-theoretic formulations and results in Chapter 3.

1.6 Outline

The thesis consists of two main parts. In Chapter 2 we are investigating an assignment

problem. In Section 2.1, an optimal assignment of mobile agents to target positions in terms

of energy consumption and required time is introduced. The robotic team consists of robots

of two different velocity levels: fast and slow. The results are extended to the assembly of

optimal teams for the task in Section 2.2. In Section 2.3, we answer the question of what

velocity levels are really optimal by developing a local optimization algorithm.

While Chapter 2 deals with the optimal solution to a transient problem, we consider a

problem for large time-horizons in Chapter 3. We introduce the problem as a pursuit game
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of multiple heterogeneous agents and multiple targets in Section 3.1. A measure for the

cost of a target assignment is found in Section 3.2 and a decentralized algorithm for finding

the optimal assignment of agents to targets is developed. We discuss the choice of the

assignment cost in Section 3.3 for different scenarios. Again, an optimal team composition

for the pursuit problem is determined in Section 3.4.

An implementation of all algorithms and practical results are described in Chapter 4.

The necessary controllers for the nonlinear robot dynamics is introduced in Section 4.3. The

assignment algorithm on the robotic testbed is described in Section 4.4. The implementation

of the pursuit will be dealt with in Section 4.5

In Chapter 5, the work is summarized and conclusions are drawn. An outlook for future

research directions is given in Section 5.1.
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Chapter II

ASSIGNMENT

An assignment problem is a combinatorial optimization problem. It can be described as

finding a minimum weight matching on a weighted bipartite graph. An interpretation is the

assignment of workers to tasks, where each pair of worker and task has an assigned cost.

In this case the problem is to find the assignment of workers to tasks that produces the

minimum total cost while assigning exactly one worker per task and having each worker

execute exactly one task.

In our case, the workers are robotic agents. The tasks they have to accomplish are

target positions or rather driving to these target positions (pictured in Fig. 2). We can

imagine a scenario where tasks need to be completed at the target positions (e.g. observing

or interacting with something) and we want the robots to reach those targets as soon as

possible, while also not wasting energy.

We introduce slowness here as a means to consume little energy by sacrificing some of

the task execution speed. Depending on the target positions, it may be unnecessary to have

a team consisting of only fast robots, and a few fast robots among a lot of slow robots could

be sufficient. This question will be examined in Section 2.2, where we will assemble the

Target

Target

Target
Agent

Figure 2: An example of an assignment problem. Two possible assignments are drawn with
dotted and dashed arrows.
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required team to optimally solve the assignment problem.

Because the agents are independent of each other, we consider the sum of the single

assignment costs of all agents. This is called a linear assignment problem and is an example

of a linear program. Solution methods for the linear assignment problem include the Hun-

garian algorithm [41] and the decentralized auction algorithm [5]. We will make use of the

Hungarian algorithm to solve the assignment problem.

We will start this chapter by introducing a linear assignment problem for a team of

agents.

2.1 A Linear Assignment Problem

Given a set of N agents with initial positions xi ∈ R2 and N target positions yj ∈ R2. We

want the agents to travel to the target positions, using an optimal agent-target assignment.

We define the set N = {1, 2, . . . , N}.

Definition The initial distance between an agent i and a target j is called di,j = ‖xi − yj‖

with i, j ∈ N . These values are assembled in a distance matrix D = [di,j ], i, j ∈ N . We

define the instantaneous distance of agent i and target j to be li,j(t).

In mobile robot scenarios, there are usually two important considerations. Naturally, the

quickest possible completion of the task at hand is desired. However, most mobile robots

have a limited supply of energy, which makes fast movement expensive. Therefore, one has

to find a compromise between a fast completion of the task and energy conservation.

The cost function that will be used for the optimal assignment therefore incorporates

energy expenditure and the distance of the agent to its target. The agent’s distance to its

target is used as a measure for the incompleteness of the task and is penalized. This is

weighed against a cost for moving at high velocities to restrict energy consumption.

Definition The cost for assigning agent i to target j is defined as

ci,j =

∫ Ti,j

0

[
Rv2

i + (1−R)(α+ 1)lαi,j(t)
]

dt, (1)

where Ti,j is the time required by agent i to reach target j. R ∈ [0, 1] and α ∈ N0 are design

parameters.
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The parameter R can be used to adjust the relative importance of energy and distance for

the cost, where R = 1 means that only energy is taken into consideration. Increasing α puts

a higher weight on greater distances.

The goal is to find a bijection P : N 7→ N that maps every agent to its respective

target. The total cost for an assignment P is the sum of the costs of the individual assigned

agent-target pairs, formally

J(P ) =
∑

i∈N
ci,P (i) . (2)

We will from now on use the simplified notation di = di,P (i), ci = ci,P (i) and li = li,P (i).

Let P be the set of all possible assignments (permutations) P . We now want to find an

optimal assignment P ∗ that satisfies

J(P ∗) = J∗ = min
P∈P

J(P ) . (3)

This assignment is not guaranteed to be unique, so we are looking for any minimizer of J .

The instantaneous position of agent i is defined to be pi(t). Therefore, the current agent-

target distance is expressed by li(t) =
∥∥pi(t)− yP (i)

∥∥. We assume the agent dynamics to be

a simple integrator

ṗi = u, pi(0) = xi, (4)

where the dot represents a derivative w.r.t. time. We further use the control law

u =





vi
yP (i)−pi
li(t)

, pi 6= yP (i)

0, pi = yP (i)

(5)

to drive each agent directly towards its target with the constant velocity vi > 0. This model

assumes that each agent either stands still or moves at its maximal velocity vi. Under the

assumption that the velocity is directly controllable, the given control law is the fastest

possible way for an agent to reach its target.

With this control law, we have

l̇i =





−vi, li 6= 0

0, li = 0

(6)
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Target 1 Target 2

Agent 1

Agent 2

d1,1
d1,2

d2,1 d2,2

Figure 3: An example of the target assignment problem for two agents. Agent 1 is moving
faster than agent 2.

which can be explicitly represented as

li(t) = di(1−
tvi
di

), t ∈ [0, Ti,P (i)] . (7)

With this, we can explicitly solve the integral in Eq. (1).

Lemma 2.1.1. If agent i is assigned to target j and the control law in Eq. (5) is used for

the system described in Eq. (4), we have the cost

ci,j = Rvidi,j + (1−R)
dα+1
i,j

vi
. (8)

To solve the linear assignment problem in Eq. (3), we assemble a cost matrix. It is

defined as C = [ci,j ] with ci,j from Eq. (8), C ∈ RN×N+ . With this cost matrix, a suitable

algorithm like the Hungarian algorithm [41] or a decentralized auction approach [39] can be

used to solve the linear assignment problem.

Example 2.1.2. Assume we have N = 2 agents and targets. They are configured as shown

in Fig. 3. The distance matrix is

D =




2.01 6.14

2.01 4.01


 . (9)

Given the velocities v1 = 5 and v2 = 1 and setting R = 0.3, α = 2, we have the cost function

ci,j = 0.3vidi,j + 0.7
d3
i,j

vi
(10)
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and can assemble the cost matrix

C =




4.15 41.53

6.29 46.17


 . (11)

We can see that the optimal assignment is P (1) = 2 and P (2) = 1. This assignment does

not minimize the traveled distance. It is drawn in Fig. 3 as solid black arrows.

2.2 Velocity Distribution

So far the agents’ velocities vi were assumed to be given. Instead we will now view them as

a design variable for the agent group. We use this way to introduce heterogeneity into the

system. In particular, let the velocity of each agent be selectable between a high velocity vf

and a low velocity vs. The number of different velocity levels is arbitrary, but we want to

represent the notion of slow and fast movement that has been outlined earlier.

We define the velocity choice function Q : N × N 7→ {vs, vf} and set vi = Q(i, P (i))

for an assignment of agent i to target P (i). Since the agent-target cost ci is a function of

the agent’s velocity, we will denote it as ci(vi) or ci (Q(i, P (i))). The problem of finding the

best speed distribution can be described as

(P ∗, Q∗) = argmin
P,Q

∑

i∈N
ci (Q(i, P (i))) . (12)

The optimal velocity of an agent is independent of the other agents’ assignments. In

fact, the optimal Q∗(i, j) for given vs, vf depends only on di,j . For this reason, the optimal

velocity Q∗(i, j) for i, j ∈ N can be determined a priori for every element ci,j of the cost

matrix C.

Lemma 2.2.1. For α ≥ 1 there is a critical distance

∆ =

(
R

1−Rvsvf
) 1
α

(13)

at which the costs for slow and fast movement are equal, i.e. ci,j(vs) = ci,j(vf ) if di,j = ∆.

The optimal velocity is

Q∗(i, j) =





vf , di,j > ∆,

vs, di,j ≤ ∆.

(14)
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Proof. The difference between the costs for fast and slow movement at a non-zero distance

d between agent and target is

c(vf )− c(vs) = Rd(vf − vs) + (1−R)dα+1(
1

vf
− 1

vs
) . (15)

We show that this is positive for d < ∆ and negative for d > ∆, i.e. fast movement yields

the lower cost for great distances and higher cost for distances lower than ∆. Let d = σ∆.

Because we assumed d > 0, we can also divide the difference by d without changing the sign

of the term:

R(vf − vs) + (1−R)(σ∆)α(
1

vf
− 1

vs
) (16)

=R(vf − vs) + (1−R)σα
R

1−Rvsvf (
1

vf
− 1

vs
) (17)

=R(vf − vs)− σαR(vf − vs) = (1− σα)R(vf − vs) . (18)

Since R > 0 and vf > vs, this term is negative for σ > 1, i.e. d > ∆, and positive for σ < 1.

For σ = 1 we have d = ∆ and the difference between the costs for slow and fast movement

is zero.

Since slow and fast movement are equally expensive at di,j = ∆, the choice to have

Q∗(i, j) = vs for di,j = ∆ was arbitrary. The agent-target cost as a function of the distance

is displayed in Fig. 4 for two different speed levels. The curves intersect at the critial distance

∆.

Remark If we set the parameter α in the agent-target cost from Eq. (8) to zero, we have

cα=0
i,j (vi) = Rdi,jvi + (1−R)

di,j
vi

= di,j

(
Rvi +

1−R
vi

)
. (19)

In this case, the optimal choice of vi is independent of the agent-target distance di,j . This

leads to a homogeneous team.

According to Lemma 2.2.1 the optimal velocity for every agent-target pair can be deter-

mined a priori. In fact, the optimal velocity of agent i only depends on its own assignment

14



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

di

c i

vs
vf

Figure 4: The cost ci as a function of di for two different agent velocities.

P (i). In particular, it is independent of the velocity or the assignment of all the other agents.

This is why, given P , we have

min
Q

∑

i∈N
ci (Q(i, P (i))) =

∑

i∈N
min
Q

ci (Q(i, P (i))) . (20)

This leads us to the following statement.

Theorem 2.2.2. The optimization problem in Eq. (12) is equivalent to

P ∗ = argmin
P∈P

∑

i∈N
ci (Q∗(i, P (i))) , (21)

where Q∗(i, P (i)) is the optimal choice of vi according to Eq. (14).

This is now a linear assignment problem again and can be solved by suitable algorithms.

