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SUMMARY 

 

Recovering energy from the ocean using the salinity gradient power obtained 

from the reverse electrodialysis (RED) process has great potential to meet the world’s 

growing energy demand, while also cutting down on greenhouse gas emissions and the 

use of scarce fossil fuels. Some limitations prevent RED systems from large-scale 

applications including high cost of membranes, slow development for natural salinity 

conditions, and lack of tailor-made RED membranes for salinity gradient power 

generation. The currently available commercial ion exchange membranes (IEMs) lack 

sufficient properties to generate optimal power in an RED system. Our work is focused 

on synthesizing ion exchange membranes specifically for an RED system. In recent 

years, it has been discovered that the ideal IEMs for RED have low resistance and high 

selectivity.  

The addition of inorganic filler particles into the organic polymer matrix of cation 

exchange membranes (CEMs) has been shown to increase proton conductivity, 

hydrophilicity, and surface area. In this study, we introduce a new type of nanocomposite 

membranes made by incorporating sulfonated SiO2 nanoparticles into a sulfonated poly 

(2,6-dimethyl-1,4-phenylene oxide) (sPPO) polymer. This work is the first time the use 

of SiO2-SO4
2-

  in the PPO polymer matrix has been reported in this field. Our purpose is 

to evaluate the effect of adding two different sizes of silica nanoparticles (15 nm and 70 

nm) in various loading amounts (0 wt%, 0.2 wt%, 0.5 wt%, 0.8 wt%, 1 wt%) on 

membrane properties such as ion exchange capacity, swelling degree, membrane 

resistance, and permselectivity. Finally, our novel nanocomposite membranes are tested 



 xii 

in an RED stack to measure their power generation. The results show that SiO2-sPPO 

membranes are more suitable for energy generation by RED than commercially-available 

CEMs. More specifically, the most favorable physical and electrochemical characteristics 

are exhibited with the membrane containing 0.5 wt% SiO2-SO3H loading with the larger 

(70 nm) nanoparticles. All membranes blended with the 70 nm particles have lower area 

resistance and, therefore, higher gross power density than the membranes containing the 

15 nm particles. The highest power density of 1.3 W/m2 is achieved from the 0.5 wt% 

SiO2-SO3H nanocomposite membranes containing the larger sized particles. 

 

 

 

 



 

1 

CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation for Research 

 Global population is rapidly increasing, in large part due to technology and 

medical advances. A growing world population, especially in rapidly developing 

countries, leads to growing energy demand and consumption per capita for daily use and 

development. The increasing anthropogenic need for energy and the desire to protect our 

environment may cause a major economic or environmental crisis in the coming years. 

Innovative technology using renewable sources is needed to meet our growing energy 

needs and reduce our anthropogenic contributions to climate change.  

 Current trends in energy consumption still disproportionately favor nonrenewable 

fossil fuel sources. According to the 2013 Key World Energy Statistics, published by the 

International Energy Agency, oil (31.5%), coal (28.8%), and natural gas (21.3%) still 

account for the majority of the fuel supply. Just 1.0% of the world’s total primary energy 

usage came from renewable sources such as geothermal, solar, wind, and heat in 2012.1  

 In the last few decades, there have been rising concerns about the harmful impacts 

of climate change. A recent study has shown that a business-as-usual approach to energy 

consumption is unsustainable regardless of the sustainability criteria.2 The 

Intergovernmental Panel on Climate Change published a landmark assessment report in 

2013 stating that the business-as-usual model leads to runaway climate change and global 

warming, ultimately resulting in sea level rises and extreme weather conditions.3 

Compounding the issue is the imminent scarcity of fossil fuels. 
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 Fossil fuel consumption unavoidably causes carbon dioxide (CO2) emissions. As 

the leading contributor of CO2 in the atmosphere, fossil fuel combustion produces 30 

gigatons of CO2 annually.4 Reduction in the negative effects of climate change can only 

be achieved through a drastic reduction in fossil fuel usage. Implementing novel 

renewable energy technologies in place of fossil fuels will have the most significant 

payout for a similar investment of resources.   

 Current renewable energy resources, in order of their theoretical potential, include 

solar (photovoltaics and concentrators), wind, enhanced geothermal, hydropower, and 

biopower. Some limitations contributing to the lack of implementation of renewable 

energy systems are inadequate investments in new technologies, slow states of 

development, and scale-ups needed for sufficient power production.  

 One of the most expansive and largely unharnessed energy comes from the ocean. 

This so-called blue energy, or salinity gradient power, is the free energy available from 

mixing water streams with different ionic concentrations, like salt water (seawater) and 

fresh water (river water). Salinity gradient power is available globally wherever river 

water flows into seawater (e.g., estuary). The estimated potential power of worldwide 

salinity gradient power from oceanic and river water mixing is 2.6 TW, when total 

discharge of all river water streams are considered.5 Blue energy and other renewable 

energy sources have the potential to meet our growing energy demand with a lasting 

source of energy and a reduction in global greenhouse gas emissions. The National 

Renewable Energy Laboratory concluded that with a more flexible electric system, 

commercially available renewable energy sources can supply 80% of the total electricity 

generation for the US in 2050.6 
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 Two techniques are available to harvest the alternative, renewable, and 

sustainable salinity gradient power into electric power: pressure-retarded osmosis (PRO) 

and reverse electrodialysis (RED). PRO extracts power from permeating water of a low 

salinity feed solution through an osmotic membrane to a pressurized, high salinity draw 

solution, thereby converting osmotic pressure into hydrostatic pressure which, when 

applied to a turbine, can generate electricity. RED, driven by the Nernst potential, uses 

ion selective membranes to transport cations and anions in the water to produce electrical 

current. The method employed in this thesis to extract this clean blue energy was reverse 

electrodialysis. RED was chosen due to better power generation using seawater and river 

water compared with PRO.7 

There are some major advantages of RED in terms of power generation. Since 

runoff is relatively continuous throughout the various seasons, power generation is 

consistent (especially compared with wind or solar energy). Also, the immensity of the 

ocean provides an enormous energy resource. Last, given that salinity gradients between 

two natural water bodies are essentially driven by solar energy evaporating ocean water 

keeping it highly concentrated, there is no fuel needed to power the inflow of saline and 

dilute water, resulting in a net zero CO2 emission from the RED process.  

 However, there are several obstacles to overcome before RED can be feasibly 

applied to large-scale operations. Membrane cost is relatively high leading to a high 

capital cost, pretreatment of input water may be necessary since membrane fouling and 

stability could present major problems in natural salinity conditions, stack design should 

be modified to be more efficient, and membranes should be optimized specifically for 

RED. The latter, in the opinion of our group, is the most important obstacle to consider 
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for successful RED systems. A recent publication also concluded that technological 

innovations in the ion exchange membranes (IEMs) used for RED are of utmost 

importance to achieve greater efficiency and higher power density performance.8  

 In many publications, there is debate about the theoretical maximum power 

density that can be obtained from IEMs. According to one source, the best theoretical 

power density that can be expected from cation exchange membranes (CEMs) is above 4 

W/m2.9 Another group estimates that the maximum power density obtained from the 

available technology is 2.7 W/m2, but that the calculated net power density with 

membrane resistance and cell length improvements is close to 20 W/m2.10 Current RED 

system modifications primarily aimed at improving intermembrane distance and 

feedwater flow rate have achieved the highest reported power density to date at 2.2 

W/m2.11 The only way to get closer to the theoretical maximum power densities from 

RED technology is to make improvements in the IEMs used in the stack.   

