
OPTIMIZATION-BASED DESIGN OF FAULT-TOLERANT AVIONICS

A Dissertation
Presented to

The Academic Faculty

By

Thanakorn Khamvilai

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Engineering

Department of Aerospace Engineering

Georgia Institute of Technology

Dec 2021

© Thanakorn Khamvilai 2021

OPTIMIZATION-BASED DESIGN OF FAULT-TOLERANT AVIONICS

Thesis committee:

Dr. Eric Feron, Advisor
Division of Computer, Electrical and
Mathematical Sciences and Engineering
King Abdullah University of Science and
Technology

Dr. Eric Johnson
Division of Aerospace Engineering
Pennsylvania State University

Dr. Mehrdad Pakmehr
Cofounder and CEO
ControlX Inc.

Dr. Kyriakos Vamvoudakis, Advisor
Department of Aerospace Engineering
Georgia Institute of Technology

Dr. Brian German
Department of Aerospace Engineering
Georgia Institute of Technology

Dr. Björn Annighöfer
Institute of Aircraft Systems
University of Stuttgart

Date approved: October 28th, 2021

If we lose credibility just by admitting fault, we didn’t have any in the first place.

Issho Fujitora, One Piece Chapter 793

For my family and friends

ACKNOWLEDGMENTS

I would like to express my gratitude towards my committee members for their patience

and suggestions in preparation of this work, especially to Dr. Eric Feron, who is my primary

advisor and a valuable friend. My first interaction with him was at the qualification exam,

then he accepted me as one of his Ph.D. students afterwards. He let me work in various

projects in his lab in order for me to find my own research direction in my Ph.D. careers. He

always provides useful advice not only for academic purposes, but also general philosophy

of life and relationship with your love ones. I would also like to thank Dr. Kyriakos

Vamvoudakis, Dr. Brian German, Dr. Eric Johnson, and Dr. Björn Annighöfer for devoting

their time to serve as my thesis committee members and for giving feedback about my

research. Without them, I would have a difficult time to solidify my idea and contributions.

Thank you to all my friends, colleagues, and labmates whom I met at Georgia Tech,

KAUST, and other universities that I have visited for the fun, friendship, and memorable

experiences. Additionally, I would like to send a special thanks to Thai people at Georgia

Tech and in Atlanta for their supports throughout my study.

Thank you to Pablo Afman, Federico Bonalumi, and other coworkers at Yamaha for

giving me an internship opportunity together with adventurous field trips.

Thank you to Dr. Michael Miller, Philippe Baufreton, François Neumann, Dr. Mehrdad

Pakmehr, Dr. George Lu, Yaojung Yang for sponsoring my researches, their immeasurable

generosity, and insightful knowledge about aerospace industry.

Thank you to my friends and Professors during my undergrad at Kasetsart University

and National Chen Kung University for unforgettable lifetime memories. Special thank to

Dr. Chaiwat Klumpol, my undergraduate advisor, and Dr. Thanakorn Supsukbaworn, my

senior, who inspired me to pursue my doctorate degree.

Finally, I give all credit to my family for their financial and emotional supports.

v

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . x

List of Figures . xi

List of Acronyms . xiv

Summary . xvii

Chapter 1: Introduction . 1

1.1 Evolution of Avionics and Motivation . 1

1.2 System Safety Development . 3

1.3 Real-Time Operating Systems . 6

Chapter 2: Mathematical Background . 9

2.1 Convex Optimization . 9

2.1.1 Linear Programming . 10

2.1.2 Exponential Cone Programming 10

2.1.3 Geometric and Signomial Programming 11

2.1.4 Algorithms and Solvers . 13

2.2 Mixed-Integer Optimization . 14

vi

2.3 Networked System Reliability Analysis 15

2.3.1 Network Model . 15

2.3.2 Reliability Evaluation . 15

2.3.3 Binary Decision Diagram . 17

Chapter 3: Redundancy Design Automation . 20

3.1 Motivation . 20

3.2 Related Works . 21

3.3 Redundancy Optimization . 22

3.3.1 Problem Description . 22

3.3.2 Mathematical Formulation . 23

3.3.3 Common Cause Failure Constraints 24

3.4 Topology Optimization . 25

3.4.1 Problem Formulation . 26

3.4.2 Integer Relaxation for Upper Bound Computation 27

3.4.3 Signomial Relaxation for Lower Bound Computation 27

3.4.4 Algorithm for Reliability-Constrained Optimization 28

3.5 Examples . 30

3.5.1 Small Network of Mobile Robots 30

3.5.2 Integrated Modular Avionics Architecture 35

Chapter 4: Reconfigurable Avionics . 41

4.1 Motivation . 41

4.2 Related Works . 42

vii

4.3 Reconfiguration Problem Description . 42

4.3.1 Preliminaries . 43

4.3.2 Decision Variables . 47

4.3.3 Objective Function . 48

4.3.4 Constraints . 50

4.4 Decentralized and Online Self-Reconfiguration 56

4.4.1 N-Modular Redundancy and Majority Voting System 56

4.4.2 Decentralized Implementation . 57

4.4.3 Online Computation . 58

4.5 Example . 59

4.5.1 Hardware Emulator . 59

4.5.2 Fault Injection Mechanism . 60

4.5.3 Software Application . 60

4.5.4 Demonstration . 61

Chapter 5: Applications . 63

5.1 Multicore Avionics . 63

5.1.1 Motivation . 63

5.1.2 Hardware Components . 63

5.1.3 Software Components . 66

5.1.4 Experimental Results . 67

5.2 Multirotor Guidance and Navigation . 71

5.2.1 Motivation . 71

viii

5.2.2 Vehicle State Machine . 71

5.2.3 Safety-Critical Software Applications 72

5.2.4 SITL Simulation Framework . 74

5.2.5 Simulation Result . 75

5.3 Modular Drone with Actuator Failure . 78

5.3.1 Motivation . 78

5.3.2 Vehicle Design and Assemblies . 79

5.3.3 Fault-Tolerant Control . 80

5.3.4 Experimental Setup . 81

5.3.5 Experimental Results . 81

5.4 Fault-Tolerant Distributed Engine Control Architecture 84

5.4.1 Motivation . 84

5.4.2 Hardware-in-the-Loop Simulation Setup 86

5.4.3 Experimental Results . 88

Chapter 6: Conclusions . 93

Appendices . 94

Appendix A: Mathematical Proofs . 95

Appendix B: List of Tasks in Multirotor Guidance and Navigation 99

Appendix C: Multirotor Control Allocation . 100

References . 103

Vita . 116

ix

LIST OF TABLES

1.1 System Safety Classification. 4

3.1 Optimization Result of (3.13) . 31

3.2 Optimization Result of (3.14). 32

3.3 Component-Level Redundancy and Reliability. 37

3.4 Redundancy Optimization Result. 38

3.5 Network Topology Result. 39

4.1 Three applications’ LED colors, relative priorities, and spatial configurations. 61

5.1 Errors between the Hardware-In-The-Loop (HITL) Simulation vs Simulink
only. 88

B.1 Multirotor Guidance and Navigation Task Classification. 99

x

LIST OF FIGURES

1.1 Avionics Systems. 1

1.2 Safety assessment process interrelation. 6

1.3 System architecture stack. 7

1.4 Virtualization of Integrated Modular Avionics (IMA) architecture. 8

2.1 A350 Avionics Full-Duplex Switched Ethernet (AFDX) network 16

2.2 An example network (Left), and its BDD (Right). 18

3.1 A configuration of a series-parallel system. 22

3.2 Network of Mobile Robots. 30

3.3 BDD corresponds to the network in Figure 3.2b. 33

3.4 Experiment illustrating the assurance of the reliability. 35

3.5 Evaluation of system reliability at each time step. 36

3.6 FTA inspired by Airbus A350 AFDX network. 37

3.7 Sequence of integer-feasible solutions for AFDX network topology opti-
mization. 40

4.1 Example of square mesh topology. 43

4.2 Example of application graphs. 45

4.3 A task allocation on a multi-processor fabric where CU 11 has failed. 46

xi

4.4 Enforcing spatial orientation constraints specific for a square mesh topology. 55

4.5 Illustration of the voting process with 3 redundant copies. 57

4.6 Fault affecting a CU running an allocator. 58

4.7 Multicore hardware emulator using Raspberry Pis. 59

4.8 Hardware associated with each Raspberry Pi. 60

4.9 Result of the task allocation algorithm . 62

5.1 Four types of faults that are considered. 65

5.2 Hardware representing Computational Units (CUs) and Physical Links. . . 65

5.3 Controlled Physical System. 66

5.4 Applications for the experiment . 68

5.5 Initial allocation of the applications . 68

5.6 Pulse Width Modulation (PWM) value from each controller and measured
thrust during the operation of the ducted-fan motor. 69

5.7 Result of the task allocation algorithm. 70

5.8 Simulated aerial vehicle and software applications. 71

5.9 Software-In-The-Loop (SITL) simulation state machine. 72

5.10 Ardupilot tasks. 73

5.11 SITL architecture. 74

5.12 Task schedule visualizer and fault injector. 76

5.13 Result of SITL simulation of multirotor guidance and navigation system. . . 77

5.14 Dodecacopter. 78

5.15 Various vehicle configurations for dodecacopters 79

5.16 Regular (Left) vs Fault-Tolerant (Right) hexacopter propeller configuration . 80

xii

5.17 Control structure of the hexacopter. 81

5.18 Experimental Setup. 82

5.19 Hexacopter used for this experiment. 82

5.20 Result of flight experiments. 83

5.21 Simulation of Advanced Geared Turbofan 30,000 (AGTF30) physics. . . . 86

5.22 Hardware used for this experiment. 87

5.23 HITL architecture. 88

5.24 Real-time execution of HITL simulation. 89

5.25 Plots of Sensor Data of the HITL Simulation vs Simulink only. 89

5.26 Demonstrating fault-tolerant capability on the main node. 90

5.27 Demonstrating fault-tolerant capability on smart nodes. 91

5.28 Demonstrating fault-tolerant capability on the communication network. . . 92

xiii

LIST OF ACRONYMS

AFDX Avionics Full-Duplex Switched Ethernet

AGTF30 Advanced Geared Turbofan 30,000

APIs Application Programmable Interfaces

BDD Binary Decision Diagram

C.M. Center of Mass

CCA Common Cause Analysis

CCW Counter-Clockwise

COTS Commercial Off-The-Shelf

CPIOMs Core Processing I/O Modules

CRDCs Common Remote Data Concentrators

CUs Computational Units

CW Clockwise

DAG Directed Acylic Graph

DAL Design Assurance Level

DDS Data Distribution Service

DEP Distributed Electric Propulsion System

DP Dynamic Programming

EADIN Engine Area Distributed Interconnect Network

EKF Extended Kalman Filter

ES End Systems

eVTOL Electric Vertical Takeoff and Landing

FADEC Full-Authority Digital Engine Control

xiv

FHA Functional Hazard Assessment

FTA Fault Tree Analysis

GCS Ground Control Station

GNC Guidance, Navigation, and Control

GP Geometric Program

HAL Hardware Abstraction Layer

HITL Hardware-In-The-Loop

I/O Input-Output

IMA Integrated Modular Avionics

IMA2G The Second Generation Integrated Modular Avionics

IMU Inertial Measurement Unit

KKT Karush–Kuhn–Tucker

Li-Po Lithium-polymer

LP Linear Program

LRUs Line Replaceable Units

MIP Mixed-Integer Prgramming

MQTT Message Queuing Telemetry Transport

NoC Network-on-Chip

PSSA Preliminary System Safety Assessment

PWM Pulse Width Modulation

RC Remote Control

RTOS Real-Time Operating System

SITL Software-In-The-Loop

SP Signomial Program

SSA System Safety Assessment

SWaP-C Size, Weight, Power Consumption, and Cost

TCP Transmission Control Protocol

xv

TMR Triple Modular Redundancy

UAM Urban Air Mobility

UART Universal Asynchronous Receiver-Transmitter

UAV Unmanned Aerial Vehicle

UDP User Datagram Protocol

VAFN Variable Area Fan Nozzle

VBV Variable Bleed Valve

WCET Worst-Case Execution Time

xvi

SUMMARY

This dissertation considers the problem of improving the self-consciousness for avionic

systems using numerical optimization techniques, emphasizing Unmanned Aerial Vehicle

(UAV) applications. This self-consciousness implies a sense of awareness for oneself to

make a reliable decision on some crucial aspects. In the context of the avionics or aerospace

industry, those aspects are Size, Weight, Power Consumption, and Cost (SWaP-C) as well

as safety and reliability. The decision-making processes to optimize these aspects, which

are the main contributions of this work, are presented. In addition, implementation on

various types of applications related to avionics and UAV are also provided.

The first half of this thesis lays out the background of avionics development ranging

from a mechanical gyroscope to a current state-of-the-art electronics system. The rele-

vant mathematics regarding convex optimization and its algorithms, which will be used for

formulating this self-consciousness problem, are also provided.

The latter half presents two problem formulations for redundancy design automation

and reconfigurable middleware. The first formulation focuses on the minimization of

SWaP-C while satisfying safety and reliability requirements. The other one aims to maxi-

mize the system safety and reliability by introducing a fault-tolerant capability via the task

scheduler of middleware or Real-Time Operating System (RTOS). The usage of these two

formulations is shown by four aerospace applications—reconfigurable multicore avionics,

a SITL simulation of a UAV Guidance, Navigation, and Control (GNC) system, a modular

drone, and a HITL simulation of a fault-tolerant distributed engine control architecture.

xvii

CHAPTER 1

INTRODUCTION

1.1 Evolution of Avionics and Motivation

The term Avionics is a portmanteau of aviation and electronics, which simply means elec-

tronic systems equipped on aircraft or other aerial vehicles. Some common examples of

these systems, as shown in Figure 1.1, are radio communication systems, flight displays,

and GNC or autopilot systems. However, the very first version of an autopilot was not an

electronic system but rather a mechanical gyroscope invented by Lawrence B. Sperry in

1914 [1].

Figure 1.1: Avionics Systems.

Since then, the autopilot has been continuously developed. Once the electrical regime

had been entered, the early avionics architecture was introduced as an analog computing

architecture in the 1950s to 1960s. This architecture has several drawbacks. The com-

munication among each component in this architecture is point-to-point, which contributes

to a large portion of the weight of the aircraft. The communication signals are based on

the reading voltage value, which can be subjected to noises leading to a reduction in the

accuracy and overall reliability. Furthermore, any attempts to modify the component’s

1

functionality require changes in circuitry and inter-connectivity [2].

With the advancement in computing technology in the 1970s, embedded computers

were introduced to avionics systems and changed the architecture from analog to digital,

which provides benefits of reliable data communication signal and flexibility of changing

the component’s functionality merely by changing the software inside the computer.

The next development of avionics architecture, which is a federated architecture in

the 1980s, tried to overcome the weight issue from the point-to-point communication by

grouping components or Line Replaceable Units (LRUs) into domain areas based on their

functionality, making it possible to share the common data among these components, which

in turn minimizes SWaP-C. Each LRU possesses its own resources such as computing

power, memory, and Input-Output (I/O) ports. Several communication standard documents,

such as MIL-STD-1553B for military aircraft and ARINC 429/629 for civil aircraft, arose

during the development of this architecture.

The arrival of an Internet era in the 1990s had enabled a faster and more reliable com-

munication scheme using an Ethernet-based network. AFDX network is used as a back-

bone communication network for the new IMA architecture. This network provides data

transfers between Core Processing I/O Modules (CPIOMs), which perform the main com-

putation, and Common Remote Data Concentrators (CRDCs), which interact with sensors

and actuators. In addition to the better communication scheme over the federated architec-

ture, IMA architecture provides a fault-tolerant capability through the use of the network of

Ethernet switches, and a possibility to integrate Commercial Off-The-Shelf (COTS) com-

ponents into the avionics systems [3].

Now, with the emergence of the new modern aircraft like Urban Air Mobility (UAM)

or delivery drones, there is a need to further reduce the size of avionics and to improve

or at least to maintain the same safety and reliability as the larger aircraft [4, 5]. Unlike

the airliners or general aviation aircraft, the designs of these UAM are commonly in form

of an Electric Vertical Takeoff and Landing (eVTOL) with Distributed Electric Propulsion

2

System (DEP) [6]. The current IMA architecture, which is centralized in nature, may not

fully utilizes the potential benefits of these new aircraft designs. Therefore, it is necessary

to move to a new architecture called The Second Generation Integrated Modular Avionics

(IMA2G) or distributed IMA [7]. The concept of IMA2G has been introduced in the 2000s

and it differs from IMA as follows:

• In the first generation IMA, each hardware contains both CPIOMs and I/O ports

whereas in IMA2G, these ports will be separated as another set of hardware. This

provides an ease for the hardware redundancy management since CPIOMs will be

truly the same.

• IMA2G introduces platform level services that truly separate between software and

hardware. This does not only facilitate the development and verification process, but

also provides a possibility to use dynamic software reconfiguration techniques for

reliability improvement.

The contributions of this research follow this evolution paradigm and provide attempts

to facilitate the exploration of avionics development in the direction of IMA2G. This thesis

addresses two optimization frameworks in which the first one focuses on the hardware re-

dundancy management process that minimizes SWaP-C, and the second one focuses on the

dynamic software reconfiguration technique that maximizes system’s safety and reliability.

1.2 System Safety Development

The concept of safety in avionics systems is defined as a state in which risk is lower than the

upper limit of acceptable risk [8]. Though this definition is seemingly vague, it introduces

a trade-off between the required probability of occurrence and the severity of the incident,

meaning that limit of acceptable can be lowered if the consequences of system failures

do not have a high impact on the operation. This also significantly reduces the cost and

time needed for developing non-safety-critical components. For the more safety-critical

3

ones, they can be classified into four categories based on their severity where a Design

Assurance Level (DAL) and a certain value of the probability of occurrence or failure rate

are individually assigned, as shown in Table 1.1.

Severity DAL Failure Rate (per flight hour)
Catastrophic A less than 1× 10−9

Hazardous B less than 1× 10−7

Major C less than 1× 10−5

Minor D less than 1× 10−3

No Effect E −

Table 1.1: System Safety Classification.

Although, in the context of a single aircraft, these values of failure rate are very small,

they have an impact on a larger fleet of aircraft; for example, as of June 2021, Delta owns

a fleet of roughly 600 aircraft [9]. Assuming, on average, each of them operates for 3000

hours per year and has a service lifetime of 20 years—the total operation hour of this fleet

will be 3.6×107 hours. Therefore, the catastrophic events are still unlikely to occur, but the

lower severity level events can arise a few times to one or more aircraft in this fleet during

20 years period.

To ensure that these failure rate requirements are met, several guideline documents are

developed, for instance,

• ARP 4754A Guidelines for Development of Civil Aircraft and Systems

• ARP 4761 Guidelines and Methods for Conducting the Safety Assessment Process

• DO-178C Software Considerations in Airborne Systems and Equipment Certification

• DO-254 Design Assurance Guidance for Airborne Electronic Hardware

• DO-297 IMA Design Guidelines and Certification Considerations

Even though these documents focus on a different part of aircraft components, their

safety design concept revolves around four assessment processes, which are Functional

4

Hazard Assessment (FHA), Preliminary System Safety Assessment (PSSA), System Safety

Assessment (SSA), and Common Cause Analysis (CCA) [10].

Potential system failures and their effects are determined during the FHA process, typ-

ically performed by experts who have a thorough understanding of the system. FHA con-

tains two consecutive steps — at the aircraft level and the system level — and provides the

assigned failure rate for each potential failure as an assessment output.

PSSA is an iterative process that ensures the failure rate requirements from FHA can

be met by providing various tools, such as Fault Tree Analysis (FTA) [11] and Markov

diagrams [12], to allocate the system-level safety requirements to the low-level components

like the implementation of hardware and software. Strategies like applying redundancy or

dissimilarity may be employed to improve system safety.

Similar to PSSA, SSA uses the same tools to assess safety. However, the difference

is that PSSA is a top-down approach for validating the system-level requirements; while,

SSA is a bottom-up approach for verifying that the design and implementation of low-level

components meet their safety requirements.

Lastly, CCA is an interactive process that must be performed concurrently with FHA,

PSSA, and SSA. CCA identifies common failures that may coincide among the redun-

dant subsystems. For example, hardware components that are subjected to certain loads

or stresses, or software elements with the same value of input arguments may like to fail

simultaneously. To avoid this type of failure, dissimilarity, segregation, and separation

techniques may be applied. The interrelation between all these assessment processes and

the guideline documents is illustrated in Figure 1.2.

In this work, the mathematical framework that automates PSSA and SSA processes,

and minimizes SWaP-C with consideration of CCA will be presented.

5

Figure 1.2: Safety assessment process interrelation.

1.3 Real-Time Operating Systems

To accurately execute safety-critical software applications on the target hardware and op-

timization their performance, avionics systems require the use of middleware or RTOS,

which is a particular type of software that bridges high-level software applications and

low-level hardware platforms together, as illustrated in Figure 1.3.

The primary purposes of using RTOS in avionics are as follows.

• To provide the independence between software applications and hardware platforms

• To perform a robust partitioning defined in ARINC 653 (Avionics Application Stan-

dard Software Interface) guideline document, which includes a temporal computing

resource utilization, memory management, and an I/O interface allocation [13].

The independence can be achieved by using Hardware Abstraction Layer (HAL) driver

libraries that provide Application Programmable Interfaces (APIs) for software applica-

6

Figure 1.3: System architecture stack.

tions developed in any high-level programming languages, e.g., C, C++, and Ada, to inter-

act with hardware resources.