We do now know how to simultaneously assign agents to targets and assemble the optimal

heterogeneous team for two given velocity levels.

Example 2.2.3. We are revisiting Example 2.1.2, using the same initial configuration and

parameters. We are now allowing to pick the velocities of the agents to be either vs = 1 or

vf = 5. The critical distance for R = 0.3 is

∆ =
0.3

1− 0.3
· 5 = 2.14 . (22)
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Target 1 Target 2

Agent 1

Agent 2

d1,1
d1,2

d2,1 d2,2

Figure 5: The result of the team assembly problem in Example 2.2.3. Agent 1 is moving
slow and agent 2 is moving fast.

We have d1,1 < ∆ and d2,1 < ∆ and therefore vs is the preferred velocity for those agent-

target pairs. On the other side, d1,2 and d2,2 are greater than ∆ and the optimal velocity

would be vf . The cost matrix using the optimal velocities for every agent-target pair is

C =




4.15 41.53

4.15 15.00


 . (23)

The optimal assignment is P (1) = 1 and P (2) = 2 where v1 = vs and v2 = vf . This is the

opposite configuration to the one from the earlier example. The result is illustrated in Fig. 5.

The optimal assignment is plotted as solid black lines.

2.3 Choice of Velocity Levels

We are interested in assembling the optimal homogeneous team for the given task of moving

to target positions. We described how one can pick the agents’ velocities from two given

values. To extend the problem formulation further, we may ask which values we should

actually choose for the heterogeneous movement velocities vs and vf . In the team design

process, this could be viewed as the design of the actual robots in terms of the required

movement velocities. This extends the problem from Eq. (12) to

(P ∗, Q∗, v∗s , v
∗
f ) = argmin

P,Q,vs,vf

∑

i

ci (Q(i, P (i), vs, vf )) . (24)

16



We now denote Q(i, P (i), vs, vf ) also as a function of the variable velocities vs and vf .

Given a pair of velocities vs and vf , we can find the optimal Q∗ and P ∗ as described in

the section before. However, the optimal values of the velocities v∗s and v∗f in turn depend

on the assignment P . To find the optimal velocities given an assignment P , we need to find

a solution to

(v∗s , v
∗
f ) = argmin

vs,vf

∑

i∈N
ci (Q∗(i, P (i), vs, vf )) . (25)

We will first describe the solution of this problem for a homogeneous team. It will be

extended to multiple homogeneous groups forming a heterogeneous team.

Lemma 2.3.1. Choosing an assignment P is equivalent to creating a set of the assigned

agent-target distances. The homogeneous version of Eq. (25) for a set of distances D is

given by

v∗ = argmin
v∈R+

∑

d∈D

[
Rvd+ (1−R)

dα+1

v

]
. (26)

It is solved by the optimal homogeneous velocity

v∗ =

√
1−R
R

∑
d∈D d

α+1

∑
d∈D d

. (27)

Proof. We are looking for a minimum of the cost

JD(v) =
∑

d∈D

[
Rvd+ (1−R)

dα+1

v

]
. (28)

For v > 0 this is a smooth function of the velocity. It is further convex, because it is a

weighted sum of the convex functions v and 1
v . If we choose R from the open interval (0, 1),

the function JD indeed has a minimum at some positive velocity. The minimizer of the cost

satisfies
∂JD
∂v

∣∣∣∣
v=v∗

= 0 . (29)

The solution in Eq. (27) is obtained by setting the derivative of JD w.r.t. v to zero and

solving for v. The derivative of JD is

∂JD
∂v

=
∑

d∈D

[
Rd− (1−R)

dα+1

v2

]
. (30)
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Figure 6: The cost ci as a function of vi for R = 0.5 and di = 1.

So with Eq. (29) and by rearranging we have

(v∗)2 =
1−R
R

∑
d∈D d

α+1

∑
d∈D d

. (31)

Because the velocity has to be positive, we obtain the original statement.

An example of the cost ci,j as a function of the agents’ velocity is displayed in Fig. 6.

Lemma 2.3.1 only applies to homogeneous groups. We will therefore split up the hetero-

geneous into two homogeneous groups. One group consists of the agents moving at the high

velocity vf and the other of agents moving at vs. We can then compute the optimal values

for those velocities for every possible division of the team.

Definition Let DP =
{
di,P (i), i ∈ N

}
be the set of agent-target distances in an assignment

P . Then Dδf = { d ∈ DP | d > δ } is the set of distances greater than some δ ∈ R+ and

Dδs = { d ∈ DP | d ≤ δ } is the set of distances that are less than δ.

For every δ ∈ DP we get a division of DP into Dδf and Dδs . Let Dδf be the set of distances

for the fast moving agents. Then according to Lemma 2.3.1, we have the optimal high

velocity

vδf =

√√√√1−R
R

∑
d∈Dδf d

α+1

∑
d∈Dδf d

(32)

and the corresponding result for slow movement vδs .
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Remark There are 2N−1 different ways to split up the set of distances into two subsets.

However, according to Lemma 2.2.1 the optimal division of the set is at a critical distance

∆. Because this critical distance is a function of the not yet known velocity levels, we have

to compare all cases where DP is split at some threshold δ.

From Lemma 2.3.1 we can also determine bounds on the velocity levels vs and vf .

Corollary 2.3.2. The optimal movement velocities (v∗s , v
∗
f ) are bounded by

√
1−R
R

(minDP )α/2 ≤ v∗s , v∗f ≤
√

1−R
R

(maxDP )α/2 . (33)

Proof. We will prove the statement only for the lower bound on vs. The upper bound and

vf can be proved analogously. We can bound a sum of positive elements in a set D from

below by its minimal element as follows:

(minD)α
∑

d∈D
d ≤

∑

d∈D
dα+1 . (34)

Further, we have minDP ≤ minDδs for any δ because Dδs is a subset of DP . It follows that

(minDP )α
∑

d∈Dδs

d ≤
∑

d∈Dδs

dα+1 . (35)

or after division by the (positive) sum:

(minDP )α ≤
∑

d∈Dδs d
α+1

∑
d∈Dδs d

. (36)

This holds for any (non-empty) subset Dδs of DP . If we plug this into Eq. (27) we obtain

the original statement.

Since we can find the optimal velocities for any division, we are interested in the division

that yields the lowest cost

J = min
δ∈DP

∑

i∈N
ci

(
Q∗(i, P (i), vδs , v

δ
f )
)
. (37)

Since there are only N different divisions of DP , simple computation and comparison of all

values is sufficient. Let δ∗ be the minimizer of Eq. (37).

Lemma 2.3.3. The resulting values (vδ
∗
s , v

δ∗
f ) are the solution (v∗s , v

∗
f ) to Eq. (25).
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As remarked earlier, the solution to the problem has to be one of the divisions (Dδs ,Dδf )

for δ ∈ DP . Because we can compute the optimal values for the velocities (vs, vf ) for any

division, we have indeed exhausted all plausible solutions.

Remark The critical distance ∆ is in general not equal to the the threshold δ. In addition,

the division of DP into the sets Dδf and Dδs is not guaranteed to match the slow/fast-

distribution given by ∆. We call this case an invalid division.

Lemma 2.3.4. The optimal division by the threshold δ∗ is always valid in the sense that δ∗

and ∆(vδ
∗
s , v

δ∗
f ) divide D into the same subsets, i.e.

D∆
s = Dδ∗s . (38)

Proof. Assume δ∗ is the threshold distance such that (vδ
∗
s , v

δ∗
f ) yield the lowest cost for all

divisions of DP . Let this cost be cδ
∗ . If the division is invalid, this means there is a ∆ such

that

D∆
s 6= Dδ

∗
s . (39)

For any set of velocities (vs, vf ), the critical distance ∆ yields a division that minimizes every

agent’s cost. If the divided sets are different, this means that we have c∆ ≤ cδ
∗ . Further,

there is a δ̃ ∈ DP that divides the set in the same way as ∆:

D∆
s = Dδ̃s . (40)

That means that cδ̃ < cδ
∗ . This contradicts the assumption that δ∗ is the optimal threshold.

We can now find the optimal velocities given an assignment and the optimal assignment

given the velocities. Therefore, we approach the problem in Eq. (24) with an iterative

algorithm.

Algorithm 2.3.5. Let P k be the solution of the assignment problem in the k-th iteration

and (vf , vs)
k be the solution of Eq. (25).

1. Find the optimal movement velocities (vf , vs)
k for the assignment P k.
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2. Using (vf , vs)
k, determine the solution P k+1 to the assignment problem.

3. Repeat until P k+1 = P k.

We arbitrarily initialize the assignment P 0 as P 0(i) = i, i ∈ N .

To analyze the result of this algorithm, we look at the optimal cost for any given velocity

levels. Recall the total cost J of an assignment from Eq. (2). Because it is a function of

both the assignment and the velocities, we will now denote it as J(P, vs, vf ).

Definition We introduce the cost JP ∗ : R2
+ 7→ R+. It is defined as

JP ∗(vs, vf ) = min
P∈P

J(P, vs, vf ) = min
P∈P

∑

i∈N
ci,P (i)(Q

∗(i, P (i), vs, vf )) . (41)

The function returns the best achievable cost given the velocity levels vs and vf . In other

words, the value of JP ∗ is the current cost after the second step of Algorithm 2.3.5 for any

(vs, vf ).

Lemma 2.3.6. A global minimizer of JP ∗(vs, vf ) is a solution to Eq. (24).

Proof. This statement follows from the fact that JP ∗ returns the lowest achievable cost

(through choice of P ) for any (vs, vf ). As stated in Lemma 2.2.1, the optimal Q directly

follows from (P, vs, vf ). A global minimum of this function in (vs, vf ) is therefore also a

minimum in P and Q.

For specific configurations, the optimal assignment for a given set of velocities is not

unique. For this reason, we impose the following assumption.

Assumption 2.3.7. For every P̃ ∈ P, we have a minimal point (v∗s , v
∗
f ) of J(P̃ , vs, vf ). We

assume P̃ to either not be the best assignment and therefore

J(P̃ , v∗s , v
∗
f ) > JP ∗(v∗s , v

∗
f ) (42)

or, if it is the best assignment and

J(P̃ , v∗s , v
∗
f ) = JP ∗(v∗s , v

∗
f ) , (43)

we assume it to be the unique solution of the assignment problem at this point.
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Theorem 2.3.8. If Assumption 2.3.7 is satisfied, Algorithm 2.3.5 reaches a local minimum

of the function JP ∗ after a finite number of iterations.

Proof. The first step of the algorithm always finds the global minimum of J(P k, vs, vf ) w.r.t.

(vs, vf ). We have exactly two cases to consider.

If there exists another assignment P̂ with a lower cost than P k at this point, the solution

to the assignment problem is not P k+1 = P k and therefore the algorithm continues.

If every other assignment yields a strictly greater cost, we have found the optimal as-

signment and

J(P k, vks , v
k
f ) = JP ∗(vks , v

k
f ) . (44)

Because we assumed the optimal point to be unique in Assumption 2.3.7, the solution to

the assignment problem is once again P k+1 = P k and the algorithm terminates. Because

J(P̃ , vs, vf ) is a continuous function of (vs, vf ) for any assignment P̃ ∈ P, Eq. (44) holds in

a neighborhood of (vks , v
k
f ) and P k is indeed a local minimum of JP ∗ .