 After an extensive literature review, it became evident that research aimed at 

synthesizing tailor-made RED membranes for this specific application was limited. Part 

of the reason is that the membrane properties that most contribute to high RED power 

output are just beginning to be understood, which makes it difficult to customize the 

membranes. Only recently have researchers found that low resistance and high selectivity 

are the key factors to optimizing IEMs for RED performance.12  

 Several studies have explored the use of various inorganic filler particles in fuel 

cell and desalination membrane technology.13,14 Organic-inorganic composite IEMs have 

been shown to retain the beneficial properties of each component (i.e., polymer and 

inorganic filler) when blended. The beneficial properties of organic materials are 
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structural flexibility, convenient processing, tunable electronic properties, 

photoconductivity, efficient luminescence, and the potential for semiconducting and even 

metallic behavior. Inorganic compounds provide the potential for high carrier mobilities, 

band gap tunabilities, a range of magnetic and dielectric properties and thermal and 

mechanical stability.15 These translate to high ion exchange potential, low water uptake, 

high conductivity, high monovalent ion selectivity, as well as high thermal and 

mechanical stability when both are applied to membrane development.16 The addition of 

functionalized nanoparticles can facilitate enhanced ion migration with the additional 

pore formation in the membrane. Consequently, the area resistance of the membrane can 

be decreased, which is of considerable importance in RED.  

 Due to the crucial role of inorganic nanoparticles in forming free pores when 

combined with polymer matrix17, it is necessary to understand the effect of filler particle 

size and loading on the membrane structure and performance in an RED application. In a 

previous paper from a student in our research group, novel nanocomposite membranes 

containing sulfonated iron (III) oxide (Fe2O3-SO4
2-) nanoparticles in a sulfonated 

poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) polymer matrix had favorable membrane 

properties and performed well in an RED stack.18 Sulfonated functionalized silica had a 

substantial effect on macroscopic properties, like morphologies, physio-electrochemical 

performance, and stabilities of membranes for desalination applications.19 The useful 

properties of PPO (e.g., high film-forming properties, good mechanical, thermal, and 

chemical stability, and low-moisture uptake16, 20) combined with the useful properties of 

sulfonated SiO2 nanoparticles (e.g., hydrophilicity, ion charge transport, wide porosity, 
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improved conductivity, water uptake, and mechanical stability of the membranes21) make 

these materials exceptional for organic-inorganic composite membrane synthesis. 

 The size of inorganic fillers may alter the condition of membrane structure and 

pore formation, especially at the polymer-particle interfacial zone.22 This experimental 

study investigates the effect of inorganic filler particle size on the structure and 

electrochemical performance of silica nanocomposite CEMs for RED power generation. 

Different inorganic particle sizes (15 nm and 70 nm) and loading amounts (0 wt%, 0.2 

wt%, 0.5 wt%, 0.8 wt%, 1 wt%) were used to structurally modify the PPO polymer used 

to synthesize CEMs. The effect of such transformation of interfacial properties in the 

nanocomposites on physical and electrochemical properties was evaluated and further 

tested in RED stack for power production.    
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1.2 Energy Recovery Using Reverse Electrodialysis 

 The natural mixing of salt and fresh water streams leads to a change in Gibbs free 

energy which, through ion transport in selective RED membranes, can be liberated as 

electrical energy. Perfecting RED systems for large-scale operations allows us to utilize 

this otherwise lost free energy of mixing. 

 In RED, unlike electrodialysis, controlled mixing of saline and dilute solutions 

through membranes, produces energy. The basic principles of RED are discussed 

extensively in many reported studies.7, 9, 23 An RED stack consists of any number of 

alternating CEMs and anion exchange membranes (AEMs) between a cathode and an 

anode. (Figure 1.1) As the number of membranes in the stack increases, the overall 

voltage production increases. For less relative power loss in the electrode system, RED 

stacks should have a large number of cells. Narrow compartments, formed by spacers 

between the membranes, are alternatively pumped with concentrated salt water and 

diluted fresh water. The thin spacers promote mixing between compartments and 

contribute to the mechanical stability of the stack. Cations migrate through the CEMs and 

anions migrate through the AEMs.  

 An electrochemical potential difference across each membrane is achieved from 

the salinity gradient. Cations are driven towards the cathode and anions are driven 

towards the anode. Redox reactions at the electrodes convert these ionic charges to 

electron current. When the membrane stack potential (dependent on the number of cells), 

or sum of cell-pair voltages, exceeds the redox potential at each electrode, the electron 

current can be run through electrical wires to an external electrical source to generate 

useful electric power.24  
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Figure 1.1 Simplified schematic of an RED stack  

 

  

Summary of the basic principles of RED: 

1. Feed solutions with different salt concentrations alternately through the stack. 

2. Ion diffusion occurs and is regulated by IEMs, resulting in stored chemical 

potential energy from the ion exchange of Na+ and Cl- through the membranes. 

3. Electron/redox transfer happens at the electrodes. Fe3+ is reduced to Fe2+ at the 

cathode, which is counterbalanced by the oxidation of Fe2+ to Fe3+ at the anode.  

4. At the ends of the stack, an output electrical current and voltage is generated 

across the electrodes from the stored chemical potential energy. The current can 

be directly discharged as electricity if connected to an external power source (in 

this case, a potentiostat). 
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1.3 Prior and Ongoing Research 

Developing low-cost IEMs with uniquely tailored electrochemical and physical 

properties is important for successful, sustainable energy capture from salinity gradients 

by RED. The currently available commercial IEMs are not ideal for RED applications 

due to their lack of specialized complexity. Various preparation methods and materials 

for RED-specific cation and anion membrane synthesis have been explored in previous 

work.  

Homogeneous CEMs were chosen for this study over AEMs for several reasons. 

In general, CEMs are more thermally and chemically stable than AEMs in strongly acidic 

and strongly alkaline solutions; the quaternary ammonium groups in AEMs tend to 

decompose at elevated temperature and in concentrated alkali solutions.25¯26  CEMs have 

higher charge densities and higher permselectivities than AEMs due to AEM’s higher 

swelling degree.9 Fewer steps are required for the manufacture of CEMs.26-27 Due to 

membrane structure, heterogeneous ion exchange membranes have lower charge densities 

and higher resistances than homogeneous membranes. Therefore, homogeneous CEMs 

were chosen for our purposes to produce low resistance membranes. It should be noted 

that although CEMs were studied here, improvements in AEMs are needed in 

combination with improved CEMs for more effective RED stacks. Therefore, previous 

experimental studies focusing on AEMs are also included in this section. 