For robust partitioning, the approach may be different depending on the architecture

[14]. In the federated architecture, each LRU is physically separated and individually certi-

fied. In contrast, in the IMA architecture, due to its shared resource nature, virtualization is

necessary to map required resources from software applications to the available resources

of the hardware platform. Figure 1.4 illustrates the virtualization of a single software ap-

plication and a triple-redundant one.

Although the virtualization can statically allocate resources like memory partitions and

I/O interfaces for software applications running on the same hardware, the time slice re-

quired to execute each of them needs to be managed during run-time by a specific compo-

nent of RTOS called a task scheduler. Several algorithms were developed for the task sched-

uler, such as round-robin, first-in-first-out, rate-monotonic, earliest-deadline-first [15]. How-

ever, none of them can be easily extended to dynamic scheduling on multicore processors

because of the parallelism and resource sharing nature [16, 17].

7

Figure 1.4: Virtualization of IMA architecture.

Even though adopting multicore technology in avionics systems can offer a significant

reduction in SWaP-C, it makes the certification process more challenging mainly because

of the inferences between cores that may arise from the shared resource contention. In the

multicore architecture, cores are connected by an internal fabric and share memory, I/Os,

caches among each other. The allotted time for accessing these resources for each core can

be non-deterministic, which negatively impacts the safety of the operation if not carefully

managed by RTOS. As of today, the only RTOS that can handle this issue and satisfy all

the safety objectives posted by CAST-32A guideline document for multicore processors is

the INTEGRITY-178 tuMP developed by Green Hills Software company [18].

In this research, a mathematical framework that further improves the safety and reliabil-

ity of multicore processors or any other parallel computing architectures by introducing the

reconfiguration capability to the system via the task scheduler part of RTOS is presented.

8

CHAPTER 2

MATHEMATICAL BACKGROUND

2.1 Convex Optimization

Convex Optimization is a subclass of mathematical optimization that considers problems of

minimizing or maximizing convex functions over convex sets with or without equality and

inequality constraints. Benefits of formulating problems as a convex optimization problem

are that the solution can be solved in polynomial-time complexity and is guaranteed to

be globally optimal [19]. The following definitions lay out the general representation of

convex optimization.

Definition 2.1.1. A set S is convex if for any θ ∈ [0, 1],

θx1 + (1− θ)x2 ∈ S, ∀x1, x2 ∈ S

Definition 2.1.2. A function f : Rn → R is convex if its domain, dom(f), is a convex set

and for any θ ∈ [0, 1],

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2), ∀x1, x2 ∈ dom(f)

Definition 2.1.3. A convex optimization problem is of the form

minimize
x∈Rn

f0(x)1

subject to fi(x) ≤ 0

aTj x = bj

(2.1)

where i = 1, . . . ,m is the number of inequality constraints, j = 1, . . . , p is the number of
1If the objective is to maximize f0, it can be converted to the minimization of −f0.

9

equality constraints, f0, . . . , fm are convex functions, aj ∈ Rn, and bj ∈ R.

Depending on the structure of the objective function, f0, and inequality constraints, fi,

the convex optimization problem (2.1) can be put in a special form, which allows specific

algorithms to solve for the optimal solution faster [20]. The forms that are relevant to this

work are a Linear Program (LP), and an exponential cone program. Another two related

optimization formulations that are not originally convex, but can be converted to a convex

optimization are a Geometric Program (GP), and a Signomial Program (SP).

2.1.1 Linear Programming

Definition 2.1.4. A linear program is of the form

minimize
x∈Rn

cTx + d

subject to Gx � h

Ax = b

(2.2)

where c ∈ Rn, d ∈ R, G ∈ Rm×n, h ∈ Rm, A ∈ Rp×n, b ∈ Rp, and � denotes an

element-wise inequality.

2.1.2 Exponential Cone Programming

Definition 2.1.5. An exponential cone Kexp is defined as a convex subset of R3 of the form

Kexp =

{
(x1, x2, x3) | x2 · exp

(
x3
x2

)
≤ x1

}
∪ {(x1, 0, x3) | x1 ≥ 0, x3 ≤ 0}

which is equivalent to a set of points (x1, x2, x3) satisfying

x2 · exp

(
x3
x2

)
≤ x1, x1, x2 ≥ 0

10

Definition 2.1.6. An exponential cone program refers to a convex optimization problem

that has at least one exponential conic constraint, i.e. (x1, x2, x3) ∈ Kexp in addition to the

standard convex constraints.

2.1.3 Geometric and Signomial Programming

Definition 2.1.7. A monomial function is a function, f : Rn
++ → R defined by f(x) =

c
∏n

i=1 x
ai
i where x = [x1, . . . , xn]T, c > 0, and ai ∈ R.

Definition 2.1.8. A posynomial function is a function, f : Rn
++ → R defined by f(x) =∑

i ci
∏n

j=1 x
aij
j where x = [x1, . . . , xn]T, ci > 0, and aij ∈ R.

Definition 2.1.9. A geometric program is of the form

minimize
x∈Rn++

f0(x)

subject to fi(x) ≤ 1

gj(x) = 1

(2.3)

where i = 1, . . . ,m is the number of inequality constraints, j = 1, . . . , p is the number of

equality constraints, f0, . . . , fm are posynomial and g1, . . . , gp are monomial.

The problem (2.3) is generally not convex; however, it is possible perform do a log-

transformation to turn it into a convex program that guarantees a solution which can be

found in polynomial time, i.e., a globally optimal solution [21]. The log-transformation

can be done by taking log on the objective function and constraints, and exponentiating the

decision variables, i.e.,

minimize
y

log(f0(e
y))

subject to log(fi(e
y)) ≤ 0

log(gj(e
y)) = 0

(2.4)

11

where y = [y1, . . . , yn]T, yi = log(xi), and ey is element-wise, i.e., (ey)i = eyi . This prob-

lem (2.4) is convex in y because log(fi(e
y)) are in the exponential cone and log(gj(e

y))

are affine in y, i.e,

log(f(ey)) = log

[∑
i

exp

(∑
j

aijyj + log(ci)

)]

which is equivalent to these equations below

(
ui, 1,

∑
j

aijyj + log(ci)

)
∈ Kexp,

∑
i

ui ≤ 1

and

log(g(ey)) =
∑
i

aiyi + log(c)

Definition 2.1.10. A signomial function is a function, f : Rn
++ → R defined by f(x) =∑

i ci
∏n

j=1 x
aij
j where x = [x1, . . . , xn]T, ci ∈ R, and aij ∈ R.

Definition 2.1.11. A signomial program is of the form

minimize
x∈Rn++

f0(x)

subject to fi(x) ≤ 1

gj(x) = 1

(2.5)

where i = 1, . . . ,m is the number of inequality constraints, j = 1, . . . , p is the number of

equality constraints, f0, . . . , fm are signomial and g1, . . . , gp are monomial.

In general, solving SP involves approximating a signomial function as a monomial

function, in which the SP becomes GP, then iteratively solving the approximated problem,

resulting in a locally optimal solution [21, 22, 23]. Several attempts to solve SP for the

12

global optimality with an additional extensive computation were also proposed [24, 25,

26].

2.1.4 Algorithms and Solvers

Depending on the formulation of the problem, different algorithms are suitable for each

formulation. If the problem contains no constraints, gradient descent [27] or Newton’s

method [28] with a proper searching step size [29] can converge to the optimal solution

very quickly. If there exists only equality constraints, Karush–Kuhn–Tucker (KKT) matrix

[30] can be constructed and then solved by using standard linear algebra techniques like

Gaussian elimination [31] or decomposition methods [32].

For LP, basic searching algorithms such as Simplex algorithm [33] and Criss-Cross

algorithm [34] can be used. Though, theoretically, these algorithms have an exponential

worst-case time complexity, they perform well in practice. The primary issue is their in-

ability to extend to the larger class of convex optimization problems.

To solve a general convex optimization problem with both equality and inequality con-

straints, a few efficient algorithms, for examples, interior-point method [35], ellipsoid

method [36], and subgradient method [37], can be used.

The implementation of the variations of these algorithms as a software package is called

a solver [38, 39]. Some of the popular one are CPLEX [40], Gurobi [41], MOSEK [42],

COIN-OR [43], GLPK [44], ECOS [45], SDPT3 [46], SeDuMi [47], etc. The first three are

proprietary; while, the remaining ones are open-source. In addition, since each software

package may be written in different languages and has different APIs, modeling software,

like CVX [48], YALMIP [49], and GPkit [50], can be used to facilitate the conformity

across different solvers.

13

2.2 Mixed-Integer Optimization

Mixed-Integer Optimization or Mixed-Integer Prgramming (MIP) refers to a class of op-

timization problem that contains both real and integer-valued decision variables [51]. Al-

though, MIP in general is not convex, it is often used in conjunction with convex optimiza-

tion where MIP becomes convex if the integer-valued variables are relaxed to take a real

value. The general form of mixed-integer convex optimization is

minimize
x∈Rn, y∈Zm

f0(x,y)

subject to fi(x,y) ≤ 0

aTj x + bTj y = cj

(2.6)

where i = 1, . . . , p is the number of inequality constraints, j = 1, . . . , q is the number of

equality constraints, f0, . . . , fp are convex in x and integer-relaxed y, aj ∈ Rn, bj ∈ Rm,

and cj ∈ R.

The strength of MIP is the ability to express the problems that involve propositional

logic (e.g., conjunction and disjuction) [52], discrete decisions (e.g., assignments, schedul-

ing, modes) [53], and non-convex functions (e.g., modeled by piece-wise convex functions)

[54, 55]. As a result, it is used in various engineering applications such as controls [56],

multi-vehicle path planning [57], and avionics [58, 59].

Two algorithms that are often used for solving MIP are branch-and-bound algorithm

[60], and a cutting-plane method [61]. The combination of both is also possible and called

branch-and-cut algorithm [62]. Similar to algorithms for solving LP, this algorithm has

an exponential worst-case time complexity, but its average-case performance is reasonably

efficient. Furthermore, due to the parallel nature of the branching process, most of previ-

ously mentioned solvers usually include the multi-threaded version of this branch-and-cut

algorithm for expediting MIP solving process [63].

14

2.3 Networked System Reliability Analysis

2.3.1 Network Model

The network model is a graph, G = (V,E), where V represents a set of vertices, and

E ⊆ V × V represents a set of edges. Let M = |V | and N = |E| be the number of

vertices and the number of edges, respectively. Each vertex, vi ∈ V has a reliability,

ri ∈ [0, 1], i ∈ {1, . . . ,M} defined as a probability of failure nonoccurence. Similarly,

each edge ej ∈ E has a reliability of rj ∈ [0, 1], j ∈ {M+1, . . . ,M+N} [64]. Depending

on the system behavior, the value of ri and rj can be either constant or evaluated at a specific

point in time.

The network can remain functional in the presence of failures of its vertices and edges,

should the vertices which provide different functionality to the network remain connected.

For example, consider an A350 AFDX network comprised of two redundant networks, with

seven switches each [2, 65] as shown in Figure 2.1. Assume that all functionalities provided

by these components are equally important. All End Systems (ES) can be considered as

vertices, and Ethernet cables as edges. If PRIM1A, FMC1, and the Ethernet cable between

switch 1 and switch 2 fail, the network is still functional, as there exist other redundant ES

which can provide the same functionality to the network. On the other hand, if SCI fails,

the entire network also fails.

2.3.2 Reliability Evaluation

The probability that determines whether a network is functional defines its reliability. As-

suming the failures of all vertices / edges are independent, the reliability equation of the

network can be written

R(r,G) =
∑
y

{
β(y)

M+N∏
i=1

[
(1− ri)(1− yi) + riyi

]}
(2.7)

15

Figure 2.1: A350 AFDX network
Green boxes represent LRUs. Yellow boxes represent CPIOMs. Orange boxes represent
CRDCs. Blue boxes represent Ethernet switches. Blue lines represent Ethernet cables.

See [66] for the abbreviation.

where R(r,G) ∈ [0, 1], and the binary vector y = [y1, . . . , yM+N]T ∈ {0, 1}M+N rep-

resents the state of vertices and edges where yi = 1 means active, and yi = 0 means

otherwise. The binary Boolean function β : {0, 1}M+N → {0, 1} represents the state of

the network where

β(y) =


1 if the network is functional

0 otherwise
(2.8)

The brute-force algorithm for evaluating (2.7) involves a computation of all combina-

tions of active/inactive vertices and edges, then individually examines whether the network

is function. Even though this algorithm is simple and provide the exact result, its time

complexity is of the order O(2M+N), which makes it intractable even for a network with a

moderate number of vertices and edges.

Simplification of (2.7) can be made for networks that have a special structure such

16

as series/parallel networks [67]. For a series network, it is known that the network is

functioning if all vertices and edges are active. Hence, the reliability depends on only one

case where yi = 1, i.e.,

R(p,G) =
M+N∏
i=1

pi (2.9)

For parallel networks, at least one vertex must be active, i.e., and independent of the

state of edges. By using the binomial theorem, (2.7) becomes

R(p,G) =
M∑
k=1

[(
M

k

)M+N∏
i=1

yi · pi + (1− yi) · (1− pi)

]

= 1−
M∏
i=1

(1− pi)

(2.10)

Slightly more complex network structures such as mixed-series/parallel networks or

k-out-of-N networks have reliability equation that is a combination of (2.9) and (2.10).

However, to evaluate (2.7) with a linear time complexity, an approach that involves rep-

resenting β(y) as a Binary Decision Diagram (BDD) is used and described in the following

section [68].

2.3.3 Binary Decision Diagram

BDD is a Directed Acylic Graph (DAG) that consists of a hierarchy of nodes that have two

branches, a low-branch and a high-branch, pointing to their lower-hierarchical nodes. The

two lowest hierarchy nodes with no outgoing branches are called terminal nodes, labeled

by either ⊥ or >. The highest hierarchy node with no incoming branches is called the

root node. The BDD expands the solution of (2.8) in form of a binary tree. The details of

constructing a BDD for the given network can be found in [69, 70, 71]. An example of a

simple network and its BDD is given in Figure 2.2.

In order to distinguish between the network and the BDD, the words vertices and edges

17

(a) Network with each vertex
having different functionality. (b) Corresponding BDD.

Figure 2.2: An example network (Left), and its BDD (Right).

are used for the network, and the words nodes and branches are used for the BDD. The

structure of the BDD is represented as a set of nodes B = {b1, . . . , bB, b⊥, b>}, where B =

|B| − 2 represents the size of the BDD and the ordering of b1, . . . , bB is in the topological

order, such that b1 is the root node. The following definitions represent the relationship

between network vertices/edges and BDD nodes/branches.

Definition 2.3.1. Given a network G and its correspond BDD of a size B, the function

ve : B → {V ∪ E} represents a mapping from the node to its correspond vertex or edge.

Definition 2.3.2. Given a network G and its correspond BDD of a size B, the function

lo/hi : N → N represents a mapping from the index of the node to the index of its

lower-hierarchy node that corresponds to its low / high-branches.

Defining 2.3.1 and 2.3.2, facilitates representing the Boolean function β(y) as a recur-

sive equation

β(y|yj) = (¬yj ∧ β(y|yj0)) ∨ (yj ∧ β(y|yj1)) (2.11)

where j = ve(bi), j0 = ve(blo(i)), and j1 = ve(bhi(i)) for i ∈ {1, . . . , B} and j, j0, j1 ∈

18

{1, . . . ,M +N}. To determine whether the network is functional (β(y) = 0, or β(y) = 1)

for a given vector y, (2.11) may be simply evaluated from the root node b1 down to the

terminal node b⊥ or b>. At a particular node i, if yj = 0, the term yj ∧ β(y|yj1) is always

false and can be ignored. Similarly, for yj = 1. The network is functioning if the node

b> is reached. To recursively evaluate the network reliability R(r,G), substitution of (2.11)

into (2.7) yields

Ri(p,G) = (1− pj) ·
∑

y|yj=0

{
β(y|yj = 0) ·

M+N∏
k=1,k 6=j

[
(1− pk) · (1− yk) + pk · yk

]}

+ pj ·
∑

y|yj=1

{
β(y|yj = 1) ·

M+N∏
k=1,k 6=j

[
(1− pk) · (1− yk) + pk · yk

]}

Ri(r,G) = (1− rj) ·Rlo(i)(r,G) + rj ·Rhi(i)(r,G)

(2.12)

where j = ve(bi) for i ∈ {1, . . . , B} and j ∈ {1, . . . ,M + N}. By using Dynamic

Programming (DP), (2.12) can be computed, as described in Algorithm 1 with a complexity

of O(B).

Algorithm 1 : DP for Reliability Evaluation
Require: Network BDD, Reliability of vertices / edges
Ensure: R1 = Reliability of the Network

1: R⊥ ← 0.0
2: R> ← 1.0
3: for i = B,B − 1, . . . , 1 do
4: Ri ← (1− rve(i)) ·Rlo(i) + rve(i) ·Rhi(i)

5: end for

19

CHAPTER 3

REDUNDANCY DESIGN AUTOMATION

3.1 Motivation

AFDX network can be considered as a safety-critical networked system, in which its conti-

nuity of service is required in the presence of ES or component failures [3]. The capability

of the network to satisfy this requirement is usually quantified by its probability of main-

taining its intended function, also named reliability. Network reliability may be evaluated

by modeling the system as a probabilistic graph [72], where each vertex represents a single

component or subsystem, and each edge represents communication, or the flow of informa-

tion between vertices. Both vertices and edges are also associated with a component-level

reliability, which can be obtained from their specification of failure rate or maintenance

schedule. Then, the reliability of a system is interpreted as the probability that a vertex set

of interest is properly connected through available edges.

To ensure that the evaluated system reliability is above a given level, more vertices

and edges can be added to the network graph. However, having too much redundancy

poses impracticalities due to several constraints, for example, the prices of components, the

physical distance between two ES constrained by the size of the aircraft, the communication

bandwidth of an Ethernet cable, and the aircraft maximum gross weight. Therefore, it is

necessary to formulate an optimization problem which minimizes the cost of the network,

while guaranteeing the desired reliability.

In this work, a two-step framework for solving this problem is proposed. The first step

is to leverage GP [21] to determine the minimal number of redundant components that sat-

isfy the required reliability. Hence, this step is referred to as a redundancy optimization. In

the next step, by using SP, the minimum number of connections among these components

20

can be computed, to form the network architecture, which maintains the same required re-

liability. This is effectively a topology optimization problem. Both methods are in the form

of mixed-integer mathematical programs, which offer benefits of using readily available

solvers to determine their globally optimal solution, and providing a flexibility to introduce

other relevant constraints, such as a common cause failure [73] or a bandwidth constraint

[59]. The justification for the two-step formulation arises from the inherent traceability

of the problem. Such a formulation mitigates issues with the unstructured nature of the

one-step formulation and subsequent difficulties associated with solving the problem.

3.2 Related Works

Several works on redundancy optimization are studied in [74]. Recent developments in

meta-heuristic approaches are presented in [75, 76]; however, these methods cannot guar-

antee the solution to be globally optimal as opposed to exact methods as in the case of

GP. The formulation of GP in the field of reliability has been introduced in [77, 78, 79].

However, the formulation in [77] only yields an approximate solution. The formulation

in [78] is only valid for a system connected in series. Lastly, although the formulation in

[79] solves the previously mentioned issues, it does not consider the cost of establishing

connections between redundant components.

For the topology optimization, there also exist meta-heuristic methods [80, 81, 82] for

solving the problem. On the contrary, some exact methods, such as dynamic programming

[83], and best-first search approach [84], can provide global optimality, however, they are

not as robust to the introduction of new constraints. The proposed method of SP has been

applied to many engineering applications, for instance, aircraft design [85], propulsion sys-

tem sizing [86], circuit design [87], and wireless communication systems [88]. However,

its application to topology optimization is seemingly novel.

21

3.3 Redundancy Optimization

This section addresses an optimization problem for determining the minimum number of

redundant components required to construct an initial network topology, under the con-

straint that its reliability be above a certain value.

3.3.1 Problem Description

Consider a system of I functionally-different subsystems. Each subsystem has Ji, i ∈

{1, . . . , I} components. To mitigate the effects of a common cause failure, components

in the same subsystem are assumed to be functionally-similar, meaning that they provide

the same functionality, but differ in other features. The example are hardware from dif-

ferent manufacturers, or software compiled by different compilers or written by different

teams. As illustrated in Figure 3.1, the connection of functionally-similar components can

be assumed to have a parallel network structure because the system can still provide the

continuity of service if one or more, but not all, of these components fail. Otherwise, they

are in a series network structure.

Figure 3.1: A configuration of a series-parallel system.

Given the reliability of each component, rij where j ∈ {1, . . . , Ji}, the overall relia-

bility of the series-parallel network may be calculated using a special case of an equation

(2.7) [89].

22

3.3.2 Mathematical Formulation

Consider the same system in 3.3.1, where each component is associated with a component

weight, wij > 0 and a connection price wij,kl > 0 if the connection between the component

ij and kl is required; otherwise, wij,kl = 0. Further, let n ∈ NI×J where J = maxi Ji, be

a decision matrix that determines the level of redundancy for each component in each sub-

system (the number of components), and r̄ be the desired reliability of the overall system.

