
Animating Sand, Mud, and Snow

Robert W. Sumner, James F. O'Brien, Jessica K. Hodgins

College of Computing and Graphics, Visualization, and Usability Center

Georgia Institute of Technology

801 Atlantic Drive

Atlanta, GA 30332-0280

[sumnerjobrienjjjkh]@cc.gatech.edu

Accepted to Graphics Interface '98

Michael A. J. Sweeney Best Student Paper

Abstract

Computer animations often lack subtle environmen-

tal changes that should occur due to the actions of

the characters. Squealing car tires usually leave no

skid marks, airplanes rarely leave jet trails in the sky,

and most runners leave no footprints. In this paper,

we describe a simulation model of ground surfaces

that can be deformed by the impact of rigid body

models of animated characters. To demonstrate the

algorithms, we show footprints made by a simulated

runner in sand, mud, and snow as well as bicycle

tire tracks, a bicycle crash, and a falling runner.

The shapes of the footprints in the three surfaces

are quite di�erent, but the e�ects were controlled

through only six essentially orthogonal parameters.

To assess the realism of the resulting motion, we

compare the simulated footprints to video footage

of human footprints in sand.

Keywords: animation, physical simulation, ground

interaction.

1 Introduction

To become a communication medium on a par

with movies, computer animations must present a

rich view into an arti�cial world. Texture maps ap-

plied to three-dimensional models of scenery help to

create some of the required visual complexity. But

static scenery is only part of the answer; subtle mo-

tion of many elements of the scene is also required.

Trees and bushes should move in response to the

wind created by a passing car, a runner should crush

Figure 1: Image of tracks left in the sand by a group
of fast moving, motion blurred, alien bikers.

the grass underfoot, and clouds should drift across

the sky. While simple scenery and sparse motion can

sometimes be used e�ectively to focus the attention

of the viewer, missing or inconsistent action may also

distract the viewer from the plot or intended message

of the animation. One of the principles of animation

is that the viewer should never be unintentionally

surprised by the motion or lack of it in a scene[22].

Movie directors face a related problem because

they must ensure that the viewer is presented with

a consistent view of the world and the characters.

An actor's clothing and makeup should not inexpli-

cably change from scene to scene, lighting should be

consistent across edits, and absent, unexpected, or

anachronistic elements such as missing tire tracks,

1

extra footprints, or jet trails in the background of a

period piece must be avoided. The risk of distract-

ing the viewer is so great that one member of the

director's team known as a \continuity girl," \oor

secretary," or \second assistant director," is respon-

sible solely for maintaining consistency[17].

Maintaining consistency is both easier and harder

in computer animation. Because we are creating an

arti�cial world, we can control the lighting condi-

tions, layout, and other scene parameters and recre-

ate them if we need to \shoot" a �ll-in scene later.

Because the world is arti�cial, however, we may be

tempted to rearrange objects between scenes for best

e�ect, thereby creating a series of scenes that could

not exist in a consistent world. Computer-generated

animations and special e�ects add another facet to

the consistency problem because making the mod-

els and motion appropriately responsive is a lot of

work. For example, most animated �gures do not

leave tracks in the environment as a human actor

would and special e�ects artists have had to work

hard to create subtle but essential e�ects such as en-

vironment maps of ickering ames. Because each

detail of the scene represents additional work, com-

puter graphics environments are generally conspicu-

ously clean and sparse. The approach presented here

is a partial solution to this problem; we create a more

interesting environment by allowing the character's

actions to change a part of the environment.

In this paper, we describe a model of ground sur-

faces and explain how these surfaces can be deformed

by characters in an animation. The ground mate-

rial is modeled as a height �eld formed by vertical

columns. After the impact of a rigid body model, the

ground material is deformed by allowing compres-

sion of the material and movement of material be-

tween the columns. To demonstrate the algorithms,

we show the creation of footprints in sand, mud,

and snow. These surfaces are created by modifying

only six essentially independent parameters of the

simulation. We evaluate the results of the anima-

tion through comparison with video footage of hu-

man runners and through more dramatic patterns

created by bicycle tire tracks (�gure 1), a falling bi-

cycle (�gure 7), and a tripping runner (�gure 8).