Sulfonation is a widely used chemical modification of base polymers for various 

membrane processes including electrodialysis, water filtration, and diffusion dialysis.28 

Sulfonation is the process whereby an electrophilic substitution takes place on the 

aromatic ring to increase desired charge density and hydrophilicity in the polymer matrix 



 10 

(preferable for our application). By enhancing the ionic charge transfer, this modification 

facilitates good electrical conductivity.29 Sulfuric acid and chlorosulfonic acid are two 

typical sulfonating agents, which are often used for such treatment.  

For commercial applications, the most frequently used polymeric material for 

making CEMs is perfluorinated or partially fluorinated material. A good example of this 

is Nafion®, a perfluorosulfonic membrane, used almost exclusively for fuel cell 

technology. Nafion is very costly due to the complicated fluorochemistry required for its 

synthesis which, combined with its low selectivity, poor mechanical stability, and low 

conductivity, makes it undesirable for widespread application. Utilizing a polymer 

without the fluorinated species in its matrix can significantly decrease in the cost of 

manufacturing IEMs, and therefore, the cost of the RED technology. The non-fluorinated 

hydrocarbons, like poly (2,6-dimethyl-1,4-phenylene oxide) (PPO), polyvinyl alcohol 

(PVA) and polyvinylchloride (PVC), are considered promising low-cost alternative 

materials.30  

In 2013, one group from the Netherlands investigated the bulk membrane properties 

of cation-exchanging tailor-made membranes for RED using a non-fluorinated 

thermoplastic polymer known as sulfonated polyetheretherketone (SPEEK).31 This study 

also prepared anion-exchanging polyepichlorohydrin (PECH) AEMs by a solvent 

evaporation method. Sulfonated SPEEK (65% and 40% sulfonation degree) CEMs were 

dissolved in 10 and 20 wt% N-methyl-2-pyrrolidon (NMP), cast with average thickness 

of 70 µm for SPEEK65 membranes and 55 µm for SPEEK40 membranes, and dried. The 

PECH AEMs and SPEEK CEMs were characterized and shown to have excellent 

electrochemical properties. When tested in a complete RED stack, the tailor-made 
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membranes exhibited higher gross power density (1.3 W/m2) than RED stacks made with 

commercially available membranes. This work provides evidence that alternative 

polymer materials producing membranes with low resistance can contribute significantly 

towards optimizing power density of RED membrane stacks. 

Another property that is particularly important for RED membranes in natural 

waters is high selectivity for monovalent ions.32 Guler et al. (2014) was the first to test 

commercial AEMs with a negatively-charged coating on both sides to improve selectivity 

for monovalent ions for RED application.33 The contents of the coating layer included 2-

acryloylamido-2-methylprpanesulfonic acid (AMPS) as polyanion with sulfonic groups 

and N,N-methylenebis(acrylamide) (MBA) as the crosslinking agent. An in-situ synthesis 

method was used to prepare the membranes’ reactive polymeric coating layer via UV 

irradiation on the membrane surface. This method preserved the bulk membrane 

structure, improved antifouling properties like hydrophilicity, and increased monovalent 

ion selectivity. The coated standard-grade commercial membrane performed similarly to 

commercially available monovalent-selective membranes in calculations of monovalent 

selectivity by bulk transport numbers, current-voltage, and limiting current density. 

Measurements from an RED stack test using thick coated membranes (~110 µm and 

above) did not yield significantly higher gross power densities than those of 

commercially available monovalent-selective membranes. Further research is needed 

with thinner membranes for a more significant improvement in power density.  

A composite structure formed by introducing inorganic nanomaterial into an 

organic polymer matrix is another promising way to improve RED performance. The 

concept of combining organic polymer and inorganic nanoparticles to form composite 
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membranes has gained much interest owing to the ability to retain the desired properties 

from both components. The aim of incorporating inorganic filler materials into polymer-

based materials is to enhance mechanical, chemical, and thermal stability of the polymer 

matrix. Fortunately, this blending can provide extra ion exchange functional groups to the 

membrane, which helps provide more ion migration, and thus allows improved 

conductivity as a single molecular composite.18, 21b Although formation of 

nanocomposites has been well studied, particularly for fuel cell and water purification 

applications,21, 34 only a few studies have been reported in salinity gradient energy 

application, such as RED.18  Nanocomposite IEMs allow extra ion exchangeable 

functional groups into the structure, which is advantageous to enhance the 

electrochemical characteristics of the membrane. Table 1 demonstrates the many 

membrane studies that have focused on combining and deriving the unique features of 

various inorganic nanoparticles with those of organic materials, predominantly in 

electrodialysis, fuel cell, and water treatment applications.   

Organic–inorganic hybrid ion exchange membranes using PPO as the polymer 

backbone have been well-studied in applications outside of RED due to the enhanced 

thermal stability and mechanical strength. In one report, SiO2 was blended into PPO 

through a sol–gel process of polymer precursors PPO–Si (OCH3)3 using tetraethoxysilane 

(TEOS) as the silicon source.35  In addition to higher swelling-resistant properties, this 

hybrid membrane was found to have enhanced hydroxyl (OH−) conductivity, which is 

particularly useful for alkaline fuel cells. In fact, the hydroxyl ion (OH−) conductivity 

values were comparable to previously reported fluoropolymer-containing membranes 

(0.012-0.035 S cm-1 in the temperature range 30–90 °C). Additionally, with heat 
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treatment of between 120-140 °C during its preparation, the membranes’ 

physicochemical properties (i.e., ion exchange capacity, hydrophilicity, OH− 

conductivity, tensile strength) could be easily controlled by adjusting the heating 

temperature and time.  

This year, the first report of nanocomposite CEMs applied in an RED stack for 

power generation was published.18 In this study, various concentration loadings of 

functionalized iron (III) oxide (Fe2O3-SO4
2-) particles were introduced into a sulfonated 

poly (2,6-dimethyl-1,4-phenylene oxide) (sPPO) polymer matrix. As the loading of 

Fe2O3-SO4
2- increased, the electrochemical properties of the membranes improved. This 

enhancement was optimized in the range of 0.5-0.7 wt%. The membrane containing 0.7 

wt% Fe2O3-SO4
2- exhibited relatively higher permselectivity (87.65%) and lower area 

resistance (0.87 Ω cm2). When tested in the RED stack, the highest gross power density 

obtained was 1.3 W/m2, which exceeds the power output of the commercially available 

CSO (SelemionTM, Japan) membrane. This new design of nanocomposite membrane 

showed promise as a feasible way to modify IEMs for a RED power generation process 

and was a major influence for this thesis work.     