Then, the optimization problem for minimum redundancy can be cast as

minimize
n∈NI×J

∑I
i=1

∑Ji
j=1

(
wijnij + 1

2

∑I
k=1

∑Jk
l=1wij,klnijnkl

)
subject to

∏I
i=1

[
1−

∏Ji
j=1(1− rij)nij

]
≥ r̄

. (3.1)

The objective function is to minimize the total cost of the system, where the factor

1
2

accounts for the duplicate between the connection from the component ij to kl and

from kl to ij. For the case where ij = kl, wij,kl is set to zero, meaning that there is

no connection to the same component. Although this problem is in the form of a mixed-

integer nonlinear program, it can be reformulated into a form similar to a mixed-integer GP

by exponentiating the objective function and performing appropriate change of variables,

i.e., pij = log(1− rij), nij,kl = nijnkl, n(·) = log
[
y(·)
]
, and ŷi ≤ 1−

∏Ji
j=1 y

pij
ij .

minimize
ŷi,y(·)

∏I
i=1

∏Ji
j=1

(
y
wij
ij

∏I
k=1

∏Ji
l=1 y

wij,kl
2

ij,kl

)
subject to r̄

(∏I
i=1 ŷi

)−1
≤ 1

ŷi +
∏Ji

j=1 y
pij
ij ≤ 1

log(yij,kl) = log(yij) + log(ykl)

∀i, k ∈ {1, . . . I}, ∀j, l ∈ {1, . . . , J}

(3.2)

Because of the last constraint, this problem is not in the form of a GP; however, its

integer relaxation can still be converted into a convex optimization problem. By applying

the log-transformation to the objective function and constraints, and letting z(·) = log
[
n(·)
]
,

23

ẑi = log(x̂i), this problem becomes

minimize
n(·),z(·),ẑi

∑I
i=1

∑Ji
j=1

(
wijnij + 1

2

∑I
k=1

∑Jk
l=1wij,klnij,kl

)
subject to log(r̄)−

∑I
i=1 ẑi ≤ 0

log
[
exp(ẑi) + exp

(∑Ji
j=1 pij · nij

)]
≤ 0

zij + zkl − zij,kl = 0

exp
[
z(·)
]
≤ n(·)

∀i, k ∈ {1, . . . , I}, ∀j, l ∈ {1, . . . , J}

(3.3)

The last inequality constraint is the convex relaxation of its equality constraint and is

equivalent to
(
n(·), 1, z(·)

)
∈ Kexp. Despite, in theory, the convexified problem provides

the lower bound in terms of the cost value to the original problem, solving (3.3) using a

high performance solver, e.g. Mosek, together with a branch-and-bound method for integer

variables, in practice, provides the solution closed to the case where the constraint is not

relaxed. Once the level of redundancy of components is determined, these redundant com-

ponents can be considered as vertices of the network, with fully-connected edges between

subsystems.

3.3.3 Common Cause Failure Constraints

Since some of decision variables in the problem (3.3), i.e. nij , have the same physical in-

terpretation as those in the problem (3.1), any additional mixed-integer constraints, whose

relaxation is convex which depends on these decision variables can be included. For exam-

ple, a boundary constraint for satisfying the allowable minimum and maximum number of

components, or a modulo constraint for specifying the number of components to be even or

odd [53]. Another useful constraint is one that handles common cause failure on redundant

components.

The analysis result of common cause failures from [90] may be summarized as “for a

given ratio of the failure rates between a single component and its redundant system, using

24

one component may, on average, provide a longer continuity of service than the redundant

one if the number of redundant components is lower than some value.” Mathematically,

this is translated to

nij


= 1 if nij < Lij

≥ Lij otherwise
(3.4)

where Lij is a lower bound for each component obtained from a method presented in [90].

By applying a Big-M method, the additional constraints are

−nij ≤ −Lij +Mbij (3.5)

nij ≤ 1 +M(1− bij) (3.6)

where M is a sufficiently large positive number, and bij ∈ {0, 1} is an extra decision

variable indicating either (3.5) or (3.6) is active. If bij = 1, the inequality constraint nij ≤ 1

is active, which suggests that it is not beneficial to use a redundancy to improve the system

reliability, and vice versa.

3.4 Topology Optimization

In the previous section, it was shown that the network reliability can be improved using

redundancy. However, it is advantageous in terms of both price and maintenance costs if

the network is modified to contain fewer edges, whilst maintaining the desired reliability

with the same number of vertices. Hence, this section addresses the problem of determining

an optimal topology, in which the number of edges is minimized under a given reliability

requirement.

25

3.4.1 Problem Formulation

Given a BDD of size B encoding an initial network topology graph, G = (V,E), and

its connectivity, the problem can be formulated as an SP. Let M = |V |, N = |E|, r̄

be the desired network reliability and x = [x1, . . . , xM+N]T ∈ {0, 1}M+N be a decision

vector for determining whether a vertex vi ∈ V , i ∈ {1, . . . ,M} or an edge ej ∈ E, j ∈

{M + 1, . . . ,M +N} should be kept (xi = 1) or removed (xi = 0). Additionally, denote

the corresponding weights, w = [w1, . . . , wM+N]T, and reliability, r = [r1, . . . , rM+N]T,

for each vertex and edge. The reliability equation (2.7) may then be expressed as

R(x, r,G) =
∑
y

{
β(y)

M+N∏
i=1

[
(1− rixi)(1− yi) + rixiyi

]}
(3.7)

Furthermore, with the notions of BDD, equation (3.7) can be reformulated as a recursive

equation

Ri(x, r,G) = (1− rjxj) ·Rlo(i)(x, r,G)

+ rjxj ·Rhi(i)(x, r,G)

(3.8)

where j = ve(bi) for i ∈ {1, . . . , B} and j ∈ {1, . . . ,M +N}.

To evaluate (3.8), we may again leverage Algorithm 1 by multiplying r with x, which

implies that the reliability of the removed vertex or edge is set to zero. The resulting equa-

tion is signomial in x. Considering each Ri as an intermediate variable, the optimization

problem may then be cast as an integer SP.

minimize
x,Ri

z = wTx

subject to Ri ≥ (1− rjxj)Rlo(i) + rjxjRhi(i)

R1 ≥ r̄, x ∈ {0, 1}M+N

∀i ∈ {1, . . . , B}, j = ve(bi), j ∈ {1, . . . ,M +N}

(3.9)

26

To determine a globally optimal solution to this problem, x∗, the branch-and-bound

based approach can be used [91], [92]. However, this approach requires a valid upper

bound, u, and lower bound, l, of the objective value for each iteration, which may be

obtained via relaxations of the original problem (3.9).

3.4.2 Integer Relaxation for Upper Bound Computation

The upper bound of the objective value can be computed by relaxing the integer constraints,

solving the following SP problem, and rounding the result to 0 or 1 [93].

minimize
x,Ri

u = wTx

subject to Ri ≥ (1− rjxj)Rlo(i) + rjxjRhi(i)

R1 ≥ r̄, 0 ≤ x ≤ 1

xµk = νk ∀k ∈ {1, . . . , |µ|}

∀i ∈ {1, . . . , B}, j = ve(bi), j ∈ {1, . . . ,M +N}

(3.10)

where µ is a set of indices indicating which element of the decision vector x should be

fixed during the branching process, and νk ∈ {0, 1}.

3.4.3 Signomial Relaxation for Lower Bound Computation

To compute the lower bound, the convex relaxation of (3.9) must be approximated [93].

To do so, each signomial constraint is under-approximated by a polynomial function as

follows. Each signomial constraint can be written as

fi(x,R) =
Rlo(i) − rjxjRlo(i) + rjxjRhi(i)

Ri

≤ 1

=⇒
Rlo(i)R

−1
i + rjxjRhi(i)R

−1
i

1 + rjxjRlo(i)R
−1
i

≤ 1

(3.11)

Therefore, an under-approximation of fi(x,R), may be found by computing an over-

approximation of the denominator. The following proposition provides such an over-

27

approximation in the form of a monomial function.

Proposition 3.4.1. Given a function f : [0, 1]m × (0, 1]n → R+ of the form f(x) = 1 +

c
∏m

i=1 xi
∏m+n

j=m+1 x
−1
j where c > 0, the tightest monomial over-approximation, in the L2-

norm sense, of f(x) is given by

f̃(x) = (1 + c)
m+n∏
j=m+1

x−1j

Proof. See Appendix A.

Hence, by applying Proposition 3.4.1 with m = 2, n = 1, and c = rj , the relaxed

problem becomes a GP of the form

minimize
x,Ri

l = wTx

subject to Rlo(i) + rjxjRhi(i) ≤ 1 + rj

R1 ≥ r̄, 0 ≤ x ≤ 1

xµk = νk,∀k ∈ {1, . . . , |µ|}

∀i ∈ {1, . . . , B}, j = ve(bi), j ∈ {1, . . . ,M +N}

(3.12)

which may then be transformed into a convex optimization problem and solved for the

lower bound.

3.4.4 Algorithm for Reliability-Constrained Optimization

The Algorithm 2 is based on a standard branch-and-bound method with the upper bound

and lower bound being a solution from integer-relaxed problem (3.10) and a convex re-

laxation obtained from the transformation of (3.12), respectively (which becomes convex

upon making a change of variables). The heuristic used in this algorithm is to choose the

element of x closest to one as a branching variable, since such variables are more likely to

be a vertex / an edge that cannot be removed from the network. Hence, the branch where

this variable is fixed to zero is likely to be infeasible and immediately fathomed.

28

Algorithm 2 : Mixed-Integer SP Algorithm for Reliability-Constrained Optimization
Problem
Require: BDD representing the network, Reliability and weight of vertices / edges, De-

sired reliability
Ensure: Optimal solution x∗, and optimal objective function z∗

1: z∗ ← wT1 + 1
2: µ← None
3: ν ← None
4: u← None
5: l← None
6: S ← ∅
7: U ← ∅
8: L← ∅
9: while z∗ > wT1 or S 6= ∅ do

10: if S 6= ∅ then
11: µ, ν ← S1

12: u← U1

13: l← L1

14: S ← S \ S1

15: U ← U \ U1

16: L← L \ L1

17: end if
18: if l is None or l ≤ maxu U then
19: U ← U ⊕ {u}
20: L← L⊕ {l}
21: xu, u← solve (3.10)
22: xl, l← solve (3.12)
23: if xu ∈ {0, 1}M+N and u < z∗ then
24: x∗ ← xu
25: z∗ ← u
26: else if 0 ≤ xu ≤ 1 or 0 ≤ xl ≤ 1 then
27: if l ≤ maxu U then
28: s← arg maxx{x | 0 < x < 1}
29: µ← µ⊕ s
30: S ← S ⊕ {(µ, ν ⊕ 0), (µ, ν ⊕ 1)}
31: U ← U ⊕ {u, u}
32: L← L⊕ {l, l}
33: end if
34: end if
35: end if
36: end while

29

Theorem 3.4.2. Given the problem formulation of reliability-constrained optimization for

networked systems as (3.9), the branch-and-bound based algorithm 2 provides a globally

optimal solution through relaxation problems (3.10) and (3.12).

Proof. See Appendix A.

3.5 Examples

This section provides applications of the proposed methods on a small network of mobile

robots with a hardware implementation, and on a larger network of A350 IMA architecture.

3.5.1 Small Network of Mobile Robots

Consider two types (pink, and green) of mobile robots collaborating as a network of two

components, as shown in Figure 3.2a. Each robot has a different functionality. Assume

that the first robot has a reliability of 0.8, whereas the second has a reliability of 0.7. Ad-

ditionally, let the reliability of the wireless communication between a pair of robots be 0.9.

Suppose further that the desired reliability of the network is 0.8. It is obvious that this re-

quirement is not satisfied by the two-robot configuration. Therefore, the method proposed

in Section 3.3 is used to improve the network reliability. To this end, the method proposed

in Section 3.4 is used to optimize the topology.

(a) two functionally different robots. (b) Resulting Network from (3.13).

Figure 3.2: Network of Mobile Robots.

30

Redundancy Optimization

Following the description in section 3.3, this problem has two functionally-different sub-

systems, each with a single component. Taking all the weights to be unity, the optimization

problem (3.3) can be expressed as

minimize
ẑ1,ẑ2,

n11,n21,n11,21,
z11,z21,z11,21

n11 + n21 + n11,21

subject to log(0.8)− ẑ1 − ẑ2 ≤ 0

log [exp(ẑ1) + exp (log(0.2)n11)] ≤ 0

log [exp(ẑ2) + exp (log(0.3)n21)] ≤ 0

z11 + z21 − z11,21 = 0

exp (z11) ≤ n11, exp (z21) ≤ n21

exp (z11,21) ≤ n11,21

(3.13)

where n11 and n12 indicate the number of robots for each type. The results of (3.13)

are provided in Table 3.1 and Figure 3.2b. Note that there are only fully-connected com-

munications between functionally-different subsystems. Following the correspond BDD

in Figure 3.3, the reliability of the network is 0.8559, which is higher than the desired

reliability.

Table 3.1: Optimization Result of (3.13)

ẑ1 ẑ2 n11 n21 n11,21 z11 z21 z11,21

-0.0408 -0.0943 2 2 4 0.693 0.693 1.386

Topology Optimization

To further optimize the network in Figure 3.2b, its corresponding BDD (Figure 3.3) is used

for formulating a problem. With all weights set to 1, the optimization problem (3.9) can be

31

written as

minimize
x∈{0,1}4,R∈R16

+

x1 + x2 + x3 + x4

subject to R1 ≥ 0.8, R1 ≥ 0.2R4 + 0.8R2

R2 ≥ (1− 0.9x1)R3 + 0.9x1R6

R3 ≥ 0.3R8 + 0.7R5, R4 ≥ 0.3R9 + 0.7R7

R5 ≥ (1− 0.9x2)R7 + 0.9x2R11

R6 ≥ 0.3R8 + 0.7, R7 ≥ 0.3R13 + 0.7R10

R8 ≥ (1− 0.9x2)R9 + 0.9x2R16

R9 ≥ 0.7R12, R10 ≥ (1− 0.9x3)R12 + 0.9x3R15

R11 ≥ 0.3R13 + 0.7, R12 ≥ 0.8R14

R13 ≥ 0.9x3R15, R14 ≥ 0.9x4

R15 ≥ 0.8, R16 ≥ 0.7

(3.14)

The optimization result of (3.14) is shown in Table 3.2 and Figure 3.4. Note that be-

cause the number of vertices has been determined by (3.13), there is no need to consider

vertices as decision variables. The result shows that e1 can be removed, while the reliability

of this final configuration (0.8062) still remains higher than the desired reliability.

Table 3.2: Optimization Result of (3.14).

variable x1 x2 x3 x4 R1

value 0 1 1 1 0.8062
variable R2 R3 R4 R5 R6

value 0.8351 0.8351 0.6905 0.9014 0.9041
variable R7 R8 R9 R10 R11

value 0.7704 0.6804 0.504 0.792 0.916
variable R12 R13 R14 R15 R16

value 0.72 0.72 0.9 0.8 0.7

32

Figure 3.3: BDD corresponds to the network in Figure 3.2b.

Hardware Implementation

An experiment has been conducted on a swarm robotics platform [94] to illustrate the

obtained result. The objective of this experiment is to simulate the failure of the networked

system over time. This means that when failure occurs on one or more components such

that the entire system fails, data will be recorded, and the system will be repaired, such that

it may continue operating. Then, from the recorded data, the overall system reliability can

be shown to converge to the reliability obtained from (3.14), i.e., 0.8062.

In this setup, the robot network is moving along a rectangular trajectory, where each

corner is marked by G1-G4 as shown in Figure 3.4. To evaluate the reliability, at each time

step the component-level reliability are evaluated to determine whether the vertices (robot)

or edges (communication between robots) are available. If not, those vertices or edges are

removed from the network for a brief fixed interval, immobilizing the disconnected robot.

33

After the interval has passed, the faulty vertices and edges are recovered. Then, the overall

reliability is re-evaluated for the next time step. This experiment procedure is summarized

in Algorithm 3.

Algorithm 3 : Procedure for Estimating System Reliability
Require: The number of time steps T , The number of robots M , The number of commu-

nication pairs N , Reliability of each robot rrobot, and each communication pair rcomm

Ensure: R = Estimated System Reliability
1: R← 0, nf ← 0
2: for t = 1 : T do
3: a← 0M×1, b← 0N×1
4: for i = 1 : M +N do
5: x← U(0, 1)
6: if i ≤M and rrobot < x then
7: ai ← 1
8: bcommunication pair connected to robot i ← 1
9: end if

10: if i > M and rcomm < x and bi−M = 0 then
11: bi−M ← 1
12: end if
13: Check the connection among robots
14: if one or more robots is disconnected then
15: nf ← nf + 1
16: end if
17: R← 1− nf

t

18: Recover all of faulty components
19: end for
20: end for

where nf is the number of times that that system has been failed, a and b are Boolean

vectors indicating which components are failed at a given time step. Line 4−10 are used to

randomly inject faults to the system based on the value of its components’ reliability. Line

11 check whether all robots are still able to communicate despite some injected faults. One

method to do this is to construct the graph form the remaining components and compute

eigenvalues of the graph Laplacian [64]. The remaining lines are to keep track of the

number of failures and to calculate the reliability of each time step. Then the state of the

system is recovered for the next step.

In this example, the experiment is repeated for 300 time steps. Since the desired re-

34

liability is 0.8, it is expected that out of these 300 evaluations, approximately 60 of them

should end up in the system failures. The number of failures is counted and shown in Fig-

ure 3.4 as well as the plot of the estimated system reliability in Figure 3.5, which shows

that the desired reliability of 0.8 can be achieved.

Figure 3.4: Experiment illustrating the assurance of the reliability.
Link to the video of the experiment: https://youtu.be/fXUZ9MdiD4Y

3.5.2 Integrated Modular Avionics Architecture

A large network inspired by the A350 IMA, shown in Figure 2.1 is now considered. How-

ever, instead of assuming the reliability of each ES is known, as in the previous example,

the procedure adopted from ARP4761 is applied to determine the acceptable component-

level reliability for the original IMA architecture. Then, it is shown that from starting

with this component-level reliability, the optimal architecture obtained from the proposed

methodology is the same as the original one.

Determination of component-level reliability

Given a hazardous system severity (failure rate ≤ 10−7 per hour), FTA can be used to

determine each ES reliability, as shown in Figure 3.6. The level of redundancy for each

ES is shown in Table 3.3. At the bottom of the fault tree, the failure may come from

35

https://youtu.be/fXUZ9MdiD4Y

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Time Step

R
el

ia
bi

lit
y

Estimated Reliability over Time Step
Desired Reliability

Figure 3.5: Evaluation of system reliability at each time step.

either the ES or the cables connecting these ES. The reliability of an individual ES can be

computed using equations for series-parallel system structure [95], while the reliability of

the cable can be computed by constructing a BDD and solving the higher-order polynomial

equation obtained from recursive substitution of terms on the right-hand side of (2.12) [96].

It should be noted that although the switches are connected in a network structure, a single

switch failure blocks the communication of other ES that connect to the faulty switch. Said

failure leads to the failure of the entire network. Thus, this behavior of failure is equivalent

to the series system. Assuming the average flight hour of an A350 is 7 hours, the desired

reliability to satisfy the severity requirement is e−7×10−7 ≈ 1−7×10−7. The computational

result of component-level reliability is shown in Table 3.3.

Redundancy Optimization

The problem has been formulated as in the form of (3.3) with all weights set to 1. Con-

nections are only allowed between CPIOMs/CRDCs/LRUs and switches. There are 233

36

Figure 3.6: FTA inspired by Airbus A350 AFDX network.

Table 3.3: Component-Level Redundancy and Reliability.

End-Systems
Redundancy

Reliability
based on Fig. 2.1

CRDC-A15, CDAU, SDU
1 0.999999985DU-{IC,UC,OC,IF,LC,OF}

CDLCU, ECB-APU, SCI
Other CRDCs, AESU

2 0.999877961CPIOM-{J1, J5, J7}, CMV
CMV, ETRAS, EMU

ADIRU, FMC 3 0.997539632

CPIOM-{H3, H4, H6, J2}
4 0.988952855

SFCC, EEC, EPDC, SPDB
PRIM, SEC 6 0.950397903

Switches (per ADFX) 7 0.999991282

Ethernet Cables N/A 0.999994915

37

variables (excluding slacks), 93 of which are integer. The problem is solved in 40.08 mil-

liseconds on an Intel i7-9700F computer, with 16 GB of memory running Ubuntu 20.04.

The result is provided in Table 3.4, whose contents are similar to those in Table 3.3.

Table 3.4: Redundancy Optimization Result.

End-Systems nij End-Systems nij

CRDC-A15, CDAU, SDU
1

Other CRDCs, AESU
2DU-{IC,UC,OC,IF,LC,OF} CPIOM-{J1, J5, J7}, CMV

CDLCU, ECB-APU, SCI CMV, ETRAS, EMU

ADIRU, FMC 3
CPIOM-{H3, H4, H6, J2}

4
SFCC, EEC, EPDC, SPDB

PRIM, SEC 6 Switches (per ADFX) 7

Topology Optimization

The problem has been formulated as in the form of (3.9), with a fully-connected network

between CPIOMs/CRDCs/LRUs and switches, and among switches. There are 1526 bi-

nary variables to determine the connections that can be removed without affecting network

reliability. To avoid non-unique solutions, each weight is set to the scaled distance between

ES and switches, according to Figure 2.1. An additional equality constraint forcing the

homogeneity between two redundant AFDX network is imposed.

The problem is solved on the same machine as the redundancy optimization problem. It

takes 549.35 seconds to obtain the results shown in Table 3.5, and Figure 3.7. The number 1

in Table 3.5 indicates that there is a connection between two ES, and 0 otherwise. In Figure

3.7, for the ease of visibility, only the connections among Ethernet switches are shown.