2 Background

Several researchers have investigated the use of

procedural techniques for generating and animating

background elements in computer-generated scenes.

Although we are primarily interested in techniques

that allow the state of the environment to be altered

in response to the motions of an actor, methods for

animating or modeling a part of the environment

independent of the movements of the actors are also

relevant because they can be modi�ed to simulate

reactive behavior.

The most closely related previous work is that

of Li and Moshell[10]. They developed a model of

soil that allows interactions between the soil and the

blades of digging machinery. Soil spread over a ter-

rain is modeled using an array of posts that represent

the height of the soil at a given location. Soil that

is pushed in front of a bulldozer's blade is modeled

as discrete chunks. Although they discount several

factors that contribute to soil behavior in favor of a

more tractable model, their technique is physically

based and they arrive at their simulation formula-

tion after a relatively detailed analysis of soil dy-

namics. As these authors note, actual soil dynamics

are complex and their model, therefore, focuses on

a speci�c set of actions that can be performed on

the soil, namely the e�ect of horizontal forces acting

on the soil causing displacements and soil slippage.

The method we present here has obvious similarities

to that of Li and Moshell, but we focus on model-

ing a di�erent set of phenomena at di�erent scales.

We also adopt a more appearance-based approach

in the interest of developing a technique that can

easily model a wide variety of ground materials for

animation purposes.

Another environmental phenomenon that allows

interaction is water. Early work by Peachey[14] and

by Fournier and Reeves[7] used procedural models

based on specially designed wave functions to model

ocean waves as they travel and break on a beach.

Later work by Kass and Miller[9] developed a more

general approach using shallow water equations to

model the behavior of water under a variety of con-

ditions. Their model also modi�ed the appearance

of a sand texture as it became wet. O'Brien and

Hodgins[13] extended the work of Kass and Miller

to allow the behavior of the water simulation to be

a�ected by the motion of other objects in the en-

vironment and to allow the water to a�ect the mo-

tion of the other objects. They included examples

of objects oating on the surface and human actors

diving into pools of water. More recently Foster and

Metaxas[5] used a variation of the three-dimensional

Navier-Stokes equations to model uids. In addition

to these surface and volumetric approaches, particle-

based methods have been used to model water spray

and other loosely packed materials. Supplementing

particle models with inter-particle dynamics allows

a wider range of phenomena to be modeled. Exam-

2

Figure 2: The uniform grid forms a height �eld that
represents the surface of the ground. Each grid point
within the height �eld represents a vertical column of
ground material with the top of the column centered
at the grid point.

ples of these systems include Reeves[16], Sims[18],

Miller and Pearce[12], and Terzopoulos, Platt, and

Fleischer[21].

Other environmental e�ects that have been ani-

mated include clouds and gases[4, 20, 6], �re[1, 20],

lightning[15], and leaves blowing in the wind[23].

Simulation of interactions with the environment

can also be used to generate still models. Sev-

eral researchers have described techniques for gen-

erating complex plant models from grammars de-

scribing how the plant should develop or grow over

time. M�ech and Prusinkiewicz[11] developed tech-

niques for allowing plants to a�ect and be a�ected

by their environment as they develop. Dorsey and

her colleagues[2, 3] used simulation to model how an

object's surface changes over time as environmental

factors act on it.

3 Simulation of Sand, Mud, Snow

In this paper, we present a general model of a

deformable ground material. The model consists

of a height �eld supported by vertical columns of

material. Using displacement and compression al-

gorithms, we animate the deformations that are cre-

ated when rigid geometric objects impact the ground

material. These models have been used to animate

the creation of footprints, tire tracks, and other pat-

terns on the ground. The properties of the model

can be varied to produce deformations with the be-

havior of di�erent ground materials such as sand,

mud, and snow.