 

Table 1.1 Existing organic-inorganic nanocomposite membranes of various applications   

Inorganic  

material 

Organic 

material 
Applications 

References 

Al2O3 PVA Quaternized composite membrane for alkaline DMFC (Yang et al., 2010)36 

CeO2 Nafion 
Chemically durable proton exchange membrane for fuel 

cell 
(Wang et al., 2012)37 

Cu3(PO4)2 

Ni3(PO4)2 
PVC Electrochemical evaluation of two composite IEMs 

(Arsalan et al., 2013)38 

Fe2O3 Nafion High proton conductivity composite membrane for DMFC (Sun et al., 2010)14a 

Fe2O3 PPO Salinity gradient power generation using RED (Hong and Chen, 2014)18 

Fe2NiO4 PVC Performance evaluation of heterogeneous CEM (Hosseini et al., 2012)39 

MWNT PVA Crosslinked nanocomposite membrane for DMFC (Yun et al., 2011)40 

SiO2 PPO AEM for alkaline fuel cells: Effect of heat treatment (Wu et al., 2009)41 

SiO2 PVA Electrochemical characterization of AEM (Nagarale et al., 2005)42 

SiO2 PPO Fuel cell application (Jeong et al., 2007)43 

SiO2 PVA 
Thermally stable CEMs for fuel cell and chloro-alkali 

application 

(Nagarale et al., 2004)44 
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Table 1.1 Continued 

SiO2 PVA PEM for DMFC application (Tripathi and Shahi, 2011)45 

SiO2 PVA/PPO 
Double organic phases for diffusion dialysis (alkali 

recovery) 

(Wu et al., 2012)46 

SiO2 PVDF Electrochemical characterization of CEM (Zuo et al., 2009)47 

SiO2 Nafion Proton conducting membrane for DMFC (Wang et al., 2011)48 

SiO2 Nafion Investigation of composite membrane for PEMFC (Ke et al., 2011)49 

SiO2 PES Electrodialysis IEM for desalination (Klaysom et al., 2010)34a 

SiO2 PPEK Proton exchange membrane for DMFC (Su et al., 2007)13b 

SiO2 PAES Fuel cell application (Lee et al., 2007)13a 

SiO2 PS Performance evaluation: Proton and methanol transport (Kim et al., 2006)50 

SiH4 PEO Thermally stable negatively charged NF membrane (Wu et al., 2005)51 

TiO2 PES UV-irradiated TiO2 for modification of UF membrane (Rahimpour et al., 2008)52 

TiO2 PES Performance evaluation of PES composite membrane  (Li et al., 2009)53 

TiO2 Nafion Solid superacid composite membrane for DMFC (Wu et al., 2008)54 

TiO2 Nafion Electrochemical performance for DMFC (Baglio et al., 2005)55 

TiO2 PVA Pervaporation separation of water-isopropanol mixture (Sairam et al., 2006)56 

TiO2 PVDF Anti-fouling performance and water treatment (Li et al., 2013)57 

TiO2 PES/PVA Flux and salt rejection of NF membrane (Pourjafar et al., 2012)58 

TiO2 PES Fouling resistance of UF membrane (Rahimpour et al., 2008)52 

ZrO2 Nafion Asymmetric hybrid membrane for gas permeability 
(Apichatachutapan et al., 
1996)59 

ZrO2 Nafion Conductive composite membrane for PEMFC (Zhai et al., 2006)60 

ZrO2 Nafion Solid polymer electrolyte electrolyzer application (Siracusano et al., 2012)61 

ZrO2 PVDF Performance evaluation of UF membrane (Bottino et al., 2002)62 

ZrO2 Nafion Performance at high temperature/low humidity for PEMFC (Sacca et al., 2006)63 

ZrO2 Nafion Proton conductivity for high temperature DMFC (Navarra et al., 2009)64 

PPO: Poly (2,6-dimethyl-1,4-phenylene oxide); PVA: Polyvinyl alcohol; PVDF: Polyvinylidene fluoride; PVC: 

Polyvinyl chloride; PES: Polyethersulfone; PPEK: Poly (phthalazinone ether ketone); PAES: Poly(arylene ether 

sulfone); PS: Polystyrene; PEO: Polyethylene oxide; MWNT: Multi-walled carbon nanotube; PEM: Polymer 

electrolyte membrane; PEMFC: Proton exchange membrane fuel cell; DMFC: Direct methanol fuel cell; NF: 

Nanofiltration; UF: Ultrafiltration. 

 

Alterations to RED membrane stack design in conjunction with specialized 

membranes have shown improved performance in literature as well. One such study 

eliminated non-conductive spacers typically used in IEM stacks.65 Two types of 

commercial heterogeneous membranes (Ralex CMH and AMH) were used because of 

their low melting temperatures. The dry membranes were thermally pressed between two 

aluminum molds. Once cooled, the pressed membranes were immersed in demineralized 

water then immersed in NaCl solution. By stacking the hot-pressed IEMs, a ridged 

profiled membrane was created that allowed feed water to flow freely through these 

channels. This method lowered the ohmic resistance of the stack and increased the 

boundary layer resistance compared to a conventional RED stack with non-conductive 

spacers.  
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CHAPTER 2 

EXPERIMENTAL APPROACH 

 

2.1 Materials 

 

2.1.1 Selection of Polymer 

Poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) (Aldrich, analytical standard), was 

used for the polymer membrane. PPO was chosen due to its good mechanical, thermal, 

and chemical stability, especially when integrated with inorganic filler particles.15 In 

addition to it is low cost, PPO has high film-forming properties, low-moisture uptake, and 

high glass transition temperature.66 The structure of PPO consists of an aromatic ring, 

two methyl groups, and a phenol group (Figure 2.1). Various structural modifications, 

such as the functionalization of the benzene rings, methyl groups, and hydroxyl groups of 

PPO chains through electrophilic or radical substitutions, capping, and coupling, are 

possible due to the simple structure of PPO. The excellent electrochemical characteristics 

of sulfonated PPO (sPPO) have contributed to its wide use for various industrial 

applications.67  

 

Figure 2.1 Molecular structure of poly (2,6-dimethyl-1,4-phenylene oxide) 
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Other polymer materials such as PVA and PVC were considered but ultimately 

ruled out due to poor conductivity and poor heat stability, respectively. 

 

2.1.2 Selection of Inorganic Filler Particles 

Silica (SiO2) has been widely used as an ion exchangeable inorganic filler 

material for the synthesis of composite membranes, mostly for fuel cell and desalination 

applications.13 Silica can take on an important role as a charge carrier in the composite 

membrane by modification of its particle surface. The surface of SiO2 nanoparticle can be 

modified with –SO3H groups via a sulfonation reaction, which makes the material more 

hydrophilic with water molecules and functional in transporting ionic charges. Studies 

have reported that its versatility due to wide porosities and functionalities allows 

improved conductivity, water uptake, and mechanical stability of the membranes.21 Two 

silicon dioxide (SiO2, silica) nanopowders were used as the inorganic filler particles: 15 

nm SiO2 (US Research Nanomaterials, 99.5%) and 70 nm (US Research Nanomaterials, 

98%).  

 

2.1.3 Other Materials 

Chloroform (Aldrich, anhydrous, 99%) was used as the organic solvent for PPO due 

to its low reactivity, miscibility with organics, and volatility (beneficial for our solvent 

evaporation technique). Chlorosulfonic acid (Aldrich, 99%) and sulfuric acid (Aldrich, 

98%) were used in sulfonation of the polymer material and the inorganic filler particles, 

respectively. Both are hygroscopic and hazardous strong acids but they are very suitable 

in sulfonation. Methanol (Aldrich, anhydrous, 99.8%), used as a solvent, was mostly 
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evaporated off during drying of the sPPO. Dimethylsulfoxide (DMSO) (ACS grade, 

99.9%) was obtained from VWR. DMSO is used in dissolution of the sPPO to prepare 

the membrane casting solution.  