Remark Assumption 2.3.7 is not a strong assumption, because it is only violated for a

small number of initial conditions.

Remark If Assumption 2.3.7 is violated, a simple extension of the algorithm can guarantee

convergence. If the solution of the assignment problem is found to be non-unique, we can

compute the optimal velocities for all solutions of the assignment problem and continue the

algorithm at the best of these points.

2.4 Example: A Sensor Coverage Problem

A possible application for this sort of assignment problem can be found in another domain

of networked systems. Sensor coverage problems are concerned with the distribution of

sensing nodes in a domain with the goal of maximizing overall sensor coverage quality.

These problems and a decentralized algorithm for their solution are described in [12]. By

introducing a Voronoi partitioning (i.e. assigning every point in the domain to its closest

agent, see Fig. 7) and then using a variant of Lloyd’s algorithm as the control law for the

agents, locally optimal coverage of the domain can be achieved. If the goal is not uniform
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Figure 7: A Voronoi partitioning for 5 nodes.

coverage of the whole domain, a density function can be used to achieve a denser coverage

in more important areas.

In [32], the methods are extended to deal with time-varying density functions. These

density functions may be generated by an operator as a human machine interface as pro-

posed in [15] or they might be created otherwise to make the network adapt to changing

requirements.

As an example, one can imagine a sensor network to acoustically observe an area. When

sounds are detected at some location, a higher coverage at this point would be desirable to

find the cause of the recorded noise. To achieve this, the density function for the coverage

problem would be increased at this location. Unfortunately, the algorithms described in [12]

and [32], while not generally unsuited, are not designed for heterogeneous teams.

In the described event, the reasonable action would be to send a fast member of the team

to the new area of interest to investigate. However, the known coverage control algorithms

can only achieve this behavior if the area of interest is contained in the Voronoi cell of a

fast agent (i.e. if the closest agent to this point of interest is a fast agent). Otherwise, the

slow agents will slowly creep towards the new point of interest. This is partly due to the

23



Figure 8: An example of the coverage problem where the fast agent on the bottom has no
knowledge about the maximum in the coverage density on the top. The circles are a contour
plot of the coverage density. The blue lines are the edges of the Voronoi partitioning.

decentralized nature of the algorithms, where information about non-adjacent cells in the

Voronoi partitioning is not available to the agents. An example where this would happen is

depicted in Fig. 8. Informally speaking, the two other agents above the agent on the bottom

obstruct its view on the maximum in the coverage density.

If we give up decentralization, all information is available to a centralized decision maker.

A solution now is to turn the coverage problem into an assignment problem. The centralized

decision maker simulates Lloyd’s algorithm until it converges and then assigns agents to the

resulting target positions in an optimal way. An example of this can be seen in Fig. 9. If we

directly compare the coverage cost (see [12]) of the assignment algorithm to the standard

Lloyd algorithm (with agents moving at their maximal velocities), scenarios like the one

described can lead to a much faster decrease. This is visible in Fig. 10.

2.5 Simulation

An simulative example of the whole process including finding the optimal velocity levels,

assembling the best team and solving the assignment problem can be seen in Fig. 11. The
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Figure 9: An example of the assignment algorithm in a coverage problem. The fast agent
(blue circle) is assigned to the new target on the bottom. The crosses mark the target
positions after convergence of the Lloyd algorithm, the yellow lines are the resulting Voronoi
partitioning.
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Figure 10: A comparison of the coverage cost H for the regular Lloyd algorithm (with
normalized velocities) and the assignment algorithm. Lower values correspond to better
coverage of the area.
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Close targets

Far target

(a) Target assignment and team composition
problem setup. The circles represent agents,
targets are marked with an x.

Slow
Fast

(b) After finding the optimal velocity levels
and team composition. One of the agents
should move fast, because its target is far
away.

(c) After letting the agents move for some
time.

(d) The final positions of the agents on the
targets.

Figure 11: A simulative example of finding optimal velocity levels, the team composition
and a target assignment.
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solution supports our intuitive guess that one agent which needs to cross a higher distance

to the far target will have to move at the high velocity. To conserve energy, the agents that

are assigned to close targets are chosen to move slowly.

Figure 12 shows two results for different values of the energy weighing coefficient R.

Again, the result confirms our intuition. If a quick execution has the higher priority (low

values of R, Fig. 12a), the fast agent is assigned to the target that is the furthest away, despite

increasing the total traveled distance and specifially the distance traveled at high velocity.

If the value of R is high (right side, Fig. 12b), the emphasis is on energy consumption. This

leads to an assignment where agents need much more time to complete the task, but the

energy consumption is very low due to the smaller distance to be traveled.

It should be noted that different values of R do not lead to different assignments in every

scenario. In many cases, the assignment that is energy-optimal is also the one that leads to

the quickest task completion. Different results for different values can generally be observed

when there is a single target that is far away from the group of robots and the rest of the

target.
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Slow, vs = 0.2
Fast, vf = 1

(a) Assignment problem solution for R = 0.2.
Reaching the targets quickly has a higher pri-
ority.

Slow, vs = 0.2
Fast, vf = 1

Slow
Fast

(b) Assignment problem solution for R = 0.8.
Energy saving is valued more than a quick
task completion.

(c) The left assignment at a time t1.

Slow
Fast

(d) The right assignment at t1. The task
completion takes more time.

Figure 12: A simulative example of assignment for two different weights R for α = 1. A
lower value of R (seen on the left) puts a higher emphasis on a quick task completion, high
values lead to energy-optimal assignments. All parameters except R are identical in the left
and right examples.
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Chapter III

PURSUIT

After studying the assignment of a temporally heterogeneous set of agents to stationary

targets in Chapter 2, we seek to extend the problem to one with a moving set of targets. In

this chapter, agents are supposed to reach or at least come close to a set of moving targets.

Because targets are moving, capture is not always guaranteed. The teams we consider in

this chapter further consist of more different agents. Instead of two distinct velocities at

which agents can move, we will now use a number of different maximum velocities. Each

agent therefore has some maximum movement speed, but can also move slower than that.

Because we do not know the behavior of the targets beforehand and we will use some

stochastic elements within our algorithms, we will look at the qualitative behavior of the

agents and targets for large time horizons. The fundamental questions then are if capture

(i.e. the positions of agent and target coincide) occurs and how close an agent may come

to a target if capture is not possible. We call this problem target pursuit (see Fig. 13). In

this problem we assume the worst possible case for the agents, namely targets that actively

evade the targets in the best possible way. This is an instance of a differential game, more

precisely a game of pursuit and evasion. We will make use of a few game-theoretic concepts

and formulations later in this chapter.

A possible real-world scenario for this theoretical problem is a multi-agent surveillance

task: A heterogeneous group of agents is supposed to guard an area. When intruders enter

this area, it is the agents’ task to stay close to those intruders and observe them. If malicious

behavior is detected, further units could be deployed to take action against the intruder.

If an agent is too slow for its assigned surveillance target, the distance between the two

increases and the observation quality decreases.

For a group of agents, the problem is twofold: in the small scale, each agent needs to

pursue its assigned target and stay as close as possible. This problem is largely dependent
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Agents

Target

Target

Target

Figure 13: An example of the team pursuit problem. The moving targets could be another
set of robots.

on the actual dynamical model of the agents and targets and will be dealt with in more

detail in Chapter 4. On the greater scale, the agents need to find an assignment of agents

to targets such that the overall surveillance task can be accomplished by all agents. We will

introduce a decentralized algorithm for this purpose.

For simplicity, we will assume that the number of targets matches the number of agents

and every agent is assigned to exactly one target. If there are less targets than agents,

virtual targets with zero velocity can be introduced. If the number of targets exceeds the

number of agents, we can look at a subset of the targets of the same number as the set of

agents. However, we will not go into this case in this work.

We will once again consider the optimal team composition for the pursuit task in Sec-

tion 3.2. First, we need to introduce the problem and the strategy employed by the team of

agents. We start the chapter by introducing a linear, single-integrator target pursuit in two

dimensions.

3.1 The Linear Target Pursuit

The linear target pursuit, also known as the “Lion and Man” game, is the most simple

version of the pursuit problem. We are now looking at a single member of the robotic team,

assigned to a single target. Both agent and target have positions x and y in the plane R2.

The movement of agent and target may be unbounded or constrained to stay within an
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arena. The task of the agent is to reach the target position.

With the two-dimensional velocity input u(t) ∈ R2, the dynamics of the agent are

ẋ = u, x(0) = x0 ∈ R2 (45)

and the norm of the input is saturated by

‖u‖ ≤ û . (46)

Further, we have a moving target position. We will think about it as another agent that

can move in the plane in the same way as the pursuer. We assume the target dynamics to

be the same as the agent’s:

ẏ = v, y(0) = y0 . (47)

Its input is saturated by

‖v‖ ≤ v̂ . (48)

The saturation on the input values of the agent’s and target’s dynamics are upper bounds

on the movement speed of the agent and the target. While this model does not describe the

actual robot dynamics that are introduced in Chapter 4, it serves as a simplification and is

a good enough approximation.

The physical distance between the agent and the target is defined as d(t) = ‖x(t)− y(t)‖.

In a pursuit game, the evader seeks to maximize this distance while the pursuer tries to

minimize it.

We are now considering the question whether the agent can drive the distance to the

target to zero for the cases that it is slower, faster or equally fast as the target. It has been

shown that the intuitive solution is correct for the cases that the agent is slower or faster

than the target.

If û < v̂, the agent is slower than the target. Therefore, the target can evade the agent

forever. If agent and target are confined to a circular arena, the agent can reach and maintain

a constant distance to the target. This will be discussed later in this chapter.

If the agent can move faster than the target, we have û > v̂ and the agent can reach the

target in finite time.
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In the case that û = v̂, the success of the pursuit depends on the bounds on the state.

If we assume an infinitely large arena, the evading target can keep the distance to the agent

constant forever. If the positions are restricted to a circular arena however, the agent can

get arbitrarily close to the target, even though the target can still avoid capture. In this

case, we have

lim
t→∞

d(t) = 0 , (49)

but d(t) > 0 for all t > 0. This was shown by Besicovitch (see [36]).

In the following when looking at teams of agents, the position of agent i will be denoted

as xi and its maximum velocity as ûi. The variables x and û denote the vectors of all agents’

positions and velocities respectively. The same holds for the targets. The vector yj is the

position of target j and v̂j is its maximum velocity.

3.2 Pursuit Target Assignment

Given a set of N agents and N targets. Each agent and each target has an identifying integer

index i. The set of indices is denoted as N = {1, 2, ..., N}. As introduced before, xi is the

position of agent i and ûi describes the maximum velocity of that agent. Let the indices of

the agents be ordered ascending by the maximum velocity ûi. In the single-integrator case,

agent 1 is the slowest and agent N is the fastest agent. Equally, the targets are sorted by

their maximum velocity v̂j . The order of the agents ensures

û1 < û2 < ... < ûN (50)

and similarly for the targets

v̂1 < v̂2 < ... < v̂N . (51)

We assume that no two agents or two targets have identical velocities. This ensures that there

is a unique solution to the assignment problem. If there are duplicates, any permutation of

the identical agents or targets yields an identical solution.