38

Table 3.5: Network Topology Result.

The value 1 indicates the connection between two components, 0 otherwise.
``````````````̀End-Systems

Switches
1 2 3 4 5 6 7

PRIM-{3,4}, SEC-{3,4}

1 0 0 0 0 0 0
CRDC-{A2,A4,A10}, DU-IC

CPIOM-{J22,J72}, ADIRU2, FMC2
SFCC-{3,4}, EMU2, EEC3

PRIM-{1,2}, SEC-{1,2}

0 1 0 0 0 0 0
CRDC-{A7,A11,B13}, DU-IF

CPIOM-{J21,J71}, ADIRU1, FMC1
SFCC-{1,2}, EMU1, EEC1

AESU1, CMV1, DU-UC

0 0 1 0 0 0 0
CPIOM-{J11,J23,H31,H43.H61}

CRDC-{A3,B5,B9}, ETRAS1
EEC2, EPDC1, SPDB1
AESU2, CMV2, DU-LC

0 0 0 1 0 0 0
CPIOM-{J12,J24,H32,H44.H62}
CRDC-{A6,B8,B10}, ETRAS2

EEC4, EPDC3, SPDB4
CIDS1, DU-OC, EPDC2, SPDB2

0 0 0 0 1 0 0CPIOM-{J51,H33,H41,H63}
CRDC-A{1,9,13,17}, B{1,3,7,11}
CIDS2, DU-OF, EPDC4, SPDB4

0 0 0 0 0 1 0CPIOM-{J52,H34,H42,H64}
CRDC-A{8,12}, B{2,4,6,12,14}

PRIM-{5,6}, SEC-{5,6}, ADIRU3
0 0 0 0 0 0 1CDLCU, FMC3, ECB-APU, SCI

CRDC-{A05,A15}, SDU, CDAU
Switch 1 - 1 1 0 0 0 1
Switch 2 1 - 0 1 0 0 1
Switch 3 1 0 - 1 1 0 1
Switch 4 0 1 1 - 0 1 1
Switch 5 0 0 1 0 - 1 0
Switch 6 0 0 0 1 1 - 0
Switch 7 1 1 1 1 0 0 -

39



Figure 3.7: Sequence of integer-feasible solutions for AFDX network topology
optimization.

The optimal topology is the same as the one shown in Figure 2.1.

40



CHAPTER 4

RECONFIGURABLE AVIONICS

4.1 Motivation

The onset of multicore processors is often seen as an opportunity - and a necessity - as a

golden opportunity for the embedded systems industry to improve efficiency of embedded

computers [97]. Multicore processors carry several benefits over single core ones [98],

bringing more computational power through parallelization without increasing chip’s in-

ternal frequency, and without increased energy consumption or increased heating. They

now pervade cellular communication devices and embedded electronics for mass-market,

for example, and many other industries are now taking advantage of such processors, such

as the automotive industry [99], the biotechnology industry [100] and the circuit industry

[101]. However, as far as critical systems are concerned, these benefits come with great

certification challenges [102], [103], since parallel applications on a multi-core processor

may interfere. The aerospace industry is yet undertaking to take up this challenge [104],

[105], [106], despite the arrival of new generations of UAM vehicles that requires reliable,

low-cost, redundant avionics [107], [108].

A reconfigurable multi-core architecture that could host safety critical tasks, see [109],

[110], [111], for instance, can become an example of a safe avionics processor by taking

advantage of the inherent redundancy that enables graceful degradation [112]: when some

core fails, we can use the remaining ones by reallocating affected applications to a healthy

area of the chip [113]. The inherent redundancy in such parallel architecture can thus

be seen as an opportunity to increase the reliability of aerospace computing systems, be

it in safety critical embedded systems or for computing centers requiring guaranties of

continuity of service.

41



4.2 Related Works

Several attempts have been made to increase the reliability of safety-critical systems using

multi-core processors. In [114, 115], an “hypervisor” is used to organize access to shared

resources for applications, including safety-critical ones. However, the possible failure of

the hypervisor is not taken into account. Therefore, such technique just moves the problem

since the whole reliability is carried by the reallocation decision organ, which constitutes a

single point of failure: the most complex and efficient reallocator is pointless if the system

it executes on fails.

In [116], backup allocations are pre-calculated for each failure case and they are stored

by individual CUs. For small architectures with only a few CUs, this solution is satisfac-

tory and ensures a continuous fault tolerance of the system without requiring a centralized

allocator. However, storing backup configuration can require a lot of memory when the

architecture becomes large. Also, the proposed approach does not consider applications

that can themselves be parallelized and executed on several CUs at the same time.

In [117], a similar approach using optimization technique is proposed. The work has

been done on a large aircraft scale in order to assign avionics software to hardware and

hardware to installed locations. However, only the initial allocation is computed and no

component failures are considered.

4.3 Reconfiguration Problem Description

The approach presented in this work provides an online and decentralized reallocation al-

gorithm for a general architecture that can be represented by a graph and for parallelized

applications requiring several CUs to execute [118], [119], [120].

Even though this work is motivated by a multicore architecture, it can present a decen-

tralized task allocation algorithm for any abstract parallel computing architectures made

of a set of processors connected together and forming a network. Such an architecture

42



can represent, for example, a multi-core processor, with each CU standing for one core, a

cluster of computers, or a team of urban air vehicles with embedded computation capabil-

ities such as air taxis and delivery drones [121], [122]. Furthermore, due to the utilization

of similar mathematical principles for integer programming [123], this algorithm can be

integrated with the framework for developing a large component-based software systems

[124], [125].

The aim of the algorithm is to find the optimal allocation of an a priori defined set of

tasks on the architecture while taking into account the faults affecting CUs. The faults are

assumed to be detected by the algorithm when they occur either via a timeout mechanism

or a voter, but this work does not provide details of those fault detection mechanisms. As

described later, two types of fault will be considered, the first one completely stopping the

operation of the CU, and a second one considered to modify the computed output of CUs.

4.3.1 Preliminaries

This section defines the mathematical notation of the allocation problem that will be con-

sidered in this work. The idea is to cast this formulation as an integer LP, whose solution is

the best allocation of the tasks on a parallel computing platform, e.g., multi-core processors,

network of computers in a computing center, as shown in Figure 4.1, taking into account

the number of applications running, a priority, a periodicity, a Worst-Case Execution Time

(WCET), the number of reallocated applications and the length of communication paths

between allocators and other applications.

Figure 4.1: Example of square mesh topology.

43



Definition 4.3.1. A parallel computing platform is defined as a graph G where each vertex

of G represents a CU and each edge of G represents a physical communication link between

two CUs.

Definition 4.3.2. NCUs is defined as the number of CUs in the computing platform, that

is the number of vertices of G. Each CU contains RCUi available resources where i ∈

{1, . . . , NCUs}.

Definition 4.3.3. Npaths is defined as the number of Physical Communication Links, or

physical paths, in the platform, that is the number of edges of G. Each physical path

contains Rpathi available resources where i ∈ {1, . . . , Npaths}.

Definition 4.3.4. appk is defined as a pair of a set of vertices and a set of edges required

for a specific task with a unique task priority k, a period pk, and an execution time ek.

Let Napp ∈ N andA = {appk; k = 1, . . . , Napp} be a set of applications to be executed

on the parallel computing platform. The applications in A are ranked by priority, app1

having the highest priority and appNapp
having the lowest one. The ranking is established a

priori and represents the order in which we stop applications in case of excessive computing

resource failures. In the context of a commercial aircraft, an example of such applications

with different priority would be the engine controller, with the highest priority, and a health

monitoring application, with a lower priority, which is in charge of analyzing data from

the engine in order to estimate its wear and to predict when maintenance operations are

required. In case of computing resource failures, it would be tolerated in this context to

stop the health monitoring application in order to maintain the execution of the engine

controller.

Since some applications are parallelizable, they are supposed to consume more than one

CUs on the architecture and have intra-application communication. For k ∈ {1, . . . , Napp},

we assume that the compiler for the considered architecture decomposes the application

appk into a undirected graph Gk = (Vk, Ek), where each vertex, that we will call Appli-

44



Figure 4.2: Example of application graphs.
Each application node is identified with a unique index. app1 has highest priority, app3

has the lowest.

cation Node, represents a sub-task of appk that must be executed by a CU, and each edge

represents a required communication link between two Application Nodes, that we will call

an Application Link. Figure 4.2 gives an example of such application graphs. Depending

on the architecture, the orientation of these application graphs may be significant.

From each graph Gk for k ∈ {1, . . . , Napp} the following parameters are defined.

Definition 4.3.5. Nk
nodes is defined as the number of Application Nodes for application k.

Each Application Node consumes Rk
nodei required resources where i ∈ {1, . . . , Nk

nodes}.

Definition 4.3.6. Nk
links is defined as the number of Application Links for application k.

Each Application Link consumes Rk
linki required resources where i ∈ {1, . . . , Nk

links}.

Definition 4.3.7. Nnodes ,
∑Napps

k=1 N
k
nodes is the total number of Application Nodes.

Definition 4.3.8. Nlinks ,
∑Napps

k=1 N
k
links is the total number of Application Links.

Each application node is given a global index j ∈ {1, . . . , Nnodes} with the following

procedure: the nodes of app1 keep the same indices as in the local numbering of vertices

in G1; then the global indices for nodes of app2 are obtained by increasing their local

indices by N1
nodes; and so on for the nodes of appk, by increasing the local numbering by∑k−1

l=1 N
l
nodes. The result of the global numbering of the nodes can be seen in Figure 4.2.

An identical process is applied to obtain a global numbering of the edges of the application

graphs and the required resource consumption Rk
nodei and Rk

linki .

The problem that is tackled here is to assign applications to CUs of the architecture

while faults affect some CUs, taking into account the priority of the applications and spe-

cific constraints of the architecture. A solution will look like that shown in Figure 4.3.

45



Figure 4.3: A task allocation on a multi-processor fabric where CU 11 has failed.

Denote the indexing in Figure 4.3 is for CUs on the architecture, which is not the same as

the index for Application Nodes in Figure 4.2. The approach that we take here to solve the

problem is to formulate the allocation problem as Integer LP and use open-source solvers

for finding the optimal solution.

An additional aspect of the problem is to make the allocation process decentralized in

no specific CU is dedicated for solving integer LP problem. The way this decentralized

allocation is achieved by introducing copies of the task computing the allocation and being

executed on the platform itself.

Definition 4.3.9. Nrealloc is defined as the number of copies of the Allocator Application.

To represent the topology of the computing platform and applications, two matrices

must be defined

Definition 4.3.10. From the graph representation G = (V,E) of the parallel computing

platform, the NCUs ×Npaths incidence matrix G associated with G is defined as:

[G]ij =


−1/1 if ej ∈ E leaves / enters vi ∈ V

0 otherwise

And the NCUs × Npaths unoriented incidence matrix Ĝ associated with G is defined as:

[Ĝ]ij = |[G]ij|

Definition 4.3.11. From the graph Gk = (Vk, Ek) representing the k-th application, the

46



Nk
nodes ×Nk

links application incidence matrix Hk associated with Gk is defined as:

[H]kij =


1 if vki ∈ Vk and ekj ∈ Ek are incident

0 otherwise

Furthermore, the Nnodes ×Nlinks overall application incidence matrix H is defined as H =

diag{H1 . . . Hk}

4.3.2 Decision Variables

Definition 4.3.12. The NCUs × Nnodes decision matrix XCUs→nodes, mapping Application

Nodes to CUs, is defined as:

XCUs→nodes
ij =


1 if the CU i is allocated to the Application Node j

0 otherwise

Definition 4.3.13. The Npaths × Nlinks decision matrix Xpaths→links, mapping Application

Links to Physical Links, is defined as:

Xpaths→links
ij =


1 if the Physical Link i is allocated to the Application Link j

0 otherwise

Definition 4.3.14. The Napps × 1 decision vector r, representing which applications are

executed, is defined as:

ri =


1 if the application i is running

0 if it is dropped

Definition 4.3.15. The Nnodes×1 decision vector M , representing which application nodes

47



are reallocated, is defined as:

Mi =


1 if the Application Node i is moved from its previously allocated CU

0 otherwise

Definition 4.3.16. For k ∈ {1, . . . , Napp}, the Npaths × NCUs decision matrix XComm, k,

representing communication paths between the k-th allocator application and every CU of

the platform, is defined as:

XComm, k
ij =


−1/1 if the Physical Link i is used to communicate between the allocator k and

the CU j in the negative / positive direction

0 otherwise

Positive (respectively negative) direction means that the communication takes place in the

same (respectively opposite) direction as the edge of the graph G, as in Figure 4.1.

Definition 4.3.17. The Napps × 1 decision vector s represents the starting time of applica-

tions with respect to their period.

4.3.3 Objective Function

Given the priority of the applications in an ascending order, i.e., the first application has

the highest priority and the Napps-th application has the lowest one, the objective function

is used in order to maximize the number of executed applications while minimizing the

number of reallocations and the length of communication paths. The chosen objective

function is:

max

{
f(x) =

Napps∑
k=1

αk · rk − (β + 1)

Nnodes∑
j=1

Mj −
Nrealloc∑
k=1

NCUs∑
j=1

Npaths∑
i=1

∣∣XComm, k
ij

∣∣}, (4.1)

48



where

β = Nrealloc ×NCUs ×Npaths

αNapps = (β + 1)×Nnodes + β + 1

and ∀k < Napps : αk =

Napps∑
l=k+1

αl + (β + 1)×Nnodes + β + 1.

(4.2)

The coefficients of the objective function are chosen to prioritize the different aspects that

are optimized in this function.

1. The first priority is to execute each application, even if it means more reallocations

and longer communication paths.

2. Then, minimizing the number of reallocations is more important than having shorter

communication paths, since a reallocation temporarily interrupts the execution of the

allocation.

3. When running all applications is not feasible, the priorities of the applications are

enforced and executing any given application is more important than running any

number of applications with a lower priority. However, if because of its geometry, a

given application cannot be executed anyway, nothing prevents lower-priority appli-

cations from being executed.

These requirements motivated the choice for the coefficients in the objective function.

The proof that these coefficients allow the objective function to meet these requirements is

given in Appendix A.

Note that the problem of minimizing or maximizing the absolute value of the XComm, k
ij

variables, which is a nonlinear program, can be reformulated as a linear program by intro-

ducing additional variables and constraints. For each entryXComm, k
ij ofXComm, an auxiliary

variable X̂Comm, k
ij is introduced to represent its absolute value, and two extra constraints are

49



added:

+XComm, k
ij ≤ X̂Comm, k

ij , and −XComm, k
ij ≤ X̂Comm, k

ij .

X̂Comm, k
ij is then used instead of

∣∣XComm, k
ij

∣∣ in the objective function. Because the objective

function tends to maximize −
∣∣XComm, k

ij

∣∣, so to minimize X̂Comm, k
ij , one of the two previous

constraints will be binding, the stricter one, where the left-hand side is the greatest and

equal to max(+XComm, k
ij ,−XComm, k

ij ), which is exactly
∣∣XComm, k

ij

∣∣. The other constraint

will be non-binding and therefore does not affect the optimal point. It thus ensures that

X̂Comm, k
ij is equal to

∣∣XComm, k
ij

∣∣.
4.3.4 Constraints

Domain of decision variables

The decision variables XCUs→nodes, Xpaths→links, r and M are binary, i.e., the value of their

entries must be either 0 or 1. The entries ofXComm, k for k ∈ {1, . . . , Nrealloc}must belong

to {−1, 0, 1}. Each element of s is a positive real number.

Resource allocation and partitioning

Several equations express the constraints of allocating the resources of the CUs to applica-

tions while enforcing partitioning on the platform.

• Each CU can host as many applications as its available resources, i.e.

∀i ∈ {1, . . . , NCUs},
Nnodes∑
j=1

Rnodej ·XCUs→nodes
ij ≤ RCUj . (4.3)

• Each running Application Node must be assigned to exactly one CU, i.e.

∀i ∈ {1, . . . Nnodes},
NCUs∑
j=1

XCUs→nodes
ji = rN(i). (4.4)

50



N(i) is the application number corresponding to Application Node i.

• Each Physical Link of the platform can host as many Application Links1 as its avail-

able resources, i.e.

∀i ∈ {1, . . . , Npaths},
Nlinks∑
j=1

Rlinkj ·X
paths→links
ij ≤ Rpathj . (4.5)

• Each running Application Link must be assigned to exactly one physical communi-

cation link of the platform, i.e.

∀i ∈ {1, . . . , Nlinks},
Npaths∑
j=1

Xpaths→links
ji = rL(i). (4.6)

L(i) is the application number corresponding to Application Link i.

Compliance with the platform

An Application link, adjacent to an Application Node that has been mapped to a given CU,

must be allocated to a Physical Link that is adjacent to that CU, i.e.

XCUs→nodes H = Ĝ Xpaths→links. (4.7)

Equation (4.7) is equivalent to the scalar form in Equation (4.8):

∀i ∈ {1, . . . , NCUs}, ∀j ∈ {1, . . . , Nlinks},
Nnodes∑
k=1

XCUs→nodes
ik Hkj =

Npaths∑
l=1

Ĝil X
paths→links
lj .

(4.8)

The left-hand side is equal to one if and only if the CU i has been allocated to Application

Node k and Application Node k is adjacent to Application Link j. The right-hand side is
1This does not mean that this communication link cannot be used for other communication purposes on

the architecture, but only one of the Application Links computed by the compiler for the applications can be
allocated to that physical communication link.

51



equal to one if and only if the CU i is adjacent to the Physical Link l and the Physical Link

l is allocated to Application Link j, which proves the correctness of the constraint.

Reallocating several applications

A given Application Node can either remain affected to the same CU, either be moved or

be dropped:

∀i ∈ {1, . . . , NCUs}, ∀j ∈ {1, . . . , Nnodes}, s.t. XCUs→nodes
old ij = 1,(

1− rN(j)

)
+Mj +XCUs→nodes

ij = XCUs→nodes
old ij ,

(4.9)

with XCUs→apps
old be the parameter containing the mapping between CUs and Application

Nodes computed during the previous allocation. This constraint (4.9) is ignored for the

initial allocation.

Faults

We assume the parallel computing platform is equipped with a fault detection system that

can detect and inform the allocators when a CU fails. From this information, we can add

constraints to take faults in the platform into account. Within a CU i:

• If the CU is healthy, any Application Node can be mapped on the CU.

• If the CU is faulty, then no Application Nodes is mapped on the CU i:

Nnodes∑
k=1

XCU→nodes
ik = 0. (4.10)

For each Physical Link j:

• If the Physical Link is healthy, any Application Link can be mapped on the Physical

Link.

52



• If the Physical Link is faulty, then no Application Links can be mapped on the Phys-

ical Link j:
Nlinks∑
k=1

Xpaths→links
jk = 0. (4.11)

The detection of these faults is either assumed for the model or detected by the voter using

the majority rule.

Communication constraints

Since the allocators are executed on the platform, we must ensure that they will be able to

send the allocation they computed to the other CUs of the platform, given the communica-

tion links that allows each CU to send a message only through its neighbors. Therefore, we

must make sure that there exists a path from each allocator to the other CUs.

∀k ∈ {1, . . . , Nrealloc}, G XComm, k = Sk (4.12)

where Sk is the NCUs ×NCUs source-sink matrix Sk, depending on XCUs→nodes and defined

by:

[S]kij ,


0 if deg(vi) = 0 in G, or CU i is faulty

−XCUs→nodes
i node of alloc(k) + [INCUs ]ij otherwise

.

where the degree of a vertex deg(vi) is the number of edges connected to it, and node of alloc(k)

is the Application Node corresponding to allocator k. When the CU is neither faulty nor

without any neighbor, in each path between an allocator and a given CU i, the allocator is

the source (-1) and the CU i is the sink (+1).

53



Constraints specific to the architecture

Additional constraints can be added to respect specific aspects of the considered architec-

ture. For example, some Network-on-Chip (NoC) multicore architectures [109], where

intra-application communication between CUs can happen only in a specific way as il-

lustrated in Figure 4.4, orientation of the applications on the architecture matters because

nodes that can communicate in a given orientation will not be able to do so if they are

rotated on the architecture. Therefore the orientation as computed by the compiler must be

enforced.

To ensure correct orientation of applications, another set of constraints is also needed.

In order to enforce this, the numbering of the CUs on the platform is used. For example in

a square mesh topology, as illustrated in Figure 4.4, a CUs has always a number difference

of −1 with its right neighbor and +Nrow with its top neighbor, where Nrow is the number of

CUs per row of the NoC (Nrow = 4 in the example of Figure 4.4).

The difference between the numbers of the contiguous pairs of CUs allocated to an

application must match the orientation computed by the compiler.

∀k ∈ {1, . . . , Napps}, let jk be the index of the top-left node of the k-th application:

∀i ∈ {1, . . . , NCUs}, XCUs→nodes
ijk = XCUs→nodes

(i+1)(jk+1)

XCUs→nodes
ijk = XCUs→nodes

(i+Nrow)(jk+Nk
row)
.

(4.13)

where Nk
row is the number of nodes per row of the k-th application. Note that this constraint

may be different for other mesh topologies.

Scheduling Constraints

First, the time each application takes for executing since it starts must not be greater than

its period, i.e.,

∀k ∈ {1, . . . , Napps}, sk + ek ≤ pk (4.14)

54



Figure 4.4: Enforcing spatial orientation constraints specific for a square mesh topology.

Second, to ensure that there is no overlap in the execution time between two or more

applications assigned to the same CU, the following constraints must be imposed [126].

∀i ∈ {1, . . . , Napps},∀j ∈ {1, . . . , Napps}, i 6= j, ∀k ∈ {1, . . . , Nnodes},

∀XCUs→nodes
ki = XCUs→nodes

kj = 1, (sj − si) mod gij ≥ ei

(sj − si) mod gij ≤ gij − ej

(4.15)

where gij is a greatest common divisor of pi and pj , and mod is a modulo operator which

can be represented by introducing an additional integer variable, i.e.,

x1 mod a {≤,=,≥} x2 ⇔ x1 − ay {≤,=,≥} x2 (4.16)

The condition ∀XCUs→nodes
ki = XCUs→nodes

kj = 1 can be captured using Big-M method.

Hence, (4.15) is equivalent to

∀i ∈ {1, . . . , Napps}, ∀j ∈ {1, . . . , Napps}, i 6= j,∀k ∈ {1, . . . , Nnodes},

(sj − si)− gijyij ≥ ei − (2−XCUs→nodes
ki −XCUs→nodes

kj )M

(sj − si)− gijyij ≤ g − ej + (2−XCUs→nodes
ki −XCUs→nodes

kj )M

(4.17)

whereM is an arbitrary large positive number.

55



4.4 Decentralized and Online Self-Reconfiguration

In this work, the word decentralized is used to qualify a system where no single CU has

control over all the other ones in the parallel architecture: there is no central CU whose fail-

ure jeopardizes the operation of the whole parallel architecture. From a safety perspective,

this means that no CU constitutes a single point of failure. We also use the word on-line to

describe the reconfiguration behavior that promptly react to CU failures.

We focus here on CUs, but there are other elements that may be a single point of failure

and that we do not take into account here. For example, electrical power may be provided

by one unique and central power supply unit, which is an obvious single point of failure

if not designed carefully. To mitigate the effect of other single point failures, methods for

safety assessment processes may be conducted.

4.4.1 N-Modular Redundancy and Majority Voting System

To develop a decentralized allocation system for the considered parallel computing plat-

form, we chose to use the concept ofN -modular redundancy with a majority voting system

[127].

As illustrated in Figure 4.5, the voting system compares the outputs of the redundant

copies and filters them: only the result that has been computed by the majority of the

redundant copies will be transmitted, i.e. the result computed by at least (Nrealloc + 1)/2

redundant copies. In this approach, Nrealloc is an odd number greater or equal to 3, and

Nrealloc copies of the same sub-tasks are executed in parallel. Nrealloc is chosen to be odd to

avoid the case where an equal number of copies agree on two different results. The copies

are fed with the same inputs and their outputs are then sent to a majority voting system. The

voting system is also used to report the failure of the redundant copies that do not match

the majority result.

56



Figure 4.5: Illustration of the voting process with 3 redundant copies.

4.4.2 Decentralized Implementation

The presented idea to decentralize the allocation system is to execute Nrealloc modular re-

dundant copies of the allocator application on the architecture itself, with a voting system

implemented on each CU. For further examples, Nrealloc will be taken equal to 3.

In normal conditions, the Nrealloc copies of the allocator compute the same allocation,

since they solve an identical integer LP problem, with same inputs and constraints, and

because GLPK, the solver used here, is a deterministic solver. This allocation is then

broadcast to every CU, including the ones executing the allocators.

If a CU not running an allocator fails, all three allocators compute the same new allo-

cation, in which the affected application is assigned to a new CU. This new allocation is

then broadcast and received by all CUs. Since the three signals that the CUs receive are

coherent, they all comply with it and therefore, the affected application is reallocated.

On the other hand, as illustrated in Figure 4.6, if a CU that runs a copy of the allocator is

affected by a fault, the two other ones compute the same new allocation where the affected

copy is assigned to a new healthy CU. Regardless of what the faulty allocator computes,

only the two coherent allocations sent by the two healthy allocators are taken into account

by the CUs, and the faulty allocator is reallocated.

57



(a) Layout of the allocators on the
computing architecture.

(b) Information flow between
allocators and CUs. The correct

allocation includes the instruction for
some node i to run allocator 3.

Figure 4.6: Fault affecting a CU running an allocator.

4.4.3 Online Computation

Although the allocator can react to the CU failure and re-compute the new configuration,

the time it takes to solve the integer LP formulation may be longer than the period of the

application making it miss the deadline. The simplest approach to overcome this issue is

to pre-compute all possible scenarios of failure sequences in an off-line fashion, then store

them in the memory. Unfortunately, the number of scenarios is very large even for the

small number of CUs. For example, suppose there are 16 CUs. The first failure can be any

of those CUs. The next failure is one of the 15 remaining CUs, and so on. This constitutes

to 16! ≈ 2× 1013 scenarios.

Therefore, we use an intermediate approach by computing the new configuration for

only the next possible failure. This online approach allows the system to have a backup

to immediately react to the upcoming failure; while, not to consume too much memory

resources. Using the same example of 16 CUs, this means at the beginning where there is

no failure, 16 new configurations will be computed and stored in the memory. Once the first

failure occurs, only the configuration corresponding to the actual faulty CUs will be used

for re-configuring the system, and the rest can be deleted. Then, 15 new configurations will

be calculated for handling the next failure and so on.

58



4.5 Example

This example aims to replicate the architecture of a multicore chip and to visualize the

result of the presented integer LP on a hardware platform. In this example, the centralized

version of the problem is shown, and the problem is solved on a dedicated hardware module

called a resource manager. The decentralized version will be presented in the later chapter.

4.5.1 Hardware Emulator

The multicore architecture can be reproduced by using a group of small embedded comput-

ers. To replicate a 4×4 chip fabric, 17 Raspberry Pi computers are used [128]. The first 16

ones are to represent CUs of the multicore architecture, and the last one acts as the resource

manager as shown in Fig. 4.7. Each CU runs the user-defined applications and has the fault

injection mechanism, which updates its own status to the resource manager. The resource

manager computes allocations based on the status of CUs by solving the presented integer

LP problem.

Figure 4.7: Multicore hardware emulator using Raspberry Pis.

59



4.5.2 Fault Injection Mechanism

Two types of high-level hardware faults, which are faulty compute resources and faulty

routers, were addressed in [129]. To reproduce these faults, the fault actuating system is

designed using two ON/OFF switches (Fig. 4.8) corresponding to each type of failures in

order to allow a demonstrator to decide which faults to occur on which CUs. Once the

switch is triggered, the voltage is captured, converted to a digital data, and forwarded to the

resource manager as the current status of CUs.

Figure 4.8: Hardware associated with each Raspberry Pi.
The RGB-LED (bottom-left corner) represents the LED application. The red LED (right
side) indicates an healthy Tile when turned on. Two switches are for triggering two types

of faults.

4.5.3 Software Application

In this example, three applications with a distinct usage of computer resources and a unique

spatial configuration (Fig. 4.7) are considered and represented by a specific color of RGB-

LED, allowing us to visualize the reconfiguration of Application Nodes. Each of these

applications also has the relative priority based on its safety-criticality for reconfiguration,

meaning that the algorithm is allowed to shut down the lower-priority applications to main-

tain the execution of the higher-priority ones in case of Compute Resources shortage. The

LED color assigned to each application, its relative priority, and its spatial configuration

are given by Table 4.1.

60



Table 4.1: Three applications’ LED colors, relative priorities, and spatial configurations.

Application Color Priority Spatial Configuration
1st Blue Highest 2-row by 3-column
2nd Green Intermediate 2-row by 2-column
3rd Yellow Lowest 2-row by 1-column

Remark 1: The free CUs are represented by turning on the RGB-LED to the white

color, and the faulty Tiles are represented by turning both LEDs off.

Remark 2: The red LED is controlled solely by the analog input voltage from the

switches. Since there is no software associated with this LED, it properly indicates a faulty

CU when turned off.

4.5.4 Demonstration

The demonstration result is shown by a sequence of pictures as in Fig. 4.9. This demon-

stration is initialized as shown in Fig. 4.7. Then, the demonstrator randomly makes the

Tiles become faulty by either switching off, unplugging the power cable, or removing the

Ethernet cable. Fig. 4.9a, 4.9c, 4.9e, and 4.9g show which CUs are faulty while Fig 4.9b,

4.9d, 4.9f, and 4.9h show the new configuration according to the current faulty CUs.

Note that the faulty Tile that came from removing the Ethernet cable still had its RGB-

LED lights up, but it lost the connection to the entire system. Therefore, the resource

manager considered it as a faulty CU.

61



(a) Switching off one Tile running the 3rd

application
(b) Algorithm reconfigures only the 3rd

application

(c) Unplugging the power from one Tile
running the 3rd application

(d) Algorithm reconfigures only the 3rd

application

(e) Removing the Ethernet cable from one
Tile running the 2nd application

(f) Algorithm reconfigures the 2nd and the
3rd application

(g) Switching off one Tile running the 1st

application
(h) Algorithm drops the 3rd application and
reconfigures the 2nd and the 1st application

Figure 4.9: Result of the task allocation algorithm
Link to the video of the experiment: https://youtu.be/VN21QXcdBv8

62

https://youtu.be/VN21QXcdBv8


CHAPTER 5

APPLICATIONS

This chapter provides four aerospace applications, which are a multicore avionics platform,

multirotor guidance and navigation system, a modular drone with an actuator failure, and a

fault-tolerant distributed engine control architecture, that apply the theoretical contributions

presented in previous chapters.

5.1 Multicore Avionics

5.1.1 Motivation

The experimental setup below is used to represent a parallel computing platform capable

of reallocating safety-critical applications in a decentralized and online fashion using the

foregoing optimization approach.

5.1.2 Hardware Components

To illustrate and demonstrate the capabilities of the new formulation of the allocation al-

gorithm in operational conditions, we choose to implement it on a cluster of single-board

computers, Raspberry Pis, in order to control and maintain operation of a physical system

despite the presence of faults.

Platform description

In this setup, a cluster of parallel CUs consisting of 4× 4 units is replicated with a network

of 16 Raspberry Pi computers. For convenience, all the Raspberry Pis are connected to

a common routing switch. Arbitrary connectivity topologies can then be emulated. For

simplicity of visualization in this specific setup, the network is considered to be a simple

63



square mesh.

The goal of this parallel computing platform is to illustrate the possibility to decentral-

ize the allocation process; therefore, there is no central computing unit outside the network

and three copies of the allocator are executed on the network.

Faults

Four types of faults are considered in this experiment.

• Type 1: The hardware fault on CUs shown in Figure 5.1a, which is assumed to stop

its operation on the CUs.

• Type 2: The computational fault shown in Figure 5.1b, which randomly affects the

computations performed by CUs.

• Type 3: The hardware fault of the physical communication link as shown in Figure

5.1c, which is assumed to stop its operation on the link.

• Type 4: The fault by an isolation, which occurs when one or more faults of the

previous types separate the communication among CUs into two or more partitions

(the set of connected CUs) as shown in Figure 5.1d.

We assume some fault detection algorithm exists, although it has not been implemented

in the experimental setup. Instead, the detection of faults is emulated by a status signal

sent by the corresponding Raspberry Pi to the allocators: in case the operation of a CU or a

Physical Link stops, this signal is changed to one identifying the component as faulty. Type

2 faults are detected by using redundant copies of the considered application combined with

a voting system. Types 1, 2, and, 3 faults can be manually triggered or recovered thanks to

a breadboard connected to each Raspberry Pi as seen in Figure 5.2. Type 4 fault is detected

by keeping track of faulty and recovered CUs / Physical Links. Then, a search algorithm,

e.g. breadth first search or depth first search [130], is executed on the reallocator to choose

64



(a) Hardware faults on
CUs.

(b) Computational fault
on a CU.

(c) Hardware fault on a
Physical Link.

(d) Gray CUs are
considered faulty.

Figure 5.1: Four types of faults that are considered.

(a) Hardware
representing a CU.

(b) Hardware representing a
Physical Link.

Figure 5.2: Hardware representing CUs and Physical Links.

the partition with the highest number of allocators as a working partition because they are

a crucial part for the next reallocation, in the sense that they transceive the information for

other CUs. If a tie occurs, the partition with the smaller number of CUs will be considered

as an isolated partition in order to maximize the size of the working partition.

Controlled system

The physical system to be controlled with this parallel computing platform is a propulsion

system, made of an electric fan mounted on a thrust stand equipped with a load cell to

measure the delivered thrust as shown in Figure 5.3a. The fan is commanded by using

PWM. The measure of the thrust is used by a simple proportional controller executed as

a safety-critical application on the platform in order to compute the value of the PWM

command required to maintain the thrust at a constant value as illustrated in 5.3b. An extra

Raspberry Pi is used as the micro-controller of the fan: it converts the value measured by

the load cell, sends it to the Controllers where the appropriate control value is computed,

65



(a) Electric fan mounted on the thrust stand. (b) Block diagram representing feedback control.

Figure 5.3: Controlled Physical System.

receives this control value, and generates the corresponding PWM signal controlling the

fan. It must therefore be noted that although the same hardware representation is used, this

Raspberry Pi does not correspond to the same components as the ones used for the CUs of

the platform but rather serves an equivalent to a CRDC on AFDX network.

5.1.3 Software Components

Even if a controller is reallocated to healthy CUs when it is affected by a fault, the operation

of the fan may be temporarily altered during the reallocation process because of the time

required to compute the new allocation and to actually reallocate the set of tasks.

To avoid interruptions in the operation of the fan during reallocations, we also use a

standard Triple Modular Redundancy (TMR) architecture. Three copies of the controller

are executed on the parallel computing platform. Each one separately computes the duty-

cycle value of the PWM signal that should be sent to the fan, given the thrust value that they

all receive from the sensor. The three values are sent to the Raspberry Pi representing the

micro-controller of the fan, where a voting system decides which control output should be

used. The vote outputs the result that has been computed by the majority of the controllers,

in this case two out of three. Signals are here considered equal if their difference is smaller

than a given tolerance. In the case of a fault affecting the output of one of the controllers, the

two remaining healthy controllers ensure that the correct value is sent to the fan. The voting

66



system also identifies which controller is not coherent with the two others and informs

the allocators of the fault. The reallocation process that we implemented can then take

place while providing continuity of service with the two healthy controllers. To stress

the reallocation system, each copy of the controller has been arbitrarily attributed to two

Application Nodes. Concretely, only one of them is responsible for actual computations.

Three copies of the allocator execute the allocation algorithm itself. They have second

rank priority immediately below the controllers, which represent the safety-critical appli-

cation in this case. Giving the allocators only the second rank in the priority list can be

justified when considering the case where only a controller or an allocator can be executed

on the platform: the resource must be allocated to the safety-critical application, in this

case the controller, that maintains the operation of the system, whereas the allocator is

only a protection against further faults, but cannot alone ensure operation of the controlled

system.

In addition to these six applications, one dummy application is considered in this ex-

periment: it occupies two CUs of the network, but does not perform actual computation

except changing the voltage in the RGB LED to display its corresponding color. It has the

lowest priority.

Figure 5.4 sums up the list of considered applications for the experiment, their relative

priority and the resources they require in terms of number of CUs. The initial allocation of

these applications on the model is given in Figure 5.5.

5.1.4 Experimental Results

Allocation Results

Starting from the initial allocation given in Figure 5.5, faults are triggered on the model.

After each fault, the allocators detect the faulty Raspberry Pi or the faulty Physical Link,

and compute a new allocation that is then broadcast on the network. They maintain the

execution of the safety-critical application as long as enough resources are available for it.

67



Figure 5.4: Applications for the
experiment

Figure 5.5: Initial allocation of the
applications

When there is a hardware fault on a CU, as seen in Figure 5.7a, the application that

was previously allocated to that CU is reallocated to other available CUs. Similarly, the

communication that previously used the faulty Physical Link has to be reallocated to other

available Physical Links, as seen in Figure 5.7b.

CUs surrounded by faulty neighbors are isolated from the rest of the platform and can-

not communicate. As enforced by the communication constraints described in Section

4.3.4, such a CU is not given any task to execute and is as good as faulty, as seen in Figure

5.7c.

When a CU recovers from a fault, one or more applications can be allocated back to

it as seen in Figure 5.7d and Figure 5.7f. Applications are dropped according to their

priority when more computing units become faulty. However, as illustrated in Figure 5.7c

and Figure 5.7e, when no space is available for all first priority applications, lower priority

ones are still allowed to be executed.

The computational fault as in Figure 5.7g does not separate the platform into two parti-

tions because the Physical Links are still allowed to be used.

The voting system implemented on the fan needs at least two functioning and coherent

controllers to run the fan (Figure 5.7e), as previously explained in Section 5.1.3: in case

the signals received from the controllers are incoherent, it decides not to trust any of them

and the engine stops, as in Figure 5.7h.

68



Figure 5.6: PWM value from each controller and measured thrust during the operation of
the ducted-fan motor.

Control Result

The use of the triple redundancy system to guarantee the continuity of the safety-critical

operation under feedback controllers is shown in Figure 5.6. Each red, green, and blue line

represents the PWM value from each controller. The black line represent the PWM value

resulting from voting mechanism that is directly sent to the system. The pink points and

the dash line represent the experimental result and its fitting curve, respectively. During the

first two seconds, the system is subjected to a disturbance, and the controllers adjust the

control accordingly. At t ≈ 7s, one of the controllers fails, but the system is still operating.

However, if none of the control signals match (t ≈ 9 − 9.75s), or all of them are faulty,

(t ≈ 11− 11.75s), the system stops. Nevertheless, the system can be recovered, if enough

CUs are recovered.

69



(a) Once the fault occurs on CU 12, the controller
that is previously allocated on that CU is moved.

(b) A fault occurs on the Physical
Communication Link; hence, that path cannot be

used.

(c) After 4 faults, the platform is separated into
two partitions. Since the lower partition

previously had less allocators, it is dropped.

(d) CU 12 is recovered; hence, the platform
becomes connected, and all applications are

recovered.

(e) After more faults, the system is once again
separated with only two controllers left.

Nevertheless, they are sufficient to operate the
system.

(f) CU 3 is recovered; hence, the platform
becomes connected, and all applications are