 

2.2 Material Preparation 

 

2.2.1 Sulfonation of PPO 

First, the appropriate amount of PPO was added to the chloroform solvent and 

stirred vigorously to yield a 6 wt% solution at room temperature. This solution was left 

stirring until the PPO was fully dissolved in the chloroform. The PPO-chloroform 

solution was gradually sulfonated with an 8 wt% chlorosulfonic acid and chloroform 

solution. The chlorosulfonic acid-chloroform solution was added dropwise to the PPO-

chloroform solution over a time period of 30 minutes with vigorous stirring at room 

temperature. During this process, the sulfonated PPO (sPPO) started to precipitate out of 

solution, as evidenced by small brownish particles swirling in solution. After the sPPO 

was fully precipitated, it was washed with deionized (DI) water several times until the pH 

was between 5 and 6. After washing, the sPPO had an orange-white color and the texture 

was spongy. The sPPO was then dissolved in methanol over light heating (50 °C) for 

about an hour. The milky solution was poured into a Pyrex glass tray to form a thin film 

of about 1 mm thickness. This thin film was allowed to air-dry overnight at room 

temperature under the fume hood. After 24 hours, the dry sPPO was washed with DI 

water. Again, it was left to dry overnight. Finally, the dry sPPO was cut into small pieces 
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in order to make dissolution easier. The final sPPO product had a slight orange color and 

was mildly flexible. 

 

2.2.2 Sulfonation of Silica Nanoparticles 

The silica nanopowder was sulfonated with concentrated sulfuric acid (98%). The 

appropriate amount of SiO2 was dissolved in 0.25 M H2SO4 solution. The particles were 

allowed to soak in the acid for 24 hours. The sulfonated SiO2 was subsequently filtered 

and dried at 80 °C in a vacuum oven to remove any residual liquid. Last, to ensure the 

particles were completely dried, they were calcinated at 500 °C for 3 h to obtain a white 

sulfonated SiO2 powder. This process was performed with both the 15 nm silica 

nanopowder and the 70 nm silica nanopowder.  

 

2.3 Membrane Synthesis 

The nanocomposite cation exchange membranes were then synthesized with the 

prepared sulfonated PPO polymer and sulfonated filler particles. A solvent evaporation 

method was employed to prepare the membranes. DMSO was used to dissolve the sPPO 

in preparation of the casting solution. 25 wt% solutions of sPPO in DMSO were 

prepared. When the sPPO was dissolved, 0-1 wt% of sulfonated SiO2 was mixed with the 

polymer solution at 60 °C for 24 hours. This casting solution was left stirring overnight to 

properly disperse the particles. The resulting mixture was then cast onto glass plates with 

a doctor blade to obtain membranes with 30 µm thicknesses. To remove residual 

solvents, the membranes were dried in a vacuum oven for 24 h at 60 °C then for another 

24 hours at 80 °C. The dried membranes were treated in 50 °C warm water for 15 
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minutes to remove them from the glass and cool them down. Then they were transferred 

to a 1 M HCl solution for 24 hours. The final membranes were rinsed with DI water and 

stored in 0.5 M NaCl solution until testing. These steps were performed to produce 

multiple membranes for each loading amount of silica nanoparticles (0 wt%, 0.2 wt%, 0.5 

wt%, 0.8 wt%, 1 wt%,) and for each size silica nanoparticles. The thickness of the 

membranes was kept constant at 30 µm for consistency.  

 

2.4 Membrane Characterization 

 

2.4.1 Fourier Transform Infrared (FTIR) Spectroscopy  

To investigate the chemical structures of the silica nanocomposite membranes, 

FTIR spectroscopy was used. FTIR spectra of sulfonated SiO2 and PPO membranes were 

acquired with an FTIR spectrometer (Spectrum 400, PerkinElmer). This spectrometer 

collected 50 scans per sample at a resolution of 4 cm-1 and a spectral range of 4000-600 

cm-1. Background FTIR was the ambient air spectrum. 

 

2.4.2 Morphology and Structure  

The morphology of the inorganic filler particles was investigated by transmission 

electron microscopy (TEM, JEOL 100CX II). The structure of the surface and cross 

section of the prepared membranes was examined using scanning electron microscopy 

(SEM, Zeiss Ultra60 FE-SEM). To obtain a sharp cross-section for SEM, the samples 

were fractured after first being prepared in liquid nitrogen. Membrane samples were then 

dried overnight to preserve their structure.   
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2.4.3 Swelling Degree (SD) 

SD is the extent to which the polymer membrane absorbs moisture. SD is important 

in determining the mechanical strength and stability of the membrane, as well as being 

influential in the ability of the membrane to be ion-selective and electrically resistant. It 

is measured as a percentage of water content per unit weight of dry membrane. To 

measure SD, a sample was taken from each membrane and immersed in DI water for at 

least 24 hours. Then, after removing the surface water from the sample, the weight of the 

swollen membrane was measured. Then, the same sample was air-dried overnight and 

weighed again to get the dry membrane mass. The SD of each membrane was calculated 

in weight percent by the following equation: 

100%
wet dry

dry

W W
SD

W


                                                                                                    (1)     

where Wwet and Wdry are the weight of the wet and the dry membrane, respectively. This 

method was adapted from previous work.18 

 

2.4.4 Ion Exchange Capacity (IEC) 

IEC was determined by using a titration method.26 The membrane samples were 

first immersed in 1 M HCl for at least 15 hours. Then, the samples were rinsed with DI 

water to rid them of chloride ions. After rinsing, they were equilibrated in 1 M NaCl 

solution for at least six hours. The resulting solution, with displaced hydrogen ions from 

the membrane, was titrated with 0.01 M NaOH solution using phenolphthalein as an 

indicator. The IEC of membranes were then calculated by using the following equation: 
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NaOH NaOH

dry

C V
IEC

W


                                                                                                         (2)  

where CNaOH is the concentration of NaOH solution, VNaOH is the volume of NaOH 

solution used and Wdry is the dry weight of the membrane. The IEC determination 

followed a previously described procedure.18 

 

2.4.5 Charge Density 

Charge density (CD, Cfix) is the measure of fixed number charged groups in the 

polymer backbone of the ion exchange membranes. This fixed charge density is 

expressed in units of milliequivalent of fixed groups per volume of water in the 

membrane (meq L-1).  The counter ion transport and ion permselectivity through the 

membrane is determined by the charge density. The calculation to determine the charge 

density is simply the IEC divided by the SD of the membrane, as seen in equation (3):  

fix

IEC
C

SD
                                                                                                                         (3)                                                                                                                                                                                                                                                            

 

2.4.6 Resistance 

A low membrane electrical resistance, or ability of the membrane to oppose the 

passage of electrical current, is most desirable for our application. Electrical resistance 

was measured in a two-compartment cell using 0.5 M NaCl aqueous solutions. The two 

electrodes were made of titanium and coated with Ru-Ir mixed metal oxides (Jing Run 

Beijing Science and Technology Research Institute Company, China). The resistance of 

the membranes was measured at room temperature by impedance spectroscopy (IS) using 

a Vertex Potentiostat/Galvanostat (Ivium Technologies, The Netherlands) in a frequency 
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range from 10-105 Hz with an oscillating voltage of 0.1 V amplitude.68 The membrane 

resistance (Rmem) was determined by subtracting the resistance measured in the blank test 

(Rsol) from the resistance measured with the membrane under investigation (Rcell). This 

formula is based on the total cell resistance composition (i.e., Rcell=Rsol+Rmem).  