3.1 Model of Ground Material

Our simulation model discretizes a continuous

volume of ground material by dividing the surface

of the volume into a uniform rectilinear grid that

de�nes a height �eld (�gure 2). The resolution of

the grid must be chosen appropriately for the size of

the models that will collide with it and for the size

of the features in the ground surface. For example,

in �gure 1 the resolution of the grid is 1 cm and the

bicycles are approximately 2 meters long.

Initial conditions for the height of each grid point

can be created procedurally or imported from a va-

riety of sources. For illustrative purposes, we can

assign all grid points a constant height. We also

implemented more realistic initial conditions with

noise generated on an integer lattice and interpo-

lated with cubic Catmull-Rom splines (a variation

of a two-dimensional Perlin noise function[4]). Ter-

rain data or the output from a modeling program

could also be used for the initial height �eld. Alter-

natively, the initial conditions could be the output

of a previous simulation run. For example, the pock-

marked surface of a public beach at the end of a busy

summer day could be modeled by simulating many

criss-crossing footfalls.

3.2 Motion of the Ground Material

The height �eld represented by the top of the

columns is deformed as rigid geometric objects push

into the grid. For the examples given in this paper,

the geometric objects are a runner's shoe, a bicy-

cle tire and frame, and a jointed human �gure. The

motion of the rigid bodies was computed using a dy-

namic simulation of a human running, bicycling, or

falling down on a smooth, hard ground plane[8]. The

resulting motion was given as input to the simulation

of the ground material in the form of trajectories of

positions and orientations of the geometric objects.

Because of this generic speci�cation of the motion,

the input motion need not be dynamically simulated

but can be keyframe or motion capture data.

The simulation approximates the motion of the

columns of ground material by compressing or dis-

placing the material under the rigid geometric ob-

jects. At each time step, a test is performed to de-

termine whether any of the rigid objects have inter-

sected the height �eld. The height of the a�ected

columns is reduced until they no longer penetrate

the surface of the rigid object. The material that

was displaced is either compressed or forced outward

to surrounding columns. A series of erosion steps

are then performed to reduce the magnitude of the

slopes between neighboring columns. Finally, parti-

3

cles can be generated from the contacting surface of

the rigid object to mimic the spray of material that

is often seen following an impact. We now discuss

each step of the algorithm in more detail: collision,

displacement, erosion, and particle generation.

Collision. The collision algorithm determines

whether a rigid object has collided with the ground

surface. For each column, a ray is cast from the bot-

tom of the column through the vertex at the top. If

the ray intersects a rigid object before it hits the

vertex, then the rigid object has penetrated the sur-

face and the top of the column is moved down to

the intersection point. A ag is set to indicate that

the column was moved, and the change in height is

stored. The ray intersection tests are sped up by

partitioning the polygons of the rigid body models

using an axis-aligned bounding box hierarchy[19].

Using a vertex coloring algorithm, the simulation

also computes the distance from each column that

has collided with the object to the closest column

that has not collided. This information is used when

the material displaced by the collision is distributed.

A representative map is shown in �gure 3. The con-

tour map is computed by iterating over the entire

grid until all columns have been assigned a value.

As an initialization step, columns not in contact

with the object are assigned the value zero. Dur-

ing subsequent iterations, unlabeled columns adja-

cent to labeled columns are assigned a value equal

to the value of the lowest adjacent column plus one

(assuming eight-way connectivity).

Displacement. Ground

material from the columns that are in contact with

the object is either compressed or distributed to sur-

rounding columns that are not in contact with the

object. The compression ratio � is determined by

the user and is one of the parameters that can con-

trol the visual appearance of the ground material.

The material to be distributed, �h, is computed by:

�h = �m (1)

where m is the total amount of displaced material.

The material that is not compressed is propagated

down the contour map until columns that are not in

contact with the object are reached. Material from

a column is equally distributed among the neigh-

bors with lower contour values. In this way, the

ground material is redistributed to the closest ring

of columns not in contact with the rigid object. The

heights of the columns in this ring are increased to

1

1 1 1

2

2

1

12 1

2 1

2 1

1

1

1

11111

2

1

1 2

1 2

21

1

1

2

1

1

1

2 2

32

2

2 3

2

2

3

3

2 2 2 2

2

2

3

223

3

2

3

3 3

3 3

3 4 3 3

3

3333

4 4 4

2 1 1 11 21 3 23

1

1

1

Figure 3: The contour map represents the distance
from each column in contact with the foot to a col-
umn that is not in contact. For this illustration, we
used columns that are four-way connected. How-
ever, in the examples in this paper we used eight-
way connectivity because we found that the higher
connectivity yielded smoother results.

reect the newly deposited material. This change in

height may result in new collisions with the object

that will be detected during the next time step.