The goal is to find a bijection P : N 7→ N that maps every agent to its respective target.

The assignment P can be viewed as a permutation of the numbers from 1 to N . The set P is
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the set of all possible permutations. Further, let P−1 denote the inverse of the assignment,

i.e. the mapping from a target to the assigned agent.

The discrepancy between the velocities of an agent and its assigned target is

δ(i, j) = |ûi − v̂j | . (52)

We consider a cost function ∆ : P 7→ R. It is the sum of the squared discrepancies

∆(P ) =
∑

i∈N
δ2(i, P (i)) . (53)

This cost is minimized if the target velocities match the pursuing agent velocities as closely as

possible. Differences in the speed of an agent and its target are penalized. This is intuitively

the right choice when the target is faster than the agent. The penalty for an agent being

unnecessarily fast is chosen to achieve a more even distribution of velocity differences in

the case that the agents are faster than the targets. It does not change the limit of the

agent-target distances for large t.

We now introduce an algorithm that minimizes ∆ in a decentralized fashion. It is similar

to swap type sorting algorithms in that it swaps two agents’ targets if this decreases the

cost function. To determine whether a swap reduces ∆, only local information is required.

A version of the algorithm is as follows:

Algorithm 3.2.1. In every iteration, pick a random pair of agents (i, j). Then swap the

targets of these agents if

δ2(i, P (j)) + δ2(j, P (i)) < δ2(i, P (i)) + δ2(j, P (j)) . (54)

The criterion for performing a swap ensures that the cost ∆ always decreases when

targets are swapped.

Lemma 3.2.2. When Eq. (54) is satisfied, swapping the targets of the agent pair (i, j)

decreases the cost ∆.

Proof. Without loss of generality, we are assuming i < j. The correctness of this statement

can be seen when taking apart the cost ∆:

∆(P ) =
i−1∑

k=1

δ2(k, P (k)) + δ2(i, P (i)) +

j−1∑

l=i+1

δ2(l, P (l)) + δ2(j, P (j)) +
N∑

m=j+1

δ2(m,P (m)) .

(55)
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The cost of the assignment P ′ where the targets of agent i and j are flipped is

∆(P ′) =

i−1∑

k=1

δ2(k, P (k)) + δ2(i, P (j)) +

j−1∑

l=i+1

δ2(l, P (l)) + δ2(j, P (i)) +

N∑

m=j+1

δ2(m,P (m)) .

(56)

We can see that

∆(P )−∆(P ′) = δ2(i, P (i)) + δ2(j, P (j))− (δ2(i, P (j)) + δ2(j, P (i))) (57)

and because of Eq. (54), this difference is positive. Therefore, the cost of P ′ is lower than

that of P .

In general, this algorithm is not guaranteed to solve the linear assignment problem

because there may be assignments that cannot be improved by a single swap of two targets.

It is however suitable for this specific problem, as is shown in the following.

Lemma 3.2.3. For every assignment other than P ∗ : P ∗(i) = i, i ∈ N there is a swapping

pair (i, j) that decreases the cost ∆.

Proof. Assume P (1) 6= 1. Then swapping the targets of agent 1 and P−1(1) decreases the

cost ∆. Let P (i) = 1 and P (1) = j for some i, j 6= 1. The ordering of the elements ensures

that û1 < ûi for i = 2, 3, ... and v̂1 < v̂j for j = 2, 3, .... Therefore, we have

û1(v̂j − v̂1) < ûi(v̂j − v̂1) . (58)

We can use this to show the original claim by performing some elementary transformations.

We have

û1v̂j − û1v̂1 < ûiv̂j − ûiv̂1 ,

−û1v̂j − ûiv̂1 > −ûiv̂j − û1v̂1 ,

û2
1 − 2û1v̂j + v̂2

j + û2
i − 2ûiv̂1 + v̂2

1 > û2
i − 2ûiv̂j + v̂2

j + û2
1 − 2û1v̂1 + v̂2

1 ,

(û1 − v̂j)2 + (ûi − v̂1)2 > (ûi − v̂j)2 + (û1 − v̂1)2 ,

δ2(1, j) + δ2(i, 1) > δ2(i, j) + δ2(1, 1) .

Hence, the criterion from Eq. (54) is satisfied and swapping the targets of the agent pair

(1, P−1(1)) decreases the cost.
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If P (1) = 1, the same reasoning holds for swapping target 2 to agent 2 in the reduced

set of agents N \ {1} and so forth. Therefore, the claim holds for all P ∈ P \ {P ∗}.

Corollary 3.2.4. The assignment P ∗ : P ∗(i) = i, i ∈ N is a unique minimizer of the cost

∆.

Proof. Because the set P is finite, the minimum of ∆(P ) for P ∈ P exists and has to be

attained for some P̃ ∈ P. Since Lemma 3.2.3 states that for any P ′ ∈ P \ {P ∗} there is

another assignment P ′′ ∈ P such that ∆(P ′′) < ∆(P ′), none of the assignments in P \ {P ∗}

can be this minimizer P̃ . That only leaves the element P ∗ and therefore P̃ = P ∗ is the

minimizer of ∆.

Theorem 3.2.5. Algorithm 3.2.1 reaches the optimal assignment P ∗.

Proof. The algorithm does not visit any permutation twice, because it strictly decreases

∆ when the assignment is changed. According to Lemma 3.2.3, the algorithm can always

decrease ∆ in a single step unless the optimal assignment is reached. Choosing a random

pair of agents in every iteration ensures that with probability one a swap will be performed

at some point if there is a swap that decreases ∆. Since the set of all permutations P is

finite, the optimal assignment P ∗ is attained at some point.

3.2.1 Decentralized Deterministic Assignment

The algorithm can be decentralized because the decision to swap targets is based solely on

local information. The communication network between the agents can be described as an

undirected graph G = (V, E), where V denotes the set of the nodes (agents) and E contains

all edges between the nodes. If an edge (i, j) is contained in E , then nodes i and j can

communicate. We call i and j neighbors. The set of all neighbors of node i is denoted as

Ni.

To determine whether or not a swap would be beneficial, an agent needs to know its

partner’s velocity and the velocity of its partner’s target. This directly follows from Eq. (54).

To account for the restricted communication, Algorithm 3.2.1 is rephrased to a decen-

tralized version on a communication graph.
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û1

Slowest

û2 û3 û4

Fastest

Figure 14: An example of an OLG, û1 < û2 < û3 < û4.

û1

Slowest

û2 û3 û4

Fastest

Figure 15: An example of a line graph that is not an OLG.

Algorithm 3.2.6. In every iteration, an agent i chooses one of its graph neighbors j ∈ Ni
at random. If the swapping condition in Eq. (54) is satisfied, agents i and j swap their

targets.

Instead of choosing a random neighbor, the agent could also communicate with all of

its neighbors and choose the swap partner such as to maximize the decrease of ∆. We will

assume that not more than one agent tries to swap targets with a specific agent at the same

time. This can be interpreted as a centralized entity that selects one agent randomly at

every time step. This agent can then swap targets with one of its graph neighbors or do

nothing.

Obviously, this algorithm does not reach an optimal assignment for some initial condi-

tions if the graph G is not connected. Therefore, we want to find requirements on the graph

that ensure successful assignment for any initial conditions.

Definition We call a graph an Ordered Line Graph (OLG) if it is a line graph and the

order of the nodes on the line corresponds to the order of the agents by the norm of their

velocity saturation ûi, as introduced earlier.

An example of an OLG is displayed in Fig. 14. The OLG is unique for a set of agents

when none of them have the same velocities. A line graph that is not an OLG is displayed in

Fig. 15. The nodes on the line do not have the right order corresponding to their velocities.
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If Algorithm 3.2.6 reaches the optimal assignment P ∗ for any initial assignment P0 for a

given graph, this graph will be called admissible. We will call the class of all such admissible

graphs Ga. Conversely, if a graph is inadmissible, there is at least one initial assignment

that in no case leads to the optimal assignment by using Algorithm 3.2.6. The condition “in

no case” is added to encase all possible sequences of random agent selections.

Lemma 3.2.7. An OLG is admissible.

Proof. The optimal assignment P ∗ is a sorted version of the initial assignment. In an ordered

line graph, all possible swaps will be between graph neigbors, i.e. between an agent i and

its neighbor i+ 1. From the order of agents we know that ûi < ûi+1 for i ∈ {1, 2, ..., N − 1}.

Further assume that k < l and therefore v̂k < v̂l. We have

ûi(v̂l − v̂k) < ûi+1(v̂l − v̂k) . (59)

From the proof of Lemma 3.2.3 we know that

δ2(i, k) + δ2(i+ 1, l) < δ2(i, l) + δ2(i+ 1, k) . (60)

This means that when comparing neighboring nodes, the target with the lower velocity is

swapped to the agent with the lower velocity.

In fact, this can be viewed as a decentralized variant of the well-known bubble sort

algorithm, where the agents correspond to the indices of an array and the target velocities

are the numbers that need to be sorted. For a sufficient number of swaps between neighbors,

this algorithm has been shown to yield the correct result [31].

Lemma 3.2.8. If edges are added to an admissible graph G ∈ Ga, the resulting graph is still

admissible. This means that every spanning supergraph of an admissible graph is admissible.

Proof. Adding edges to the communication graph only adds new possible swaps, but doesn’t

take away any. We already showed that in an admissible graph there is always an available

swap that decreases the cost in Lemma 3.2.3. This existence is naturally not broken by

adding new possible swaps.

Corollary 3.2.9. Any spanning subgraph of an inadmissible graph is inadmissible.
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Proof. The statement is proved by contradiction. Assume there was an inadmissible graph

Gi = (V, Ei) and an admissible spanning subgraph Gs = (V, Es) with Es ⊂ Ei. But since

Lemma 3.2.8 states that any spanning supergraph of the admissible graph Gs is admissible,

Gi has to be admissible. This contradicts the initial assumption.

Lemma 3.2.10. Any graph G that contains an OLG as a spanning subgraph is admissible.

Proof. This statement follows directly from Lemma 3.2.7 and Lemma 3.2.8.

We now have established that the set of all supergraphs of an OLG is a subset of all

admissible graphs Ga. It remains to show that the two sets are equal, i.e. that there are no

admissible graphs that do not have an OLG as a spanning subgraph.

Lemma 3.2.11. Any graph that does not contain an OLG as a spanning subgraph is not

admissible.

Proof. To prove this claim, we will show that a complete graph is not admissible anymore

if one of the edges of the OLG is removed. We will then infer by Corollary 3.2.9 that any

graph that is missing one of these edges is inadmissible.

To show that a graph is not admissible, it suffices to find an assignment P# that is not

optimal and that can not be improved by a single step of Algorithm 3.2.6.

Let us consider a complete graph KN = (V, EK). Now we remove a single edge that lies

on the OLG. Let this edge be (i, i + 1) for i ∈ {1, 2, ..., N − 1}. We get the set of edges

E ′i = EK \ {(i, i+ 1)} and the reduced graph G′i = (V, E ′i).

Now assume an almost ordered assignment. We have P#(j) = j for j ∈ N \ {i, i + 1}

and P#(i) = i + 1, P#(i + 1) = i. All targets are assigned to the right target except for i

and i+ 1 which are swapped.