 

2.4.7 Permselectivity 

Permselectivity is the ability of the membrane to select for one species over 

another. A static membrane potential measurement was used to find the apparent 

permselectivity of each IEM. For this experiment, a two-compartment cell was separated 

by a membrane sample with an effective area of 4.8 cm2. One compartment was filled 

with an aqueous solutions of 0.1 M NaCl and the other compartment was filled with an 

aqueous solution of 0.5 M NaCl. These two solutions could come in contact with the test 

membrane through a small hole in the center of the compartment. Two Ag/AgCl 

reference electrodes were used to measure the potential difference over the membrane 

and recorded the potential in a multimeter (Tektronix, USA). The permselectivity is 

calculated by dividing the measured membrane potential (∆Vmeasured) by the theoretical 

membrane potential (∆Vtheoretical) as shown below: 

(%) 100measured

theoretical

V

V



 


                                                                                                   (4)                                                                                              

where α is the membrane permselectivity (%). Note that the theoretical membrane 

potential is the membrane potential for an ideal 100% permselective membrane, which is 

estimated to be 0.0379 V from the Nernst equation.69   
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2.5 Membrane RED Power Performance 

 The sPPO-SiO2 nanocomposite membranes were evaluated for power 

performance in an RED stack. As shown in Figure 2.2, RED setup has three cell pairs of 

alternately stacked AEMs (FAS) and CEMs (FKS) (Fumatech, Germany), between two 

titanium mesh end electrodes coated with iridium plasma. In addition, a CEM was placed 

at end of the stack as a shielding membrane. A measurement with this FKS membrane 

was made for comparison before being replaced with the synthesized nanocomposite 

membranes for testing. Electrode rinse solution was made with 0.25 M NaCl, 0.05 M 

K4Fe(CN)6, and 0.05 M K3Fe(CN)6 and pumped through the electrode compartments at a 

flow rate of 300 ml min-1. The artificial feed water simulating seawater was 0.5 M NaCl 

and simulating river water was 0.017 NaCl, held in 5L batch containers (McMaster-Carr, 

USA). This synthetic sea and river water was passed though the water compartments 

formed by woven fabric spacers (thickness: 250 µm, porosity 60%) (Figures 2.4 and 2.5). 

Masterflex peristaltic pumps (Cole-Parmer, USA) circulated the saline and dilute feed 

water and the electrode rinsing solution through the RED stack at various flow rates.  

 The power performance was measured with an external Vertex Potentiostat 

(Ivium Technologies, The Netherlands) in galvanostatic mode. Once the voltage and 

electrical current were measured with the potentiostat, the gross power density was 

estimated and then corrected by subtracting the power generated in a blank test with only 

a single AEM in the stack.  
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Figure 2.2 Visualization of the membrane configuration in a RED stack used in this 

performance test: (A) flow schematic for a single RED cell, and (B) Membrane stack 

consisting of three repeating cell pairs. Note that the red and blue arrows in (A) represent 

two different feed streams (saline water or fresh water). 
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Figure 2.3  RED stack setup in Daniel Laboratory. Solution reservoirs and digital 

multimeter (top), saline and dilute pump (bottom left), membrane module (bottom 

middle), and electrode rinse pump (bottom right). 

 

 

Figure 2.4 Spacers from RED stack 
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Figure 2.5 Interior view of the RED stack 
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CHAPTER 3 

RESULTS AND DISCUSSION 

 

3.1 FTIR Spectra Study 

 Figure 3.1 shows the FTIR spectra of silica composite membrane samples. As 

shown in the figure, the original PPO polymer spectra (a) displayed a C-H stretch of CH2 

and CH3 between 2868 and 2970 cm-1 and a C-O-C stretch at 942 cm-1. These peaks were 

mimicked in each of the spectrum lines for the various silica loadings in the 

nanocomposite membranes (b-e). In all spectra (a-f), there were characteristic absorption 

peaks at 1060 cm-1, which indicated the presence of the –SO3H group, which was 

substituted onto the PPO aromatic rings during the sulfonation reaction. All the spectra of 

sPPO membranes (a-e) showed a large band in the range of 3300 and 3500 cm-1. This 

large band can be attributed to the hydrogen reaction between –OH groups and –SO3H. 

At 1172 cm-1, the symmetric stretching vibration bands, which are characteristic of 

O=Si=O in the SO3H groups, were observed (b-f). These FTIR results demonstrated the 

successful functionalization of the PPO and SiO2 nanoparticles with SO3H groups during 

the sulfonation process. Also, the presence of ion exchangeable groups in these organic 

and inorganic components was evident in the results.     



 28 

 
Figure 3.1 FTIR spectra of nanocomposite membranes: (A) Pure sPPO, (B) 0.2 wt% 

SiO2-SO3H, (C) 0.5 wt% SiO2-SO3H, (D) 0.8 wt% SiO2-SO3H, (E) 1.0 wt% SiO2-SO3H, 

(F) SiO2-SO3H. 

 

 

3.2 Morphology of Inorganic Filler Particles and Membranes 

The silica particles of two different sizes were sulfonated according to previously 

reported procedure.48 Figure 3.2 displays the TEM images of the 15 nm and 70 nm 

sulfonated SiO2 nanoparticles. The nanoparticles were added to sulfuric acid solution 

then mixed with the sPPO polymer solution to form nanocomposite membranes by using 

the blending method first and then followed by the phase inversion technique. The 

surface and cross-sectional morphologies of the prepared membranes were observed from 

SEM, as seen in Figure 3.3. As inorganic loading increased (getting closer to 1.0 wt%), a 

higher membrane porosity and relatively larger-sized pores was observed, especially for 

the membranes containing bigger filler particles (70 nm). The increase in pore formation 

is attributed to the low polymer-particle adhesion at their interfacial zone. The result is 
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the creation of more voids with additional porosity in the matrix. Relatively larger pores 

and higher porosity for the membranes with the bigger filler particle may also arise 

because of poor interaction between polymer and particle (i.e., larger interfacial gaps) 

compared with those membranes with smaller sized particles (15 nm). The energy-

dispersive X-ray spectroscopy (EDS) mapping technique was utilized to elucidate the 

distribution and aggregation of filler particles in the membranes. Figure 3.4 shows the 

dispersion of silicon throughout a sample of the sPPO nanocomposite membrane. In the 

figure, the filler particles are well-dispersed throughout the polymer matrix with some 

signs of particle agglomeration, which is a possible cause of the visible pores formed in 

the structure.  