Erosion. Because the displacement algorithm de-

posits material only in the �rst ring of columns not in

contact with the object, the heights of these columns

may be increased in an unrealistic fashion. An \ero-

sion" algorithm is used to identify columns that form

steep slopes with their neighbors and move material

down the slope to form a more realistic mound. Sev-

eral parameters allow the user to control the shape of

the mound and mimic the motion of di�erent ground

materials.

The erosion algorithm examines the slope be-

tween each pair of adjacent columns in the grid (as-

suming eight-way connectivity). For a column ij and

a neighboring column kl, the slope, s, is

s = tan�1(hij � hkl)=d (2)

where hij is the height of the column, hkl is the

height of the neighboring column, and d is the dis-

tance to the neighbor. If the slope is greater than a

threshold �out, then ground material is moved from

the higher column down the slope to the lower col-

umn. Ground material is moved by computing the

average di�erence in height, �ha, for all the neigh-

boring columns with too great a slope:

�ha =

P
(hij � hkl)

n
(3)

4

where n is the number of neighbors with too great

a downhill slope. The average di�erence in height

is multiplied by a fractional constant, �, and the

resulting quantity is equally distributed among the

downhill neighbors. The algorithm repeats until all

slopes are below a threshold, �stop. In the special

case that a neighboring column is in contact with

the geometric object, a di�erent threshold, �in, is

used to control the slope. This threshold gives the

user independent control over the inner slope of the

mound of material around the geometric object.

Particles Generation. We use a particle system

to model portions of the ground material that are

thrown into the air by the motion of the geometric

objects. The user controls the adhesiveness between

the object and the material as well as the rate at

which the particles fall from the object. Each trian-

gle of the object that is in contact with the ground

picks up a portion of the ground material during

contact. The volume of material attached to a tri-

angle, v, is determined by the area of the triangle

multiplied by an adhesion constant for the material.

After the triangle is no longer in contact with the

ground, it gradually drops the attached material as

particles. The rate at which the material is dropped

is computed with an exponential decay. For each

time step the volume of dropped material is

�v = v(e(�t+tc+�t)=h � e(�t+tc)=h) (4)

where v is the initial volume attached to the triangle,

t is the current time, tc is the time at which the

triangle left the ground, �t is the size of the time

step, and h is a half life parameter that controls

how quickly the material falls o�. The number of

particles released on a given time step is determined

by

n = �v� (5)

where 1
�
is the volume of each particle.

The initial positions for the particles are ran-

domly distributed over the surface of the triangle.

The location of a particle is determined probabilis-

tically as follows:

p0 = baxa + bbxb + bcxc (6)

where xa, xb, and xc are the coordinates of the

vertices of the triangle and ba, bb, and bc are the

barycentric coordinates of the point given by

ba = 1:0�p�a (7)

bb = �b(1:0� ba) (8)

bc = 1:0� (ba + bb) (9)

�a and �b are independent random variables evenly

distributed between [0::1]. This results in a uniform

distribution over the triangle.

The initial velocity is computed from the velocity

of the rigid object

_p0 = � + ! � p0 (10)

where �, and ! are respectively the linear and an-

gular velocity of the object. To give a more realistic

and appealing look to the particle motion, the initial

velocities are randomly perturbed.

The �nal component of the particle creation algo-

rithm accounts for the greater probability that ma-

terial will fall o� fast moving objects. The particle

is only created if (j _p0j=s) > �, where s is the min-

imal speed at which all potential particles will be

dropped, controls the variation of the probability

of particle creation with speed, and � is a random

variable evenly distributed in the range [0::1].