recovered.

(g) The computational fault occurs on CU 13;
however, the Physical Links are still healthy.
Therefore, CU 5 and CU 9 are not isolated.

(h) After more faults, the platform is separated
with only one controller left; hence, the system is

stopped.

Figure 5.7: Result of the task allocation algorithm.
The full video of the demo is also available at https://youtu.be/SxCZGQZ5TCU

70

https://youtu.be/SxCZGQZ5TCU


5.2 Multirotor Guidance and Navigation

5.2.1 Motivation

This application extends the reconfiguration framework in the previous Section 5.1 to a

SITL of a flying machine equipped with a six-core processor running fifty software appli-

cations or tasks as shown in Figure 5.8.

(a) Hexacopter with a six-core processor. (b) Tasks running on the processor. Each
color represents each DAL (A-Red,

B-Orange, C-Yellow, D-Green, E-Blue).

Figure 5.8: Simulated aerial vehicle and software applications.

5.2.2 Vehicle State Machine

The simulation state machine is described by a sequence of actions of the multirotor as

shown in Figure 5.9.

1. The multirotor is initially on the ground and every software application are being

executed distributively across all cores of the processor.

2. The vehicle then takeoffs to a certain altitude and start its mission by following pre-

defined way-points

3. During the mission, random failures will be injected to each of the processor core.

71



4. Some software applications will be dropped if the computing resources are not suffi-

cient. However, if the safety-critical ones are still running the vehicle will continue

doing the mission.

5. If that is not the case, the vehicle will go into an altitude hold mode, and eventually

land itself if the failures keep occurring.

Figure 5.9: SITL simulation state machine.

5.2.3 Safety-Critical Software Applications

The list of the software applications used in this work are taken from an open-source au-

topilot named Ardupilot [131]. As shown in Figure 5.10, the original source code pro-

vides information, i.e., priority, period, and WCET, about tasks scheduled by RTOS named

ChibiOS [132].

In this work, the list are tailored down to only tasks that are necessary for way-point

following and system monitoring. More detailed information of these tasks can be found

72



Figure 5.10: Ardupilot tasks.
Source code: https://github.com/ArduPilot/ardupilot

in Appendix B. Concisely, these tasks are categorized into five levels of severity based on

the guideline documents as follows:

• Catastrophic : 5 tasks related to rate/attitude control, Extended Kalman Filter (EKF)

state estimation, and Inertial Measurement Unit (IMU) sensor/actuator drivers

• Hazardous : 5 tasks related to position/velocity control, and navigation

• Major : 6 tasks related to health monitoring, backup Remote Control (RC) pilot, and

Ground Control Station (GCS) communication

• Minor : 8 tasks related to pre-flight calibration, and arm/disarm

• No Effect : 5 tasks related to logging, LEDs, and buzzer

Redundancy is applied the safety-critical tasks—triple redundancy for catastrophic sever-

ity tasks, double redundancy for hazardous and major severity tasks—making the number

of tasks be 50 in total as shown in Figure 5.8b.

73

https://github.com/ArduPilot/ardupilot


5.2.4 SITL Simulation Framework

The SITL simulation framework, as shown in Figure 5.11, consists of three main compo-

nents, i.e. a physical hardware simulator, software applications on a simulated multicore

processor, and a few external software. Each of them communicates through a Data Dis-

tribution Service (DDS) [133], which is a decentralized publish and subscribe based com-

munication system using either Transmission Control Protocol (TCP) or User Datagram

Protocol (UDP).

Figure 5.11: SITL architecture.

The hardware simulator contains Gazebo, a physics simulator software, and its plugins

for sensors and actuators [134]. Gazebo takes in a vehicle model together with forces and

74



moments applied on the vehicle to simulate the vehicle’s states such as position, velocity,

acceleration, and orientation. These data are forwarded to sensor plugins and converted to

a format that can be interpreted by Ardupilot software applications.

On the software application side, tasks are assigned to each core of the simulated mul-

ticore processor. The assignment is performed by the task scheduler, which solves the

presented optimization problem. Although each task computes different results, the only

output necessary for driving actuators is the PWM signal, which is sent to the motor plugin

for generating forces and moments in the hardware simulator.

The last component of this simulation framework is the external software, which are a

GCS software, a fault injector, and a visualization. In this work, the GCS software called

QGroundControl [135] is used for specifying way-points for the mission, arming motors,

and monitoring the vehicle. The fault injector randomly put a failure on each core of the

processor, which forces the task scheduler to reassign tasks on the remaining cores and to

drop lower priority tasks if the resources are insufficient. The health status of each core as

well as the current and backup task schedules are illustrated in the visualization software

as shown in Figure 5.12.

The top plot shows the current execution of the task scheduler and the remaining six

plots in the lower half show the backup schedules that will be executed in the case of each

processor failure. In this case, processor 1, 4, and 6 are already faulty as shown in the red

and green boxes at the bottom of Figure 5.12. Therefore, only three backup schedules are

shown. The plot on the right shows the applications that are currently executed.

5.2.5 Simulation Result

The simulation result is shown by a sequence of pictures as in Figure 5.13. In Figure 5.13a,

both vehicle and multicore processor are working in a normal operation by following the

four pre-defined waypoints in a rectangular shape. Six backup schedules are pre-computed

and ready to be executed in case of each processor core failure. In Figure 5.13b, faults are

75



Figure 5.12: Task schedule visualizer and fault injector.

injected, sequentially, into the system and the operation of two processor cores is halted.

The backup task schedules were executed and task scheduler solved for four new ones. The

vehicle is still able to continue performing the mission because no safety-critical applica-

tions are dropped. In Figure 5.13c, two more failures occurred on the multicore processor.

In this situation, some applications related to position controller and GPS sensor reading

are dropped making the vehicle unable to hold its position. However, it can still maintain

the altitude; therefore, the altitude hold mode has been entered. It can be seen that there

is a drift since the vehicle is no longer holding its current position. Furthermore, two new

backup task schedules are computed. Lastly, in Figure 5.13d, only one processor is left

available and it is considered unsafe because the vehicle will crash if there is another fur-

ther failure. Therefore, the vehicle decides to land in a stabilization mode. No more backup

task schedule is computed.

76



(a) Vehicle and all processor cores are working
in a normal operation.

(b) Two cores are faulty but the vehicle is still
able to continue its mission.

(c) Four cores are faulty and the vehicle
switched to an altitude hold mode.

(d) Five cores are faulty and the vehicle is
landing with attitude stabilization.

Figure 5.13: Result of SITL simulation of multirotor guidance and navigation system.
The full video of the result is also available at: https://youtu.be/VLVAYv-KfQM

77

https://youtu.be/VLVAYv-KfQM


5.3 Modular Drone with Actuator Failure

5.3.1 Motivation

This experiment extends the previous application in Section 5.2 from the simulation to

an actual aerial vehicle. However, due to implementation constraints, the set of software

applications is restricted to the ones necessary to perform a position hold in loiter mode.

The vehicle developed for this experiment is a modular UAV, named Dodecacopter,

as shown in Figure 5.14. Several researches have investigated the feasibility of modular

UAVs due to its benefits, such as redundancy, reconfiguration capabilities, and robostness

[136, 137, 138, 139, 140], and potential industry applications in mapping, surveillance,

inspection, delivery, film photography, and agricultural [141]. Modular UAV can facili-

tate operators of these applications by providing a unified system that can be configured

specifically for mission and payload requirements.

Figure 5.14: Dodecacopter.

78



5.3.2 Vehicle Design and Assemblies

For the case of dedecacopter, it is designed to be compact, yet rigid enough to hold its

structure and avionics. The dedecacopter frame is a self-contained module with a dodeca-

hedron shape, which has twelve faces and twenty vertices. Each module hosts a fixed-pitch

propeller rotating either Clockwise (CW) or Counter-Clockwise (CCW), a Pixhawk flight

controller [142] running Ardupilot software, a Lithium-polymer (Li-Po) battery, a RC re-

ceiver for receiving signals from a safety pilot, reflective markers for a Vicon system, and

a WiFi module for communication with GCS and other modules.

The connection between modules can simply be achieved using nuts and bolts. Various

assemblies can be constructed from a finite number of modules, for examples, a quadcopter,

a tetracopter, a coplanar hexacopter, and a tilted-rotor hexacopter as shown in Figure 5.15.

In this experiment only a coplanar hexacopter is focused since it can provide a fault-tolerant

capability when there is a failure on one of the modules [143, 144].

(a) Quadcopter configuration. (b) Tetracopter configuration.

(c) Hexacopter configuration. (d) Tilted-rotor hexacopter configuration.

Figure 5.15: Various vehicle configurations for dodecacopters

79



5.3.3 Fault-Tolerant Control

Since the dodecacopter is a modular UAV designed to hold avionics systems and a motor

within the same frame, it implies that failures on the processor will lead to a stop in the mo-

tor operation regardless a software reallocation. As such, a vehicle configuration that can

tolerant a motor failure must be chosen. Although a hexacopter with a standard propeller

configuration, as shown in Figure 5.16a, can provide a stability for rolling and pitching

axes, it loses the control authority in yawing direction. Therefore, another propeller con-

figuration, as shown in Figure 5.16b, which can provide a stability in every axes, is used in

this experiment instead [145].

(a) Uncontrollable Yaw Moment when any of
the motors fails.

(b) Uncontrollable Yaw Moment when either of
motor 5 or 6 fails.

Figure 5.16: Regular (Left) vs Fault-Tolerant (Right) hexacopter propeller configuration

When a failure happens, the task scheduler will reallocate the tasks running on a faulty

processor to the remaining ones. Even though the controller can continue its execution

on other processors, its algorithm or current set of parameters may not be suitable for

the situation where the vehicle loses one or more actuators. Dynamic control allocation

technique can be used to mitigate the potential adverse effects by re-distributing required

forces and moments to the remaining motors. Appendix C provide detailed information

about the dynamic control allocation problem is formulated [146]. The overall control

structure of the hexacopter used in this experiment is shown in Figure 5.17.

80



Figure 5.17: Control structure of the hexacopter.

Since the pilot is the one who injects faults to the vehicle by either unplugging the

battery or triggering a switch on the RC transmitter, the fault detection block reports the

failure immediately by a watchdog mechanism or reading the high (fault) or low (no fault)

voltage from the RC receiver.

5.3.4 Experimental Setup

The experiment is conducted indoor with Optitrack Vicon system [147] as shown in Figure

5.18. The Vicon system uses a set of infrared camera to capture the motion of the vehicle

and provides local positions and velocities of the vehicle in three dimensions. These data

are streamed to a desktop computer, then forwarded to each dodecacopter module through

the use of a WiFi router and WiFi modules.

This wireless network is also used for a communication with GCS software and for

sharing flight information, e.g. health status, sensor data, and pilot commands, among

the modules. However, the wireless network is not fast enough for transfer PWM signals

necessary for controlling motors. For this purpose, a fully-connected wired network is

implemented as shown in Figure 5.19a. A closer look at avionics systems with labels is

shown in Figure 5.19b.

5.3.5 Experimental Results

Two flight experiments are conducted. Both of them consider the situation where the ve-

hicle is hovering and holding its position in a loiter mode. The first experiment, illustrated

81



Figure 5.18: Experimental Setup.

(a) Fully-connected wired network. (b) Avionics of hexacopter.

Figure 5.19: Hexacopter used for this experiment.

in Figure 5.20a to Figure 5.20f, shows the actual failure of the processor by unplugging

the battery cable while the vehicle is on the ground. The second experiment, illustrated

in Figure 5.20g and Figure 5.20a, shows an in-flight processor failure where the fault is

injected by triggering a switch on the RC transmitter. In both cases, the vehicle is still able

to maintain its position despite its processor failure, which also stops the motor operation.

82



(a) Vehicle operates in a normal condition. (b) Fault is injected.

(c) Task scheduler reallocates software
applications.

(d) Due to modularity, a processor fault leads to a
motor failure.

(e) Without a control allocation, the vehicle
cannot holds its position.

(f) The vehicle cannot holds its position better
with a control allocation.

(g) Vehicle operates in a normal condition. (h) Fault is injected while the vehicle is in the air.

Figure 5.20: Result of flight experiments.
The full video of the demo is also available at https://youtu.be/KPx2dGPduWY

83

https://youtu.be/KPx2dGPduWY


5.4 Fault-Tolerant Distributed Engine Control Architecture

5.4.1 Motivation

Distributed system architectures are gaining attention for the use in modern control systems

because they provide a few important advantages over the traditional ones such as a smaller

computational load required per component, a tolerance to their component failures, and the

ease of fixing them. A turbine engine is one of the applications that could benefit from these

distributed architectures. The traditional control architecture for a Full-Authority Digital

Engine Control (FADEC) system is that there is a central computer which is connected to

all sensors and actuators. This traditional architecture can be heavy since it requires wires

to run from every sensor/actuator as well as specific connectors on the central computer for

each of them. Furthermore, this architecture may lack the fault-tolerant capability because

some sensors or actuators may not be able to connect to more than one computer causing

them and the central computer being a single point of a failure. To overcome these issues,

the distributed architecture for the FADEC system could be a good solution which provides

the possibility to develop modular FADEC for future turbine engines.

Another challenge of FADEC is the high-temperature nature of the engine, which is the

critical aspect that enables the implementation of distributed FADEC [148, 149]. Develop-

ment of high-temperature electronics needs a special treatment and can be expensive. The

distributed architecture also mitigates this potential cost by allowing hardware components

to be separated between the high-temperature and the cooler region of the engine.

The distributed FADEC architecture introduces a computer/processor called a “smart

node” to serve as a mediator between each sensor or actuator, and the ”main node” to per-

form computational tasks and manage the communication. This smart node can be designed

to have a specific connector suitable for the sensor or the actuator that it is connected to.

Once every sensor/actuator is individually assigned to the smart node, it can send or receive

its information through a common communication network. This not only significantly re-

84



duces the weight of wires used in the FADEC system, but also allows the data to be sent to

or received from any nodes in the network, which in turn provides the possibility of adding

more computers or sensors/actuators to the network for the redundancy purposes. In addi-

tion, to remove the issue of a single point of a failure raised by using one communication

network, the smart node can be designed to have a capability to connect to more than one

communication network. Therefore, the distributed modular FADEC offers these benefits

without the need to change its primitive components, i.e., sensors and actuators.

Despite the benefits, the distributed architecture requires a special attention to its com-

mon communication network since it becomes a backbone of the entire system. Although

a backup network can be used to improve the overall reliability, it would be beneficial to

develop understandings of the system behaviors due to underlying imperfections of the

communication network such as noises, delays, and package losses. To study these vari-

ables, the HITL simulation of the FADEC system must be constructed in order to execute

the developed software on the target hardware. This allows us to differentiate between the

simulations of engine physics running on a high-performance computer, and of the control

algorithm and software driver implemented on the embedded hardware aimed to be used

on the actual turbine engine system. Besides, it allows us to implement the common com-

munication network which is not possible for the case of doing SITL. Therefore, this work

aims to develop the testbed for performing this concept of HITL simulation.

Two types of the experiment are conducted. The first one is the operation of an engine

in a cruise scenario; however, it is subjected to abrupt changes of the pilot throttle command

at every few seconds. This allows us to observe the stability performance of the engine,

e.g., an overshoot, a settling time, and a response delay, that could be compromised from

the imperfections of hardware and communication networks. These performance indices

are, then, compared with the baseline response from SITL simulation. The second experi-

ment shifts the focus to the fault-tolerant capability by introducing another copy of a main

node, smart nodes, and an communication network in which each node is now additionally

85



connected to two networks. This allows us to observe how fast the node can detect a failure

in one communication network and switch to the other and how the engine behaves during

the transition period.

5.4.2 Hardware-in-the-Loop Simulation Setup

Figure 5.21: Simulation of AGTF30 physics.
The controller block is extracted and ported to an embedded system.

In our setup, the Simulink-based nonlinear engine model is an AGTF30, as shown

in Figure 5.21, publicly made available by NASA as a reference simulation [150]. The

AGTF30 simulates the model of a 30, 000 lbf thrust turbine engine consisting of sensors,

actuators, a relatively small engine core, and an ultra-high bypass ratio configuration, with

a feedback control system. The HITL simulation is first started by extracting the control

algorithm block out of the Simulink and auto-coded in C in order to be uploaded into

the target hardware. The target hardware is chosen to be a 32-bit embedded system or

microcontroller STM32F767ZI, as shown in Figure 5.22a, based on ARM Cortex M7 core

referred as a main node. This main node operates at a maximum clock rate of 216 MHz

86



and contain 512 kB of SRAM data memory. It is also running a RTOS from a FreeRTOS

implementation in addition to the algorithm. The same version of a microcontroller is

utilized for the smart nodes. In the smart node, there must be a driver specific for each

sensor and actuator running on it. However, since the physics of sensors and actuators are

simulated in Simulink, their resulting data is transferred from a desktop computer to each

smart node via an Ethernet network and Message Queuing Telemetry Transport (MQTT)

protocol. Three types of sensors are considered—pressure sensors, temperature sensors

and a shaft speed sensors. Similarly, three types of actuators—fuel flow rate, Variable Area

Fan Nozzle (VAFN), and Variable Bleed Valve (VBV)—are considered.

(a) STM32F767ZI Microcontroller. (b) A network of RS-485 modules.

Figure 5.22: Hardware used for this experiment.

The communication network for the main and the smart nodes is constructed from

a set of RS-485 modules, as shown in Figure 5.22b, which based-on a communication

standard published by the Telecommunications Industry Association. The network of this

module requires two wires running as a bus with a resistor connecting these two wires on

each end. Each module itself needs two wires connected to each side of the bus together

with another two wires connected to the node using a standard Universal Asynchronous

Receiver-Transmitter (UART) interface. The protocol implemented on this network is an

Engine Area Distributed Interconnect Network (EADIN) protocol [151, 152], which is a

master-slave communication protocol designed to be sufficiently fast for operating in a

high-temperature environment. Thus, the presented HITL simulation in this work has, in

87



total, four nodes (including backup ones) plus two communication networks and a higher

performance computer as shown in Figure 5.23.

Figure 5.23: HITL architecture.

5.4.3 Experimental Results

The first experiment is to show the operation and stability of the engine subjected to

changes in the pilot inputs and the environmental data. Its result is shown in Figure 5.24

and Figure 5.25. Sensor outputs at different locations across the engine are recorded and

their percentage errors comparing to the baseline data solely obtained from Simulink are

shown in Table 5.1.

Sensor Pa P2 P25 P3 P5 T2 T25 T3 T45 N1 N2 N3