 

  

Figure 3.2 TEM images of sulfonated SiO2 nanoparticles with sizes of (A) 15 nm and (B) 

70 nm. 
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Figure 3.3 SEM micrographs of sPPO composite membranes: (A) 0.2 wt% SiO2-SO3H 

(15 nm), (B) 0.5 wt% SiO2-SO3H (15 nm), (C) 0.8 wt% SiO2-SO3H (15 nm), (D) 1.0 wt% 

SiO2-SO3H (15 nm), (E1, E2-H1, H2) 0.2, 0.5, 0.8, and 1.0 wt% SiO2-SO3H (70 nm), 

respectively. 
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Figure 3.4 EDS-mapping analysis of sPPO composite membranes: (A) 0.2 wt% SiO2-

SO3H (70 nm), and (B) 0.5 wt% SiO2-SO3H (70 nm). Note that cyan and pink dots 

represent the dispersion of silica nanoparticles on the surface of corresponding 

membranes. 

 

 

3.3 Physicochemical Properties of Membranes 

 

3.3.1 Swelling Degree 

SD is typically proportional to IEC and inversely proportional to cross-linkage.70 As 

IEC increases, membrane swelling generally increases; but other factors, such as ion 

exchange group species and polymer material, can cause SD to fluctuate. Higher SD can 

be indicative of low mechanical strength and stability of the membrane. From the data 

displayed in Figure 3.5, there is a trend of increasing SD with increasing silica 

nanoparticle size. This can be explained from a microscopic level. As seen in Figure 3.3, 

bigger nanoparticles allow for larger pores within the membrane. This increase in pore 

size allows more water molecules to be absorbed by the membrane. On the other hand, 
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the smaller nanoparticles with relatively small pores are less able to take up water 

molecules, leading to a lower SD.  

 

Figure 3.5 Swelling degree of sPPO nanocomposite membranes with different sizes of 

inorganic filler particles at various loading amount. Note that SS denotes the sulfonated 

SiO2. 

 

3.3.2 Ion Exchange Capacity 

IEC is an important characteristic of ion exchange membranes for RED since it 

affects most of the other properties of the membrane.12 For both sizes of silica 

nanoparticles, the trend found from analysis of our IEC results shows an increase until a 

peak at 0.5 wt% loading. After this peak, the IEC dramatically decreases when 0.8 wt% 

silica loading is applied then gradually decreases at 1.0 wt%. This can be explained by 

the fact that an increase in loading of sulfonated silica increases the functionalized groups 

within the membrane and allows for optimized exchange of ions. But increasing the 

loading too much can cause agglomeration of the nanoparticles, decreasing the ability of 

the membrane to productively exchange ions.  
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Central to this study is the effect of nanoparticle size on membrane performance. 

The nanocomposite membranes containing the bigger nanoparticles (70 nm) consistently 

performed better in IEC tests than those with the smaller nanoparticles. The difference is 

most apparent for the 0.5 wt% membrane, which could indicate that the loading is 

interconnected when considering nanoparticle size in relation to ability to exchange ionic 

species. The nanoparticle size is significant because as the size of the nanoparticle 

increases, the surface of ion accessible functionalized groups at interfacial (polymer and 

filler) zone increases, and, therefore, an increased ability to exchange ions. For this 

reason, the 70 nm-containing membranes exhibited better IEC in all loading percentages. 

But, there is a limit to this beneficial feature; as shown in Figure 3.6, there is a loss of 

accessible ion exchange groups at higher loading (0.8 ~ 1.0 wt%). The loss of accessible 

ion exchange groups at high loading is related to a reduction of the surface of charged 

groups. This reduction of the surface of charged groups is largely due to particle 

agglomeration and indicates poor interaction between the sulfonated silica nanoparticles 

and the polymer. On the other hand, at low silica loading (0.2 wt%), there is good 

interaction between the filler particles and the polymer.  
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Figure 3.6 Ion exchange capacity of sPPO nanocomposite membranes with different 

sizes of inorganic filler particles at various loading amount. Note that SS denotes the 

sulfonated SiO2. 

 

3.4 Electrochemical Behavior of Membranes 

 The membrane properties of permselectivity and area resistance are related to the 

degree of IEC and SD of the membranes. Given that the fixed charge density is 

determined by the IEC over SD (Eq. 1), permselectivity and area resistance are often 

demonstrated by the fixed CD, or the number of charged functional groups (counter ions) 

in the membrane. High CD indicates a stronger co-ion exclusion. Permselectivity and 

resistance of the prepared membranes are presented as a function of charge density in 

Figure 3.7. There is a slight trend of increasing permselectivity with increasing CD, 

which is the result of effective co-ion exclusion, which facilitates the enhanced counter 

ion transport, leading higher permselectivity. Figure 3.7 displays results showing a more 

apparent correlation between CD and area resistance for the prepared nanocomposite 
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membranes. This semi-linear trend is often the case for the membranes with same 

structure and chemistry as well as a comparable degree of cross-linking.31, 71 

 The relationship between inorganic filler loading and permselectivity is 

demonstrated in Figure 3.8. The permselectivity of the prepared nanocomposite 

membranes increased with increasing sulfonated SiO2 loading, peaking at 0.5 wt%. As 

more sulfonated silica nanoparticles were added to the membranes, the loss of the 

accessible functional groups in sulfonated silica is likely the cause of the decrease in 

permselectivity. The loss of accessible function groups causes low IEC and fixed charge 

density and results in poor selective ion transport of counter ions. Low resistance is 

generally expected with more ionic groups present in the matrix due to the greater 

swelling degree.9, 18 The membranes containing 0.5 wt% SiO2-SO3H had the highest IEC 

and SD and had the lowest resistance.  

As seen in Figures 3.8 and 3.9, nanoparticle size was of considerable influence on 

the degree of permselectivity and resistance. The effect of filler particle size on these ion 

transport properties may be associated with the structure and pore formation of the 

membranes, which often depends on the interaction between polymer and filler particle.72 

As previously discussed, nanoparticle size plays a key role in creating membrane 

porosity. The membranes containing bigger filler particles (70 nm) have larger pores or 

higher porosity, which lowers the ability to effectively select counter ionic species, 

leading lower permselectivity compared to the membranes containing smaller filler 

particles. On the other hand, the formation of such pore structure with the bigger filler 

particles also promotes enhanced migration of ionic species, which, in turn, resulted in 

relatively lower resistance at all filler loadings (Figure 3.9). The best IEC, SD, and 
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permselectivity were exhibited by the membranes loaded with 0.5 wt% SiO2-SO3H of the 

70 nm particles. These also exhibited the lowest amount of resistance. As more SiO2-

SO3H (both particle size) were incorporated, the resistance increased in a similar fashion. 

The reason for the increase in the resistance is the relatively low charge density of 

membranes at higher percentages of inorganic filler loading (0.8 and 1.0 wt%). 

 All measured membrane properties are displayed in Table 2. These values are 

averages from at least three replicate membrane property tests. As Table 2 shows, 

resistance (the most important membrane property to be minimized) is lower than the 

commercially available FKS membrane for all the prepared nanocomposite membranes.  