Once created, the particles fall under the inu-

ence of gravity. Upon striking the surface of the

ground, their volume is added to the volume of the

column on which they land.

3.3 Implementation and Optimization

Simulations of terrain generally span a large area.

For example, we would like to be able to simulate

a runner jogging on a beach, a skier gliding down

a snow-covered slope, and a stampede of animals

crossing a sandy valley. A naive implementation

would be intractable because of the memory and

computation requirements. The next two sections

describe the optimizations that allow us to achieve

reasonable performance by storing and simulating

only the active portions of the surface and by paral-

lelizing the computation.

Algorithm Complexity. Because the ground

model is a two-dimensional rectilinear grid, the

most straightforward implementation is a two-

dimensional array of nodes containing the height

and other information about the column. If an an-

imation required a grid of i rows and j columns,

i� j nodes would be needed, and computation time

and memory would grow linearly with the number

of grid points. Thus, a patch of sand 10 meters by

10 meters with a grid resolution of 1 cm yields a

1000 � 1000 grid with one million nodes. If each

node requires 10 bytes of memory, the entire grid re-

quires 10 Mbytes. Even this relatively small patch of

sand requires signi�cant system resources. However,

most of the ground nodes remain static throughout

5

Figure 4: The active columns in the hash table are
shown in red. The sand is rendered only for the
area stored in the hash table (the area that was in
contact with the bounding box of the bike at some
time during the simulation). The number of cells
in the red area is approximately 37,000 while the
number of cells in the entire virtual grid is greater
than 2 million.

the simulation. This observation allowed us to im-

plement a much more e�cient algorithm that creates

only the active nodes.

The i, j position of a particular node is used as

the index into a hash table allowing the algorithms

to be implemented as if a simple array of nodes were

being used. The hash table is initially empty and is

�lled with nodes as the rigid objects move through

the scene. On each time step, nodes that are covered

by a projection of the rigid objects onto the surface

are marked as active. The actual projection is an en-

larged bounding box for the rigid objects (�gure 4).

If the active nodes do not exist in the hash table,

they are added. The collision detection, displace-

ment, and erosion algorithms are applied, not to the

entire grid, but only to the active grid points.

Because only the active grid points are processed,

the computation time is now a function of the size

of the rigid objects in the scene rather than the total

grid size. Memory requirements are also signi�cantly

reduced. However, the state of all modi�ed nodes

must be stored even after they are no longer covered

by a bounding box because a rigid object may im-

pact those grid points at a later time. For example,

in the scene depicted in �gure 1, the bicyclists ride

over the tire tracks of other bicyclists.

Parallel Implementation. Despite the optimiza-

tion provided by simulating only active nodes, the

computation time grows linearly with the projected

area of the rigid objects. Adding the rigid objects

for a second character will approximately double the

active area. However, the computation time for mul-

tiple characters can be reduced by using parallel pro-

cessing when the characters are a�ecting indepen-

dent patches of ground.

In our parallel implementation, a parent process

maintains the state of the grid and spawns a child

process for every character in the animation. Each

child process maintains a local copy of the grid and

performs its computations in parallel. After each

time step, the multiple copies of the grid are syn-

chronized through a two stage communication rou-

tine. First, each child reports the changes in its copy

of the grid to the parent process. The parent process

then updates the master copy of the grid and reports

all changes to the children. The data that must be

sent to the parent and to the children is relatively

small because the motion of any rigid object during

a single time step is small.

We have implemented this design on a 12 pro-

cessor SGI Power Challenge using UNIX pipes to

handle communication. Because the parallel imple-

mentation does not rely on shared memory, it could

easily be adapted for multiple machines using sock-

ets instead of pipes. However, network delays be-

tween multiple machines would be more signi�cant

than the communication time on a single multipro-

cessor. This parallel implementation assumes that

the projected bounding boxes of the rigid objects

for di�erent characters do not overlap. A more so-

phisticated implementation could handle this case

by assigning characters with overlapping bounding

boxes to the same processor.