The only action that would reduce the cost ∆ is swapping these two targets in the

right order. Every other possible swap would swap a slow target that is assigned to a slow

agent and a fast target that is assigned to a fast agent, reversing this order and thereby

increasing the cost. Since the nodes i and i+ 1 are not graph neighbors on G′i, they cannot

communicate with each other and this swap is not possible. Therefore, no cost-reducing swap
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can be executed and the sub-optimal assignment P# is the terminal assignment. Hence, the

graphs G′i are not admissible.

Every graph that does not contain an OLG as a spanning subgraph is itself a spanning

subgraph of one of these reduced complete graphs. With Corollary 3.2.9, we can conclude

that every graph without an OLG as a spanning subgraph is inadmissible.

We have shown the sufficiency and necessity of an OLG as a spanning subgraph of the

agent communication graph. Lemma 3.2.10 and Lemma 3.2.11 can be combined to the

following.

Theorem 3.2.12. Algorithm 3.2.6 reaches the optimal assignment P ∗ for any initial as-

signment P0 on a graph G if and only if G contains a spanning subgraph that is an OLG.

Example 3.2.13. We are considering the two assignments in Fig. 16. From the proof of

Lemma 3.2.3 we know that for a pair of agents, assigning the slower target to the slower

agent yields lower cost. We see that the only swap that would reduce the cost in the example

would be between the left and the center agent. In the left picture (Fig. 16a), this swap will

eventually happen and the optimal assignment will be reached.

In the right example (Fig. 16b) however, this swap is not allowed because the left two

agents can not communicate with each other. The optimal assignment could still be reached

by swapping the slow target to the fast agent first and then to the slow agent. However,

this swap (or any allowed swap) would in fact increase the cost and will therefore not be

performed. This means that the optimal assignment can not be reached in the right example

without increasing the cost in between. The agents are stuck in a local minimum of the cost

function.

3.2.2 Stochastic Assignment

Because the ordered line graph condition on the graph stated in Theorem 3.2.12 is rather

restricting and presumptively hard to verify in a decentralized fashion, we seek an algorithm

that is more robust to different graph structures. By adding randomness to the algorithm,
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(a) An assignment of agents to targets. The
indicated swap produces the optimal assign-
ment.
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(b) The same assignment with a reduced
communication graph. The swapping algo-
rithm will not achieve the optimal assign-
ment, because the left two agents cannot
communicate with each other.

Figure 16: Two different communication graphs for the same sub-optimal assignment. De-
pending on the graph, the optimal assignment can or cannot be reached by the swapping
algorithm.

local minima of the cost function ∆ should be escaped. This is common practice in global

optimization algorithms such as simulated annealing [51].

3.2.2.1 Potential Game Formulation

We will formulate the problem as a potential game and address it by using the Metropolis-

Hastings-Algorithm. This will enable us to relax the necessary and sufficient condition on

the graph to a simple demand for connectivity, albeit at the cost of leaving the optimal

assignment occasionally. This method has been proposed to the author by Dr. Daniel

Pickem and is highly influenced by [44].

The following notation will be used.

Definition The tuple G = (N ,A, {Ui(.)}i∈N , {Re}e∈E ,Φ(.)) is called a constrained poten-

tial game, where

• N is the set of N players

• A = A1 × ...×AN is the product set of the agents’ action sets Ai

• Ui : A 7→ R are the agents’ local potentials

• Re : A 7→ Ai×Aj is the restricted bilateral action set for a pair of agents e = {i, j} ∈ E ,

further called edge
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• Φ : A 7→ R is the global potential of a joint action

The local potential of an edge e = {i, j} is defined for a joint action a as the sum of the

local potentials of its agents Ue(a) = Ui(a) +Uj(a). Further, the local and global potentials

are aligned if for all edges e ∈ E , all bilateral actions ae, a′e ∈ Re and actions of other agents

a−e ∈
∏
k∈N\eAk we have

Ue(a
′
e, a−e)− Ue(ae, a−e) = Φ(a′e, a−e)− Φ(ae, a−e) . (61)

In the assignment problem, no agent can change its action unilaterally because this

would lead to invalid assignments. Instead, agents always can only swap targets to maintain

a bijective assignment. This is why we define the notion of bilateral actions ae on edges of

the graph e ∈ E . The restricted action set Re is a function that maps a joint action a to the

set of permissible actions of an edge. The restricted action set always contains two bilateral

actions: swapping the actions of the two agents or keeping the current joint action. For an

edge e = {i, j} this is expressed as

Re = {(ai, aj), (aj , ai)} . (62)

It can be seen that a joint action a ∈ A corresponds to an assignment P ∈ P. In fact,

the complete action set A also contains invalid assignments where more than one agent is

assigned to a target. Therefore, we call the set of all admissible actions AP .

For the local potential function, we will use the squared velocity mismatch Ui(a) =

δ2(i, P (i)) = δ2(i, ai). The global potential is the sum of all agents’ local potentials Φ(a) =

∑
i∈N Ui(a) and is equal to the total velocity mismatch ∆(P ). It can be seen that the local

and global potential are indeed aligned and satisfy Eq. (61).

The local potential Ui of an agent can be computed with local information about the

agent and its assigned target only. Similarly, the information required to compute the local

potential of a pair of agents is the union of the two agents’ information.

3.2.2.2 Markov Chain Monte Carlo Sampling

The potential game can be described as a Markov chain. The states are all possible joint ac-

tions (assignments), transitions between states are target swaps of two agents. An example
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1, 2, 3

P ∗

2, 1, 3 3, 1, 2

3, 2, 1

1, 3, 2 2, 3, 1

Figure 17: Markov chain of all permutations (assignments) P for 3 agents on a complete
graph.

of this Markov chain for three agents on a complete graph is presented in Fig. 17. Another

example of a Markov chain is presented in Fig. 18. The underlying communication graph

does not contain an OLG. The sub-optimal state P# is absorbing when the deterministic al-

gorithm is used. Using the Metropolis-Hastings-algorithm, we will now design the transition

probabilities in such a way that the optimal action is the stochastically stable state.

We will keep the notation a for the joint actions and therefore for the states of the

Markov chain.

Definition We define a Markov chain with the following properties:

• There exists a unique stationary distribution of the states.

• The probability of being in state a at a given time is π(a).

• When the system is in state a, the probability of transitioning to state a′ is Pr[a→ a′].

We want the optimal joint action a∗ (corresponds to the optimal assignment P ∗) to be

the stochastically stable state of the system (defined in Section 3.2.2.2). To achieve this, we
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1, 2, 3

P ∗

2, 1, 3

P#

3, 1, 2

3, 2, 1

1, 3, 2 2, 3, 1

Figure 18: The Markov chain from Fig. 17 when one edge of the underlying graph is removed.
State transitions that correspond to a swap of the first two elements in the assignment are
not allowed.

choose the target distribution to be a Boltzmann distribution

π(a) =
1

Z
exp

[
−1

τ
Φ(a)

]
(63)

with the normalization factor

Z =
∑

ã∈AP
exp

[
−1

τ
Φ(ã)

]
. (64)

The variable τ is called the learning rate. Higher values of τ will lead to more stochastic

exploration of the state space and less directed motion towards the optimal assignment P ∗.

As τ tends to zero, the probability for any state except the one with the minimum potential

Φ go to zero. This is captured in the following definition of a stochastically stable state.

Definition A state a ∈ A of a Markov process is called stochastically stable if

lim
τ→0

πτ (a) > 0 , (65)

that is when the probability for being in that state is nonzero as the learning rate goes to

zero (see [60]).
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Note that the stochastically stable state is not necessarily unique. In fact, all assignments

that have the same minimal cost as the assignment P ∗ are stochastically stable states, if

they exist.

The Metropolis-Hastings algorithm defines the probability of a transition from state a

to a′ as the joint probability of the random proposition of this transition and the acceptance

of it. In this case, the transition is a swap of two agents’ targets. Therefore, proposing a

transition is equivalent to choosing a pair of agents. Depending on the transition – i.e. the

selected agents and their targets – an acceptance probability is computed. A random binary

variable with this probability distribution then decides whether the agents accept the swap.

The transition probability is

Pr[a→ a′] = q[a→ a′] · α[a→ a′] , (66)

where q is the proposition probability and α is the acceptance probability. Because the edges

of the graph are invariant to the state of the Markov chain and we randomly pick the swap

pair e from a uniform distribution on the set of graph edges E , the proposition distribution

is uniform and we have

q[a→ a′] = q = const. (67)

for all states a ∈ AP and a′ being any state that can be reached from a with one swap.

Given this proposition probability distribution, we have to design the acceptance prob-

ability α such that the stationary distribution of the Markov chain equals the target distri-

bution π given in Eq. (63). We want to always accept a swap if it decreases the cost Φ(a)

and randomly accept swaps that increase the cost. The probability for such a swap should

decrease for higher cost increases. A common choice for the acceptance probability is the

Metropolis choice

α[a→ a′] = min

(
1,
π(a′)
π(a)

q[a′ → a]

q[a→ a′]

)
= min

(
1,
π(a′)
π(a)

)
. (68)

This acceptance probability satisfies the detailed balance

π(a)Pr[a→ a′] = π(a′)Pr[a′ → a] , (69)
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a condition for achieving the stationary distribution π(.) with the Metropolis-Hastings algo-

rithm. The derivation and the details of the algorithm are omitted here. They can be found

in the original paper [38] and its generalization [24].

Lemma 3.2.14. If the communication graph is connected, the assignment Markov chain is

connected too. Further, every transition is reversible.

Proof. Instead of a full proof, we will outline a way to swap any two elements. If the

communication graph is connected, there is a path from any node to every other node. By

swapping the leftmost element with the second, then the second element with the third an

so forth, we can move the first element to the right of the path. Then by swapping the

second rightmost element with the third element from the right and so forth back until the

leftmost element, we have swapped the leftmost and rightmost elements with the elements

in between being in their original position.

Since every swap is possible for a connected graph, any two assignments are connected

on the Markov chain.

Lemma 3.2.15. The described Markov chain is ergodic, if Pr[a→ a′] > 0 for all transitions

on the Markov chain and the communication graph is connected.

Proof. A Markov chain is ergodic if every state can be reached from every other state with

nonzero probability. If every transition in the Markov chain has nonzero probability and the

Markov chain is connected (holds according to Lemma 3.2.14 because the communication

graph is connected), there is a path with nonzero probability from every state in the Markov

chain to every other state.

Theorem 3.2.16. The state a∗ (the assignment P ∗) is a stochastically stable state of the

Markov chain.

Proof. The Markov chain is ergodic and the acceptance probability satisfies the detailed

balance. Therefore according to [38], the stationary distribution of the Markov chain exists

and is unique. It is equal to π. From Eq. (63) we can see that lim
τ→0

π(a) > 0 if a is a minimizer
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of Φ. Since P ∗ is defined as the minimizer of ∆, a∗ is indeed a minimizer of Φ. The condition

for stochastic stability from Section 3.2.2.2 is satisfied.

When a swap of two agents’ targets is proposed, it is accepted with probability α. Since

we want to have a decentralized version of the Metropolis-Hastings algorithm, these two

agents need to be able to compute the acceptance probability with local information only.

We will show that the acceptance probability can be computed by either member of the pair

if it has access to its own as well as its partner’s information.