 

 
Figure 3.7 Membrane permselectivity and area resistance of sPPO nanocomposite 

membranes as a function of charge density 
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Figure 3.8 Membrane permselectivity of sPPO nanocomposite membranes of different 

size of inorganic filler particles at various loading amount. Note that SS denotes the 

sulfonated SiO2. 

 

 

Figure 3.9 Membrane area resistance of sPPO nanocomposite membranes of different 

size of inorganic filler particles at various loading amount. Note that SS denotes the 

sulfonated SiO2 and the resistance data for the pristine membrane (0 wt% SiO2-SO3H) 

lied outside the axis scale range. 
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Table 3.1 Physical and electrochemical properties of the prepared membranes 

Membranes 
IEC  

[meq. g-1] 

SD 

[%] 

CD  

[meq. g H2O
 -1] 

Permselectivity 

[%] 

Area resistance 

[Ω cm2] 

0 SS 0.96 21 4.6 79.1 1.87 

0.2 SS-15 nm 0.98 23 4.4 84.4 1.03 

0.5 SS-15 nm 1.02 27 3.8 86.5 0.99 

0.8 SS-15 nm 0.87 27 3.3 83.8 1.05 

1.0 SS-15 nm 0.78 25 3.1 83.0 1.28 

0.2 SS-70 nm 1.13 24 4.7 82.7 0.93 

0.5 SS-70 nm 1.18 34 3.5 83.2 0.85 

0.8 SS-70 nm 0.99 33 3.0 81.4 0.95 

1.0 SS-70 nm 0.82 32 2.6 81.3 1.23 

FKSa 1.49 15 9.9 94.0 1.49 

IEC: ion exchange capacity; SD: swelling degree; CD: charge density; SS: sulfonated SiO2.  

        a 
FKS is a commercial CEM from Fumatech, Germany with a thickness of 30 µm. 

 

 

 

3.5 Power Density in RED 

The power density is determined by the internal resistance of the entire RED stack 

and the Donnan electrical potential generated. These two features are influenced by other 

factors: internal resistance is determined by membrane resistance, spacer shadow effect, 

and solution resistance and the electrical potential is determined by membrane selectivity, 

salinity gradient, and concentration polarization. 

We measured the gross power density of the CEMs, each containing different size 

nanoparticles at different inorganic loadings, and proceeded to compare the results with 

the gross power density of the commercial membrane (Fumatech FKS). Since the RED 

stack needs AEMs placed alternately with the CEMs, the Fumatech FAS membranes 

were used as reference AEMs in the RED stack for all tests.  

Figure 3.10 shows the gross power density of the stack generated from the 

membranes as a function of the feed flow rates. Gross power density increases as the flow 



 39 

rate of (rapidly renewed) feed waters increases. This is due to the increase in facilitation 

of ion transport because of reduced boundary layer resistance at the membrane surface. 

This low internal electrical resistance leads to high power density. The highest power 

density of 1.3 W m-2 was exhibited by the membrane with a blend ratio of 0.5 wt% SiO2-

SO3H with a particle size of 70 nm at the highest feed flow rate. The membrane with the 

same blend ratio containing the smaller nanoparticles (15 nm) had a significantly lower 

power density (Figure 3.10). In our experiments, membranes containing bigger filler 

particles produced higher power densities. This observation is in agreement with Figure 

3.9 that shows relatively lower area resistance with the 70 nm-containing membranes 

than with the 15 nm-containing membranes. The gross power density did not appear to be 

affected by the fact that the 15 nm-containing membranes exhibited a higher degree of 

permselectivity throughout the various inorganic loadings. Similarly, the commercial 

FKS membrane had a lower gross power density when compared with the membranes 

with lower permselectivity and lower area resistance. Due to these observations, we 

found that, regardless of high selectivity, the area resistance of the prepared membranes 

is the dominant characteristic and has the most influential impact on the overall RED 

power generation. In general, the effect of the size of inorganic filler particles on power 

performance of prepared nanocomposite CEMs was about a 10 % average difference at 

various loading concentrations, in favor of the 70 nm particles over the 15 nm particles. 

Since inorganic filler nanoparticle size impacts the final membrane structure and its 

electrochemical properties, size may be a key driver to achieving the optimal power 

density measurement from an RED stack.  
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Figure 3.10 Gross power density as a function of flow rate for the prepared 

nanocomposite membranes with (A) 15 nm silica nanoparticles and (B) 70 nm silica 

nanoparticles at various loadings. The performance of the FKS membrane is shown for 

comparison on both figures.  

A 

B 
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CHAPTER 4 

CONCLUSIONS AND FUTURE DIRECTION 

 

4.1 Conclusions 

 The goal of this research was to prepare novel CEMs with two differently sized 

silica nanoparticles at a variety of loading amounts in order to compare the effects on 

membrane properties (physical and electrochemical) and final RED power density. The 

membranes were synthesized by a solvent evaporation method using sulfonated PPO 

blended with SiO2-SO3H particles. The methods used to make and test the membranes 

were adopted from various reliable publications. This investigation is the first of its kind 

to explore using different nanoparticle sizes in tailor-made composite membranes to 

improve RED performance. 

 As shown in the results, the higher the IEC and the lower the electrical resistance, 

the greater the RED power density. For all loadings, the 70 nm particle-containing 

membranes out-performed the corresponding 15 nm particle-containing membranes in 

terms of power density. This power density difference can be attributed to the measured 

lower electrical resistance of the nanocomposite membranes with the larger 

nanoparticles, which is the key factor in predicting the power output. Interestingly, 

though the permselectivity was higher for the prepared membranes with the smaller 

nanoparticles for all loadings (due to the smaller sized pores strengthening the effective 

co-ionic exclusion), the effect of this relatively higher ion selectivity was not relayed in 

the RED power measurements. This observation is indicative of the stronger correlation 

between low resistance and high RED power density.  
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 The membrane with the most favorable physical and electrochemical 

characteristics overall had a loading of 0.5 wt% SiO2-SO3H. When this optimal loading 

of the membrane was exceeded, the inorganic filler particles began to aggregate, or form 

clusters. At the higher loadings, the clusters started to hinder the membrane properties, 

diminishing the membranes effectiveness for ion exchange applications. 

 The membranes containing the bigger filler particles exhibited approximately 

9.3% lower resistance than those with the smaller filler particles, resulting in a 10% 

(average) higher gross power density for all loading concentrations. From our findings, 

more desirable electrochemical properties and greater RED power densities can be 

generated by incorporating optimized inorganic filler particles in optimized loading 

amounts into the polymer membrane structure.     

 

4.2 Future Direction 

 The results presented here are encouraging and can serve as the basis of further 

investigations into nanocomposite membranes for RED applications. Future research 

could delve into other nanoparticle materials with lower cost, better conductivity, or 

better incorporation methods.  

 In addition to membrane improvements, the RED stack design is still under 

development. To reach a higher energy generation from the RED stack, spacers, electrode 

systems, cell dimensions, and fluid flow rates should be optimized. This research is 

ongoing and will hopefully be tested with real, natural water conditions to ensure 

minimal membrane fouling and maximum membrane environmental stability. 

 Optimizing RED systems is a promising way to combat greenhouse gas emissions 

from current fossil fuel use by providing a clean, sustainable source of energy.  
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