4 Animation Parameters

Ground materials can behave in many di�erent

ways. One goal of this research is to create a tool

that allows animators to easily generate a signi�cant

fraction of this variety. Six parameters of the simula-

tion can be changed by the user in order to achieve

di�erent e�ects: liquidity, roughness, inside slope,

outside slope, compression, and particle adhesion.

The �rst four are used by the erosion algorithm, the

�fth is used by the displacement algorithm, and the

�nal parameter is used by the particle system.

Liquidity or �stop determines how watery the ma-

terial appears by modifying how many times the

erosion function is called per time step. With less

erosion per time step, the surface appears to ow

outward from the intersecting object; with more ero-

sion, the surface moves to its �nal state more quickly.

Roughness or � controls the irregularity of the

ground deformations by changing the amount of ma-

6

Figure 5: Images from video footage of a human runner stepping in sand and a simulated runner stepping
in sand, mud, and snow. The human runner images are separated by 0.133 s; the simulated images are
separated by 0.1 s. Images of a crashing bicycle (0.5 s spacing) and a tripping runner (0.166 s spacing).

7

Variable Sand Mud Snow

liquidity (�stop) 0.8 1.1 1.57

roughness (�) 0.2 0.2 0.2

inside slope (�in) 0.8 1.57 1.57

outside slope (�out) 0.436 1.1 1.57

compression (�) 0.3 0.41 0.0

Figure 6: Table of parameters for the three ground
materials.

terial that is moved from one column to another dur-

ing erosion. Small values yield a smooth mound of

material while larger values give a rough, irregular

surface.

The inside and outside slope parameters (�in and

�out) modify the shape of a mound of ground ma-

terial by changing the slope adjacent to intersect-

ing geometry and the slope on the outer part of the

mound. Each parameter is a threshold that is used

to determine if a particular column should erode to

its neighbors. Small values lead to more erosion and

a more gradual slope; large values yield less erosion

and a steeper slope.

The compression or � parameter determines how

much a given column compresses when it is pushed

down by an object and, therefore, o�ers a way

to model substances of di�erent densities. In the

displacement algorithm, this parameter determines

how much displaced material is distributed outward

from an object that has intersected the grid. A value

of one causes all material to be displaced; a value less

than one allows some of the material to be discarded.

Finally, the rate of creation of particles is con-

trolled primarily by a parameter representing the

adhesion between the ground material and the ob-

ject. We included particles in the animations of sand

but did not include them in the animations of mud

or snow. Other more dynamic motions such as snow

skiing might generate signi�cant spray but running

in snow appears to generate clumps of snow rather

than particles.

5 Results and Discussion

Figure 5 shows images of a human runner step-

ping in sand and a simulated runner stepping in

sand, mud, and snow. The parameters used for the

simulations of the three ground materials are given

in �gure 6. The footprints left by the real and sim-

ulated runners in sand are quite similar.

Figures 5, 7, and 8 show more complicated pat-

terns created in the sand by a falling bicycle and a

Figure 7: A closeup view of the bicycle at the end
of the motion sequence shown in �gure 5.

tripping runner. For each of these simulations, we

used a grid resolution of 1 cm by 1 cm yielding a

virtual grid size of 2048�1024 for the bicycle and

4096�512 for the runner.
The simulation described in this paper allows us

to capture with relative ease many of the behaviors

of substances such as sand, mud, and snow. Only

about �fteen iterations were required to hand tune

the parameters for the desired e�ect with each ma-

terial. The computation time is not burdensome: a

3-second simulation of the running �gure interacting

with a 1 cm by 1 cm resolution ground material re-

quired less than 2 minutes of computation time on

a single MIPS R10000 processor.

Many e�ects, however, are missed by this model.

For example, wet sand and crusty mud often crack

and form large clumps, but our model can only gen-

erate smooth surfaces and particles. Actual ground

material is not uniform but contains both small

grains of sand or dirt as well as larger objects such

as rocks, leaves, and seashells. More generally, many

factors go into creating the appearance of a given

patch of ground: water and wind erosion, plant

growth, and the footprints of many people and an-

imals. Some of these more subtle e�ects are illus-

trated by the human footprints in snow and mud

shown in �gure 9.