For the target distribution π given in Eq. (63), we have

π(a′)
π(a)

=
1
Z exp

[
− 1
τΦ(a′)

]
1
Z exp

[
− 1
τΦ(a)

] = exp

[
−1

τ
(Φ(a′)− Φ(a))

]
. (70)

Let the transition from a to a′ be a target swap on the edge e = {i, j}. Then ae is the

action that does not change the targets and a′e is the bilateral action that swaps the targets

of agents i and j. We have

π(a′)
π(a)

= exp

[
−1

τ
(Φ(a′e, a−e)− Φ(ae, a−e))

]
. (71)

Because of the alignment of the local and global potentials described in Eq. (61), this equals

π(a′)
π(a)

= exp

[
−1

τ
(Ue(a

′
e, a−e)− Ue(ae, a−e))

]
. (72)

As noted earlier, this requires only local information of the pair of agents. Therefore,

the acceptance probability for a swap of two agents can be computed by either of those two

agents if they share their information.

3.3 The Cost Function

To find the best assignment of pursuit agents to targets, we solved a minimization problem

with a cost function. In this chapter we have been using the velocity mismatch of an agent

and its target as a cost function for the target assignment. However, the value of a pursuit

game is commonly represented by the time to capture or the distance between agent and

target. We will discuss these cost functions and their relation to the velocity mismatch cost

in Eq. (53).
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Figure 19: The assignment distribution in simulation for N = 5 and 10000 iterations. Each
point corresponds to one assignment, they are ordered by their cost Φ. The learning rate is
τ = 0.01. It can be seen that most of the time is spent in assignments with a low cost.

The time to capture is the time that the agent needs until its position equals the target

position, assuming perfect behavior of the agent as well as the target. Perfect behavior of

the agent is the trajectory of actions over time that minimizes time to capture, whereas the

target behaves such as to evade the agent as long as possible. Time to capture is not a

useful measure when the target is faster than the agent – in that case, the time to capture

is infinite. Moreover, we are interested in the results for large time horizons, as opposed to

the transient-focused approach of time to capture.

Another common measure is the distance of an agent to its target, i.e.

d = ‖x− y‖ . (73)

This can be evaluated at any given time. In a surveillance setting, this cost usually corre-

sponds to the lack of observation quality, a distance of zero meaning perfect observation of

the target. The value of the pursuit game is the limit of the distance as t goes to infinity, if

that limit exists:

D = lim
t→∞

d(t) . (74)

The distance of an agent to its target goes to zero over time if the agent can move faster

than the target. If the agent is slower than the target, existence of the limit depends on the
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arena.

For an unbounded space, an evader that is faster can infinitely increase the distance to

the agent and the limit does not exist. In a closed, circular arena, the agent can achieve

and maintain a certain distance from the target. In this case, the limit exists. An analytical

expression has been found by [35] and is given in Section 3.3.2. In the more general case of

arbitrary dynamics of agent and target and bounds on the state, the existence of the value

has been shown [10]. We will limit our analysis to the simple integrator and a circular arena.

A special case is if the agent and the target have the same velocity. In this case, all

cost functions are equivalent to some degree. This case will be mentioned in the following

sections.

It should be noted that the limit of the distance is independent of the initial agent and

target positions. It is a function of the ratio of the velocities of agent and target and the

radius of the arena. We will look at the different cases of bounded and unbounded arenas

in more detail now.

3.3.1 The Unbounded Pursuit

The pursuit in the unbounded plane has two important cases: The pursuer being faster than

the target and therefore capture in finite time and the opposite case that leads to an infinite

increase in the agent-target distance. The special case û = v̂ results in the distance being

constant for all times.

If the agent is faster than the target, the limit of the distance for large t is zero. Therefore,

the cost of this case is zero:

D(û > v̂) = 0 . (75)

As stated before, the limit does not exist if the target is faster than the agent. In this

case, the target can get arbitrarily far away from the agent. One could argue however, that

an agent that is much slower than its target performs even worse than an agent that is

almost as fast as the target. An agent with a velocity closer to that of the target would

still not be able to keep up, but the increase in the distance would be slower. This can be

expressed as the time derivative of the distance ḋ. Because the agent and the target are
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Figure 20: The pursuit in a circular arena.

moving in the same direction, the derivative of the vector norm can be expressed simply as

ḋ = v̂ − û . (76)

We can see the similarity to the velocity mismatch cost δ that we used earlier in the

chapter. The distance still goes to infinity. Other costs might therefore make more sense, for

instance counting the number of escaping targets. In this case, fast agents would be assigned

to targets that are slower than them, while targets that are too fast would be abandoned or

assigned to a slow agent.

3.3.2 The Circular Arena

The pursuit in a circular arena is known as the “Lion and Man” problem introduced by

Rado (see [36]) and has been extensively studied by Flynn [18, 19] and Lewin [35] among

others. Both were investigating problems equivalent to the one we study here: a pursuit of

a target (a man) by an agent (the lion), where the agent is slower than or equally fast as the

target and both are constrained to stay within the unit circle. This is sketched in Fig. 20.

In the case of an real lion and a man this scenario is of course highly unlikely unless the

lion is old and the man extremely fit. However, this assumption can be made because we

are not biologists. Flynn proved the existence of a value of this game and found upper and

lower bounds on the minimum distance the agent can achieve (and conversely the maximum

distance that the target can maintain). He further provided a numerical solution for the
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Figure 21: The value D of the circular pursuit game as a function of the velocity ratio w.

actual value of the game.

The analytical solution to this game is due to Lewin. The least upper bound on the

distance that the evading target can maintain in the unit circle is a function of the ratio of

the two players’ speeds. With this ratio defined as

w =
v̂

û
(77)

we have the limit of the distance [35]

D(w) =
w2 − 1

w
√
w2 − 1 + w(π2 + sin−1w−1)

. (78)

A plot of the distance limit as a function of the ratio w is displayed in Fig. 21.

We see that this value does not resemble the velocity mismatch cost. In fact, the distance

cannot be more than 1 (the pursuer could simply wait in the center of the arena). For high

ratios w, this limit is approached. This implies that, the higher w, the lower the effect

of increasing the velocity ratio even further. In certain cases, this leads to interesting

assignments. In Fig. 22, we show two different assignments for the same circular pursuit

problem. The sum of the distance limits D is not minimal at the minimal velocity mismatch.

Giving up on the fastest target by assigning it to the slowest agent and reassigning the faster

agents to the slower targets leads to capture of two out of three targets.

This shows some resemblance to the proposition of abandoning targets that are too fast
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1û1 = 0.2

2û2 = 1

3û3 = 1.5

1 v̂1 = 0.8

2 v̂2 = 1.2

3 v̂3 = 1.8

D1,1 = 0.66

∑
iDi,P (i) = 0.95

(a) Minimal velocity mismatch. Every agent
is slower than the assigned target.

1û1 = 0.2

2û2 = 1

3û3 = 1.5

3 v̂3 = 1.8

1 v̂1 = 0.8

2 v̂2 = 1.2

D1,3 = 0.85

∑
iDi,P (i) = 0.85

(b) The slowest agent has an even greater dis-
tance to its target, but the other agents can
achieve capture.

Figure 22: Two different assignments in the circular arena pursuit. The overall tracking in
the right assignment is better, even though the velocity mismatch is higher.

in the unbounded pursuit. Albeit, the reasons are different. In the unbounded pursuit we

can give up on a target if it is too fast even for the fastest available agent. Assigning it to a

slow agent does not change the fact that it can escape. In the circular arena however, this

result comes from the fact that the maximal distance that a target can achieve is bounded

by the radius of the arena. This means that the cost of assigning a very slow agent to a

fast target is bounded and often outweighed by the cumulative cost saving of assigning the

faster agents to slower targets.

It should be noted however that the optimal assignment for this cost equals the optimal

assignment P ∗ for ∆ if the teams have the same velocities. In fact, in this case all cost

functions are equivalent in the sense that the optimal assignment is the same.

3.4 Optimal Team Assembly

Similarly to Chapter 2, we are again interested in the optimal team assembly given a task.

In the case of the multi-agent multi-target pursuit, the task is defined by a group of target

agents or their velocities. The agent team can also be represented as a vector of movement

velocities. Therefore we are looking for a mapping

Q∗ : RN+ 7→ RN+ (79)
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of the targets’ velocity vector v̂ to the agents’ velocity vector û∗ such that û∗ minimizes a

cost

J(û∗, v̂) = min
u∈RN+

J(u, v̂) . (80)

The cost J represents our objectives. On the one hand, the pursuit quality as measured

by ∆0 should be as good as possible. We introduce the pursuit cost ∆0(P ) to be the cost

∆ without the cost for an agent being too fast for its target, i.e.

∆0(P, û) =
∑

i∈N
δ2

0(ûi, v̂P (i)) (81)

with the pairwise cost

δ2
0(ûi, v̂P (i)) =





(ûi − v̂P (i))
2, ûi < v̂P (i)

0, ûi > v̂P (i)

. (82)

This is evaluated for the best possible assignment and we define the pursuit cost to be

∆∗0(û) = ∆0(P ∗, û). The dependence of ∆ on û is not new, but before û was not a variable.

On the other hand, the agents should consume as little energy as possible. We introduce

an energy-usage cost T (û) for this purpose. We compose J in the following way:

J(û, v̂) = ∆∗0(û, v̂) +R · T (û) , (83)

where the coefficient R ∈ R+ is a weighting term for the energy-cost.

T is a cost of a potential. Unlike the energy-term in the cost c in the previous chapter, it

does not directly correspond to motion-induced energy consumption. Rather, it is a cost of

building or using a robot with the capability of moving fast. It could correspond to actual

monetary cost of building such a robot. Unsurprisingly, a robot that can only move slow

can be built more cheaply than a robot that satisfies high requirements on the maximal

velocity. Further, robots that have the capability of moving very fast have to be designed

for higher accelerations and therefore higher forces, typically requiring more durable and

massive electrical and mechanical parts. This leads to a higher total weight of the robot,

which in turn increases energy consumption even when the robot is not exhausting its

velocity potential. This means that T has to be an increasing function of the velocities ûi.
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Figure 23: The cost function J for a single agent. The energy-cost is chosen as T (û) = û2

and R = 0.3. The target velocity is v̂ = 0.7. The optimal agent velocity is û∗ = 0.54.

We will assume that it is the sum of each single agent’s cost

T (û) =
∑

i∈N
Ti(ûi) (84)

where Ti is a increasing function of ûi.

Naturally, a group of agents with velocities that match the targets’ minimizes the pursuit

cost ∆∗0. To reduce the cost T however, the velocities should be as low as possible. The

solution to the minimization problem in Eq. (80) is a compromise between the two competing

goals. It can be interpreted as sacrificing some of the pursuit quality (or surveillance quality

in a target observation setting) for a reduction in robot cost.

A plot of the costs ∆0, T and J for exemplary values is displayed in Fig. 23. It can

be seen that the velocity that minimizes ∆0 is û = v̂ = 0.7 or anything higher than that.

However, after adding the weighted energy-term T , the optimal velocity is below that at

û∗ = 0.54. We will show in simulation that the tracking results are still acceptable in this

case.