%Error 0 0 2.44 4.02 0.41 0 0.72 1.09 1.49 2.26 2.26 0.61

Table 5.1: Errors between the HITL Simulation vs Simulink only.

where Pa is an ambient temperature, P2 / T2 is a pressure/temperature between the inlet

and the fan shaft, P25 / T25 is a pressure/temperature between the low and high pressure

88



Figure 5.24: Real-time execution of HITL simulation.
The full video of the demo is also available at https://youtu.be/QtVxPq8o40I

Figure 5.25: Plots of Sensor Data of the HITL Simulation vs Simulink only.

compressor, P3 / T3 is a pressure/temperature between the high pressure compressor and the

combustion chamber, P5 is a pressure behind the low pressure turbine, T45 is a temperature

89

https://youtu.be/QtVxPq8o40I


between the high and low pressure turbine, N1, N2, and N3 denote the low pressure shaft

speed, high pressure shaft speed, and fan shaft speed, respectively.

It can be seen that all errors are less than 5%, which indicates that the HITL is able to

represent the operation of the AGTF30 engine. These errors may come from noises and

communication delay occurred from the hardware.

The second experiment demonstrates the fault-tolerant capabilities of the main node

(Figure 5.26), smart nodes (Figure 5.27), and the communication network (Figure 5.28).

Each of them shows that the system is capable of reconfigure itself to use the backup com-

ponent whenever the primary one fails. The fault injection process is done by unplugging

the cables. On the contrary, the recovery process is done by plugging back in the cables.

(a) HITL simulation running in a normal
operation. Yellow signals on the oscilloscope
indicates the operation of the primary main

node.

(b) Introducing a failure to the primary main
nodes.

(c) Backup main node becomes active. Blue
signals on the oscilloscope indicates the

operation of the backup main node.

Figure 5.26: Demonstrating fault-tolerant capability on the main node.
The full video of the demo is also available at https://youtu.be/1J8RW5e3aPM

90

https://youtu.be/1J8RW5e3aPM


(a) HITL simulation running in a normal
operation.

(b) Introducing a failure to the primary pressure
sensor nodes.

(c) Backup pressure sensor node becomes
active.

(d) Introducing a failure to the primary
temperature sensor nodes.

(e) Also introducing a failure to the backup
temperature sensor nodes.

(f) System stops working because of no
available temperature sensor node.

Figure 5.27: Demonstrating fault-tolerant capability on smart nodes.
The full video of the demo is also available at https://youtu.be/-vRcC67Fo3c

91

https://youtu.be/-vRcC67Fo3c


(a) HITL simulation running in a normal
operation.

(b) Introducing a failure to the primary EADIN
communication network.

(c) The communication switches to the backup
EADIN network.

(d) Recover the primary EADIN communication
network.

(e) Introducing a failure to the backup EADIN
communication network.

(f) The communication switches back to the
recovered primary EADIN network.

(g) Introducing a failure to the primary EADIN
communication network again.

(h) System stops working because of no
available communication network.

Figure 5.28: Demonstrating fault-tolerant capability on the communication network.
The full video of the demo is also available at https://youtu.be/xEwnXH-VB48

92

https://youtu.be/xEwnXH-VB48


CHAPTER 6

CONCLUSIONS

To optimize SWaP-C, safety, and reliability of avionics systems, it is necessary to under-

stand the development and safety assessment processes of aerospace industry. The objec-

tive of this research is to support these processes in the context of redundancy management

by utilizing numerical optimization tools. In addition, this research also takes advantage

of the fact that these redundant hardware can potentially executes similar sets of software;

therefore, to further improve systems’ reliability, the reconfiguration technique can be used

to optimally reallocate software to the available hardware in case of failures. More impor-

tantly, to illustrate the effectiveness of these proposed framework, four applications in the

aerospace context are implemented in this research.

The first chapter presents a historical development, current state-of-the-art, and future

trends of avionics systems. The second chapter provides mathematical backgrounds related

to numerical optimization and reliability analysis techniques necessary for the remaining

of the work. The next two chapters address the main contributions of this research, which

are the redundancy design automation for networked systems using GP and SP, and a re-

configurable avionics framework based on integer LP. Examples are also provided at the

end of each chapter to illustrate their usages. The last chapter demonstrates four aerospace

applications: (i) multicore avionics, (ii) multirotor guidance and navigation, (iii) modular

drone with actuator failure, and (iv) fault-tolerant distributed engine control architecture.

The first three applications shows an incremental development from an emulator platform

to a flying machine, whereas the last one focuses on the HITL simulation of an aircraft

engine and its communication network.

The research presents promising results for the future direction of avionics systems

development and the possibility to extend the framework to real-world aerial vehicles.

93



Appendices



APPENDIX A

MATHEMATICAL PROOFS

Proof of Proposition 3.4.1. Consider a monomial function of the general form f̃(x,α) =

α0

∏m+n
k=1 x

αk
k . Finding the tightest monomial over-approximation of f is equivalent to

minimizing a function, e(x,α) = f̃(x,α)− f(x), i.e.,

minimize
α∈Rm+n+1

1
2

∥∥∥α0

∏m+n
k=1 x

αk
k − 1− c

∏m
i=1 xi

∏m+n
j=m+1 x

−1
j

∥∥∥2
2

subject to α0

∏m+n
k=1 x

αk
k ≥ 1 + c

∏m
i=1 xi

∏m+n
j=m+1 x

−1
j

∀xi ∈ [0, 1], i ∈ {1, . . . ,m}

∀xj ∈ (0, 1], j ∈ {m+ 1, . . . ,m+ n}

(A.1)

To solve this problem, the feasible domain of each αi must be analyzed. First, α0 > 0

by the definition of monomial function. Next, for the constraint to be valid at every xi = 0,

f̃(x) must be greater or equal to 1, which implies α∗i = 0, and αj ≤ 0. If every x is set

to 1 except one single xl where l ∈ {m + 1, . . . ,m + n}, then −1 < αl ≤ 0 violates

the constraint, and αl ≥ −1 increases the value of the objective function as αl increases.

Therefore, α∗l = −1 is optimal in this case. Applying this for every l ∈ {m+1, . . . ,m+n}

implies that every αj = −1. Consequently, when every x is set to 1, any α0 < 1+c violates

the constraint, and α0 ≥ 1 + c increases the value of the objective function as α0 increases.

Therefore, α∗0 = 1 + c is optimal.

To check that α∗0 = 1 + c, α∗i = 0, and α∗j = −1 are indeed optimal, the KKT necessary

conditions are used [19].

95



The equation for Lagrangian can be written as

L =
1

2

∥∥∥∥∥α0

m+n∏
k=1

xαkk − 1− c
m∏
i=1

xi

m+n∏
j=m+1

x−1j

∥∥∥∥∥
2

2

+ λ

(
1 + c

m∏
i=1

xi

m+n∏
j=m+1

x−1j − α0

m+n∏
k=1

xαkk

) (A.2)

It can be seen that it is not possible for the constraint to be active for all value of x

in the domain; therefore, the Lagrange multipliers must be zero (λ = 0) to satisfy the

complementary slackness condition. The partial derivatives of Lagrangian w.r.t. α0, αi,

and αj are

∂L(x, α)

∂α0

∣∣∣∣∣
α∗

= e(x, α∗) ·
m+n∏
k=m+1

x−1k (A.3)

∂L(x, α)

∂αi/j

∣∣∣∣∣
α∗

= e(x, α∗) · (1 + c)
m+n∏
k=m+1

x−1k · log(xi/j) (A.4)

where

e(x, α∗) = (1 + c)
m+n∏
k=m+1

x−1k − 1− c
m∏
i=1

xi

m+n∏
j=m+1

x−1j

Since e(x, α∗) = 0 at x = 1, KKT necessary conditions are satisfied. Note that, based

on the previous analysis, if α is picked to be optimal at other point, it will violate the

constraint at x = 1. For the second-order sufficient condition, it can be seen that the only

non-zero second-order partial derivative of Lagrangian evaluated at α∗ and x = 1 is

∂2L(x, α)

∂α2
0

∣∣∣∣∣
α∗,x=1

=
m+n∏
k=m+1

x−2k

∣∣∣∣∣
α∗,x=1

= 1 (A.5)

Hence, the Hessian is positive semi-definite, which implies optimality.

Proof of Theorem 3.4.2. Because the branch-and-bound method depends on the conver-

gence of upper and lower bounds towards each other as the size of the optimization do-

96



main shrinks, its global optimality can be achieved if both bounds obtained from relaxation

problems (3.10) and (3.12) are valid. The validity of the upper bound can be derived by

leveraging that fact that the problem (3.10) is an integer-relaxed SP and its solution is at

least locally optimal. Thus, if this solution is not globally optimal itself, there always exists

another solution that cannot be worse than this one. Hence, it is a valid upper bound.

For a lower bound, it is necessary to show that nonconvex constraints are under-approximated

and the relaxed problem (3.12) can be solved to a globally optimal solution. From (3.11),

since every element of x, and R are in the domain of [0, 1].

fi(x,R) =
Rlo(i)R

−1
i + pjxjRhi(i)R

−1
i

1 + pjxjRlo(i)R
−1
i

=
Rlo(i) + pjxjRhi(i)

Ri + pjxjRlo(i)

≥
Rlo(i) + pjxjRhi(i)

1 + pj

(A.6)

Therefore, the constraints used in (3.12) under-approximate the original ones in (3.9).

Furthermore, these functions are posynomial, which implies that the problem (3.12) can be

solved to a globally optimal solution.

The following theorems provide the proof that the coefficients in the objective function

from Equation (4.1) allow to meet all three requirements stated in Section 4.3.3.

Theorem A1.

∀ k̃ ∈ {1, . . . , Napps} : αk̃ > (β + 1)

Nnodes∑
j=1

1 +

Nrealloc∑
k=1

NCUs∑
j=1

Npaths∑
i=1

1,

that is, the contribution to the value of the objective function for executing application appk̃

is greater than the maximum contribution for reducing the number of reallocations and the

length of the communication paths.

Proof. ∀ k̃ ∈ {1, . . . , Napps} : αk̃ ≥ (β + 1)×Nnodes + β, by definition of αk̃.

97



Now,

(β + 1)

Nnodes∑
j=1

1 +

Nrealloc∑
k=1

NCUs∑
j=1

Npaths∑
i=1

1 = (β + 1)×Nnodes + β.

So

αk̃ > (β + 1)

Nnodes∑
j=1

1 +

Nrealloc∑
k=1

NCUs∑
j=1

Npaths∑
i=1

1.

Theorem A1 proves that requirement 1 is met.

Theorem A2.

(β + 1)× 1 >

Nrealloc∑
k=1

NCUs∑
j=1

Npaths∑
i=1

1,

that is, the contribution to the value of the objective function for not reallocating one Ap-

plication node is greater then the maximum contribution for reducing the length of commu-

nication paths.

Proof. β + 1 > β = Nrealloc ×NCUs ×Npaths =
∑Nrealloc

k=1

∑NCUs
j=1

∑Npaths
i=1 1.

Theorem A2 proves that requirement 2 is met.

Theorem A3.

∀ k̃ ∈ {1, . . . , Napps − 1} : αk̃ >

Napps∑
l=k̃+1

αl

that is, the contribution to the value of the objective function for executing application appk̃

is greater than the contribution for executing every applications with lower priority than

appk̃, which are appk̃+1 to appNapps
.

Proof. ∀ k̃ ∈ {1, . . . Napps} : αk̃ =
∑Napps

l=k̃+1
αl + (β + 1)×Nnodes + β + 1 >

∑Napps

l=k̃+1
αl

since (β + 1)×Nnodes + β + 1 > 0.

Theorem A3 proves that requirement 3 is met.

98



APPENDIX B

LIST OF TASKS IN MULTIROTOR GUIDANCE AND NAVIGATION

The detailed information about tasks used in Section 5.2 is provided in Table B.1 where the

period and WCET are in microseconds, and the lower index, the higher priority.

Index Tasks Description Period WCET DAL Redundancy Level
1 Update IMU 2500 120 A Triple
2 Rate Controller 2500 100 A Triple
3 Actuator Driver 2500 100 A Triple
4 State Estimator 2500 500 A Triple
5 Attitude Controller 2500 100 A Triple
6 Update Compass 100000 120 B Double
7 Update Barometer 100000 100 B Double
8 Position Controller 20000 100 B Double
9 Update Reference Frame 2500 200 B Double
10 Update GPS 20000 200 B Double
11 Check EKF Target 2500 50 C Double
12 Update RC sticks 10000 130 C Double
13 Update RC switches 100000 50 C Double
14 Check EKF 100000 75 C Double
15 Receive Data from GCS 2500 100 C Double
16 Send Data to GCS 2500 550 C Double
17 Check Landing or Crashing 2500 10 D N/A
18 Check Arming/Disarming 100000 50 D N/A
19 Auto Disarming IMU 100000 50 D N/A
20 Check GCS Health 200000 75 D N/A
21 Pre-flight Calibration 100000 100 D N/A
22 Check Vibration 100000 50 D N/A
23 Check GPS Glitch 100000 50 D N/A
24 Temperature Calibration 100000 100 D N/A
25 Barometer + GPS Logging 2500 50 E N/A
26 Flight State Logging 2500 50 E N/A
27 LED and Buzzer 20000 90 E N/A
28 IMU Logging 2500 50 E N/A
29 Scheduler Logging 10000000 75 E N/A

Table B.1: Multirotor Guidance and Navigation Task Classification.

99



APPENDIX C

MULTIROTOR CONTROL ALLOCATION

C.1 Multirotor Dynamics

Let the inertia frame fixed at a local reference point denoted by FI , and let the body frame

fixed at the vehicle’s Center of Mass (C.M.) denoted by FB. Let a vector, pI = [x y z]T,

represents the three-dimensional position of C.M. in FI . Let a vector of Euler angles (roll,

pitch, and yaw), Φ = [φ θ ψ]T, represents the orientation of FB relative to FI . Let a vector,

ωBB/I = [p q r]T, represents the angular velocity of FB with respect to FI , expressed in

FB. Then, the equations of motion can be written as follows [153]:

p̈I = gI +
1

m
RT
B/I(Φ)FB (C.1)

Φ̇ = H(Φ)ωBB/I (C.2)

ω̇BB/I = I−1b
[
−ωBB/I × Ibω

B
B/I + Mb

]
(C.3)

where gI = [0 0 −g]T is the gravitational vector in FI , m is the mass of the vehicle,

Ib is the inertia matrix about C.M., RB/I(Φ) ∈ SO(3) denotes the rotation matrix in a

yaw-pitch-roll sequence from FI to FB, i.e.,

RB/I(Φ) =


cθcψ cθsψ −sθ

sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

 (C.4)

with cx , cos(x) and sx , sin(x), H(Φ) denotes the transformation matrix from the

100



angular velocity vector to the Euler angle rate vector, i.e.,

H(Φ) =


1 sφtθ cφtθ

0 cφ −sφ

0
sφ
cθ

cφ
cθ

 (C.5)

with tx , tan(x), FB = [X Y Z]T and MB = [L M N ]T are applied forces and

moments in FB, respectively.

C.2 Control Allocation Problem Formulation

Many control strategies were proposed in the literature; however, most of them essentially

compute the desired force and moment vectors to control the vehicle, then the set of admis-

sible low-level motor inputs, U ,
{
u ∈ Rn | umin ≤ ui ≤ umax,∀i ∈ {1, . . .m}

}
where

m is the number of motors on the vehicle, can be later deduced from those desired vectors

[154, 155]. Therefore, it is necessary to address the problem of control allocation in order

to find optimal motor inputs that satisfy the desired forces and moments.

Let pi ∈ R3 be a position vector of each motor relative to C.M., ni ∈ [−1, 1]3 be a unit

vector in the direction of the motor thrust with respect to FB, and di ∈ {−1, 1} denotes

the spinning direction of the motor with 1 for CW and −1 for CCW. Then, two matrices,

MF, MM ∈ R3×m, that map the low-level motor inputs to the desired forces and moments

are defined as follows:

MF = kF [n1 . . .nm] (C.6)

MM = kM [d1n1 . . . dmnm] + kF [p1 × n1 . . .pm × nm] (C.7)

101



Finally, the control allocation problem can be cast as an optimization problem

minimize
u∈U

f(u)

subject to

MF

MM

u =

FB

MB

 (C.8)

where f is an arbitrary objective function. It should be noted that because of the equal-

ity constraint this formulation may not always provide a solution. To relax this problem,

another formulation that guarantees at least a sub-optimal solution to the original problem

can be cast as follow [156]:

minimize
u∈U

γf(u) + (1− γ)

∥∥∥∥∥∥∥W

MF

MM

u−
FB

MB



∥∥∥∥∥∥∥
2

2

(C.9)

where γ ∈ R is a weight between the original objective function and the augmented

constraint, and W ∈ R6×6 is the weighted matrix for specifying how close, in element-

wise, between the low-level motor inputs and the desired forces/moments should be.

Depending on the structure of f , the problem may be convex or non-convex. Some

examples of f that makes the problem convex are

• f(u) = ‖u‖22 minimizes the control effort.

• f(u) = ‖u− un‖22 tracks a nominal input un

• f(u) = ‖u− u∗t−1‖22 provides smooth changes between the current input and the one

in the previous time step u∗t−1

• f(u) = 1
m

∣∣(Im − 1
m

11T)u
∣∣minimizes the average absolute deviation about the mean

of the every control input.

• f(u) = max
1≤i≤m

ui minimizes the maximum power consumption.

Note that an additional weighted matrix can also be included in f .

102



REFERENCES

[1] W. Scheck. (2004). “Lawrence sperry: Genius on autopilot.” (accessed: 09.05.2021).

[2] I. Moir, A. Seabridge, and M. Jukes, Civil avionics systems. John Wiley & Sons,
2013.

[3] R. P. Collinson, Introduction to avionics systems. Springer Science & Business
Media, 2013.

[4] D. P. Thipphavong, R. Apaza, B. Barmore, V. Battiste, B. Burian, Q. Dao, M. Feary,
S. Go, K. H. Goodrich, J. Homola, et al., “Urban air mobility airspace integration
concepts and considerations,” in 2018 Aviation Technology, Integration, and Oper-
ations Conference, 2018, p. 3676.

[5] A. Straubinger, R. Rothfeld, M. Shamiyeh, K.-D. Büchter, J. Kaiser, and K. O.
Plötner, “An overview of current research and developments in urban air mobility–
setting the scene for uam introduction,” Journal of Air Transport Management,
vol. 87, p. 101 852, 2020.

[6] A. R. Kadhiresan and M. J. Duffy, “Conceptual design and mission analysis for ev-
tol urban air mobility flight vehicle configurations,” in AIAA Aviation 2019 Forum,
2019, p. 2873.

[7] R. Fuchsen, “Ima nextgen: A new technology for the scarlett program,” IEEE
Aerospace and Electronic Systems Magazine, vol. 25, no. 10, pp. 10–16, 2010.

[8] ARP4754A, “Guidelines for development of civil aircraft and systems,” SAE Inter-
national, 2010.

[9] Delta Air Lines, inc. (2021). “Delta air lines, inc. 2021 form 10-Q quarterly report.”
(accessed: 09.11.2021).

[10] ARP4761, “Guidelines and methods for conducting the safety assessment process
on airborne systems and equipments,” USA: The Engineering Society for Advanc-
ing Mobility Land Sea Air and Space, 1996.

[11] W.-S. Lee, D. L. Grosh, F. A. Tillman, and C. H. Lie, “Fault tree analysis, meth-
ods, and applications of a review,” IEEE transactions on reliability, vol. 34, no. 3,
pp. 194–203, 1985.

[12] F. Kachapova, “Representing markov chains with transition diagrams,” 2013.

103



[13] J. Rushby, “Partitioning in avionics architectures: Requirements, mechanisms, and
assurance,” SRI INTERNATIONAL MENLO PARK CA COMPUTER SCIENCE
LAB, Tech. Rep., 2000.

[14] C. B. Watkins and R. Walter, “Transitioning from federated avionics architectures
to integrated modular avionics,” in 2007 IEEE/AIAA 26th Digital Avionics Systems
Conference, IEEE, 2007, 2–A.

[15] A. Serino and L. Cheng, “Real-time operating systems for cyber-physical systems:
Current status and future research,” in 2020 International Conferences on Internet
of Things (iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData) and IEEE Congress on Cybermatics (Cybermatics), 2020, pp. 419–
425.

[16] R. Tyagi and S. K. Gupta, “A survey on scheduling algorithms for parallel and dis-
tributed systems,” in Silicon Photonics & High Performance Computing, Springer,
2018, pp. 51–64.

[17] B. Akhila, M. L. C. Prabaker, and J. B. Naik, “Survey of real time task scheduling
algorithms for multicore processors,” Journal of Advanced Research in Technology
and Management Sciences, vol. 01, no. 03, pp. 86–94, 2019.

[18] Green Hills Software. (2021). “World’s first multicore avionics certification to
CAST-32A uses the INTEGRITY-178 tuMP multicore RTOS.” (accessed: 09.13.2021).

[19] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press,
2004.

[20] D. Bertsekas, Convex optimization algorithms. Athena Scientific, 2015.

[21] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial on geometric
programming,” Optimization and engineering, vol. 8, no. 1, p. 67, 2007.

[22] R. J. Duffin and E. L. Peterson, “Geometric programming with signomials,” Jour-
nal of Optimization Theory and Applications, vol. 11, no. 1, pp. 3–35, 1973.

[23] M. M. Opgenoord, B. S. Cohen, and W. W. Hoburg, “Comparison of algorithms
for including equality constraints in signomial programming,” Aerospace Compu-
tational Design Lab., Massachusetts Inst. of Technology, TR-17-1, Cambridge, MA,
2017.

[24] A. Lundell and T. Westerlund, “Global optimization of mixed-integer signomial
programming problems,” in Mixed Integer Nonlinear Programming, Springer, 2012,
pp. 349–369.

104



[25] M.-H. Lin and J.-F. Tsai, “Range reduction techniques for improving computational
efficiency in global optimization of signomial geometric programming problems,”
European Journal of Operational Research, vol. 216, no. 1, pp. 17–25, 2012.

[26] G. Xu, “Global optimization of signomial geometric programming problems,” Eu-
ropean journal of operational research, vol. 233, no. 3, pp. 500–510, 2014.

[27] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint
arXiv:1609.04747, 2016.

[28] A. Galántai, “The theory of newton’s method,” Journal of Computational and Ap-
plied Mathematics, vol. 124, no. 1-2, pp. 25–44, 2000.

[29] Z.-J. Shi and J. Shen, “On step-size estimation of line search methods,” Applied
mathematics and computation, vol. 173, no. 1, pp. 360–371, 2006.

[30] G. Gordon and R. Tibshirani, “Karush-kuhn-tucker conditions,” Optimization, vol. 10,
no. 725/36, p. 725, 2012.

[31] N. J. Higham, “Gaussian elimination,” Wiley Interdisciplinary Reviews: Computa-
tional Statistics, vol. 3, no. 3, pp. 230–238, 2011.

[32] B. N. Datta, Numerical linear algebra and applications. Siam, 2010, vol. 116.

[33] D. Gale, “Linear programming and the simplex method,” Notices of the AMS,
vol. 54, no. 3, pp. 364–369, 2007.

[34] S. Zionts, “The criss-cross method for solving linear programming problems,” Man-
agement Science, vol. 15, no. 7, pp. 426–445, 1969.

[35] S. Mehrotra, “On the implementation of a primal-dual interior point method,” SIAM
Journal on optimization, vol. 2, no. 4, pp. 575–601, 1992.

[36] R. G. Bland, D. Goldfarb, and M. J. Todd, “The ellipsoid method: A survey,” Op-
erations research, vol. 29, no. 6, pp. 1039–1091, 1981.

[37] S. Boyd, L. Xiao, and A. Mutapcic, “Subgradient methods,” lecture notes of EE392o,
Stanford University, Autumn Quarter, vol. 2004, pp. 2004–2005, 2003.

[38] B. Borchers, “An overview of software for convex optimization,” 2010.

[39] R. Anand, D. Aggarwal, and V. Kumar, “A comparative analysis of optimization
solvers,” Journal of Statistics and Management Systems, vol. 20, no. 4, pp. 623–
635, 2017.

105



[40] Cplex, IBM ILOG, “User’s manual for CPLEX,” International Business Machines
Corporation, vol. 46, no. 53, p. 157, 2009.

[41] Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual, 2021.