One signi�cant approximation in this simulation

system is that the motion of the human �gure is not

a�ected by the deformations of the surface. For the

sequences presented here, each of the human simula-

tions interacted with a at, smooth ground plane. A

more accurate and realistic simulation system would

allow the bike and runner to experience the undula-

tions in the initial terrain as well as the changes in

friction caused by the deforming surfaces. For exam-

8

Figure 8: A closeup view of the tripping runner at
the end of the motion sequence shown in �gure 5
and the pattern that she made in the sand.

ple, a bike is slowed down signi�cantly when rolling

on sand and a runner's foot slips slightly with each

step on soft ground.

We regard this simulation as appearance-based

rather than engineering-based because most of the

parameters bear only a scant resemblance to the

physical parameters of the material being modeled.

The liquidity parameter, for example, varies between

0.0 and �=2 rather than representing the quantity of

water in a given amount of sand. It is our hope that

this representation for the parameters allows for in-

tuitive adjustment of the resulting animation with-

out requiring a deep understanding of the simulation

algorithms or soil mechanics. The evaluation is also

qualitative or appearance-based in that we compare

simulated and video images of the footprints rather

than matching initial and �nal conditions quantita-

tively.

The motions of sand, mud, and snow that we gen-

erated are distinctly di�erent from each other be-

cause of changes to the simulation parameters. Al-

though much of the di�erence is due to the defor-

Figure 9: Images of actual human footprints in snow
and in mud. The image of snow is from the opening
scene of the recent movie Smilla's Sense of Snow.

mations determined by our simulations, part of the

visual di�erence results from di�erent surface prop-

erties used for rendering. To generate the images in

this paper, we had not only to select appropriate pa-

rameters for the simulation but also to select param-

eters for rendering. A more complete investigation

of techniques for selecting rendering parameters and

texture maps might prove useful.

References
[1] N. Chiba, S. Ohkawa, K. Muraoka, and

M. Miura. Two-dimensional visual simulation

of ames, smoke and the spread of �re. The

Journal of Visualization and Computer Anima-

tion, 5(1):37{54, January{March 1994.

[2] Julie Dorsey and Pat Hanrahan. Modeling and

rendering of metallic patinas. In Holly Rush-

meier, editor, SIGGRAPH 96 Conference Pro-

ceedings, Annual Conference Series, pages 387{

396. ACM SIGGRAPH, Addison Wesley, Au-

gust 1996. Held in New Orleans, Louisiana, 04-

09 August 1996.

[3] Julie Dorsey, Hans K�hling Pedersen, and Pat

Hanrahan. Flow and changes in appearance.

In Holly Rushmeier, editor, SIGGRAPH 96

Conference Proceedings, Annual Conference Se-

ries, pages 411{420. ACM SIGGRAPH, Addi-

son Wesley, August 1996. Held in New Orleans,

Louisiana, 04-09 August 1996.

[4] David Ebert, Kent Musgrave, Darwyn Peachey,

Ken Perlin, and Steven Worley. Texturing and

Modeling: A Procedural Approach. Academic

Press, October 1994. ISBN 0-12-228760-6.

[5] Nick Foster and Demitri Metaxas. Realistic an-

imation of liquids. In Proceedings of Graphics

Interface '96, pages 204{212, May 1996.

[6] Nick Foster and Dimitris Metaxas. Modeling

the motion of a hot, turbulent gas. In SIG-

9

GRAPH 97 Conference Proceedings, Annual

Conference Series, pages 181{189. ACM SIG-

GRAPH, Addison Wesley, August 1997. Held

in Los Angeles, California, 03-08 August 1995.

[7] Alain Fournier and William T. Reeves. A sim-

ple model of ocean waves. In David C. Evans

and Russell J. Athay, editors, Computer Graph-

ics (SIGGRAPH '86 Proceedings), volume 20,

pages 75{84, August 1986.