An example of a pursuit of a fast target by a slower agent can be seen in Fig. 24. The

plot shows the distance between the agent and its target over time. The target is not

actively evading the agent, but rather roaming around the bounded arena, driving curves

with random curvature at constant maximal velocity. Even though the agent is slower than
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Figure 24: The distance between an agent and its target over time in a bounded arena. The
agent is slower than the target with û = 0.8 · v̂.

the target with û = 0.8 · v̂, the distance stays close to zero after an initial decrease. This

illustrates that the sacrifice in surveillance quality is usually not as big as expected from the

pursuit evasion game.

If all agents can have different velocities, their optimal velocities can be computed inde-

pendently from each other and we have

û∗i = argmin
ûi∈R+

{
δ2

0(ûi, v̂P (i)) +R · Ti(ûi)
}
. (85)

Even though the optimal assignment P ∗ depends on the velocities of all agents, the optimal

values for the velocities conserve the assignment. In other words: If we calculate the optimal

velocities for any assignment P , then the resulting velocity vector will make this assignment

the optimal assignment. Note that if we choose another assignment than P ∗, the order of

the agents’ velocities also changes. If we reorder them by their maximum speed, the optimal

assignment is P ∗ again.

3.4.1 Example: A Team of RC-Racers

As an example for the assembly cost T of the robotic team, we will build a pursuit team that

minimizes the velocity mismatch cost ∆0 with a given budget for the electrical motors of

the robots. The general platform of the robots is given and we have to buy a set of electrical
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motors to fit on the robots and drive them. Note that we do not actually build robots, but

use this as an example for how an optimal team might be assembled.

In this approach, we can find a few differences to the optimal team composition described

before. For one, we don’t have a continuous (i.e. infinite) set of different maximal velocities

we can choose our motors from. Instead, we need to pick from the set of motors that

are offered on the market, preferably from just one manufacturer to simplify the robots’

assembly and maintenance. So we have a set of motors, each of them with a price tag and a

maximal output power. We call this set Umot. The other difference is that we use the cost

T only as a constraint instead of adding it to the cost function. Where before the task was

to find a team that is a compromise between pursuit quality and motor retail cost, we now

search for the team with the highest pursuit quality while not exceeding a certain cost Tmax.

In this example, we use the RC-motors offered by the manufacturer Horizon Hobby.

Specifically we choose brushless out- and inrunner motors from the “Park Series” and the

“Power Series” ranging from 30 W to 2700 W at prices between $30 and $150. We gathered

the retail prices and the power ratings for all offered motors. To determine the maximal

speeds of the robots, we can compute the air resistance with the drag equation

FD =
1

2
ρu2CDA , (86)

where FD is the drag (the resistance force), ρ is the density of the fluid (in this case air), u is

the velocity of the object and A is its reference area, that is the area of the projection of the

robot on a plane orthogonal to the movement direction. Given the drag, we can determine

the necessary power to overcome the air resistance with

PD = FD · u =
1

2
ρu3CDA . (87)

Solving this equation for the velocity u gives us the maximum velocity of a robot for a

specific motor’s power output when we only take air resistance into account:

û =

(
2PD
ρCDA

) 1
3

. (88)

At normal temperature and pressure (20 ◦C and 101.325 kPa), dry air has a density of

ρ = 1.2041 Kg/m3. Further, we assume a drag coefficient of CD = 0.26 (corresponds to the
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Table 1: Prices of RC-motors with the corresponding power values and top speeds.

Price [$] Power [W] Top speed [m/s]

30.00 30 8.67
32.00 55 10.61
38.00 85 12.27
40.00 150 14.83
45.00 225 16.97
46.00 325 19.18
60.00 375 20.12
65.00 425 20.98

Price [$] Power [W] Top speed [m/s]

70.00 550 22.86
75.00 700 24.77
90.00 800 25.90
110.00 1200 29.65
130.00 1800 33.94
140.00 2000 35.15
150.00 2700 38.85
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Figure 25: The cost of the RC motors plotted over the maximum velocity.

drag coefficient of the BMW i8, a sports car) and a reference area of A = 0.1 m2. These

values are chosen arbitrarily. Since the power values given on the manufacturer’s website are

electrical power input values and no efficiency values are available, we assume an efficiency

of 85% for every motor. With these values, we can compute the maximum velocity for every

motor. The retail prices, the power inputs and the resulting top speeds of all motors are

given in Table 1. A plot of the retail prices over the maximum speed, i.e. the cost T (û), is

given in Fig. 25. We can see a roughly quadratic relation of the two variables.

With this cost function for discrete points of û, we want to solve a discrete optimization

problem with constraints. The task is the following: for given v̂, minimize the cost ∆0

while not exceeding the budget, i.e. T (û) ≤ Tmax. The values ûi may only be chosen from

a discrete set Umot. This problem can be stated as an integer programming problem, where
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Figure 26: Plot of the mean and best cost ∆0 of the population of the genetic algorithm for
100 iterations.

the optimization variable is a vector of integers that point to values in Umot. Because the

total number of possible compositions is |U|N (with |U| being the cardinality of U), we use

an optimization algorithm to search for the optimal team.

We choose to use a genetic algorithm for this problem, because it is suitable for inte-

ger programs and the notion of crossover and mutation is clearly appropriate for the used

optimization variable. The results of this approach are generally very good. Also, the com-

putation time is rather short, with the algorithm finding a near-optimal solution within a

few seconds on current computer hardware.

Example 3.4.1. Let the vector of evader velocities be v̂ = (10, 13.5, 18, 20, 21, 26). We try

to find the best motors for the pursuer team given a budget of $300. The genetic algo-

rithm is initialized with the cost function ∆0, a number of six variables and the constraint

T (û) ≤ Tmax = 300. Within a few iterations, a very good solution is found. The evolution of

the solutions is displayed in Fig. 26. There we can see that the mean cost of the population

decreases for more iterations. The population size is 60, therefore 60 evaluations of the cost

function per iteration are necessary.

The solution to the problem is û = (10.61, 14.83, 19.18, 19.18, 20.12, 24.77) at a cost of

T = 299. The velocity mismatch cost is ∆0(û, v̂) = 2.94. It is noteworthy that if we use the
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Table 2: The results of the genetic algorithm for three different cost functions.

Targets v̂1 v̂2 v̂3 v̂4 v̂5 v̂6

10 13.5 18 20 21 26

Cost û1 û2 û3 û4 û5 û6 Retail Price Pursuit Cost

∆0 10.61 14.83 19.18 19.18 20.12 24.77 $299 ∆0 = 2.94
D 10.61 14.83 19.18 19.18 20.12 24.77 $299 D = 0.084
Nesc 14.83 16.97 19.18 20.98 22.86 10.61 $298 Nesc = 1

cost D – the limit of the distance in the circular pursuit as described in Section 3.3.2 – the

result is the same as for the cost ∆0.

However, using the number of escaping targets in the unbounded pursuit – as suggested

in Section 3.3.1 – yields a different result. It can be seen that the solution to the original

problem produces three agents that can capture their targets and three agents that are slower.

In fact, the number of escaping targets can be reduced to one if this one target is abandoned.

One solution is û′ = (14.83, 16.97, 19.18, 20.98, 22.86, 10.61). In this case, all agents are

faster than their target, with the exception of the last one. These results are summarized in

Table 2.
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Chapter IV

ROBOTIC IMPLEMENTATION

The theoretical results from Chapters 2 and 3 have been validated in simulation. To fur-

ther demonstrate the practical feasibility of the developed methods, they have also been

implemented on a physical robotic platform.

4.1 The Robotarium

The Robotarium is a remote-access multi-robot testbed designed to test and run networked

control algorithms on real robots. It was developed by the GRITS-lab at Georgia Tech

as a way for researchers of all disciplines to run their models on a real robotic platform.

The prototype of the Robotarium uses a table as the arena for the robots, the so-called

GRITSBots. Pictures of the Robotarium and the GRITSBots are displayed in Fig. 27. The

Robotarium and its use are described in more detail in [45].

The GRITSBots are low-cost differential drive robots with an IEEE 802.11 antenna, a

computing unit and a battery pack. The robots have identifying tags printed on top and

their position is acquired by a visual tracking system above the table. A server tracks the

positions of the robots and communicates with them using an IEEE 802.11 connection.

The control laws are implemented on the server, which computes the control inputs of

the robots and remote controls their physical actions. This setup allows for centralized

as well as distributed control laws, with the latter still being executed on the server. An

overhead projector that projects onto the table surface allows for visual additions to the

Robotarium arena and can provide additional information as well as simulated changes to

the environment, e.g. obstacles.

4.2 Nonlinear Robot Dynamics

In the preceding chapters, all methods have been developed for linear, single-integrator

robot models. This assumption is not valid for the two-wheeled GRITSBots that are used
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(a) The Robotarium prototype. (b) One of the GRITSBots.

Figure 27: The Robotarium and one of its GRITSBots 1.

in the experimental setup. Instead, the robots can be modeled with the so-called unicycle

dynamics

ẋ1 = v cos θ

ẋ2 = v sin θ

θ̇ = ω

(89)

with the inputs v and ω denoting velocity and angular velocity respectively.

We can then transform the inputs v and ω to the angular velocities of the two wheels of

the robot. If the distance of the wheels from the center of the robot is r and the radius of

the wheels is rw, the transformation for the wheel speeds ωL of the left and ωR of the right

wheel is
ωL =

1

rw
(v − rω) ,

ωR =
1

rw
(v + rω) .

(90)

The unicycle model of a two-wheeled robot is displayed in Fig. 28.

The mechanics of the unicycle model are non-holonomic, because the constraints on the

motion cannot be derived from position constraints. The non-holonomic constraint here is

1The images “Robotarium” and “GRITSBot” are the property of Daniel Pickem. The owner granted
permission to use them in this work.
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Figure 28: A simple unicycle model.

the restriction of motion to the direction the wheels are facing. No direct sideways motion

is possible. This also leads to the uncontrollability of the linearized system around a state

x∗ = [x∗1, x
∗
2, θ
∗]T:

∆ẋ =




cos θ∗ 0

sin θ∗ 0

0 1






v

ω


 . (91)

The first two states’ linearized equations are never independently controllable (note that θ∗

is a constant).

For these reasons we have to use nonlinear control laws that enable us to overcome the

non-holonomic constraints. Path planning and control of two-wheeled robots have been

extensively studied in the past [28, 34, 33, 54, 53].

4.3 Target Tracking Controller

A target tracking controller for the differential-drive robots should have the following prop-

erties:

• Globally stable error dynamics.

• Maintain a safety distance from target robot to avoid collisions.

• Still function with input saturation.

• Reach target quickly.
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While the last goal is optional, in a surveillance setting it is desirable to keep the time that

the target is unobserved as short as possible. Further, we would like our agents not only to

keep some distance to their targets, but also to every other robot or obstacle. We will use

barrier certificates to achieve this goal.

4.3.1 Collision Avoidance

To achieve collision avoidance not only between an agent and its target, we apply safety

barrier certificates introduced in [6]. Without having to change the original robot controllers,

the collision avoidance is wrapped around the user-defined control law on a low level. It

modifies the control input to the system in a minimally invasive way if a collision of two

agents would otherwise be unavoidable.

This is done by defining a safety radius around each agent that no other agent may enter.