[42] MOSEK ApS, The MOSEK optimization toolbox for MATLAB manual. version 9.0.
2019.

[43] M. J. Saltzman, “COIN-OR: An open-source library for optimization,” in Program-
ming languages and systems in computational economics and finance, Springer,
2002, pp. 3–32.

[44] A. Makhorin, “GLPK (GNU linear programming kit),” 2008.

[45] A. Domahidi, E. Chu, and S. Boyd, “ECOS: An socp solver for embedded systems,”
in 2013 European Control Conference (ECC), IEEE, 2013, pp. 3071–3076.

[46] K.-C. Toh, M. J. Todd, and R. H. Tütüncü, “SDPT3—a MATLAB software package
for semidefinite programming, version 1.3,” Optimization methods and software,
vol. 11, no. 1-4, pp. 545–581, 1999.

[47] I. Polik, T. Terlaky, and Y. Zinchenko, “SeDuMi: A package for conic optimiza-
tion,” in IMA workshop on Optimization and Control, Univ. Minnesota, Minneapo-
lis, Citeseer, 2007.

[48] M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming,
version 2.1, 2014.

[49] J. Lofberg, “Yalmip: A toolbox for modeling and optimization in matlab,” in 2004
IEEE international conference on robotics and automation (IEEE Cat. No. 04CH37508),
IEEE, 2004, pp. 284–289.

[50] E. Burnell, N. B. Damen, and W. Hoburg, “GPkit: A human-centered approach
to convex optimization in engineering design,” in Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems, 2020.

[51] T. Achterberg and R. Wunderling, “Mixed integer programming: Analyzing 12
years of progress,” in Facets of combinatorial optimization, Springer, 2013, pp. 449–
481.

[52] J. C. Smith and Z. C. Taskin, “A tutorial guide to mixed-integer programming mod-
els and solution techniques,” Optimization in Medicine and Biology, pp. 521–548,
2008.

106



[53] F. S. Hillier, Introduction to operations research. Tata McGraw-Hill Education,
2012.

[54] K. S. Riedel, “Piecewise convex function estimation and model selection,” arXiv
preprint arXiv:1803.03903, 2018.

[55] J. P. Vielma, S. Ahmed, and G. Nemhauser, “Mixed-integer models for nonsepa-
rable piecewise-linear optimization: Unifying framework and extensions,” Opera-
tions research, vol. 58, no. 2, pp. 303–315, 2010.

[56] A. Richards and J. How, “Mixed-integer programming for control,” in Proceedings
of the 2005, American Control Conference, 2005., IEEE, 2005, pp. 2676–2683.

[57] T. Schouwenaars, B. De Moor, E. Feron, and J. How, “Mixed integer programming
for multi-vehicle path planning,” in 2001 European control conference (ECC),
IEEE, 2001, pp. 2603–2608.

[58] L. Sutter, T. Khamvilai, P. Monmousseau, J. B. Mains, E. Feron, P. Baufreton,
F. Neumann, M. Krishna, S. Nandy, R. Narayan, et al., “Experimental allocation
of safety-critical applications on reconfigurable multi-core architecture,” in 2018
IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), IEEE, 2018, pp. 1–
10.

[59] B. Annighoefer, C. Reif, and F. Thieleck, “Network topology optimization for dis-
tributed integrated modular avionics,” in 2014 IEEE/AIAA 33rd Digital Avionics
Systems Conference (DASC), IEEE, 2014, 4A1–1.

[60] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,” Operations
research, vol. 14, no. 4, pp. 699–719, 1966.

[61] J. E. Kelley Jr, “The cutting-plane method for solving convex programs,” Journal
of the society for Industrial and Applied Mathematics, vol. 8, no. 4, pp. 703–712,
1960.

[62] R. E. Bixby, “A brief history of linear and mixed-integer programming computa-
tion,” Documenta Mathematica, no. 2012, pp. 107–121, 2012.

[63] Gurobi Optimization, LLC. (2021). “Mixed-integer programming (MIP) – a primer
on the basics.” (accessed: 09.17.2021).

[64] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent networks.
Princeton University Press, 2010.

107



[65] Airbus, A350 technical training manual maintenance course - T1+T2 - RR trent
XWB integrated modular avionics and avionics data communication network, Oct.
2013.

[66] ——, “Lexinet - Airbus Reference Language Abbreviation,” 2017.

[67] S. Chauhan and S. Malik, “Reliability evaluation of series-parallel and parallel-
series systems for arbitrary values of the parameters,” International Journal of
Statistics and Reliability Engineering, vol. 3, pp. 10–19, Jan. 2016.

[68] G. Hardy, C. Lucet, and N. Limnios, “K-terminal network reliability measures
with binary decision diagrams,” IEEE Transactions on Reliability, vol. 56, no. 3,
pp. 506–515, 2007.

[69] M. O. Ball, “Computational complexity of network reliability analysis: An overview,”
IEEE Transactions on Reliability, 1986.

[70] D. E. Knuth, The art of computer programming, volume 4A: combinatorial algo-
rithms, part 1. Pearson Education India, 2011.

[71] S.-Y. Kuo, F.-M. Yeh, and H.-Y. Lin, “Efficient and exact reliability evaluation for
networks with imperfect vertices,” IEEE Transactions on Reliability, vol. 56, no. 2,
pp. 288–300, 2007.

[72] B. Bollobás, Modern graph theory. Springer Science & Business Media, 2013,
vol. 184.

[73] J. H. Saleh and J.-F. Castet, Spacecraft reliability and multi-state failures: a statis-
tical approach. John Wiley & Sons, 2011.

[74] R. Soltani, “Reliability optimization of binary state non-repairable systems: A state
of the art survey,” International Journal of Industrial Engineering Computations,
vol. 5, no. 3, pp. 339–364, 2014.

[75] A. Peiravi, M. Karbasian, M. A. Ardakan, and D. W. Coit, “Reliability optimization
of series-parallel systems with k-mixed redundancy strategy,” Reliability Engineer-
ing & System Safety, vol. 183, pp. 17–28, 2019.

[76] S. Gupta, K. Deep, and A. Assad, “Reliability–redundancy allocation using random
walk gray wolf optimizer,” in Soft Computing for Problem Solving, Springer, 2020,
pp. 941–959.

[77] K. B. Misra and J. Sharma, “A new geometric programming formulation for a
reliability problem,” International Journal of Control, vol. 18, no. 3, pp. 497–503,
1973. eprint: https://doi.org/10.1080/00207177308932529.

108

https://doi.org/10.1080/00207177308932529


[78] K. Govil, “Geometric programming method for optimal reliability allocation for a
series system subject to cost constraint,” Microelectronics Reliability, vol. 23, no. 5,
pp. 783–784, 1983.

[79] G. Mahapatra and T. Roy, “Optimal redundancy allocation in series-parallel sys-
tem using generalized fuzzy number,” Tamsui Oxford Journal of Information and
Mathematical Sciences, 2011.

[80] D. P. Kroese, K.-P. Hui, and S. Nariai, “Network reliability optimization via the
cross-entropy method,” IEEE Transactions on Reliability, vol. 56, no. 2, pp. 275–
287, 2007.

[81] W.-C. Yeh, Y.-C. Lin, Y. Y. Chung, and M. Chih, “A particle swarm optimization
approach based on Monte Carlo simulation for solving the complex network re-
liability problem,” IEEE Transactions on Reliability, vol. 59, no. 1, pp. 212–221,
2010.

[82] J. Zhao, S. Si, and Z. Cai, “A multi-objective reliability optimization for recon-
figurable systems considering components degradation,” Reliability Engineering &
System Safety, vol. 183, pp. 104–115, 2019.

[83] B. Elshqeirat, S. Soh, S. Rai, and M. Lazarescu, “Topology design with minimal
cost subject to network reliability constraint,” IEEE Transactions on Reliability,
vol. 64, no. 1, pp. 118–131, 2014.

[84] M. Nishino, T. Inoue, N. Yasuda, S.-I. Minato, and M. Nagata, “Optimizing net-
work reliability via best-first search over decision diagrams,” in IEEE INFOCOM
2018-IEEE Conference on Computer Communications, IEEE, 2018, pp. 1817–
1825.

[85] B. Ozturk and A. Saab, “Optimal aircraft design decisions under uncertainty via
robust signomial programming,” in AIAA Aviation 2019 Forum, 2019, p. 3351.

[86] A. P. Dowdle, D. K. Hall, and J. H. Lang, “Electric propulsion architecture assess-
ment via signomial programming,” in 2018 AIAA/IEEE Electric Aircraft Technolo-
gies Symposium (EATS), IEEE, 2018.

[87] M. J. Bellotti and M. Vucic, “Sparse FIR filter design based on signomial program-
ming,” Elektronika ir Elektrotechnika, 2020.

[88] S. Fu, H. Wen, and B. Wu, “Power-fractionizing mechanism: Achieving joint user
scheduling and power allocation via geometric programming,” IEEE Transactions
on Vehicular Technology, vol. 67, no. 3, pp. 2025–2034, 2017.

109



[89] S. Chauhan and S. Malik, “Reliability evaluation of series-parallel and parallel-
series systems for arbitrary values of the parameters,” International Journal of
Statistics and Reliability Engineering, vol. 3, no. 1, pp. 10–19, 2016.

[90] V. Hoepfer, J. H. Saleh, and K. B. Marais, “On the value of redundancy subject to
common-cause failures: Toward the resolution of an on-going debate,” Reliability
Engineering & System Safety, 2009.

[91] I. P. Androulakis, “Minlp: Branch and bound global optimization algorithm,” in
Encyclopedia of Optimization, C. A. Floudas and P. M. Pardalos, Eds. Boston, MA:
Springer US, 2009, pp. 2132–2138, ISBN: 978-0-387-74759-0.

[92] D. Li, X. Sun, and K. McKinnon, “An exact solution method for reliability opti-
mization in complex systems,” Annals of Operations Research, vol. 133, no. 1-4,
pp. 129–148, 2005.

[93] S. Boyd and J. Mattingley, “Branch and bound methods,” Notes for EE364b, Stan-
ford University, pp. 2006–07, 2007.

[94] S. Wilson, P. Glotfelter, L. Wang, S. Mayya, G. Notomista, M. Mote, and M. Egerst-
edt, “The robotarium: Globally impactful opportunities, challenges, and lessons
learned in remote-access, distributed control of multirobot systems,” IEEE Control
Systems Magazine, 2020.

[95] A. Yalaoui, E. Châtelet, and C. Chu, “Series-parallel systems design: Reliability
allocation,” Journal of decision systems, 2005.

[96] Y. Ikeda, R. Kawahara, and H. Saito, “Generating a network reliability formula by
using binary decision diagrams,” IEICE Communications Express, vol. 4, no. 9,
pp. 299–303, 2015.

[97] J. Li, Z. Ming, M. Qiu, G. Quan, X. Qin, and T. Chen, “Resource allocation ro-
bustness in multi-core embedded systems with inaccurate information,” Journal of
Systems Architecture, vol. 57, no. 9, pp. 840–849, 2011.

[98] A. Avakian, J. Nafziger, A. Panda, and R. Vemuri, “A reconfigurable architecture
for multicore systems,” in 2010 IEEE International Symposium on Parallel Dis-
tributed Processing, Workshops and Phd Forum (IPDPSW), Apr. 2010, pp. 1–8.

[99] A. Monot, N. Navet, B. Bavoux, and F. Simonot-Lion, “Multisource software on
multicore automotive ECUs—combining runnable sequencing with task schedul-
ing,” IEEE Transactions on Industrial Electronics, vol. 59, no. 10, pp. 3934–3942,
Oct. 2012.

110



[100] N. Neves, N. Sebastião, D. Matos, P. Tomás, P. Flores, and N. Roma, “Multi-
core SIMD ASIP for next-generation sequencing and alignment biochip platforms,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 7,
pp. 1287–1300, Jul. 2015.

[101] Y. Lu, H. Zhou, L. Shang, and X. Zeng, “Multicore parallelization of min-cost
flow for CAD applications,” IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, vol. 29, no. 10, pp. 1546–1557, Oct. 2010.

[102] J. Nowotsch and M. Paulitsch, “Leveraging multi-core computing architectures in
avionics,” in Dependable Computing Conference (EDCC), 2012 Ninth European,
IEEE, 2012, pp. 132–143.

[103] F. Reichenbach and A. Wold, “Multi-core technology–next evolution step in safety
critical systems for industrial applications?” In Digital System Design: Architec-
tures, Methods and Tools (DSD), 2010 13th Euromicro Conference on, IEEE, 2010,
pp. 339–346.

[104] U. Durak and F. Bapp, “Introduction to special issue on multi-core architectures
in avionics systems,” Journal of Aerospace Information Systems, vol. 16, no. 11,
pp. 441–441, 2019. eprint: https://doi.org/10.2514/1.I010793.

[105] A. Löfwenmark and S. Nadjm-Tehrani, “Challenges in future avionic systems on
multi-core platforms,” in 2014 IEEE International Symposium on Software Relia-
bility Engineering Workshops, IEEE, 2014, pp. 115–119.

[106] P. J. Parkinson, “The challenges of developing embedded real-time aerospace ap-
plications on next generation multi-core processors,” Aviation Electronics Europe,
Munich, 2016.

[107] S. Hasan, “Urban air mobility (UAM) market study,” NASA Technical Reports,
2019.

[108] D. L. Hackenberg, “NASA aeronautics research mission directorate (ARMD) urban
air mobility (UAM) grand challenge industry day,” NASA Technical Reports, 2018.

[109] M. Alle, K. Varadarajan, A. Fell, C. R. Reddy, J. Nimmy, S. Das, P. Biswas, J.
Chetia, A. Rao, S. K. Nandy, and R. Narayan, “REDEFINE: Runtime reconfig-
urable polymorphic ASIC,” ACM Transactions on Embedded Computing Systems,
vol. 9, no. 2, 2009.

[110] M. A. Watkins and D. H. Albonesi, “ReMAP: A reconfigurable heterogeneous mul-
ticore architecture,” in 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, Dec. 2010, pp. 497–508.

111

https://doi.org/10.2514/1.I010793


[111] M. B. Stuart, M. B. Stensgaard, and J. Sparsø, “The ReNoC reconfigurable network-
on-chip: Architecture, configuration algorithms, and evaluation,” ACM Transac-
tions on Embedded Computing Systems (TECS), vol. 10, no. 4, pp. 1–26, 2011.

[112] L. M. Kinnan, “Use of multicore processors in avionics systems and its potential
impact on implementation and certification,” in Digital Avionics Systems Confer-
ence, 2009. DASC’09. IEEE/AIAA 28th, IEEE, 2009, 1–E.

[113] Y. Shen, J. Wu, and G. Jiang, “Multithread reconfiguration algorithm for mesh-
connected processor arrays,” in 2012 13th International Conference on Parallel
and Distributed Computing, Applications and Technologies, Dec. 2012, pp. 659–
663.

[114] T. Loekstad and F. Reichenbach, Symmetric multi-processor arrangement, safety
critical system, and method therefor, US Patent App. 14/432,938, Sep. 2015.

[115] B. Annighoefer, M. Riedlinger, O. Marquardt, R. Ahmadi, B. Schulz, M. Brunner,
and R. Reichel, “The adaptive avionics platform,” IEEE Aerospace and Electronic
Systems Magazine, vol. 34, no. 3, pp. 6–17, 2019.

[116] M. Oriol, T. Gamer, T. de Gooijer, M. Wahler, and E. Ferranti, “Fault-tolerant fault
tolerance for component-based automation systems,” in Proceedings of the 4th in-
ternational ACM Sigsoft symposium on Architecting critical systems, Jun. 2013,
pp. 49–58.

[117] B. Annighöfer and E. Kleemann, “Large-scale model-based avionics architecture
optimization methods and case study,” IEEE Transactions on Aerospace and Elec-
tronic Systems, vol. 55, no. 6, pp. 3424–3441, 2019.

[118] T. P. Chen, D. Budnikov, C. J. Hughes, and Y. Chen, “Computer vision on multi-
core processors: Articulated body tracking,” in 2007 IEEE International Confer-
ence on Multimedia and Expo, Jul. 2007, pp. 1862–1865.

[119] T. L. Ben Cheikh, G. Beltrame, G. Nicolescu, F. Cheriet, and S. Tahar, “Paral-
lelization strategies of the canny edge detector for multi-core CPUs and many-core
GPUs,” in 10th IEEE International NEWCAS Conference, Jun. 2012, pp. 49–52.

[120] Z. Zhong and M. Edahiro, “Model-based parallelization for simulink models on
multicore CPUs and GPUs,” International Journal of Computers and Technology,
vol. 20, pp. 1–13, Jan. 2020.

[121] C. Silva, W. R. Johnson, E. Solis, M. D. Patterson, and K. R. Antcliff, “VTOL
urban air mobility concept vehicles for technology development,” in 2018 Aviation
Technology, Integration, and Operations Conference, 2018, p. 3847.

112



[122] W. Johnson, C. Silva, and E. Solis, “Concept vehicles for VTOL air taxi opera-
tions,” NASA Technical Reports, 2018.

[123] P. Manolios and V. Papavasileiou, “ILP modulo theories,” in International Confer-
ence on Computer Aided Verification, Springer, 2013, pp. 662–677.

[124] P. Manolios, D. Vroon, and G. Subramanian, “Automating component-based sys-
tem assembly,” in Proceedings of the 2007 international symposium on Software
testing and analysis, 2007, pp. 61–72.

[125] C. Hang, P. Manolios, and V. Papavasileiou, “Synthesizing cyber-physical architec-
tural models with real-time constraints,” in International Conference on Computer
Aided Verification, Springer, 2011, pp. 441–456.

[126] J. Korst, E. Aarts, J. K. Lenstra, and J. Wessels, “Periodic multiprocessor schedul-
ing,” in Parle ’91 Parallel Architectures and Languages Europe, E. H. L. Aarts, J.
van Leeuwen, and M. Rem, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
1991, pp. 166–178, ISBN: 978-3-662-25209-3.

[127] C. M. K. Israel Koren, Fault tolerant systems. Morgan Kaufmann Publishers, 2007,
pp. 20–23.

[128] E. Upton and G. Halfacree, Raspberry Pi user guide. John Wiley & Sons, 2014.

[129] T. Guillaumet, E. Feron, P. Baufreton, F. Neumann, K. Madhu, M. Krishna, S. K.
Nandy, R. Narayan, and C. Haldar, “Task allocation of safety-critical applica-
tions on reconfigurable multi-core architectures,” in 2017 IEEE/AIAA 36th Digital
Avionics Systems Conference (DASC), Sep. 2017, pp. 1–10.

[130] T. Everitt and M. Hutter, “Analytical results on the BFS vs. DFS algorithm selec-
tion problem: Part II: Graph search,” in Australasian Joint Conference on Artificial
Intelligence, Springer, 2015, pp. 166–178.

[131] ArduPilot Community. (2016). “ArduPilot.” (accessed: 09.22.2021).

[132] G. D. Sirio, ChibiOS/RT the ultimate guide, 2020.

[133] D. Busch, Introduction to opendds, 2012.

[134] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source
multi-robot simulator,” in 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), IEEE, vol. 3, 2004, pp. 2149–
2154.

[135] DroneCode Project, Inc. (2019). “QGroundControl.” (accessed: 09.23.2021).

113



[136] J. Seo, J. Paik, and M. Yim, “Modular reconfigurable robotics,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 2, pp. 63–88, 2019.

[137] R. Oung and R. D’Andrea, “The distributed flight array,” Mechatronics, vol. 21,
no. 6, pp. 908–917, 2011.

[138] M. J. Duffy and A. Samaritano, “The lift! project-modular, electric vertical lift sys-
tem with ground power tether,” in 33rd AIAA Applied Aerodynamics Conference,
2015, p. 3013.

[139] D. Saldana, B. Gabrich, G. Li, M. Yim, and V. Kumar, “Modquad: The flying modu-
lar structure that self-assembles in midair,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA), IEEE, 2018, pp. 691–698.

[140] N. Gandhi, D. Saldana, V. Kumar, and L. T. X. Phan, “Self-reconfiguration in re-
sponse to faults in modular aerial systems,” IEEE Robotics and Automation Letters,
vol. 5, no. 2, pp. 2522–2529, 2020.

[141] E. Alvarado. (May 3, 2021). “237 ways drone applications revolutionize business,”
(visited on 09/05/2021).

[142] L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys, “Pixhawk: A system for
autonomous flight using onboard computer vision,” in 2011 IEEE International
Conference on Robotics and Automation, IEEE, 2011, pp. 2992–2997.

[143] Y. Sheng and G. Tao, “An adaptive actuator failure compensation scheme for a
hexarotor system,” in 2018 AIAA Guidance, Navigation, and Control Conference,
2018, p. 1109.

[144] N. P. Nguyen, N. Xuan Mung, and S. K. Hong, “Actuator fault detection and fault-
tolerant control for hexacopter,” Sensors, vol. 19, no. 21, p. 4721, 2019.

[145] G.-X. Du, Q. Quan, B. Yang, and K.-Y. Cai, “Controllability analysis for multi-
rotor helicopter rotor degradation and failure,” Journal of Guidance, Control, and
Dynamics, vol. 38, no. 5, pp. 978–985, 2015.

[146] O. Härkegård, “Dynamic control allocation using constrained quadratic program-
ming,” Journal of Guidance, Control, and Dynamics, vol. 27, no. 6, pp. 1028–1034,
2004.

[147] NaturalPoint, Inc. (2021). “Optitrack - motion capture systems.” (accessed: 09.24.2021).

[148] W. Merrill, J.-H. Kim, S. Lall, S. Majerus, D. Howe, and A. Behbahani, “Dis-
tributed engine control design considerations,” in 46th AIAA/ASME/SAE/ASEE Joint
Propulsion Conference & Exhibit, 2010, p. 6749.

114



[149] M. Pakmehr, M. Dhingra, N. Fitzgerald, J. Paduano, M. Wolf, E. Feron, and A. Be-
hbahani, “Distributed architectures integrated with high-temperature electronics for
engine monitoring and control,” in 47th AIAA/ASME/SAE/ASEE Joint Propulsion
Conference & Exhibit, 2011, p. 6148.

[150] J. W. Chapman and J. S. Litt, “Control design for an advanced geared turbofan
engine,” in 53rd AIAA/SAE/ASEE Joint Propulsion Conference, 2017, p. 4820.

[151] A. Berner, “Engine area distributed interconnect network – EADIN a DECWG
proposed serial communication bus for SAE consideration,” in SAE Conference
Proceedings, Oct. 2012.

[152] DECWG Consortium, “Engine area distributed interconnect network bus specifi-
cation,” Mar. 2014.

[153] B. L. Stevens, F. L. Lewis, and E. N. Johnson, Aircraft control and simulation:
dynamics, controls design, and autonomous systems. John Wiley & Sons, 2015.

[154] H. Lee and H. J. Kim, “Trajectory tracking control of multirotors from modelling to
experiments: A survey,” International Journal of Control, Automation and Systems,
vol. 15, no. 1, pp. 281–292, 2017.

[155] T. P. Nascimento and M. Saska, “Position and attitude control of multi-rotor aerial
vehicles: A survey,” Annual Reviews in Control, vol. 48, pp. 129–146, 2019.

[156] M. W. Oppenheimer, D. B. Doman, and M. A. Bolender, “Control allocation for
over-actuated systems,” in 2006 14th Mediterranean Conference on Control and
Automation, 2006, pp. 1–6.

115



VITA

Thanakorn Khamvilai was born in Nonthaburi, Thailand. After finishing high school, he

went to Kasetsart University in Bangkok to study aerospace engineering. He studied UAV

for fun and worked as an undergraduate research assistant. After graduating with a bach-

elor’s degree in engineering, his research experiences inspired him to start his graduate

school at Georgia Institute of Technology, where his interests lie in avionics systems, con-

trol, and optimization. He then finally completed the requirements for Doctor of Philosophy

in Aerospace Engineering. After graduation, he hopes to live his life happily ever after.

116


	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Summary
	1 | Introduction
	Evolution of Avionics and Motivation
	System Safety Development
	Real-Time Operating Systems

	2 | Mathematical Background
	Convex Optimization
	Mixed-Integer Optimization
	Networked System Reliability Analysis

	3 | Redundancy Design Automation
	Motivation
	Related Works
	Redundancy Optimization
	Topology Optimization
	Examples

	4 | Reconfigurable Avionics
	Motivation
	Related Works
	Reconfiguration Problem Description
	Decentralized and Online Self-Reconfiguration
	Example

	5 | Applications
	Multicore Avionics
	Multirotor Guidance and Navigation
	Modular Drone with Actuator Failure
	Fault-Tolerant Distributed Engine Control Architecture

	6 | Conclusions
	Appendices
	A | Mathematical Proofs
	B | List of Tasks in Multirotor Guidance and Navigation
	C | Multirotor Control Allocation

	References
	Vita