[8] Jessica K. Hodgins, Wayne L. Wooten,

David C. Brogan, and James F. O'Brien. An-

imating human athletics. In Robert Cook, ed-

itor, SIGGRAPH 95 Conference Proceedings,

Annual Conference Series, pages 71{78. ACM

SIGGRAPH, Addison Wesley, August 1995.

Held in Los Angeles, California, 06-11 August

1995.

[9] Michael Kass and Gavin Miller. Rapid, stable

uid dynamics for computer graphics. In For-

est Baskett, editor, Computer Graphics (SIG-

GRAPH '90 Proceedings), volume 24, pages 49{

57, August 1990.

[10] Xin Li and J. Michael Moshell. Modeling soil:

Realtime dynamic models for soil slippage and

manipulation. In James T. Kajiya, editor, Com-

puter Graphics (SIGGRAPH '93 Proceedings),

volume 27, pages 361{368, August 1993.

[11] Radom�ir M�ech and Przemyslaw Prusinkiewicz.

Visual models of plants interacting with their

environment. In Holly Rushmeier, editor, SIG-

GRAPH 96 Conference Proceedings, Annual

Conference Series, pages 397{410. ACM SIG-

GRAPH, Addison Wesley, August 1996. Held

in New Orleans, Louisiana, 04-09 August 1996.

[12] Gavin Miller and Andrew Pearce. Globular dy-

namics: A connected particle system for ani-

mating viscous uids. Computers and Graphics,

13(3):305{309, 1989.

[13] J. F. O'Brien and J. K. Hodgins. Dynamic sim-

ulation of splashing uids. In Computer Ani-

mation '95, pages 198{205, April 1995. Held in

Geneva, Switzerland, 19-21 April 1995.

[14] Darwyn R. Peachey. Modeling waves and surf.

In David C. Evans and Russell J. Athay, editors,

Computer Graphics (SIGGRAPH '86 Proceed-

ings), volume 20, pages 65{74, August 1986.

[15] Todd Reed and Brian Wyvill. Visual simu-

lation of lightning. In Andrew Glassner, ed-

itor, Proceedings of SIGGRAPH '94 (Orlando,

Florida, July 24{29, 1994), Computer Graphics

Proceedings, Annual Conference Series, pages

359{364. ACM SIGGRAPH, ACM Press, July

1994. ISBN 0-89791-667-0.

[16] W. T. Reeves. Particle systems { a technique for

modeling a class of fuzzy objects. ACM Trans.

Graphics, 2:91{108, April 1983.

[17] Karel Reisz and Gavin Miller. The Technique

of Film Editing. Focal Press, 1989.

[18] Karl Sims. Particle animation and rendering

using data parallel computation. In Forest Bas-

kett, editor, Computer Graphics (SIGGRAPH

'90 Proceedings), volume 24, pages 405{413,

August 1990.

[19] John M. Snyder. An interactive tool for plac-

ing curved surfaces without interpenetration.

In Robert Cook, editor, SIGGRAPH 95 Con-

ference Proceedings, Annual Conference Series,

pages 209{218. ACM SIGGRAPH, Addison

Wesley, August 1995. Held in Los Angeles, Cal-

ifornia, 06-11 August 1995.

[20] Jos Stam and Eugene Fiume. Depicting �re and

other gaseous phenomena using di�usion pro-

cesses. In Robert Cook, editor, SIGGRAPH 95

Conference Proceedings, Annual Conference Se-

ries, pages 129{136. ACM SIGGRAPH, Addi-

son Wesley, August 1995. Held in Los Angeles,

California, 06-11 August 1995.

[21] Demetri Terzopoulos, John Platt, and Kurt

Fleischer. Heating and melting deformable

models (from goop to glop). In Proceedings

of Graphics Interface '89, pages 219{226, June

1989.

[22] Frank Thomas and Ollie Johnston. Disney An-

imation: The Illusion of Life. Abbeville Press,

New York, 1984.

[23] Jakub Wejchert and David Haumann. Ani-

mation aerodynamics. In Thomas W. Seder-

berg, editor, Computer Graphics (SIGGRAPH

'91 Proceedings), volume 25, pages 19{22, July

1991.

10