If a collision would happen with the original input u, a new control input u∗ is computed

that does not lead to a collision. The new control input u∗ is the least invasive collision free

input, i.e. the difference between u and u∗ is minimal. To compute u∗, a quadratic program

has to be solved in every time step.

4.3.2 Tracking in Polar Coordinates

We use the controller proposed in [33] with an extension for better performance when the

target is moving. It drives the agent’s distance to the target robot to a specified value

and its heading towards the target. The states of the system are transformed to a relative

position and heading, where r is the distance of the agent from the target position and φ is

the difference between the facing angle of the agent and the angle of the line connecting the

agent and the target. We have the position error

e = P − x (92)

and with this the states
r = ‖e‖ ,

φ = θ − tan−1 e2

e1
.

(93)
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Figure 29: A visualization of the control goal of the polar coordinate controller. The agent
on the left tries to reach the distance rd to the target agent on the right. The desired position
of the left agent is drawn dashed.

A visualization of the goal of this controller is displayed in Fig. 29. The point P is the target

position for the agent and r is the distance between x and P . The target P is at the desired

distance rd from y.

According to [33], the robot dynamics are

ṙ = −v cosφ ,

φ̇ = ω +
v

r
sinφ .

(94)

The system is stabilized by the feedback law

vp = k1r cosφ ,

ωp = −k1 sinφ cosφ− k2φ .

(95)

This model does not take into account the movement of the target agent y. To improve

its performance for moving targets we extend the model, assuming we know the velocity

vector of the target at any time.

4.3.2.1 Moving target tracking improvement

Even though the original controller is designed in polar coordinates, we will use Cartesian

coordinates for this extension. When no coordinate frame is specified, vectors are represented

in the global coordinate frame W .

First, the target movement is transformed from the global coordinate frame W to the

agent’s local coordinate frame A. This is done by rotating it by θ, the orientation of the
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Figure 30: The global and local coordinate frames of the agent.

agent x in the global coordinate frame:

ẏA =



ẏA1

ẏA2


 = Rθẏ

W , (96)

where the rotation matrix is

Rθ =




cos θ sin θ

− sin θ cos θ


 . (97)

This is represented in Fig. 30.

To account for the target movement, we add terms to our control inputs that mitigate

the effects of target movement. If the target moves along the frontal axis of the robot, this

movement can easily be canceled out by adding the velocity in this direction to the velocity

input as the term

vd = ẏA1 . (98)

For target movement along the orthogonal axis xA2 , the movement constraints of the

agent do not allow this. Instead, we adjust the heading direction of the agent to match the

movement of the target. We transform the position error vector e into the local coordinate

frame with eA = Rθe
W . A movement of the target along the orthogonal axis of the agent

corresponds to an angular velocity of

ωd = eA1 · ẏA2 (99)

of the agent.
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ṗ

ω

Figure 31: The transformation from single integrator to unicycle dynamics. In this example,
the transformation leads to a purely rotational movement.

With the feedback terms from Eqs. (95), (98) and (99), the overall control law now is

v = vp + vd = k1 · r · cosφ+ ẏA1 ,

ω = ωp + ωd = −k1 · sinφ · cosφ− k2 · φ+ eA1 · ẏA2 .

(100)

4.3.3 Single Integrator Transformation

Because the control laws in Chapter 2 have been developed for single integrator dynamics,

we prefer to continue using these in the implementation. However, the robots are described

with the unicycle dynamics. Given a control law uint(x) for the single integrator dynamics

ṗ = uint (101)

where p ∈ R2, we need a transformation from uint to a unicycle input u that leads to a

corresponding behavior of the nonlinear robot. This transformation is achieved by placing a

reference point at a distance λ in front of the robot and having the robot follow this point.

A sketch of this can be seen in Fig. 31.

The position of the reference point p with respect to the robot is

p =



x1

x2


+ λ




cos θ

sin θ


 . (102)

Differentiating this term with respect to time yields

ṗ =



ẋ1

ẋ2


+ λ



−ω sin θ

ω cos θ


 =



us cos θ − λω sin θ

us sin θ + λω cos θ


 (103)
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where us and ω are the inputs for velocity and rotational velocity of the unicycle. Inserting

ṗ = uint and rewriting this equation leads us to the transformation

uint =




cos θ −λ sin θ

sin θ λ cos θ






us

ω


 . (104)

Note that uint ∈ R2. This transformation is a diffeomorphism. Through inversion, we get

the desired transformation from uint to the unicycle inputs:


us

ω


 =




cos θ sin θ

− 1
λ sin θ 1

λ cos θ


uint . (105)

This inverse exists for λ > 0. We use this transformation in the assignment problem to make

the robots follow the single integrator trajectories.

4.4 Assignment

The assignment algorithm has been implemented in MATLAB in the Robotarium simulator.

Because the GRITSBots are modeled as unicycles, we use the transformation described in

Section 4.3.3 to transform the single integrator control input to the unicycle inputs v and

ω. We further employ collision avoidance by using the technique described in Section 4.3.1

on the single integrator dynamics. The visual output of the Robotarium simulator for the

assignment problem can be seen in Fig. 32.

Additional information is displayed via the overhead projection system. We use colored

circles around the robots that show their velocity (blue circles denote fast robots, red circles

are slow). The target positions are marked as green crosses. The assignment of agents to

target is visualized with lines, using the same color coding as the robots. An example of the

projected image is shown in Fig. 33.

Switching from the simulator to the real robots only requires minor adjustments to the

MATLAB scripts. As expected, the experiment runs smoothly on the Robotarium. A photo

of the agents performing the task can be seen in Fig. 34.

Collision avoidance leads to rather small changes in the behavior of the robots and

increases the distance driven. The trajectories of the robots are visible in Fig. 35. This is

not considered in the assignment algorithm and therefore increases the cost beyond the value
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Figure 32: The assignment problem in the Robotarium simulator.

Figure 33: The overhead projection used for the assignment problem. The colored lines
are displayed between the robots and their assigned targets, the crosses mark the target
positions.
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Figure 34: A photo of the GRITSBots performing the assignment algorithm.
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Figure 35: The trajectories of the robots in the assignment problem.
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proposed by the algorithm. In crowded environments, it would be interesting to examine the

effect of collision avoidance on the quality of the assignment. It is possible that seemingly

suboptimal assignments are better for the real robots if they lead to less crossed paths.

4.5 Pursuit

Similarly to the assignment, the target pursuit was first implemented on the Robotarium

simulator. We use the GRITSBots as pursuers as well as evaders. The control law described

in Section 4.3.2 considers the unicycle dynamics, so there is no need for the diffeomorphism

from Section 4.3.3. However, the collision avoidance algorithm is implemented for the single

integrator dynamics. Although the tracking controller ensures that the pursuer does not

collide with its target robot, collisions between any other robots cannot be ruled out, so

we need to add collision avoidance. By transforming the unicycle dynamics to the single

integrator dynamics, then applying the collision avoidance and transforming back to the

unicycle inputs we solve the collision avoidance task. An example configuration of the

pursuit in the simulator can be seen in Fig. 36.

The overhead projection is similar to that in the assignment problem. However, instead

of just 2 different colors for the agents, we display a gradient from red (slowest agent) to

blue (fastest agent). The target robots are marked with green circles, where the brightness

of the color corresponds to that target’s speed. The dark green circle corresponds to the

slowest target, the light green circle to the fastest.

Similarly to the assignment problem, the implementation of the pursuit problem on real

robots required minor adjustments. A photo of the robots performing the target pursuit can

be seen in Fig. 38. Because the arena is bounded, a function was introduced that prevents

collisions of the robots with the wall of the Robotarium.

A large number of robots in the arena complicates the task because collision avoidance

leads to many changes in the robots’ trajectories. This is even more apparent since the

robots are only coordinated in groups of two (pursuer and evader) and there is no general

framework that coordinates all robots together like in formation control. This means that

the paths of robots will cross many times, leading to collision avoidance maneuvers.
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Figure 36: The pursuit problem in the Robotarium simulator. The green circles denote the
target agents.

Figure 37: The overhead projection used for the pursuit problem. The red to blue colored
lines are displayed between pursuer and evader, the green crosses are projected on the target
robots.
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Figure 38: A photo of the robots performing the pursuit algorithm. The lines are projected
onto the table by an overhead projector.
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Chapter V

CONCLUSION

In this work, we investigated the application of temporally heterogeneous teams to two

distinct problems. We showed ways to incorporate slowness into robotic teams and the

benefits and drawbacks of slow team members.

One of the investigated topics was a target assignment. By choosing a cost measure that

depends both on the distance to a target and the energy consumption needed to reach that

target, we introduced an optimization problem. We then solved the task of assembling the

optimal team of slow and fast agents to solve the assignment problem with minimal cost. To

complement this result we derived an algorithmic method for the optimization of the agents’

movement velocities, thereby creating a tool to design agents, assemble a team and solve

the assignment problem for given initial and target positions. We showed the practicality of

the developed methods in simulations and a robotic implementation.

The second problem that we considered is the team pursuit which is closely related to the

assignment problem. A heterogeneous team of robotic agents is given the task of pursuing

a heterogeneous team of moving target positions. In its core, this is a target assignment

problem with a set of moving targets. By assigning the agents that are capable of moving

at higher velocities to faster targets, an optimal pursuit was achieved. A decentralized algo-

rithm for finding the optimal assignment was introduced. Through the use of a stochastic

extension based on the Metropolis-Hastings algorithm, the requirements on the communi-

cation graph could be reduced to the natural requirement of connectivity. We discussed

different choices for pursuit performance measures leading to different optimal assignments.

An interesting observation is the tendency to abandon single targets if this helps the rest of

the team for some performance measures. Again, we investigated the optimal team compo-

sition when introducing a velocity cost. This was motivated by practical considerations and

substantiated with a real-world example where a budget for retail part cost was used as a
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constraint on the team composition. The methods have been validated in both simulation

and implementation.

Both of these problems showed the advantages and limitations of slow robots when incor-

porated into a team. A unifying theme was finding a compromise between task performance

and energy consumption when assembling a team of agents for a specific task. With this

thesis we have also shifted the perspective on solving tasks with a multi-robot team from

pure control design towards the choice of the team itself.

5.1 Outlook

Interesting considerations that were beyond the scope of this thesis include:

• Applying the methods to systems with more complex heterogeneous dynamics. Differ-

ent locomotion within the team can enable some agents to move to places that others

can not reach or reduce the time required to get there. This would be an interesting

topic especially with regards to the pursuit problem, where different agent locomotion

can be more or less suitable for the pursuit of a target with known dynamics.

• Introducing a form of competition between the agents and their opponents. Through

co-evolution, the effects of heterogeneity on fitness in a competitive setting could be

evaluated.

• Combining temporal heterogeneity with other kinds of heterogeneity. In many het-

erogeneous teams, temporal heterogeneity would come as an unavoidable side effect

of having a team with different skill sets. Investigating this connection could lead to

insights about the interplay of skills and speed.

• Investigating different team sizes. We have only investigated teams of a given fixed

size. Instead, one could also do a comparison in numbers, replacing a single fast robot

by a whole group of slower agents. Depending on the task, a fast robot might be

outperformed by just a small number of slow robots or it might be more suitable than

even a large team of slow robots.
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